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Abstract

Anisotropic, adaptive meshing for flows around complex, three-dimensional bodies
remains a barrier to increased automation in computational fluid dynamics. Two
specific advances are introduced in this thesis.

First, a finite-volume discretization for tetrahedral cut-cells is developed that
makes possible robust, anisotropic adaptation on complex bodies. Through grid re-
finement studies on inviscid flows, this cut-cell discretization is shown to produce
similar accuracy as boundary-conforming meshes with a small increase in the degrees
of freedom. The cut-cell discretization is then combined with output-based error es-
timation and anisotropic adaptation such that the mesh size and shape are controlled
by the output error estimate and the Hessian (i.e. second derivatives) of the Mach
number, respectively. Using a parallel implementation, this output-based adaptive
method is applied to a series of sonic boom test cases and the automated ability to
correctly estimate pressure signatures at several body lengths is demonstrated start-
ing with initial meshes of a few thousand control volumes.

Second, a new framework for adaptation is introduced in which error estimates are
directly controlled by removing the common intermediate step of specifying a desired
mesh size and shape. As a result, output error control can be achieved without the ad-
hoc selection of a specific field (such as Mach number) to control anisotropy, rather
anisotropy in the mesh naturally results from both the primal and dual solutions.
Furthermore, the direct error control extends naturally to higher-order discretizations
for which the use of a Hessian is no longer appropriate to determine mesh shape. The
direct error control adaptive method is demonstrated on a series of simple test cases
to control interpolation error and discontinuous Galerkin finite element output error.
This new direct method produces grids with less elements but the same accuracy as
existing metric-based approaches.
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Chapter 1

Introduction

Computational Fluid Dynamics (CFD) has become a powerful tool for the analysis

and design of aerospace vehicles, but obtaining a suitable grid remains a difficult part

of the CFD simulation process. Grids must provide adequate control of discretization

error and remain small enough to permit reasonable computation times. The AIAA

Drag Prediction Workshops104 are well-documented examples of how difficult it is to

generate grid converged results even by experts utilizing large grids.

Mavriplis102 continued the study of a Drag Prediction Workshop transport configu-

ration and showed that the discretization errors, estimated through grid convergence

studies, were larger than certain modeling errors (e.g., turbulence model distance

function calculation, thin-layer viscous approximation, level of artificial dissipation)

even for the finest grids, with 65 and 72 million nodes (for a node-based scheme).

He also indicated that the grid construction (spanwise stretching) could have a large

impact on computed outputs, even for the finest grids.

Chaffin and Pirzadeh35 detail the effort required to manually specify grid resolu-

tion for accurate three dimensional (3D) high-lift computations. The manual spec-

ification of the on- and off-body resolution for the grid generation system required

a large effort to create. Multiple grids were generated by examining the solution

on the current grid and devising better grid resolution specification. The high de-

gree of manual intervention required in these cases prohibits the use of automated

design tools. Their work demonstrates the need for better off-body grid control in
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the grid generation process.35 The desire to obtain grid-converged results and reduce

the manual intervention required by the grid generation process has motivated the

development of grid adaptation techniques.

There are two main barriers to the use of grid adaptation in CFD simulation.

The first is the ability of the adaptive indicator to produce an improved grid that

will eventually yield a solution suitable for engineering application. The second is the

robustness of grid adaptation mechanics. Output-based adaptation indicators have

significant promise to address the first barrier, see Section 1.1. However, relying on

an adaptive methodology to obtain highly resolved grids places greater emphasis on

the robustness of adaptive grid mechanics, see Section 1.2.

1.1 Solution Adaptation Indicators

Solution adaptive grid methodologies have been developed and applied in an attempt

to reduce the dependence on the manual iteration of CFD processes and the required

expertise of the practitioner to obtain accurate results. Baker14 provides a review

of adaptive methods applied to fluid dynamics. The aim is to increase grid resolu-

tion where local discretization error estimates are large, with the goal of diminishing

these estimated errors. This grid resolution adjustment produces a grid where the

error estimates have been equidistributed to some extent. Some examples of local

scalar adaptation indicators are interpolation error estimates,33,65,127 solution deriva-

tives,40,151 entropy generation,129 and truncation error.2

The local error estimate adaptive process tends to focus on the strong features that

are present in the flow solution (e.g., shocks, boundary layers). A potential weakness is

under resolution of important smooth regions of the flow, as these smooth regions are

generally not the strongest producers of local error indicators. These local adaptation

methods neglect the transportation of local errors through the solution and their

impact on global output quantities (i.e., lift and drag). Local error adaptation schemes

appear to converge to incorrect answers in a number of documented cases.50,145,151

One method to account for the transportation of errors is to estimate the error
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in the calculation of a specified engineering output functional. This output-based

approach has been applied to finite element discretizations, including error bounds

on outputs and adaptation.21,63,67,106,134 Pierce and Giles128 have developed an error

correction technique that applies these principles to discretizations other than finite

elements.

Output error indicators utilize the dual, or adjoint, solution to account for the

transportation of local errors throughout the problem domain, improving the calcu-

lation of an output functional. Adaptive techniques have been applied to reduce the

output error correction term50,83,108 for finite volume solutions. Venditti and Darmo-

fal146,147 demonstrated an adaptive technique for compressible two-dimensional (2D)

inviscid and viscous flow solutions that improves the error correction of an output

function. The 2D methods of Venditti and Darmofal have been applied to 3D inviscid,

laminar, and turbulent problems.17,113,122,123 This output-based approach provides

a natural termination criteria that is based on a user-specified functional error tol-

erance. Even when starting from coarse initial grids, output-based adaptation has

reliably produced accurate simulations.54,75,147

These initial grids are often unable to resolve important features that are present

in the final, adapted grid. Lower initial grid resolution requirements directly increase

the robustness and reduce the person-hours of the initial grid generation process,

especially if automated methods that query boundary complexity132 can specify a

suitable initial grid.

Aerospace flow features include discontinuities, shear layers, and boundary lay-

ers that require a strongly anisotropic grid to resolve efficiently. The related tasks

of specifying a multidimensional grid resolution request and modifying a grid have

been decoupled via a mapping metric.126,127 The use of an anisotropic grid metric

has become a standard way to specify a resolution request, but the metric is formed

from an a priori estimate of interpolation error. Concessions must be made to fit

output-based147 and higher-order54 methods into the metric framework. The met-

ric output-based adaptation method developed by Venditti and Darmofal147 utilized

primal and dual information to determine the sizing request, but only primal infor-
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mation (Mach or pressure Hessian) to determine the anisotropy. This focus on primal

anisotropy ignores the anisotropic nature of the dual solution, which can have a very

different character than the primal solution. Fidkowski and Darmofal54 form a high-

order solution adaptation metric by deducing the anisotropic directions of the primal

solution with a search methodology. Both the output-based and higher-order met-

ric limitations can be alleviated by optimizing the grid to directly control computed

error.

In this thesis, an alternative approach to adapting a grid to a metric is introduced.

Specifically, the grid is adapted to directly control output error, which is expressed

as a discontinuous Galerkin residual or modeled as interpolation error. Thus, direct

control of actual computed error is achieved without the intervening metric specifica-

tion, which is based on a priori error estimates. Bank and Smith18 have investigated

a similar approach for controlling estimated gradient errors of linear elements with

2D node movement.

1.2 Grid Adaptation Mechanics

Baker14 and Mavriplis99 have surveyed a variety of grid adaptation methods. A

straight forward approach is grid regeneration, where the grid is generated from

scratch using a new grid resolution specification.126,127 Unfortunately, this can be

an inefficient method for small, localized changes to the grid resolution request and

may require the same level of manual intervention that initial grid generation often

requires. A method that is closely associated to full grid regeneration is local regrid-

ing.129 This method opens pockets or voids in the grid by deleting nodes and elements

only in the regions that require modification. The voids are completed with a grid

generation process that results in the desired change to the grid, but the robustness

of this procedure can be very dependent on the shape of these voids.

Element sub-division100 is the replacement of an element with a set of smaller

elements that fill the same region. This method is suitable for tetrahedral as well as

mixed element grids. The nested nature of the resultant grids makes this an extremely
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appealing method for time-accurate135 and parallel applications34,118,124,150 because

the refined grids are readily coarsened to restore the original grid and the sub-division

can be readily expressed in a data structure communicated to other processors.

A popular method of adaptation is Delaunay point insertion.139 This method

begins with an existing Delaunay grid, which is defined by having no triangle circum-

circles (tetrahedra circumspheres) that contain a node of the grid. This grid is locally

refined by adding nodes in locations in need of finer grid spacing. The element that

encloses the new node is split to accept the new node, and the connectivity of nearby

elements is modified to regain a Delaunay grid. The new nodes are often added in

the location of the circumcenters of poorly shaped elements in order to replace these

poorly shaped elements with improved shape elements. The element quality of a De-

launay grid is dependent on the node locations (the connectivity is unique). Nodes

that are inserted very near existing nodes can be very detrimental to element quality.

Delaunay grids have many advantageous provable properties in 2D that do not hold

true in 3D. One disadvantage in 3D is the production of sliver tetrahedra that require

post-processing to remove.89 Unfortunately, maintaining the Delaunay property dur-

ing coarsening is a slightly more difficult task than Delaunay insertion and Delaunay

grids are isotropic.

Iterative node movement is a method that is suitable for structured and unstruc-

tured grids. This method iteratively moves nodes to cluster and align elements for

satisfaction of the resolution request or to improve element quality.10,58 The connec-

tivity of the grid is constant, which allows grid modification without the complex

data structures required of methods that modify element connectivity. The largest

disadvantage of this method is that the element quality can often become very poor

without the aid of connectivity changes. Also, locally increasing resolution without

adding additional nodes requires the reduction of grid resolution in other portions of

the grid.

Edge and face swapping58 is a technique employed to iteratively improve the con-

nectivity of triangles and tetrahedra without modifying the grid nodes. Local op-

erations replace all the elements surrounding an edge of a face with elements filling
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the same volume. Grids are improved by selecting their worst elements for swapping,

which are then replaced with more desirable elements.

The elemental operations of split, collapse, swap, and node movement can be

combined to iteratively modify a grid to satisfy a metric.65,70,90,141 This approach

examines each edge in the mesh and splits or collapses the edge if it is too long or

too short as compared with the mapping metric. Edge swaps and node movement are

also used to modify the grid to make it more compliant with the requested anisotropic

metric or to improve element quality.

Isotropic adaptation techniques have been extended to anisotropic adaptation

techniques by adapting the grid in transformed space.25,26,33,126 This includes the

physically-based modeling approach of ellipsoid bubble interaction to iteratively move

nodes to locations that result in high aspect ratio elements.27,155 In 2D, the mapped

isotropic methods have been successfully used to create grids with highly anisotropic

stretching near curved boundaries for high Reynolds number CFD simulation.70,86,98

Adapting 3D grids in the neighborhood of curved boundaries to an anisotropic

metric is still a difficult problem. Most of the difficulty lies in simultaneously main-

taining the boundary nodes on the geometry description and element validity. The

projection of nodes to curved geometry has been applied as a post-processing step af-

ter surface refinement to a linear surface approximation. Directly moving the surface

nodes to the projected location without modification of the volume grid may result in

invalid, inverted elements. The displacements required to project surface nodes can

be distributed throughout the grid to prevent the invalidation of elements near sur-

faces. The volume displacement has been computed via Laplacian smoothing, linear

springs, torsional springs, trusses, and linear elasticity. While these methods reduce

the incidence of invalid element creation, they are not guaranteed to prevent invalid

elements while projecting boundary nodes. Iterative methods have been developed to

project the surface node to the “first problem plane”90,91 (past the first element that

becomes inverted during projection) with various combinations of edge swapping and

node movement. However, grid regeneration81 is reported to be necessary when this

iterative method fails.
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1.3 Cut-Cell Methods

The constraint of generating a body-fitted grid for domains with curved boundaries

can be eliminated by introducing these boundaries after grid generation on a sim-

pler domain that does not respect the boundaries. This cut-cell approach allows a

background grid to arbitrarily intersect the boundary, and the CFD code is modified

to account for the arbitrarily shaped elements resulting from this intersection. Cut-

cell methods with Cartesian background grids have become very powerful tools for

transonic small disturbance,24 potential,156 and Euler1,37,42,45,48 flows. Extremely

high productivity and automation have been demonstrated by Cartesian cut-cell

methods,103,109 because volume grid generation5 and adaptation2 are highly auto-

mated, even for exceptionally complex geometries. Cartesian background grids per-

mit anisotropy only in the Cartesian directions. This has limited their use to laminar

flows,42 or turbulent flows with the aid of hybrid grids,46,82 integral boundary meth-

ods,3 or wall functions.77

The cut-cell method has also been applied to simplex meshes to permit arbitrary

anisotropy.54,143 When the constraint of providing a body-fitted grid is removed,

the grid generation and adaptation task is performed in a domain with much simpler

boundaries. Local incremental modification of an existing grid is then able to produce

grids with high anisotropy without curved boundary related robustness issues. The

extension of cut-cell methods to unstructured tetrahedral grids provides the flexibility

to anisotropically resolve arbitrarily oriented flow features.

1.4 Sonic Boom Prediction

Sonic boom simulation can be dramatically impacted by an automated and robust

grid adaptation scheme. Strongly anisotropic grids are essential to efficiently provide

the required off-body resolution and alignment to improve the accuracy of the one

dimensional (1D) approximate Riemann solvers at the heart of finite volume schemes.

The acceptance of an aircraft’s sonic boom to the general population is a requirement
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for supersonic flights over land and therefore the commercial viability of a supersonic

transport. Predicting how sonic boom signatures are perceived is a challenging task

that requires the prediction of the signature on the ground. This is a task complicated

by the long propagation distances, atmosphere variations, and the Earth’s turbulent

boundary layer. A detailed review of the history and state-of-the-art of sonic boom

modeling is provided by Plotkin.130

Near Field

Mid Field

Far Field

Figure 1-1: Sonic boom signature propagation zones.30

The propagation of a sonic boom is often separated into three logical stages or

regions, depicted in Fig. 1-1, to facilitate analysis.30 The near-field is a region near the

aircraft, where shocks are formed and strongly influenced by nonlinear phenomena

such as shock-shock interaction, shock curvature, and cross flow. Higher pressure

portions of the signature travel faster than lower pressure portions of the signature

because of variations in the local speed of sound. This slight speed difference causes

the shocks to deform by elongating and coalescing in the mid-field. The signature

has become primarily an N-wave in the far-field as a result of this distortion. The

boundaries of these regions are case specific.

Whitham153,154 provides analytic solutions for the signal distortion of slender ax-

isymmetric projectiles. The signature is also refracted by variations in the atmo-

spheric speed of sound. These principles have been implemented in a number of boom

propagation computer programs.69,142 Unfortunately, these boom propagation meth-

ods are not directly applicable to complex aircraft geometries. Page and Plotkin121,131

applied the multipoles of George60 to combine CFD near-field calculation with mid-
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and far-field boom propagation. This CFD matching multipole propagation technique

has been revisited by Rallabhandi and Mavris.133

The methodology of propagating near-field signatures to far-field distances has

been used by many researchers. Mendoza and Hicks71,105 propagated wind tunnel

measurements close to various bodies to longer distances to verify their technique.

As CFD methods matured, they where used as a source of near-field signatures.

Cheung, Edwards, and Lawrence38 used a hybrid approach with multiple methods

to propagate near-field parabolized Navier-Stokes signatures. Cliff and Thomas41

used structured and unstructured CFD and Madson97 used an adaptive Cartesian

full-potential method to generate near-field signatures for propagation. Djomehri

and Erickson47 evaluated adaptive unstructured grid techniques with propagation.

Fouladi56 manually specified grid resolution for an unstructured grid method to ana-

lyze sonic boom. Carter and Deere32 evaluate various manual grid resolution specifi-

cation and adaptation techniques. Alonso and collaborators9,36,39,40 used structured

grid and adaptive unstructured grid signatures for propagation and design. Kandil,

Ozcer, and collaborators78–80,119,120 developed and applied various methods to avoid

the use of traditional propagation methods.

CFD codes have difficulty propagating the relatively weak pressure signatures of a

sonic boom to distances beyond the near-field region, where these boom propagation

methods are valid. This problem is more acute for unstructured grid methods that are

often employed to capture the geometrical complexity of the model, especially if the

grids are not aligned with the shocks. To improve alignment, isotropic unstructured

grids are stretched to align the tetrahedra with the free stream Mach angle to improve

signal propagation for initial grids.28 This alignment issue has also given rise to hy-

brid methods79,85,149 where near-body unstructured grid solutions are interpolated to

shock-aligned structured grid methods to increase accuracy. The hybrid methods are

hindered by the interpolation process, so adaptive grid methods40,94,120 are employed

to improve the accuracy of unstructured grid methods for long propagation distances.

These previous adaptive methods have used only primal solution information (Mach

number, density, and pressure) to drive the adaptive process. Output-adaptive ap-
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proaches have also been applied to sonic boom prediction in 2D.19,53,113

In this work, anisotropic output-based adaptation to improve an off-body pressure

integral is applied to 3D sonic boom prediction. Anisotropically adapted tetrahe-

dral background grids with cut-cells provide extremely robust adaptation mechanics,

enabling the automated application of anisotropic output-based adaptation to non-

trivial 3D sonic boom problems for the first time. This allows for the entire signature

to be calculated or the pressure integral can be restricted to a specific region of in-

terest. The adjoint solution can also provide engineering intuition with a rigorous

foundation for design sensitivities and discretization error estimates.

1.5 Objectives

• Develop a robust anisotropic output-adaptive scheme for complex 3D geometries

• Demonstrate capability by performing 3D sonic boom prediction

• Develop methods to directly adapt a grid to improve error estimation without

the approximations required for metric-based adaptation

1.6 Overview

This thesis begins with a description of tetrahedral cut cells and how their geometry

is determined. The modifications to an existing finite-volume solver required to en-

able flow and adjoint solutions with these cut cells are detailed. The flow and adjoint

problems are combined to form the output-based error estimation and correction tech-

nique. A metric-based adaptation method is described and sonic boom predictions,

computed with a parallel execution, are provided to illustrate this method’s util-

ity. The assumptions required to formulate metric-based adaptation for outputs and

higher-order solutions are eliminated with an approach to directly control the output

error. This direct approach is demonstrated on a series of test problems. Finally, a

summary and conclusions are provided with the contributions of this thesis.
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Chapter 2

Cut Cell Determination
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(a) Primal grid.

 0

 0.2

 0.4

 0.6

 0.8

 1

−1.5 −1 −0.5  0  0.5  1  1.5

Y

X

(b) Median dual grid.
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(c) Median dual grid with geometry.
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(d) Resulting cut-cell grid.

Figure 2-1: Cut cell illustration of an diamond airfoil in 2D.

