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Abstract 
 

Interpretation accuracy of current applications dependent on interpretation of 
handwritten "digital ink" can be improved by providing contextual information about 
an ink sample’s expected type.  This expected type, however, has to be known or 
provided a priori, and poses several challenges if unknown or ambiguous.  We have 
developed a novel approach that uses a classic machine learning technique to predict 
this expected type from an ink sample.  By extracting many relevant features from 
the ink, and performing generic dimensionality reduction, we can obtain a minimum 
prediction accuracy of 89% for experiments involving up to five different expected 
types.  With this approach, we can create a “dynamic dispatch interpreter” by biasing 
interpretation differently according to the predicted expected types of the ink 
samples.  When evaluated in the domain of introductory computer science, our 
interpreter achieves high interpretation accuracy (87%), an improvement from 
Microsoft’s default interpreter (62%), and comparable with other previous 
interpreters (87-89%), which, unlike ours, require additional expected type 
information for each ink sample.   

 

Thesis Supervisor: Kimberle Koile, Ph.D. 
Title:            Research Scientist



 4 



 5 

 

Acknowledgements 
 

I would like to thank my thesis advisor, Kimberle Koile, without whom this 

research would not have been possible.  She has provided me funding over the years and 

has guided me in tablet PCs and ink interpretation.  She is willing to listen to my overly 

wild and ambitious ideas, and encourages me to continuously seek improvement.  She 

has been extremely helpful with editing and improving my papers and this thesis, helping 

me articulate my ideas clearly and succinctly.  

I would like to thank professors Martin Rinard, Sivan Toledo, Michael Ernst, and 

Saman Amarasinghe. They were the lecturers with whom I have had the privilege to 

teach the last two terms of 6.170 Laboratory in Software Engineering offered at MIT.  

6.170 was my favorite class taken at MIT, and it was an honor to be a TA (and 

subsequently head TA) for the class.   I have learned a lot from them through this 

experience, and am grateful for the opportunity and leadership. 

I would like to thank the group members of Classroom Learning Partner: Adam 

Rogal, for starting out in the group with me from the very beginning and always being a 

helping hand; Capen Low, David Chen, and Curtis Liu, without whom I could not have 

done much many improvements to the new version of CLP.  I would also like to thank 

some past members of the group: Michel Rbeiz, for first introducing me to the group, and 

whose work I have continued; and Sanjukta Pal, Kevin Chevalier and Kenneth Wu, for 

the days and nights spent in the lab together developing and debugging CLP. 

I would like to thank Sung Kim from the Program Analysis Group and Tom 

Ouyang from the Sketch Understanding Group.  Sung, whom I worked with briefly on 

automatic bug detection, introduced me to machine learning and feature extraction, 

allowing me to come up with original idea for the work in my thesis. Tom created the 

chemical diagram interpreter, and is collaborating with my group for joint deployment. 

I would like to thank the many members of Asian Baptist Student Koinonia, my 

Christian fellowship group, for being here with me at MIT these four years. Special 

thanks go to members of my class: Brandon Yoshimoto (also my wonderful roommate), 

Jill Rowehl, Tiffany Lee, Tami Shinkawa, Sophia Lee and Diana Wang, for weathering 



 6 

thick and thin with me year after year over Christian Festival, the bible studies and the 

IM games; and to staff members Austin Kim, Donald Choi and David Um, for their 

guidance, support, food and welcoming me to their homes. 

I would like to thank my parents, Ming Chee Tay and Lai Ngoh Lam, and family 

in Singapore, for giving me the opportunities to learn and excel in school, and allowing 

me to go overseas for my studies without a scholarship.  I would also like to thank my 

twin brother, Kah Keng, for the friendly competition and the many collaborative projects 

and ventures we have done together. 

I would like to thank the Siebel Scholars Foundation, Microsoft iCampus, the 

Office of Educational Innovation and Technology for their financial support in my 

graduate education and research. 

I would especially like to thank Serene Lee, my fiancée (and wife, in a month), 

for accepting me for what I am and enduring the time I have spent at work and on 

research.  Thank you for the support, love and encouragement throughout these few years 

at MIT.   



 7 

 

Contents 

LIST OF FIGURES ........................................................................................................ 11 

LIST OF TABLES .......................................................................................................... 15 

1  INTRODUCTION....................................................................................................... 17 

1.1 MOTIVATION............................................................................................................ 17 

1.2 OVERVIEW ............................................................................................................... 18 

1.3 THESIS OUTLINE ...................................................................................................... 20 

2  BACKGROUND ......................................................................................................... 21 

2.1 DOMAIN-SPECIALIZED INTERPRETERS ..................................................................... 21 

2.2 BIASING WITH EXPECTED TYPE INFORMATION........................................................ 23 

3  APPROACH................................................................................................................ 25 

3.1 DYNAMIC INK STROKES ........................................................................................... 25 

3.2 THE INTERPRETATION FRAMEWORK ........................................................................ 26 

3.3 REPRESENTATIVE EXAMPLES ................................................................................... 27 

3.4 IMPROVING INK INTERPRETATION ACCURACY ......................................................... 27 

3.5 IMPLEMENTATION .................................................................................................... 29 

3.6 USER STUDY ............................................................................................................ 31 

4  INK TYPE PREDICTION......................................................................................... 32 

4.1 MOTIVATION............................................................................................................ 32 

4.2 APPROACH ............................................................................................................... 33 

4.3 THE INTUITION ......................................................................................................... 34 

4.4 FEATURES TO EXTRACT ........................................................................................... 37 

4.5 DIMENSIONALITY REDUCTION ................................................................................. 38 



 8 

4.6 MACHINE LEARNING ALGORITHMS.......................................................................... 40 

4.7 EVALUATION............................................................................................................ 40 

4.7.1 K-fold Cross Validation Results .................................................................. 43 

4.7.2 Leave-One-Out Cross Validation Results.................................................... 44 

4.7.3 Evaluation by Number of Classes................................................................ 45 

4.7.4 Evaluation of Feature Importance................................................................ 48 

4.7.5 Discussion .................................................................................................... 49 

5  INTERPRETATION USING DYNAMIC DISPATCH.......................................... 51 

5.1 APPROACH ............................................................................................................... 51 

5.2 THE DYNAMIC DISPATCH INTERPRETER (DDI) ........................................................ 52 

5.3 NESTED DYNAMIC DISPATCH INTERPRETERS (NDDI) ............................................. 53 

5.4 CROSS VALIDATION INTERPRETERS (CVI)............................................................... 55 

5.5 EVALUATION............................................................................................................ 57 

5.5.1 Base Type Results........................................................................................ 57 

5.5.2 Discussion .................................................................................................... 59 

6 RELATED WORK...................................................................................................... 61 

6.1 GENERAL APPROACHES ........................................................................................... 61 

6.2 CONFIDENCE MEASURE-BASED APPROACHES.......................................................... 62 

7 CONCLUSION ............................................................................................................ 63 

7.1 FUTURE WORK......................................................................................................... 63 

7.1.1 Creating a Public Interpreter API ................................................................ 63 

7.1.2 Better Semantic Representation for Aggregation ........................................ 64 

7.1.3 Improving Interpretation Accuracy.............................................................. 65 

7.2 CONTRIBUTIONS....................................................................................................... 65 

REFERENCES................................................................................................................ 67 

APPENDIX A - REPRESENTATIVE EXAMPLES................................................... 71 

APPENDIX B - REPRESENTATION RESULTS....................................................... 82 

APPENDIX C - FEATURES CONSIDERED.............................................................. 85 



 9 

APPENDIX D - FEATURE IMPORTANCE............................................................... 87 

APPENDIX E - INK TYPE PREDICTION CONFUSION MATRIX ...................... 91 

 



 10 



 11 

List of Figures 

Figure 1-1. Our hypothesis: We expect an interpreter that predicts expected ink sample 

type and dispatches to appropriate specialized interpreters to be close in accuracy 

to an interpreter with user-supplied a priori knowledge of expected type. This 

new interpreter also will be far more accurate than a default interpreter that uses 

no ink sample type information. ........................................................................... 20 

Figure 2-1. (a) Hand-drawn box-and-pointer diagram, (b) CLP’s interpretation 

[Chevalier, 2007]  (c) Hand-drawn chemical structure, (d) Interpretation re-

rendered [Ouyang & Davis, 2007]........................................................................ 22 

Figure 3-1. The common interpreter interface that we use within CLP and for our 

experiments. .......................................................................................................... 26 

Figure 3-2. Representative examples selected from the field of (a) introductory computer 

science; (b) introductory chemistry, for training and evaluating our interpretation 

system. .................................................................................................................. 27 

Figure 3-3. A simplified ink database schematic used in our system. .............................. 29 

Figure 4-1. Sample ink type prediction experiments that we ran are shown  together with 

their expected type classes. ................................................................................... 35 

Figure 4-2. Examples of features F1 through F17 are illustrated in this diagram. ........... 37 

Figure 4-3. This visualization highlights important extracted features.  We display 

extracted features, with many similar ones grouped together for simplicity, on the 

horizontal axis, and list different experiments on the vertical axis.  The colored 

grid shows a combination of 3 feature selection algorithms (SVM weight, 

GainRatio and InfoGain) each as individual RGB color channels, with bright 

colors representing the most important features and dark colors representing the 

least.  For the features grouped together, we used average value of the weight 



 12 

obtained for all features in the group. (A monochrome breakdown is in Appendix 

D for non-color printing.) ..................................................................................... 39 

Figure 4-4. Prediction accuracy improves with dimensionality reduction algorithms (such 

as InfoGain, etc.) over the baseline of using all features with SMO for both (a) K-

fold; and (b) leave-one-out cross validation. ........................................................ 41 

 Figure 4-5. These graphs show how prediction accuracy varies for three different 

machine learning algorithms (SMO, J48 and Naïve Bayes) using SVM-Weight as 

a feature selector for both (a) K-fold; and (b) leave-one-out cross validation...... 42 

Figure 4-6. Mean prediction accuracy grouped by number of types using (a) K-fold; and  

(b) leave-one-out cross validation.  The mean accuracies decrease with more 

types. ..................................................................................................................... 47 

Figure 5-1. A simple schematic demonstrating the Dynamic Dispatch Interpreter at work.

............................................................................................................................... 52 

Figure 5-2. This schematic shows how Nested Dynamic Dispatch Interpreters work with 

one level of nesting. .............................................................................................. 54 

Figure 5-3. A schematic of a simple Cross Validation Interpreter with K-folds is shown.

............................................................................................................................... 55 

Figure 5-4. A schematic of a simple Nested Cross Validation Interpreter with K-folds is 

shown. ................................................................................................................... 56 

Figure 5-5. This graph shows overall interpretation accuracy: the INKv3 interpreter was 

provided with contextual type information and performed the best at 89% for all 

samples; our interpreter NCVI-10 achieved a comparable 87% without such 

information, better than Microsoft’s interpreter at 62%. ...................................... 59 

Figure 7-1. A schematic showing a new architecture to support integration into our 

dynamic dispatch interpreter (DDI) of independently developed ink interpreters.

............................................................................................................................... 64 

Figure D-1. This visualization summarizes the work of the SVM Weight feature selection 

algorithm, highlighting the important features among all features that we 

extracted with darker cells. ................................................................................... 88 



 13 

Figure D-2. This visualization summarizes the work of the GainRatio feature selection 

algorithm, highlighting the important features among all features that we 

extracted with darker cells. ................................................................................... 89 

Figure D-3. This visualization summarizes the work of the InfoGain feature selection 

algorithm, highlighting the important features among all features that we 

extracted with darker cells. ................................................................................... 90 



 14 



 15 

 

List of Tables 

Table 2.1: Interpretation results for four ink samples of sequences and overall accuracies

............................................................................................................................... 23 

Table 2.2: Interpretation accuracy results showing improvement by number biasing ..... 24 

Table 4.1: The ink type prediction experiments we conducted ........................................ 36 

Table 4.2: The features we considered ............................................................................. 38 

Table 4.3: Expected type prediction accuracy in percent for different groups of 

experiment classes using 10-fold cross validation with SMO. ............................. 43 

Table 4.4: Expected type prediction accuracy in percent for different groups of 

experiment classes using leave-one-out cross validation with SMO.................... 44 

Table 4.5: Peak prediction accuracy ranked by number of types ..................................... 46 

Table 4.6: Features extracted and their effectiveness in distinguishing types .................. 48 

Table 5.1: Base type results in percent for our different interpreters on the same data set 

grouped by the 5 base types for the introductory computer science domain........ 58 

Table A.1: List of 181 representative examples sorted by their Representative ID (Rep 

ID) number, showing the example string/diagram shown to students, and the 

expected semantic representation (simplified from XML form) .......................... 71 

Table A.2: List of 181 representative examples sorted by their Representative ID (Rep 

ID) number, showing the expected type and sample student (the author’s) ink... 77 

Table B.1: Representation results for our different interpreters on the same data set 

grouped by the different representative examples in the field of introductory 

computer science................................................................................................... 82 

Table C.1: Features we considered, their descriptions and our hypotheses...................... 85 



 16 

Table E.1: Confusion matrix of our classification over 8 expected type classes for all 

1958 samples using the SMO classifier and InfoGain feature selection algorithm.  

Precision (P), recall (R) and F-measure (F) values are also shown for each class.

............................................................................................................................... 91 



 17 

 

Chapter 1  

Introduction 

Ink interpretation systems play a critical role in enabling more “intelligent” 

computers that are capable of understanding what a user has written, beyond mere digital 

dots on a plane.  Such interpretation systems need to be highly accurate [Giudice & 

Mottershead, 1999], [LaLomia, 1994] in parsing a variety of handwritten text and 

diagrams into a digitized semantic representation in order to be useful for higher-order 

processing by other applications. Digital ink interpretation has grown increasingly 

important as tablet PCs become more pervasive in today’s society, especially in 

classrooms. Tablet PCs offer users the ability to transcribe notes digitally in the users' 

own handwriting, using a stylus and screen as easily and naturally as pen and paper. 

