
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-033 July 3, 2009

The Guided Improvement Algorithm for
Exact, General-Purpose, Many-Objective
Combinatorial Optimization
Derek Rayside, H.-Christian Estler, and Daniel Jackson

The Guided Improvement Algorithm for
Exact, General-Purpose, Many-Objective

Combinatorial Optimization

Derek Rayside1, H.-Christian Estler2, Daniel Jackson1

{drayside, estler, dnj}@csail.mit.edu
1MIT; 2University of Paderborn

Abstract. This paper presents a new general-purpose algorithm for ex-
act solving of combinatorial many-objective optimization problems. We
call this new algorithm the guided improvement algorithm . The algo-
rithm is implemented on top of the non-optimizing relational constraint
solver Kodkod [24].

We compare the performance of this new algorithm against two
algorithms from the literature (Gavanelli [11], Lukasiewycz et al. [18],
Laumanns et al. [17]) on three micro-benchmark problems (n-Queens, n-
Rooks, and knapsack) and on two aerospace case studies. Results indicate
that the new algorithm is better for the kinds of many-objective problems
that our aerospace collaborators are interested in solving.

The new algorithm returns Pareto-optimal solutions as it computes.

1 Introduction

In a single-objective optimization problem, a set of decision variables are as-
signed values from a given domain; a solution is an assignment for which the
specified constraints hold. The optimal solution is the solution with the best
value, computed by applying an objective function to the assignment.

A multi-objective optimization problem (MOOP) is an optimization problem
with several, oftentimes conflicting, objectives. In the design of a bicycle, for
example, cost and performance conflict. The decision variable frame material
might take one of the values Aluminum (for high performance but high cost) or
Steel (for lower performance but lower cost).

In most cases, a MOOP does not have a single optimal solution, but a set
of optimal solutions. For the bicycle problem, a range of solutions that balance
cost and performance in different ways might be obtained. These solutions are
optimal in the sense that the value of one objective can be raised only by lowering
the value of another. Furthermore, no solution in this set is dominated by any
other solution in the set, meaning that for each pair of solutions 〈s1, s2〉, s1 has at
least one objective-value that is better than s2’s corresponding objective-value.
Named after the economist Vilfredo Pareto, the set of non-dominated solutions
is often called the Pareto front.

Since MOOPs are relevant in many areas of engineering, product design and
business planning, much research has been directed at solution methods. The

II

large number of possible solutions makes it hard to find the optimal ones; in the
worst case, every possible solution must be examined.

The primary contribution of this paper is the guided improvement algorithm
(GIA): a new, exact, general-purpose algorithm for finding the Pareto-front of
combinatorial multi-objective problems. This algorithm can solve many-objective
problems: i.e., problems with more than three objectives. This algorithm re-
turns Pareto-optimal solutions as it computes, so the user does need to wait
for the algorithm to terminate before having some useful output. (The adap-
tive ε-constraint method of Laumanns et al. [17] also has this property.) This
algorithm works by using a non-optimizing constraint solver – in this case, Kod-
kod [24]. (Although most multi-objective algorithms use an underlying single-
objective solver, the work of Gavanelli [11] and Lukasiewycz et al. [18] also use
non-optimizing base-solvers.)

Our tool as well as some of the problems used in the evaluation are available
at http://sdg.csail.mit.edu/moolloy/.

2 Related Work

There are thousands of papers on multi-objective optimization, but only a hand-
ful that are directly related to our work. In this section we situate our work within
the broader literature and discuss the directly related papers.

Multi-objective optimization (MOO) may be considered as part of the more
general field of multiple criteria decision analysis (MCDA) or multiple criteria
decision making (MCDM) [9]. Multi-objective optimization is concerned with
the computational question of finding solutions to a multi-objective problem.
Other areas of MCDA/MCDM are concerned with matters such as preference
elicitation [9, 26]. Indeed, only four of the twenty-four chapters in the massive
collection of MCDA surveys edited by Figueira et al. [9] are concerned with
multi-objective optimization, and these only with the continuous case.

Multi-objective optimization may be divided according to the kinds of de-
cisions it considers. The continuous case is the most common. In recent years
there has been increased interest in the discrete, or combinatorial, case – which is
what we address here. Surveys of the literature on multi-objective combinatorial
optimization (MOCO) include those by Ehrgott and Gandibleux [4–6, 10] and
by Ulungu and Teghem [25]. Additionally, the Annals of Operations Research
recently ran a special issue on the subject [8].

These surveys [4–6, 10, 26] all come to the same conclusions about the re-
search trends in MOCO: heuristic methods; solvers for specific problems rather
than general solvers; extending single-objective optimization techniques; bi-objective
or tri-objective problems rather than many-objective problems (the term many-
objective is used for problems with more than three objectives).

Our research goes against all of these trends: we have developed an exact
general-purpose solver capable of many-objective problems that is not an exten-
sion of a single-objective technique. All of these other approaches are worthwhile,

III

they just are not directly related to our approach. We are motivated in these di-
rections through our collaboration with a group of aerospace engineers who want
exact answers to their many-objective, domain-specific problems (discussed in
more detail below).

The works of Gavanelli [11] and Lukasiewycz et al. [18] are the most similar
to ours in that they are exact general-purpose solvers suitable for the many-
objective case and are not extensions of single-objective techniques. Gavanelli
[11] and Lukasiewycz et al. [18] appear to have independently discovered the
same algorithm, which we refer to as the opportunistic improvement algorithm
(OIA) below. We have implemented the opportunistic improvement algorithm
within the Kodkod framework using all of the same subroutines used for our
guided improvement algorithm. A comparison of these algorithms is below. An
important usability difference is that our guided improvement algorithm provides
Pareto-optimal intermediate results, i.e. all solutions yielded by the algorithm
are guaranteed to be Pareto-optimal even if the user terminates the execution
prematurely.

A few other researchers have made exact, general-purpose MOCO algorithms
by extending single-objective optimizing solvers, such as the outer-branching
technique of Junker [15] the adaptive ε-constraint method of Laumanns et al.
[17]; and the improved ε-constraint method of Ehrgott and Ruzika [7].

A common way to characterize the running time of these algorithms is in
terms of how many times they invoke their base-solver. Let s name the total
number of logically feasible solutions, p name the number of points on the Pareto-
front, and let o name the number of objectives. The outer-branching technique
of Junker [15] is O(p× o), while the adaptive ε-constraint method of Laumanns
et al. [17] is O(po−1). Ehrgott and Ruzika [7] do not characterize their improved
ε-constraint method in this way.