To introduce the 3D cut-cell method a simple 2D example is presented. The primal

triangular grid is shown in Fig. 2-1(a). The control volumes used by the flow solver

are the median duals of this triangular mesh. The median duals of this triangular

grid are shown in Fig. 2-1(b). These median duals are constructed by gathering the

three dual faces that are inside each primal triangle. Figure 2-2 shows the three dual

faces (dashed lines) for a triangle, which each connect the triangle center to one of

the triangle side midpoints. The airfoil geometry is a diamond airfoil, shown with the
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uncut median dual background grid in Fig. 2-1(c). The airfoil geometry is Boolean

subtracted from this background grid removing the portion of the background grid

that is external to the flow domain, Fig. 2-1(d).

Figure 2-2: Three dual faces (dashed lines) associated with a single triangle (solid
lines).

In the 3D case, the domain of the simulation is constructed by Boolean subtraction

of a manifold triangular boundary representation from a background grid. This tri-

angulation can come from many sources. Two examples are CAD geometry6,66,74 and

component-based geometry.5 Figure 2-3(a) is a triangular surface grid of a cylinder

constructed on a CAD solid.74

(a) Cylindrical cutting surface. (b) Median dual.

Figure 2-3: Cylindrical cutting surface and median dual.

The background grid contains closed simplicial polytope control volumes. In 3D,

these polyhedra are the median duals of a tetrahedral grid. The 3D median dual
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about a single primal node is shown in Fig. 2-3(b). Just as in the 2D case, this dual

control volume may not be convex. Each dual polyhedra of a tetrahedral grid contains

O(100) triangles. Figure 2-4 illustrates the two dual triangles associated with an edge

of a primal tetrahedron. There are six edges in a tetrahedron, which contains a total

of 12 triangular dual faces shared by the duals at each of its 4 nodes. For robustness

and a decrease in execution time and memory usage, a triangular dual face is only

represented once in the intersection procedure and shared by the two adjacent control

volumes.

Face  Center

Face  Center Cell Center

Edge Midpoint

Figure 2-4: Two dual triangles associated with a single tetrahedral edge.

The Boolean subtraction of two manifold triangular polyhedra (surface grid and

each of the background grid control volumes) reduces to a series of triangle-triangle

intersections.5 For computational efficiency, a near tree13,76 is employed to only per-

form the intersection test for triangle pairs that have a possibility of intersecting.

Only the duals that have a potential of intersecting the cut surface are created for the

intersection test. This potential is determined by an approximate, but conservative,

intersection of the primal tetrahedra and the cut surface triangulation. These steps

reduce the complexity of the intersection problem that can be O(number of surface

triangles × number of volume triangles) for a naive implementation.

Aftosmis, Berger, and Melton5 describe a procedure to characterize the intersec-

tion of two triangles with a sequence of signed volume computations. An a posteriori

estimate of signed volume floating-point round-off error is also provided, and the

adaptive precision arithmetic procedure of Shewchuk138 is invoked when the round-

off error exceeds the absolute value of the signed volume calculation. Cases that
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are degenerate in exact arithmetic are perturbed with a unique virtual displacement

to resolve these degeneracies.5 This exact intersection algorithm produces the same

intersection determination with any underlying math model (e.g., processor archi-

tecture, compiler). If it is acceptable to allow the intersection determination to be

dependent on the math model, floating-point arithmetic can be used as long as the

geometry predicates are evaluated in a consistent manner.

Segment

Segment

Node

NodeSegment

Node

Segment

Triangle

Node

Triangle

Triangle { Segment s0, s1, s2 }

Segment { Node n0, n1 }

Node { Real x, y, z }

Figure 2-5: Hierarchy of node, segment, and triangle data structures.

In the present work, the intersection test of two triangles is evaluated with only

floating-point arithmetic. To ensure that each intersection test is only performed in a

single orientation, a hierarchical data structure is employed, see Fig. 2-5. A triangle

consists of 3 segments; a segment consist of two nodes. Two adjacent triangles in

the surface or background grids share these segments. The triangle-triangle inter-

section determination decomposes into triangle-segment intersection determination

via volume computations. The triangles and their segments have a unique orienta-

tion because they are only represented once in the data structure. When they are

compared in the unique configuration, they always return the same intersection de-

termination. This consistency is pivotal to the robustness of the cutting scheme and
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permits the use of floating-point arithmetic, which is faster and much simpler than

utilizing adaptive precision arithmetic. Performing the same intersection test in dif-

ferent orientations would make an inconsistency extremely likely because of differing

floating-point round-off errors.

In the rare case when floating-point arithmetic results in an exact degeneracy

(zero volume), the cut surface is perturbed slightly (by a factor of machine epsilon)

and the entire cutting procedure is restarted to maintain consistency. These exact

degeneracies have only been observed on initial grids when the user exactly aligns the

background grid and surface triangulation. The actual perturbation can be replaced

with a virtual perturbation,5,51 where a unique tie-break to the degenerate volume

computing determinate is applied. This process has not been adopted in the current

work, because the degeneracies are detected early in the cutting procedure (within

seconds) and a single perturbation vector applied to the entire surface triangulation

has been sufficient to eliminate the degeneracies. The virtual perturbation technique

may be implemented as a topic for future work if it becomes necessary.

Each of the intersected triangles is constrained Delaunay triangulated into a set

of subtriangles to include the intersection points and segments.5 Local Barycentric

coordinates are employed in a reference triangle, Fig. 2-6(a). The goal is to produce

a Delaunay triangulation in the reference triangle, not the physical triangle. In this

example, two cut segments (thick lines) and three intersection points (circles) are

introduced into this reference triangle. The triangle-triangle intersection points are

inserted, one at a time, into the triangles with an iterative method.64 A point insertion

involves splitting the subtriangle that surrounds the new point into two or three,

Fig. 2-6(b). The target subtriangle that will be split is selected by examining the

subtriangles that result after splitting. This target subtriangle is selected so that the

smallest of the resultant subtriangles has the greatest signed area in floating-point

arithmetic. This area calculation is always performed in a unique configuration so

the resulting triangulation will have a non-negative area in finite-precision arithmetic.

The subtriangles are provided to the flow solver in this same orientation preventing

the introduction of negative area triangles in the flow solver. Shewchuk137 describes
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(a) Reference triangle, in-
tersection points, and cut
segments.

(b) Insert first intersection. (c) Insert second intersec-
tion.

(d) Swap for Delaunay. (e) Insert third intersection. (f) Swap for Delaunay.

Figure 2-6: Subtriangle construction by Delaunay point insertion into reference tri-
angle.
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a Delaunay triangulation scheme that uses exact arithmetic for area calculations, but

can provide negative area triangles (in floating-point arithmetic).

After insertion, the subtriangle sides that violate the in-circle test are swapped

to regain a Delaunay grid, Fig. 2-6(d) and Fig. 2-6(f). This swapping propagates

until a triangle side that satisfies the in-circle test is reached. Cut segments that

are not present after the points are inserted are recovered61 producing a constrained

Delaunay grid of the reference triangle.

Once all of the intersection points and segments have been inserted into their

parent triangles, the next step is to determine which subtriangles are inside or outside

of the domain. Each cut has four adjacent subtriangles, see Fig. 2-7. The subtriangle

pair, S1 and S2, lie on a triangle from the boundary surface triangulation, and the

subtriangle pair, V1 and V2, lie on a triangle from the face of a background dual

volume. Thus, each subtriangle in a pair are in the same plane since they have the

same parent triangle.

Intersection

Intersection
Cut Segment

S1

V2

V1

S2

Figure 2-7: Inside/outside determination of subtriangles at cut segment.

The normals of the cut surface triangles (S1 and S2) point into the domain. The

signed volume of a tetrahedron formed from the nodes of an S subtriangle and the

third node of a V subtriangle are positive if the V subtriangle is inside the domain.

The V subtriangle that creates a positive volume tetrahedra is given an inside status.

The V subtriangle that creates a negative volume tetrahedra is given an outside status.
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The inside/outside status of the S subtriangles is determined in the same fashion, each

dual knows the orientation of its V subtriangle normals by construction.

The inside/outside determination procedure uses only local subtriangles. It does

not use a global search over all triangles, which is required by ray-casting.5 The lo-

calization of the inside/outside determination allows the current implementation to

utilize computer memory cache more efficiently than ray tracing. The inside subtrian-

gle status is propagated to adjacent subtriangle and uncut triangle neighbors with a

flood-fill scheme, which propagates status until a cut segment is reached. The validity

of the cut cell topology is verified during the flood-fill operation. If a subtriangle pair

is set to the same status (i.e. V1 and V2 in Fig. 2-7 are both inside) the flood-fill

is terminated and the user is alerted to the location, because this indicates that the

cutting surface is not manifold.

An example is provided to illustrate the inside/outside determination of a multiple

region cut cell in 2D. Figure 2-8(a) contains a non-convex background grid control

volume and a wing trailing edge (thicker line). The cutting and inside/outside deter-

mination is applied and segments adjacent to cuts are given an integer, Fig. 2-8(b).

This integer is 0 for segments outside of the domain and positive for segments in-

side of a domain. The positive integers used to mark inside segments are unique. A

relaxation is performed so that adjoining segments not separated by a cut are both

set to the larger of their two integers. This provides inside/outside determination for

segments that are not directly cut and categorizes the segments into distinct regions,

Fig. 2-8(c), where each region has a distinct integer. These distinct regions are each

represented as a separate control volume in the flow solver.

The 3D cut surface and dual volume surface grids from Fig. 2-3 are shown in

Fig. 2-9(a). The cut surface intersecting the median dual is shown as a wire frame

so that the median dual is visible. Figure 2-9(b) shows the result of the Boolean

subtraction. The surface resulting from the subtraction contains the inside triangles

from both surfaces and the inside subtriangles of the intersection.

The time required for cut-cell preprocessing of the Section 6.5 adaptive cases is

provided in Fig. 2-10. The background grids are adapted and the same body trian-
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(a) Background grid control volume and wing trailing
edge.
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(b) Inside/outside determination at intersections.
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(c) Completion of flood-fill resulting in 3 regions.

Figure 2-8: Inside/outside and multiple region determination in 2D.
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(a) Median Dual And Cutting Surface. (b) Resulting Polyhedra.

Figure 2-9: Median dual, cylindrical cutting surface, and resulting polyhedra.

gulation is Boolean subtracted from each background grid. The cutting procedure

utilizes a parallel execution scheme. The number of control volumes that are in the

domain after cutting is the x-axis. The time required includes disk access time to

read in the background and surface grids over the network from a single file server.

The longest running delta wing body case is investigated to determine why it

required more time than the other cases with more surface triangles. All of the steps

before the flood-fill scheme required 50 seconds. The flood-fill scheme is load imbal-

anced for this case. All but 4 of the 24 processors completed the flood-fill before

1000 seconds. One of the processors completed flood-fill in 80 seconds. The grid is

partitioned with a heuristic that equalizes the number of cut and uncut control vol-

umes, Section 5.2.6. A better heuristic may account for the relative cost of computing

different cut cells. The flood-fill algorithm could also be optimized to reduce total

cutting time.

35



 1

 10

 100

 1000

 10000

 100000

1000 10000 100000 1000000 10000000

Cu
t-C

el
l P

re
pr

oc
es

sin
g 

Ti
m

e 
(s

ec
)

Cut Control Volumes

Double-Cone Cylinder (245,000 Triangles)
Delta Wing Body (12,300 Triangles)

SLSLE (1,670,000 Triangles)

Figure 2-10: Time required for cut-cell preprocessing as a function of number of
control volumes in resultant grid.

36



Chapter 3

Flow and Adjoint Solvers

Fully Unstructured Navier-Stokes Three-Dimensional (FUN3D) is a suite of codes for

finite-volume CFD.11,12 The FUN3D website, http://fun3d.larc.nasa.gov, con-

tains the user manual and an extensive list of references. FUN3D is able to solve

incompressible, Euler, and Reynolds-averaged Navier-Stokes (RANS) flow equations,

either tightly or loosely coupled to a turbulence model. The Euler equations are used

in this study. Domain decomposition is employed to fully exploit the distributed

memory of a cluster of computers to increase problem size and reduce the execution

time of the simulation process.

3.1 Governing Equations

The Euler equations are
∂Q
∂t

+∇ · F = 0, (3.1)

Q =



ρ

ρu

ρv

ρw

E


, (3.2)
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F =



ρu

ρu2 + p

ρuv

ρuw

u(p + E)


î +



ρv

ρvu

ρv2 + p

ρvw

v(p + E)


ĵ +



ρw

ρwu

ρwv

ρw2 + p

w(p + E)


k̂, (3.3)

where ρ is density, u, v, and w are velocity, E is total energy per unit volume, and p

is pressure. These quantities are related by the ideal gas relation,

p = (γ − 1)

(
E − ρ

u2 + v2 + w2

2

)
, (3.4)

with the specific heat ratio γ = 1.4 for air.

The divergence theorem is applied over a set of control volumes to produce a

finite-volume scheme,

∫
Vi

(
∂Q
∂t

+∇ · F
)

dV = Vi
dQi

dt
+

∫
Γi

F · ~n dΓ = 0, (3.5)

where Γi are the boundaries of the control volumes with volume Vi and ~n is an outward

pointing normal. The average of Q in each control volume is Qi. The flux integration

is approximated as,

∫
Γi

F · ~n dΓ ≈
∑
f∈Γi

H(qlf , qrf , ~nf )Af = Ri(Q), (3.6)

where Ri is the discrete residual for control volume i, the summation is over the faces

of the control volume.11 The van Leer144 approximate Riemann solver H is utilized

to compute the flux from the primitive states,

q =



ρ

u

v

w

p


, (3.7)
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at the borders of the neighboring control volumes, qrf and qlf . These face values are

reconstructed from cell averages (the reconstruction method is described below). The

discrete equations are established simultaneously for each control volume,

V
dQ

dt
+ R(Q) = 0, (3.8)

which makes the discrete solution vector Q ∈ R5N , discrete residual vector R ∈ R5N ,

and V = diag(Vi), where N is the number of control volumes. The flux integra-

tion scheme (including face state reconstruction from cell averages) is detailed in the

following sections.

A backward Euler solution update scheme is employed with a variable pseudo-

time step.11 An approximate nearest neighbor linearization is utilized to reduce the

memory required for the implicit point-iterative method. The solution update is

limited to 15% of the current ρ and p to increase robustness during initial transients

when starting from free stream.

3.2 Adjoint Equations

After the flow solution is known, the discrete adjoint equations114,115 are solved to

complete the dual problem. To derive these equations, the residual R is augmented

with a source term S and the sensitivity of the output function with respect to this

source term is sought. A potential application of this sensitivity is to model truncation

error as a source term and determine the effect of this error on the output function

f (e.g., lift, drag). A Lagrangian is formed from f with R included as a constraint,

L(Q,S, λ) = f(Q,S) + λT R(Q,S). (3.9)

Each adjoint variable λ ∈ R5N corresponds to a flow equation. The Lagrangian is

differentiated with respect to S,

∂L
∂S

=
∂f

∂S
+

(
∂Q

∂S

)T (
∂f

∂Q
+ λT ∂R

∂Q

)
+ λT ∂R

∂S
. (3.10)
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The dependency on ∂Q
∂S

can be eliminated by solving the adjoint equation,

(
∂R

∂Q

)T

λ =

(
∂f

∂Q

)T

. (3.11)

With the adjoint equation satisfied, the sensitivity of the output function can be

expressed as,
∂L
∂S

=
∂f

∂S
+ λT ∂R

∂S
. (3.12)

The linear adjoint equations in Eq. (3.11) are solved with a dual-consistent time-

marching method.62,117 The dual-consistent solution method guarantees that the

adjoint equations will have the same asymptotic convergence rate as the flow equa-

tions.

3.3 Inviscid Flux Integration

The existing FUN3D body-fitted approach lumps the median dual pieces to a single

effective area and normal direction for each edge they surround.22 After lumping, all

of the inviscid terms are calculated with a loop over edges, which is computationally

efficient. Conserved states Q, used in the time advancement scheme, are converted

to primitive states q for face state reconstruction. The primitive state is extrapolated

from the nodes to establish the primitive state at these lumped faces qf using the

gradients ∇q = [qx, qy, qz] reconstructed from the cell averaged state q0 (see Section

3.4), face center xf , and node x0,

qf = q0 +∇q (xf − x0), (3.13)

for the unlimited scheme. For the case of supersonic flow, a limiting function is used

to reduce the gradient contribution to the reconstruction (see Section 3.5).

At the completion of cut-cell preprocessing, the dual polyhedra can be classified

into three groups: uncut active duals interior to the computational domain, cut duals,

and inactive uncut duals exterior to the computational domain. The state is stored
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(a) Uncut control volume. (b) Cut-cell control volume.

Figure 3-1: Dual control volumes, in 2D.

at each node in the primal grid, Fig. 3-1(a) filled circle. All nodes that correspond

to dual polyhedra that have been cut or are inactive are removed. A new degree

of freedom is inserted at each cut dual polyhedra centroid, Fig. 3-1(b) filled circle.

Multiple degrees of freedom are added when a polyhedra is split into multiple distinct

regions by the cut surface.

Once a dual control volume is cut, the approximation that the state is centered

at the primal node is removed and the state becomes centered at the control volume

centroid. This results in a discontinuous change in location once the control volume

is infinitesimally cut. This discontinuous behavior may cause difficulties for shape

sensitivities and design. Removing this issue remains a topic for future work, but

may be addressed by computing the uncut cell centroids.

The median dual triangles that surround any edges that involve a cut cell are ex-

plicitly represented and employed in flux integration. Edges that involve uncut active

duals utilize the lumped effective areas and normals of the body-fitted scheme. Cut-

cell flux integration requires more work than the body-fitted scheme because there are

multiple triangles separating the two control volumes that would be approximated as

a single flux evaluation in the body-fitted scheme. It also requires more memory to

store the extra triangles that would be approximated as a single effective area. The

cut cells are a minority of the control volumes for a typical case, so the additional
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expense of utilizing cut cells does not dominate the execution time or storage.

The body-fitted, node-based scheme stores the state on the boundary of the do-

main. The state is interpolated between adjacent boundary nodes to integrate the

boundary flux. The boundary flux is described in Section 3.6. For cut-cell boundary

flux integration, the state is extrapolated with the reconstructed gradients from the

cell centroids to the boundary face,

qbf = q0 +∇q (xbf − x0). (3.14)

The boundary of the cut cell from Fig. 3-1(a) is shown in Fig. 3-2 to illustrate the

reconstruction of the boundary state qbf for cut-cell boundary flux integration. The

qbf is extrapolated to each cut surface piece for integration.

Figure 3-2: Cut-cell boundary integration, in 2D.

3.4 Gradient Reconstruction

Finite volume schemes store cell-averaged data as solution unknowns. Gradients are

reconstructed from neighboring cell-averaged data to create a more accurate scheme.

Barth20 introduced a fitting procedure to reconstruct gradients,
w1(x1 − x0) w1(y1 − y0) w1(z1 − z0)

...
...

