

Improving Digital Ink Interpretation through

Expected Type Prediction and Dynamic Dispatch

by

Kah Seng Tay

Submitted to the Department of Electrical Engineering and Computer

Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2008

© 2008 Massachusetts Institute of Technology
All rights reserved.

Author __
 Department of Electrical Engineering and Computer Science

 May 8, 2008

Certified by ___

 Kimberle Koile, Ph.D.
 Research Scientist, MIT CSAIL

Thesis Supervisor

Accepted by __

 Arthur C. Smith, Ph.D.
 Professor of Electrical Engineering

 Chairman, Department Committee on Graduate Theses

 2

 3

Improving Digital Ink Interpretation through Expected Type

Prediction and Dynamic Dispatch

by

Kah Seng Tay

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Interpretation accuracy of current applications dependent on interpretation of
handwritten "digital ink" can be improved by providing contextual information about
an ink sample’s expected type. This expected type, however, has to be known or
provided a priori, and poses several challenges if unknown or ambiguous. We have
developed a novel approach that uses a classic machine learning technique to predict
this expected type from an ink sample. By extracting many relevant features from
the ink, and performing generic dimensionality reduction, we can obtain a minimum
prediction accuracy of 89% for experiments involving up to five different expected
types. With this approach, we can create a “dynamic dispatch interpreter” by biasing
interpretation differently according to the predicted expected types of the ink
samples. When evaluated in the domain of introductory computer science, our
interpreter achieves high interpretation accuracy (87%), an improvement from
Microsoft’s default interpreter (62%), and comparable with other previous
interpreters (87-89%), which, unlike ours, require additional expected type
information for each ink sample.

Thesis Supervisor: Kimberle Koile, Ph.D.
Title: Research Scientist

 4

 5

Acknowledgements

I would like to thank my thesis advisor, Kimberle Koile, without whom this

research would not have been possible. She has provided me funding over the years and

has guided me in tablet PCs and ink interpretation. She is willing to listen to my overly

wild and ambitious ideas, and encourages me to continuously seek improvement. She

has been extremely helpful with editing and improving my papers and this thesis, helping

me articulate my ideas clearly and succinctly.

I would like to thank professors Martin Rinard, Sivan Toledo, Michael Ernst, and

Saman Amarasinghe. They were the lecturers with whom I have had the privilege to

teach the last two terms of 6.170 Laboratory in Software Engineering offered at MIT.

6.170 was my favorite class taken at MIT, and it was an honor to be a TA (and

subsequently head TA) for the class. I have learned a lot from them through this

experience, and am grateful for the opportunity and leadership.

I would like to thank the group members of Classroom Learning Partner: Adam

Rogal, for starting out in the group with me from the very beginning and always being a

helping hand; Capen Low, David Chen, and Curtis Liu, without whom I could not have

done much many improvements to the new version of CLP. I would also like to thank

some past members of the group: Michel Rbeiz, for first introducing me to the group, and

whose work I have continued; and Sanjukta Pal, Kevin Chevalier and Kenneth Wu, for

the days and nights spent in the lab together developing and debugging CLP.

I would like to thank Sung Kim from the Program Analysis Group and Tom

Ouyang from the Sketch Understanding Group. Sung, whom I worked with briefly on

automatic bug detection, introduced me to machine learning and feature extraction,

allowing me to come up with original idea for the work in my thesis. Tom created the

chemical diagram interpreter, and is collaborating with my group for joint deployment.

I would like to thank the many members of Asian Baptist Student Koinonia, my

Christian fellowship group, for being here with me at MIT these four years. Special

thanks go to members of my class: Brandon Yoshimoto (also my wonderful roommate),

Jill Rowehl, Tiffany Lee, Tami Shinkawa, Sophia Lee and Diana Wang, for weathering

 6

thick and thin with me year after year over Christian Festival, the bible studies and the

IM games; and to staff members Austin Kim, Donald Choi and David Um, for their

guidance, support, food and welcoming me to their homes.

I would like to thank my parents, Ming Chee Tay and Lai Ngoh Lam, and family

in Singapore, for giving me the opportunities to learn and excel in school, and allowing

me to go overseas for my studies without a scholarship. I would also like to thank my

twin brother, Kah Keng, for the friendly competition and the many collaborative projects

and ventures we have done together.

I would like to thank the Siebel Scholars Foundation, Microsoft iCampus, the

Office of Educational Innovation and Technology for their financial support in my

graduate education and research.

I would especially like to thank Serene Lee, my fiancée (and wife, in a month),

for accepting me for what I am and enduring the time I have spent at work and on

research. Thank you for the support, love and encouragement throughout these few years

at MIT.

 7

Contents

LIST OF FIGURES .. 11

LIST OF TABLES .. 15

1 INTRODUCTION... 17

1.1 MOTIVATION.. 17

1.2 OVERVIEW ... 18

1.3 THESIS OUTLINE .. 20

2 BACKGROUND ... 21

2.1 DOMAIN-SPECIALIZED INTERPRETERS ... 21

2.2 BIASING WITH EXPECTED TYPE INFORMATION.. 23

3 APPROACH.. 25

3.1 DYNAMIC INK STROKES ... 25

3.2 THE INTERPRETATION FRAMEWORK .. 26

3.3 REPRESENTATIVE EXAMPLES ... 27

3.4 IMPROVING INK INTERPRETATION ACCURACY ... 27

3.5 IMPLEMENTATION .. 29

3.6 USER STUDY .. 31

4 INK TYPE PREDICTION... 32

4.1 MOTIVATION.. 32

4.2 APPROACH ... 33

4.3 THE INTUITION ... 34

4.4 FEATURES TO EXTRACT ... 37

4.5 DIMENSIONALITY REDUCTION ... 38

 8

4.6 MACHINE LEARNING ALGORITHMS.. 40

4.7 EVALUATION.. 40

4.7.1 K-fold Cross Validation Results .. 43

4.7.2 Leave-One-Out Cross Validation Results.. 44

4.7.3 Evaluation by Number of Classes.. 45

4.7.4 Evaluation of Feature Importance.. 48

4.7.5 Discussion .. 49

5 INTERPRETATION USING DYNAMIC DISPATCH.. 51

5.1 APPROACH ... 51

5.2 THE DYNAMIC DISPATCH INTERPRETER (DDI) .. 52

5.3 NESTED DYNAMIC DISPATCH INTERPRETERS (NDDI) ... 53

5.4 CROSS VALIDATION INTERPRETERS (CVI)... 55

5.5 EVALUATION.. 57

5.5.1 Base Type Results.. 57

5.5.2 Discussion .. 59

6 RELATED WORK.. 61

6.1 GENERAL APPROACHES ... 61

6.2 CONFIDENCE MEASURE-BASED APPROACHES.. 62

7 CONCLUSION .. 63

7.1 FUTURE WORK... 63

7.1.1 Creating a Public Interpreter API .. 63

7.1.2 Better Semantic Representation for Aggregation .. 64

7.1.3 Improving Interpretation Accuracy.. 65

7.2 CONTRIBUTIONS... 65

REFERENCES.. 67

APPENDIX A - REPRESENTATIVE EXAMPLES... 71

APPENDIX B - REPRESENTATION RESULTS... 82

APPENDIX C - FEATURES CONSIDERED.. 85

 9

APPENDIX D - FEATURE IMPORTANCE... 87

APPENDIX E - INK TYPE PREDICTION CONFUSION MATRIX 91

 10

 11

List of Figures

Figure 1-1. Our hypothesis: We expect an interpreter that predicts expected ink sample

type and dispatches to appropriate specialized interpreters to be close in accuracy

to an interpreter with user-supplied a priori knowledge of expected type. This

new interpreter also will be far more accurate than a default interpreter that uses

no ink sample type information. ... 20

Figure 2-1. (a) Hand-drawn box-and-pointer diagram, (b) CLP’s interpretation

[Chevalier, 2007] (c) Hand-drawn chemical structure, (d) Interpretation re-

rendered [Ouyang & Davis, 2007].. 22

Figure 3-1. The common interpreter interface that we use within CLP and for our

experiments. .. 26

Figure 3-2. Representative examples selected from the field of (a) introductory computer

science; (b) introductory chemistry, for training and evaluating our interpretation

system. .. 27

Figure 3-3. A simplified ink database schematic used in our system. 29

Figure 4-1. Sample ink type prediction experiments that we ran are shown together with

their expected type classes. ... 35

Figure 4-2. Examples of features F1 through F17 are illustrated in this diagram. 37

Figure 4-3. This visualization highlights important extracted features. We display

extracted features, with many similar ones grouped together for simplicity, on the

horizontal axis, and list different experiments on the vertical axis. The colored

grid shows a combination of 3 feature selection algorithms (SVM weight,

GainRatio and InfoGain) each as individual RGB color channels, with bright

colors representing the most important features and dark colors representing the

least. For the features grouped together, we used average value of the weight

 12

obtained for all features in the group. (A monochrome breakdown is in Appendix

D for non-color printing.) ... 39

Figure 4-4. Prediction accuracy improves with dimensionality reduction algorithms (such

as InfoGain, etc.) over the baseline of using all features with SMO for both (a) K-

fold; and (b) leave-one-out cross validation. .. 41

 Figure 4-5. These graphs show how prediction accuracy varies for three different

machine learning algorithms (SMO, J48 and Naïve Bayes) using SVM-Weight as

a feature selector for both (a) K-fold; and (b) leave-one-out cross validation...... 42

Figure 4-6. Mean prediction accuracy grouped by number of types using (a) K-fold; and

(b) leave-one-out cross validation. The mean accuracies decrease with more

types. ... 47

Figure 5-1. A simple schematic demonstrating the Dynamic Dispatch Interpreter at work.

... 52

Figure 5-2. This schematic shows how Nested Dynamic Dispatch Interpreters work with

one level of nesting. .. 54

Figure 5-3. A schematic of a simple Cross Validation Interpreter with K-folds is shown.

... 55

Figure 5-4. A schematic of a simple Nested Cross Validation Interpreter with K-folds is

shown. ... 56

Figure 5-5. This graph shows overall interpretation accuracy: the INKv3 interpreter was

provided with contextual type information and performed the best at 89% for all

samples; our interpreter NCVI-10 achieved a comparable 87% without such

information, better than Microsoft’s interpreter at 62%. 59

Figure 7-1. A schematic showing a new architecture to support integration into our

dynamic dispatch interpreter (DDI) of independently developed ink interpreters.

... 64

Figure D-1. This visualization summarizes the work of the SVM Weight feature selection

algorithm, highlighting the important features among all features that we

extracted with darker cells. ... 88

 13

Figure D-2. This visualization summarizes the work of the GainRatio feature selection

algorithm, highlighting the important features among all features that we

extracted with darker cells. ... 89

Figure D-3. This visualization summarizes the work of the InfoGain feature selection

algorithm, highlighting the important features among all features that we

extracted with darker cells. ... 90

 14

 15

List of Tables

Table 2.1: Interpretation results for four ink samples of sequences and overall accuracies

... 23

Table 2.2: Interpretation accuracy results showing improvement by number biasing 24

Table 4.1: The ink type prediction experiments we conducted .. 36

Table 4.2: The features we considered ... 38

Table 4.3: Expected type prediction accuracy in percent for different groups of

experiment classes using 10-fold cross validation with SMO. 43

Table 4.4: Expected type prediction accuracy in percent for different groups of

experiment classes using leave-one-out cross validation with SMO.................... 44

Table 4.5: Peak prediction accuracy ranked by number of types 46

Table 4.6: Features extracted and their effectiveness in distinguishing types 48

Table 5.1: Base type results in percent for our different interpreters on the same data set

grouped by the 5 base types for the introductory computer science domain........ 58

Table A.1: List of 181 representative examples sorted by their Representative ID (Rep

ID) number, showing the example string/diagram shown to students, and the

expected semantic representation (simplified from XML form) 71

Table A.2: List of 181 representative examples sorted by their Representative ID (Rep

ID) number, showing the expected type and sample student (the author’s) ink... 77

Table B.1: Representation results for our different interpreters on the same data set

grouped by the different representative examples in the field of introductory

computer science... 82

Table C.1: Features we considered, their descriptions and our hypotheses...................... 85

 16

Table E.1: Confusion matrix of our classification over 8 expected type classes for all

1958 samples using the SMO classifier and InfoGain feature selection algorithm.