The opportunistic improvement algorithm ([11, 18]) is O(s) in the worst case.
The idea, however, is that in practice the base-solver will be invoked fewer times
than this for most inputs. Such is the nature of working with a non-optimizing
base-solver such as a SAT solver. SAT solvers are designed to tackle problems
that are, in theory, NP-complete. It turns out that, in practice, solutions can
often be found in less than exponential time. In the best possible case the op-
portunistic improvement algorithm would invoke the base-solver exactly p + 1
times. Reality is usually somewhere in the middle and must be measured empir-
ically.

Our guided improvement algorithm, presented below, invokes its base-solver
O(s + p) times in the worst case. In the best case it invokes the base-solver
2p+1 times. However, as with the opportunistic improvement algorithm, reality
is usually somewhere in the middle and must be measured empirically.

These comparisons in terms of the number of invocations of the base-solver
make two assumptions: (1) that each invocation of the base-solver takes the same
amount of time, and (2) that different base-solvers take the same amount of time.
While neither of these assumptions hold in general, our empirical observation
is that the algorithm that invokes its base-solver the fewest number of times

IV

is usually – but not always – the fastest. Nevertheless, complexity in terms of
invocations of the base solver is a useful and insightful comparison technique.

In this paper we compare our implementations of the guided improvement al-
gorithm and opportunistic improvement algorithm with the Laumanns et al. [17]
implementation of the adaptive ε-constraint method on three micro-benchmark
and two case-study problems. This is the first paper that we are aware of that
empirically compares exact general-purpose MOCO algorithms by different au-
thors. We also examine more challenge problems than any other paper that we
are aware of in this domain.

However, we were not able to run every algorithm on every challenge prob-
lem because the tools are based on different formalisms and read different file
formats. For example, our tool uses a relational logic with transitive closure,
which is not supported by any of the other tools. There is a need for the MOCO
community to work together to create common formalisms, file formats, and
challenge problems, and to organize an annual competition, as is done in the
CSP, SAT, SMT, and other communities. As the first paper in this area to com-
pare algorithms by different authors, this paper takes some preliminary steps in
this direction. However, the primary purpose of this paper is to show the novelty
and utility of our guided improvement algorithm.

3 Problem Statement

3.1 Problem Input

In a multi-objective optimization problem, a vector of decision variables X =
[x1, . . . , xz] is assigned a vector of values, called an assignment. Each value is
drawn from a given domain, thus we sometimes refer to it as domain value. An
assignment is feasible if it respects all the constraints represented by a vector
C = [c1(X), . . . , cp(X)]. A feasible assignment is also called a solution. A vector
of metric (or objective) functions M = [m1, . . . ,mq] is applied to a solution to
obtain a point (or metric values or objective values) [m1(X), . . . ,mq(X)].

3.2 Pareto dominance and Pareto optimality

With no lack of generality, we consider only maximization problems as every
minimization can be transformed into a maximization. Two solutions can be
compared based on their metric values. We make the following distinctions:

Definition 1. Let ȧ and â be solutions, q the number of metric functions, and
let u, v be metric function indices in {1, . . . , q}. We say

– â (Pareto) dominates ȧ with respect to the metric M :
dominates(â, ȧ,M) ⇔ ∀u : mu(â) ≥ mu(ȧ) and ∃v : mv(â) > mv(ȧ)

– â (Pareto) equals ȧ: equals(â, ȧ,M) ⇔ ∀u : mu(â) = mu(ȧ)

V

Given a set of solutions A, we are interested in finding maximal or optimal
solutions. Optimality is defined in terms of metric values:

Definition 2. Let ȧ, â be solutions.
We call â maximal or (Pareto) optimal iff no ȧ exists such that ȧ dominates â.
The set containing all optimal solutions is called the Pareto front.

3.3 Metric points

Definition 3. A metric point (or a point in the metric space) is a vector of
metric values which derives from applying a solution to M .

Note that different solutions s, ŝ can result in the same metric point, M(s) =
M(ŝ).

3.4 Solving a Multi-Objective Optimization Problem

The result of solving a multi-objective optimization problem is its Pareto Front,
i.e. the set of all Pareto optimal soltuions. As an algorithm produces one solution
at a time, however, we specifiy its output as a sequence rather than a set. An
exact MOO solver has the three properties:

Definition 4. Specification of a MOO solver

Given decision variables X, metric functions M and constraints C; the set A
of all solutions for 〈X,M ,C〉. A MOO solver produces a sequence of solutions
O such that

i) Soundness: Every generated solution satisfies the constraints:
∀a ∈ O : C(a)

ii) Optimality: Every generated solution is optimal:
∀a ∈ O : a is Pareto optimal

iii) Completeness: Every optimal solution is generated:
∀a ∈ A : a is Pareto optimal ⇒ a ∈ O

Specifying a solver in terms of a sequence of solutions that it produces has an
additional advantage: the Pareto front for a MOOP can be so large that a user
cannot wait for all optimal solutions to be generated; or the user may simply wish
to start assessing and exploring solutions as they are generated. Thus, solutions
should be yielded as early as possible instead of deriving the entire output set
(which may never be obtained).

The algorithms presented in section 4 all yield solutions while they compute.
They are so called anytime algorithms, i.e. if terminated prematurely, the algo-
rithms outputs are approximations of the correct answer. Note, however, that
there is a difference between the three algorithms: all solutions yielded by the
guided improvement algorithm or the adaptive ε-constraint method are guar-
anteed to be sound and optimal. In comparison, the opportunistic improvement
algorithm can only guarantee sound solutions. While its output sequence approx-
imates the Pareto front, it is not possible to determine if a solution is optimal
unless the algorithm runs to completion.

VI

4 Algorithms

In the following we describe the three algorithms studied in this paper. The
first two algorithms, the GIA and the OIA utilize the definition of dominance
though they do it in different ways. The third algorithm, the adaptive ε-constraint
method (AEM), allows us to compare the GIA and OIA, which both use a SAT
solver, to a completely different technique which builds on the use of state-of-
the-art single-objective solvers.

4.1 Guided Improvement Algorithm

The pseudo-code of our guided improvement algorithm is listed in Algorithm 1.
The key idea is to use the constraint solver not only to find solutions, but also –
by augmenting the constraint with appropriate formulas – to search for solutions
that dominate ones found already, or that occupy the same Pareto point.