This thesis reports a new method that uses ink type prediction and dynamic 

dispatch as the basis for an ink interpretation system capable of high ink interpretation 

accuracy over multiple domains.  Our novel approach uses machine learning techniques 

to extract features from ink strokes to predict the type of the ink, thus identifying its 

domain, then dispatches interpretation to well-suited domain-specialized interpreters 

based on the particular type.  This approach is able to achieve higher overall 

interpretation accuracy than existing systems, and allows scaling of our interpretation 

system, something currently not possible with domain-specialized interpreters. 

1.1 Motivation  

There are many domain-specialized interpreters that are capable of producing 

highly accurate interpretations, but only of ink samples within their own domains.  These 

domain-specialized interpreters are developed concurrently by many researchers and are 
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difficult to integrate into systems that could benefit from using them.  Ink interpretation 

systems are thus often plagued with problems of poor accuracy because they are limited 

in scope or cannot accurately identify the best interpreter to choose from a set of 

interpreters.  Our goal, which resulted in the work described in this thesis, was to deploy 

an ink interpretation system capable of high interpretation accuracy over several domains.  

The scenario is this one:  We have a digital ink sample that belongs to a particular 

domain, e.g., Scheme expressions, but we do not know, or want to have to specify a 

priori, which of the interpreters in our system should be used to interpret the ink.  Some 

approaches choose upfront the interpreter to use, with information provided externally by 

a user, for example. Others choose the best interpreter based on the highest ranked 

confidence measure.  Our novel approach uses machine learning, on ink stroke features 

of various possible ink types, to predict the correct interpreter for a particular ink sample, 

before dispatching interpretation calls to that interpreter. 

1.2 Overview 

We have created a common Interpreter framework to support a variety of 

interpreters for different domains.  To evaluate our novel idea, we create an ink type 

prediction module that uses machine learning to differentiate between different ink 

answer types and to predict the most suitable type based on extracted features from the 

ink.  We then build upon the Interpreter framework by creating dynamic dispatch 

interpreters that utilize information from ink type prediction to improve interpretation 

accuracy.  This entire interpretation system is writer-independent, and operates 

synchronously on a completed ink sample, making full use of the rich dynamic features 

found in digital ink.   

We tested our prototype in an application developed by our group, which depends 

on highly accurate ink interpretation.  The application, called Classroom Learning Partner 

(CLP), consists of a network of tablet PCs that run software for posing in-class questions 

to students, interpreting their handwritten answers, and aggregating the answers into 

equivalence classes. We have shown that such systems hold great promise for improving 

student interaction and learning in classrooms [Koile & Singer, 2006], [Koile et al, 

2007a], [Koile et al, 2007b].  For ink interpretation systems to be used in the classroom, 



 19 

however, high ink interpretation accuracy rates are necessary for instructor and student 

confidence in the system. A limitation of the original Microsoft interpreter, used in our 

first prototype of CLP, was its inability to accurately interpret ink samples beyond the 

domain for which it was trained—cursive English text.  Early work on CLP [Rbeiz, 2006] 

improved interpretation accuracy for the domain of introductory computer science by 

introducing instructor-specified expected types for answers to questions; different 

interpretation methods were used for each type.  This improvement, however, was not 

easily scalable to include more domain-specialized interpretation, e.g., chemical 

diagrams.   

Using CLP as our test environment, we conducted experiments in which students 

were instructed to write on the tablet PCs as they normally would write on paper, without 

needing to follow any special gesture-based recognition schemes such as Graffiti for the 

original Palm Pilot [Rubine, 1991].  Such gesture-based schemes have a high learning 

curve which we believe would affect a student’s ability to write as he or she normally 

would, impeding regular writing and note-taking. We required no individualized 

handwriting training in our experiments, as the nature of coursework presents very little 

time for students to train handwriting recognition systems to learn individual 

handwriting.  Students may choose to drop the class, wasting early effort, or the 

instructor may come up with new material after training is done.  No real-time feedback 

of the interpretation result was provided, allowing students to write freely without 

becoming distracted by worrying about inaccurate interpretation.   With sufficiently high 

ink interpretation rates, a few interpretation errors can be tolerated by the instructor, who 

is the only one able to view these errors. 

The hypothesis investigated in this thesis is the following: Ink interpretation 

accuracy of an interpreter that dynamically dispatches to a specialized interpreter based 

on a predicted ink sample type will be close in accuracy to an interpreter that requires a 

priori expected type information.  This hypothesis is illustrated visually in Figure 1-1.  In 

addition, we expect our proposed ink interpretation method to alleviate limitations of our 

current interpreter that depends on a priori type information, namely, low accuracy when 

expected types are unknown, or when ink samples representing student answers are 

incorrect and of an unexpected type. 
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Figure 1-1. Our hypothesis: We expect an interpreter that predicts expected ink sample type and 

dispatches to appropriate specialized interpreters to be close in accuracy to an interpreter with 

user-supplied a priori knowledge of expected type. This new interpreter also will be far more 

accurate than a default interpreter that uses no ink sample type information. 

1.3 Thesis Outline 

We describe background on domain-specialized interpreters and biasing with 

expected types in Chapter 2.  Chapter 3 describes our experimental approach and 

implementation.  We go into details and results of ink type prediction in Chapter 4, and 

dynamic dispatch interpretation in Chapter 5.  Chapter 6 describes related work in the 

field of ink interpretation.  Finally, Chapter 7 summarizes our main contributions and 

describes future work beyond the scope of this thesis. 

 

CLP  

Interpreter 
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Type 
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 Ink 

Result 
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Chapter 2  

Background 

 In this chapter we describe relevant background on handwriting recognition so 

that our work can be placed in the context of current and past research.  We discuss 

example domain-specialized interpreters and how biasing interpreters improves 

interpretation accuracy.  Related work and alternative approaches to handwriting 

recognition are discussed in Chapter 6. 

2.1 Domain-Specialized Interpreters 

There has been much recent interest in advanced sketch interpretation systems.  

Many of these systems have demonstrated that domain knowledge can be used to 

overcome ambiguities and hence improve interpretation accuracy (e.g., [Sezgin & Davis, 

2005], [Calhoun et al, 2002], [Shilman et al, 2002, 2004], [Gennari et al, 2005], [Kara & 

Stahovich, 2004]). 

 Research on domain-specialized interpreters for CLP has been conducted, and 

these interpreters can recognize a variety of ink types with varying degrees of success: 

boolean, numbers, sequences, Scheme expressions, box-and-pointer diagrams, and 

diagram markings. [Rbeiz, 2006] [Chevalier, 2007] [Wu, 2008] [Koile et al, 2007b]  

Figures 2-1 (a) and (b) show, respectively, an example of a box-and-pointer diagram and 

its CLP interpretation. 
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Figure 2-1. (a) Hand-drawn box-and-pointer diagram, (b) CLP’s interpretation [Chevalier, 2007]  

(c) Hand-drawn chemical structure, (d) Interpretation re-rendered [Ouyang & Davis, 2007] 

 

A prototype chemical structure interpretation system also has been developed by 

T. Ouyang and Prof. R. Davis of the Sketch Understanding Group at MIT [Ouyang & 

Davis, 2007]; it is capable of interpreting hand-drawn diagrams of organic chemistry 

compounds, using the graphical vocabulary and drawing conventions routinely employed 

by chemists.  Figures 2-1 (c) and (d) show a chemical structure and its rendered 

interpretation in that system. 

 With a restricted domain, researchers can make assumptions about the possible 

ink inputs and obtain higher interpretation accuracy as a result. Table 2.1, for example, 

shows how we improved sequence interpretation for CLP over several iterations of the 

ink segmentation and interpretation algorithm, which we call INK. The latest version of 

our sequence interpreter uses a mixture of sequence subtypes (number, single character or 

string), and several flags (e.g., whether commas, brackets, or ampersands are present) as 

heuristics for interpreting the ink more accurately than ordinary English interpreters.  

This higher accuracy, however, is conditioned on obtaining a priori information about the 

expected domain (or equivalently, expected type and expected flags) of the ink input.   

 

(a) (b) 

(c) (d) 
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Table 2.1: Interpretation results for four ink samples of sequences and overall accuracies 

 

2.2 Biasing With Expected Type Information 

Recognition systems on handwritten mailing addresses have specific templates 

and restricted dictionaries to interpret state abbreviations and zip codes more accurately 

[Plamondon & Srihari, 2000].  The form-design tool of Scribble [O’ Boyle et al, 2000] 

allows a known field within a form template to be annotated with markup indicating the 

field input type from a range of possibilities such as dates, emails, credit card numbers, 

etc. This approach improves accuracy during interpretation of the ink on the form. 

 As mentioned in our introduction, CLP also uses expected types to bias 

interpretation of the ink for better accuracy [Rbeiz, 2006].  When the instructor knows 

that the students’ answers should be of a particular type, a number, for example, an 

expected type is defined for that exercise question using an authoring tool [Chen, 2006] 

that we developed for use in preparing class presentation material.  During class, all 

student ink sample inputs for that exercise, in turn, are annotated with that expected type.  

Each ink input sample is then dispatched to the best domain-specialized interpreter for 

the expected type, and the interpretation results are passed on to the next component 

(CLP's aggregator) [Smith, 2006].  

                                                 

1 INKv2.2 is this author’s work as published in [Koile et al, 2007b].  
2 INKv1.5 is a result of Rbeiz’s unpublished research in 2006 after his thesis. 
3 INKv1 is Rbeiz’s interpreter as published in [Rbeiz, 2006]. 

   INKv2.2
1
    INKv1.5

2
     INKv1

3
     Microsoft  

Ink 
Interpreted % Interpreted % Interpreted % Interpreted % 

 
[1,2,3] 100.00 TI,2,3] 71.43 ->,23] 57.14 [I,23] 71.43 

 
[1,3,6,10,15] 100.00  [1,3,6,10I15] 92.31 [li3,6,10,15] 84.62 [1,3,6,10115] 92.31  

 
[d,e,f,g,a,b,C] 100.00 [defy,abc] 60.00 [defy,abc] 60.00 [defog,abc] 66.67 

 
[A,B,E,F,G,k,
L,H,C,I,J,D] 

100.00 
[A,B,E,F,G,k,
L,H,C,I,JD] 

96.00 
[ABE,F,Gk,H,
->,JD] 

64.00 
[ABE,Fatal,H,
CI,JD] 

64.00 

All Sequence Accuracy  89.33  73.48  79.58  70.92 
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 We illustrate this technique with a simple example—applying biasing to 

numerical strings that are easily misinterpreted as characters of the Roman alphabet (e.g., 

the ink strokes that a user writes for “11” may be interpreted as two lowercase-Ls of the 

alphabet). When we performed the experiments with this example, an accuracy of 99% 

was obtained compared to 89% without biasing (see breakdown in Table 2.2).  Rbeiz’s 

earlier study of 21 representative examples of student answers across 5 expected types 

also showed that interpretation with this biasing approach achieved a higher accuracy 

(87% compared to 73%). 

 

Table 2.2: Interpretation accuracy results showing improvement by number biasing 

Number Possibly Confused As Number Biasing (%) No Biasing (%) 

0 O 100.00 53.85 

1 I or l 100.00 36.36 

2 Z 100.00 100.00 

5 S 100.00 100.00 

6 G 100.00 100.00 

7 T or > 100.00 100.00 

9 g 100.00 90.91 

10 IO or lo 100.00 100.00 

11 II or ll 95.45 95.45 

50 so 90.91 81.82 

55 SS 100.00 100.00 

100 loo 100.00 100.00 

101 IOI or lol 96.67 96.67 

Total Accuracy 98.70 88.86 

 

 The use of expected types can be extended beyond the interpretation of regular 

English strings.  With expected types, CLP can differentiate the possibilities of domain-

specialized ink inputs from students: whether they are box-and-pointer diagrams, Scheme 

expressions, markings, and in future, chemical structures or circuit diagrams. 

Thus, we have shown in this previous work of ours that biasing an ink interpreter 

with information about expected types improves interpretation accuracy.    Our next 

challenge, addressed in this thesis, was to extend this idea to decrease dependency on 

explicit a priori labeling of expected type information. 
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Chapter 3  

Approach 

In this chapter, we describe the design of an interpretation system that 

automatically takes advantage of the idea that biasing ink samples with type information 

improves interpretation accuracy.  The interpretation system employs machine learning 

techniques to predict the ink sample type, and then dispatches interpretation calls to an 

appropriate ink interpreter specialized for that type.  The system is writer-independent 

and operates synchronously on a completed ink sample, a method that has proven 

advantageous for our classroom application [Rbeiz, 2006].  Unlike scanned handwritten 

images or optical character recognition (OCR), we make full use of the dynamic nature of 

digital ink for our interpretation system.  Our interpretation framework is designed for 

online digital ink interpretation, and allows different interpreters to be added with relative 

ease.  This chapter describes this framework and presents a high-level overview of our 

ink type prediction using machine learning and our dynamic dispatch method. Our 

system has been integrated with CLP, allowing us to easily deploy this approach in the 

classroom.  We describe an evaluation of our idea using ink samples collected in a user 

study. 

3.1 Dynamic Ink Strokes 

The dynamic nature of ink strokes plays an important role in our work.  Digital 

ink samples captured through pen-based input, e.g., using a tablet PC, contain a myriad of 

information not present in static scanned images of user handwriting.  Examples of such 

information are the number of strokes written or drawn, the individual stroke order over 

the entire ink sample, and the positions of sampled points in each stroke.  This 

information can aid recognition, e.g., overlapping strokes of different characters that may 
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have been grouped inaccurately when rasterized in a scanned image can be easily 

identified as disjoint using stroke information.  The information, unfortunately, also can 

mislead interpreters, e.g., two different user-written samples may look the same visually, 

but may have been written in different stroke orders. Machine learning with feature 

selection, however, as described in Chapter 4, allows us to use dynamic stroke 

information effectively.  In this thesis, we focus on improving the interpretation accuracy 

of digital ink, for which this information can be captured with tablet PCs. 