Precision (P), recall (R) and F-measure (F) values are also shown for each class.

... 91

 17

Chapter 1

Introduction

Ink interpretation systems play a critical role in enabling more “intelligent”

computers that are capable of understanding what a user has written, beyond mere digital

dots on a plane. Such interpretation systems need to be highly accurate [Giudice &

Mottershead, 1999], [LaLomia, 1994] in parsing a variety of handwritten text and

diagrams into a digitized semantic representation in order to be useful for higher-order

processing by other applications. Digital ink interpretation has grown increasingly

important as tablet PCs become more pervasive in today’s society, especially in

classrooms. Tablet PCs offer users the ability to transcribe notes digitally in the users'

own handwriting, using a stylus and screen as easily and naturally as pen and paper.

This thesis reports a new method that uses ink type prediction and dynamic

dispatch as the basis for an ink interpretation system capable of high ink interpretation

accuracy over multiple domains. Our novel approach uses machine learning techniques

to extract features from ink strokes to predict the type of the ink, thus identifying its

domain, then dispatches interpretation to well-suited domain-specialized interpreters

based on the particular type. This approach is able to achieve higher overall

interpretation accuracy than existing systems, and allows scaling of our interpretation

system, something currently not possible with domain-specialized interpreters.

1.1 Motivation

There are many domain-specialized interpreters that are capable of producing

highly accurate interpretations, but only of ink samples within their own domains. These

domain-specialized interpreters are developed concurrently by many researchers and are

 18

difficult to integrate into systems that could benefit from using them. Ink interpretation

systems are thus often plagued with problems of poor accuracy because they are limited

in scope or cannot accurately identify the best interpreter to choose from a set of

interpreters. Our goal, which resulted in the work described in this thesis, was to deploy

an ink interpretation system capable of high interpretation accuracy over several domains.

The scenario is this one: We have a digital ink sample that belongs to a particular

domain, e.g., Scheme expressions, but we do not know, or want to have to specify a

priori, which of the interpreters in our system should be used to interpret the ink. Some

approaches choose upfront the interpreter to use, with information provided externally by

a user, for example. Others choose the best interpreter based on the highest ranked

confidence measure. Our novel approach uses machine learning, on ink stroke features

of various possible ink types, to predict the correct interpreter for a particular ink sample,

before dispatching interpretation calls to that interpreter.

1.2 Overview

We have created a common Interpreter framework to support a variety of

interpreters for different domains. To evaluate our novel idea, we create an ink type

prediction module that uses machine learning to differentiate between different ink

answer types and to predict the most suitable type based on extracted features from the

ink. We then build upon the Interpreter framework by creating dynamic dispatch

interpreters that utilize information from ink type prediction to improve interpretation

accuracy. This entire interpretation system is writer-independent, and operates

synchronously on a completed ink sample, making full use of the rich dynamic features

found in digital ink.

We tested our prototype in an application developed by our group, which depends

on highly accurate ink interpretation. The application, called Classroom Learning Partner

(CLP), consists of a network of tablet PCs that run software for posing in-class questions

to students, interpreting their handwritten answers, and aggregating the answers into

equivalence classes. We have shown that such systems hold great promise for improving

student interaction and learning in classrooms [Koile & Singer, 2006], [Koile et al,

2007a], [Koile et al, 2007b]. For ink interpretation systems to be used in the classroom,

 19

however, high ink interpretation accuracy rates are necessary for instructor and student

confidence in the system. A limitation of the original Microsoft interpreter, used in our

first prototype of CLP, was its inability to accurately interpret ink samples beyond the

domain for which it was trained—cursive English text. Early work on CLP [Rbeiz, 2006]

improved interpretation accuracy for the domain of introductory computer science by

introducing instructor-specified expected types for answers to questions; different

interpretation methods were used for each type. This improvement, however, was not

easily scalable to include more domain-specialized interpretation, e.g., chemical

diagrams.

Using CLP as our test environment, we conducted experiments in which students

were instructed to write on the tablet PCs as they normally would write on paper, without

needing to follow any special gesture-based recognition schemes such as Graffiti for the

original Palm Pilot [Rubine, 1991]. Such gesture-based schemes have a high learning

curve which we believe would affect a student’s ability to write as he or she normally

would, impeding regular writing and note-taking. We required no individualized

handwriting training in our experiments, as the nature of coursework presents very little

time for students to train handwriting recognition systems to learn individual

handwriting. Students may choose to drop the class, wasting early effort, or the

instructor may come up with new material after training is done. No real-time feedback

of the interpretation result was provided, allowing students to write freely without

becoming distracted by worrying about inaccurate interpretation. With sufficiently high

ink interpretation rates, a few interpretation errors can be tolerated by the instructor, who

is the only one able to view these errors.

The hypothesis investigated in this thesis is the following: Ink interpretation

accuracy of an interpreter that dynamically dispatches to a specialized interpreter based

on a predicted ink sample type will be close in accuracy to an interpreter that requires a

priori expected type information. This hypothesis is illustrated visually in Figure 1-1. In

addition, we expect our proposed ink interpretation method to alleviate limitations of our

current interpreter that depends on a priori type information, namely, low accuracy when

expected types are unknown, or when ink samples representing student answers are

incorrect and of an unexpected type.

 20

Figure 1-1. Our hypothesis: We expect an interpreter that predicts expected ink sample type and

dispatches to appropriate specialized interpreters to be close in accuracy to an interpreter with

user-supplied a priori knowledge of expected type. This new interpreter also will be far more

accurate than a default interpreter that uses no ink sample type information.

1.3 Thesis Outline

We describe background on domain-specialized interpreters and biasing with

expected types in Chapter 2. Chapter 3 describes our experimental approach and

implementation. We go into details and results of ink type prediction in Chapter 4, and

dynamic dispatch interpretation in Chapter 5. Chapter 6 describes related work in the

field of ink interpretation. Finally, Chapter 7 summarizes our main contributions and

describes future work beyond the scope of this thesis.

CLP

Interpreter

Expected

Type

Default

Interpreter

 Ink

Result

Increasing Interpretation Accuracy

 21

Chapter 2

Background

 In this chapter we describe relevant background on handwriting recognition so

that our work can be placed in the context of current and past research. We discuss

example domain-specialized interpreters and how biasing interpreters improves

interpretation accuracy. Related work and alternative approaches to handwriting

recognition are discussed in Chapter 6.

2.1 Domain-Specialized Interpreters

There has been much recent interest in advanced sketch interpretation systems.

Many of these systems have demonstrated that domain knowledge can be used to

overcome ambiguities and hence improve interpretation accuracy (e.g., [Sezgin & Davis,

2005], [Calhoun et al, 2002], [Shilman et al, 2002, 2004], [Gennari et al, 2005], [Kara &

Stahovich, 2004]).

 Research on domain-specialized interpreters for CLP has been conducted, and

these interpreters can recognize a variety of ink types with varying degrees of success:

boolean, numbers, sequences, Scheme expressions, box-and-pointer diagrams, and

diagram markings. [Rbeiz, 2006] [Chevalier, 2007] [Wu, 2008] [Koile et al, 2007b]

Figures 2-1 (a) and (b) show, respectively, an example of a box-and-pointer diagram and

its CLP interpretation.

 22

Figure 2-1. (a) Hand-drawn box-and-pointer diagram, (b) CLP’s interpretation [Chevalier, 2007]

(c) Hand-drawn chemical structure, (d) Interpretation re-rendered [Ouyang & Davis, 2007]

A prototype chemical structure interpretation system also has been developed by

T. Ouyang and Prof. R. Davis of the Sketch Understanding Group at MIT [Ouyang &

Davis, 2007]; it is capable of interpreting hand-drawn diagrams of organic chemistry

compounds, using the graphical vocabulary and drawing conventions routinely employed

by chemists. Figures 2-1 (c) and (d) show a chemical structure and its rendered

interpretation in that system.

 With a restricted domain, researchers can make assumptions about the possible

ink inputs and obtain higher interpretation accuracy as a result. Table 2.1, for example,

shows how we improved sequence interpretation for CLP over several iterations of the

ink segmentation and interpretation algorithm, which we call INK. The latest version of

our sequence interpreter uses a mixture of sequence subtypes (number, single character or

string), and several flags (e.g., whether commas, brackets, or ampersands are present) as

heuristics for interpreting the ink more accurately than ordinary English interpreters.

This higher accuracy, however, is conditioned on obtaining a priori information about the

expected domain (or equivalently, expected type and expected flags) of the ink input.

(a) (b)

(c) (d)

 23

Table 2.1: Interpretation results for four ink samples of sequences and overall accuracies

2.2 Biasing With Expected Type Information

Recognition systems on handwritten mailing addresses have specific templates

and restricted dictionaries to interpret state abbreviations and zip codes more accurately

[Plamondon & Srihari, 2000]. The form-design tool of Scribble [O’ Boyle et al, 2000]

allows a known field within a form template to be annotated with markup indicating the

field input type from a range of possibilities such as dates, emails, credit card numbers,

etc. This approach improves accuracy during interpretation of the ink on the form.

 As mentioned in our introduction, CLP also uses expected types to bias

interpretation of the ink for better accuracy [Rbeiz, 2006]. When the instructor knows

that the students’ answers should be of a particular type, a number, for example, an

expected type is defined for that exercise question using an authoring tool [Chen, 2006]

that we developed for use in preparing class presentation material. During class, all

student ink sample inputs for that exercise, in turn, are annotated with that expected type.

Each ink input sample is then dispatched to the best domain-specialized interpreter for

the expected type, and the interpretation results are passed on to the next component

(CLP's aggregator) [Smith, 2006].

1 INKv2.2 is this author’s work as published in [Koile et al, 2007b].
2 INKv1.5 is a result of Rbeiz’s unpublished research in 2006 after his thesis.
3 INKv1 is Rbeiz’s interpreter as published in [Rbeiz, 2006].

 INKv2.2
1
 INKv1.5

2
 INKv1

3
 Microsoft

Ink
Interpreted % Interpreted % Interpreted % Interpreted %

[1,2,3] 100.00 TI,2,3] 71.43 ->,23] 57.14 [I,23] 71.43

[1,3,6,10,15] 100.00 [1,3,6,10I15] 92.31 [li3,6,10,15] 84.62 [1,3,6,10115] 92.31

[d,e,f,g,a,b,C] 100.00 [defy,abc] 60.00 [defy,abc] 60.00 [defog,abc] 66.67

[A,B,E,F,G,k,
L,H,C,I,J,D]

100.00
[A,B,E,F,G,k,
L,H,C,I,JD]

96.00
[ABE,F,Gk,H,
->,JD]

64.00
[ABE,Fatal,H,
CI,JD]

64.00

All Sequence Accuracy 89.33 73.48 79.58 70.92

 24

 We illustrate this technique with a simple example—applying biasing to

numerical strings that are easily misinterpreted as characters of the Roman alphabet (e.g.,

the ink strokes that a user writes for “11” may be interpreted as two lowercase-Ls of the

alphabet). When we performed the experiments with this example, an accuracy of 99%

was obtained compared to 89% without biasing (see breakdown in Table 2.2). Rbeiz’s

earlier study of 21 representative examples of student answers across 5 expected types

also showed that interpretation with this biasing approach achieved a higher accuracy

(87% compared to 73%).

