Topics

• A bit more general view of the EM algorithm
 – regularized mixtures

• Extensions of mixture models
 – hierarchical mixture models
 – conditional mixture models: mixtures of experts
Mixture models: review

- A two component Gaussian mixture model:

\[p(x|\theta) = \sum_{j=1,2} p_j p(x|\mu_j, \Sigma_j) \]

where \(\theta = \{p_1, p_2, \mu_1, \mu_2, \Sigma_1, \Sigma_2\} \).

- Only iterative solutions are available for finding the parameters that maximize the log-likelihood

\[l(\theta; D) = \sum_{i=1}^{n} \log p(x_i|\theta) \]

where \(D = \{x_1, \ldots, x_n\} \).

The estimation involves resolving which mixture component should be responsible for which data point.
The EM algorithm

- The EM-algorithm finds a local maximum of \(l(\theta; D) \)

E-step: evaluate the expected complete log-likelihood

\[
J(\theta; \theta^{(t)}) = \sum_{i=1}^{n} E_{j \sim P(j|x_i, \theta^{(t)})} \log \left(p_j p(x_i | \mu_j, \Sigma_j) \right)
\]

\[
= \sum_{i=1}^{n} \sum_{j=1,2} P(j|x_i, \theta^{(t)}) \log \left(p_j p(x_i | \mu_j, \Sigma_j) \right)
\]

M-step: find the new parameters by maximizing the expected complete log-likelihood

\[
\theta^{(t+1)} \leftarrow \arg \max_{\theta} J(\theta; \theta^{(t)})
\]
Regularized EM algorithm

- To maximize a penalized (regularized) log-likelihood

\[l'(\theta; D) = \sum_{i=1}^{n} \log p(x_i|\theta) + \log p(\theta) \]

we only need to modify the M-step of the EM-algorithm. Specifically, in the M-step, we find \(\theta \) that maximize a penalized expected complete log-likelihood:

\[J(\theta; \theta^{(t)}) = \sum_{i=1}^{n} E_{j \sim P(j|x_i,\theta^{(t)})} \log \left(p_j p(x_i|\mu_j, \Sigma_j) \right) \]

\[+ \log p(p_1, p_2) + \log p(\Sigma_1) + \log p(\Sigma_1) \]

where, for example, \(p(p_1, p_2) \) could be a Dirichlet and each \(p(\Sigma_j) \) a Wishart prior.
Regularized EM: demo
Selecting the number of components

- As a simple strategy for selecting the appropriate number of mixture components, we can find k that minimize the following asymptotic approximation to the description length:

\[
DL \approx - \log p(\text{data}|\hat{\theta}_k) + \frac{d_k}{2} \log(n)
\]

where n is the number of training points, $\hat{\theta}_k$ is the maximum likelihood parameter estimate for the k-component mixture, and d_k is the (effective) number of parameters in the k-mixture.
Extensions: hierarchical mixture models

- We have already used hierarchical mixture models in the digit classification problem

Data generation model:

\[P(y=1) \] \[P(y=0) \]

\[P(c=1|y=1) \] \[P(c=3|y=0) \]

\[P(x|y=0,c=3) \] \[P(x|y=1,c=1) \] \[\ldots \] \[\ldots \]

It is not necessary for the top level division to be “observable” as it is in this classification context.
Hierarchical mixture models cont’d

- To estimate such hierarchical models from data, we have to resolve which leaf (path) in the tree is responsible for generating which data point.

Only the E-step needs to be revised: the expectation over assignments is now taken with respect to

\[
P(y = j, c = k | x) = \underbrace{P(y = j | x)}_{\text{First level}} \underbrace{P(c = k | y = j, x)}_{\text{Second level}},
\]

For example, for a hierarchical mixture of Gaussians, we evaluate

\[
J(\theta; \theta^{(t)}) = \sum_{i=1}^{n} E_{(j,k) \sim P(j,k | x_i, \theta^{(t)})} \log \left(p_j p_k | j p(x_i | \mu_{j,k}, \Sigma_{j,k}) \right)
\]

where \(p_j \) and \(p_k | j \) are the prior selection probabilities.
Hierarchical mixture models cont’d

- Arranging the mixture components into a hierarchy is useful only with additional “topological” constraints. The hierarchical mixture (as stated previously) is otherwise equivalent to a flat mixture.

To adequately reveal any hierarchical organization in the data, we have to prime the model to find such structure.

- initialize parameters similarly within branches
- tying parameters, etc.
Conditional mixtures: mixtures of experts

- Many regression or classification problems can be decomposed into smaller (easier) sub problems

- Examples:
 1. Dealing with style in handwritten character recognition
 2. Dealing with dialect/accent in speech recognition etc.

- Each sub-problem could be solved by a specific “expert”

- Unlike in ordinary mixtures, the selection of which expert to rely on must depend on the context (i.e., the input x)
Experts

• Suppose we have several “experts” or component regression models generating conditional Gaussian outputs

\[P(y|x, \theta_i) = N(y; w_i^T x + w_{i0}, \sigma_i^2) \]

where

mean of \(y \) given \(x \) = \(w_i^T x + w_{i0} \)

variance of \(y \) given \(x \) = \(\sigma_i^2 \)

\(\theta_i = \{w_i, w_{i0}, \sigma_i^2\} \) denotes the parameters of the \(i^{th} \) expert.