3.2 The Interpretation Framework 

 

Figure 3-1. The common interpreter interface that we use within CLP and for our experiments. 

 

We have created a common Interpreter interface, where "common" refers to 

the ability to "plug in" various interpreters for use in our CLP prototyping environment.  

Figure 3-1 depicts a simple diagram of this Interpreter interface.  With this 

framework, we allow the interpretation module of CLP originally created by Rbeiz to be 

extended easily as we develop newer interpreters.  We also have as a goal, the ability to 

plug in interpreters developed by researchers working in other domains.    

Examples of deployed interpreters that have taken advantage of our framework 

are the box-and-pointer diagram interpreter [Chevalier, 2007], a marking interpreter [Wu, 

2008], our specialized sequence interpreters and post-2006 versions of our CLP general 

interpreters.  Using this same Interpreter interface, we also have been able to run 

experiments comparing the accuracies of newer versions of the same interpreters and the 

accuracies of different algorithms.  Details of how our new ink interpreter fits into this 

general interpretation framework are discussed in Chapters 4 and 5. 

 

Interpret Ink 

Interpretation 
Result 

Interpreter 

 Interface 
[1,kg] 
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3.3 Representative Examples 

For this thesis, we selected a total of 181 different representative examples of 

possible student answers.  Some of the examples are based on actual tutorial answers 

from past recitations at MIT, while the others are chosen because they are highly 

representative of the domain and the answer types we have seen in the classroom.  

Eighty-eight of these examples lie within the domain of introductory computer science 

(including the 21 from Rbeiz’s thesis) and 93 within introductory chemistry, since these 

are the two domains in which CLP is being used. Figure 3-2 shows several of these 

representative examples and their types.  We list our full set of representative examples in 

Appendix A. 

 

 

Figure 3-2. Representative examples selected from the field of (a) introductory computer 

science; (b) introductory chemistry, for training and evaluating our interpretation system. 

 

3.4 Improving Ink Interpretation Accuracy 

As stated earlier, the main idea explored in this thesis is that of using ink type 

prediction and the dynamic dispatch to specialized interpreters to improve ink 

interpretation accuracy.  A problem faced by most ink interpretation systems is that many 

domain-specialized interpreters exist, and the systems cannot identify the best interpreter 

(a) (b) 
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for interpreting specific samples of ink.  Many interpretation systems address this issue 

by relying on confidence measures, which rank output results from candidate interpreters, 

often qualitatively.  Our novel approach differs significantly from these confidence-based 

systems:   Instead of performing potentially costly recognition procedures on many 

different domain-specialized interpreters to determine the confidence of the interpreted 

result, we predict the correct interpreter to which to dispatch the ink sample.   

Our approach is similar to having an instructor provide a priori information about 

the interpreter to be chosen based on a given expected type, except that we use machine 

learning to predict this expected type purely from the ink sample and a list of available 

interpreters and their associated ink sample types.    In the following two chapters, we 

describe in detail the two components to our approach: ink type prediction and using 

dynamic dispatch.  Below we give a justification and preview for each of these 

components. 

 

• Ink Type Prediction. Type prediction has two important benefits:  (1) it avoids 

the inefficiency of having to choose a candidate interpreter by running all possible 

interpreters and ranking their outputs, and (2) it does not require a priori 

specification of an expected answer type for each ink sample.  We accomplish 

type prediction by using machine learning classification techniques, described in 

Chapter 4:  Our machine learning algorithms select relevant features for many 

different types of ink samples, then, in turn, use those features to identify the 

types of unseen ink samples.   

 

• Dynamic Dispatch.  After our machine learning component has predicted an ink 

sample's type, our system dispatches interpretation calls to an interpreter 

appropriate for that particular type. Our previous results indicate that using 

specialized interpreters improves overall accuracy, and our dispatch mechanism 

provides an efficient way to take advantage of several interpreters, as described in 

detail in Chapter 5. 
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3.5 Implementation 

In order to conduct user study experiments and evaluate our ink interpretation 

system, we created the following modules:4 

 

• Ink Collector. We created this ink collection application to perform experiments 

on user-provided samples of digital ink.  This stand-alone application displays 

either a string of type-written text or computer-generated images of our above-

mentioned representative examples, and asks users to write or draw what they see.  

We displayed our example text with a standard default typeface (in order not to 

introduce any bias in using a person’s handwriting), but asked users to write on 

the tablet PC as they normally would on a piece of paper.  The user’s order of 

strokes, scale and speed in the ink sample were preserved in the collection.  No 

feedback was provided to the user at each step in order to simulate writing on a 

piece of paper, and to avoid worrying the user with poor intermediate recognition. 

 

 

 

Figure 3-3. A simplified ink database schematic used in our system. 

 

                                                 

4 Our system is implemented in C#, which allows easy access to the Microsoft tablet PC software 
development kit, and easy integration with CLP, which also is implemented in C#. 
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• Ink Database. We collected all user ink samples for training and testing prior to 

the conduction of our experiments and stored them in this database.  This database 

allowed us to have a consistent dataset for all our experiments, so that we could 

compare results of different interpreters and type prediction algorithms without 

bias.  After creating representative examples in the database in a single table, we 

linked all samples thereafter collected to their RepresentativeIDs as foreign 

keys and stored them in a user samples table with SampleID as the primary key. 

Throughout our system and this thesis, we use RepresentativeID (or RepID in 

short) as a symbolic reference to a specific representative example, and SampleID 

as a symbolic reference to a specific user-provided sample.  Figure 3-3 shows a 

simplified database diagram of our implementation of the database in Microsoft 

SQL Server 2005. 

 

• Ink Recognition Accuracy Evaluator. We created this simple evaluator module 

to generate tables of recognition results.  This evaluator allows us to use the same 

dataset to compare several interpreters that implement our Interpreter interface.  

Accuracy is measured by the edit distance [Atallah, 1998] between what was 

interpreted and the original example string used for input. 

 

• Ink Type Predictor. Our ink type predictor is the module that carries out the 

process of ink type prediction (described in detail in Chapter 4).  We wrote the 

feature extraction and data mining code that took an input of digital ink objects, 

which we represented using the tablet PC software development kit.  We utilized 

the Java implementation of Waikato Environment for Knowledge Analysis 

(WEKA) [Witten & Frank, 2005] for running our machine learning and feature 

selection experiments.  We created several utility classes in C# that interact with 

WEKA libraries using IKVM.NET 5 , which allows Java-C# interoperability.  

Accuracy results were stored in text result files for easy viewing, together with 

                                                 

5
 http://www.ikvm.net/index.html 
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evaluation summaries.  We generated all graphs and visualizations in Python 

using matplotlib6 and the Python Imaging Library (PIL)7. 

 

• Domain-Specialized Interpreters. We created most of our domain-specialized 

interpreters in C# to allow for easy integration.  For interpreters that make use of 

external recognition systems, we created special wrapper classes in C# that act as 

an intermediary layer between our system and the external modules.  

Communication between our system and the external modules took place either 

through socket connections (like when connecting to LADDER [Chevalier, 

2007]) or through IKVM.NET. 

3.6 User Study 

We ran two user studies to collect ink samples for all the representative examples 

we had: twelve students provided ink samples for computer science and ten students 

provided ink samples for chemistry.  All the students had varying backgrounds and 

majors (computer science, chemistry, among others) with different levels of tablet PC 

experience.  Students were allowed to stop providing ink samples at any point in time of 

the study.  A total of 1958 samples of ink were obtained for our type prediction and 

dynamic dispatch experiments described in Chapters 4 and 5, with evaluations covered in 

Sections 4.7 and 5.5 respectively. 

 

                                                 

6 http://matplotlib.sourceforge.net/ 
7 http://www.pythonware.com/products/pil/ 
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Chapter 4  

Ink Type Prediction 

We describe the details of our approach to ink type prediction in this chapter.  We 

examine in more detail the motivation for doing type prediction in the first place, and 

describe what features are extracted from ink samples and used as input to our machine 

learning algorithms.  Since we want to perform type prediction across many different 

types of scenarios and experiments, we show how we use feature selection algorithms to 

generalize the ink interpretation problem and select the relevant extracted features that 

are useful for different scenarios.  Finally, we evaluate how well we can predict ink types 

for our experimental data set. 

4.1 Motivation 

 Our motivation in using ink type prediction is based on the superiority of this 

approach when compared to other approaches that use confidence measures or supply a 

priori contextual information.   

Using confidence measures for selecting the best domain-specialized interpreters 

has several limitations.  First, not all interpreters can accurately measure a confidence 

value for their interpretation result.  Some simple interpreters that are based on heuristics 

do not have confidence measures at all.  Second, using a confidence-based ranking 

scheme requires that a system interpret the ink using all interpreters, a potentially 

computationally costly process.  If an interpreter is known to use many resources for its 

domain of interpretation, e.g., using an exponential brute-force approach, and the ink to 

be interpreted does not belong to that domain at all, we will have wasted resources.  As 

such, we aim to predict the domain-specialized interpreters by determining the expected 

type of the ink, so that only one interpreter does the interpretation work that is required. 



 33 

Ink type prediction is also beneficial when we do not know the expected type of 

an ink sample and thus cannot determine the single correct interpreter to use beforehand.  

In a classroom, for example, we would expect a student’s answer to the simple question 

“three + one = ?” to be “four.”  There may be students who write “4” instead, however, 

which may be an equally valid answer, depending on the lesson (math vs. spelling, for 

example).  The answer to a simple yet ambiguous question “What follows in this 

sequence: 1, 4, 9?” may not be just “16” but a sequence such as “16, 25, 36.” 

 CLP removes the ambiguity in student answers such as “4” vs. “four” with an 

aggregator module.  Before passing the representations to a smart aggregator that groups 

semantically equivalent results, however, we still need a robust interpreter that can 

interpret both “four” and “4” accurately, and convert each to the desired semantic 

representation.  Thus, it would be beneficial for an interpreter to achieve a high level of 

accuracy without knowledge of the expected type information, so that it can correctly 

interpret the different types of answers that may be supplied for the same question.  We 

show that we can achieve this accuracy by predicting the expected type using machine 

learning. 

4.2 Approach 

 In this section, we cover the general steps taken to obtain maximum accuracy in 

ink type prediction and to evaluate our methodology.  We describe a high level overview 

of how we use machine learning to predict ink types, what features we extract, what 

feature selection algorithms we use to choose important features, and how accurately we 

can predict ink types with different machine learning algorithms.  We then detail each of 

the critical steps in individual sections of this chapter.   

 

• The Intuition. Ink type prediction is a classic class prediction problem for which 

machine learning is well-suited.  The problem can be formulated as such: We 

have a new ink sample of a student’s answer that could potentially be any of 

several expected types (e.g., number, string, Scheme code, etc.).  Given a 

classifier that has been trained with many other previously obtained and correctly 
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classified answers, we ask:  Can we predict the expected type of the new ink 

sample?  We hypothesize, and show, that we can. 

  

• Features to Extract.  The dynamic nature of digital ink strokes provides many 

possible features to extract for machine learning.  We consider both temporal and 

spatial features of the ink samples.  We also extract information about individual 

strokes as well as the vector of all strokes in each ink sample.  We choose some 

distinct features using domain knowledge to differentiate some of the classes; 

others are generic features that we feel might be useful based on related work. 

 

• Dimensionality Reduction.   There are many features that we may extract from 

the digital ink strokes, but not all of them are critical to helping us in ink type 

prediction.  To prevent overfitting of our class predictors over many useless and 

counter-effective features, we use feature selection algorithms, also known as 

dimensionality reduction algorithms, such as information gain or principal 

components analysis, to prune away unimportant features.  We evaluate the 

effectiveness of several feature selection algorithms to determine those that 

increase prediction accuracy over the baseline of using all features. 

 

• Machine Learning Algorithms.  In the absence of prior domain knowledge for 

our classification problem, we evaluate prediction accuracy using several machine 

learning algorithms with distinctive learning methods, such as support vector 

machines (SVMs), decision trees and probabilistic Bayesian networks.  We show 

how the coupling of different machine learning algorithms with any one of 

multiple feature selection algorithms can improve prediction accuracy for 

different sets of type prediction experiments. 

4.3 The Intuition 

Ink type prediction is a classic class prediction problem in machine learning: 

using extracted features, we predict the class (type, in our case) of a particular ink 

sample.  We also use binary classification to predict flags that are indicative of particular 
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types.  These flags can be used to further narrow the scope of type prediction 

possibilities.  If our machine learning component predicts that a sample is a sequence, for 

example, and also that the sample has a "comma” flag, the sample type can be specialized 

to a sequence that is comma- or space-delineated, as opposed to just a sequence with 

elements that could be delimited by anything.  This delimiter information is used by the 

sequence interpreter in its segmentation algorithms [Breuel, 2002], which employ 

heuristics to section ink samples into smaller parts to simplify and improve interpretation. 

If, for instance, the presence of commas as delimiters is predicted, then the segmentation 

algorithm within the sequence interpreter will use this fact to first identify commas, 

before extracting sequence elements.  If the comma flag is not predicted, the sequence 

interpreter will use the variance in spacing distances to determine segmentation before 

extracting the elements.  Thus, we use machine learning classification to predict types, in 

some cases further narrowing type possibilities based on the presence of particular ink 

strokes. 

 

 

Figure 4-1. Sample ink type prediction experiments that we ran are shown  

together with their expected type classes. 

 

To observe the ability of classifiers to predict expected types and flags accurately, 

we ran a number of different experiments over 1958 ink samples that were of different 
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number sequence 
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representations and types.  Each experiment comprised a subset of the types we wanted to 

test prediction for.  Figure 4-1 shows several ink type prediction experiments that we ran.  