Table 2.2: Interpretation accuracy results showing improvement by number biasing

Number Possibly Confused As Number Biasing (%) No Biasing (%)

0 O 100.00 53.85

1 I or l 100.00 36.36

2 Z 100.00 100.00

5 S 100.00 100.00

6 G 100.00 100.00

7 T or > 100.00 100.00

9 g 100.00 90.91

10 IO or lo 100.00 100.00

11 II or ll 95.45 95.45

50 so 90.91 81.82

55 SS 100.00 100.00

100 loo 100.00 100.00

101 IOI or lol 96.67 96.67

Total Accuracy 98.70 88.86

 The use of expected types can be extended beyond the interpretation of regular

English strings. With expected types, CLP can differentiate the possibilities of domain-

specialized ink inputs from students: whether they are box-and-pointer diagrams, Scheme

expressions, markings, and in future, chemical structures or circuit diagrams.

Thus, we have shown in this previous work of ours that biasing an ink interpreter

with information about expected types improves interpretation accuracy. Our next

challenge, addressed in this thesis, was to extend this idea to decrease dependency on

explicit a priori labeling of expected type information.

 25

Chapter 3

Approach

In this chapter, we describe the design of an interpretation system that

automatically takes advantage of the idea that biasing ink samples with type information

improves interpretation accuracy. The interpretation system employs machine learning

techniques to predict the ink sample type, and then dispatches interpretation calls to an

appropriate ink interpreter specialized for that type. The system is writer-independent

and operates synchronously on a completed ink sample, a method that has proven

advantageous for our classroom application [Rbeiz, 2006]. Unlike scanned handwritten

images or optical character recognition (OCR), we make full use of the dynamic nature of

digital ink for our interpretation system. Our interpretation framework is designed for

online digital ink interpretation, and allows different interpreters to be added with relative

ease. This chapter describes this framework and presents a high-level overview of our

ink type prediction using machine learning and our dynamic dispatch method. Our

system has been integrated with CLP, allowing us to easily deploy this approach in the

classroom. We describe an evaluation of our idea using ink samples collected in a user

study.

3.1 Dynamic Ink Strokes

The dynamic nature of ink strokes plays an important role in our work. Digital

ink samples captured through pen-based input, e.g., using a tablet PC, contain a myriad of

information not present in static scanned images of user handwriting. Examples of such

information are the number of strokes written or drawn, the individual stroke order over

the entire ink sample, and the positions of sampled points in each stroke. This

information can aid recognition, e.g., overlapping strokes of different characters that may

 26

have been grouped inaccurately when rasterized in a scanned image can be easily

identified as disjoint using stroke information. The information, unfortunately, also can

mislead interpreters, e.g., two different user-written samples may look the same visually,

but may have been written in different stroke orders. Machine learning with feature

selection, however, as described in Chapter 4, allows us to use dynamic stroke

information effectively. In this thesis, we focus on improving the interpretation accuracy

of digital ink, for which this information can be captured with tablet PCs.

3.2 The Interpretation Framework

Figure 3-1. The common interpreter interface that we use within CLP and for our experiments.

We have created a common Interpreter interface, where "common" refers to

the ability to "plug in" various interpreters for use in our CLP prototyping environment.

Figure 3-1 depicts a simple diagram of this Interpreter interface. With this

framework, we allow the interpretation module of CLP originally created by Rbeiz to be

extended easily as we develop newer interpreters. We also have as a goal, the ability to

plug in interpreters developed by researchers working in other domains.

Examples of deployed interpreters that have taken advantage of our framework

are the box-and-pointer diagram interpreter [Chevalier, 2007], a marking interpreter [Wu,

2008], our specialized sequence interpreters and post-2006 versions of our CLP general

interpreters. Using this same Interpreter interface, we also have been able to run

experiments comparing the accuracies of newer versions of the same interpreters and the

accuracies of different algorithms. Details of how our new ink interpreter fits into this

general interpretation framework are discussed in Chapters 4 and 5.

Interpret Ink

Interpretation
Result

Interpreter

 Interface
[1,kg]

 27

3.3 Representative Examples

For this thesis, we selected a total of 181 different representative examples of

possible student answers. Some of the examples are based on actual tutorial answers

from past recitations at MIT, while the others are chosen because they are highly

representative of the domain and the answer types we have seen in the classroom.

Eighty-eight of these examples lie within the domain of introductory computer science

(including the 21 from Rbeiz’s thesis) and 93 within introductory chemistry, since these

are the two domains in which CLP is being used. Figure 3-2 shows several of these

representative examples and their types. We list our full set of representative examples in

Appendix A.

Figure 3-2. Representative examples selected from the field of (a) introductory computer

science; (b) introductory chemistry, for training and evaluating our interpretation system.

3.4 Improving Ink Interpretation Accuracy

As stated earlier, the main idea explored in this thesis is that of using ink type

prediction and the dynamic dispatch to specialized interpreters to improve ink

interpretation accuracy. A problem faced by most ink interpretation systems is that many

domain-specialized interpreters exist, and the systems cannot identify the best interpreter

(a) (b)

 28

for interpreting specific samples of ink. Many interpretation systems address this issue

by relying on confidence measures, which rank output results from candidate interpreters,

often qualitatively. Our novel approach differs significantly from these confidence-based

systems: Instead of performing potentially costly recognition procedures on many

different domain-specialized interpreters to determine the confidence of the interpreted

result, we predict the correct interpreter to which to dispatch the ink sample.

Our approach is similar to having an instructor provide a priori information about

the interpreter to be chosen based on a given expected type, except that we use machine

learning to predict this expected type purely from the ink sample and a list of available

interpreters and their associated ink sample types. In the following two chapters, we

describe in detail the two components to our approach: ink type prediction and using

dynamic dispatch. Below we give a justification and preview for each of these

components.

• Ink Type Prediction. Type prediction has two important benefits: (1) it avoids

the inefficiency of having to choose a candidate interpreter by running all possible

interpreters and ranking their outputs, and (2) it does not require a priori

specification of an expected answer type for each ink sample. We accomplish

type prediction by using machine learning classification techniques, described in

Chapter 4: Our machine learning algorithms select relevant features for many

different types of ink samples, then, in turn, use those features to identify the

types of unseen ink samples.

• Dynamic Dispatch. After our machine learning component has predicted an ink

sample's type, our system dispatches interpretation calls to an interpreter

appropriate for that particular type. Our previous results indicate that using

specialized interpreters improves overall accuracy, and our dispatch mechanism

provides an efficient way to take advantage of several interpreters, as described in

detail in Chapter 5.

 29

3.5 Implementation

In order to conduct user study experiments and evaluate our ink interpretation

system, we created the following modules:4

• Ink Collector. We created this ink collection application to perform experiments

on user-provided samples of digital ink. This stand-alone application displays

either a string of type-written text or computer-generated images of our above-

mentioned representative examples, and asks users to write or draw what they see.

We displayed our example text with a standard default typeface (in order not to

introduce any bias in using a person’s handwriting), but asked users to write on

the tablet PC as they normally would on a piece of paper. The user’s order of

strokes, scale and speed in the ink sample were preserved in the collection. No

feedback was provided to the user at each step in order to simulate writing on a

piece of paper, and to avoid worrying the user with poor intermediate recognition.

Figure 3-3. A simplified ink database schematic used in our system.

4 Our system is implemented in C#, which allows easy access to the Microsoft tablet PC software
development kit, and easy integration with CLP, which also is implemented in C#.

 30

• Ink Database. We collected all user ink samples for training and testing prior to

the conduction of our experiments and stored them in this database. This database

allowed us to have a consistent dataset for all our experiments, so that we could

compare results of different interpreters and type prediction algorithms without

bias. After creating representative examples in the database in a single table, we

linked all samples thereafter collected to their RepresentativeIDs as foreign

keys and stored them in a user samples table with SampleID as the primary key.

Throughout our system and this thesis, we use RepresentativeID (or RepID in

short) as a symbolic reference to a specific representative example, and SampleID

as a symbolic reference to a specific user-provided sample. Figure 3-3 shows a

simplified database diagram of our implementation of the database in Microsoft

SQL Server 2005.

• Ink Recognition Accuracy Evaluator. We created this simple evaluator module

to generate tables of recognition results. This evaluator allows us to use the same

dataset to compare several interpreters that implement our Interpreter interface.

Accuracy is measured by the edit distance [Atallah, 1998] between what was

interpreted and the original example string used for input.

• Ink Type Predictor. Our ink type predictor is the module that carries out the

process of ink type prediction (described in detail in Chapter 4). We wrote the

feature extraction and data mining code that took an input of digital ink objects,

which we represented using the tablet PC software development kit. We utilized

the Java implementation of Waikato Environment for Knowledge Analysis

(WEKA) [Witten & Frank, 2005] for running our machine learning and feature

selection experiments. We created several utility classes in C# that interact with

WEKA libraries using IKVM.NET 5 , which allows Java-C# interoperability.

Accuracy results were stored in text result files for easy viewing, together with

5
 http://www.ikvm.net/index.html

 31

evaluation summaries. We generated all graphs and visualizations in Python

using matplotlib6 and the Python Imaging Library (PIL)7.

• Domain-Specialized Interpreters. We created most of our domain-specialized

interpreters in C# to allow for easy integration. For interpreters that make use of

external recognition systems, we created special wrapper classes in C# that act as

an intermediary layer between our system and the external modules.

Communication between our system and the external modules took place either

through socket connections (like when connecting to LADDER [Chevalier,

2007]) or through IKVM.NET.

3.6 User Study

We ran two user studies to collect ink samples for all the representative examples

we had: twelve students provided ink samples for computer science and ten students

provided ink samples for chemistry. All the students had varying backgrounds and

majors (computer science, chemistry, among others) with different levels of tablet PC

experience. Students were allowed to stop providing ink samples at any point in time of

the study. A total of 1958 samples of ink were obtained for our type prediction and

dynamic dispatch experiments described in Chapters 4 and 5, with evaluations covered in

Sections 4.7 and 5.5 respectively.

6 http://matplotlib.sourceforge.net/
7 http://www.pythonware.com/products/pil/

 32

Chapter 4

Ink Type Prediction

We describe the details of our approach to ink type prediction in this chapter. We

examine in more detail the motivation for doing type prediction in the first place, and

describe what features are extracted from ink samples and used as input to our machine

learning algorithms. Since we want to perform type prediction across many different

types of scenarios and experiments, we show how we use feature selection algorithms to

generalize the ink interpretation problem and select the relevant extracted features that

are useful for different scenarios. Finally, we evaluate how well we can predict ink types

for our experimental data set.

4.1 Motivation

 Our motivation in using ink type prediction is based on the superiority of this

approach when compared to other approaches that use confidence measures or supply a

priori contextual information.

Using confidence measures for selecting the best domain-specialized interpreters

has several limitations. First, not all interpreters can accurately measure a confidence

value for their interpretation result. Some simple interpreters that are based on heuristics

do not have confidence measures at all. Second, using a confidence-based ranking

scheme requires that a system interpret the ink using all interpreters, a potentially

computationally costly process. If an interpreter is known to use many resources for its

domain of interpretation, e.g., using an exponential brute-force approach, and the ink to

be interpreted does not belong to that domain at all, we will have wasted resources. As

such, we aim to predict the domain-specialized interpreters by determining the expected

type of the ink, so that only one interpreter does the interpretation work that is required.

 33

Ink type prediction is also beneficial when we do not know the expected type of

an ink sample and thus cannot determine the single correct interpreter to use beforehand.