We assume a function buildFormula that converts a boolean function into a
formula; this allows us to reuse our earlier definitions (of Pareto domination and
equality). Thus the expression buildFormula(λx .dominates(x , s,M)), for exam-
ple, returns the formula whose solutions are those that dominate s with respect
to the metric function vector M . Likewise, buildFormula(λx .dominates(s, x ,M))
returns the formula whose solutions are those dominated by s w.r.t. M .

In the case of our implementation of our GIA and the OIA of Gavanelli
[11] and Lukasiewycz et al. [18], buildFormula is provided by the Kodkod rela-
tional model-finder [23, 24]. The relational part of Kodkod is fully described in
Torlak’s dissertation [23]. The arithmetic circuit construction done by Kodkod
is based on standard techniques [1, 20], and is implemented in the class kod-
kod.engine.bool.TwosComplementInt. Kodkod is widely used as a backend solver
for software engineering and program analysis tools, and its source code has been
online for a few years (currently at http://alloy.mit.edu/kodkod/).

The algorithm repeatedly generates Pareto-optimal solutions as follows. First,
it solves the constraint (using the solver function SolveOne that returns a solu-
tion or ∅ if none exists). It then attempts to improve the solution by repeatedly
solving for a new solution that dominates it. When no further dominating solu-
tion is found, the last solution is known to be on the Pareto front. All solutions
that are Pareto-equal to it are then yielded in turn (this functionality is optional
in our actual implementation). The constraint is then augmented to ensure that
subsequent solutions are not dominated by the solutions generated in this last
phase. This process is repeated until no further solutions are found.

A sample execution of this algorithm is depicted in Figure 1, which we now
explain in more detail. The example problem has two metrics m1 and m2 which
both should be maximized. The space of possible solutions p1, . . . , p7 is shown
in Figure 1a. A visual inspection reveals that the Pareto-optimal solutions are
p7 and p4. The algorithm might discover these optimal solutions as follows.

After an initialization (line 1 in the pseudo code) we solve the constraint F
(line 2) and get a solution s as a result. In Figure 1, s relates to p1. Based on
the metric values obtained, we now construct a formula betterMetric that will

VII

Algorithm 1: Guided Improvement Algorithm
input : Constraint F ,Metric M

Formula notDominated ← true1

Solution s ← SolveOne(F)2

while s 6= ∅ do3

while s 6= ∅ do4

s′ ← s5

Formula betterMetric ← buildFormula(λx .dominates(x , s,M))6

s ← SolveOne(F ∧ betterMetric)7

Formula sameMetric ← buildFormula(λx .equals(x , s ′,M))8

for a in SolveAll(F ∧ sameMetric) do9

yield a10

notDominated ← notDominated ∧ ¬buildFormula(λx .dominates(s ′, x ,M))11

s ← SolveOne(F ∧ notDominated)12

force the solver to find only solutions which dominate s (line 6). The formula
ensures that a future solution ȧ satisfies:

q∨
j=1

 q∧
k=1,k 6=j

mk(ȧ) ≥ mk(s)

 ∧mj(ȧ) > mj(s)

For the small example in Figure 1b, the formula ensures that p2 and p5 are

no longer in the solution space.
Solving the constraint F in conjunction with betterMetric leads to a new,

“better” solution, in the example to p3. We repeat the process of augmenting the
constraint F with a betterMetric formula until, at some point (cp. Figure 1e), no
further solutions can be found. By construction of the formula, this guarantees
that the last solution s′ (p7 in the example) is Pareto-optimal.

Using the metric values of this Pareto-optimal solution, we now find all solu-
tions at the same point (cp. Figure 1f). This is done by building a sameMetric
formula (line 8) that restricts the solution space to only contain solutions which
are (Pareto) equal to the optimal solution. If s′ is a Pareto-optimal solution then
the formula ensures that every future solution ȧ satisfies:

q∧
j=1

mj(ȧ) = mj(s′)

All the equal solutions are yielded (line 9, 10).
Before we restart the procedure of “climbing up” to a Pareto-optimal solu-

tion, a new solution is needed from where the climbing can be started. In order
to guarantee that this climbing will end at some, so far, undiscovered optimal
solution, the start solution must not be dominated by any optimal solution al-
ready found. This is achieved with the help of a notDominated formula (line

VIII

b) c) d)

g)e) f)

a)

p1 p2

p3 p4

p5
p6

p7

h)

M
2

M1

Fig. 1. GIA: Guided Improvement Algorithm; Gray areas are pruned from the solution
space.

11) which ensures that a future solution ȧ is better on at least one metric than
the optimal solution s′:

q∨
j=1

mj(ȧ) > mj(s′)

In Figure 1h we assume p2 to be this new starting solution. The algorithm
terminates when no new start solution can be found.

Assuming we only yield a single solution per Pareto point p (i.e. we ignore
the loop in line 9), we can estimate the number of calls to the base-solver with
O(2p + 1 + y). For each Pareto point we have to invoke the solver twice; first
to discover it, second to proof its Pareto-optimal property (an UNSAT call to
the solver). An additional (UNSAT) call is needed to ensure that all points were
found. y is a measure of how lucky the base-solver is when “climbing” towards
Pareto points.

4.2 Opportunistic Improvement Algorithm

We implemented the opportunistic improvement algorithm that has been de-
scribed in [11, 18] to work within our framework. Its pseudo code is shown in
Algorithm 2. Again, it is easier to explain the code with the help of a small
example which is shown in figure 2.

After some initialization and declaration (line 1 and line 2) we solve the
constraint F (line 3) and get a solution, e.g. p1 in figure 2b. Each solution s,
that is found at some point, is added to the set S (line 5). Subsequently, the
filter() operation will remove all solutions in S which are now dominated by
the newly added s. Thus, no solution in S is dominated by any other solution in
S. Using the function buildFormula we generate a formula to exclude solutions

IX

Algorithm 2: Opportunistic Improvement Algorithm
input : Constraint F ,Metric M
output: Set〈Solution〉 S

S ← ∅1

Formula notDominated ← true2

Solution s ← SolveOne(F)3

while s 6= ∅ do4

S ← filter(S .add(s))5

notDominated ← notDominated ∧ ¬buildFormula(λx .dominates(s, x ,M))6

s ← SolveOne(F ∧ notDominated)7

return S8

dominated by s and build the conjunction with formula notDominated (line 6).
We solve the constraint F in conjunction with notDominated. Figures 2b) to
h) show these last steps over multiple iterations. In case no new solution can be
found anymore, the OIA returns the set S and terminates.

b) c)

f)e)

d)a)

p1 p2

p3 p4

p5
p6

p7

g) h)
M1

M
2

Fig. 2. OIA: Opportunistic Improvement Algorithm; Gray areas are pruned from the
solution space.

