DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING MASSACHUSETTS INSTITUTE OF TECHNOLOGY

3.225 Electronic and Mechanical Properties of Materials

Summer Term 2002

Problem Set #4 Due: Day #6

- 1. A silicon step junction diode with a cross-sectional area $A = 10^{-4}$ cm² has a doping of N_A = 10^{17} cm⁻³ and $N_D = 10^{15}$ cm⁻³. Let $\mu_e = 801$ cm²/V·s and $\tau_e = 0.1\mu$ s on the p-side; and let $\mu_h = 477$ cm²/V·s and $\tau_h = 1\mu$ s on the n-side.
 - a) Calculate the current through the diode at room temperature (KT/q = 0.026 V) if
 - (i) $V_A = -50 \text{ V}$,
 - (ii) $V_A = -0.1 \text{ V}$, and
 - (iii) $V_A = 0.2 \text{ V}.$
 - b) Assuming that the mobilities and lifetimes do not vary significantly with themperature, repeat part (a) for T = 500 K.
 - c) Summarize in your own words what has been exhibited by this problem.
- 2. A forward-biased silicon diode is sold commercially as a temperature sensor. To use it to measure temperature, it is forward biased with a constant current source and V_A is measured as a function of T.
 - a) Derive an equation for $V_A(T)$ by letting D/L for holes and electrons be independent of T using the energy gap dependence of

$$E_G = 1.17 - \frac{(4.73 \times 10^{-4})T^2}{(T+636)} (eV)$$
, where T is in K.

- b) If $n_i = 1.5 (10^{10})$ cm⁻³, kT = 0.026 eV, $I_0 = 10^{-15}$ A, and $I = 10^{-4}$ A at room temperature (300 K), calculate a formula for $V_A(T)$ and plot it vs. T from 20°C to 200°C. Note it is nearly linear.
- c) Derive a formula for dV_A/dT (in mV/K) and determine the slope of the plot of part (b).

- 3. *P-n* junctions serve as the basis of photovoltaic solar cells. Sketch the I-V characteristics of a junction with
 - a) no illumination,
 - b) illumination with generation rate $G_L = G_{L0}$, and
 - c) illumination with generation rate $G_L = 2G_{L0}$.
- 4. (Livingston) 16.10