In a classroom, for example, we would expect a student’s answer to the simple question

“three + one = ?” to be “four.” There may be students who write “4” instead, however,

which may be an equally valid answer, depending on the lesson (math vs. spelling, for

example). The answer to a simple yet ambiguous question “What follows in this

sequence: 1, 4, 9?” may not be just “16” but a sequence such as “16, 25, 36.”

 CLP removes the ambiguity in student answers such as “4” vs. “four” with an

aggregator module. Before passing the representations to a smart aggregator that groups

semantically equivalent results, however, we still need a robust interpreter that can

interpret both “four” and “4” accurately, and convert each to the desired semantic

representation. Thus, it would be beneficial for an interpreter to achieve a high level of

accuracy without knowledge of the expected type information, so that it can correctly

interpret the different types of answers that may be supplied for the same question. We

show that we can achieve this accuracy by predicting the expected type using machine

learning.

4.2 Approach

 In this section, we cover the general steps taken to obtain maximum accuracy in

ink type prediction and to evaluate our methodology. We describe a high level overview

of how we use machine learning to predict ink types, what features we extract, what

feature selection algorithms we use to choose important features, and how accurately we

can predict ink types with different machine learning algorithms. We then detail each of

the critical steps in individual sections of this chapter.

• The Intuition. Ink type prediction is a classic class prediction problem for which

machine learning is well-suited. The problem can be formulated as such: We

have a new ink sample of a student’s answer that could potentially be any of

several expected types (e.g., number, string, Scheme code, etc.). Given a

classifier that has been trained with many other previously obtained and correctly

 34

classified answers, we ask: Can we predict the expected type of the new ink

sample? We hypothesize, and show, that we can.

• Features to Extract. The dynamic nature of digital ink strokes provides many

possible features to extract for machine learning. We consider both temporal and

spatial features of the ink samples. We also extract information about individual

strokes as well as the vector of all strokes in each ink sample. We choose some

distinct features using domain knowledge to differentiate some of the classes;

others are generic features that we feel might be useful based on related work.

• Dimensionality Reduction. There are many features that we may extract from

the digital ink strokes, but not all of them are critical to helping us in ink type

prediction. To prevent overfitting of our class predictors over many useless and

counter-effective features, we use feature selection algorithms, also known as

dimensionality reduction algorithms, such as information gain or principal

components analysis, to prune away unimportant features. We evaluate the

effectiveness of several feature selection algorithms to determine those that

increase prediction accuracy over the baseline of using all features.

• Machine Learning Algorithms. In the absence of prior domain knowledge for

our classification problem, we evaluate prediction accuracy using several machine

learning algorithms with distinctive learning methods, such as support vector

machines (SVMs), decision trees and probabilistic Bayesian networks. We show

how the coupling of different machine learning algorithms with any one of

multiple feature selection algorithms can improve prediction accuracy for

different sets of type prediction experiments.

4.3 The Intuition

Ink type prediction is a classic class prediction problem in machine learning:

using extracted features, we predict the class (type, in our case) of a particular ink

sample. We also use binary classification to predict flags that are indicative of particular

 35

types. These flags can be used to further narrow the scope of type prediction

possibilities. If our machine learning component predicts that a sample is a sequence, for

example, and also that the sample has a "comma” flag, the sample type can be specialized

to a sequence that is comma- or space-delineated, as opposed to just a sequence with

elements that could be delimited by anything. This delimiter information is used by the

sequence interpreter in its segmentation algorithms [Breuel, 2002], which employ

heuristics to section ink samples into smaller parts to simplify and improve interpretation.

If, for instance, the presence of commas as delimiters is predicted, then the segmentation

algorithm within the sequence interpreter will use this fact to first identify commas,

before extracting sequence elements. If the comma flag is not predicted, the sequence

interpreter will use the variance in spacing distances to determine segmentation before

extracting the elements. Thus, we use machine learning classification to predict types, in

some cases further narrowing type possibilities based on the presence of particular ink

strokes.

Figure 4-1. Sample ink type prediction experiments that we ran are shown

together with their expected type classes.

To observe the ability of classifiers to predict expected types and flags accurately,

we ran a number of different experiments over 1958 ink samples that were of different

string sequence

[sequence-subtypes]

number sequence

single char sequence

[pi-types] [chemistry-benzene]

symbol

number

string

diagram

sequence

string

 36

representations and types. Each experiment comprised a subset of the types we wanted to

test prediction for. Figure 4-1 shows several ink type prediction experiments that we ran.

Our hypothesis was that the correct type can be accurately predicted, and that greater

accuracy will be achieved where there are fewer types in the experimental subset.

We obtained some of the types subsets for our experiments from actual questions

retrieved from recitation material in the fields of computer science and chemistry. Other

subsets that we hypothesized to be useful for our experiments were added to test the

limits of the classifiers. Table 4.1 lists the ink type prediction experiments that we

conducted and their expected types. In the remainder of this thesis, we will refer to these

experiments by the names assigned in the following table.

Table 4.1: The ink type prediction experiments we conducted

No. Experiment Name Expected Types (Classes)

1 5-types Number | String | True-False | Sequence | Scheme Expression

2 no-number String | True-False | Sequence | Scheme Expression

3 no-string Number | True-False | Sequence | Scheme Expression

4 no-tf Number | String | Sequence | Scheme Expression

5 number-scheme Number | Scheme Expression

6 number-sequence-scheme Number | Sequence | Scheme Expression

7 number-sequence Number | Sequence

8 number-string-sequence Number | String | Sequence

9 number-string-tf Number | String | True-False

10 number-string Number | String

11 sequence-commas Comma | No-Comma

12 sequence-scheme Sequence | Scheme Expression

13 sequence-subtypes Single Character | Number | String

14 string-scheme String | Scheme Expression

15 string-sequence-scheme String | Sequence | Scheme Expression

16 string-sequence String | Sequence

17 tf-sequence-scheme True-False | Sequence | Scheme Expression

18 tf-string-sequence True-False | String | Sequence

19 tf-string True-False | String

20 pi-types Symbol | Number | Fraction

21 scheme-bap Scheme Expression | Diagram (Box-and-Pointer)

22 chemistry-benzene Diagram | String | Sequence

23 all-chemistry Diagram | String | Sequence

 37

4.4 Features to Extract

The dynamic nature of digital ink strokes allows many possible features to be

extracted for use by machine learning algorithms. Unlike a rasterized image from a

scanner, we can use the time and location information available in the strokes to create

feature vectors for each ink sample to use in machine learning. To maximize the

information extracted, we considered both temporal and spatial features of the ink

samples. We also extracted information about individual strokes as well as the vector of

all strokes in each ink sample.

Figure 4-2. Examples of features F1 through F17 are illustrated in this diagram.

With basic knowledge of our domain of expected answer types, we chose several

distinct features to differentiate classes; others were generic features that we felt would

prove useful to the type domains of short written text or diagrams. Some of the features

that we considered are listed in Table 4.2 and illustrated with examples in Figure 4-2.

Full descriptions of the features and our hypotheses of their effectiveness in

distinguishing types are listed in Appendix C.

1
2

3

4

5 6
7 8 9 10 11

12 13 F1

F4

F3

1 2 3 5 4 6 7 8 F2
F12,

F13

 F8

F9

F6

F7

F10-11,

F16
F14

F17

F15

7

F5

 38

Table 4.2: The features we considered

No. Name

F1 Total number of strokes

F2 Total number of positive inter-stroke adjacent spacing

F3 Sample height span

F4 Sample width span

F5 Sample width-height ratio

F6 Stroke area density of points

F7 Stroke horizontal density of points

F8 Stroke heights

F9 Stroke widths

F10 Stroke lengths

F11 Stroke points count

F12 Stroke adjacent spacing

F13 Stroke adjacent spacing differentials

F14 Number of stroke intersections

F15 Stroke angles

F16 Stroke speeds

F17 Similarity of a stroke to a number

 For each feature that applies to individual strokes (F6-F17), we extracted

information about the smallest and largest three values, as well as the 25th, 50th and 75th

percentiles. We also considered the entire ink sample as a vector of strokes (for each of

these features F6-F17) and used this vector as an additional collective feature. For these

feature vectors, we calculated their means and variances as additional scalar features.

4.5 Dimensionality Reduction

Not all extractable features are critical to accurate ink type prediction. To prevent

overfitting of our type predictors over many useless and counter-effective features, we

used feature selection algorithms to prune away the unimportant features.

Using our feature set, we evaluated the effectiveness of several well-known

feature selection techniques: information gain (InfoGain), information gain ratio

(GainRatio) [Quinlan, 1986], principal components analysis (PCA), Relief-F [Robnik-

Sikonja & Kononenko, 1997], and ranking with the square of the weights assigned by an

F
ig
u
re
 4
-3
.
T
h
is
 v
is
u
al
iz
at
io
n
 h
ig
h
li
g
h
ts
 i
m
p
o
rt
an
t
ex
tr
ac
te
d
 f
ea
tu
re
s.

W
e
d
is
p
la
y
 e
x
tr
ac
te
d
 f
ea
tu
re
s,
 w
it
h
 m
an
y
 s
im
il
ar
 o
n
es
 g
ro
u
p
ed
 t
o
g
et
h
er
 f
o
r

si
m
p
li
ci
ty
,
o
n
 t
h
e
h
o
ri
zo
n
ta
l
ax
is
,
an
d
 l
is
t
d
if
fe
re
n
t
ex
p
er
im
en
ts
 o
n
 t
h
e
v
er
ti
ca
l
ax
is
.
 T
h
e
co
lo
re
d
 g
ri
d
 s
h
o
w
s
a
co
m
b
in
at
io
n
 o
f
3
 f
ea
tu
re
 s
el
ec
ti
o
n

al
g
o
ri
th
m
s
(S
V
M
 w
ei
g
h
t,
 G
ai
n
R
at
io
 a
n
d
 I
n
fo
G
ai
n
)
ea
ch
 a
s
in
d
iv
id
u
al
 R
G
B
 c
o
lo
r
ch
an
n
el
s,
 w
it
h
 b
ri
g
h
t
co
lo
rs
 r
ep
re
se
n
ti
n
g
 t
h
e
m
o
st
 i
m
p
o
rt
an
t

fe
at
u
re
s
an
d
 d
ar
k
 c
o
lo
rs
 r
ep
re
se
n
ti
n
g
 t
h
e
le
as
t.

F
o
r
th
e
fe
at
u
re
s
g
ro
u
p
ed
 t
o
g
et
h
er
,
w
e
u
se
d
 a
v
er
ag
e
v
al
u
e
o
f
th
e
w
ei
g
h
t
o
b
ta
in
ed
 f
o
r
al
l
fe
at
u
re
s
in

th
e
g
ro
u
p
.
(A
 m
o
n
o
ch
ro
m
e
b
re
ak
d
o
w
n
 i
s
in
 A
p
p
en
d
ix
 D
 f
o
r
n
o
n
-c
o
lo
r
p
ri
n
ti
n
g
.)

40

SVM [Guyon et al, 2002]. We wanted to determine if feature selectors would improve

prediction accuracy over our baseline of using all features. Figure 4-3 displays a color-

coded visualization highlighting important features when we applied our feature selection

algorithms to the different experiments.

4.6 Machine Learning Algorithms

Using the WEKA library [Witten & Frank, 2005], we evaluated prediction

accuracy with several classification algorithms, each with a distinctive learning method.

The algorithms were: an SVM trained with sequential minimal optimization (SMO)

[Platt, 1998], a C4.5 decision tree [Quinlan, 1993] (implemented as J48 in WEKA), and a

probabilistic Naïve Bayes classifier. We computed the accuracy of our class predictions

using stratified cross-validation that was randomized across each of the training and test

sets.