...

wn(xn − x0) wn(yn − y0) wn(zn − z0)




αx

αy

αz

 =


w1(α1 − α0)

...

wn(αn − α0)

 , (3.15)
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for each primitive state α ∈ q = [ρ, u, v, w, p]T . For uncut cells, the cell neighbors

1, . . . , n that surround the central cell 0 are often more numerous than the 3 unknowns,

so the overdetermined system is solved with the method of least squares. For cut

cells, however, the number of neighbors can be low, resulting in poor conditioning.

To improve conditioning for cut cells, the gradient reconstruction system is extended

to include the neighbors of cut-cell neighbors. To reduce numerical instabilities, a

Gram-Schmidt QR factorization11 is used to invert Eq. (3.15) by precomputing and

storing R, which is only a function of the problem geometry. Mavriplis101 discusses

the properties of unweighted and various weighted reconstruction schemes.

The discrete adjoint solution exhibits extreme values in small cells that are ad-

jacent to much larger control volumes when these small cells are included in the

unweighted reconstruction scheme of the larger cells. This behavior is problematic

for error estimation because of the use of a high-order recovery (as described in Chap-

ter 4). This issue is examined for scalar convection in Appendix A. The source of

these large adjoint values in small cells was tracked to the gradient reconstruction

system. For the unweighted reconstruction, the reconstructed gradient is highly sen-

sitive to the solution in small cells, causing large contributions to the adjoint residual

in these small cells.

To relieve this problem, the gradient reconstruction system includes a square root

of volume weighting wi =
√

Vi/V0. The reconstructed gradients are still exact for

linear functions with this weight. This weighting has the added benefit that a cell is

smoothly included or removed from the reconstruction stencil when a control volume

is infinitesimally cut. This smooth transition should aid the computation of design

sensitivities.
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3.5 Reconstruction Limiting

Barth and Jespersen22 introduced limits on an unstructured grid reconstruction scheme

to maintain monotonicity. Face reconstruction using a limiter of this form is

qf = q0 + Φ ∇q (xf − x0), (3.16)

where the diagonal matrix limiting function Φ is computed in each control volume.

The same Φ is employed in all face reconstructions for a given control volume. This

type of limiter can compromise the convergence of the flow and therefore a dual-

consistent adjoint solver.52,116 Venkatakrishnan148 studied this limiter in its original

form as well as with the limiter function held constant after iterative convergence

stalls. He proposed a new limiter to improve convergence, but both the frozen scheme

and new limiter can result in stalled convergence. The Venkatakrishnan limiter is not

monotone, it permits under- and over-shoots. Frozen limiters are derivative approx-

imations that impede error estimation, output-based adaptation, adjoint iterative

convergence, and design sensitivities.16,87,113

Balasubramanian and Newman16 propose applying the Barth-Jespersen and Venkatakr-

ishnan limiters on an edge-by-edge basis instead of having a single value of Φ for each

control volume. They reported an improvement in the iterative convergence of the

modified limiters for both the flow and adjoint systems of a wing in transonic inviscid

flow. Berger, Aftosmis, and Murman23 examine edge-based limiting in an appendix.

They show that edge-based limiting can introduce new extrema into the solution.

In this study, the limiter will be used in the context of an output adaptive scheme

that requires the adjoint solution. An exact linearization and steady iterative conver-

gence of the flow and adjoint solvers is paramount to the robustness of the adaptive

scheme. This iterative convergence is so critical that the accuracy of the limited

scheme will be sacrificed; accuracy will be regained with adaptive grid refinement

and alignment. A heuristic edge-based limiter152 is utilized to improve the conver-

gence of the flow solver while providing the exact linearization required for adjoint

convergence. Concessions are made to improve iterative convergence; it is not total
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variation diminishing (TVD) or linearity preserving.

The heuristic limiter was developed152 by examining its effect on shock capturing

for regular and irregular grids and empirically adjusting its formulation to increase

the width of shocks. It is a scalar limiting function φ that considers only the cell-

averaged values of pressure and their reconstructed gradients in the cells adjacent to

the face being reconstructed. Face reconstruction using a limiter of this form is

qf = q + φ∇q(xf − x0), (3.17)

where the scalar limiting function φ is computed for each face f . The same φ is used

for the left qlf and right qrf face reconstructions.

Face

Edge

Face Center
xδ 1

δx2

p
1

p2

Figure 3-3: Edge and face geometry.

The basic concept employed in this heuristic limiter is to reduce the reconstruction

gradient in locations where the pressure gradients are large relative to pressure. This

clearly could result in limiting in regions for which the solution varies linearly (though

with large magnitude), however, in combination with adaptation the proposed limiter

has been found robust and accurate (see Section 6.5). The specific form of the limiter

relies on a measure of the change in the pressure, δp. To form δp, the reconstructed

gradient of pressure for the control volumes on the right and left of the face (Fig. 3-3),

∇p1 and ∇p2, are used with the right and left extrapolation vectors to the face, δx1

and δx2,

δp =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
δx1x∇p1x − δx2x∇p2x

δx1y∇p1y − δx2y∇p2y

δx1z∇p1z − δx2z∇p2z

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ . (3.18)

This sensor is active for linear functions and does not specifically penalize extrema.
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The gradient reconstruction is reduced where the the δp sensor is large with the inten-

tion of spreading the detected jump over a number of control volumes. Adaptation

will be employed to narrow the width of the discontinuity. The tanh function is

employed to smooth the combined nondimensional pressure jump ratio,

φheuristic = 1− tanh

(
δp

min(p1, p2)

)
, (3.19)

and restricts the limiter to the range (0, 1]. A tanh function is employed to provide a

smoothly varying and differentiable function that enables residual convergence that

can be impeded by a non-smooth limiting function. This limiter is active (to some

degree) in all regions with pressure variations, so it will not switch on and off inter-

mittently during iterative convergence. The design accuracy of the limited scheme is

therefore below second-order. The limiter is more active when the pressure variation

is significant as compared to the local pressure.

The cut cells require pressure, extrapolated to the boundaries, to compute bound-

ary fluxes. This reconstruction requires limits to prevent unrealizable face states and

must be smoothly differentiable to facilitate iterative convergence,

δpd =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
δxx∇px

δxy∇py

δxz∇pz

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣ , (3.20)

φextrapolation = 1− tanh

(
δp

p

)
. (3.21)

The extrapolation limiter is formulated to mimic the interior face limiter using only

the data from the cell adjacent to the boundary. These limiters reduce, but do not

eliminate the incidence of unrealizable face reconstructions, as discussed in Sections

3.7 and 3.8.

A diamond airfoil in Mach 2.0 flow at 5 deg angle of attack is provided to illustrate

the convergence issues of reconstruction limiters, see Fig. 3-4. The grid is anisotropi-

cally adapted to resolve the shocks. A symmetry plane grid of the 3D extruded airfoil
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domain is colored with pressure in Fig. 3-4(a). Figure 3-4(b) shows the convergence

history of the 2-norms of the 5 conservation equations for each of the three limiters.

The convergence of the Barth-Jespersen and Venkatakrishnan limiters initially stall.

They both converge after Φ is frozen at iteration 150. The heuristic limiter converges

without modification.

(a) Pressure colored symmetry plane
grid.

Iteration
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l
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10-4
Barth-Jespersen (Frozen)
Venkatakrishnan (Frozen)
Heuristic

(b) Convergence history (B-J and V limiters
frozen at iteration 150).

Figure 3-4: Diamond airfoil pressure colored symmetry plane grid and convergence
history.

A plane in the center of the 3D domain of the extruded airfoil is shown in Fig. 3-

5. A close-up of pressure around the diamond airfoil is shown in Fig. 3-5(a). The

minimum Φ or φ involved in the face reconstruction for a control volume is shown

in Fig. 3-5(b), Fig. 3-5(c), and Fig. 3-5(d). The Barth-Jespersen limiter, Fig. 3-5(b),

is active over large portions of the domain, including regions with small variations.

This Φ function has a large amount of high frequency variation. The Venkatakrishnan

limiter, Fig. 3-5(b), is the least active and its activity is narrowly restricted to the

shock and strongest expansion regions. The heuristic limiter, Fig. 3-5(d), is more

active than the Venkatakrishnan limiter and includes more of the expansion region.

The φ scalar is active in regions with moderate to large pressure variation. It has a

wider active region than the Venkatakrishnan limiter and a smoother variation than

the Barth-Jespersen limiter. The effect of limiter function on propagated pressure

signatures for sonic boom prediction is examined in Section 6.5.
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(a) Pressure. (b) Barth-Jespersen min(Φ).

(c) Venkatakrishnan min(Φ). (d) Heuristic min(φ).

Figure 3-5: Diamond airfoil pressure and limiter function.
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3.6 Boundary Conditions

The boundary conditions are imposed weakly through the fluxes. The tangential

flow boundary condition is implemented with zero velocity normal to the boundary,

resulting in the flux,

Ftangential =



0

pnx

pny

pnz

0


, (3.22)

where p is interpolated along or extrapolated to the boundary. The supersonic outflow

boundary condition uses the interior state to form the boundary flux. The supersonic

inflow boundary condition uses the free stream state ρ∞, u∞, v∞, w∞, and p∞ to

form the boundary flux.

The inviscid flow model breaks down at a sharp corner where separation would

occur in a physical flow. In the supersonic flow simulations performed in this work,

this problem presents itself at blunt trailing edges. To avoid this problem in these

regions, a transpiration boundary condition is specified manually. This boundary

condition applies free stream velocity state, u∞, v∞, and w∞ with a density and

pressure of ρ = 0.3ρ∞ and p = 0.3p∞. This level of density and pressure is empirically

established by examining the solution of a backward facing step with the tangential

boundary condition.

3.7 Realizability

Even with the use of reconstruction limiters, it is still possible to reconstruct states

with negative ρ or p. These unrealizable states cause catastrophic problems for flux

calculations. To allow the calculation to proceed, unrealizable reconstructed face

states are set to the cell-averaged value, locally reducing the scheme to first order.

These unrealizable states are most common during start up from free stream condi-
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tions. As the simulation continues, the incidence of this clipping is reduced and often

eliminated.

The cell-averaged state must also be prevented from reaching unrealizable values.

Inviscid supersonic flow expands around corners to reach extremely low ρ and p.

The updated values of ρ and p are artificially floored at 1% of free stream values.

Flooring the ρ and p effectively changes the iterative time advancement scheme. This

modification to the flow solver time advancement scheme can disrupt the iterative

convergence of the flow and adjoint solver.

3.8 Tangential and Transpiration Boundary Con-

dition Comparison

A low-boom wing body with a finite thickness trailing edge is simulated with transpi-

ration and tangential boundary conditions to study their effect on iterative conver-

gence and propagated pressure signature. The full description of this case is provided

in Section 6.5.3. The case is adapted to improve the calculation pressure one body

length below the configuration using the transpiration boundary condition. Both

boundary conditions are then applied to the final adapted grid. The pressure signa-

ture, one body length below the configuration, is shown in Fig. 3-6(a) for the tran-

spiration and tangential boundary conditions applied to the finite thickness trailing

edge. The difference in pressure signature, due to the different trailing edge boundary

conditions, is insignificant for this wing body configuration.

The flow expands around the backward facing step that is a result of finite thick-

ness trailing edge. The iterative convergence stalls for the tangential boundary con-

dition, Fig. 3-6(b), because the pressure and density floors are active to prevent the

cell-averaged states from becoming negative. The ρ and p reach low values and are

floored at 1% of free stream values. The stalled flow solver convergence for the tan-

gential boundary condition may cause an instability for the dual consistent adjoint

solution scheme.
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Figure 3-6: Results of a low-boom wing body at one body length with the transpira-
tion and tangency boundary condition on finite thickness trailing edge.

3.9 Body-Fitted and Cut-Cell Supersonic Vortex

Uniform Refinement

A supersonic vortex has been used by a number of researchers to verify the accuracy

of schemes and error estimation techniques.2,4, 7, 68,73,112 The 2D geometry of the

problem is given in Fig. 3-7. The domain is a section of an annulus. This domain is

extruded to for the 3D domain utilized for this study. The solution only varies in the

radial direction and is given by,

ρ = ρi

{
1 +

γ + 1

2
M2

i

[
1−

(ri

r

)2
]} 1

γ−1

, (3.23)

p = pi

{
1 +

γ + 1

2
M2

i

[
1−

(ri

r

)2
]} γ

γ−1

, (3.24)

a =
√

γp/ρ, (3.25)

M =
aiMiri

ar
, (3.26)

where M is Mach number and a is the speed of sound. There is an error in the

equations provided in Ref. 73. The flow conditions at the inside radius of the vortex

domain ri = 1 are ρi = 1, pi = 1/γ, Mi = 2.25. The outer radius for the vortex
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domain is ro = 1.384. The vortex is modeled for a 90 deg turning angle.

r

ri

o

M

Figure 3-7: Supersonic vortex geometry.

A series of uniformly refined grids are employed to verify the design order accuracy

of the existing body-fitted and current cut-cell approaches. The coarsest body-fitted

grid is shown in Fig. 3-8(a). It is constructed of nearly-right tetrahedra. The coarsest

background grid used for the cut-cell approach is shown in Fig. 3-8(b). It is con-

structed of right tetrahedra. The cut surface has 400 triangulated linear segments.

This fine resolution may be excessive, but it eliminates the geometry error of the cut

surface as a source of error for this uniform refinement study.

The coefficient of lift is computed on the inner and outer curved surfaces of the

vortex domain. The exact pressure is constant along the curved surfaces,

pi/pi = 1, (3.27)

po/pi =

{
1 +

γ + 1

2
M2

i

[
1−

(
ri

ro

)2
]} γ

γ−1

= 3.98035302289919. (3.28)

The coefficient of pressure is,

Cpi = 0, (3.29)

Cpo = 2
po/pi − 1

γM2
i

= 0.841016726038573. (3.30)
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(a) Uniformly refined body-fitted grid (441
control volumes).

(b) Uniformly refined cut-cell background
grid (867 control volumes uncut and 409
control volumes after cut).

Figure 3-8: Coarsest uniformly refined body-fitted and cut-cell grids.

The coefficient of lift for the vortex domain per unit span is

Cl = roCpo = 1.16396714883738. (3.31)

The error in computed lift divided by the exact lift is shown in Fig. 3-9 for a series

of uniformly refined body-fitted grids and cut-cell background grids with both the

heuristically limited and unlimited reconstruction schemes. The inflow conditions are

specified as the analytic solution. The outflow conditions are taken from the interior

of the domain. The tangency boundary conditions are applied to the inner and outer

boundaries as well as the two sides. The body-fitted and cut-cell methods employing

the heuristic limiter have a similar lift error level. This error level is higher than the

unlimited reconstruction schemes. The error introduced by the heuristic limiter does

not appear to be exacerbated by the irregular shape of the cut cells. Both unlimited

reconstruction methods asymptote to second order as indicated by the triangle with a

slope of two. The unlimited cut-cell method has more error than the unlimited body-

fitted method for the same characteristic length (degrees of freedom). The higher
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error level of the cut-cell method is offset by an increase in the adaptive mechanics

robustness, which can produce more efficient grids.
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Figure 3-9: Lift error convergence for uniformly refined body-fitted and cut-cell grids.

3.10 Body-Fitted and Cut-Cell Wing Uniform Re-

finement

An ONERA M6 wing is simulated at 0.84 Mach and 3 deg angle of attack. A series of

body-fitted and cut-cell grids are used to examine the the grid convergence properties

of both schemes. For these transonic cases, the face reconstructions are not limited.

Figure 3-10 shows Mach number contours on a 1,160,000 control volume cut-cell grid.

The λ-shock structure, expected at these flow conditions, is clearly visible on the

upper surface of the wing.

A series of cut-cell background grids with 10,000 to 1,160,000 control volumes are

shown with triangular symbols in Fig. 3-11. The surface geometry is the same for all

of the cut cell calculations. There are four body fitted grids sized 24,600 to 564,00

control volumes that employ the same background spacing as the cut cell grids shown

as squares in Fig. 3-11. A series of body fitted grid calculations from Park123 are also

shown as circles in Fig. 3-11.

The coefficient of drag computed with these grids are plotted as a function of char-

acteristic length squared h2 in Fig. 3-11(a). The characteristic length h is estimated

as the inverse of the cube root of the number of control volumes. The coefficient
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Figure 3-10: Mach number contours for 1.16 million node background mesh cut-cell
ONERA M6.

of drag values are all converging with uniform grid refinement to the same value,

Fig. 3-11(a). The two body-fitted grid sequences have similar values for coefficient of

drag. For the same mesh size, the cut-cell results have a higher (less accurate) drag.

Asymptotically, as h approaches zero, the various results are agreeing on the coeffi-

cient of drag. The exact value for coefficient of drag is estimated with Richardson

extrapolation of the finest two body fitted grids assuming 2nd-order spatial accuracy,

coefficient of drag = 0.010624. Figure 3-11(b) shows the coefficient of drag error as

a function of the characteristic length. The coefficient of drag error shows smooth

second-order convergence, as indicated by the triangle with a second-order slope. The

cut-cell method requires more control volumes (a smaller characteristic length) for the

same accuracy. This loss in efficiency is offset by an increase in the robustness of grid

generation and adaptation mechanics of cut-cell background grids.
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Figure 3-11: ONERA M6 coefficient of drag and coefficient of drag error for cut-cell
and body-fitted grids as a function of characteristic element size.
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Chapter 4

Output-Based Adaptation

Venditti and Darmofal146 describe an output-based error estimation and adaptation

scheme. To formulate the error estimate, an embedded grid is required. Constructing

the entire embedded grid can be infeasible for large 3D grids and has prevented the

use of adjoint error estimation techniques for industrial-sized problems even with a

parallel implementation.87 While the embedded grid can be formed in sections, this

increases the error estimation scheme complexity. Forming a portion or the entire

embedded grid is also complicated by the need to respect curved boundaries and

recompute the intersection tests of cut cells. These difficulties have motivated the

desire to only employ the current grid in the error estimation procedure. A procedure

is described that obtains a less expensive indicator for output adaptation with the

current grid, but does not provide a functional error correction available with the

embedded grid-approach.

