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Representation of E,k for 1-D Material
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g(E)=density of states=number of electron states per energy per length

• n, the electron density, the number of electrons per unit 
length is determined by the crystal structure and valence

• n determines the energy and velocity of the highest 
occupied electron state at T=0

2
or  

222 π
ππ

nk
mEk

L
Nn F

FF ====
h

m
k

dk
dE

mEk
m
kE

2

22 2;
2
h

h

h

=

==

© E. Fitzgerald-1999 

3.225 2

Representation of E,k for 2-D Material
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Representation of E,k for 3-D Material 
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So how have material properties changed? 

• The Fermi velocity is much higher than 
kT even at T=0!  Pauli Exclusion raises 
the energy of the electrons since only 2 
e- allowed in each level 

• Only electrons near Fermi surface can 
interact, i.e. absorb energy and 
contribute to properties 

TF~104K (Troom~102K), 
EF ~100Eclass, vF 

2~100vclass 
2 

© E. Fitzgerald-1999 

2




3
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Effect of Temperature (T>0): Coupled electronic-thermal properties in conductors

• Electrons at the Fermi surface are able to increase energy: responsible for 
properties

• Fermi-Dirac distribution
• NOT Bolltzmann distribution, in which any number of particles can occupy 

each energy state/level
Originates from:
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Fermi-Dirac Distribution: the Fermi Surface when T>0
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Electrons in a Periodic Potential 

• Rigorous path: HΨ=EΨ 

• We already know effect: DeBroglie and electron diffraction 

• Unit cells in crystal lattice are 10-8 cm in size 

• Electron waves in solid are λ=h/p~10-8 cm in size 

• Certain wavelengths of valence electrons will diffract! 

© E. Fitzgerald-1999 

3.225 8 

Diffraction Picture of the Origin of Band Gaps 

• Start with 1-D crystal again 

λ~a 

a 
1-D 

θλ sin2dn = 
d=a, 
sinθ=1 

a 
nk 

k 

an 

π 
λ 

π 

λ 

= 

= 

= 

2 
2 

Take lowest order, n=1, and 
consider an incident valence 
electron moving to the right 
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Diffraction Picture of the Origin of Band Gaps 

Probability Density=probability/volume of finding electron=|ψ|2 
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•Only two solutions for a diffracted wave 

•Electron density on atoms 
•Electron density off atoms 

•No other solutions possible at this wavelength: no free traveling wave 
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• Assume electrons with wave vectors (k’s) far from diffraction 
condition are still free and look like traveling waves and see 
ion potential, U, as a weak background potential 

• Electrons near diffraction condition have only two possible 
solutions 

– electron densities between ions, E=Efree-U 

– electron densities on ions, E= Efree+U 

• Exact solution using HΨ=EΨ shows that E near diffraction 
conditions is also parabolic in k, E~k2 

Nearly-Free Electron Model 
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Nearly-Free Electron Model (still 1-D crystal)
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free electron curve

∆k=2π/a=G=reciprocal lattice vector
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band gaps form, strong 
interaction of e- with
U on ions
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Electron Wave Functions in Periodic Lattice

• Often called ‘Bloch Electrons’ or ‘Bloch Wavefunctions’
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Block Theorem

• If the potential on the lattice is U(r) (and therefore 
U(r+R)=U(r)), then the wave solutions to the S.E. are a 
plane wave with a periodic part u(r) that has the periodicity 
of the lattice
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Reduced-Zone Scheme

• Only show k=+-π/a since all solutions represented there

π/a−π/a
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Real Band Structures

• GaAs: Very close to what we have derived in the nearly free electron model
• Conduction band minimum at k=0: Direct Band Gap
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Review of H atom
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Relationship between Quantum Numbers

s p d

Origin of the periodic table

s s p
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Bonding and Hybridization
• Energy level spacing decreases as atoms are added
• Energy is lowered as bonding distance decreases
• All levels have E vs. R curves: as bonding distance decreases, ion core 

repulsion eventually increases E

E
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hybridization
NFE picture,
semiconductors
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