 The goal of the evaluation described in this thesis is to highlight the variation in

accuracy for a selection of classifiers, instead of finding the perfect classifier for our ink

type prediction. We have chosen a representative set of classifiers and feature selection

algorithms to show the feasibility of accurate ink type prediction using various methods;

other researchers furthering this work may choose to use their preferred classifiers and

feature selectors.

4.7 Evaluation

 We evaluated ink type prediction with two models: K-fold cross validation and

leave-one-out cross validation. Using a uniform distribution, we randomly stratified our

ink data sets with K = 10 folds across all the representative examples in each experiment.

We then selected each fold to be the test set and used the remaining (K – 1) folds for

training. The results were then averaged across all K folds.

We performed leave-one-out cross validation by leaving all samples of a single

representative example out of the training set each time, and testing classification with

each sample of that representative example. The results were then averaged across all

representative examples.

 41

Figure 4-4. Prediction accuracy improves with dimensionality reduction algorithms (such as

InfoGain, etc.) over the baseline of using all features with SMO for both (a) K-fold; and (b)

leave-one-out cross validation.

(a)

(b)

Using Top N FeaturesUsing Top N FeaturesUsing Top N FeaturesUsing Top N Features

Using Top N FeaturesUsing Top N FeaturesUsing Top N FeaturesUsing Top N Features

 42

 Figure 4-5. These graphs show how prediction accuracy varies for three different machine

learning algorithms (SMO, J48 and Naïve Bayes) using SVM-Weight as a feature selector for

both (a) K-fold; and (b) leave-one-out cross validation.

(a)

(b)

Using Top N FeaturesUsing Top N FeaturesUsing Top N FeaturesUsing Top N Features with SVM with SVM with SVM with SVM----WeightWeightWeightWeight

Using Top N FeaturesUsing Top N FeaturesUsing Top N FeaturesUsing Top N Features with SVM with SVM with SVM with SVM----WeightWeightWeightWeight

 43

4.7.1 K-fold Cross Validation Results

Using a K-fold cross validation technique allowed us to obtain unbiased accuracy

results by preventing testing on the same samples that were used during training.

 Figures 4-4 and 4-5 display, for some experiments, the accuracy rates of

predicting the correct type according to the number of top features selected. We see that

there was no single best classifier, although SMO tended to perform better than the other

two learners. Each experiment also required a different optimum number of features to

obtain peak accuracy in type prediction. For Tables 4.3 and 4.4, we collected peak

accuracies for our five feature selection algorithms using the SMO classifier. Ranking

features by SVM weights performed extremely well, increasing prediction accuracy by

10% over the baseline of using all features in an experiment with five types. This feature

selector, however, uses a brute-force approach and is time-consuming. Other selectors

that employ estimating heuristics or greedy algorithms, such as Relief-F, InfoGain and

GainRatio, were able to achieve an improvement of 5% in much less time.

Table 4.3: Expected type prediction accuracy in percent for different groups of experiment

classes using 10-fold cross validation with SMO.

Experiment
All

Features

SVM

Weight
Relief

Info

Gain

Gain

Ratio
PCA

5-types 79.09 90.88 85.65 85.65 84.22 74.89

no-number 84.27 96.27 90.27 90.87 88.95 81.39

no-string 89.66 98.22 94.99 95.15 95.15 85.78

no-tf 82.23 92.10 86.62 86.73 84.21 79.16

number-scheme 100.00 100.00 100.00 99.73 100.00 100.00

number-sequence-scheme 89.54 99.81 94.95 95.31 95.67 87.74

number-sequence 99.69 100.00 100.00 100.00 99.69 100.00

number-string-sequence 87.11 94.14 88.72 88.57 88.72 86.23

number-string-tf 83.51 93.43 87.23 86.70 87.23 81.20

number-string 78.87 93.31 84.22 83.95 83.68 83.95

sequence-commas 87.97 100.00 93.98 95.08 95.62 90.16

sequence-scheme 86.89 99.75 93.68 92.96 93.44 93.93

sequence-subtypes 96.17 100.00 98.36 98.36 97.81 96.72

string-scheme 95.39 99.65 97.78 98.12 97.44 95.05

string-sequence-scheme 87.64 97.52 92.71 93.75 91.41 86.21

 44

Experiment
All

Features

SVM

Weight
Relief

Info

Gain

Gain

Ratio
PCA

string-sequence 97.96 100.00 98.51 97.96 98.33 96.48

tf-sequence-scheme 88.23 99.15 94.95 93.90 94.74 94.53

tf-string-sequence 91.88 99.00 95.69 95.86 94.70 90.39

tf-string 93.82 99.76 96.43 97.38 96.43 95.48

pi-types 95.08 98.36 98.36 98.36 96.72 96.72

scheme-bap 100.00 100.00 100.00 100.00 100.00 100.00

chemistry-benzene 98.00 100.00 100.00 100.00 100.00 100.00

all-chemistry 93.33 100.00 95.66 97.33 95.33 95.00

4.7.2 Leave-One-Out Cross Validation Results

This method of cross validation is important because it allows us to effectively

test that our hypothesis works even with our relatively small selection of representative

examples. Although we have a total of 181 representative examples presented in this

thesis, our individual experiments have ranges spanning only 5 representative examples

(e.g., chemistry-benzene with 3 types) to 88 representative examples (e.g., 5-types).

If we can show that a high accuracy of predicting types can be obtained without including

every representative example in the training set, then our system should be robust enough

for a larger universe of possible ink answers beyond the 181 examples we have chosen.

 We saw that leave-one-out cross validation still performed relatively well (see

Table 4.4), with peak accuracies lower by only 6-10% than those obtained with K-fold

cross validation. We discuss this observation later in Section 4.7.5.

Table 4.4: Expected type prediction accuracy in percent for different groups of experiment

classes using leave-one-out cross validation with SMO.

Experiment
All

Features

SVM

Weight
Relief

Info

Gain

Gain

Ratio
PCA

5-types 72.18 83.37 75.87 75.45 76.15 68.78

no-number 78.21 91.23 84.17 83.93 83.51 76.31

no-string 82.98 95.85 89.96 88.72 87.64 79.27

no-tf 74.95 87.75 77.76 77.79 76.51 72.91

number-scheme 99.72 100.00 100.00 99.75 100.00 100.00

number-sequence-scheme 83.58 98.42 90.47 88.58 88.38 81.33

number-sequence 99.07 100.00 99.76 99.30 99.43 99.76

 45

Experiment
All

Features

SVM

Weight
Relief

Info

Gain

Gain

Ratio
PCA

number-string-sequence 81.48 90.53 82.19 78.04 78.62 81.26

number-string-tf 73.71 90.51 76.19 75.86 77.22 75.91

number-string 74.61 92.77 79.86 81.73 82.80 78.54

sequence-commas 60.50 100.00 80.37 73.36 75.59 63.45

sequence-scheme 76.63 99.73 88.25 90.75 88.25 89.25

sequence-subtypes 74.05 95.95 85.52 81.93 80.50 76.22

string-scheme 92.56 99.52 96.46 96.79 96.20 93.66

string-sequence-scheme 81.72 94.23 86.48 86.89 84.83 81.98

string-sequence 93.99 99.27 94.83 95.08 95.08 96.04

tf-sequence-scheme 77.44 97.70 87.95 86.48 88.68 88.32

tf-string-sequence 86.61 94.95 88.70 89.04 88.66 87.61

tf-string 87.72 99.43 90.90 92.80 92.71 89.80

pi-types 43.63 66.66 65.15 63.63 65.15 63.63

scheme-bap 75.00 100.00 100.00 100.00 100.00 100.00

chemistry-benzene 30.00 60.00 60.00 60.00 60.00 58.00

all-chemistry 85.66 99.00 92.00 92.66 91.00 90.00

4.7.3 Evaluation by Number of Classes

 In order to understand the accuracy and effectiveness of ink type prediction with

respect to the number of possible types, we re-arranged the peak results obtained in

Tables 4.3 and 4.4 and ranked experiment accuracy by the number of types, as shown in

Table 4.5. We also plotted graphs showing the mean peak prediction accuracies, grouped

by number of types, for both K-fold and leave-one-out cross validation in Figure 4-6.

 We observed from our experiments that peak prediction accuracy decreases when

there are more types from which to predict. This observation is typical of machine

learning classification problems. As such, we conclude that the more ambiguous a case

we present for ink type prediction, i.e., with more types from which to predict, the harder

it is for our type predictor to accurately guess the context of the ink. Not too surprisingly,

if we decrease the number of possible types, e.g., by means of more extensive domain

knowledge or some context known by the instructor a priori, then the system may be able

to more accurately guess the context, and use this context, as we later describe in Chapter

5, to improve interpretation accuracy.

 46

This thesis also notes that the correlation between the number of types used in the

experiments and the accuracy of prediction depends on which types are actually used, as

well as their relative resemblance. The prediction accuracies, for example, in the

experiments number vs. string, sequence vs. Scheme expression, and sequence vs.

number, exhibit high variance even though the experiments each have only two types.

This is because sequences highly resemble Scheme expressions, and our chosen

representative strings highly resemble our numbers. The leave-one-out cross validation

results for three types show on average a significantly lower accuracy than that of

four types because of the poor performance of two experiments with three types: pi-

types and chemistry-benzene. We discuss this anomaly later in Section 4.7.5.

Table 4.5: Peak prediction accuracy ranked by number of types

Experiment # types K-fold (%) Leave-one-out (%)

number-scheme 2 100.00 100.00

number-sequence 2 100.00 100.00

sequence-commas 2 100.00 100.00

scheme-bap 2 100.00 100.00

string-sequence 2 100.00 99.27

tf-string 2 99.76 99.43

sequence-scheme 2 99.75 99.73

string-scheme 2 99.65 99.52

number-string 2 93.31 92.77

all-chemistry 3 100.00 99.00

sequence-subtypes 3 100.00 95.95

chemistry-benzene 3 100.00 60.00

number-sequence-scheme 3 99.81 98.42

tf-sequence-scheme 3 99.15 97.70

tf-string-sequence 3 99.00 94.95

pi-types 3 98.36 66.66

string-sequence-scheme 3 97.52 94.23

number-string-sequence 3 94.14 90.53

number-string-tf 3 93.43 90.51

no-string 4 98.22 95.85

no-number 4 96.27 91.23

no-tf 4 92.10 87.75

5-types 5 90.88 83.37

 47

Figure 4-6. Mean prediction accuracy grouped by number of types using (a) K-fold; and

(b) leave-one-out cross validation. The mean accuracies decrease with more types.

(a)

(b)

(a)

 48

4.7.4 Evaluation of Feature Importance

We perform an evaluation of our original hypotheses of feature importance

(described in Appendix C) of the features we covered in Table 4.2. It is interesting to

assess the validity of our original hypotheses as to which suggested features would

improve prediction accuracy. A method for knowing if a feature is relatively important

in differentiating type A from B is to observe the ranking of the feature after feature

selection algorithms have been applied to experiments containing type A and B. A formal

investigation is beyond the scope of this thesis, but we looked at our visualization of

feature importance in Figure 4-3 to obtain an informal evaluation of our originally chosen

feature set. This evaluation is listed in Table 4.6. We could not make conclusions on the

effectiveness of several of the features, mainly because they differentiated between

different individual character classes (such as complex intersecting characters vs. simple

single-stroke ones); our experiments, however, classified many characters in bulk within

strings, sequences, Scheme expressions, etc., all of which mixed the different character

classes together.

Table 4.6: Features extracted and their effectiveness in distinguishing types

No. Distinguishes Between Successful?

