

| Band Gap Energy Trends                                                                                                                                                                                                                                                |                     |       |    |        |                       |                     |                      |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------|----|--------|-----------------------|---------------------|----------------------|--|--|--|
|                                                                                                                                                                                                                                                                       | IV / III-V / II-VI* |       |    |        |                       |                     |                      |  |  |  |
| II B                                                                                                                                                                                                                                                                  | III                 | IV    | V  | VI     | MP (°K)               | Eg (eV)             | a <sub>o</sub> A     |  |  |  |
|                                                                                                                                                                                                                                                                       | В                   | С     | Ν  | 0      |                       | 6/10                | 3.56/3.16            |  |  |  |
|                                                                                                                                                                                                                                                                       | Al                  | Si    | Р  | S      | 1685 / 1770           | 1.1/3               | 5.42 / 5.46          |  |  |  |
| Zn                                                                                                                                                                                                                                                                    | Ga                  | Ge    | As | Se     | 1231/1510/?           | 0.72 / 1.35/ ?      | 5.66 / 5.65 / ?      |  |  |  |
| Cd                                                                                                                                                                                                                                                                    | In                  | Sn    | Sb | Te     | 508 / 798 / ?         | 0.08 /0.18 / 1.45   | 6.45/6.09/?          |  |  |  |
| <ul> <li>* Fill in as many of the question marks as you can.</li> <li>Note Trends: <ol> <li>As descend column, MP decreases as does Eg while a<sub>o</sub> increases.</li> <li>As move from IV to III-VI to II-VI compounds become more ionic,</li> </ol> </li> </ul> |                     |       |    |        |                       |                     |                      |  |  |  |
| · ·                                                                                                                                                                                                                                                                   |                     |       |    | MP and | l Eg increase while a | o tends to decrease |                      |  |  |  |
| Test and a second                                                                                                                                                                                                                                                     | I COMPANY           | 3.225 |    |        |                       | (                   | © H.L. Tuller-2001 2 |  |  |  |



| Energy Gap and Mobility Trends                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                |                               |                                                                   |                    |   |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------|-------------------------------------------------------------------|--------------------|---|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Material       | Eg(eV)°K                      | µn(cm²/V⋅s)                                                       |                    |   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GaN            | 3.39                          | 150                                                               |                    |   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AlAs           | 2.3                           | 180                                                               |                    |   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GaP            | 2.4                           | 2,100                                                             |                    |   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GaAs           | 1.53                          | 16,000                                                            |                    |   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | InP            | 1.41                          | 44,000                                                            |                    |   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | InAs           | 0.43                          | 120,000                                                           |                    |   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | InSb           | 0.23                          | 1,000,000                                                         |                    |   |  |  |  |  |  |
| - Contraction of the second se | Remember that: | $\mu = \frac{e\tau}{m^*}$ and | $\frac{1}{m^*} = \frac{1}{h^2} \frac{\partial^2 E}{\partial k^2}$ |                    |   |  |  |  |  |  |
| 3.225                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5              |                               |                                                                   | © H.L. Tuller-2001 | 4 |  |  |  |  |  |







