• We need to find an appropriate way of allocating tasks to these experts (linear regression models)
Mixtures of experts

Example:

- Here we need a switch or a gating network that selects the appropriate expert (linear regression model) as a function of the input x
Gating network

- A simple gating network is a probability distribution over the choice of the experts conditional on the input x.

- Example: in case of two experts (0 and 1), the gating network can be a logistic regression model

$$P(\text{expert} = 1 | x, v, v_0) = g(v^T x + v_0)$$

where $g(z) = (1 + e^{-z})^{-1}$ is the logistic function.

- In case of $m > 2$ experts, the gating network can be a softmax model

$$P(\text{expert} = j | x, \eta) = \frac{\exp(v_j^T x + v_{j0})}{\sum_{j'=1}^{m} \exp(v_{j'}^T x + v_{j'0})}$$

where $\eta = \{v_1, \ldots, v_m, v_{10}, \ldots, v_{m0}\}$ are the parameters in the gating network.
\[P(\text{expert} = j | \mathbf{x}, \eta) = \frac{\exp(\mathbf{v}_j^T \mathbf{x} + v_{j0})}{\sum_{j'=1}^{m} \exp(\mathbf{v}_{j'}^T \mathbf{x} + v_{j'0})} \]
Mixtures of experts model

- The probability distribution over the (regression) output y given the input x is a conditional mixture model

$$P(y|x, \theta, \eta) = \sum_{j=1}^{m} P(\text{expert} = j|x, \eta) P(y|x, \theta_j)$$

where η defines the parameters of the gating network (e.g., logistic) and θ_j are the parameters of each expert (e.g., linear regression model).

- The allocation of experts is made conditionally on the input
Estimation of mixtures of experts

- The estimation would be again easy if we had the assignment of which expert should account for which training example.
- In other words, if we had \(\{(x_1, k_1, y_1), \ldots, (x_n, k_n, y_n)\} \), where \(k_i \) indicates the expert assigned to the \(i^{th} \) example.

1. Separately for each expert \(j \)

 Find \(\theta_j \) that maximize \(\sum_{i=1: k_i=j}^{n} \log P(y_i|x_i, \theta_j) \)

 (linear regression based on points “labeled” \(j \))

2. For the gating network

 Find \(\eta \) that maximize \(\sum_{i=1}^{n} \log P(\text{expert} = k_i|x_i, \eta) \)

 (softmax regression problem to predict the assignments)
Estimation of mixtures of experts

- Similarly to mixture models, we now have to evaluate the posterior probability (here given both x_i AND y_i) that the output came from a particular expert:

$$\hat{p}(j|i) \leftarrow P(\text{expert} = j|x_i, y_i, \eta, \theta)$$

$$= \frac{P(\text{expert} = j|x_i, \eta) P(y_i|x_i, \theta_j)}{\sum_{j' = 1}^{m} P(\text{expert} = j'|x_i, \eta) P(y_i|x_i, \theta_{j'})}$$
Estimation of mixtures of experts

E-step: evaluate the posterior probabilities $\hat{p}(j|i)$ that partially assign experts to training examples

M-step(s):

1. Separately for each expert j

 Find θ_j that maximize $\sum_{i=1}^{n} \hat{p}(j|i) \log P(y_i|x_i, \theta_j)$

 (weighted linear regression)

2. For the gating network

 Find η that maximize $\sum_{i=1}^{n} \sum_{j=1}^{m} \hat{p}(j|i) \log P(\text{expert } = j|x_i, \eta)$

 (weighted softmax regression)
Mixtures of experts: demo
Mixtures of experts: additional considerations

- Softmax gating network

\[P(\text{expert} = j|\mathbf{x}, \eta) = \frac{\exp(\mathbf{v}_j^T\mathbf{x} + v_{j0})}{\sum_{j'=1}^{m} \exp(\mathbf{v}_{j'}^T\mathbf{x} + v_{j'0})} \]

- Gaussian gating network

\[P(\text{expert} = j|\mathbf{x}, \eta) = \frac{\exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{v}_j)^T\Sigma_j^{-1}(\mathbf{x} - \mathbf{v}_j)\right)}{\sum_{j'=1}^{m} \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{v}_{j'})^T\Sigma_{j'}^{-1}(\mathbf{x} - \mathbf{v}_{j'})\right)} \]

What if \(\Sigma_1 = \ldots = \Sigma_m \)? Are these still different?
Hierarchical mixtures of experts

- The “gates” can be arranged hierarchically:

\[
P(j=1|x) \quad P(j=0|x)
\]

\[
P(c=3|j=0,x)P(c=1|j=1,x)
\]

\[
P(y | j=0,c=3,x) \ldots \ldots P(y | j=1,c=1,x)
\]

where for example:

\[
P(c = k|j = 1, x, \eta_j) = \frac{\exp(\mathbf{v}^T_{1k}x + v_{1k0})}{\sum_{k'=1}^{3} \exp(\mathbf{v}^T_{1k'}x + v_{1k'0})}
\]

- We can estimate these with the EM-algorithm similarly to hierarchical mixture models