F1 Number / String vs. Sequence / Scheme Yes (see number-sequence, number-scheme)

F2 Short / Diagram vs. Long / Sequence Yes (see number-sequence, number-scheme)

F3 Text vs. Diagram Yes (see pi-types, scheme-bap, chemistry-benzene)

F4 String / Number vs. Sequence / Scheme Yes (see number-sequence, number-scheme)

F5 Text vs. Diagrams Yes (see pi-types, scheme-bap, chemistry-benzene)

F6 Text vs. Diagrams Moderately (see scheme-bap, chemistry-benzene)

F7 Text vs. Diagrams Moderately (see scheme-bap, chemistry-benzene)

F12 Character / Number vs. String / Sequence Yes (see sequence-subtypes)

F13 String vs. Sequence Yes (see string-sequence, string-scheme)

F14 Text vs. Diagram Yes (see pi-types, scheme-bap, chemistry-benzene)

F16 Text vs. Diagram Yes (see pi-types, scheme-bap)

F17 Number vs. String Yes (see number-string)

F8, F9, F10, F11, F15 Cannot conclude

We note that different experiments require different features to effectively

differentiate the types; features that work in one experiment involving a certain type may

 49

not necessarily achieve the same success in another experiment. As such, data-mining

and extracting all the features proposed in Section 4.4, and using generic feature selection

algorithms to prune away unimportant features dynamically proves to be a viable

approach.

4.7.5 Discussion

We observed that the accuracy of predicting the correct class in the number-string

experiment was low, despite being a binary classification problem. There is a challenge

associated with the distinction between numbers and strings: It is inherently hard to tell

whether a simple vertical stroke is a ‘1’ (one), ‘I’ (capital-i) or ‘l’ (lowercase-L). If that

stroke were to be slightly tilted, we could add either of ‘/’ or ‘\’ to the list. This challenge

is the reason that makes biasing with contextual information useful in improving

interpretation accuracy, but fails to help us when we are doing ink type prediction. We

have many such ambiguous ink stroke samples collected as part of this research, and they

lack the contextual information for accurate prediction, thus lowering our prediction

accuracy in that experiment.

 Leave-one-out cross validation showed poorer prediction accuracy results than K-

fold cross validation, mainly because the classifiers were not trained with the tested

representative samples in the former. The accuracy obtained is still relatively high at

greater than 83% for up to five types, however, showing it is possible to accurately

predict correct expected types or flags of representative samples that have not been

observed before.

We reason that unusually low accuracy in leave-one-out cross validation for both

pi-types and chemistry-benzene experiments was observed because there were too

few representative examples present in the training set for such validation. If the

classifier had been trained with only “symbol” and “number” classes for pi, for example,

it would not be able to predict an unknown “fraction” class when presented with a sample

that was a fraction.

 To better understand the shortcomings of our ink type predictor system, we also

ran an experiment that attempted to classify our eight different expected types with K-

fold cross validation across all collected samples. There is a low likelihood of a question

 50

being so ambiguous that its answer could be any one of eight different types, hence this

experiment was conducted purely for additional information. We obtained an 84.22%

prediction accuracy using the SMO classifier and InfoGain feature selection algorithm.

A full confusion matrix of the classification is listed in Appendix E. We see that

misclassification often occurred between any two of strings, sequences, and Scheme

expressions when the type predictor was trained across all eight types. As such, we

conclude that the features we originally extracted are still relatively insufficient to

achieve a full distinction across these very similar types.

 51

Chapter 5

Interpretation using Dynamic

Dispatch

In this chapter, we describe the details of our approach to improving ink

interpretation using dynamic dispatch. This approach is promising because our past

results have shown that a priori information about an answer type improves ink

interpretation significantly [Rbeiz, 2006]. We also have shown in Chapter 4 how ink

type prediction provides an accurate prediction for certain answer types. Combining

these two ideas, we can create a system that improves ink interpretation by dynamically

dispatching interpretation calls to the best interpreter for a sample’s predicted answer

type. As stated earlier, we hypothesize that this new interpreter will be close in accuracy

to an interpreter requiring explicit a priori expected type information, and much more

accurate than interpreters that use no expected type information.

5.1 Approach

 In this section, we describe the design, implementation, and evaluation of our

dynamic dispatch method and variations, which take advantage of predicted ink sample

types. We made several iterations in designing such an interpreter for improved accuracy.

The next few sections will elaborate on the following in greater detail:

• The Dynamic Dispatch Interpreter (DDI). We describe the basic dynamic

dispatch interpreter in detail and explain how ink type prediction can be used as a

switch to dispatch ink dynamically to static interpreters.

 52

• Nested Dynamic Dispatch Interpreters (NDDI). Nested DDIs enable the

dynamic dispatching of ink with types and subtypes by having other DDIs as one

of their internal interpreters. This is similar to a tree with static interpreters as

leaves. These NDDIs make use of a preprocessing stage, which we call

preparation, which allows us to work with a hierarchy of ink types and subtypes.

• Cross Validation Interpreters (CVI). Cross validation interpreters allow us to

evaluate interpretation accuracy without mixing our training and test data sets of

ink samples. These CVIs are built in with multiple distinct DDIs, and each DDI

is trained and tested with different ink sample sets. An equivalent Nested CVI

(NCVI) also has been created for NDDIs.

5.2 The Dynamic Dispatch Interpreter (DDI)

Figure 5-1. A simple schematic demonstrating the Dynamic Dispatch Interpreter at work.

Using the same interpreter interface that we created specially for the CLP system,

we can create Dynamic Dispatch Interpreters that use an internal Ink Type Predictor

Prior training with all
collected samples

Interpret Ink
True-False Interpreter

Number Interpreter

String Interpreter

Sequence Interpreter

Scheme Interpreter

Default Interpreter

Ink Type

Predictor

Interpretation
Result

All Ink Samples

Interpreter Interface

 53

previously trained on our cumulative set of ink samples. (For the rest of this thesis,

“training a DDI” will mean “training the Ink Type Predictor inside the DDI.”). The

interpreter will use its internal Ink Type Predictor module to perform type prediction tests

on new ink samples and dynamically dispatch the ink sample to the domain-specialized

interpreter of the predicted type for recognition. The dispatching of the ink to be

interpreted is illustrated in Figure 5-1.

This Dynamic Dispatch Interpreter demonstrates that we may perform

interpretation using domain-specialized interpreters without prior knowledge of expected

type information. We have hypothesized that the interpretation accuracy of such a DDI

will be close to that of an interpreter provided with expected type information.

5.3 Nested Dynamic Dispatch Interpreters (NDDI)

A single level of type prediction is insufficient for more complex domain-

specialized interpreters. We can interpret sequences, for example, with greater accuracy

as mentioned in Section 4.3 with more type information, describing the subtypes or flags

of the sequence. As we found in Section 4.7.3, however, the more possible types, the

lower the prediction accuracy obtained. Adding these sequence subtypes and comma

flags as newer expected types from which to predict will result in an “explosion” of

combinatorial possibilities—we would need a different class for each combination!

Sequences, for example, can be further classified into three different subtypes—number,

single character and string—each with two possible flags—comma and bracket. With

these additions, we would need up to 12 new types in the place of our original sequence

type.

We solved this scalability problem by creating a preprocessing preparation stage

in our interpreter interface to modify the state of each interpreter and influence

subsequent interpretation8. An interpreter can be prepared over multiple calls; it can be

first alerted to expect a sequence, for example, then prepared to expect a numbered

sequence, and finally made to expect a comma-delimited numbered sequence. This

extensible preparation phase allows us to reuse the same specialized interpreters with just

8 Preparing an interpreter is a similar concept to using factoids in Microsoft’s ink libraries.

 54

some state-modification to improve accuracy, without having to create entirely different

interpretation algorithms.

The Nested Dynamic Dispatch Interpreter (NDDI) uses preparation to allow

interpreted ink to virtually traverse a decision tree of type predictors, before the ink is

dispatched correctly to the relevant domain-specialized interpreter. Figure 5-2 illustrates

the dispatch mechanism of an NDDI.

Figure 5-2. This schematic shows how Nested Dynamic Dispatch Interpreters work with one

level of nesting.

The NDDI functions like a DDI, with the exception that the internal interpreters

(to which ink is dispatched) can be DDIs themselves. These internally nested DDIs may

store a different Ink Type Predictor for predicting the different subtype classes of ink,

like the sequence subtypes mentioned. We may nest NDDIs recursively and limitlessly

for our different flags as well. At each level of dynamic dispatch, the different classes

predicted by the Ink Type Predictor would prepare the correspondingly predicted NDDI

or specialized interpreter. NDDIs transfer this preparation to their internally nested

interpreters in addition to their own preparation from their Ink Type Predictor member.

Prior training with all
collected samples

Interpret Ink

Nested DDI

Default Interpreter

Ink Type
Predictor

A

Interpretation
Result

All Ink Samples

Interpreter Interface

Ink Type
Predictor

B

 55

This chain of preparation continues down the tree of NDDIs until a specialized

interpreter leaf is reached. This leaf interpreter would have received multiple preparatory

calls and may thus used the information obtained to interpret the ink more accurately.

 The expected type of a sample “1, 2, 3,” for example, would be a number

sequence, delimited by commas. The best NDDI to interpret this sample will thus have

three nested levels: the first to predict that the sample is a sequence (out of the five types

we have in total in introductory computer science); the second to predict that the

sequence is of numbers; finally, the last level to predict that this number sequence is

comma-delimited. Each level of prediction will be passed down in the chain of

preparation, and the leaf interpreters would then know to use the predicted contextual

information of a comma-delimited number sequence to interpret the ink sample more

accurately.

5.4 Cross Validation Interpreters (CVI)

Figure 5-3. A schematic of a simple Cross Validation Interpreter with K-folds is shown.

 In order to ensure that test ink sample data is never used for training the DDI that

we want to evaluate, we created a K-fold Cross Validation Interpreter (CVI-K) to wrap

DDI K

 0 1 2 … K - 1

DDI 3

DDI 2

DDI 1

Interpret Ink

Interpretation
Result

 Prior training with
 only K – 1
samples

…

Index
Mod

K? :

Interpreter Interface

Ink Type

Predictor

Ink Samples

+ Ink Index

 56

the DDI. A schematic of the CVI is shown in Figure 5-3. This CVI encapsulates K

different copies of the same DDI. Each DDI is specifically designated to test a subset of

non-overlapping 1/K of the total ink samples in the experiment, and has been trained with

the remainder (1 – 1/K) of the total number of ink samples.

CVIs differ from DDIs mainly in that CVIs require experiment contextual

information and thus cannot be deployed for subsequent use in tightly coupled

applications such as CLP, which have no notion of experimental conditions. The CVI

makes use of some globally accessible auxiliary data (the index of the ink being

interpreted out of all ink samples within the experiment) in order to properly dispatch

interpretation to the specific DDI that is meant to “test” the currently inputted ink sample.

This technique allows us to evaluate 10-fold cross validation of our DDI’s prediction and

interpretation accuracy if we set K to be 10. We chose to use the ink index modulo K to

determine the index of DDI copies to which to dispatch the ink, because it provides an

easy way to distribute all ink samples equally among the K DDI copies, with uniformly

distributed test and training sets.

Figure 5-4. A schematic of a simple Nested Cross Validation Interpreter with K-folds is shown.

NDDI K

 0 1 2 … K - 1

NDDI 3

NDDI 2

 NCVI

NDDI 1

Interpret Ink

Interpretation
Result

 Prior training with
 only K – 1

samples

…

Index
Mod
K? :

Interpreter Interface

Ink Samples

+ Ink Index

 57

In a similar fashion, we also created the K-fold Nested Cross Validation

Interpreter (NCVI-K) to ensure we do not train the NDDIs with our intended test ink

samples while evaluating the prediction and interpretation accuracy of our NDDIs.

Figure 5-4 shows a simple schematic of ink dispatch through an NCVI, which has yet

another NCVI nested within the NDDIs.