4.1 Embedded-Grid Error Estimate

The single-grid adaptive indicator is derived following presentation of the embedded-

grid error estimate provided by Venditti.145 Let δQh represent a perturbation of a

fine grid primal solution Qh. This allows the introduction of an approximate fine grid

solution,

Q̃h ≡ Qh + δQh. (4.1)
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In practice Qh and δQh are unknown, but Q̃h is available. This perturbation can be

expressed in terms of a functional,

δfh ≡ fh(Q̃h)− fh(Qh). (4.2)

The goal of this procedure is to compute an estimate of fh(Qh) without computing

Qh. The perturbation in the residual is

δRh ≡ Rh(Q̃h)−Rh(Qh), (4.3)

δRh = Rh(Q̃h), (4.4)

because the fine grid solution satisfies the residual, Rh(Qh) = 0. A Taylor series

expansion about the solution yields,

δfh ≈
∂fh

∂Qh

δQh + · · · , (4.5)

δRh ≈
∂Rh

∂Qh

δQh + · · · . (4.6)

The discrete adjoint system on the fine grid is

∂Rh

∂Qh

T

λh =
∂fh

∂Qh

T

. (4.7)

The Taylor expansion is modified by substitution,

δfh ≈ ∂fh

∂Qh

δQh (4.8)

= λT
h

∂Rh

∂Qh

δQh (4.9)

≈ λT
h Rh(Q̃h). (4.10)

To avoid the expense of computing the adjoint on the fine grid, an adjoint perturbation

is introduced,

λ̃h ≡ λh + δλh. (4.11)
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The adjoint residual operator is

Rλ
h(·) ≡ ∂Rh

∂Qh

T

(·)− ∂fh

∂Qh

T

. (4.12)

Substituting Eq. (4.11) into the adjoint residual yields,

Rλ
h(λ̃h) =

∂Rh

∂Qh

T

(λh + δλh)−
∂fh

∂Qh

T

(4.13)

=
∂Rh

∂Qh

T

(δλh), (4.14)

because Rλ
h(λh) = 0. Now the fine grid adjoint solution dependency can be eliminated,

δfh ≈ λT
h Rh(Q̃h) (4.15)

= λ̃T
h Rh(Q̃h)− δλT

h Rh(Q̃h). (4.16)

This term can also be expressed with the solution perturbation,

δfh ≈ λ̃T
h Rh(Q̃h)− δλT

h

∂Rh

∂Qh

δQh (4.17)

= λ̃T
h Rh(Q̃h)−Rλ

h(λ̃h)
T δQh. (4.18)

The leading term in these equations is used as a computable error correction,

fh(Qh) ≈ fh(Q̃h)− λ̃T
h Rh(Q̃h). (4.19)

At this point a functional error correction for an approximate fine-grid solution and

adjoint is computable, Eq. (4.19). To form the approximate fine-grid solutions, the so-

lutions on an affordable grid, QH and λH , are combined with a quadratic prolongation

operator PH
h to compute the fine-grid correction with a coarse-grid solution,

fh(Qh) ≈ fh(P
H
h QH)− PH

h λT
HRh(P

H
h QH). (4.20)
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The remaining error terms −δλT
h Rh(Q̃h) and −Rλ

h(λ̃h)
T δQh are used to form the

adaptation indicator. The terms δλh and δQh are unknown, but they are estimated

as the difference between the linear prolongated solution LH
h QH and the quadratic

prolongated solution PH
h QH on the fine grid,

[Iembed]κH
=

1

2

∑
κh∈κH

5∑
i=1


∣∣[Rλ

h(LH
h λH)]i,κh

[PH
h QH − LH

h QH ]i,κh

∣∣+∣∣[PH
h λH − LH

h λH ]i,κh
[Rh(L

H
h QH)]i,κh

∣∣
 , (4.21)

where the summation is over the embedded fine grid control volumes that each coarse

grid control volume contains. The five conservation equations are contracted by the

index i. The vector Iembed ∈ RN is the fine grid error restricted to a single value for

each coarse grid control volume.

4.2 Single-Grid Error Estimate

The single-grid error estimation and adaptive indicator is

[Isingle]κ =
1

2

5∑
i=1

{∣∣∣[Rλ(λ̂)]i,κ[Q̂− Q̄]i,κ

∣∣∣ +
∣∣∣[λ̂− λ̄]i,κ[R(Q̂)]i,κ

∣∣∣} . (4.22)

It has the same pieces as Eq. (4.21), where the five conservation equations are con-

tracted by the summation over i. The vector Isingle ∈ RN has a single value for each

grid control volume κ. The λ̂ and Q̂ higher-order reconstructions and the λ̄, and Q̄

lower-order reconstructions on the current grid are described in the next section. The

original residual operators are utilized and λ̂ and Q̂ are constructed to make Rλ(λ̂)

and R(Q̂) reliable adaptive indicators. The λ̂ and Q̂ reconstructions are formed with

a fit of quadratic functions to cell averaged states and their gradients. The difference

between the (̂) and (̄) reconstructions is intended to provide adequate guidance for

the relative distribution of error, not a sharp bound on error.

The corresponding term of the form,

f(Q̂)− λ̂T R(Q̂), (4.23)
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is a correction to the single-grid residual error of the reconstructed solution. It does

not provide an improved functional estimate, which is shown in the supersonic vortex

example later in this chapter.

4.3 Grid Resolution Request

Venditti145 provides a procedure to calculate a new grid spacing request h from the

adaptive indicator Iκ and an error tolerance tolΩ. The adaptation indicator is summed

to find the global indicator IΩ =
∑

Iκ, which is also referred to as the remaining error

after correction. The ratio of the remaining error to a user-specified error tolerance

tolΩ is

εΩ =
IΩ

tolΩ
. (4.24)

The ratio of the control volume indicator to an equal share of tolΩ is

εκ =
N

tolΩ
Iκ, (4.25)

where N is the number of control volumes. When a cost function does not have an

intuitive error tolerance, i.e., sonic boom surface pressure integrals, the tolΩ is set to

half IΩ at each adaptive iteration.

Now that the ratios of estimated to desired error levels have been established,

the sizing request for an improved grid is computed. For cut-cell simulations, the

background grid is modified using the error estimates from the cut grid. The requested

isotropic element length h is computed with an estimate of the spacing on the original

mesh h0 and the global and local error ratios,

hκ = h0
κ

(
1

εΩεκ

)ω

. (4.26)

The original spacing h0
κ is computed with an implied metric84 on the uncut background

grid. A portion of the nodes of the background grid are outside of the computational

domain after the cut-cell procedure. For the nodes in the background grid that are
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external to the problem domain, the implied h0
κ is doubled, hκ = 2h0

κ, to reduce the

total size of background grid where it does not contribute to resolving the problem

of interest. The exponent value of ω = 1/4 is based on the assumed convergence

rates of εΩεκ for smooth problems.145 Fidkowski and Darmofal54 utilize a locally

varying ω based on a priori estimates of the spatial error convergence rate. Nemec,

Aftosmis, and Wintzer113 also suggest different strategies for converting the εκ into

an adaptation request in the context of Cartesian grids.

4.4 Error Estimation Reconstruction Operators

The cut-cell grid does not have underlying tetrahedral elements to support an element

based reconstruction, currently used for body-fitted grids. It is possible to create

local bounding elements and use these to reconstruct a smooth solution. However,

the approach taken here is edge-based reconstruction. The λ̂ and Q̂ reconstructions

utilize a quadratic reconstruction on each edge. The λ̄ and Q̄ reconstructions utilize

a constant reconstruction on each edge.

The first step of the edge-based quadratic reconstruction is to calculate least-

squares gradients at each control volume, Section 3.4. Each edge now has four pieces

of information, the value of the cell-averaged solution at each of its control volumes

and the reconstructed gradients projected in the edge direction. A quadratic rep-

resentation of the solution is created along each edge of the mesh. This quadratic

function has three unknowns per edge, which will be fit at edge endpoints to the

solution values and their gradients. The reconstructed solution at a control volume

is formed by averaging the incident quadratic edge functions.

A quadratic function,

y = ax2 + bx + c, (4.27)

defined along a parametrized edge, is evaluated and differentiated at edge endpoints

62



0 and 1, yielding:

y(0) = c, (4.28)

y(1) = a + b + c, (4.29)

y′(0) = b, and (4.30)

y′(1) = 2a + b. (4.31)

These expressions are formed into a matrix,
0 0 1

1 1 1

0 1 0

2 1 0




a

b

c

 =


Q0

Q1

Q′
0

Q′
1

 , (4.32)

where Q0 and Q1 are cell averaged values and Q′
0 and Q′

1 are the reconstructed

gradients projected in the edge direction to make this a 1D reconstruction along an

edge. The overdetermined system is inverted with QR factorization,


a

b

c

 =


0.0 0.0 −0.5 0.5

−0.2 0.2 0.9 −0.1

0.6 0.4 −0.2 −0.2




Q0

Q1

Q′
0

Q′
1

 . (4.33)

The quadratic fit ŷ is evaluated at the end points,

 ŷ(0)

ŷ(1)

 =

 0 0 1

1 1 1




a

b

c

 =

 0.6 0.4 −0.2 −0.2

0.4 0.6 0.2 0.2




Q0

Q1

Q′
0

Q′
1

 . (4.34)

The reconstructed value at the nodes q̂ is the average of all incident edge i recon-

63



structions ŷi,

Q̂ =
1

n

n∑
i=1

ŷi (4.35)

For Q̄ and λ̄ reconstruction, the solution is assumed to be constant over each edge

(the average of the edge midpoints).

 ȳ(0)

ȳ(1)

 =

 0.5 0.5

0.5 0.5

 Q0

Q1

 . (4.36)

The reconstructed value at the nodes Q̂ is the average of all incident edge i recon-

structions ŷi,

Q̄ =
1

n

n∑
i=1

ȳi. (4.37)

4.4.1 Accuracy of Reconstruction Operators for Supersonic

Vortex

The supersonic vortex problem from Section 3.9 is utilized to show the accuracy of the

reconstruction operator used in the single-grid error estimation method. An analytic

function for ρexact is available in Eq. (3.23). This analytic function is used to compute

the 2-norm of the error in density of a series of uniformly refined background grids,

Fig. 3-8(b), using the cut-cell method. The error in computed ρ is compared to the

error in the Q̂ higher-order reconstruction for ρ̂. This error improvement is given by,

||ρ̂− ρexact||2
||ρ− ρexact||2

, (4.38)

and plotted for a series of uniformly refined background grids in Fig. 4-1. The relative

error is below unity for all grids indicating that the reconstruction yields a slight

reduction in density error.
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Figure 4-1: Improvement in reconstructed density error.

4.5 Embedded- and Single-Grid Output Error Es-

timation for Supersonic Vortex

Output (lift) error estimation is applied to the supersonic vortex problem described in

Section 3.9. Nemec and Aftosmis112 examined the same case for a similar output. The

exact computed lift error is compared to error estimates in Fig. 4-2. The embedded-

grid approach is applied in Fig. 4-2(a) and the single-grid approach is applied in

Fig. 4-2(b). A series of uniformly-refined body-fitted grids are used with the coarsest

body-fitted grid shown in Fig. 3-8(a). The circles are the error in lift computed

with the standard body-fitted FUN3D scheme. Figure 4-2(a) squares are the error in

embedded-grid123 correction Eq. (4.20) and triangles are the remaining error estimate∑
[Iembed]κ. Figure 4-2(b) squares are the error in single-grid correction Eq. (4.23)

and triangles are the remaining error estimate
∑

[Isingle]κ.

The embedded-grid functional correction is converging at a rate slightly greater
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than second order for this smooth problem. The remaining error estimate is also

converging at a higher rate. Venditti145 has shown this superconvergent behavior

for smooth problems. The single-grid error correction term over-plots the computed

functional. This is expected; without the embedded grid this term is simply a resid-

ual error correction of the reconstruction on the current grid. The single-grid error

estimate is larger (more conservative) than the embedded-grid error estimate. The

single-grid remaining error estimate reduces at second-order.
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(a) Embedded-grid.
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(b) Single-grid.

Figure 4-2: Lift, error estimation, and remaining error for uniformly refined body-
fitted supersonic vortex.

It is desirable for the single-grid remaining error estimate Isingle to have a similar

distribution to the embedded-grid remaining error estimate Iembed. This allows the

less expensive single-grid estimate to drive an adaptation scheme in a similar manner

to the more expensive embedded-grid estimate. The remaining error estimates of the

embedded-grid and single-grid approaches are shown in Fig. 4-3 for an initial and

uniformly refined supersonic vortex grid. The remaining error estimates have been

normalized by the average remaining error estimate on each grid to facilitate compar-

isons between grids and error estimation methods. The color scale is logarithmic and

varies between one tenth to ten times the average value. The comparison between

the single-grid and embedded-grid estimates is improved on the uniformly refined grid

where the two methods have a similar estimate distribution. The error estimates are

greatest on the curved boundaries and lowest near the outflow boundary.
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(a) Initial grid embedded-grid remaining
error estimate.

(b) Initial grid single-grid remaining error
estimate.

(c) Uniformly refined grid embedded-grid
remaining error estimate.

(d) Uniformly refined grid single-grid re-
maining error estimate.

Figure 4-3: Remaining error estimate distribution normalized with the average re-
maining error estimate for uniformly refined body-fitted supersonic vortex (logarith-
mic color scale).
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4.6 Embedded- and Single-Grid Output Error Es-

timation for Wing Configuration

Output (drag) error estimation is applied to the ONERA M6 wing at Mach 0.84 and

3 deg angle of attack. This 3D embedded grid approach was previously reported

by Park.123 The sequence of 9 uniformly refined isotropic grids is shown in Fig. 4-

4. The truth value for drag is 0.010624, which is obtained from Section 3.10. The

circles are drag computed with the standard body-fitted FUN3D scheme. The squares

are the embedded-grid123 remaining error estimate
∑

[Iembed]κ. The triangles are the

single-grid remaining error estimate
∑

[Isingle]κ. The embedded-grid remaining error

estimate on the finest grid required a parallel scheme87 on 32 clustered computers,

each with 4.0 Gbyte memory; it exceeds the memory on 32 typical 1.5 Gbyte clustered

computers. The remaining error estimates (used to drive adaption) reach similar

values on the finer grids. In Section 6.4, the single-grid adaptive indicators perform

similarly to the embedded-grid approach when employed in an adaptive setting.
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Figure 4-4: Drag, error estimation, and remaining error for uniformly refined body-
fitted Mach 0.3 ONERA M6 wing.
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Chapter 5

Adaptation Mechanics

The grid adaptation algorithm description is separated into high-level logic and ele-

mental grid operators. The high-level logic is described in the following chapters for

metric-based and direct grid optimization. All of these algorithms employ the same

elemental grid operators, which are described in this chapter. The infrastructure to

allow multiple elemental operators to execute in a parallel is also described.

5.1 Grid Operators

The grid adaptation scheme is constructed from a sequence of 3D nearest-neighbor

grid modifications: node movement, tetrahedra swap, tetrahedra split, and tetrahedra

collapse. Each grid in this sequence is represented as the current set of nodes xi ∈ Xn

and tetrahedra κj ∈ Tn,

(Xn, Tn), (5.1)

where xi is the position of node i and κj are the nodes that element j connects. The

edge segments, segments connecting element nodes, are indexed by l. Each of the

grid operators G modify the current grid to create a new grid,

(Xn+1, Tn+1) = G(Xn, Tn, i, j, l, c(), c̄), (5.2)
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acting on the grid constitutes by index and improving an objective function c() to a

tolerance c̄. Each specific grid operator may use a subset of these arguments. The

tetrahedra removed and replaced in an operation are the sets,

T̆n = Tn \ Tn+1, (5.3)

T̆n+1 = Tn+1 \ Tn. (5.4)

5.1.1 Node Movement

Figure 5-1: 2D node movement grid operator.

Node movement changes the locations of the nodes while keeping the tetrahedra

connectivity fixed,

(Xn+1, Tn) = Mo(Xn, Tn, i, c()), (5.5)

see Fig. 5-1 for a 2D example with triangles. This is also a popular technique for struc-

tured grid methods14 because of the fixed connectivity. A node location is adjusted

with the neighboring node locations fixed. This method allows explicit constraints

on the positivity of tetrahedral volume, i.e.,

V (Xn+1, Tn) > Vtol, (5.6)

where Vtol prevents the ambiguity of small element validity in floating-point arith-

metic. Global relaxation is not used because explicit constraints cannot be enforced

as readily. An objective function c(κ) is defined for each tetrahedron incident to

a node, κ 3 xi. An optimization procedure is invoked to minimize a norm of the
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incident tetrahedron objective functions,

c(xi) =

(∑
κ3xi

c(κ)m

)1/m

, (5.7)

xi|n+1 = argmin c(xi). (5.8)

If the ∞-norm is selected, smart-Laplacian and quadratic programming optimization

schemes58 are employed. A gradient-free simplex search is used for other norms.

Nodes on boundaries are moved in their respective parametrized spaces.

5.1.2 Tetrahedra Swapping

Figure 5-2: 2D element swap grid operator.

The 3D operations of face and edge swapping58 are performed,

(Xn, Tn+1) = Sw(Xn, Tn, j, c()). (5.9)

A 2D example with triangles is shown in Fig. 5-2, where this is a simple replacement

of two triangles for two triangles. In 3D, this operator is much more complicated.

The element κj and its neighbors are examined, and the configuration that reduces a

norm of the involved tetrahedron objective functions to the greatest degree is chosen,

T̆n+1 = argmin

 ∑
κ∈T̆n+1

c(κ)m

1/m

, (5.10)

if it has positive volume tetrahedra,

V (Xn, Tn+1) > Vtol. (5.11)
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If there is no swapped configuration with a lower norm, the current configuration is

retained, which ensures

 ∑
κ∈T̆n+1

c(κ)m

1/m

≤

∑
κ∈T̆n

c(κ)m

1/m

. (5.12)

The 3D configurations that are evaluated by the argmin in Eq. (5.10) are face

swapping58 and edge swapping.58 Face swapping is replacing two tetrahedra that

share three nodes with three tetrahedra. Edge swapping is replacing all of the tetra-

hedra that share two nodes with a new set of tetrahedra that fill the same volume.

Edge swaps are implemented for three to seven tetrahedra surrounding an edge. The

number of possible configurations that can result from an edge swap grows rapidly

with the number of tetrahedra surrounding an edge. Fortunately, there is a smaller

set of canonical configurations for each of these swap operations. Freitag and Ollivier-

Gooch58 describe these canonical configurations and how to reduce the cost of evalu-

ating the norm of the new configurations. The boundary triangles are also swapped

as a result of tetrahedra swapping.

5.1.3 Tetrahedra Split and Collapse

(a) Triangle split. (b) Triangle collapse.

Figure 5-3: 2D split and collapse operators.

The split and collapse operations modify the density of the grid tetrahedra as well

as contribute to obtaining the desired anisotropy. There are many possible splitting

stencils.44,100 In this work, the split operator inserts a single new node on the segment

l connecting two nodes. All the tetrahedra that share l are split into two tetrahedra to

include this new node. Segments that are on a boundary also result in split boundary
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triangles. The tetrahedra split operator is used in two forms,

(Xn+1, Tn+1) = Sp(Xn, Tn, l, L()), (5.13)

(Xn+1, Tn+1) = Sp(Xn, Tn, j, c()). (5.14)

Equation (5.13) splits an edge if its length function L(l) > 1. Equation (5.14) splits

the edge l ∈ κj of element j that produces the largest decrease in c(),

l = argmin
l∈κj

(∑
κ∈T̆n

c(κ)m
)1/m(∑

κ∈T̆n+1
c(κ)m

)1/m
. (5.15)

In absolute precision arithmetic, these split tetrahedra have positive volume if the

original tetrahedra have positive volume and the new node is placed on the segment

connecting two nodes. In floating-point arithmetic, this may not be true due to

floating-point errors. An additional check is placed on the computed volume after

the split and the split is not permitted unless,

V (Xn+1, Tn+1) > Vtol. (5.16)

For a collapse, all the tetrahedra that share l are removed. One of these two

nodes is removed and the remaining tetrahedra incident to the removed node are

reconnected to the remaining node. The collapse operator also has two forms,

(Xn+1, Tn+1) = C(Xn, Tn, l, L()), (5.17)

(Xn+1, Tn+1) = C(Xn, Tn, j, c(), c̄). (5.18)

The collapse operation is only permitted if the new configuration results in positive

volume tetrahedra,

V (Xn+1, Tn+1) > Vtol. (5.19)

Equation (5.17) collapses an edge if L(l) < 1.0 ∀ l ∈ T̆n+1. Equation (5.18) collapses
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an edge of a tetrahedra if c(κj) < c̄ ∀ κj ∈ T̆n+1.