The OIA as described in Algorithm 2 (and [18]) returns a set S of solutions
where each Pareto-optimal point is represented by one optimal solution.We can
estimate the number of calls to the base-solver with O(p + 1 + x). The solver
is invoked p times, once per Pareto point, plus one additional call to ensure all
points were found. x represents the number of calls for non-optimal solutions.

The algorithm can be trivially modified to return all Pareto-optimal solu-
tions, as is done in the description of the GIA above.

X

The implementation of the filter() operation is not described in Lukasiewycz
et al. [18]. In personal communication, Lukasiewycz has told us that it is the
näıve approach. Our measurements of our filtering implementation (not reported
in detail due to space limitations) show that it is never more than 5% of total
runtime, and on larger problems is usually only 1% or 2%.

4.3 Adaptive epsilon-constraint method

Laumanns et al. [17] present an approach called adaptive ε-constraint method
which uses a standard single-objective optimization solver like CPLEX [14] to
iteratively discover Pareto-optimal solutions.

The idea of an ε-constraint method [13] is to only optimize a single metric
while fixing all other metrics to some bound so they function as constraints.
By systematically modifying the bounds on these additional constraints, it is
possible to iteratively discover solutions on the Pareto front.

Laumanns et al. [17] point out that the original version of the ε-constraint
method depends on a predefined constant δ which determines how the constraint
bound for the fixed metric functions changes over iterations. Choosing this δ
correctly is important; if it is to “too big”, the method might not discover all
Pareto-optimal solutions. If δ is chosen “too small”, the method might become
inefficient as too many runs of the single-objective solver are required.

The adaptive ε-constraint methods overcomes these problems of the original
method and automatically adapts the bounds for the fixed objectives. We refer to
the original paper for a detailed explanation of the method and the estimation of
calls to the base-solver which grows exponentially with the number of objectives.

For our present purposes, it is only important that the adaptive ε-constraint
method is an exact, general-purpose multi-objective solver. The code of Lau-
manns et al. [17], which we use in our comparison, was sent to us by Marco
Laumanns.

5 Case Studies

Our interest in multi-objective optimization stems from a collaboration with a
group of aerospace engineers who are interested in using it to analyze systems
architecture decisions. From studying the kinds of models they are interested
in writing (e.g., [2, 12, 16, 21, 22]) we have discovered that they are essentially
discrete multi-objective constraint satisfaction problems: each model has a finite
set of decision variables, each ranging over a finite domain.

We have also identified two models that are characteristic of the kinds of
models these aerospace engineers tend to write: (1) mission-mode decisions (e.g.,
[12, 16, 22]), and (2) satellite launch scheduling (e.g., [2, 21]). We now discuss
these characteristic models.

NASA’s Moon and Beyond Program. Since 2004 NASA has been planning
to return to the moon, as a first step to future manned deep-space missions.
In contrast to the original Apollo missions, these new plans involve astronauts

XI

staying on the moon for an extended period of time and exploring distant regions
of the moon surface.

Our aerospace collaborators had previously modelled the mission-mode de-
cisions of the Apollo flights (e.g., [16, 22]), and are now working on a model
of these future moon missions [12]. Examples of mission-mode decisions include
whether to perform an earth-orbit rendezvous, what kind of fuel to use, etc. The
metrics in this model are weight and risk.

NASA’s Decadel Survey. NASA recently formulated a ten-year satellite launch
plan (decadel survey) for the years 2010–2019 [19]. Our aerospace collaborators
have made a post-hoc multi-objective model of these decisions [2, 21]. The chal-
lenge of this model is to find a launch schedule that maximizes the scientific
value of the satellites for six different scientific communities (i.e., there are six
objectives), while respecting various resource limitations and launch-ordering
constraints. Each satellite provides different levels of value to each scientific com-
munity, and of course each community would prefer to have their data sooner
rather than later.

6 Algorithm Comparison

This section compares the performance of the three algorithms discussed above
(guided improvement algorithm, opportunistic improvement algorithm, and adap-
tive ε-constraint method). All three algorithms are compared on the multi-
objective knapsack problem, which is also used by Laumanns et al. [17]. The
guided improvement algorithm and opportunistic improvement algorithm are
also compared using n-Queens and n-Rooks (explained below), as well as the
two aerospace case studies discussed above. All alogrithms are restricted to only
find one solution per Pareto point.

We have not yet evaluated the adaptive ε-constraint method on these other
problems because it is implemented in a different framework using a different
formalism, and reads a different input file format. There is a need for the com-
munity to design standard formalisms, frameworks, and input file formats to
make it easier to compare algorithms.

To the best of our knowledge, this is the first paper to compare combinato-
rial multi-objective algorithms invented by different authors. We also use more
challenge problems than previous related papers: for example, Junker [15] and
Ehrgott and Ruzika [7] do not have any empirical evaluation; Gavanelli [11] con-
siders only the multi-objective knapsack problem; Laumanns et al. [17] considers
both the multi-objective knapsack problem and the Bi-Binary-Value problem;
Lukasiewycz et al. [18] considers the n-Queens problem and a problem from the
area of system level synthesis.

6.1 n-Queens

n-Queens is a classic NP-hard problem. The constraint is to place n Queens on
to an n × n chess board so that none of them can strike each other. Following

XII

Lukasiewycz et al. [18], we generate objective functions for n-Queens as follows:
assign a random integer between 0 and n to each square on the board; sum
the scores of each square with a Queen on it. Multiple such objective functions
can be generated by generating a new set of random square-scores for each new
objective function.

Figure 3 shows that the opportunistic improvement algorithm has better
performance, both in terms of calls to the base-solver and in terms of time, than
the guided improvement algorithm on the n-Queens problem for all combinations
of board size and number of metrics that we examined.

Figure 3 also shows, interestingly, that for larger boards and more metrics
that the guided improvement algorithm does not make many more calls to the
base-solver, but takes much longer to solve: in other words, not all calls to the
base-solver are equal.