Our hypothesis was that the correct type can be accurately predicted, and that greater 

accuracy will be achieved where there are fewer types in the experimental subset.   

We obtained some of the types subsets for our experiments from actual questions 

retrieved from recitation material in the fields of computer science and chemistry.  Other 

subsets that we hypothesized to be useful for our experiments were added to test the 

limits of the classifiers. Table 4.1 lists the ink type prediction experiments that we 

conducted and their expected types.  In the remainder of this thesis, we will refer to these 

experiments by the names assigned in the following table. 

 

Table 4.1: The ink type prediction experiments we conducted 

No. Experiment Name Expected Types (Classes) 

1 5-types Number | String | True-False | Sequence | Scheme Expression 

2 no-number String | True-False | Sequence | Scheme Expression 

3 no-string Number | True-False | Sequence | Scheme Expression 

4 no-tf Number | String | Sequence | Scheme Expression 

5 number-scheme Number | Scheme Expression 

6 number-sequence-scheme Number | Sequence | Scheme Expression 

7 number-sequence Number | Sequence 

8 number-string-sequence Number | String | Sequence 

9 number-string-tf Number | String | True-False 

10 number-string Number | String 

11 sequence-commas Comma | No-Comma 

12 sequence-scheme Sequence | Scheme Expression 

13 sequence-subtypes Single Character | Number | String 

14 string-scheme String | Scheme Expression 

15 string-sequence-scheme String | Sequence | Scheme Expression 

16 string-sequence String | Sequence 

17 tf-sequence-scheme True-False | Sequence | Scheme Expression 

18 tf-string-sequence True-False | String | Sequence 

19 tf-string True-False | String 

20 pi-types Symbol | Number | Fraction 

21 scheme-bap Scheme Expression | Diagram (Box-and-Pointer) 

22 chemistry-benzene Diagram | String | Sequence 

23 all-chemistry Diagram | String | Sequence 
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4.4 Features to Extract 

The dynamic nature of digital ink strokes allows many possible features to be 

extracted for use by machine learning algorithms.  Unlike a rasterized image from a 

scanner, we can use the time and location information available in the strokes to create 

feature vectors for each ink sample to use in machine learning. To maximize the 

information extracted, we considered both temporal and spatial features of the ink 

samples.  We also extracted information about individual strokes as well as the vector of 

all strokes in each ink sample.  

 

Figure 4-2. Examples of features F1 through F17 are illustrated in this diagram. 

 
 

With basic knowledge of our domain of expected answer types, we chose several 

distinct features to differentiate classes; others were generic features that we felt would 

prove useful to the type domains of short written text or diagrams.  Some of the features 

that we considered are listed in Table 4.2 and illustrated with examples in Figure 4-2.  

Full descriptions of the features and our hypotheses of their effectiveness in 

distinguishing types are listed in Appendix C. 
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Table 4.2: The features we considered 

No. Name 

F1 Total number of strokes 

F2 Total number of positive inter-stroke adjacent spacing 

F3 Sample height span 

F4 Sample width span 

F5 Sample width-height ratio 

F6 Stroke area density of points 

F7 Stroke horizontal density of points 

F8 Stroke heights 

F9 Stroke widths 

F10 Stroke lengths 

F11 Stroke points count 

F12 Stroke adjacent spacing 

F13 Stroke adjacent spacing differentials 

F14 Number of stroke intersections 

F15 Stroke angles 

F16 Stroke speeds 

F17 Similarity of a stroke to a number 

 
 
 For each feature that applies to individual strokes (F6-F17), we extracted 

information about the smallest and largest three values, as well as the 25th, 50th and 75th 

percentiles.  We also considered the entire ink sample as a vector of strokes (for each of 

these features F6-F17) and used this vector as an additional collective feature.  For these 

feature vectors, we calculated their means and variances as additional scalar features. 

4.5 Dimensionality Reduction  

Not all extractable features are critical to accurate ink type prediction.  To prevent 

overfitting of our type predictors over many useless and counter-effective features, we 

used feature selection algorithms to prune away the unimportant features.   

Using our feature set, we evaluated the effectiveness of several well-known 

feature selection techniques: information gain (InfoGain), information gain ratio 

(GainRatio) [Quinlan, 1986], principal components analysis (PCA), Relief-F [Robnik-

Sikonja & Kononenko, 1997], and ranking with the square of the weights assigned by an  
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SVM [Guyon et al, 2002].  We wanted to determine if feature selectors would improve 

prediction accuracy over our baseline of using all features.  Figure 4-3 displays a color-

coded visualization highlighting important features when we applied our feature selection 

algorithms to the different experiments. 

4.6 Machine Learning Algorithms 

Using the WEKA library [Witten & Frank, 2005], we evaluated prediction 

accuracy with several classification algorithms, each with a distinctive learning method.  

The algorithms were: an SVM trained with sequential minimal optimization (SMO) 

[Platt, 1998], a C4.5 decision tree [Quinlan, 1993] (implemented as J48 in WEKA), and a 

probabilistic Naïve Bayes classifier.  We computed the accuracy of our class predictions 

using stratified cross-validation that was randomized across each of the training and test 

sets.   

 The goal of the evaluation described in this thesis is to highlight the variation in 

accuracy for a selection of classifiers, instead of finding the perfect classifier for our ink 

type prediction.  We have chosen a representative set of classifiers and feature selection 

algorithms to show the feasibility of accurate ink type prediction using various methods; 

other researchers furthering this work may choose to use their preferred classifiers and 

feature selectors. 

4.7 Evaluation 

 We evaluated ink type prediction with two models: K-fold cross validation and 

leave-one-out cross validation.  Using a uniform distribution, we randomly stratified our 

ink data sets with K = 10 folds across all the representative examples in each experiment.  

We then selected each fold to be the test set and used the remaining (K – 1) folds for 

training.  The results were then averaged across all K folds.   

We performed leave-one-out cross validation by leaving all samples of a single 

representative example out of the training set each time, and testing classification with 

each sample of that representative example.  The results were then averaged across all 

representative examples. 
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Figure 4-4. Prediction accuracy improves with dimensionality reduction algorithms (such as 

InfoGain, etc.) over the baseline of using all features with SMO for both (a) K-fold; and (b) 

leave-one-out cross validation. 

(a) 

(b) 

 

Using Top N FeaturesUsing Top N FeaturesUsing Top N FeaturesUsing Top N Features    
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 Figure 4-5. These graphs show how prediction accuracy varies for three different machine 

learning algorithms (SMO, J48 and Naïve Bayes) using SVM-Weight as a feature selector for 

both (a) K-fold; and (b) leave-one-out cross validation. 

(a) 

(b) 

 

Using Top N FeaturesUsing Top N FeaturesUsing Top N FeaturesUsing Top N Features with SVM with SVM with SVM with SVM----WeightWeightWeightWeight    

 

Using Top N FeaturesUsing Top N FeaturesUsing Top N FeaturesUsing Top N Features with SVM with SVM with SVM with SVM----WeightWeightWeightWeight    
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4.7.1 K-fold Cross Validation Results 

Using a K-fold cross validation technique allowed us to obtain unbiased accuracy 

results by preventing testing on the same samples that were used during training.   

 Figures 4-4 and 4-5 display, for some experiments, the accuracy rates of 

predicting the correct type according to the number of top features selected.  We see that 

there was no single best classifier, although SMO tended to perform better than the other 

two learners.  Each experiment also required a different optimum number of features to 

obtain peak accuracy in type prediction.  For Tables 4.3 and 4.4, we collected peak 

accuracies for our five feature selection algorithms using the SMO classifier.  Ranking 

features by SVM weights performed extremely well, increasing prediction accuracy by 

10% over the baseline of using all features in an experiment with five types.  This feature 

selector, however, uses a brute-force approach and is time-consuming.  Other selectors 

that employ estimating heuristics or greedy algorithms, such as Relief-F, InfoGain and 

GainRatio, were able to achieve an improvement of 5% in much less time.   

 

Table 4.3: Expected type prediction accuracy in percent for different groups of experiment 

classes using 10-fold cross validation with SMO. 

Experiment 
All 

Features 

SVM 

Weight 
Relief 

Info 

Gain 

Gain 

Ratio 
PCA 

5-types 79.09 90.88 85.65 85.65 84.22 74.89 

no-number 84.27 96.27 90.27 90.87 88.95 81.39 

no-string 89.66 98.22 94.99 95.15 95.15 85.78 

no-tf 82.23 92.10 86.62 86.73 84.21 79.16 

number-scheme 100.00 100.00 100.00 99.73 100.00 100.00 

number-sequence-scheme 89.54 99.81 94.95 95.31 95.67 87.74 

number-sequence 99.69 100.00 100.00 100.00 99.69 100.00 

number-string-sequence 87.11 94.14 88.72 88.57 88.72 86.23 

number-string-tf 83.51 93.43 87.23 86.70 87.23 81.20 

number-string 78.87 93.31 84.22 83.95 83.68 83.95 

sequence-commas 87.97 100.00 93.98 95.08 95.62 90.16 

sequence-scheme 86.89 99.75 93.68 92.96 93.44 93.93 

sequence-subtypes 96.17 100.00 98.36 98.36 97.81 96.72 

string-scheme 95.39 99.65 97.78 98.12 97.44 95.05 

string-sequence-scheme 87.64 97.52 92.71 93.75 91.41 86.21 
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Experiment 
All 

Features 

SVM 

Weight 
Relief 

Info 

Gain 

Gain 

Ratio 
PCA 

string-sequence 97.96 100.00 98.51 97.96 98.33 96.48 

tf-sequence-scheme 88.23 99.15 94.95 93.90 94.74 94.53 

tf-string-sequence 91.88 99.00 95.69 95.86 94.70 90.39 

tf-string 93.82 99.76 96.43 97.38 96.43 95.48 

pi-types 95.08 98.36 98.36 98.36 96.72 96.72 

scheme-bap 100.00 100.00 100.00 100.00 100.00 100.00 

chemistry-benzene 98.00 100.00 100.00 100.00 100.00 100.00 

all-chemistry 93.33 100.00 95.66 97.33 95.33 95.00 

 

4.7.2 Leave-One-Out Cross Validation Results 

This method of cross validation is important because it allows us to effectively 

test that our hypothesis works even with our relatively small selection of representative 

examples.  Although we have a total of 181 representative examples presented in this 

thesis, our individual experiments have ranges spanning only 5 representative examples 

(e.g., chemistry-benzene with 3 types) to 88 representative examples (e.g., 5-types).  

If we can show that a high accuracy of predicting types can be obtained without including 

every representative example in the training set, then our system should be robust enough 

for a larger universe of possible ink answers beyond the 181 examples we have chosen. 

 We saw that leave-one-out cross validation still performed relatively well (see 

Table 4.4), with peak accuracies lower by only 6-10% than those obtained with K-fold 

cross validation.  We discuss this observation later in Section 4.7.5. 

 

Table 4.4: Expected type prediction accuracy in percent for different groups of experiment 

classes using leave-one-out cross validation with SMO. 

Experiment 
All 

Features 

SVM 

Weight 
Relief 

Info 

Gain 

Gain 

Ratio 
PCA 

5-types 72.18 83.37 75.87 75.45 76.15 68.78 

no-number 78.21 91.23 84.17 83.93 83.51 76.31 

no-string 82.98 95.85 89.96 88.72 87.64 79.27 

no-tf 74.95 87.75 77.76 77.79 76.51 72.91 

number-scheme 99.72 100.00 100.00 99.75 100.00 100.00 

number-sequence-scheme 83.58 98.42 90.47 88.58 88.38 81.33 

number-sequence 99.07 100.00 99.76 99.30 99.43 99.76 
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Experiment 
All 

Features 

SVM 

Weight 
Relief 

Info 

Gain 

Gain 

Ratio 
PCA 

number-string-sequence 81.48 90.53 82.19 78.04 78.62 81.26 

number-string-tf 73.71 90.51 76.19 75.86 77.22 75.91 

number-string 74.61 92.77 79.86 81.73 82.80 78.54 

sequence-commas 60.50 100.00 80.37 73.36 75.59 63.45 

sequence-scheme 76.63 99.73 88.25 90.75 88.25 89.25 

sequence-subtypes 74.05 95.95 85.52 81.93 80.50 76.22 

string-scheme 92.56 99.52 96.46 96.79 96.20 93.66 

string-sequence-scheme 81.72 94.23 86.48 86.89 84.83 81.98 

string-sequence 93.99 99.27 94.83 95.08 95.08 96.04 

tf-sequence-scheme 77.44 97.70 87.95 86.48 88.68 88.32 

tf-string-sequence 86.61 94.95 88.70 89.04 88.66 87.61 

tf-string 87.72 99.43 90.90 92.80 92.71 89.80 

pi-types 43.63 66.66 65.15 63.63 65.15 63.63 

scheme-bap 75.00 100.00 100.00 100.00 100.00 100.00 

chemistry-benzene 30.00 60.00 60.00 60.00 60.00 58.00 

all-chemistry 85.66 99.00 92.00 92.66 91.00 90.00 

 

4.7.3 Evaluation by Number of Classes 

 
 In order to understand the accuracy and effectiveness of ink type prediction with 

respect to the number of possible types, we re-arranged the peak results obtained in 

Tables 4.3 and 4.4 and ranked experiment accuracy by the number of types, as shown in 

Table 4.5.  We also plotted graphs showing the mean peak prediction accuracies, grouped 

by number of types, for both K-fold and leave-one-out cross validation in Figure 4-6. 