5.2 Parallelization

The grid operators are executed in parallel with a domain-decomposed scheme. The

resulting partitions allow the independent application of operators to the partition

interiors. Most of the complexity of this parallel approach arises when these operators

are applied in the partition-border regions.

5.2.1 Domain Decomposition

To fit large problems on a cluster of distributed-memory machines, the domain or

grid is decomposed into partitions. A node-based, domain-decomposition scheme is

utilized, where each node is uniquely assigned to a single partition. Tetrahedra that

span the partitions are duplicated to complete the border regions of the partitions.

This is the Single Program Multiple Data (SPMD) paradigm; each partition data

structure is processed by the same algorithm. The domain decomposition scheme is

identical to the method utilized by FUN3D.115

Partition Boundary

(a) Global grid.

BorderLocal
Element

Ghost Node
Border Node
Purely Local Node

Element

(b) Partition 1. (c) Partition 2.

Figure 5-4: Two partition domain decomposition 2D example.

A two partition example is illustrated in Fig. 5-4 for 2D. A node is denoted local

if it has been assigned to that partition (denoted filled circles and open circles). The
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geometry edges, boundary triangles, and tetrahedra that contain one or more local

nodes are also added to the partition. These include tetrahedra that are entirely

local to a partition (solid lines) or border tetrahedra that span partition boundaries

(dashed lines). Local nodes that are only used to construct local tetrahedra are

denoted as purely-local nodes (filled circles). Local nodes that are used to construct

border tetrahedra are denoted as border nodes (open circles).

The local nodes of other partitions are added as ghost nodes (dashed circles) to

the current partition as required to complete the border tetrahedra. The partition

to which these ghost nodes are assigned is also stored to reduce the parallel com-

munication required to update partition-border regions. Purely-local nodes are only

connected by tetrahedra to other local nodes. A partition’s border nodes are local

nodes that are connected to a ghost node by a border tetrahedron. Therefore, nodes

are either purely-local, border, or ghost. Tetrahedra are either local or border. Nodes

have a unique global index and a local index on each partition.

5.2.2 Partition Coloring

To increase parallel efficiency, groups of unconnected partitions are allowed to simul-

taneously modify border element connectivities and node positions. Only allowing

execution on one partition at a time results in a sequential algorithm, because the

other partitions are idle until they have an opportunity to process their border region.

The amount of time that processors remain idle during adaptation can be reduced by

allowing concurrent execution through partition coloring.

The sets of unconnected partition groups are calculated with a greedy coloring

scheme43 where no two adjoining partitions share a color. A 17 partition example with

four colors is shown in Fig. 5-5. All the partitions in a single color can then modify

border regions concurrently with current ghost information. In this example, the six

red partitions in Fig. 5-5 can execute at once. Without this coloring scheme, this

color would require six separate grid modification steps with parallel communication

between each step. With coloring, parallel communication is only required between

the processing of different colors, which are less than or equal to the number of
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partitions.

Figure 5-5: Partition coloring scheme.

5.2.3 Connectivity Changes

The connectivity of the tetrahedra change as a result of swapping Sw, splitting Sp,

and collapsing C. In other parallel adaptation implementations,8,34,44,88 connectiv-

ity changes are performed in the interior of the partition and migration is used to

make border regions interior. In this work, the tetrahedron connectivity changes

are performed on purely-local and border tetrahedra in separate operations without

migration. These connectivity changes may be due to edge swapping, face swap-

ping, or the insertion of new nodes. The collapse operator is currently only allowed in

purely-local partition regions, because the geometry topology information required to

maintain a topologically valid discrete surface triangulation is not stored with ghost

nodes. This limitation may be removed with a small amount of additional storage

and an increase in code complexity.

Initially, connectivity changes are only performed on local tetrahedra (solid lines,

Fig. 5-4(b) and (c)). This is an efficient parallel operation because all partitions
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perform connectivity changes simultaneously. Updates of the border tetrahedra region

(dashed lines, Fig. 5-4(b) and (c)) are performed one partition color at a time. To

correctly mirror connectivity changes across partitions, transcripts are recorded of the

nodes and tetrahedra that are added or removed as a result of this border tetrahedra

adaptation. These transcripts are serialized and broadcast to other partitions. The

receiving partitions apply the transcripts to maintain consistency between partitions.

The transcript is composed of all the data required to update connectivities (tetra-

hedra, geometry triangles, and geometry edge segments) and create new ghost nodes

(position, face parameters, and edge parameters). The size of these transcripts is

reduced by utilizing the stored ghost node partition assignments to restrict the tran-

script to the minimum information required to maintain consistency. Minimizing the

contents of the transcripts reduces parallel communication costs and the time re-

quired to perform the specified transcript operations on the other partitions. Parallel

efficiency is maintained while applying the transcripts to other partitions, because

transcripts are processed concurrently. Ghost nodes that are no longer connected to

a border tetrahedron after connectivity changes are removed.

5.2.4 Node Movement

The nearest-neighbor information must be current when smoothing nodes Mo to

prevent the creation of invalid tetrahedra. Freitag57 and Löhner93 address the issues

for maintaining current nearest-neighbors while node smoothing on a shared-memory

architecture. In other distributed memory implementations,8,34,88 border nodes are

frozen during adaptation. Then the domain is repartitioned and migration is used to

change these frozen border nodes into local nodes. A number of repartitioning steps

ultimately allow the processing of all nodes as local nodes.

In this implementation, the nearest-neighbor node movement operators are applied

separately to local and border regions without repartitioning. An initial pass is made

through all the purely-local nodes on all partitions. These nodes do not require any

information from other partitions. Therefore, the partitions can modify purely-local

nodes concurrently without parallel communication. After the purely-local regions
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of the partition have been smoothed, the border nodes are smoothed one partition

color at a time. The ghost nodes are updated after each color to ensure that nearest-

neighbor information is current.

Ghost node parameters (position, face parameters, and edge parameters) must

be updated when the corresponding border node on another partition is modified.

This operation is complicated by tetrahedron connectivity changes during adapta-

tion. These connectivity changes in partition borders alter the inter-partition com-

munication pattern. To recompute the communication pattern, every partition sends

a list of ghost node global indexes to the partition that is assigned those nodes. On

the assigned partitions, these requests for updated nodal information are translated

into local node indexes. The translation is performed in O(log2 n) time with a binary

search of the global indexes of local nodes stored in a sorted list. The translated

indexes allow access to the stored local values of the requested nodal position, face

parameters, and edge parameter. The requested information is sent back to the par-

titions to update their ghost nodes.

5.2.5 Global Indexes

The global node indexes are required to reconstruct the parallel communication pat-

tern after connectivity changes. Global cell indexes are not required for parallel

adaptation, but are maintained as a convenience to the application requesting adap-

tation. Unique global cell indexes are maintained with exactly the same algorithm as

the global node indexes, so only the global node index scheme is described.

The algorithm to assign and maintain global node indexes is simple. A partition

takes ownership of a global node index during the initialization of its local nodes. Once

a partition is assigned a global index, it never relinquishes it until the completion of

adaptation. If a local node is deleted during adaptation, the partition stores this

unused global index in a list. If the partition needs a unique global index to insert a

node into the discretization, it will extract an unused global index from the list.

When this list of unused global indexes is exhausted, the partition creates a new

global index by independently incrementing its copy of the total number of global
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indexes. This allows two or more partitions to obtain the same global index. These

repeated global indexes are made unique by shifting them. After shifting the newly

created global node indexes, the true count of global indexes is shared amongst par-

titions.

Partition Total Indexes of New Nodes

Before Shift A 103 101 102 103

B 102 101 102

C 100 none

D 104 101 102 103 104

After Shift A 109 101 102 103

B 109 104 105

C 109

D 109 106 107 108 109

Figure 5-6: An example of creating new global indexes on four partitions with 100
original global indexes, before and after shift.

Figure 5-6 provides a four processor example that begins with 100 unique global

nodes. Three of four partitions need new global nodes to insert nodes while concur-

rently performing edge split operations. Partition C does not insert any nodes. After

the edge split operation, these newly created nodes are shifted to make them unique.

The correct total number of nodes is also computed by partition D and communicated

to all partitions. The parallel communication required to maintain unique global in-

dexes is reduced by allowing the temporary creation of repeated global indexes that

are later corrected.

The unused global indexes are removed at the completion of the adaptation by

a reverse, global-index shifting procedure. This ensures that the calling application

will be returned a grid with continuous and unique global indexes.

5.2.6 Load Balancing

Load balancing is employed to maintain parallel efficiency. The parallel, graph-

partitioning tool ParMETIS136 is utilized to create well-balanced partitions with a

minimum number of connections. During adaptation, the number of nodes in each
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partition can change significantly due to the addition and removal of nodes. Also, the

communication cost can increase due to connectivity changes. The multi-constraint

formulation of ParMETIS is invoked to simultaneously balance the number of cut

and total control volumes. This improves the load balance of the cutting procedure

as well as the flow and adjoint solvers because a cut cell residual evaluation is more

expensive than an uncut cell residual evaluation. At the completion of the adapta-

tion process, ParMETIS is called and portions of the grid are migrated to regain an

optimal partitioning.
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Chapter 6

Metric-Based Adaptation

A metric tensor M is commonly employed to define the desired multidimensional grid

resolution because it is a natural way to express local interpolation error estimates of

linear functions.33,59,65,126 The symmetric positive definite matrix M in 3D has the

diagonal decomposition

M = X


Λ1

Λ2

Λ3

XT = XΛXT . (6.1)

The eigenvectors X define an orthonormal basis with length specifications hi in this

basis,

Λ =


(

1
h1

)2 (
1
h2

)2 (
1
h3

)2

 . (6.2)

This metric can be interpreted as an ellipsoid with major and minor axes of direction

Xi and length hi.
126 The linear mapping J is employed to map a vector in physical

space ~x = [x y z]T to a vector in transformed space ~x′ = [x′ y′ z′]T where a triangle

or tetrahedron becomes equilateral with unit length edges; that is,

~x′ = J~x. (6.3)
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The metric tensor M is related to J by

M = JT J, (6.4)

J = Λ
1
2 XT . (6.5)

If ~x describes an edge in physical space, the length L in mapped space is

L =
√

~x′T~x′. (6.6)

Employing Eq. (6.3), this expression of length becomes

L =

√
(J~x)T (J~x), (6.7)

L =
√

~xT M~x. (6.8)

Equation (6.8) is employed to directly compute edge lengths in the specified metric.

Equation (6.3) is applied to the physical coordinates of tetrahedron nodes to map

them to the transformed space before evaluating a quality of the tetrahedron’s shape.

The resolution request is stored as M during adaptation instead of storing J

directly due to these benefits:

• It is compact; only 6 entries of the 3D symmetric M are stored.

• Multiple M can be readily interpolated and intersected.33,59

• Lengths in the specified metric can be computed efficiently with Eq. (6.8).

A slight computational cost is incurred computing J from M when J is needed to

obtain a metric transformed tetrahedron. This cost is a 3× 3 symmetric positive def-

inite matrix diagonalization and Eq. (6.5). This cost is minimized by tridiagonalizing

M with a single rotation and applying an iterative method to find the eigendecom-

position of the tridiagonal matrix.

Venditti and Darmofal147 incorporated the adjoint adaptation parameter into an

anisotropic Hessian-based framework. This combined approach sets the anisotropy
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of mesh elements by using the Mach Hessian, and scales the element size so that the

tightest spacing is dictated by the adjoint adaptation parameter.

The Mach Hessian H is decomposed into eigenvalues Λ and eigenvectors X. The

matrix M has the same eigenvectors as matrix H and absolute value of the cor-

responding eigenvalues, making it symmetric positive definite. The adjoint adap-

tation parameter is incorporated into the Hessian framework by scaling the three

eigenvalues so that the largest eigenvalue corresponds to the adjoint adaptation spac-

ing requirement. The eigenvalues and corresponding eigenvectors are sorted so that

|Λ1| > |Λ2| > |Λ3|. Thus, after scaling, the largest eigenvalue is

Λ1 =

(
1

h

)2

, (6.9)

where the specified element length h is computed by the output error estimation

process, Eq. (4.26).

6.1 Shape Measure

In 3D, considering only edge length as a shape measure can result in degenerate tetra-

hedra, because a nearly-zero-volume ‘sliver’ tetrahedra can be constructed without a

short edge. Shape measures49,92 are employed to penalize near-degeneracies and pro-

vide a smooth function to optimize. These measures are based on interpolation error

estimates, departure from a right or isotropic tetrahedron, or transformation matrix

conditioning.140 A norm of the mesh conformity to a specified multidimensional grid

resolution84 can also be stated directly.

Shape measures are typically defined in the range [0, 1], with 0 denoting a degen-

erate tetrahedron and 1 denoting an ideal tetrahedron. In this work, the inverse of

a shape measure is used so that grid optimization becomes a minimization problem.

The inverse of the mean ratio92 is

η(κ) =
L2

01 + L2
02 + L2

03 + L2
12 + L2

13 + L2
23

12(3V )2/3
, (6.10)
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where V is the volume of the tetrahedron and L are the six lengths of vectors defined

between nodes 0–3 of the tetrahedron. It is in the range of [1,∞], where an isotropic

tetrahedra is 1 and a degenerate tetrahedra is ∞. The mean ratio is efficient to

evaluate and a well-behaved continuously differentiable function,140 which makes it

very suitable for gradient-based optimization. It also has a connection to metric

conformity without size specification.84 Minimizing η in the specified metric produces

tetrahedra that are isotropic in the metric space. This tends to produce tetrahedra

with large dihedral angles in physical space. Shape measures that penalize large

angles can have discontinuous derivatives, making them difficult to optimize with

gradient-based methods, see Shewchuk140 for examples.

6.2 Metric Adaptation Iteration

The goal of the ad-hoc adaptive processes is to produce a grid with the following

properties in decreasing priority:

• All edges have a length less than or equal to unity in the specified metric field.

• The number of nodes and tetrahedra in the mesh should be reduced by collaps-

ing edges shorter than unity in the metric field.

• The tetrahedra shape quality in the metric should be improved.

These are potentially contradictory goals that do not unify to a single minimization

statement. However, grid validity with elements equal or smaller than the metric is

possible with tetrahedra splits alone for a domain with planar boundaries, avoiding

being trapped in the local minima of an objective function. The last two goals are

for efficiency (minimizing degrees of freedom) and regularity of the resulting grid.

An iterative procedure to reach these goals is:

• Sort the tetrahedra by decreasing η in the specified metric. Consider the ele-

ments one-by-one, swap them with their neighbors to minimize the maximum
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η of the involved tetrahedra (m = ∞),

(Xn, Tn+1) = Sw(Xn, Tn, j, η()) ∀ κj ∈ Tn from largest η(κj) to smallest η(κj).

(6.11)

If a element is changed remove it from the queue.

• Perform the node movement operation on all nodes from largest η(xi) over

incident tetrahedra to smallest,

(Xn+1, Tn) = Mo(Xn, Tn, i, η()) ∀ xi ∈ Tn from largest η(xi) to smallest η(xi).

(6.12)

Smart-Laplacian and quadratic programming optimization schemes58 are per-

formed on the prioritized node list to minimize η.

• The orbit of tetrahedra that surround segments connecting two nodes are exam-

ined for potential collapse if the length of the edge in the metric is L(l) < 0.3.

(Xn+1, Tn+1) = C(Xn, Tn, l, L()) ∀ l ∈ Tn : l < 0.3 from smallest L to largest L.

(6.13)

• Sort the grid edges from largest l to smallest. The edges with l > 1.0 are split,

(Xn+1, Tn+1) = Sp(Xn, Tn, l, L()) ∀ l ∈ Tn : l > 1.0 from largest L to smallest L.

(6.14)

A element newly created from a Sp operation is not added into the split queue.

• The adaptation process repeats until L(l) < 1.0 ∀ l ∈ Tn.

6.3 Analytic Metric Adaptation

The volume grid of a unit cube domain [0, 1]× [0, 1]× [0, 1] is adapted to an analytic

metric field. The original grid, Fig. 6-1(a), is created by the FELISA grid generator125

through the GridEx framework74 with an isotropic spacing of 0.1. This original grid
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is adapted to ensure that all edges are less than or equal to 0.1, Fig. 6-1(b). An

anisotropic metric

[0.1̂i, h + (0.1− h)
|y − 0.5|

0.5
ĵ, 0.1k̂] (6.15)

is used for adaptation with h decreasing from 0.1 to 0.0001. This clustering is evident

on the x = 0 and z = 0 visible surfaces of the cube, Fig. 6-1(c). The volume grid

is clustered near the y = 0.5 plane. To reach this high anisotropy, the metric in the

ĵ-direction is reduced in a number of steps. The grid is adapted to this intermediate

metric at each step. The adaptation history of edge length is shown as a histogram

at the beginning of each adaptation iteration for h = 0.0001, Fig. 6-2. The x-axis of

each histogram is log10(L). At the completion of each adaptation step, all edges are

shorter than one in the metric and very few are shorter than log10(0.3) ≈ −0.52.

(a) FELISA grid. (b) All edges smaller than
metric 0.1–0.1–0.1.

(c) All edges smaller than
Eq. (6.15) metric, h =
0.0001.

Figure 6-1: Isometric views of a cube.

Anisotropic scaling of the figures aids illustration of the final grid corresponding

to this simple metric field. The z = 0 face of the Fig. 6-1(c) cubic grid is shown in

Fig. 6-3. The y-axis is progressively scaled in the series of subfigures, but the grid

itself remains fixed. Figure 6-3(a) shows the anisotropically adapted grid with 1–1

scaling. The y-axis scales by a factor of ten in each subsequent subfigure while the

x axis is held constant. Figure 6-3(d) shows the anisotropically adapted grid with

1–1000 scaling, which results in a figure width of 1 and a figure height of 0.001 in
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Figure 6-2: Histogram of the log of edge length in metric log10(L) for adapted cube
for h = 0.0001.

88



physical space. The center of the strongly anisotropic grid appears isotropic in this

anisotropically scaled view as a result of this mapped isotropic method.

(a) 1–1 view. (b) 1–10 view. (c) 1–100 view. (d) 1–1000 view.

Figure 6-3: Face of a cube (z = 0) adapted to Eq. (6.15) metric, h = 0.0001.