Fig. 3. n-Queens comparison. guided improvement algorithm performance is repre-
sented by the bold line; opportunistic improvement algorithm performance is repre-
sented by the faint line. Lower values are better. y-axes are not comparable between
plots.
(a) metrics/size

calls 0

 5

 10

 15

 20

 25

 30

 35

 3 4 5 6 7 8 9

ca
lls

size

nQueens 2 metrics
GIA
OIA

 0

 10

 20

 30

 40

 50

 60

 3 4 5 6 7 8 9

ca
lls

size

nQueens 3 metrics
GIA
OIA

 0

 10

 20

 30

 40

 50

 60

 70

 3 4 5 6 7 8 9

ca
lls

size

nQueens 4 metrics
GIA
OIA

 0

 20

 40

 60

 80

 100

 120

 140

 3 4 5 6 7 8 9

ca
lls

size

nQueens 5 metrics
GIA
OIA

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 3 4 5 6 7 8 9

ca
lls

size

nQueens 6 metrics
GIA
OIA

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 3 4 5 6 7 8 9

ca
lls

size

nQueens 7 metrics
GIA
OIA

time 0

 5000

 10000

 15000

 20000

 25000

 3 4 5 6 7 8 9

tim
e

size

nQueens 2 metrics
GIA
OIA

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 3 4 5 6 7 8 9

tim
e

size

nQueens 3 metrics
GIA
OIA

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 3 4 5 6 7 8 9

tim
e

size

nQueens 4 metrics
GIA
OIA

 0

 50000

 100000

 150000

 200000

 250000

 300000

 3 4 5 6 7 8 9

tim
e

size

nQueens 5 metrics
GIA
OIA

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 3 4 5 6 7 8 9

tim
e

size

nQueens 6 metrics
GIA
OIA

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 3 4 5 6 7 8 9

tim
e

size

nQueens 7 metrics
GIA
OIA

metrics 2 3 4 5 6 7

(b) board size/metrics

calls 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 2 3 4 5 6 7

ca
lls

metrics

nQueens 5 size
GIA
OIA

 4

 5

 6

 7

 8

 9

 2 3 4 5 6 7

ca
lls

metrics

nQueens 6 size
GIA
OIA

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7

ca
lls

metrics

nQueens 7 size
GIA
OIA

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 3 4 5 6 7 8

ca
lls

metrics

nQueens 8 size
GIA
OIA

 0

 100

 200

 300

 400

 500

 600

 2 3 4 5 6 7 8 9

ca
lls

metrics

nQueens 9 size
GIA
OIA

time 0

 100

 200

 300

 400

 500

 600

 700

 800

 2 3 4 5 6 7

tim
e

metrics

nQueens 5 size
GIA
OIA

 100

 200

 300

 400

 500

 600

 700

 800

 2 3 4 5 6 7

tim
e

metrics

nQueens 6 size
GIA
OIA

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 2 3 4 5 6 7

tim
e

metrics

nQueens 7 size
GIA
OIA

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 2 3 4 5 6 7 8

tim
e

metrics

nQueens 8 size
GIA
OIA

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 2 3 4 5 6 7 8 9

tim
e

metrics

nQueens 9 size
GIA
OIA

board size 5 6 7 8 9
High resolution version and raw data available at: http://sdg.csail.mit.edu/moolloy/

6.2 n-Rooks

The n-Rooks problem is a relaxation of the n-Queens problem where the pieces
are Rooks (castles) instead of Queens. We generate objective functions for n-
Rooks in the same way as for n-Queens.

Figure 4 shows that the guided improvement algorithm almost always makes
fewer calls to the base-solver than the opportunistic improvement algorithm does,
and that the guided improvement algorithm usually – but not always – takes
less time. Again, some calls to the base-solver are more expensive than others.
Figure 4 also shows that the guided improvement algorithm takes significantly
less time for n-Rooks instances with larger boards and two or three objectives.

XIII

Fig. 4. n-Rooks comparison. guided improvement algorithm performance is represented
by the bold line; opportunistic improvement algorithm performance is represented by
the faint line. Lower values are better. y-axes are not comparable between plots.
(a) board size/metrics

calls 0

 20

 40

 60

 80

 100

 120

 140

 3 4 5 6 7 8 9

ca
lls

size

nRooks 2 metrics
GIA
OIA

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 3 4 5 6 7 8 9

ca
lls

size

nRooks 3 metrics
GIA
OIA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 3 4 5 6 7 8 9

ca
lls

size

nRooks 4 metrics
GIA
OIA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 3 4 5 6 7 8

ca
lls

size

nRooks 5 metrics
GIA
OIA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 3 4 5 6 7 8

ca
lls

size

nRooks 6 metrics
GIA
OIA

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3 4 5 6 7 8

ca
lls

size

nRooks 7 metrics
GIA
OIA

time 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 3 4 5 6 7 8 9

tim
e

size

nRooks 2 metrics
GIA
OIA

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 3 4 5 6 7 8 9

tim
e

size

nRooks 3 metrics
GIA
OIA

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 3 4 5 6 7 8 9

tim
e

size

nRooks 4 metrics
GIA
OIA

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 1e+07

 3 4 5 6 7 8

tim
e

size

nRooks 5 metrics
GIA
OIA

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 3 4 5 6 7 8

tim
e

size

nRooks 6 metrics
GIA
OIA

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 3 4 5 6 7 8

tim
e

size

nRooks 7 metrics
GIA
OIA

metrics 2 3 4 5 6 7

(b) metrics/board size

calls 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 3 4 5 6 7

ca
lls

metrics

nRooks 5 size
GIA
OIA

 0

 100

 200

 300

 400

 500

 600

 700

 2 3 4 5 6 7

ca
lls

metrics

nRooks 6 size
GIA
OIA

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2 3 4 5 6 7

ca
lls

metrics

nRooks 7 size
GIA
OIA

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 2 3 4 5 6 7 8

ca
lls

metrics

nRooks 8 size
GIA
OIA

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 2 2.5 3 3.5 4

ca
lls

metrics

nRooks 9 size
GIA
OIA

time 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 3 4 5 6 7

tim
e

metrics

nRooks 5 size
GIA
OIA

 0

 20000

 40000

 60000

 80000

 100000

 120000

 2 3 4 5 6 7

tim
e

metrics

nRooks 6 size
GIA
OIA

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 2 3 4 5 6 7

tim
e

metrics

nRooks 7 size
GIA
OIA

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 2 3 4 5 6 7 8

tim
e

metrics

nRooks 8 size
GIA
OIA

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 2 2.5 3 3.5 4

tim
e

metrics

nRooks 9 size
GIA
OIA

board size 5 6 7 8 9
High resolution version and raw data available at: http://sdg.csail.mit.edu/moolloy/

6.3 Multi-objective KnapSack

The multi-objective 0/1 KnapSack problem is a standard benchmark problem
to evaluate the performance of multi-objective solvers. We use this problem
to compare the performance of the opportunistic improvement algorithm and
the guided improvement algorithm to the adaptive ε-constraint method. This
problem has also been used by Laumann et al. in their original paper [17].