 We observed from our experiments that peak prediction accuracy decreases when 

there are more types from which to predict.  This observation is typical of machine 

learning classification problems.  As such, we conclude that the more ambiguous a case 

we present for ink type prediction, i.e., with more types from which to predict, the harder 

it is for our type predictor to accurately guess the context of the ink.  Not too surprisingly, 

if we decrease the number of possible types, e.g., by means of more extensive domain 

knowledge or some context known by the instructor a priori, then the system may be able 

to more accurately guess the context, and use this context, as we later describe in Chapter 

5, to improve interpretation accuracy.   
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This thesis also notes that the correlation between the number of types used in the 

experiments and the accuracy of prediction depends on which types are actually used, as 

well as their relative resemblance.  The prediction accuracies, for example, in the 

experiments number vs. string, sequence vs. Scheme expression, and sequence vs. 

number, exhibit high variance even though the experiments each have only two types. 

This is because sequences highly resemble Scheme expressions, and our chosen 

representative strings highly resemble our numbers.  The leave-one-out cross validation 

results for three types show on average a significantly lower accuracy than that of 

four types because of the poor performance of two experiments with three types: pi-

types and chemistry-benzene.  We discuss this anomaly later in Section 4.7.5. 

 

Table 4.5: Peak prediction accuracy ranked by number of types 
 

Experiment # types K-fold (%) Leave-one-out (%) 

number-scheme 2 100.00 100.00 

number-sequence 2 100.00 100.00 

sequence-commas 2 100.00 100.00 

scheme-bap 2 100.00 100.00 

string-sequence 2 100.00 99.27 

tf-string 2 99.76 99.43 

sequence-scheme 2 99.75 99.73 

string-scheme 2 99.65 99.52 

number-string 2 93.31 92.77 

all-chemistry 3 100.00 99.00 

sequence-subtypes 3 100.00 95.95 

chemistry-benzene 3 100.00 60.00 

number-sequence-scheme 3 99.81 98.42 

tf-sequence-scheme 3 99.15 97.70 

tf-string-sequence 3 99.00 94.95 

pi-types 3 98.36 66.66 

string-sequence-scheme 3 97.52 94.23 

number-string-sequence 3 94.14 90.53 

number-string-tf 3 93.43 90.51 

no-string 4 98.22 95.85 

no-number 4 96.27 91.23 

no-tf 4 92.10 87.75 

5-types 5 90.88 83.37 
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Figure 4-6. Mean prediction accuracy grouped by number of types using (a) K-fold; and  

(b) leave-one-out cross validation.  The mean accuracies decrease with more types. 

(a) 

(b) 

 

(a) 
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4.7.4 Evaluation of Feature Importance 

We perform an evaluation of our original hypotheses of feature importance 

(described in Appendix C) of the features we covered in Table 4.2.  It is interesting to 

assess the validity of our original hypotheses as to which suggested features would 

improve prediction accuracy.  A method for knowing if a feature is relatively important 

in differentiating type A from B is to observe the ranking of the feature after feature 

selection algorithms have been applied to experiments containing type A and B.  A formal 

investigation is beyond the scope of this thesis, but we looked at our visualization of 

feature importance in Figure 4-3 to obtain an informal evaluation of our originally chosen 

feature set.  This evaluation is listed in Table 4.6.  We could not make conclusions on the 

effectiveness of several of the features, mainly because they differentiated between 

different individual character classes (such as complex intersecting characters vs. simple 

single-stroke ones); our experiments, however, classified many characters in bulk within 

strings, sequences, Scheme expressions, etc., all of which mixed the different character 

classes together.    

 

Table 4.6: Features extracted and their effectiveness in distinguishing types 

No. Distinguishes Between Successful? 

F1 Number / String vs. Sequence / Scheme Yes (see number-sequence, number-scheme) 

F2 Short / Diagram vs. Long / Sequence Yes (see number-sequence, number-scheme) 

F3 Text vs. Diagram Yes (see pi-types, scheme-bap, chemistry-benzene) 

F4 String / Number vs. Sequence / Scheme Yes (see number-sequence, number-scheme) 

F5 Text vs. Diagrams Yes (see pi-types, scheme-bap, chemistry-benzene) 

F6 Text vs. Diagrams Moderately (see scheme-bap, chemistry-benzene) 

F7 Text vs. Diagrams Moderately (see scheme-bap, chemistry-benzene) 

F12 Character / Number vs. String / Sequence Yes (see sequence-subtypes) 

F13 String vs. Sequence Yes (see string-sequence, string-scheme) 

F14 Text vs. Diagram Yes (see pi-types, scheme-bap, chemistry-benzene) 

F16 Text vs. Diagram Yes (see pi-types, scheme-bap) 

F17 Number vs. String Yes (see number-string) 

F8, F9, F10, F11, F15 Cannot conclude 

 

We note that different experiments require different features to effectively 

differentiate the types; features that work in one experiment involving a certain type may 
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not necessarily achieve the same success in another experiment.  As such, data-mining 

and extracting all the features proposed in Section 4.4, and using generic feature selection 

algorithms to prune away unimportant features dynamically proves to be a viable 

approach. 

4.7.5 Discussion 

We observed that the accuracy of predicting the correct class in the number-string 

experiment was low, despite being a binary classification problem.  There is a challenge 

associated with the distinction between numbers and strings:  It is inherently hard to tell 

whether a simple vertical stroke is a ‘1’ (one), ‘I’ (capital-i) or ‘l’ (lowercase-L).  If that 

stroke were to be slightly tilted, we could add either of ‘/’ or ‘\’ to the list.  This challenge 

is the reason that makes biasing with contextual information useful in improving 

interpretation accuracy, but fails to help us when we are doing ink type prediction.  We 

have many such ambiguous ink stroke samples collected as part of this research, and they 

lack the contextual information for accurate prediction, thus lowering our prediction 

accuracy in that experiment.  

 Leave-one-out cross validation showed poorer prediction accuracy results than K-

fold cross validation, mainly because the classifiers were not trained with the tested 

representative samples in the former.  The accuracy obtained is still relatively high at 

greater than 83% for up to five types, however, showing it is possible to accurately 

predict correct expected types or flags of representative samples that have not been 

observed before.   

We reason that unusually low accuracy in leave-one-out cross validation for both 

pi-types and chemistry-benzene experiments was observed because there were too 

few representative examples present in the training set for such validation.  If the 

classifier had been trained with only “symbol” and “number” classes for pi, for example, 

it would not be able to predict an unknown “fraction” class when presented with a sample 

that was a fraction. 

 To better understand the shortcomings of our ink type predictor system, we also 

ran an experiment that attempted to classify our eight different expected types with K-

fold cross validation across all collected samples.  There is a low likelihood of a question 
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being so ambiguous that its answer could be any one of eight different types, hence this 

experiment was conducted purely for additional information.  We obtained an 84.22% 

prediction accuracy using the SMO classifier and InfoGain feature selection algorithm.  

A full confusion matrix of the classification is listed in Appendix E.  We see that 

misclassification often occurred between any two of strings, sequences, and Scheme 

expressions when the type predictor was trained across all eight types.  As such, we 

conclude that the features we originally extracted are still relatively insufficient to 

achieve a full distinction across these very similar types. 
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Chapter 5  

Interpretation using Dynamic 

Dispatch  

In this chapter, we describe the details of our approach to improving ink 

interpretation using dynamic dispatch.  This approach is promising because our past 

results have shown that a priori information about an answer type improves ink 

interpretation significantly [Rbeiz, 2006].  We also have shown in Chapter 4 how ink 

type prediction provides an accurate prediction for certain answer types.  Combining 

these two ideas, we can create a system that improves ink interpretation by dynamically 

dispatching interpretation calls to the best interpreter for a sample’s predicted answer 

type.  As stated earlier, we hypothesize that this new interpreter will be close in accuracy 

to an interpreter requiring explicit a priori expected type information, and much more 

accurate than interpreters that use no expected type information. 

5.1 Approach 

 In this section, we describe the design, implementation, and evaluation of our 

dynamic dispatch method and variations, which take advantage of predicted ink sample 

types. We made several iterations in designing such an interpreter for improved accuracy. 

The next few sections will elaborate on the following in greater detail: 

 

• The Dynamic Dispatch Interpreter (DDI). We describe the basic dynamic 

dispatch interpreter in detail and explain how ink type prediction can be used as a 

switch to dispatch ink dynamically to static interpreters.    
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• Nested Dynamic Dispatch Interpreters (NDDI).  Nested DDIs enable the 

dynamic dispatching of ink with types and subtypes by having other DDIs as one 

of their internal interpreters. This is similar to a tree with static interpreters as 

leaves.  These NDDIs make use of a preprocessing stage, which we call 

preparation, which allows us to work with a hierarchy of ink types and subtypes. 

 

• Cross Validation Interpreters (CVI).  Cross validation interpreters allow us to 

evaluate interpretation accuracy without mixing our training and test data sets of 

ink samples.  These CVIs are built in with multiple distinct DDIs, and each DDI 

is trained and tested with different ink sample sets.  An equivalent Nested CVI 

(NCVI) also has been created for NDDIs.   

 

5.2 The Dynamic Dispatch Interpreter (DDI) 

 
Figure 5-1. A simple schematic demonstrating the Dynamic Dispatch Interpreter at work. 

 

Using the same interpreter interface that we created specially for the CLP system, 

we can create Dynamic Dispatch Interpreters that use an internal Ink Type Predictor 
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previously trained on our cumulative set of ink samples.  (For the rest of this thesis, 

“training a DDI” will mean “training the Ink Type Predictor inside the DDI.”). The 

interpreter will use its internal Ink Type Predictor module to perform type prediction tests 

on new ink samples and dynamically dispatch the ink sample to the domain-specialized 

interpreter of the predicted type for recognition.  The dispatching of the ink to be 

interpreted is illustrated in Figure 5-1. 

This Dynamic Dispatch Interpreter demonstrates that we may perform 

interpretation using domain-specialized interpreters without prior knowledge of expected 

type information.  We have hypothesized that the interpretation accuracy of such a DDI 

will be close to that of an interpreter provided with expected type information.   

5.3 Nested Dynamic Dispatch Interpreters (NDDI) 

A single level of type prediction is insufficient for more complex domain-

specialized interpreters.  We can interpret sequences, for example, with greater accuracy 

as mentioned in Section 4.3 with more type information, describing the subtypes or flags 

of the sequence.  As we found in Section 4.7.3, however, the more possible types, the 

lower the prediction accuracy obtained.  Adding these sequence subtypes and comma 

flags as newer expected types from which to predict will result in an “explosion” of 

combinatorial possibilities—we would need a different class for each combination!  

Sequences, for example, can be further classified into three different subtypes—number, 

single character and string—each with two possible flags—comma and bracket.  With 

these additions, we would need up to 12 new types in the place of our original sequence 

type. 

We solved this scalability problem by creating a preprocessing preparation stage 

in our interpreter interface to modify the state of each interpreter and influence 

subsequent interpretation8.  An interpreter can be prepared over multiple calls; it can be 

first alerted to expect a sequence, for example, then prepared to expect a numbered 

sequence, and finally made to expect a comma-delimited numbered sequence. This 

extensible preparation phase allows us to reuse the same specialized interpreters with just 

                                                 

8 Preparing an interpreter is a similar concept to using factoids in Microsoft’s ink libraries. 
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some state-modification to improve accuracy, without having to create entirely different 

interpretation algorithms. 

The Nested Dynamic Dispatch Interpreter (NDDI) uses preparation to allow 

interpreted ink to virtually traverse a decision tree of type predictors, before the ink is 

dispatched correctly to the relevant domain-specialized interpreter.  Figure 5-2 illustrates 

the dispatch mechanism of an NDDI. 

 

 

Figure 5-2. This schematic shows how Nested Dynamic Dispatch Interpreters work with one 

level of nesting. 

 

The NDDI functions like a DDI, with the exception that the internal interpreters 

(to which ink is dispatched) can be DDIs themselves.  These internally nested DDIs may 

store a different Ink Type Predictor for predicting the different subtype classes of ink, 

like the sequence subtypes mentioned.  We may nest NDDIs recursively and limitlessly 

for our different flags as well.  At each level of dynamic dispatch, the different classes 

predicted by the Ink Type Predictor would prepare the correspondingly predicted NDDI 

or specialized interpreter.  NDDIs transfer this preparation to their internally nested 

interpreters in addition to their own preparation from their Ink Type Predictor member.  
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This chain of preparation continues down the tree of NDDIs until a specialized 

interpreter leaf is reached.  This leaf interpreter would have received multiple preparatory 

calls and may thus used the information obtained to interpret the ink more accurately. 

 The expected type of a sample “1, 2, 3,” for example, would be a number 

sequence, delimited by commas.  The best NDDI to interpret this sample will thus have 

three nested levels: the first to predict that the sample is a sequence (out of the five types 

we have in total in introductory computer science); the second to predict that the 

sequence is of numbers; finally, the last level to predict that this number sequence is 

comma-delimited.  Each level of prediction will be passed down in the chain of 

preparation, and the leaf interpreters would then know to use the predicted contextual 

information of a comma-delimited number sequence to interpret the ink sample more 

accurately. 

5.4 Cross Validation Interpreters (CVI) 

 

Figure 5-3. A schematic of a simple Cross Validation Interpreter with K-folds is shown. 
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the DDI.  A schematic of the CVI is shown in Figure 5-3.  This CVI encapsulates K 

different copies of the same DDI.  Each DDI is specifically designated to test a subset of 

non-overlapping 1/K of the total ink samples in the experiment, and has been trained with 

the remainder (1 – 1/K) of the total number of ink samples.   

CVIs differ from DDIs mainly in that CVIs require experiment contextual 

information and thus cannot be deployed for subsequent use in tightly coupled 

applications such as CLP, which have no notion of experimental conditions.  The CVI 

makes use of some globally accessible auxiliary data (the index of the ink being 

interpreted out of all ink samples within the experiment) in order to properly dispatch 

interpretation to the specific DDI that is meant to “test” the currently inputted ink sample.  

This technique allows us to evaluate 10-fold cross validation of our DDI’s prediction and 

interpretation accuracy if we set K to be 10.  We chose to use the ink index modulo K to 

determine the index of DDI copies to which to dispatch the ink, because it provides an 

easy way to distribute all ink samples equally among the K DDI copies, with uniformly 

distributed test and training sets.    

