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The Capacitor 
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The Capacitor 

• The air-gap can store energy! 
• If we can move charge temporarily without current flow, can store even more 
• Bound charge around ion cores in a material can lead to dielectric properties 

•Two kinds of charge can create plate 
charge: 

•surface charge 
•dipole polarization in the volume 

•Gauss’ law can not tell the difference 
(only depends on charge per unit area) 
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Material Polarization 
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displacement 
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All detail of material response is in εr and therefore P 
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Origin of Polarization 

• We are interested in the true dipoles creating polarization in materials (not 
surface effect) 

• As with the free electrons, what is the response of these various dipole 
mechanisms to various E-field frequencies? 

• When do we have to worry about controlling 
– molecular polarization (molecule may have non-uniform electron density) 
– ionic polarization (E-field may distort ion positions and temporarily create dipoles) 
– electronic polarization (bound electrons around ion cores could distort and lead to 

polarization) 
• Except for the electronic polarization, we might expect the other mechanisms 

to operate at lower frequencies, since the units are much more massive 
• What are the applications that use waves in materials for frequencies below the 

visible? 
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Application for Different E-M Frequencies 

Methods of detecting 
these frequencies 

Cell phones 
λ=14-33cm 

DBS (TV) 
λ=2.5cm 

Other satellite, 10-50GHz 
λ=3cm-6mm (‘mm wave’) 

Fiber optics 
λ=1.3-1.55µm 

‘MMIC’, pronounced ‘mimic’ 
mm wave ICs 

In communications, many E-M waves travel in insulating materials: 
What is the response of the material (εr) to these waves? 
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Wave Eqn. with Insulating Material and Polarization 
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So polarization slows down the 
velocity of the wave in the 

material 
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3.225 7 

Compare Optical (index of refraction) and Electrical Measurements of ε 

Material Optical, n2 Electrical, ε 

diamond 5.66 5.68 

NaCl 2.25 5.9 

H2O 1.77 80.4 

Only electronic polarization 

Electronic and ionic polarisation 

Electronic, ionic, and 
molecular polarisation 

Polarization that is active depends on material and frequency 
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Microscopic Frequency Response of Materials 

• Bound charge can create dipole through charge displacement. 
• Hydrodynamic equation (Newtonian representation) will now have a 

restoring force. 
• Review of dipole physics: 
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• For a material with many dipoles: 

Microscopic Frequency Response of Materials 
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• We now need to derive a new relationship between the dielectric constant and 
the polarizability 

Microscopic Frequency Response of Materials 
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Different Types of Polarizability 

• Atomic or electronic,αe 

• Displacement or ionic, αi 

• Orientational or dipolar, αo 

Highest natural frequency 

Lowest natural frequency 

Lightest mass 

Heaviest mass 
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ti 

o eEE ω−=As with free e-, we want to look at the time dependence of the E-field: 

KxeE 
t 
xm 

t 
x m −− 

∂ 

∂ 
= 

∂ 

∂ 

τ2 

2 

Response Drag Driving Force 

Restoring Force 

( 

m 

K 

m 

eE 

m 
K m 

eE x 

KxeExm 

exx 
KxeExm 

o 

o 

oo 
o 

ooo 

ti 
o 

= 

− 
= 

 
 


 
 
 − 

= 

−−=− 

= 

−−= 
− 

ω 

ωωω 

ω 

ω 

22 
2 

2 )( 

&& 

So lighter mass will 
have a higher critical 
frequency 
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Classical Model for Electronic Polarizability 

• Electron shell around atom is attached to nucleus via springs 
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Electronic Polarizability 
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QM Electronic Polarizability 

• At the atomic electron level, QM expected: electron waves 
• QM gives same answer qualitatively 
• QM exact answer very difficult: many-bodied problem 

( )  
h 

01 
1022 

10 

10 
2 

; EEf 
m 

e 
e 

− 
= 

− 
= ω 

ωω 
ωα 

E1 

E0 

f10 is the oscillator strength of the transition (ψ1 couples to ψo by E-field) 
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Ionic Polarizability

• Problem reduces to one similar to the electronic polarizability
• Critical frequency will be less than electronic since ions are more massive
• The restoring force between ion positions is the interatomic potential

E(R)
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Ionic Polarizability
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• Usually Clausius-Mosotti necessary due to high density of dipoles 

Ionic Polarizability 
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Orientational Polarizability 

• No restoring force: analogous to conductivity 

H 

H 
O 

p +-

C 
O O 

p=0 

+q 

-q 

θ 

For a group of many molecules at some temperature: 

Tk 
pE 

Tk 
U 

bb eef 
θcos 

== 
− 

After averaging over the polarization of the 
ensemble molecules (valid for low E-fields): 

Tk 
p 

b 
DC 3 

~ 
2 

α 

Analogous to conductivity, the 
molecules collide after a certain 
time t, giving: 

ωτ 
α

α 
i 
DC 

o − 
= 

1 

© E. Fitzgerald-1999 

9




10

3.225 19

Dielectric Loss
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• For convenience, imagine a low density of molecules in the gas phase
• C-M can be ignored for simplicity
• There will be only electronic and orientational polarizability
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Dielectric Constant vs. Frequency

• Completely general ε due to the localized charge in materials
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Dispersion

• Dispersion can be defined a couple of ways (same, just different way)
– when the group velocity ceases to be equal to the phase velocity
– when the dielectric constant has a frequency dependence (i.e. when dε/dω not 0)
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