The CVIs and NCVIs are not meant for deployment and require knowledge of the

experimental framework, e.g., ink sample index numbers; they are used only for

evaluating interpretation accuracy of our dynamic dispatching architecture. In

deployment, the DDIs and NDDIs should be used—trained with all prior ink sample

data—instead of the CVIs and NCVIs, respectively.

5.5 Evaluation

We evaluated our dynamic dispatch interpretation system by computing final ink

interpretation accuracy for the domain of introductory computer science. Accuracy is

measured as the edit distance [Atallah, 1998] between the interpreter's output and the

original example string used for input.

 We chose this domain, consisting of five types—numbers, strings, sequences,

true-false, Scheme expressions—because most of the student answers in the domain are

in the form of text, not drawings. We could thus make comparisons easily with other text

interpreters such as Microsoft’s default interpreter, as well as our already deployed

interpreter (INKv3).

5.5.1 Base Type Results

After running our interpretation experiments, we found that interpreters with type

information provided a priori for each ink sample performed the best, but that our

dynamic dispatch interpreter was a close second. The interpretation results for the five

different base types in the introductory computer science domain are listed in Table 5.1.

Our latest version of the deployed CLP interpreter (INKv3) obtained 89% accuracy while

an earlier version (INKv1) obtained 87%. Both of these interpreters made use of

expected type information that we provided to bias ink pre-processing and interpretation

for better accuracy. Microsoft’s default interpreter obtained 62% accuracy, mainly due to

 58

the fact that it was not trained for the domain of introductory computer science and did

not bias for expected types.

Table 5.1: Base type results in percent for our different interpreters on the same data set grouped

by the 5 base types for the introductory computer science domain.

Base Type INKv3 INKv1 NDDI NCVI-10 NCVI-4 Microsoft

Number 98.27 98.27 95.24 93.51 94.37 30.74

Scheme Expression 84.72 84.72 84.72 84.72 84.79 80.91

Sequence 87.03 76.22 87.03 83.35 81.61 71.17

String 78.06 78.06 77.57 74.08 73.69 54.95

True-False 97.64 97.64 97.64 97.64 97.64 74.53

Total 81.82 80.18 80.52 78.53 78.44 51.00

Total (Equal Weight) 89.14 86.98 88.44 86.66 86.42 62.46

 Our approach described in this thesis obtained close to 87% accuracy, comparable

with our other interpreters developed for use with CLP. The main difference was that our

dynamic dispatch interpreter (NCVI-10) required no contextual information to be

provided a priori for each ink sample, and relied instead on machine learning to predict

the expected type just from information extracted from the digital ink. The good news is

that, as we had hypothesized, with the same ink input, our interpreter outperformed

Microsoft’s default interpreter by 24%, while almost reaching the level of accuracy of our

best a priori interpreter, INKv3 (see Figure 5-5).

The detailed table of interpretation results grouped by representative types is

listed in Appendix B.

 59

Figure 5-5. This graph shows overall interpretation accuracy: the INKv3 interpreter was provided

with contextual type information and performed the best at 89% for all samples; our interpreter

NCVI-10 achieved a comparable 87% without such information, better than Microsoft’s

interpreter at 62%.

5.5.2 Discussion

 On the whole, we are pleased with the performance of our dynamic dispatch

interpretation method: Its accuracy in predicting and interpreting five different ink

sample types was very close to the accuracy of our best interpreter that required a priori

ink type information, and much better than an interpreter with no ink type information.

Its architecture allows for easy integration of additional specialized interpreters unlike the

other interpreters we tested, and requires far less input from an instructor using it in an

application such as CLP.

 There are limitations to this approach, however. A deployed ink type predictor in

a DDI will only have knowledge of a small subset of the universe of representative

examples. Leave-one-out cross validation results showed it might be possible to

extrapolate additional new unknown representative examples, but the system would

undoubtedly deteriorate in prediction performance the more the examples come from

outside our training subset. The time saved for the instructor, thus, becomes time gained

 INKv3

NCVI-10

Microsoft

 60

for the ink interpreter "trainer" in creating relevant training sets. In addition, we would

need to perform retraining occasionally after deployment, but this activity could be as

simple as labeling real data collected post-deployment.

 61

Chapter 6

Related Work

Our work draws on research from various subfields of ink interpretation. We

mentioned in Section 2.1 sketch recognition work on sequences, chemical diagrams

[Ouyang & Davis, 2007], box-and-pointer diagrams [Chevalier, 2007], and marking [Wu,

2008]. Here we discuss two other related areas—handwriting recognition research and

confidence measure-based approaches.

6.1 General Approaches

Handwriting recognition research is a very active field. Variations in writing

styles cause difficulty in developing highly accurate handwriting recognizers [Liu & Cai,

2003] [Plamondon & Srihari, 2000]. There are many general approaches that aim to

improve ink interpretation across the board, without any domain-specific restrictions.

Most of these successful approaches to date use artificial intelligence algorithms. Specific

techniques used include support vector machines (SVM), hidden Markov models

(HMMs) [Hu et al, 1996] [Yasuda et al, 2000], neural networks, genetic algorithms, and

convolutional time delay neural networks (TDNN). Some of these statistical and

machine-learning approaches support online (e.g., [Bellegarda et al, 1994], [Anquetil &

Lorette, 1995]) and offline (e.g., [Seni & Cohen, 1994], [Srihari & Keubert, 1997])

recognition of handwriting; other approaches may also be writer-independent (e.g., [Hu et

al, 2000]). All these approaches use different representations and metrics for segmenting

handwriting [Breuel, 2002], and report varying measures of success for their respective

domains of recognition use.

Apart from artificial intelligence algorithms, different domain-specific heuristics

have also been used to further improve handwriting recognition. Handwritten sequence

 62

interpretation, for example, is useful in recognizing postal addresses [Srihari & Keubert,

1997] and general document optical character recognition (OCR) work [Manmatha &

Srimal, 1999]. There are many punctuation detection heuristics (e.g., [Seni & Cohen,

1994]), as well as spatial detection measures (e.g., also [Mahadevan & Nagabushnam,

1995], [Wang et al, 2005]) which are applicable for the domain of English sequence

interpretation, but may not be useful with other written forms like classical Chinese, or

chemical structures. As such, there is currently no ideal “universal handwriting

recognizer” that has been developed by researchers. The best recognizers to date work

well only in selected narrow domains, and they often make use of specialized heuristics

or have been subjected to training with many ink samples.

6.2 Confidence Measure-based Approaches

 Studies have been done to compare different confidence measures for deciding

when to accept or reject interpreted results. Examples of such confidence measures are:

recognition score, likelihood ratio [Brakensiek et al, 2002], and estimated posterior

probability [Pitrelli & Perrone, 2003]. These studies illustrate the usefulness of

confidence measures in the unsupervised retraining of handwriting data, and in improving

interpretation accuracy by being able to reject a fraction of the handwritten input. We

chose not to use confidence measures despite their useful potential, because not all

specialized interpreters that we would like to use have confidence measures, or can

accurately measure a confidence value of their interpretation result. Using a confidence-

based ranking scheme also requires that we interpret the ink with potentially all

interpreters (to obtain their confidence measures), a computationally costly process. Our

approach in using ink type prediction, as described in the previous chapters, suggests a

viable, but not necessarily exclusive alternative to the use of confidence measures.

 63

Chapter 7

Conclusion

 We conclude with a list of possible future work and a summary of the main

contributions of this thesis.

7.1 Future Work

 The field of ink interpretation is exciting and filled with many challenges in every

niche. While this thesis has tried to tackle a very narrow scope of improving

interpretation accuracy within the domain of the classroom, invariably there are always

improvements that can be made, and new hypotheses that need to be proven. We

describe such future work in the following sections.

7.1.1 Creating a Public Interpreter API

We are designing a new architecture that will allow independently developed

interpreters to be easily integrated into our dynamic dispatch interpreter. Figure 7-1

shows the current design of this new architecture.

Two interesting challenges are: (1) defining an application programming interface

(API) for communicating ink samples and interpreted results between interpreters

developed independently, and (2) integrating a top-level user-interface (UI) with any UIs

that may accompany the new interpreters. We will want the API to work with new

interpreters, but also with applications other than CLP. Moreover, integrating Ouyang

and Davis' chemical diagram interpreter, for example, will require us to develop a UI that

supports the real-time feedback and rendering that the program provides.

 64

Figure 7-1. A schematic showing a new architecture to support integration into our dynamic

dispatch interpreter (DDI) of independently developed ink interpreters.

7.1.2 Better Semantic Representation for Aggregation

 Our current concept of semantic representation, i.e., ink interpreter output,

follows from Rbeiz’s work and presents a processed and summarized notion of the digital

ink that is understood by our system [Rbeiz, 2006]. This semantic representation

contains just enough information to allow rendering in printed form (if desired) and

aggregation of similar ink samples that have the same representation; all dynamic

information present in the digital ink such as the timing of strokes, positions, curvature,

etc., that would exhibit high variance over many samples have not been included in this

summary. This semantic representation has sufficed for our purposes in prototyping with

CLP because the aggregator did not require more detailed information. As we support

more complex aggregators, however, in various other applications and newer versions of

CLP, we undoubtedly will want to include dynamic features for data-mining and

clustering algorithms. Hence, we propose that the semantic representation output of the

future system not only store the simplified summary of interpreted ink, but also any

processed and unprocessed stroke data as auxiliary metadata to be used for aggregation

algorithms and other applications.

CP3

E
x
te
rn
a
l
In
te
rp
re
te
rs

Storage Module
Runtime Module

Design Module

UI

Authoring

Aggregation

DD I

T
h
in
 I
n
te
rf
ac
in
g
 L
ay
er

CLP2

E
x
te
rn
a
l
In
te
rp
re
te
rs

Local / Remote

Database

Submission

Student

ink

Result

 65

7.1.3 Improving Interpretation Accuracy

 Although we have shown that reasonably good interpretation can be achieved

without the provision of a priori contextual information, we are still far from the 97%

accuracy desired for users to feel comfortable [Giudice & Mottershead, 1999], [LaLomia,

1994]. Improving interpretation accuracy of digital ink has been the primary focus of this

thesis and continues to be one of our goals. The more information we can provide with

each ink sample, e.g., its question type, its writer, our expected answers to the question,

etc., the better the resulting interpretation. We, thus, also are focusing on additional ways

to supply our domain-specialized interpreters with better contextual information. With

improved ink interpretation accuracy, we anticipate greater adoption in classrooms of

systems such as CLP, which hold great promise for improving student learning.

7.2 Contributions

In this thesis, we presented a novel method for improving ink interpretation

accuracy: using machine learning to predict expected ink types and using that type

information to dynamically select appropriate specialized interpreters. We have shown

that this approach does not rely on confidence measures of domain-specialized

handwriting interpreters, and is in fact a more efficient alternative in terms of

interpretation work that needs to be performed. In our approach of using machine

learning, we extract many features from the dynamic ink strokes and use feature selection

to generically improve prediction accuracy over the baseline for many experiment

classes. The use of an SVM classifier consistently achieves high accuracies of greater

than 80% for both K-fold and leave-one-out cross validation, even when there are up to

five different classes to predict from. We also have deployed ink type prediction to be

used as a module in an experimental CLP framework. Finally, we have demonstrated that

our dynamic dispatch interpreters can achieve far more accurate interpretations (87%

accuracy) than the default Microsoft interpreter (62%). Moreover, this accuracy level is

close to that of our original INKv3 interpreter (89%), which required a priori type

information to be provided.

 66

 67

References

[Alvarado & Davis, 2004] Alvarado, C., Oltmans, M. and Davis, R. A framework for
multi-domain sketch recognition. AAAI Spring Symposium on Sketch Understanding,
2002, pp. 1-8.