 

 

Figure 5-4. A schematic of a simple Nested Cross Validation Interpreter with K-folds is shown. 
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In a similar fashion, we also created the K-fold Nested Cross Validation 

Interpreter (NCVI-K) to ensure we do not train the NDDIs with our intended test ink 

samples while evaluating the prediction and interpretation accuracy of our NDDIs.  

Figure 5-4 shows a simple schematic of ink dispatch through an NCVI, which has yet 

another NCVI nested within the NDDIs. 

The CVIs and NCVIs are not meant for deployment and require knowledge of the 

experimental framework, e.g., ink sample index numbers; they are used only for 

evaluating interpretation accuracy of our dynamic dispatching architecture.  In 

deployment, the DDIs and NDDIs should be used—trained with all prior ink sample 

data—instead of the CVIs and NCVIs, respectively. 

5.5 Evaluation 

We evaluated our dynamic dispatch interpretation system by computing final ink 

interpretation accuracy for the domain of introductory computer science.  Accuracy is 

measured as the edit distance [Atallah, 1998] between the interpreter's output and the 

original example string used for input. 

 We chose this domain, consisting of five types—numbers, strings, sequences, 

true-false, Scheme expressions—because most of the student answers in the domain are 

in the form of text, not drawings.  We could thus make comparisons easily with other text 

interpreters such as Microsoft’s default interpreter, as well as our already deployed 

interpreter (INKv3). 

5.5.1 Base Type Results 

After running our interpretation experiments, we found that interpreters with type 

information provided a priori for each ink sample performed the best, but that our 

dynamic dispatch interpreter was a close second.  The interpretation results for the five 

different base types in the introductory computer science domain are listed in Table 5.1.  

Our latest version of the deployed CLP interpreter (INKv3) obtained 89% accuracy while 

an earlier version (INKv1) obtained 87%.  Both of these interpreters made use of 

expected type information that we provided to bias ink pre-processing and interpretation 

for better accuracy.  Microsoft’s default interpreter obtained 62% accuracy, mainly due to 
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the fact that it was not trained for the domain of introductory computer science and did 

not bias for expected types.    

 

Table 5.1: Base type results in percent for our different interpreters on the same data set grouped 

by the 5 base types for the introductory computer science domain.  

Base Type INKv3 INKv1 NDDI NCVI-10 NCVI-4 Microsoft 

Number 98.27 98.27 95.24 93.51 94.37 30.74 

Scheme Expression 84.72 84.72 84.72 84.72 84.79 80.91 

Sequence 87.03 76.22 87.03 83.35 81.61 71.17 

String 78.06 78.06 77.57 74.08 73.69 54.95 

True-False 97.64 97.64 97.64 97.64 97.64 74.53 

Total 81.82 80.18 80.52 78.53 78.44  51.00 

Total (Equal Weight) 89.14 86.98 88.44 86.66 86.42 62.46 

 

 Our approach described in this thesis obtained close to 87% accuracy, comparable 

with our other interpreters developed for use with CLP.  The main difference was that our 

dynamic dispatch interpreter (NCVI-10) required no contextual information to be 

provided a priori for each ink sample, and relied instead on machine learning to predict 

the expected type just from information extracted from the digital ink.  The good news is 

that, as we had hypothesized, with the same ink input, our interpreter outperformed 

Microsoft’s default interpreter by 24%, while almost reaching the level of accuracy of our 

best a priori interpreter, INKv3 (see Figure 5-5). 

The detailed table of interpretation results grouped by representative types is 

listed in Appendix B.    
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Figure 5-5. This graph shows overall interpretation accuracy: the INKv3 interpreter was provided 

with contextual type information and performed the best at 89% for all samples; our interpreter 

NCVI-10 achieved a comparable 87% without such information, better than Microsoft’s 

interpreter at 62%. 

 

5.5.2 Discussion 

 On the whole, we are pleased with the performance of our dynamic dispatch 

interpretation method:  Its accuracy in predicting and interpreting five different ink 

sample types was very close to the accuracy of our best interpreter that required a priori 

ink type information, and much better than an interpreter with no ink type information.  

Its architecture allows for easy integration of additional specialized interpreters unlike the 

other interpreters we tested, and requires far less input from an instructor using it in an 

application such as CLP. 

 There are limitations to this approach, however.  A deployed ink type predictor in 

a DDI will only have knowledge of a small subset of the universe of representative 

examples.  Leave-one-out cross validation results showed it might be possible to 

extrapolate additional new unknown representative examples, but the system would 

undoubtedly deteriorate in prediction performance the more the examples come from 

outside our training subset.  The time saved for the instructor, thus, becomes time gained 
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for the ink interpreter "trainer" in creating relevant training sets.  In addition, we would 

need to perform retraining occasionally after deployment, but this activity could be as 

simple as labeling real data collected post-deployment.   
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Chapter 6 

Related Work 

Our work draws on research from various subfields of ink interpretation.  We 

mentioned in Section 2.1 sketch recognition work on sequences, chemical diagrams 

[Ouyang & Davis, 2007], box-and-pointer diagrams [Chevalier, 2007], and marking [Wu, 

2008].  Here we discuss two other related areas—handwriting recognition research and 

confidence measure-based approaches. 

6.1 General Approaches 

Handwriting recognition research is a very active field.  Variations in writing 

styles cause difficulty in developing highly accurate handwriting recognizers [Liu & Cai, 

2003] [Plamondon & Srihari, 2000].  There are many general approaches that aim to 

improve ink interpretation across the board, without any domain-specific restrictions.  

Most of these successful approaches to date use artificial intelligence algorithms. Specific 

techniques used include support vector machines (SVM), hidden Markov models 

(HMMs) [Hu et al, 1996] [Yasuda et al, 2000], neural networks, genetic algorithms, and 

convolutional time delay neural networks (TDNN).  Some of these statistical and 

machine-learning approaches support online (e.g., [Bellegarda et al, 1994], [Anquetil & 

Lorette, 1995]) and offline (e.g., [Seni & Cohen, 1994], [Srihari & Keubert, 1997]) 

recognition of handwriting; other approaches may also be writer-independent (e.g., [Hu et 

al, 2000]). All these approaches use different representations and metrics for segmenting 

handwriting [Breuel, 2002], and report varying measures of success for their respective 

domains of recognition use.   

Apart from artificial intelligence algorithms, different domain-specific heuristics 

have also been used to further improve handwriting recognition.  Handwritten sequence 
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interpretation, for example, is useful in recognizing postal addresses [Srihari & Keubert, 

1997] and general document optical character recognition (OCR) work [Manmatha & 

Srimal, 1999].  There are many punctuation detection heuristics (e.g., [Seni & Cohen, 

1994]), as well as spatial detection measures (e.g., also [Mahadevan & Nagabushnam, 

1995], [Wang et al, 2005]) which are applicable for the domain of English sequence 

interpretation, but may not be useful with other written forms like classical Chinese, or 

chemical structures.  As such, there is currently no ideal “universal handwriting 

recognizer” that has been developed by researchers. The best recognizers to date work 

well only in selected narrow domains, and they often make use of specialized heuristics 

or have been subjected to training with many ink samples. 

6.2 Confidence Measure-based Approaches 

 Studies have been done to compare different confidence measures for deciding 

when to accept or reject interpreted results. Examples of such confidence measures are: 

recognition score, likelihood ratio [Brakensiek et al, 2002], and estimated posterior 

probability [Pitrelli & Perrone, 2003].  These studies illustrate the usefulness of 

confidence measures in the unsupervised retraining of handwriting data, and in improving 

interpretation accuracy by being able to reject a fraction of the handwritten input. We 

chose not to use confidence measures despite their useful potential, because not all 

specialized interpreters that we would like to use have confidence measures, or can 

accurately measure a confidence value of their interpretation result.  Using a confidence-

based ranking scheme also requires that we interpret the ink with potentially all 

interpreters (to obtain their confidence measures), a computationally costly process. Our 

approach in using ink type prediction, as described in the previous chapters, suggests a 

viable, but not necessarily exclusive alternative to the use of confidence measures. 
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Chapter 7 

Conclusion 

 We conclude with a list of possible future work and a summary of the main 

contributions of this thesis. 

7.1 Future Work 

 The field of ink interpretation is exciting and filled with many challenges in every 

niche.  While this thesis has tried to tackle a very narrow scope of improving 

interpretation accuracy within the domain of the classroom, invariably there are always 

improvements that can be made, and new hypotheses that need to be proven.  We 

describe such future work in the following sections. 

7.1.1 Creating a Public Interpreter API 

We are designing a new architecture that will allow independently developed 

interpreters to be easily integrated into our dynamic dispatch interpreter.  Figure 7-1 

shows the current design of this new architecture.   

Two interesting challenges are: (1) defining an application programming interface 

(API) for communicating ink samples and interpreted results between interpreters 

developed independently, and (2) integrating a top-level user-interface (UI) with any UIs 

that may accompany the new interpreters.  We will want the API to work with new 

interpreters, but also with applications other than CLP. Moreover, integrating Ouyang 

and Davis' chemical diagram interpreter, for example, will require us to develop a UI that 

supports the real-time feedback and rendering that the program provides.    
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Figure 7-1. A schematic showing a new architecture to support integration into our dynamic 

dispatch interpreter (DDI) of independently developed ink interpreters. 

7.1.2 Better Semantic Representation for Aggregation 

 Our current concept of semantic representation, i.e., ink interpreter output, 

follows from Rbeiz’s work and presents a processed and summarized notion of the digital 

ink that is understood by our system [Rbeiz, 2006].  This semantic representation 

contains just enough information to allow rendering in printed form (if desired) and 

aggregation of similar ink samples that have the same representation; all dynamic 

information present in the digital ink such as the timing of strokes, positions, curvature, 

etc., that would exhibit high variance over many samples have not been included in this 

summary. This semantic representation has sufficed for our purposes in prototyping with 

CLP because the aggregator did not require more detailed information.  As we support 

more complex aggregators, however, in various other applications and newer versions of 

CLP, we undoubtedly will want to include dynamic features for data-mining and 

clustering algorithms.  Hence, we propose that the semantic representation output of the 

future system not only store the simplified summary of interpreted ink, but also any 

processed and unprocessed stroke data as auxiliary metadata to be used for aggregation 

algorithms and other applications. 
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7.1.3 Improving Interpretation Accuracy 

 Although we have shown that reasonably good interpretation can be achieved 

without the provision of a priori contextual information, we are still far from the 97% 

accuracy desired for users to feel comfortable [Giudice & Mottershead, 1999], [LaLomia, 

1994].  Improving interpretation accuracy of digital ink has been the primary focus of this 

thesis and continues to be one of our goals.  The more information we can provide with 

each ink sample, e.g., its question type, its writer, our expected answers to the question, 

etc., the better the resulting interpretation.  We, thus, also are focusing on additional ways 

to supply our domain-specialized interpreters with better contextual information.  With 

improved ink interpretation accuracy, we anticipate greater adoption in classrooms of 

systems such as CLP, which hold great promise for improving student learning. 

7.2 Contributions 

In this thesis, we presented a novel method for improving ink interpretation 

accuracy: using machine learning to predict expected ink types and using that type 

information to dynamically select appropriate specialized interpreters.  We have shown 

that this approach does not rely on confidence measures of domain-specialized 

handwriting interpreters, and is in fact a more efficient alternative in terms of 

interpretation work that needs to be performed.  In our approach of using machine 

learning, we extract many features from the dynamic ink strokes and use feature selection 

to generically improve prediction accuracy over the baseline for many experiment 

classes.  The use of an SVM classifier consistently achieves high accuracies of greater 

than 80% for both K-fold and leave-one-out cross validation, even when there are up to 

five different classes to predict from.  We also have deployed ink type prediction to be 

used as a module in an experimental CLP framework. Finally, we have demonstrated that 

our dynamic dispatch interpreters can achieve far more accurate interpretations (87% 

accuracy) than the default Microsoft interpreter (62%). Moreover, this accuracy level is 

close to that of our original INKv3 interpreter (89%), which required a priori type 

information to be provided.   
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Appendix A 

Representative Examples 

 

Table A.1: List of 181 representative examples sorted by their Representative ID (Rep ID) 

number, showing the example string/diagram shown to students, and the expected semantic 

representation (simplified from XML form) 

 

RepID Example String/Diagram Simplified Semantic Representation 

1 #f #f 

2 #t #t 

3 false False 

4 true True 

5 π PI 

6 Π PI 

7 Ω OMEGA 

8 
 

22/7 

10 0 0 

11 1 1 

12 2 2 

13 5 5 

14 6 6 

15 7 7 

16 9 9 

17 10 10 

18 11 11 

19 50 50 

20 55 55 

21 100 100 

22 101 101 

30 0.1 0.1 

31 2.71828 2.71828 

32 123.45 123.45 
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Rep ID Example String/Diagram Simplified Semantic Representation 

33 3.14 3.14 

34 3.14159 3.14159 

35 19.95 19.95 

36 .007 .007 

50 O O 

51 I I 

52 l l 

53 / / 

54 Z Z 

55 S S 

56 G G 

57 > > 

58 q q 

59 g g 

60 lo lo 

61 II II 

62 ll ll 

63 // // 

64 /l /l 

65 so so 

66 ss ss 

67 loo loo 

68 IOI IOI 

69 lol lol 

100 'done 'done 

110 double-tree double-tree 

120 cons cons 

121 error error 

122 list list 

123 nil nil 

124 quote quote 

150 O(n) O(n) 

151 pi pi 

170 benzene benzene 

171 methane methane 

172 phenol phenol 

173 carbolic acid carbolic acid 

174 alanine alanine 

175 acetic acid acetic acid 

176 ethanoic acid ethanoic acid 

177 proton proton 

178 electron electron 

179 neutron neutron 
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Rep ID Example String/Diagram Simplified Semantic Representation 