In the single-objective 0/1 Knapsack problem, a set of n items is given. Each
item is associated with a profit value and a weight value. The goal is to select
those items which maximize the sum of profits while the sum of their weight
values is less than some constant. Extending this problem to the multi-objective
case is simply done by defining multiple profit values and weight values for each
item, respectively.

We encode the problem using boolean variables x1, . . . , xn, where each vari-
able denotes whether an item is selected or not. We define m profit functions
Pj(x1, . . . , xn), 1 ≤ j ≤ m, such that each xi is associated with m profit val-
ues. Furthermore, we define m weight constraints Wj(x1, . . . , xn), 1 ≤ j ≤ m,
sucht that each xi is associated with m weight values wij . For each Wj , the sum∑n

i=1 wji ∗ xi has to less or equal to b
Pn

i=1 wij

2 c. All profit and weight values are
randomly chosen integers between 10 and 100.

Table 1 shows the results for different numbers of variables and objectives.
We find that the guided improvement algorithm outperforms the opportunistic
improvement algorithm on all relevant problem sizes. We observe a significant
difference in the runtime especially on those problems were the OIA invokes the
solver much more often than the GIA. The data indicates that a higher number
of SAT calls of the OIA outweighs the costs of the GIA’s UNSAT calls (usually
SAT calls are assumed to be less expensive than UNSAT calls).

XIV

Table 1. Results for the KnapSack problem. n is the number of variabes, m the number
of metrics. Solns is the number of Pareto points. t shows the solving time for the three
different algorithms. c show how often the base-solver was called. For the OIA and the
GIA the number of (SAT, UNSAT) calls is given in parenthesis. Symbols: † means the
algorithm stopped prematurely with an error-code; ? means that the algorithm did
not terminate within 48 hours; Machine used: Pentium 4 dual core, 3GHz, 2GB Ram;
ILOG CPLEX version 11.0. Time measured as clock time.

(n×m) Solns tOIA tGIA tAEM cOIA cGIA cAEM

(10×2) 4 <1 s <1 s <1 s 17 (16, 1) 15 (10, 5) 9
(15×2) 3 6 s 1 s 2 s 64 (63, 1) 17 (13, 4) 9
(20×2) 4 31 s 9 s 2 s 103 (102, 1) 30 (25, 5) 9
(25×2) 16 22.8 m 6.8 m 6 s 279 (278, 1) 73 (56, 17) 35
(30×2) 33 3.1 h 30.8 m 9 s 516 (515, 1) 131 (97, 34) 73

(10×3) 6 2 s 1 s 3 s 65 (64, 1) 24 (17, 7) 43
(15×3) 28 24 s 17 s 27 s 142 (141, 1) 78 (49, 29) 317
(20×3) 71 15.6 m 7.6 m 2.8 m 496 (495, 1) 195 (123, 72) 1831
(25×3) 207 29.6 h 11.5 h 23 m 1811 (1810, 1) 549 (341, 208) 9571

(10×4) 37 3 s 4 s 23.9 m 69 (68, 1) 93 (55, 38) 10545
(15×4) 52 1 m 42 s 42.8 m 307 (306, 1) 129 (76, 53) 19507
(20×4) 156 2.5 h 58.2 m † 1273 (1272, 1) 387 (230, 157) †
(25×4) 813 ? 45 h † ? 1938 (1124, 814) †

The adaptive ε-constraint method is the performance leader on all problem
sizes with 2 or 3 metrics, even if the number of solver calls is comparably high.
However, for problems with 4 metrics the guided improvement algorithm ap-
pears to be best: it was the only algorithm to terminate normally on the largest
problem (25×4), and was also noticably faster on smaller problems with four
metrics.

6.4 Lunar Lander and Decadel Survey Case Studies

Table 2 characterizes the Lunar Lander [12] and Decadel Survey [2] models, and
the performance of the guided and opportunistic improvement algorithms on
these models. The guided improvement algorithm performs better in both cases:
about twice as fast for the Lunar Lander model, and about four times faster for
the Decadel Survey model. Interestingly, both algorithms make almost the same
number of base-solver calls for the Lunar Lander model: in this case it seems
that the opportunistic improvement algorithm calls are harder than the guided
improvement algorithm calls, which is the opposite of what we observed on the
n-Rooks micro-benchmark.

XV

Decadel [2] Lunar [12]

Metrics 6 2
Decisions 17 20
Size of state space 5.05 ×1017 2.96 ×1010

Pareto points 67 36
Pareto solutions 67 1683

Calls (for Pareto points) 705 396 158 151
Time (for Pareto solutions) 22.8m 5.9m 62s 29s

OIA GIA OIA GIA

Table 2. Characterization of and performance results for Lunar Lander and Decadel
Survey case studies.

6.5 Summary of Findings

The findings of the experiments described above are summarized in Table 3. No
single algorithm is best for all kinds of problems. However, our guided improve-
ment algorithm appears to be the best for the kinds of many-objective problems
that our aerospace collaborators are interested in solving. This conclusion is
supported by three findings:

1. Our guided improvement algorithm performed better than the opportunistic
improvement algorithm on the two aerospace case study problems.

2. Our guided improvement algorithm performed better than the opportunistic
improvement algorithm on the n-Rooks problem, and worse on the n-Queens
problem. The n-Rooks problem is more similar to the kinds of problems our
aerospace collaborators are interested in because its constraints are not NP-
hard. Both the Lunar Lander and the Decadel Survey case studies have
relatively easy constraints: more like n-Rooks than n-Queens.

3. Our guided improvement algorithm performed better than the adaptive ε-
constraint method on the knapsack problem with a higher number of metrics.
The Decadel Survey case study has six metrics, and is the harder of the two
case studies.

Problem Best Algorithm

n-Queens OIA

n-Rooks GIA
Lunar Lander GIA
Decadel Survey GIA
Knapsack, 4 metrics GIA

Knapsack, 2 or 3 metrics AεCM

Table 3. Summary of Findings

XVI

6.6 Threats to Validity

Internal validity refers to whether the experiments support the findings. External
validity refers to whether the findings can be generalized.

Internal Validity. Threats to the internal validity of these experiments include:
correctness of the algorithm implementations; fairness of the opportunistic im-
provement algorithm implementation; Java virtual machine startup time; flaws
in the adaptive ε-constraint method code sent to us by Laumanns; and veracity
of timings.