6.4 Embedded- and Single-Grid Output Adapta-

tion for Wing Configuration

Output (drag) adaptation is applied to the ONERA M6 wing at Mach 0.84 and 3 deg

angle of attack. A sequence of 6 adapted body-fitted grids, circles Fig. 6-4, is produced

by an embedded-grid error estimation process. This ONERA M6 wing application

was previously reported by Park.122 The 0.0019 drag coefficient output error tolerance

is satisfied by the last grid. The output error estimate and grid resolution request is

described in Chapter 4.

The single-grid output-based adaptation is also applied to the transonic ONERA

M6 wing. This case utilizes an initial background grid with fewer control volumes for

the cut-cell drag adaptation. The square symbols in Fig. 6-4 show the computed drag

coefficient and remaining error estimate for the single-grid error estimation adaptive

approach with cut cells. The final adapted grid satisfies the drag coefficient output

error tolerance of 0.0019. The final adapted cut-cell grid has more control volumes

than the body-fitted example for the same accuracy. While the cut-cell approach

is less efficient in terms of control volumes for the same accuracy, it utilizes more

robust adaptation mechanics that enable application to more complex geometries by
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avoiding the requirement of a boundary conforming adapted grid.

 1e-04

 0.001

 0.01

 0.1

 1000  10000  100000

Dr
ag

 C
oe

ffi
cie

nt
 E

rro
r

Number of Control Volumes

Body-Fitted Drag Error
Embeded-Grid Remaining Error

Cut-Cell Drag Error
Single-Grid Remaining Error

Requested Tolerence

Figure 6-4: Drag coefficient, error estimation, and remaining error for embedded-grid
body-fitted and single-grid cut-cell drag adaptation on a Mach 0.84 ONERA M6 wing.

6.5 Application to Sonic Boom Prediction

The parallel metric-based adaptation algorithm is applied to sonic boom prediction.

Tetrahedral background grids are adapted and the model geometries are simulated

with cut cells. The metric is obtained from an output error estimate of the integral

of quadratic pressure deviation over a surface s in the domain,

f =
1

As

∫∫
s

(
p− p∞

p∞

)2

ds, (6.16)

where As is the area of the integration surface. This focuses the adaptation on

improving the calculation of pressure near this surface. Previous applications have

been performed with the integral of pressure deviation.75,87 However, the square of

this deviation has been shown to produce more accurate signatures with less control

volumes.113 A cylindrical integration surface, aligned to the x-axis, is employed. The
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extent of the integration surface can be optionally restricted to the interior of a box

to focus on a subsection of the cylinder.

The current output-based adaptation approach is validated with wind tunnel mea-

surements. Wind tunnel testing of sonic boom configurations is a challenging task.

Wind tunnel models are typically small to obtain pressure signatures a relatively large

distance from the model within the finite size of tunnel test sections. Carlson and

Morris31 present some of difficulties inherent in wind tunnel testing of these small

models including extraneous variations in pressure larger than the signals measured.

A test apparatus and procedure that mitigates the extraneous spatial and temporal

distortions is described. Morgenstern107 also documents variations in ambient static

pressure wind tunnel measurements that are of the same magnitude as the desired

signature measurement.

6.5.1 Double-Cone Cylinder

(a) Drawing.72

(b) Shaded Surface.

Figure 6-5: Double cone-cylinder geometry.

A double cone geometry, denoted “Model 8” in a 1965 wind tunnel report,29 is
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shown in Fig. 6-5 with a shaded triangular surface grid. This same case was employed

to evaluate87 and then validate75 a parallel adaptive body-fitted grid approach. This

configuration has also been used by other researchers to evaluate their signature

prediction techniques.79,120 The pressure integral output function was defined as a

cylinder, six body lengths in radius, centered about the geometry axis. The cylinder

is clipped forward of 3 body lengths behind the nose, aft of 9 body lengths behind

the nose, and outside of 0.1 body lengths off the centerline to focus only on the region

where wind tunnel data is available. The surface grid is Boolean subtracted from a

9-degree wedge-shaped background tetrahedral volume grid. A symmetry plane of

the volume grid is shown in Figure 6-6. The initial grid (4,000 control volumes) was

created with no prior knowledge of where the shocks would propagate through the

domain, Fig. 6-6(a). The free stream Mach number is 1.26 and the heuristic limiter is

employed during adaptation. The parallel execution scheme used 32 partitions, and

the 17th adapted grid (7,500,000 control volumes) is shown in Fig. 6-6(b). The shocks

have been implicitly targeted and refined to propagate the signal to the pressure

integral surface. The anisotropy of the grid, based on the Mach Hessian, is clearly

evident. This anisotropy reduces the number of required control volumes.

The adaptation history of the pressure integral and its remaining error estimation

is shown in Fig. 6-7. The remaining error estimate is given by Eq. (4.22). Error is

underestimated on the initial few adapted grids before the shocks are propagated to

the integration surface. Once this connection is established, the error is reduced.

The adaptation history of the pressure signature extracted at 6 body lengths is

shown in Fig. 6-8. The circular symbols are digitized from a wind tunnel report.29 The

solid line is the final, adapted signature. The signal is absent on the original coarse

grid. The extrema of the pressure signal start to form and grow. The inflection points

at x/l = 2.3 is the last part of the signal to form. The over- and under-shoots of the

signal intensify on the final few adapted grids as the grid-shock alignment improves.

The final adapted grid is simulated with the Venkatakrishnan, heuristic, and

Barth-Jespersen limiters in Fig. 6-9. The Venkatakrishnan limiter has similar over-

and under-shoots to the heuristic limiter. The Barth-Jespersen limiter produces a
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(a) Initial grid. (b) Output adapted grid.

Figure 6-6: Symmetry planes of initial and output adapted double cone 3D volume
grids.
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(b) Pressure integral remaining error.

Figure 6-7: Model 8 pressure integral and uncertainty convergence at 6 body lengths.
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Figure 6-8: Model 8 pressure signature adaptation history at 6 body lengths.

signature without over- and under-shoots. All of these limiters have very similar

signatures except at the discontinuities.

The number of control volumes is shown as a function of wall clock time for

the 32 processor parallel adaptation in Fig. 6-10. The time required for the cut-cell

preprocessing is between the circle and square symbols. The time required for the

flow solution is between the square and triangle symbols. The time required for the

flow solution is between the triangle and × symbols. The time required for error

estimation and adaptation is between the × and circle symbols. The grid grows

in size during the adaptation step and is fixed during the other phases. The time

required for the error estimation and adaptation step is approximately equal to the

combined time of cutting, flow solve, and adjoint solve at each iteration.

Lee-Rausch et al.87 applied output-based adaptation in 9-degree wedge-shaped

domain with an unstructured body-fitted method. Twelve adaptation cycles produced

a grid of 2.2 million control volumes. A reconstruction limiter was not used and

a similar signal to the current results was calculated. Jones, Nielsen, and Park75

used the same output-adaptation method to compute signals at 18 body lengths and

presented data at 6, 10, and 18 body lengths. Their 16th grid contained 400 thousand
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Figure 6-9: Model 8 final adapted pressure signature at 6 body lengths for various
limiters.
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Figure 6-10: Wall time required for Model 8 pressure signature at 6 body lengths.
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nodes, but the signal at 6 body lengths appears less resolved than the current results.

Kandil and Ozcer79 use an adaptive structured grid Euler method that includes shock

fitting to 6 body lengths. They also apply adapted structured and unstructured Euler

methods to 2 body lengths, which are then propagated to 6, 10, and 18 body lengths

with a full potential method. Grid sizes are not reported. Ozcer and Kandil120 apply

an adaptive-grid unstructured method which uses a combination of normal Mach

number and pressure. Results are presented at 6, 10, and 18 body lengths for a 4-

degree wedge-shaped domain with a final grid size of 468 thousand nodes. The signal

at 6 body lengths appears less resolved than the current results.

6.5.2 Delta Wing Body

(a) Drawing (in cm.).72 (b) Shaded Surface.

Figure 6-11: Delta wing geometry.

A delta wing body, denoted “Model 4” in a 1973 wind tunnel report,72 is shown

in Fig. 6-11 with the triangular surface grid. This case has also been used by other

researchers to evaluate their techniques.38,41,47,78,97 The delta wing body was simu-

lated at Mach 1.68 and 0.0 deg angle of attack. The cylindrical integration surface

has a radius of 3.6 body lengths and is clipped fore (x/l = 4.3) and aft (x/l = 6.6) to

restrict its extent to the location of the wind tunnel data. These clipping locations

are 0.6 body lengths ahead of and 1.7 body lengths behind of the free stream Mach

cone emanating from the nose. The width of the integration surface is clipped to

half a wingspan. Figure 6-12 is the initial (2,800 control volumes) and final adapted
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(4,900,000 control volumes) grids colored with pressure. The background grid exit

plane and symmetry plane intersected with the model surface grid is shown. The

initial grid is extremely coarse. The model is contained in a small number of ini-

tial background grid control volumes. The final adapted grid is well aligned with

the propagated signal. The refinement region coarsens very rapidly away from the

symmetry plane (the integration surface is only a half wingspan wide).

(a) initial grid. (b) output adapted grid.

Figure 6-12: Exit and symmetry planes of initial and output adapted delta wing body
background grids.

The adaptation history of the pressure integral and remaining error estimation is

shown in Fig. 6-13. Error is initially under predicted for this extremely coarse initial

grid. The robustness of the adaptive procedure is illustrated by the use of this coarse

initial grid. The remaining error estimate improves as the shocks are resolved and

propagated to the integration surface on grids smaller than 100,000 control volumes.

This remaining error estimate steadily decreases on grids larger than 100,000 control

volumes as the signature is refined. The grid has grown in size by three orders of

magnitude.

Figure 6-14 is the pressure signatures for the series of grids employed during

adaptation. The pressure signature is not apparent on the initial grid. The signals

grow as a result of adaptation and the over- and under-shoots increase on the final

few grids. The heuristic limiter is employed during adaptation. Figure 6-15 is the
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(b) Pressure integral remaining error.

Figure 6-13: Delta wing body pressure integral and uncertainty convergence at 3.6
body lengths.

final adapted grid pressure signatures for the Venkatakrishnan, heuristic, and Barth-

Jespersen limiters. The signatures of all three limiters are very similar, except near

discontinuities. The Barth-Jespersen limiter eliminates the over- and under-shoots of

the bow and tail shocks. The difference between the Venkatakrishnan and heuristic

limiter signatures is very small.

The number of control volumes is shown as a function of wall clock time for 24

processors in Fig. 6-16. The time require for the cutting procedure was larger portion

of the total iteration time for the last two iterations. This is due to a load imbalance

in the parallel inside/outside determination flood-fill (see Chapter 2 for a description).

Two groups of researchers computed the signature at at 0.3 body lengths and

propagated it to 3.6 body lengths. Cliff and Thomas41 used a structured grid of

1.5 million nodes and an unstructured grid of 177 thousand nodes. Djomehri and

Erickson47 used an adapted grid with 193 thousand nodes. Madson97 used an adaptive

Cartesian full-potential method to 0.1, 0.2, and 0.325 body lengths with a grid of 330

thousand boxes, which was then propagated to 3.6 body lengths. Kandil et al.78

apply a structured Euler code to 0.4 body lengths, which is further propagated to 3.6

body lengths with a full potential code for the delta wing case at CL = 0.08. Cheung,

Edwards, and Lawrence38 applied various methods to examine the same geometry

at 2.7 Mach with signals propagated to 3.1 body lengths. None of the previously
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Figure 6-14: Delta wing body pressure signature adaptation history at 3.6 body
lengths.
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Figure 6-15: Delta wing body final adapted pressure signature at 3.6 body lengths
for various limiters.
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Figure 6-16: Wall time required for delta wing body pressure signature.

reported methods used a single Euler method to a distance of 3.6 body lengths.

6.5.3 Low-Boom Wing Body

(a) Three-view drawing.95 (b) Shaded Surface.

Figure 6-17: Low-boom wing body geometry.

The Straight-Line Segmented Leading Edge (SLSLE) low-boom configuration,

Fig. 6-17, is described by Mack and Kuhn.95,96 These reports provide wind tun-

nel data from two tests, performed at the Langley Research Center Unitary Plan

Wind Tunnel Facility95 and the John Glenn Research Center 10× 10 ft Wind Tunnel

Facility.96 The test condition is Mach 2.0. The model surface geometry for the aircraft
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includes the model and sting incidence that provides the wind tunnel lift coefficient

CL = 0.08309 so the angle of attack is zero.85 The configuration has a finite thickness

trailing edge, which was modeled with a transpiration boundary condition to prevent

a strong inviscid supersonic corner flow expansion. Preliminary body-fitted results for

this configuration87 extended the blunt trailing edge to sharp trailing edge to avoid

the strong supersonic expansion.

The original symmetry plane and cut surface grid colored with pressure is shown

in Fig. 6-18(a). A linear distribution of pressure is shown in each control volume,

resulting in a discontinuous pressure distribution on the surface. The initial back-

ground grid is isotropic. The final adapted symmetry plane and cut surface grid

colored with pressure is shown in Fig. 6-18(b). The initial background grid contains

40,000 control volumes, and the final adapted background grid contains 5,700,000

control volumes. The anisotropy of the adapted grid has been established with the

Mach Hessian, aligning the grid with the shocks.

(a) Initial grid. (b) Final grid.

Figure 6-18: SLSLE surface grid colored with pressure.

The initial, Fig. 6-19(a), and final, Fig. 6-19(b), grid integration surfaces are col-

ored with pressure deviation from free stream. These cylindrical integration surfaces

are used to compute the output, which drives the adaptation. The cylinder has a

radius of 10 body lengths, which is the location of the most distant wind tunnel data

that is available. The cylinder is clipped ahead of 32.6 body lengths aft of the model

101



and behind 41.0 body lengths aft of the model. The cylinder is restricted to its lower

quadrant. The initial integration surface is poorly resolved due to the initial coarse

grid. The pressure signature is not visibly propagated to this initial integration sur-

face. The final adapted grid integration surface is a much better approximation of a

cylinder due to the background grid refinement. The peak signature pressure is larger

at the horizon than the centerline because the model is designed to have a reduced

centerline pressure signature.

(a) Initial grid. (b) Final grid.

Figure 6-19: SLSLE pressure on quarter cylinder integration surface 10 body lengths
below the model.

The adaptation history of the pressure integral and its error estimation is shown

in Fig. 6-20. The requested error tolerance tolΩ is set to half of IΩ at each adaptive

iteration for grids sized less than 2,000,000. Above 2,000,000 control volumes, the

tolΩ is set to IΩ, reducing the rate of grid growth. The goal of increasing tolΩ is to

obtain more resolved results with a more efficiently distributed and aligned grid at the

expense of wall clock time and more adaptation cycles.54 The change in requested

error tolerance is observed as a reduction in grid growth per adaptive iteration in

Fig. 6-20(a). This case shows a less dramatic reduction in the remaining error estimate

over the final few grids than the previous cases, which may be due to the less aggressive

tolΩ = IΩ on the final grids.
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(b) Pressure integral remaining error.

Figure 6-20: SLSLE pressure integral and uncertainty convergence at 10 body lengths.

The pressure signatures at one body length for the series of grids employed during

adaptation is shown in Fig. 6-21. One body length is much closer than the integration

surface, but the signal must be resolved at this location for it to propagate to the

integration surface. The pressure signature is broadly smeared on the initial grid.

The signals grow in amplitude with adaptation and the pressure peaks sharpen on

the final few grids. The heuristic limiter is employed during adaptation.
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Figure 6-21: SLSLE pressure signature adaptation history at 1.0 body lengths.
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The Venkatakrishnan, heuristic, and Barth-Jespersen limiters are applied on the

final grid. The resulting pressure signatures at one body length are shown in Fig. 6-

22. The signatures of all three limiters are very similar, except near discontinuities.

The Barth-Jespersen limiter reduces the over- and under-shoots of the bow and tail

shocks. The difference between the different limiter signatures is greater for this case

than the cone cylinder and delta wing body cases.
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Figure 6-22: SLSLE final adapted pressure signature at 1.0 body lengths for various
limiters.

Centerline pressure signatures are presented in Fig. 6-23 for 1.0, 1.5, 2.0, and 2.5

body lengths below the model. Langley wind tunnel data is available for all four

locations, but the closest Glenn wind tunnel data is available at 2.5 body lengths

below the model. The Langley and Glenn wind tunnel measurements are generally in

good agreement at 2.5 body lengths in Fig. 6-23, but the small differences of the two

measurements gives an indication of the level of uncertainty in the measurements.

The agreement between the wind tunnel and computed signatures is good, except in

the region near x/l = 0.8. Other investigators85,87 also showed a difference between

wind tunnel and computed pressure signatures at x/l = 0.8. Both wind tunnel

measurements agree favorably with each other near x/l = 0.8. The next section

104



investigates model geometry sensitivity in this mismatch region.
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Figure 6-23: SLSLE centerline pressure signatures for various locations below the
model.

Figure 6-24 compares the adapted cut-cell method with the Glenn wind tunnel

measurement at 10 body lengths. This is the same distance as the integration sur-

face. The shock strength increases away from the configuration centerline. The front

portion of the signature is well predicted in both Fig. 6-23 and 6-24. The aft portion

of the computed signal shows the largest difference from the wind tunnel data at

all propagation distances. The discrepancy between the wind tunnel and computed

signatures near x/l = 0.8 decreases for the signatures away from the model center-

line. This is the first published CFD prediction of the off centerline signatures. The

integration surface is an entire quarter cylinder. The grid size may be reduced for

the same or better signature resolution if the output pressure integration surface is

restricted to the wind tunnel data locations.

None of the previously reported simulations of this model provided off centerline

signature comparisons at 10 body lengths. Preliminary body-fitted grid output-based

adaptation results by Lee-Rausch et al.87 targeted the centerline pressure signature
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Figure 6-24: SLSLE pressure signatures for various locations 10 body lengths below
the model.
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at 2.5 body lengths with a final grid of 2 million control volumes. Laflin, Klausmeyer,

and Chaffin85 used a hybrid method with an unstructured extreme-near-field grid of

1.25 million nodes adapted to propagate the signal less than 0.25 body lengths. A

structured grid was employed to propagate the signal at 0.25 body length to the wing

tunnel data at 2.5 body lengths. Carter and Deere32 showed centerline comparisons

at 10 body length, but the grid size was not reported.

6.5.4 Low-Boom Wing Body Signature Sensitivity and Scanned

Geometry

The adjoint solution is used to drive the output-based adaptation process. It can also

be employed to gain intuition for the output sensitivity of the problem. In this section,

the adjoint solution will provide an indication of the sensitivity of the computed signal

to the model geometry. After this sensitivity is presented, an alternative geometry is

evaluated for its effect on the pressure signal.

To investigate the discrepancy in the aft portion of the predicted and measured

signals, the output pressure integration surface is restricted to the region of mismatch

at 1 body length. The final adapted grid from the previous section is reused with

a different integration surface. This restricted region is shown in Fig. 6-25. The

adapted pressure signature with the area of mismatch bracketed is shown in Fig. 6-

25(a). Pressure on the symmetry plane is shown with a black line to illustrate the

integration surface in Fig. 6-25(b).