180 serine serine 

181 phenylalanine phenylalanine 

190 Ala Ala 

191 Ser Ser 

192 Phe Phe 

200 [1 2 3] [1,2,3] 

201 1, 3, 6, 10, 15 [1,3,6,10,15] 

202 2 30 400 5000 [2,30,400,5000] 

203 80, 90, 100, 110 [80,90,100,110] 

220 defg abc [d,e,f,g,a,b,c] 

221 A B E F G K L H C I J D [A,B,E,F,G,K,L,H,C,I,J,D] 

222 a, b, c, d, e, f, g, h, i, j, k, l [a,b,c,d,e,f,g,h,i,j,k,l] 

223 #, #, # -> # [#,#,#,->,#] 

224 g, ng, ing, ring [g,ng,ing,ring] 

240 number number [number,number] 

241 boolean -> string [boolean,->,string] 

243 lecture & recitation [lecture,recitation] 

244 nbr, nbr, nbr -> nbr [nbr,nbr,nbr,->,nbr] 

245 reading, talking, listening [reading,talking,listening] 

300 152 kJ [152,kJ] 

301 47 ohms [47,ohms] 

302 1 kg [1,kg] 

303 1.79 g/L [1.79,g/L] 

304 2.9 lbs [2.9,lbs] 

305 3 bonds [3,bonds] 

306 32 F [32,F] 

307 273.15 K [273.15,K] 

320 - 11 N [-,11,N] 

321 - 23 mm [-,23,mm] 

330 $ 100.00 [$,100.00] 

340 47 Ω [47,OMEGA] 

350 37 oC [37,DEG,C] 

351 78.1 gmol-1 [78.1,gmol,^-1] 

352 3.53 Wm-1K-1 [3.53,Wm,^-1,K,^-1] 

353 0.89 cm2 [0.89,cm,^2] 

380 x + y = z [x,+,y,=,z] 

381 a = b + c [a,=,b,+,c] 

382 10 + 14 = 24 [10,+,14,=,24] 

383 x = 23 y - 77 [x,=,23,y,-,77] 

384 x y z = 503 [x,y,z,=,503] 

385 y = x2 [y,=,x,^2] 

386 x3 + 10 x2 - x + 15 = 0 [x,^3,10,x,^2,-,x,+,15,=,0] 

400 n2 [n,^2] 
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Rep ID Example String/Diagram Simplified Semantic Representation 

401 n3 [n,^3] 

402 x2 [x,^2] 

403 ex [e,^x] 

404 O2 [O,_2] 

405 SO4
2- [S,O,_4,^2-] 

406 10100 [10,^100] 

407 a1 [a,_1] 

408 b2 [b,_2] 

409 x1y1 [x,_1,y,_1] 

410 x2y2 [x,_2,y,_2] 

411 6 x 1023 [6,x,10,^23] 

430 C6H6 [C,_6,H,_6] 

431 CH4 [C,H,_4] 

432 C6H5OH [C,_6,H,_5,O,H] 

433 HO2CCH(NH2)CH3 [H,O,_2,C,C,H,(,N,H,_2,),C,H,_3] 

434 CH3COOH [C,H,_3,C,O,O,H] 

450 C + O2 = CO2 [C,+,O,_2,=,C,O,_2] 

451 2 H2 + O2 = 2 H2O [2,H,_2,+,O,_2,=,2,H,_2,O] 

470 1 s1 [1,s,^1] 

471 1 s2 2 s1 [1,s,^2,2,s,^1] 

472 1 s2 2 s2 2 p3 [1,s,^2,2,s,^2,2,p,^3] 

473 1 s2 2 s2 2 p6 3 s1 [1,s,^2,2,s,^2,2,p,^6,3,s,^1] 

474 [ Kr ] 4 d10 [[,Kr,],4,d,^10] 

475 [ Ar ] 4 s2 3 d5 [[,Ar,],4,s,^2,3,d,^5] 

476 [ Xe ] 6 s1 4 f14 5 d10 [[,Xe,],6,s,^1,4,f,^14,5,d,^10] 

477 He : 1 s2 [He,:,1,s,^2] 

478 F : 1 s2 2 s2 2 p5 [F,:,1,s,^2,2,s,^2,2,p,^5] 

479 F- : 1 s2 2 s2 2 p6 [F,^-,:,1,s,^2,2,s,^2,2,p,^6] 

480 Ca : [ Ar ] 4 s2 [Ca,:,[,Ar,],4,s,^2] 

481 Ca2+ : [ Ar ] [Ca,^2+,:,[,Ar,]] 

482 Pb : [ Xe ] 4 f14 5 d10 6 s2 6 p2 [Pb,:,[,Xe,],4,f,^14,5,d,^10,6,s,^2,6,p,^2] 

483 Pb2+ : [ Xe ] 4 f14 5 d10 6 s2 [Pb,^2+,:,[,Xe,],4,f,^14,5,d,^10,6,s,^2] 

500 (a b) (a b) 

501 (caar seq) (caar seq) 

502 (cdddr exp) (cdddr exp) 

503 (eq? id1 id2) (eq? id1 id2) 

504 (map double-tree tree) (map double-tree tree) 

505 (/ 2 tree) (/ 2 tree) 

506 (a 7) (a 7) 

507 (define x 3) (define x 3) 

508 (1 2) (1 2) 

509 (* 1 2) (* 1 2) 

700 (cons (cdar seq) (cddr seq)) (cons (cdar seq) (cddr seq)) 
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Rep ID Example String/Diagram Simplified Semantic Representation 

701 (first (second exp)) (first (second exp)) 

702 (car (quote (quote a))) (car (quote (quote a))) 

703 (set-cdr! (last-pair x) x) (set-cdr! (last-pair x) x) 

704 (lambda (new) (set! x new)) (lambda (new) (set! x new)) 

705 (element-of-tree? x (left-branch tree)) (element-of-tree? x (left-branch tree)) 

706 
(define (list->stream l)  
     (cons-stream (car l) (list->stream (cdr l))) 

(define (list->stream l)  
     (cons-stream (car l) (list->stream (cdr l))) 

707 (lambda (a b) (+a b)) (lambda (a b) (+a b)) 

708 (list (m-eval init env)) (list (m-eval init env)) 

709 
(define ints  
     (cons-stream 1 (add-streams ints ones))) 

(define ints  
     (cons-stream 1 (add-streams ints ones))) 

710 (cons (cons x (+ 1 (+ 1 (seq-length seq))) (cons (cons x (+ 1 (+ 1 (seq-length seq))) 

720 (foo bar) (foo bar) 

721 ((((foo baz))) bar) ((((foo baz))) bar) 

1000 

 

BENZENE 

1001 

 

BENZENE 

1002 

 

BENZENE 

1003 

 

METHANE 

1004 

 

METHANE 
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Rep ID Example String/Diagram Simplified Semantic Representation 

1005 

 

PHENOL 

1006 

 

PHENOL 

1007 

 

ALANINE 

1008 

 

ETHANOIC_ACID 

1009 

 

ETHANOIC_ACID 

1100 

 

(foo bar) 

1101 

 

((((foo baz))) bar) 
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Table A.2: List of 181 representative examples sorted by their Representative ID (Rep ID) 

number, showing the expected type and sample student (the author’s) ink. 

RepID Expected Type Ink Sample 

1 True-False 
 

2 True-False 
 

3 True-False 
 

4 True-False 
 

5 Symbol 
 

6 Symbol 
 

7 Symbol 
 

8 Number Fraction 

 

10 Number 
 

11 Number 
 

12 Number 
 

13 Number 
 

14 Number 
 

15 Number 
 

16 Number 
 

17 Number 
 

18 Number 
 

19 Number 
 

20 Number 
 

21 Number 
 

22 Number 
 

 

RepID 
Expected 

Type 
Ink Sample 

30 
Decimal 
Number  

31 
Decimal 
Number  

32 
Decimal 
Number  

33 
Decimal 
Number  

34 
Decimal 
Number  

35 
Decimal 
Number  

36 
Decimal 
Number  

50 String 
 

51 String 
 

52 String 
 

53 String 
 

54 String 
 

55 String 
 

56 String 
 

57 String 
 

58 String 
 

59 String 
 

60 String 
 

61 String 
 

62 String 
 

63 String 
 

64 String 
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RepID 
Expected 

Type 
Ink Sample 

65 String 
 

66 String 
 

67 String 
 

68 String 
 

69 String 
 

100 
Quoted 
String  

110 
Variable 
String  

120 
Scheme 
String  

121 
Scheme 
String  

122 
Scheme 
String  

123 
Scheme 
String  

124 
Scheme 
String  

150 
Math 
String  

151 
Math 
String  

170 
Chemistry 
String  

171 
Chemistry 
String  

172 
Chemistry 
String 

 

173 
Chemistry 
String  

174 
Chemistry 
String  

175 
Chemistry 
String  

176 
Chemistry 
String  

177 
Chemistry 
String  

178 
Chemistry 
String  

RepID 
Expected 

Type 
Ink Sample 

179 
Chemistry 
String  

180 
Chemistry 
String  

181 
Chemistry 
String 

 

190 
Chemistry 
String 

 

191 
Chemistry 
String  

192 
Chemistry 
String  

200 
Number 
Sequence 

 

201 
Number 
Sequence  

202 
Number 
Sequence  

203 
Number 
Sequence  

220 
Single 
Char 
Sequence  

221 
Single 
Char 
Sequence  

222 
Single 
Char 
Sequence  

223 
Single 
Char 
Sequence  

224 
String 
Sequence  

240 
String 
Sequence  

241 
String 
Sequence  

243 
String 
Sequence  

244 
String 
Sequence  

245 
String 
Sequence  
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RepID 
Expected 

Type 
Ink Sample 

300 
Chemistry 
Sequence  

301 
Chemistry 
Sequence  

302 
Chemistry 
Sequence  

303 
Chemistry 
Sequence  

304 
Chemistry 
Sequence  

305 
Chemistry 
Sequence  

306 
Chemistry 
Sequence  

307 
Chemistry 
Sequence  

320 
Chemistry 
Sequence  

321 
Chemistry 
Sequence  

330 
Chemistry 
Sequence  

340 
Chemistry 
Sequence  

350 
Chemistry 
Sequence  

351 
Chemistry 
Sequence  

352 
Chemistry 
Sequence  

353 
Chemistry 
Sequence  

380 
Chemistry 
Sequence  

381 
Chemistry 
Sequence  

382 
Chemistry 
Sequence  

383 
Chemistry 
Sequence  

384 
Chemistry 
Sequence  

385 
Chemistry 
Sequence  

386 
Chemistry 
Sequence  

 

RepID 
Expected 

Type 
Ink Sample 

400 
Chemistry 
Sequence  

401 
Chemistry 
Sequence  

402 
Chemistry 
Sequence  

403 
Chemistry 
Sequence  

404 
Chemistry 
Sequence  

405 
Chemistry 
Sequence  

406 
Chemistry 
Sequence  

407 
Chemistry 
Sequence  

408 
Chemistry 
Sequence  

409 
Chemistry 
Sequence  

410 
Chemistry 
Sequence  

411 
Chemistry 
Sequence  

430 
Chemistry 
Sequence  

431 
Chemistry 
Sequence  

432 
Chemistry 
Sequence  

433 
Chemistry 
Sequence  

434 
Chemistry 
Sequence  

450 
Chemistry 
Sequence  

451 
Chemistry 
Sequence  

470 
Chemistry 
Sequence  

471 
Chemistry 
Sequence  

472 
Chemistry 
Sequence  

473 
Chemistry 
Sequence  
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RepID 
Expected 

Type 
Ink Sample 

474 
Chemistry 
Sequence  

475 
Chemistry 
Sequence  

476 
Chemistry 
Sequence  

477 
Chemistry 
Sequence  

478 
Chemistry 
Sequence  

479 
Chemistry 
Sequence  

480 
Chemistry 
Sequence  

481 
Chemistry 
Sequence  

482 
Chemistry 
Sequence 

 

483 
Chemistry 
Sequence  

 

RepID 
Expected 

Type 
Ink Sample 

500 
Flat Scheme 
Expression  

501 
Flat Scheme 
Expression  

502 
Flat Scheme 
Expression  

503 
Flat Scheme 
Expression  

504 
Flat Scheme 
Expression 

 

505 
Flat Scheme 
Expression  

506 
Flat Scheme 
Expression  

507 
Flat Scheme 
Expression  

508 
Flat Scheme 
Expression  

509 
Flat Scheme 
Expression  

 

RepID Expected Type Ink Sample 

700 
Nested Scheme 
Expression  

701 
Nested Scheme 
Expression  

702 
Nested Scheme 
Expression  

703 
Nested Scheme 
Expression  

704 
Nested Scheme 
Expression  

705 
Nested Scheme 
Expression  

706 
Nested Scheme 
Expression 

 

707 
Nested Scheme 
Expression  

708 
Nested Scheme 
Expression  

709 
Nested Scheme 
Expression 

 

710 
Nested Scheme 
Expression 
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RepID 
Expected 

Type 
Ink Sample 

720 
Flat 
Scheme 
Expression  

721 
Nested 
Scheme 
Expression  

1000 
Chemistry 
Diagram 

 

1001 
Chemistry 
Diagram 

 

1002 
Chemistry 
Diagram 

 

1003 
Chemistry 
Diagram 

 

1004 
Chemistry 
Diagram 

 

1005 
Chemistry 
Diagram 

 

 
 
 
 
 
 
 

RepID 
Expected 

Type 
Ink Sample 

1006 
Chemistry 
Diagram 

 

1007 
Chemistry 
Diagram 

 

1008 
Chemistry 
Diagram 

 

1009 
Chemistry 
Diagram 

 

1100 
Box-and-
Pointer 
Diagram 

 