GIA versus OIA Comparison. We mitigated the correctness and fairness threats
by implementing both the guided improvement algorithm and opportunistic im-
provement algorithm with the same library of subroutines, and ran them with
the same SAT solver (MiniSAT [3]) on the same hardware (3GHz quad-core
machine with 4GB RAM).

The opportunistic improvement algorithm requires an extra filtering subrou-
tine that is not used by the guided improvement algorithm. In other experiments,
not detailed in this paper, we have never observed this filtering overhead to take
more than 5% of the execution time. For larger problems it is typically 1% or
less of total runtime.

To assess correctness of our guided improvement algorithm and opportunistic
improvement algorithm implementations we performed manual code reviews,
wrote test cases, manually inspected the output of some small problems, and
mechanically compared the output of the OIA and GIA after each run.

Most Java virtual machines have some startup costs associated with class
loading and compilation. To mitigate these factors we always used a warm-up
run and ran with a heap size larger than the programs need but smaller than
available on the machine (a 1GB heap on a 4GB machine).

We measured clock time rather than CPU time because it is more convenient
to measure the former in Java programs. Clock time and CPU time can diverge
significantly for multi-threaded programs on multi-core hardware, or if the hard-
ware is heavily taxed with other programs. Both of the algorithms we evaluated
are single-threaded and we ran them on a lightly loaded quad-core machine. For
these reasons, we believe that clock time is a reasonable approximation of CPU
time in these experiments.

GIA verses adaptive ε-constraint method Comparison. We discovered a correct-
ness problem in the code originally sent to us by Laumanns: it sometimes reports
non-optimal solutions. It appears that its results are a super-set of the Pareto
front. We reported this problem to Laumanns, who has subsequently corrected
it (and may have been aware of it independently of our discovery). This problem
does not have a significant performance impact though. It can be easily worked
around by adding a post-processing filter, as is required by the opportunistic
improvement algorithm. As we saw for the OIA, such a filter adds a negligible

XVII

cost to the overall algorithm runtime, and so would not have changed the results
significantly.

In order to work across a number of versions of CPLEX the code that Lau-
manns sent us communicates with CPLEX using temporary files. The code can
be modified to communicate with a particular version of CPLEX directly. We
chose to not modify the code that Laumanns sent us, in order to avoid introduc-
ing any new faults to it.

Writing these temporary files only affect a constant factor in the algorithm
runtime: they do not change the complexity of the algorithm. The adaptive ε-
constraint method is exponential in the number of metrics the problem has [17].
Our results show that the guided improvement algorithm outperforms the adap-
tive ε-constraint method on problems with a higher number of metrics. Due to the
algorithmic complexity, this conclusion is likely to remain true independently of
the constant factors involved in the implementation of the adaptive ε-constraint
method. The constant factors will likely only change the value of ‘higher’ at
which the GIA overtakes the adaptive ε-constraint method— if changing the
constant factors has any effect at all for larger problems.

We performed the GIA versus adaptive ε-constraint method comparison on a
different machine than the GIA versus OIA comparison due to CPLEX licensing
restrictions. Our findings do not depend on comparing results across machines.
The measurements reported in Table 1 were all taken on the CPLEX-licensed
machine. The CPLEX-licensed machine was a 3GHz dual-core Pentium 4 with
2GB of RAM.

External Validity. External validity is concerned with whether the findings
can be generalized beyond the specific experiments conducted. Our main find-
ing is that our guided improvement algorithm is better than the opportunistic
improvement algorithm and adaptive ε-constraint method for the kinds of real-
world problems that our aerospace collaborators are interested in solving.

It is possible that the two aerospace case studies we used in this paper are
not representative of the kinds of problems our collaborators wish to solve. We
mitigated this concern by studying many of the problems our collaborators are
working on, over a period of three years (from May 2006 to present), and choosing
the most challenging ones for this paper. Our collaboration has been acknowl-
edged in two PhD dissertations [16, 22] from their group, and we have interacted
with over half a dozen other students in the group.

It is possible that the real-world problems that our collaborators want to
solve are somehow different from real-world problems that other groups want to
solve. We have not taken any substantial steps to mitigate this concern. We are
not aware of any central repository of MOCO problems that could be studied for
this purpose. (We are aware of such respositories for first-order theorem proving,
SAT, SMT, and CSP problems.)

XVIII

7 Conclusion

This paper introduced the guided improvement algorithm for exact solving of
combinatorial multi-objective optimization problems and showed that it is both
novel and useful. Novelty was demonstrated by an overview of the literature.
Utility was demonstrated primarily on two real-world aerospace case studies,
with supporting experiments on three micro-benchmarks (n-Queens, n-Rooks,
and the multi-objective knapsack problem). Our guided improvement algorithm
appears to be better than the opportunistic improvement algorithm [11, 18] and
the adaptive ε-constraint method for the kinds of real-world problems that our
aerospace collaborators are interested in solving.

To the best of our knowledge this is the first paper to compare general-
purpose MOCO algorithms from different authors.

We found that each algorithm had at least one context in which it performed
the fastest. The opportunistic improvement algorithm performed the best for
the n-Queens problem (with the caveat that we did not run the adaptive ε-
constraint method on n-Queens). The adaptive ε-constraint method performed
the best on knapsack problems with two or three objectives. Our guided im-
provement algorithm out-performed the opportunistic improvement algorithm
on all problems except n-Queens, and it outperformed the adaptive ε-constraint
method on knapsack problems with four objectives.

The results of the knapsack evaluation suggest that our guided improvement
algorithm might outperform the adaptive ε-constraint method for the Decadel
Survey case study, which has six objective functions. Similarly, the knapsack
results suggest that the adaptive ε-constraint method might be the best for the
Lunar Lander case study, which has only two objectives.

Our empirical results confirm that considering the complexity of these algo-
rithms in terms of the number of base-solver calls they make is useful – although
not always definitive. We observed cases where the cost of a base-solver call var-
ied significantly. We also observed cases where the adaptive ε-constraint method
made an order of magnitude more base-solver calls than the other algorithms
but still returned in the least amount of time.

There is a need for the MOCO community to develop standard formalisms,
file formats, and challenge problems — as is already done in the CSP, SAT,
SMT, theorem-proving, and other communities.

Acknowledgements

Many people have participated in helpful discussions of this work, and we are
grateful for their time and insights; in alphabetical order: Felix Chang, Justin
Colson, Ed Crawley, Greg Dennis, Arthur Guest, Wilfried Hofstetter, Andrew
Yi Huang, Eunsuk Kang, Ben Koo, Ben Kuhn, Maokai Lin, Gustavo Pinheiro,
Rob Seater, Theo Seher, Bill Simmons, Dan Sturtevant, Tim Sutherland, Emina
Torlak, Olivier de Weck, and Brian Williams. We thank Zhaohui Fu, Marco
Laumanns, Martin Lukasiewycz and Sharad Malik for providing us their code
and examples, and for helpful discussions of their work.