Figure 6-26(a) is a photograph of the model installed upside down in the Glenn

wind tunnel. The x-momentum adjoint for the restricted integration surface is shown

in Fig. 6-26(b). The x-momentum equation is affected by the model surface slope

through the tangent flow boundary condition. Therefore, this adjoint solution ap-

proximates the linearized sensitivity of the pressure signature to surface slope. The

adjoint solution follows the characteristics of the flow equations backward from the

integration surface to the model surface. The pressure signal is most sensitive to the

model geometry in the red and blue regions, and insensitive in the green region.
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Figure 6-25: Integration surface focus region at 1 body length.

(a) Glenn Wind Tunnel model installation. (b) x-momentum adjoint.

Figure 6-26: SLSLE tunnel installation and adjoint solution (upside down).
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The original geometry used in this study was derived from the “as designed” CAD

model. After the model was built, it was scanned to determine the actual “as built”

geometry of the wind tunnel model. The scanned points were obtained at a sparse set

of locations, and the “as designed” geometry was modified to interpolate the scanned

points, creating the scanned geometry. Figure 6-27 shows the shaded underside of the

scanned geometry. Its inset shows the shaded original geometry and a wire frame of

the scanned surface geometry slightly aft of sting-body juncture. The sting diameter

is larger for the “as built” geometry in the same region that is blue in Fig. 6-26(b).

This indicates that the mismatch region of the signature is sensitive to the geometry

slope in the location of greatest geometry difference.

Figure 6-27: Comparison of the underside of two surface geometries (upside down).

The background grid, adapted to the original “as designed” geometry, is re-cut

with the new “as built” geometry. This highlights the flexibility of the cut-cell

method, the background grid and the surface discretizations are independent. The

reuse of adapted background grids facilitates design by allowing for quick evalua-

tion of perturbed surface geometries. A comparison of the pressure signature of the

original and scanned geometry at one body length with the same background grid is
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shown in Fig. 6-28. The “as built” geometry signal shows the greatest change between

x/l = 0.7 and x/l = 0.9, with an improved prediction of the inflection of the wind

tunnel measured data at x/l = 0.9. The pressure recovery in the aft portion of the

signal is also improved, which may be due to the “as built” wind tunnel sting hav-

ing a conical shape, where the “as designed” has a cylinder. The symmetry planes

of the background grid are shown colored with pressure for the two geometries in

Fig. 6-29. The forward portion of the pressure field is very similar between the two

geometries. The aft pressure field is changed by the differently shaped sting of the

the new geometry.
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Figure 6-28: SLSLE pressure signatures for two geometries 1 body length below the
model.
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(a) Original “as designed” geometry. (b) Scanned “as built” geometry.

Figure 6-29: Symmetry plane pressure and integration surface (black line).
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Chapter 7

Direct Adaptation for Output

Error

In Chapter 6, the adaptation algorithm employed an anisotropic element size request

(metric) formed by combining a scalar output error estimate with the Hessian of a

scalar field (Mach number). This approach has at least two limitations:

• Although the choice of Mach number for the Hessian has produced satisfactory

results in the past, its selection as the Hessian scalar is arbitrary. For example,

the intersection of the metrics obtained from all flow variables33 may be superior.

• The adaptation metric is based on local interpolation error estimates, specifi-

cally, the departure of a linear and quadratic representation of the solution via

a Hessian.127 The Hessian method determines the dominate direction of the

largest next higher order derivative for linear functions. For functions repre-

sented with higher order polynomials than linear, a search for this direction

must be employed.54 Creating a size request in the next higher order derivative

direction requires an interpolation error estimate127 or an a priori estimate of

spatial error convergence.54,147

In this Chapter, an adaptive method that directly controls the output error with-

out an intermediate element size request is introduced. In particular, this proposed

approach removes the limitations of the previous metric-based methods. This new
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method is first introduced through application to the control of interpolation error of

a known analytic function in 1D, 2D, and 3D. Then this method is applied to output

error control in the remainder of the chapter.

7.1 1D Analytic Function Adaptation Demonstra-

tion

The interpolation error is defined as,

e(Ω) =

(∫
Ω

|(ū− u)|2 dΩ

)1/2

, (7.1)

where the exact analytical function u and interpolant ū are defined in the domain

Ω. The ū is defined as a p-order polynomial in each element κ, which completely

discretizes Ω. The u is sampled at each node of ū to form ū in each element. The

elemental interpolation error is

e(κ) =

(∫
κ

|(ū− u)|2 dκ

)1/2

. (7.2)

The total interpolation error for the domain is the norm of the elemental errors,

e(Ω) =

(∑
κ∈Ω

e(κ)2

)1/2

. (7.3)

Following Zienkiewicz and Zhu,157 the goal is to equidistribute this error estimate.

An equal amount of error for each element is

tolκ =

(
(tolΩ)2

N

)1/2

, (7.4)

where tolΩ is the requested total interpolation error and N is the number of elements.

An iteration of an adaptive method that directly controls interpolation error is defined

as:
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• Repeat until all e(κ) ≤ tolκ:

– Evaluate Eq. (7.2) for all elements in the grid; split the element in half

with the largest value of e(κ) if e(κ) > tolκ,

Sp(Xn, Tn, j, e()) ∀ j ∈ Tn : e(κj) > tolκ from largest e(κj) to smallest e(κj).

(7.5)

– Evaluate Eq. (7.2) for all elements in the grid; merge the element with the

smallest value of eκ with a neighbor,

C(Xn, Tn, j, e(), tolκ) ∀ l ∈ Tn : e(κj) < tolκ from smallest e(κj) to largest e(κj).

(7.6)

• Perform two sweeps of node position optimization; each sweep progresses from

the node of the element with the largest e(xi) to the nodes of element with the

smallest e(xi),

Mo(Xn, Tn, i, e()) ∀ i ∈ Xn from largest e(xi) to smallest e(xi). (7.7)

• Exit adaptive procedure if e(Ω) ≤ tolΩ.

A tanh exact function u is defined in the 1D region [0, 1],

u = tanh(50(x− 0.4)). (7.8)

For a metric-based approach, a requested mesh size is established from a scaled in-

terpolation estimate127 commonly used for anisotropic adaptation,

h = min

(
0.5,

1√
100|uxx|

)
. (7.9)

The min function is used to set a maximum element size of 0.5 when uxx approaches

zero. The scaling factor 100 is chosen arbitrarily to produce a reasonably-sized mesh

of 32 elements. A metric-based grid is generated that satisfies this h-request with

114



a curve discretization method.126 This metric-based grid is shown in Fig. 7-1(a).

Element boundaries are marked with a +-symbol. The metric-based grid has a total

interpolation error of e(Ω) = 1.12× 10−3 with 32 p = 1 elements.

The direct adaptive method is invoked with a error tolerance equal to the com-

puted interpolation error of the metric-based grid. The final directly adapted grid is

shown in Fig. 7-1(b). It has 27 p = 1 elements and a total error of e(Ω) = 1.06×10−3,

which is slightly lower than the metric-based grid, 1.12 × 10−3, which has more ele-

ments. The metric-based, Fig. 7-1(a), and direct error control, Fig. 7-1(b), grids are

very similar for this 1D example with p = 1 elements. The error estimate127 is sharp

for this simple 1D case. The clustering of elements in the high-curvature regions of the

tanh function is evident for both methods. The direct adaption method produced a

grid with slightly lower interpolation error and a reduction of the number of elements.

The metric-based approach is repeated for a sequence of α with the specified

h = min

(
0.5,

1√
α|uxx|

)
. (7.10)

The 2-norm of domain interpolation error for this sequence grids is shown as the

squares in Fig. 7-2 as a function of effective h = 1/N . The direct interpolation

adaption method is invoked multiple times with a tolΩ equal to the e(Ω) of the

metric-based approach. The e(Ω) for these directly adapted grids is shown as circles

in Fig. 7-2. Both methods show second-order convergence of the interpolation norm.

The direct approach is more efficient in terms of error for an effective h over the entire

sequence of grids. The direct method has 0.7 the error of the metric approach for the

same number of elements.

To investigate the optimization scheme of direct adaptation, the node movement

operator Mo is omitted from the adaptation cycle. The direct approach with and

without the Mo operator is shown in Fig. 7-3. The direct approach with the Mo

operator is shown with the circle symbols. The direct approach without the Mo

operator is shown with the triangle symbols. The direct approach without the Mo is

less efficient in terms of interpolation error for a given number of elements. Without
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(a) Metric-based, 32 p = 1 elements, e(Ω) = 1.12× 10−3.

(b) Direct error control, 27 p = 1 elements, tolΩ = 1.12× 10−3, e(Ω) =
1.06× 10−3.

Figure 7-1: Grids to control the interpolation error of tanh with p = 1 basis.
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Figure 7-2: Convergence of the interpolation error in the 2-norm for the metric and
direct adaptation method on the tanh function with p = 1 elements.

the Mo operator, the error convergence is less smooth, because the optimization can

only use discrete node locations instead of continuously optimizing these locations.
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Figure 7-3: Convergence of the interpolation error in the 2-norm for the direct adap-
tation method on the tanh function with and without the Mo operator with p = 1
elements.

An advantage of the direct adaption method is that the order of the polynomial

representation can be increased without modifying the adaptation algorithm. The h

specification based on interpolation estimates has been formulated for p = 1 elements.

In 1D, an h can be specified for higher degree polynomials, but this task becomes

more complicated for multiple dimensions.54 The 2-norm of domain interpolation

error for a sequence grids is shown in Fig. 7-4 as a function of effective h = 1/N for
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various p. Triangles are provided with slopes listed on the left of each triangle. These

indicate that the error is converging at an optimal rate of p + 1.
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Figure 7-4: Convergence of the interpolation error in the 2-norm for the direct adap-
tation method on the tanh function with p = 1, 2, 3, 4, 5 elements.

The 1D error adaptation example is repeated for p = 5 elements, Fig. 7-5. Typi-

cally, u is an unknown solution (i.e., of a partial differential equation (PDE)). In this

example, an approximate solution ũ is assumed to be available on a set of discrete

elements κ0, where ũ is a set of p-th order polynomials. Although the exact solution

is available for this case, a ũ will be constructed by fitting the p-order Lagrangian

basis that minimizes (∫
κ0

|ũ− u|2 dκ0

)1/2

(7.11)

independently in each element. The left column of Fig. 7-5 shows this discontinuous

fit for a series of adapted 1D grids.

To estimate the leading order terms of the exact interpolation error, a p+1-order

solution û is reconstructed from ũ on κ0. A C0 p + 1-order function û is formed from

the discontinuous ũ by minimizing

(∫
Ω

|û− ũ|2 dΩ

)1/2

(7.12)

over the entire domain. The formation of û is not local; an inexpensive mass matrix
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ũ on initial grid û sampled by adapted grid

Figure 7-5: Four 1D adaptation cycles to the interpolation error of tanh with p = 5
basis (one cycle per row, approximate solution in left column, reconstructed solution
in right column)
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inversion is computed. A C0 û is required to prevent the adaptation process from

introducing zero width elements at discontinuous function jumps. This û is shown in

the right column of Fig. 7-5. Over- and under-shoots are present in û. The domain

discretization is adapted into elements κ. An elemental interpolation error of the

form,

e(κ) =

(∫
κ

|(ū− û)|2 dκ

)1/2

, (7.13)

is utilized, where ū is a p-th order polynomial representation of the function û in

each element. The function ū is directly interpolated from û. A step of the adaptive

procedure follows;

• Given the current grid, construct a discontinuous p basis ũ with Eq. (7.11) to

simulate the solution to a PDE.

• Reconstruct a continuous p + 1 basis û with a 2-norm fit of ũ over the domain,

Eq. (7.12).

• Exit adaptive procedure if e(Ω) ≤ tolΩ.

• Repeat until all e(κ) ≤ tolκ:

– Evaluate Eq. (7.13) for all elements in the grid; split the element in half

with the largest value of e(κ) if e(κ) > tolκ,

Sp(Xn, Tn, j, e()) ∀ j ∈ Tn : e(κj) > tolκ from largest e(κj) to smallest e(κj).

(7.14)

– Evaluate Eq. (7.13) for all elements in the grid; merge the element with

the smallest value of eκ with a neighbor,

C(Xn, Tn, j, e(), tolκ) ∀ l ∈ Tn : e(κj) < tolκ from smallest e(κj) to largest e(κj).

(7.15)

• Perform two sweeps of node position optimization; each sweep progresses from

the node of the element with the largest e(xi) to the nodes of element with the
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smallest e(xi),

Mo(Xn, Tn, i, e()) ∀ i ∈ Xn from largest e(xi) to smallest e(xi). (7.16)

These steps are repeated to form the adaptive procedure.

Each step of the adaptive procedure is shown as a row in Fig. 7-5. The upper left

subfigure shows ũ on the initial two element grid. Element boundaries are marked

with a + symbol. The inter-element jump is evident for this discontinuous p = 5

Lagrangian basis on the initial grid. The upper right subfigure shows the first adapted

grid interpolating the p = 6 continuous Lagrangian basis û on κ0. The second row of

subfigures exhibits the Gibbs phenomenon near the rise in the tanh function. This

phenomenon is damped in the third and fourth rows as adaptation progresses. The

final grid is coarsened away from x = 0.4 after the Gibbs phenomenon is reduced.

7.2 Direct Control of 2D Scalar Interpolation Er-

ror

In this section, the direct error control approach is extended to 2D by considering

adaptation to minimize the 2-norm of interpolation error of a known function. The di-

rect adaptation consists of four modes. These are element swapping, node movement,

element collapse, and element split.

• Sort the elements from largest eκ to smallest. Perform the swap operation on

all element with e(κ) > tolκ,

Sw(Xn, Tn, j, e()) ∀ j ∈ Tn : e(κj) > tolκ from largest e(κj) to smallest e(κj).

(7.17)

• Perform the node movement operation on all nodes from largest,

e(xi) =

(∑
κ3xi

e(κ)2

V (κ)

)1/2

, (7.18)
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over incident elements to smallest,

Mo(Xn, Tn, i, e) ∀ i ∈ Xn from largest e(xi) to smallest e(xi). (7.19)

The volume (area in 2D) of the elements V (κ) is included in the denominator

to penalize nearly degenerate elements. A simplex search is performed on the

prioritized node list to optimize the inverse volume weighted norm.

• The elements with low error are examined for potential collapse,

C(Xn, Tn, j, e(), tolκ) ∀ j ∈ Tn : e(κj) < tolκ from smallest e(κj) to largest e(κj).

(7.20)

• Sort the elements from largest e(κ) to smallest,

Sp(Xn, Tn, j, e()) ∀ j ∈ Tn : e(κj) > tolκ from largest e(κj) to smallest e(κj).

(7.21)

• The adaptation process repeats until e(Ω) < tolΩ.

An analytic function is defined,

u = (2.0 + sin(10.0x)) exp(−10.0(y − 0.5)2), (7.22)

that mimics the scalar convection diffusion solution in Section 7.4. The function

is shown in Fig. 7-6 for a domain sized [−1.5, 1.5]× [0, 1]. Direct interpolation error

control and metric-based algorithms are employed with an initial grid shown in Fig. 7-

7.

The interpolation error is between p = 2 and p = 1 elements. The target metric

M is set to 10|H| for the entire adaptation process, where the Hessian,

H =

 uxx uxy

uxy uyy

 , (7.23)

122



Figure 7-6: Analytic function, Eq. (7.22).

Figure 7-7: Initial grid of the domain [−1.5, 1.5]× [0, 1].
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is computed analytically. The convergence of the interpolation error in the 2-norm

for the metric and direct adaptation methods is shown in Fig. 7-8. The metric-based

approach employed the algorithm from Section 6.2. The metric M is interpolated

from a grid with quadratic elements that is frozen at the start of each iteration. The

direct approach error tolerance is set to half the initial error norm at each adaptation

cycle. The direct approach is terminated when it reached the error level of the metric-

adapted grid. The direct approach utilizes the reconstructed solution û described in

Section 7.1 to define the interpolation error e(κ).
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Figure 7-8: Convergence of the interpolation error in the 2-norm for the metric and
direct adaptation methods.

The final metric-adapted grid is shown in Fig. 7-9 with the 2-norm interpolation

error for each element. The direct-adapted grid is shown in Fig. 7-10 with the 2-norm

interpolation error for each element. The direct-adapted element error is scattered

with the largest values on the border of the domain and radially around each peak

in the function. The metric-adapted element error is clustered in the saddle-shaped

troughs of the function. The metric-adapted grid is much more regular than the

direct-adapted grid. Both methods produce similar grids at the peaks of the functions,

where the grid is isotropic. The direct-adapted grid has greater anisotropy radiating

from the peaks and along the troughs of the function. The direct approach uses less

triangles than the metric-based approach for the same error norm for the final and
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Figure 7-9: Metric-adapted grid and element interpolation error in 2-norm (color scale
is logarithmic).

Figure 7-10: Direct interpolation error adapted grid and element interpolation error
in 2-norm (color scale is logarithmic).
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intermediate grids.

The metric-based approach is intended to equidistribute an a priori estimate of

the interpolation error in the 2-norm.126 The direct approach may be more efficient

in terms of number of elements because it is employing an actual calculation of the

error. The direct-adapted grids may be less regular because computed error is a more

difficult function to optimize than metric conformity.

The metric-based approach is repeated for a sequence of α with the specified

M = α|H|. (7.24)

The 2-norm of domain interpolation error for this sequence grids is shown as the

squares in Fig. 7-11 as a function of the effective h = 1/
√

N . The e(Ω) for the directly

adapted grids is shown as circles in Fig. 7-11. This is the same sequence of grids shown

in Fig. 7-8, which was produced by halving the initial computed error to set tolΩ for

each cycle. Both methods show second-order convergence of the interpolation norm

in terms of an effective h. The direct approach is more efficient in terms of error

for a given number of elements for the entire sequence of grids. The improvement in

efficiency is a constant factor for this entire sequence.
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Figure 7-11: Convergence of the interpolation error in the 2-norm for the 2D metric
and direct adaptation method.
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The optimization methodology of the direct adaptation method is investigated by

omitting the Mo operator and repeating the adaptive sequence. The interpolation

error as a function of the number of elements and an effective length scale are shown

in Fig. 7-12. The finest grids have a very similar efficiency, but the optimization

with the Mo operator is more efficient for the majority of the coarser grids. There

may be an opportunity to improve the Mo operator because it does not provide an

improvement for the finer grids.
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Figure 7-12: Convergence of the interpolation error in the 2-norm for the direct
adaptation method with and without the Mo operator.