1101 
Box-and-
Pointer 
Diagram 
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Appendix B 

Representation Results 

Table B.1: Representation results for our different interpreters on the same data set grouped by 

the different representative examples in the field of introductory computer science 

RepID Semantic Representation INKv3 INKv1 NDDI NCVI-10 NCVI-4 Microsoft 

1 #f 86.11 86.11 86.11 86.11 86.11 22.22 

2 #t 100.00 100.00 100.00 100.00 100.00 62.50 

3 false 100.00 100.00 100.00 100.00 100.00 87.50 

4 true 100.00 100.00 100.00 100.00 100.00 93.75 

10 0 100.00 100.00 45.45 45.45 45.45 9.09 

11 1 100.00 100.00 36.36 36.36 36.36 0.00 

12 2 100.00 100.00 100.00 100.00 100.00 9.09 

13 5 100.00 100.00 100.00 100.00 100.00 9.09 

14 6 100.00 100.00 100.00 100.00 100.00 0.00 

15 7 100.00 100.00 100.00 100.00 100.00 0.00 

16 9 100.00 100.00 90.91 90.91 90.91 0.00 

17 10 100.00 100.00 100.00 100.00 100.00 27.27 

18 11 95.45 95.45 95.45 95.45 95.45 18.18 

19 50 90.91 90.91 90.91 81.82 90.91 54.55 

20 55 100.00 100.00 100.00 100.00 100.00 63.64 

21 100 100.00 100.00 100.00 100.00 100.00 45.45 

22 101 96.97 96.97 96.97 96.97 96.97 51.52 

50 O 72.73 72.73 72.73 72.73 72.73 18.18 

51 I 63.64 63.64 63.64 63.64 63.64 0.00 

52 l 8.33 8.33 8.33 8.33 8.33 0.00 

53 / 81.82 81.82 81.82 81.82 81.82 0.00 

54 Z 81.82 81.82 81.82 81.82 81.82 0.00 

55 S 100.00 100.00 100.00 100.00 100.00 0.00 

56 G 90.91 90.91 90.91 90.91 90.91 9.09 

57 > 90.91 90.91 90.91 90.91 90.91 0.00 

58 q 63.64 63.64 63.64 63.64 63.64 0.00 

59 g 100.00 100.00 100.00 100.00 100.00 0.00 
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RepID Semantic Representation INKv3 INKv1 NDDI NCVI-10 NCVI-4 Microsoft 

60 lo 63.64 63.64 63.64 63.64 63.64 22.73 

61 II 27.27 27.27 27.27 27.27 27.27 4.55 

62 ll 0.00 0.00 0.00 0.00 0.00 0.00 

63 // 0.00 0.00 0.00 0.00 0.00 0.00 

64 /l 0.00 0.00 0.00 0.00 0.00 0.00 

65 so 100.00 100.00 100.00 100.00 100.00 18.18 

66 ss 100.00 100.00 100.00 100.00 100.00 9.09 

67 loo 33.33 33.33 33.33 33.33 33.33 24.24 

68 IOI 30.30 30.30 30.30 30.30 30.30 15.15 

69 lol 30.30 30.30 30.30 30.30 30.30 24.24 

70 IO 45.00 45.00 45.00 45.00 45.00 10.00 

100 'done 97.14 97.14 97.14 90.00 90.00 82.86 

110 double-tree 98.30 98.30 98.30 98.30 98.30 93.18 

120 cons 100.00 100.00 100.00 100.00 100.00 87.50 

121 error 100.00 100.00 100.00 100.00 100.00 91.25 

122 list 100.00 100.00 100.00 100.00 100.00 57.81 

123 nil 100.00 100.00 100.00 100.00 100.00 83.33 

124 quote 100.00 100.00 95.00 90.00 95.00 92.50 

150 O(n) 60.94 60.94 60.94 60.94 60.94 40.63 

200 [1,2,3] 68.75 61.61 68.75 66.96 65.18 60.71 

201 [1,3,6,10,15] 97.60 83.65 92.31 90.87 91.35 86.54 

202 [2,30,400,5000] 98.89 95.56 98.89 98.89 93.33 86.67 

203 [80,90,100,110] 97.78 91.11 95.56 95.56 85.56 75.56 

220 [d,e,f,g,a,b,c] 87.92 64.17 78.33 76.25 65.83 60.83 

221 [A,B,E,F,G,K,L,H,C,I,J,D] 92.00 53.87 92.00 88.53 87.47 48.80 

222 [a,b,c,d,e,f,g,h,i,j,k,l] 84.27 60.00 84.27 84.27 80.80 55.20 

223 [#,#,#,->,#] 67.78 41.11 67.78 59.44 63.33 37.22 

224 [g,ng,ing,ring] 85.56 78.89 85.56 81.11 76.67 58.89 

240 [number,number] 99.11 99.11 99.11 97.78 93.33 94.67 

241 [boolean,->,string] 85.26 90.88 82.46 82.46 78.60 80.00 

243 [lecture,recitation] 89.67 96.00 88.67 87.67 87.67 92.00 

244 [nbr,nbr,nbr,->,nbr] 71.15 66.92 71.15 71.15 69.23 66.54 

245 [reading,talking,listening] 91.01 96.30 91.01 91.53 84.39 90.74 

500 (a b) 77.27 77.27 77.27 77.27 77.27 72.73 

501 (caar seq) 73.33 73.33 73.33 73.33 76.67 68.89 

502 (cdddr exp) 81.00 81.00 82.00 84.00 82.00 93.00 

503 (eq? id1 id2) 71.82 71.82 71.82 73.64 75.45 72.73 

504 (map double-tree tree) 96.50 96.50 96.50 96.50 97.00 93.50 

505 (/ 2 tree) 82.50 82.50 82.50 83.75 83.75 78.75 

506 (a 7) 95.00 95.00 97.50 97.50 97.50 87.50 

507 (define x 3) 92.00 92.00 92.00 92.00 92.00 86.00 



 84 

 

RepID Semantic Representation INKv3 INKv1 NDDI NCVI-10 NCVI-4 Microsoft 

508 (1 2) 100.00 100.00 100.00 100.00 100.00 97.50 

509 (* 1 2) 68.00 68.00 68.00 66.00 68.00 58.00 

510 (if test #f #t) 83.33 83.33 83.33 83.33 83.33 79.17 

700 (cons (cdar seq) (cddr seq)) 83.75 83.75 83.33 83.33 83.33 71.25 

701 (first (second exp)) 97.22 97.22 97.22 97.22 97.22 94.44 

702 (car (quote (quote a))) 92.50 92.50 92.50 91.50 91.50 80.50 

703 (set-cdr! (last-pair x) x) 91.30 91.30 91.30 91.30 91.30 83.09 

704 (lambda (new) (set! x new)) 96.14 96.14 96.14 96.14 96.14 91.79 

705 (element-of-tree? x (left-branch tree)) 94.14 94.14 94.14 94.14 94.14 90.43 

706 
(define (list->stream l)  
   (cons-stream (car l) (list->stream (cdr l))) 

81.31 81.31 81.31 81.31 81.31 77.95 

707 (lambda (a b) (+a b)) 88.89 88.89 88.89 88.89 88.89 90.20 

708 (list (m-eval init env)) 80.95 80.95 80.95 80.95 80.95 76.72 

709 
(define ints  
   (cons-stream 1 (add-streams ints ones))) 

81.63 81.63 81.63 81.41 81.41 80.73 

710 (cons (cons x (+ 1 (+ 1 (seq-length seq))) 77.45 77.45 77.45 77.45 77.12 69.93 

711 ((p 'SET-CAR!) new-car) 77.55 77.55 78.23 78.23 78.23 79.59 

712 
(define x (let ((two '(2)))  
     (list (cons 1 two) (list 1) two))) 

78.11 78.11 78.11 78.11 78.11 76.23 

Total (Equal Weight) 81.82 80.18 80.52 78.53 78.44 51.00 
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Appendix C 

Features Considered 

This section describes the features we considered in greater detail than what we 

have already listed in Table 4.2. 

 

Table C.1: Features we considered, their descriptions and our hypotheses 

No. Name Description and Hypothesis 

F1 Total number of 
strokes 

This feature counts the total number of strokes (from pen-down to pen-up) 
an ink sample has, a useful metric for generally distinguishing simple and 
complex ink samples. 

F2 Total number of 
positive inter-stroke 
adjacent spacing 

Inter-stroke adjacent spacing is the distance between two adjacent strokes 
in an ink sample.  This feature counts the number of such positive spacing 
and hence allows differentiation of short or diagrammatic ink samples 
from long sequence-like ones. 

F3 Sample height span The total height of an ink sample measured in ink space units.  Diagrams 
are generally taller than regular text. 

F4 Sample width span The total width of an ink sample measured in ink space units.  Sequences 
and Scheme expressions are generally longer than numbers. 

F5 Sample width-height 
ratio 

The ratio of an ink sample’s total width to total height.  This feature is 
useful for telling ink samples that are taller than wide or vice versa, and 
has greater importance since we do not do scale normalization.  Diagrams 
in our domain are generally square-shaped while text is flat. 

F6 Stroke area density of 
points 

This feature computes the density of pen-tip points over an ink stroke’s 
bounding box, effectively measuring the amount of ink for each stroke.  
This density is helpful in differentiating different types of strokes for 
diagrams or characters. 

F7 Stroke horizontal 
density of points 

This feature computes the density of pen-tip points over the horizontal 
width of each ink stroke, effectively measuring the amount of ink for each 
unit of width of the stroke.  This density is helpful in differentiating 
vertical and horizontal strokes in text or diagrams. 

F8 Stroke heights The height of each ink stroke measured in ink space units.  Useful for 
telling tall characters like ‘l’, ‘f’, ‘g’, etc. from short ones like ‘-‘, ‘,’ or 
‘a’. 
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No. Name Description and Hypothesis 

F9 Stroke widths The width of each ink stroke measured in ink space units.  Useful for 
telling wide characters like ‘w’, ‘z’, ‘—‘, etc. from narrow ones like ‘/’, 
‘I’, or ‘!’. 

F10 Stroke lengths The length of each ink stroke measured in ink space units.  Useful for 
telling long characters like ‘|’, ‘—‘, ‘}’, etc. from short ones like ‘,’, ‘c’, or 
‘^’. 

F11 Stroke points count The amount of ink of each ink stroke.  Useful for telling diagrams or dense 
complex characters like ‘*’, ‘&’, ‘B’, etc. from sparse or simple ones like 
‘s’, ‘(‘ or ‘o’. 

F12 Stroke adjacent 
spacing 

The inter-stroke spacing distance between each pair of adjacent strokes 
measured in ink space units.  Useful for differentiating sequences and 
strings from single characters and numbers. 

F13 Stroke adjacent 
spacing differentials 

Once all inter-stroke adjacent spacing distance is calculated for an ink 
sample, the distances are sorted in ascending order.  A first order 
differential on this discrete number sequence is then computed by taking 
the differences between each adjacent element of the spacing sequence.  
This differential ‘profile’ computed is a useful feature that tells sequences 
apart from strings because of the wider inter-word gaps that inter-character 
gaps in sequences. 

F14 Number of stroke 
intersections 

The total number of intersections a stroke has with itself and also with 
other strokes.  Useful for differentiating characters that have strokes that 
intersect like ‘+’, ‘x’, ‘#’, etc. from others like ‘v’, ‘s’, or ‘=’.  Also useful 
for differentiating diagrams and text. 

F15 Stroke angles The angle of orientation for each part of an ink stroke measured in radians.  
Useful for telling certain characters that slant and curve apart from others. 

F16 Stroke speeds The ratio of stroke length to the number of pen-tip points (amount of ink) 
for each stroke.  Useful for telling strokes that were written/drawn faster 
than others, e.g., diagrams are generally drawn faster than printed text. 

F17 Similarity of a stroke 
to a number 

There are many ambiguous strokes that can look like numbers or Roman 
alphabets and thus it was important to differentiate these two if we could.  
Template matching [Ouyang & Davis, 2007] is a popular feature generator 
for such single character comparisons to a pre-computed template 
dictionary.  We opted for a simple approximation here, however: we chose 
to use an unbiased and untrained Microsoft recognizer to interpret each 
ink stroke.  We count the proportion, within the interval of [0, 1]. of the 
ink sample’s strokes that had numbers returned by the recognizer and use 
the proportion as a feature. 
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Appendix D 

Feature Importance  

This section includes three figures of the individual monochrome grids 

highlighting feature importance making up the visualization shown in Figure 4-3 for non-

color printing.  In order, the figures show summaries of feature importance for three 

different feature selection algorithms: SVM-Weight, GainRatio and InfoGain.  The 

darker a cell in the diagrams, the more important a feature is.  (Note that this is different 

from Figure 4-3 which presents all three grids as color channels, with brighter colors 

denoting greater importance.) 
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Appendix E 

Ink Type Prediction Confusion Matrix 

Table E.1: Confusion matrix of our classification over 8 expected type classes for all 1958 

samples using the SMO classifier and InfoGain feature selection algorithm.  Precision (P), recall 

(R) and F-measure (F) values are also shown for each class. 

x classified as X A B C D E F G H P R F 

True-False (a) 36 0 0 0 27 0 0 1 0.923 0.563 0.699 

Scheme Exp (b) 0 203 0 0 4 1 0 41 0.886 0.815 0.849 

Symbol (c) 0 0 27 0 3 0 0 2 0.931 0.844 0.885 

Fraction (d) 0 0 0 10 0 0 0 0 1.000 1.000 1.000 

String (e) 1 4 2 0 431 1 37 41 0.775 0.834 0.803 

Diagram (f) 0 0 0 0 4 117 0 0 0.983 0.967 0.975 

Number (g) 0 0 0 0 29 0 168 16 0.771 0.789 0.780 

Sequence (h) 2 22 0 0 58 0 13 657 0.867 0.874 0.870 

Correctly 1649 84.22 % = Accuracy 

Incorrectly 309 15.78 % = Error Rate 

 