XIX

This research was funded in part by the National Science Foundation un-
der grant 0438897 (SoD Collaborative Research: Constraint-based Architecture
Evaluation), and by the Air Force Research Laboratory (AFRL)/IF and Disrup-
tive Technology Office (DTO) in the National Intelligence Community Informa-
tion Assurance Research (NICIAR) Programme (ConfigAssure: Dynamic System
Configuration Assurance for National Intelligence Community Cyber Infrastruc-
ture). A research scholarship was provided by the University of Paderborn.

Bibliography

[1] Multiplication ALU. URL http://en.wikipedia.org/wiki/Multiplication ALU.
[2] Justin M. Colson. System architecting of a campaign of earth observing

satellites. Master’s thesis, MIT, 2008. Advised by Ed Crawley.
[3] Niklas Een and Niklas Sörensson. An Extensible SAT-solver. In Proc. SAT,

2003.
[4] Matthias Ehrgott and Xavier Gandibleux. A survey and annotated bibliog-

raphy of multiobjective combinatorial optimization. OR Spektrum, 22(4):
425–460, 2000.

[5] Matthias Ehrgott and Xavier Gandibleux. Multiobjective combinatorial
optimization: theory, methodology, and applications. In Matthias Ehrgott
and Xavier Gandibleux, editors, Multiple Criteria Optimization: State of
the Art Annotated Bibliographic Survey, volume 52 of International Series
in Operations Research and Management Science, pages 369–444. Kluwer
Academic Publishers, Boston, MA, 2002. ISBN 1-4020-7128-0.

[6] Matthias Ehrgott and Xavier Gandibleux. Hybrid metaheuristics for multi-
objective combinatorial optimization. In Christian Blum, Maria José Blesa
Aguilera, Andrea Roli, and Michael Sampels, editors, Hybrid Metaheuris-
tics: An Emerging Approach to Optimization. Springer-Verlag, 2008. ISBN
978-3540782940.

[7] Matthias Ehrgott and Stefan Ruzika. Improved ε-constraint method for
multiobjective programming. Journal of Optimization Theory and Applica-
tions, 138(3):375–396, 2008. doi: 10.1007/s10957-008-9394-2.

[8] Matthias Ehrgott, José Figueira, and Xavier Gandibleux. Special issue
on multiple objective discrete and combinatorial optimization. Annals of
Operations Research, 147(1), October 2006.

[9] José Figueira, Salvatore Greco, and Matthias Ehrgott, editors. Multiple
Criteria Decision Analysis: State of the Art Surveys. Springer-Verlag, 2005.

[10] Xavier Gandibleux and Matthias Ehrgott. 1984–2004 — 20 years of multiob-
jective metaheuristics. but what about the solution of combinatorial prob-
lems with multiple objectives? In Carlos A. Coello Coello, Arturo Hernández
Aguirre, and Eckart Zitzler, editors, Proc. 3rdEvolutionary Multi-Criterion
Optimization, volume 3410 of LNCS, pages 33–46, Guanajuato, Mexico,
March 2005. ISBN ISBN 3-540-24983-4.

[11] Marco Gavanelli. An algorithm for Multi-Criteria Optimization in CSPs.
In Frank van Harmelen, editor, Proc. 15thEuropean Conference on Artificial
Intelligence, Lyon, France, July 2002. IOS Press.

XX

[12] Arthur Guest. Lunar lander revisited. Master’s thesis, MIT, 2009. In
preparation. Advised by Ed Crawley.

[13] Y. Haimes, L. Lasdon, and D. Wismer. On a bicriterion formulation of
the problems of integrated system identification and system optimization.
IEEE Transactions on Systems, Man, and Cybernetics, 1:296–297, 1971.

[14] ILOG. CPLEX v11.0. URL http://www.ilog.com/products/cplex/.
[15] Ulrich Junker. Outer branching: How to optimize under partial orders?, Un-

dated. URL http://wikix.ilog.fr/wiki/pub/Main/UlrichJunker/opo.pdf. Pre-
liminary versions published at MOPGP’06 and M-PREF’06.

[16] H.-Y. Benjamin Koo. A Meta-language for Systems Architecting. PhD
thesis, MIT, 2005. Advised by Edward Crawley.

[17] Marco Laumanns, Lothar Thiele, and Eckart Zitzler. An efficient, adap-
tive parameter variation scheme for metaheuristics based on the epsilon-
constraint method. European Journal of Operational Research, 169(3):932–
942, 2006.

[18] Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich.
Solving multiobjective pseudo-boolean problems. In Proc. SAT, pages 56–
69, Lisbon, Portugal, May 2007.

[19] National Research Council Space Studies Board. Earth Science and Appli-
cations from Space: National Imperatives for the Next Decade and Beyond.
National Academies Press, 2007.

[20] Behrooz Parhami. Computer Arithmetic: Algorithms and Hardware De-
signs. Oxford University Press, 2000.

[21] Theodore K. Seher. Decadel survey revisited. Master’s thesis, MIT, 2009.
In preparation. Advised by Ed Crawley.

[22] Willard Simmons. A Framework for Decision Support in Systems Archi-
tecting. PhD thesis, MIT, 2008. Advised by Edward Crawley.

[23] Emina Torlak. A Constraint Solver for Software Engineering: Finding Mod-
els and Cores of Large Relational Specifications. PhD thesis, MIT, 2008.
Advised by Daniel Jackson.

[24] Emina Torlak and Daniel Jackson. Kodkod: A relational model finder. In
Orna Grumberg and Michael Huth, editors, Proc. 13thTACAS, volume 4424
of LNCS, pages 632–647, Braga, Portugal, March 2007. Springer-Verlag.

[25] E. L. Ulungu and J. Teghem. Multi-objective combinatorial optimization
problems: A survey. Journal of Multi-Criteria Decision Analysis, 3(2):83–
104, 1993.

[26] Jyrki Wallenius, James S. Dyer, Peter C. Fishburn, Ralph E. Steuer, Stan-
ley Zionts, and Kalyanmoy Deb. Multiple criteria decision making, mul-
tiattribute utility theory: Recent accomplishments and what lies ahead.
Management Science, 54(7):1336–1349, July 2008.