7.3 3D Analytic Function Adaptation Example

A cubic domain is employed in an 3D adaptation example to directly control inter-

polation error. The exact function for this example is

u = x2 + 1000y2 + 10z3, (7.25)

Fig. 7-13, used to define the interpolation error e(κ). Approximate and reconstructed

solutions are not used for this 3D case; the exact function is evaluated. The function

is dominated by the 1000y2 term, as seen in the nearly planar contours. The direct
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Figure 7-13: Exact x2 + 1000y2 + 10z3 function in a cube.

adaptation algorithm described in Section 7.2 is utilized. The initial grid is shown in

Fig. 6-1(a). The grid adapted to tolΩ = 5.0 × 10−1 for p = 1 tetrahedra is shown in

Fig. 7-14(a). The grid adapted to tolΩ = 5.0 × 10−5 for p = 2 tetrahedra is shown

in Fig. 7-14(b). For both cases the final interpolation error norm is approximately

half the requested error norm. An anisotropic metric is not employed for this case;

interpolation error is directly computed and controlled. The anisotropy seen in Fig. 7-

14 is a result of efficiently resolving the anisotropic function. The p = 1 basis adapts

to anisotropically resolve the 1000y2 term. The p = 2 basis resolves the quadratic

term, 1000y2, exactly, so it anisotropically resolves the 10z3 term. The shift in the

primary anisotropic direction is clearly evident as the interpolation error is directly

controlled.

7.4 Direct Control of 2D Scalar Convection-Diffusion

Output Error

The same direct interpolation error control procedure illustrated in this chapter is

used to directly control the output error of a scalar convection-diffusion example.
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(a) Adapted p = 1 to tolΩ = 5.0 × 10−1,
actual eΩ = 2.5× 10−1.

(b) Adapted p = 2 to tolΩ = 5.0 × 10−5,
actual eΩ = 2.0× 10−5.

Figure 7-14: Isometric views of an interpolation error adapted cube.

The steady, 2D convection-diffusion equation,

∇(Uu) =
1

Pe
∇2u + S, (7.26)

is solved for the scalar u, where U is a fixed velocity, Pe is the Péclet number, and S

is a source term. The Project X discontinuous Galerkin code55 is employed to drive

this equation to steady state providing an approximate solution ũ and its discrete

adjoint λ̃. The Project X website, http://acdl.mit.edu/projectx.html, contains

a current list of references to its formulation. The diffusion operator stabilization

parameter is set to ηf = 3, for all faces in the grid.55

The goal of output adaptation for this discontinuous Galerkin case is to control

the error indicator utilized by Fidkowski and Darmofal,54

eκ =
1

2

(
|R(ū, (λ̂− λ̄))|+ |Rλ(ū; (û− ū), λ̄)|

)
, (7.27)

Where ū and λ̄ are the p-order interpolants and û and λ̂ are the p + 1-order recon-

structions. This error term is evaluated on the adapted grid as grid modification
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decisions are made.

The reconstructed solution û employed in output error adaptation is formed by

inverting the mass matrix of an order-p+1 continuous Galerkin basis to fit the order-

p ũ computed by the discontinuous Galerkin method. The mass matrix inversion is

computed with a conjugate gradient iterative scheme (the mass matrix is symmetric

positive definite).

The domain is sized [−1.5, 1.5] × [0, 1]. The left, upper, and lower boundaries of

the domain have Dirichlet boundary conditions with u = e−10.0(y−0.5)2 . The source

term is S = sin(10.0x). The right boundary state is obtained from the interior.

A uniform velocity field is established in the positive x-direction, U = [1, 0]T and

Pe = 1000.0. The output is heat flux integrated over the lower boundary of the

domain. The primal and dual solutions are shown in Fig. 7-15 for a fine grid using

a p = 3 basis. The effect of the source term is manifested as x-oscillations of the

primal solution. This source term does not affect the dual solution. The heat flux

cost function along the lower boundary creates a dual solution with a boundary layer

behavior. The source term creates a primal solution with a very different character

than the dual solution. The convergence of heat flux for a series of uniformly refined

grids is shown in Fig. 7-16 for first-, second-, and third-order polynomials. The truth

value of heat flux, 0.0080361705, is computed using Richardson extrapolation from

the finest two p = 3 outputs, assuming 4th-order spatial convergence.

The grid is adapted to improve the calculation of heat flux. The adaptive grid

heat flux convergence is shown in Fig. 7-17 with the uniformly refined grid heat flux

for p = 1 and an existing metric-based method54 that utilizes BAMG.70 The direct

approach provided equivalent accuracy on the final grid with a sixth of the degrees

of freedom.

The final adapted grids for the direct and metric-based method are shown in

Fig. 7-18. A detail of the lower boundary of the domain is provided in Fig. 7-19

to illustrate the differences in the metric-based and direct approaches. The metric-

based approach only utilizes the anisotropy of the primal problem, which can have

a very different character than the dual solution. The direct approach implicitly
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mixes the anisotropy of the primal and dual solution depending on their impact on

output error. By only considering the primal anisotropy, the metric-based approach

is forced to reduce the size of the inappropriately stretched elements to resolve the

dual solution errors. The metric-based approach produces a more regular grid. The

direct approach places more refinement in the upper half of the domain. The direct

approach is applied to the primal and dual portions of the output error separately in

Appendix B.

Figure 7-15: Scalar convection-diffusion solution and adjoint.

The final metric-adapted grid is shown in Fig. 7-21(a) with the error indicator

Eq. (7.27) for each element. The final direct-adapted grid is shown in Fig. 7-21(b).

An intermediate metric-adapted grid with a comparable number of elements to the

final direct-adapted grid is shown in Fig. 7-21(c). The color scale is logarithmic. The

metric-adapted element error is clustered in the upper and right portions of the do-

main. The direct-adapted grid has the largest error levels in irregular, high aspect

ratio regions in the interior of the domain. The metric-based approach is excessively

refining the lower region of the grid, possibly due to inappropriate element stretch-

ing. These results have similar characteristics to the 2D interpolation error control
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Figure 7-16: Scalar convection-diffusion uniformly refined grid heat flux convergence.
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Figure 7-17: Scalar convection-diffusion adapted grid heat flux convergence.
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Figure 7-18: Final grids adapted by metric-based BAMG and direct method.

Figure 7-19: Detail of final grids adapted by metric-based BAMG and direct method
with scalar solution.
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Figure 7-20: Detail of final grids adapted by metric-based BAMG and direct method
with adjoint solution.

example, Section 7.2. In both examples, the metric-based errors are located in well

defined regions and the direct approach errors are spread in a more erratic pattern.

The direct approach may be hindered by the difficulty of the combined discrete and

continuous optimization problem. An improved optimization methodology may in-

crease the regularity and efficiency of the resultant grid, remaining a topic for future

work.
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(a) Final metric-based BAMG grid (38088 triangles).

(b) Final direct method grid (6101 triangles).

(c) Intermediate metric-based BAMG grid (5177 triangles).

Figure 7-21: Output error estimates.
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Chapter 8

Conclusion

A robust cut-cell determination methodology is presented, which utilizes double-

precision floating point error predicates applied systematically to prevent topology

inconsistencies. The volume defined by a triangular cut surface is subtracted from the

median dual of an anisotropically adapted tetrahedral background grid. An existing

node-based finite-volume flow and adjoint solver are modified to utilize these cut cells.

A differentiable heuristic limiter is utilized to provide reliable iterative convergence

in supersonic flow with shocks. The continuous limiter’s exact linearization enables

stable flow and adjoint convergence.

An output-based error estimation scheme is provided to combine the flow and

adjoint problems into a computable adaptation indicator for use with cut cells. This

single grid remaining error estimation procedure provides reliable guidance for adap-

tion while eliminating the memory barrier of the existing embedded grid approach.

The tetrahedral grid adaptation operators are placed in functional form to enable pre-

cise descriptions of higher-level adaptation algorithms. These higher-level algorithms

include an established metric-based approach and a novel direct approach. The utility

of the anisotropic metric-based approach is demonstrated with sonic boom prediction

because of the need to propagate the relatively weak signals long distances. The

propagated pressure signatures are validated with wind tunnel measurements. The

automation and robustness of the output-adaptive technique is illustrated by the use

of extremely coarse initial grids that were created without knowledge of the final
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grid resolution requirements. A domain decomposed parallel adaptation scheme is

described to permit the creation of large grids.

The direct adaptation approach allows for a concise expression for the error-

estimate, which is directly evaluated and controlled via the grid operators. The

new direct method is able to implicitly conform to the anisotropy of the dual solution

as well as the primal solution. The anisotropies of the primal and dual solutions are

implicitly blended depending on their relative importance to computing a specified

output function. The direct approach provides a natural extension to higher-order

solution schemes and systems of equations. A variety of results show that the direct

approach controls the error in fewer degrees of freedom than metric-based adaptation,

but produces a less regular grid.

8.1 Contributions

• The first 3D finite-volume cut-cell method that utilizes the median dual of an

anisotropically adapted tetrahedral background grid

• A reliable remaining output error estimation procedure for adaptation that

does not use an expensive embedded grid, which requires a prohibitive amount

of memory for large 3D problems

• Dramatic increase in robustness for anisotropic 3D output-based adaptation is

demonstrated for sonic boom applications

• General anisotropic adaptation scheme to directly control interpolation error

and output-based error estimates without an intervening metric specification

that is directly applicable to higher-order solutions

8.2 Future Work

Output-adaptive cut-cell simulation of 3D viscous flows. Utilize the increase

in robustness and automation of anisotropically adaptive 3D cut-cell simula-
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tions for turbulent calculations. Cut cells with Cartesian background grids

have been applied to laminar flows,42 or turbulent flows with the aid of hybrid

grids,46,82 integral boundary methods,3 or wall functions.77 Utilizing the gen-

eral anisotropy of tetrahedral background grids may allow for turbulent cut-cell

calculations without the approximations of wall functions, hybrid grids, or inte-

gral boundary methods. Fidkowski and Darmofal54 have demonstrated output-

adaptive cut-cell simulations for 2D laminar and scalar convection-diffusion

equations with a discontinuous Galerkin method. Venditti and Darmofal147

have demonstrated output-adaptive 2D turbulent simulations with a body-fitted

finite-volume method. Lee-Rausch et al.,87 Balasubramanian,15 and Kim and

Nakahashi83 performed output-adaptive 3D turbulent simulations, but limita-

tions in grid mechanics have prevented its routine use for typical problems.

The use of floating-point grid validity checks for adaptive tetrahedral grids may

need to be reconsidered as the required element aspect ratios increase and cell

volumes decrease.

Design sensitivities and optimization with output-based adaptation. The ad-

joint solution is computed during the output-based adaptation process to form

the adaptation indicator. The adjoint solution can be utilized to form adjoint-

based sensitivities for gradient-based design optimization.115 Nemec and Aftosmis110,111

have demonstrated design sensitivities and optimization for bodies in inviscid

flows with cut cells and Cartesian background grids. The general anisotropy

of tetrahedral background grids allows this technique to be efficiently applied

to strongly anisotropic problems, such as sonic boom shaping. In the current

formulation, there is discontinuous change once the control volume is infinites-

imally cut, see Section 3.3. This discontinuous behavior may cause difficulties

that must be addressed for shape sensitivities and design.

Improve metric-based implementation to reduce execution time. The imple-

mentation of the output-based adaptation framework has potential for reduced

execution time. The current cut cell determination algorithm suffers from a
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load imbalance during parallel execution. As mentioned in Chapter 2, an im-

proved partitioning heuristic may improve parallel efficiency and reduce execu-

tion time. An other potential improvement could come from using the primal

elements (tetrahedra) as the control volumes, because they are composed fewer

triangular faces than the median duals. The adaptation segments of the timing

presented in Section 6.5 are a large portion of the entire execution time. Any

improvements to reduce adaptation time will significantly reduce the total ex-

ecution time. Reducing the analysis time remains a topic for future work and

would be critical to affordable design optimization.

Improving grid optimization to directly control output error. The direct con-

trol of output error grid adaptation approach has shown a benefit in reduced de-

grees of freedom for a comparable accuracy to existing metric-based approaches.

The grids produced by this new technique lack the regularity of the metric-

based approach. This may be due to output error estimates being a more

difficult objective function to optimize than metric conformity. Improving the

grid optimization algorithm for direct control of output error may produce more

regular and efficient grids. The technique must also be extended to 3D cut-cells

to utilize the same increase in robustness shown by the metric-based cut-cell

simulations of complex geometries.
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Appendix A

Finite-Volume Scalar Convection

The 2D steady-state scalar r convection equation is

∂f

∂x
+

∂g

∂y
= 0 (A.1)

where the fluxes are defined as a function of the two components of velocity u and v

f = ru (A.2)

and

g = rv. (A.3)

The velocity field (u, v) is constant with u = 1 and v = 0 for this analysis. The zero

v velocity makes the problem effectively 1D. The geometry of the domain is shown in

Fig. A-1. There is no flux in the y-direction, because v = 0. The state r0 is specified

H

y
x

L

r
0

v=0
u=1

Figure A-1: Scalar convection problem geometry.

140



at the left inflow boundary. The scalar output functional J is defined as the integral

of r over the domain

J =

∫
Ω

r dΩ. (A.4)

The steady-state equation and solution is

∂f

∂x
=

∂(ru)

∂x
= u

∂r

∂x
= 0 ⇒ r(x) = r0, (A.5)

which is determined by the inflow boundary state r0. The adjoint equation for the

cost function in Equation (A.4) is

−u
∂λ

∂x
= 1. (A.6)

The characteristic of the adjoint problem travels in the opposite direction as the

primal problem. The adjoint solution is determined by the downstream boundary

condition where λ(L) = 0,

λ(x) =
L− x

u
. (A.7)

A.1 Discrete Solution

The domain in Fig. A-1 is subdivided into n−2 cells of uniform width ∆x = L/(n−1)

and two boundary cells of width ∆x/2. The discretized domain is shown in Fig. A-2.

This domain has been divided into 8 cells. The solution storage location of the cells

are marked with + symbols. The cell averaged value of each cell i solution is ri. The

state si is used to construct upwind flux fi at the right face of cell i.

The residual in each cell is

Ri =

 f1H − rouH : i = 1;

fiH − fi−1H : i > 1

(A.8)

where r0 is the specified value of r at the inflow boundary. The fluxes fi are con-
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ri

si

if
∆x

H

Figure A-2: Convection problem uniformly discretized into 8 cells.

structed from the reconstructed state si on the upwind side of the cell interface

fi = siu. (A.9)

The upwind cell centered value of ri is combined with a reconstructed gradient ∇r̃i

to construct the extrapolated state si

si = ri +
∆x

2
∇r̃i. (A.10)

The gradients ∇r̃i, defined at at the cell centroids, are reconstructed by a fitting

procedure of cell averaged data. These gradients are chosen to be the best point-wise

fit of the reconstructed solution with the cell averaged solution at the cell centroids

of neighboring cells. The point-wise error in this fit at cell i with neighbor j is

eji = (rj − ri)− (xj − xi)∇r̃i. (A.11)

The unknowns∇r̃i are chosen to minimize the squared error norm for the m neighbors
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of cell i

[
(x1 − xi) · · · (xm − xi)

]
(x1 − xi)

...

(xm − xi)

∇r̃i =
[

(x1 − xi) · · · (xm − xi)
]

(r1 − ri)
...

(rm − ri)


(A.12)

∇r̃i =

∑m
j=1(xj − xi)(rj − ri)∑m

j=1(xj − xi)2
. (A.13)

The special case of two adjacent neighbors of a uniform mesh of spacing ∆x becomes

∇r̃i =
ri+1 − ri−1

2∆x
, (A.14)

the uniform grid central difference gradient approximation. In the cells adjacent to

the boundaries, this reconstruction degrades to a one-sided finite difference approxi-

mation.

∇r̃1 =
r2 − r1

∆x
(A.15)

∇r̃n =
rn − rn−1

∆x
. (A.16)

Figure A-3 shows the primal and dual solutions for an eight cell grid with the first

cell shrunk to 0.1 and 1.0 × 10−6 the width of the original. The first cell is reduced

in size to model a small boundary cell. The discrete primal solution is exact, but a

small, bounded error is created in interior of the dual solution.

To investigate large discrete adjoint values in small cut cells, a small cell is intro-

duced in between two uniform cells, see Fig. A-4. Cell centroids are shown with +

symbols. The cell numbering convention is shown in Fig. A-5. The upwind flux at

each face is denoted as f#. The fluxes are

f1 = H(r0),

f2 = h(r1 + (H − 0.5h)∇r1),

f3 = (H − h)(r1 + H∇r1),

f4 = h(r3 + 0.5h∇r3), and

f5 = Hr2.

(A.17)
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Figure A-3: Discrete adjoint solution for 8 cells.
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Figure A-4: Geometry of a small cell near two large neighbors.
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Figure A-5: Cell and upwind flux numbering convention.
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The reconstructed gradients are

∇r1 = 2(r2−r1)+(r3−r1)
5H

,

∇r2 = −2(r1−r2)−(r3−r2)
5H

, and

∇r3 = −(r1−r3)+(r2−r3)
2H

.

(A.18)

The modified reconstructed gradients (small cell is excluded from larger cell) are

∇r1 = (r2−r1)
2H

,

∇r2 = −(r1−r2)
2H

, and

∇r3 = −(r1−r3)+(r2−r3)
2H

.

(A.19)

The cost function for the adjoint is the integral of r in the domain.

i1 = H2(r1 + 0.5∇r1),

i2 = H2(r2 − 0.5∇r2), and

i3 = h2r3.

(A.20)

The error in the discrete adjoint solution, as compared with the analytic solution,

is plotted in Fig. A-6. The error in the small central cell with the original gradient

reconstruction stencil grows without bound. The error is reduced and stays constant

with the modified gradient reconstruction system.
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Appendix B

Direct Control of 2D Scalar

Convection-Diffusion Output Error

Components

In Section 7.4, a direct output error control and metric-based adaption schemes are

applied to 2D convection-diffusion. The grid resulting from the direct output error

control approach was less regular than the metric-based approach. To investigate

the connection between the output adaptation error function, Eq. (7.27), and the

resulting grid, this equation is split into two components,

eprimal = |R(ū, (λ̂− λ̄))|, (B.1)

edual = |Rλ(ū; (û− ū), λ̄)|. (B.2)

The separated error functional only includes a primal or a dual residual term instead

of the combined error functional of Eq. (7.27). The direct output error control grid

adaptation process is run individually for eprimal and edual. The convergence of the heat

flux error for the primal, Fig. B-1(a), and the dual, Fig. B-1(b), terms are inferior to

the combined output error, Fig. 7-17. Neither separated error functional out performs

the metric-based approach and they are very close to the uniformly refined grid error
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(b) edual optimization function.

Figure B-1: Scalar convection-diffusion adapted grid heat flux convergence.

The final adapted grids using eprimal and edual optimization functions are shown in

Fig. B-2. The eprimal adapted grid, Fig. B-2(a), is strongly anisotropic and clustered

to resolve the adjoint solution boundary layer seen in Fig. 7-15. The edual adapted

grid, Fig. B-2(b), is resolving the primal solution near the lower boundary.
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(a) eprimal optimization function

(b) edual optimization function

Figure B-2: Final grids adapted by the direct method.
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(a) eprimal optimization function

(b) edual optimization function

Figure B-3: Detail of final grids adapted by the direct method with primal solution.

151



(a) eprimal optimization function

(b) edual optimization function

Figure B-4: Detail of final grids adapted by the direct method with adjoint solution.
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