Topics

- Hidden markov models
 - dynamic programming, examples
- Representation and graphical models
 - variables and states
 - graphical models
Dynamic programming: review

$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots \rightarrow s_{n-1} \rightarrow s_n$

$\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \quad \downarrow$

$x_0 \quad x_1 \quad x_2 \quad \quad x_{n-1} \quad x_n$

- Let $\{s_0^{(t,i)}, \ldots, s_t^{(t,i)} = i\}$ be the most likely state sequence given x_0, \ldots, x_t that is forced to end up in $s_t = i$ at time t. Then

$$\delta_t(i) = P(x_0, \ldots, x_t, s_0^{(t,i)}, \ldots, s_t^{(t,i)})$$

- We can evaluate these probabilities recursively by replacing each “sum” with a “max” in the forward propagation:

$$\delta_0(i) = P_0(i)P_o(x_t|s_0 = i),$$

$$\delta_t(i) = \max_j \{ \delta_{t-1}(j)P_1(s_t = i|s_{t-1} = j) \} \times P_o(x_t|s_t = i)$$
Dynamic programming: review

- We can recover the most likely hidden state sequence from \(\{\delta_t(\cdot)\} \) by retrospectively examining the “max” choices made in evaluating these probabilities.

We find the end state \(s_n^* \) of the most likely state sequence by maximizing over the probabilities associated with the most likely state sequences forced to land on different states at \(t = n \):

\[
s_n^* = \arg \max_j \delta_n(j)
\]

The recovery of the remaining states along the most likely path can be done recursively (backwards):

\[
s_t^* = \arg \max_j \left\{ \delta_t(j)P_1(s_{t+1} = s_{t+1}^*|s_t = j) \right\}
\]
The most likely path has the property that any partial path is also optimal:

If $s_t^* = i$ then $\{s_0^*, \ldots, s_t^*\}$ is also the most likely state sequence forced to end up in $s_t = i$ at time t given only x_0, \ldots, x_t.
Dynamic programming: example

- Same example as in the EM case (3 states, Gaussian outputs)

• The most likely hidden state sequence \(\{s^*_0, \ldots, s^*_n\} \) need not agree with the most likely states derived from the posterior marginals \(\gamma_t(i) \)
Example cont’d

final

ML model, no observations
Examples: alignment

- A “linear” HMM can be used to align sequences of observations.
Topics

- Representation and graphical models
 - variables and states
 - graphical models
What is a good representation?

- Properties of good representations
 1. Explicit
 2. Compact
 3. Modular
 4. Permits efficient computation
 5. etc.
Representing the model structure

- Two possible representations of Markov models:
 1. in terms of state diagrams (nodes in the graph correspond to the possible values of the states)
 2. in terms of variables (nodes in the graph are variables):

- The representations differ in terms of what aspects of the model are made explicit.
Model structure cont’d

• Case 1: *sparse transition* structure

1. State transition diagram is *explicit*

 ![State transition diagram](image)

2. Representation in terms of variables leaves this *implicit*

 \[
 s_0 \rightarrow s_1 \rightarrow s_2
 \]
Model structure cont’d

- Case 2: successive states are *independent of each other*

1. State transition diagram is fully connected

2. Representation in terms of variables is *explicit*
Model structure cont’d

- Case 3: time series signals such as music may involve multiple relatively independent underlying processes operating at different *time scales*

1. State transition diagram (argh #$& ...)

2. In terms of variables (graph model)
Graphical models

- Graph representations of probability models in terms of variables are known as graphical models.

A mixture model as a graphical model:

- Different types of graph models differ in terms of how we represent dependencies and independencies among the variables:
 1. Bayesian networks (natural for “causal” relations)
 2. Markov random fields (natural for physical or symmetric relations)
 3. etc.
Bayesian networks: examples

A Markov chain:

A hidden Markov model:
Qualitative inference

- The graph provides a qualitative description of the domain.

- $x_1 = 1st$ coin toss
- $x_2 = 2nd$ coin toss
- $x_3 = same?$
Qualitative inference

- The graph provides a qualitative description of the domain

\[x_1 = \text{1st coin toss} \]
\[x_2 = \text{2nd coin toss} \]
\[x_3 = \text{same?} \]

Marginal independence
Induced dependence

Note that the induced dependence pertains to our beliefs about the outcomes of the coin tosses.
Qualitative inference cont’d

- Just by looking at the graph, we can determine what we can and cannot ignore (why important?)
- Marginal independence of “Earthquake” and “Burglary”

Radio report

Earthquake Burglary

Alarm
Qualitative inference cont’d

• Induced dependence:

 Earthquake Burglary

 Radio report Alarm

• Explaining away:

 Earthquake Burglary

 Radio report Alarm
Two levels of description

- Graphical models need two levels of specification

1. Qualitative properties captured by a graph

 coin 1
 \[x_1 = \text{first coin toss} \]
 coin 2
 \[x_2 = \text{second coin toss} \]
 same or different
 \[x_3 = \text{same?} \]

2. Quantitative properties specified by the associated probability distribution

\[
P(x_1, x_2, x_3) = P(x_1) P(x_2) P(x_3|x_1, x_2)
\]

where, e.g.,

\[
P(x_1 = \text{heads}) = 0.5
\]

\[
P(x_3 = \text{same}|x_1 = \text{heads}, x_2 = \text{tails}) = 0
\]
More examples

- i and j correspond to the discrete choices in the mixture model
- x is the (vector) variable whose density we wish to model
- We cannot tell what the component distributions $P(x|i)$ are based on the graph alone