[Anderson et al, 2004] Anderson, R., Anderson, R., Simon, B., Wolfman, S.,
VanDeGrift, T., and Yasuhara, K. Experiences with a tablet-pc-based lecture
presentation system in computer science courses. In Proceedings of SIGCSE '04.

[Anderson et al, 2005] Anderson, R., Anderson, R., McDowell, L., and Simon, B. Use
of Classroom Presenter in engineering courses. In Proc of ASEE/IEEE Frontiers in
Education Conference, 2005.

[Anquetil & Lorette, 1995] Anquetil, E., and Lorette, G., On-Line Cursive Handwrittten
Character Recognition Using Hidden Markov Models, Traitement du Signal, 12(6), pp.
575-583, 1995.

[Atallah, 1998] Atallah, M. J. (Editor), Algorithms and Theory of Computation
Handbook, “Levenshtein Distance (13-5)”, CRC Press, 1998.

[Bellegarda et al, 1994] Bellegarda, E.J., Bellegarda, J.R., Nahamoo, D., and Nathan,
K.S. A fast statistical mixture algorithm for on-line handwriting recognition in IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, No. 12, December
1994.

[Brakensiek et al, 2002] Brakensiek, A., Kosmala, A., and Rigoll, G. Evaluation of
Confidence Measures for On-Line Handwriting Recognition. In DAGM 2002,
Springer-Verlag Berlin Heidelberg, 2002, pp. 507-514.

[Breuel, 2002] Breuel, T.M. Representations and Metrics for Off-line Handwriting
Segmentation. In IEEE Proceedings of the Eighth International Workshop on

Frontiers in Handwriting Recognition, 2002.

[Calhoun et al, 2002] Calhoun, C., Stahovich, T.F., Kurtoglu, T. and Kara, L.B.
Recognizing multi-stroke symbols. 2002.

[Chen, 2006] Chen, J.I. Instructor Authoring Tool: A Step Towards Promoting Dynamic
Lecture-style Classrooms. MIT EECS Master of Engineering thesis. May, 2006.

[Chevalier, 2007] Chevalier, K. Interpretation of Box and Pointer Diagrams in
Classroom Learning Partner. MIT EECS Master of Engineering thesis. May, 2007.

[Dempster et al, 1977] Dempster, A.P., Laird, N.M. and Rubin, D.B. Maximum
Likelihood from Incomplete Data via the EM algorithm. Journal of the Royal
Statistical Society, Series B, vol. 39, 1:1-38, 1977.

 68

[Dunn, 1973] Dunn, J.C. A Fuzzy Relative of the ISODATA Process and Its Use in
Detecting Compact Well-Separated Clusters. Journal of Cybernetics 3: 32-57, 1973.

[Gamma et al, 1994] Gamma, E., Helm, R., Johnson, R. and Vlissides, J. Design
Patterns: Elements of Reusable Object-Oriented Software, Chapter 4: Structural
Patterns, Addison-Wesley Professional, 1994.

[Gennari et al, 2005] Gennari, L., Kara, L.B., and Stahovich,T.F. Combining geometry
and domain knowledge to interpret hand-drawn diagrams. Computers and Graphics 29
(4), pp.547-562.

[Giudice & Mottershead, 1999] Giudice, J., Mottershead, B. Advanced Interfaces:
Handwriting Recognition and the Human-Computer Interface. In Speech Technology
Magazine, Feb 1999.

[http://www.speechtechmag.com/Articles/ReadArticle.aspx?ArticleID=29380]

[Guyon et al, 2002] Guyon, I., Weston, J., Barnhill, S., Vapnik, V. Gene selection for
cancer classification using support vector machines. In Machine Learning. 46:389-422.

[Hu et al, 1996] Hu, J., Brown, M., and Turin W. HMM Based On-Line Handwriting
Recognition. In IEEE Transactions On Pattern Analysis and Machine Intelligence,
18(10), October 1996.

[Hu et al, 2000] Hu, J., Lim, S.G., Brown. M. Writer independent on-line handwriting
recognition using an HMM approach. In Pattern Recognition Volume 33 (2000) pp.
133-147, January 1999.

[Kara & Stahovich, 2004] Kara, L.B. and Stahovich, T.F. Hierarchical parsing and
recognition of hand-sketched diagrams. In Proceedings of UIST 2004, pp. 13-22.

[Keerthi et al, 2001] Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K.,
Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural
Computation, 13(3), pp 637-649, 2001.

[Koile et al, 2007a] Koile, K., Chevalier, K., Rbeiz., M., Rogal, A., Singer, D., Sorensen,
J., Smith, A., Tay, K.S., and Wu, K. Supporting Feedback and Assessment of Digital
Ink Answers to In-Class Exercises. To appear in Proceedings of IAAI 2007, July, 2007.

[Koile et al, 2007b] Koile, K., Chevalier, K., Low, C., Pal, S., Rogal, A., Singer, D.,
Sorensen, J., Tay, K.S., and Wu, K. Supporting Pen-Based Classroom Interaction:
New Findings and Functionality for Classroom Learning Partner. To appear in
Proceedings of First International Workshop on Pen-Based Learning Technologies

2007, May, 2007a.

[Koile & Singer, 2005] Koile, K. and Singer, D. A. Development of a tablet-PC-based
system to increase instructor-student classroom interactions and student learning. In
Impact of Pen-based Technology on Education: Vignettes, Evaluation, and Future

Directions. D. Berque, J. Prey, and R. Reed (eds). Purdue University Press. 2005.

[Koile & Singer, 2006] Koile, K. and Singer, D.A. Improving Learning in CS1 via
Tablet-PC-Based In-Class Assessment. In Proceedings of ICER 2006, September 9-10,
2006, University of Kent, Canterbury, UK.

[Labahn et al, 2006] Labahn, G., MacLean, S., Marzouk, M., Rutherford, I. and Tausky,
D. A Preliminary Report on the MathBrush Pen-Math System, In Proceedings of Maple

2006 Conference, pp. 162-178.

 69

[LaLomia, 1994] LaLomia, M. J., User acceptance of handwritten recognition accuracy,
In Companion Proceedings of the CHI'94 Conference on Human Factors in Computing
Systems, p. 107. New York, ACM, 1994.

[LaViola & Zeleznik, 2005] LaViola, J. and Zeleznik, R., MathPad: A System for the

Creation and Exploration of Mathematical Sketches, Brown University, 2005.

[Liu & Cai, 2003] Liu, Z. and Cai, J., Handwriting Recognition, Soft Computing and
Probabilistic Approaches, Springer, 2003.

[Mahadevan & Nagabushnam, 1995] Mahadevan, U. and Nagabushnam, R.C. Gap
Metrics for Word Separation in Handwritten Lines. In Third International Conference
on Document Analysis and Recognition (ICDAR'95) - Volume 1, p. 124, 1995.

[Manmatha & Srimal, 1999] Manmatha, R. and Nitin, S. Scale Space Technique for
Word Segmentation in Handwritten Documents. Scale-Space Theories in Computer
Vision: Second International Conference, Scale-Space'99, Corfu, Greece, September

1999. Proceedings, Volume 1682/1999, Springer, 1999.

[O’ Boyle et al, 2000] O’ Boyle, C., Smyth, B., Geiselbrechtinger, F. An Automatic
Configuration System for Handwriting Recognition Problems. 13th International
Conference on Industrial and Engineering Applications of Artificial Intelligence and

Expert Systems, IEA/AIE 2000, June 19-22, 2000.

[Oh et al, 2004] Oh, Y., Do, E.Y-L., and Gross, M.D. Intelligent Critiquing of Design
Sketches. AAAI Fall Symposium: Making Pen-Based Interaction Intelligent and

Natural, 2004.

[Ouyang & Davis, 2007] Ouyang, T. and Davis, R. Recognition of Hand-Drawn
Chemical Diagrams. In Proceedings of AAAI 2007, July, 2007.

[Pitrelli & Perrone, 2003] Pitrelli, J. F., Perrone, M.P., Confidence-Scoring Post-
Processing for Off-Line Handwritten-Character Recognition Verification. In
Proceedings of the Seventh International Conference on Document Analysis and

Recognition (ICDAR) 2003. IEEE, 2003.

[Plamondon & Srihari, 2000] Plamondon, R, Srihari, S., On-Line and Off-Line
Handwriting Recognition: A Comprehensive Survey. In IEEE Trans. Pattern Anal.
Machine Intelligence., 22, Jan. 2000, pp. 63–85.

[Platt, 1998] Platt, J. Fast Training of Support Vector Machines using Sequential
Minimal Optimization. Advances in Kernel Methods - Support Vector Learning,
Schoelkopf, B., Burges, C., and Smola, A., eds., MIT Press, 1998.

[Quinlan, 1986] Quinlan, J.R. Machine Learning. 1986, 1, pp. 81-106.

[Quinlan, 1993] Quinlan, J.R. C4.5: Programs for Machine Learning, Morgan
Kaufmann Publishers, San Mateo, CA, 1993.

[Rbeiz, 2006] Rbeiz, M. A. Semantic Representation of Digital Ink in the Classroom
Learning Partner. MIT EECS Master of Engineering thesis. May, 2006.

[Robnik-Sikonja & Kononenko, 1997] Robnik-Sikonja, M. and Kononenko, I. An
adaptation of Relief for attribute estimation in regression. In Fourteenth International
Conference on Machine Learning, pp. 296-304, 1997.

 70

[Rubine, 1991] Rubine, D. Specifying gestures by example. Computer Graphics, 25(4),
pp. 329-337, 1991.

[Seni & Cohen, 1994] Seni, G., and Cohen, E. External word segmentation of off-line
handwritten text lines. In Pattern Recognition Volume 27 Issue 1, pp. 41-52, January
1994.

[Sezgin & Davis, 2005] Sezgin, T.M. and Davis, R. HMM-based efficient sketch
recognition. In Proceedings of IUI '05, pp. 281-283.

[Shilman et al, 2002] Shilman, M., Pasula, H., Russell, S. and Newman, R. Statistical
visual language models for ink parsing. In AAAI Spring Symposium on Sketch
Understanding, 2002.

[Shilman et al, 2004] Shilman, M., Viola, P., and Chellapilla, K. Recognition and
Grouping of Handwritten Text In Diagrams and Equations, IEEE 9th Intl Workshop on

Frontiers in Handwriting Recog, 2004.

[Smith, 2006] Smith, A. C. Aggregation of Student Answers in a Classroom Setting.
MIT EECS Master of Engineering thesis. August, 2006.

[Srihari & Keubert, 1997] Srihari, S. and Keubert, E.J. Integration of Handwritten
Address Interpretation Technology into the United States Postal Service Remote
Computer Reader System. In Proceedings of the Fourth International Conference in
Document Analysis and Recognition, Vol. 2, pp. 892-896, August, 1997.

[Wang et al, 2005] Wang, J., Neskovic, P., and Cooper, L.N. A probabilistic model for
cursive handwriting recognition using spatial context. In IEEE, Acoustics, Speech, and
Signal Processing, 2005. Proceedings. (ICASSP '05). IEEE International Conference,
2005.

[Witten & Frank, 2005] Witten, I. H., Frank, E. Data Mining: Practical machine

learning tools and techniques, 2
nd
 edition, Morgan Kaufmann, San Francisco, 2005.

[Wu, 2008] Wu, K. D. Interpretation and Aggregation of Marks in Classroom Learning
Partner. MIT EECS Master of Engineering thesis. February, 2008.

[Yasuda et al, 2000] Yasuda, H., Takahashi, K., and Matsumoto, T. A Discrete HMM
for Online Handwriting. In International Journal of Pattern Recognition and Artificial
Intelligence, Vol. 14, No. 5, pp. 675-688, 2000.

 71

Appendix A

Representative Examples

Table A.1: List of 181 representative examples sorted by their Representative ID (Rep ID)

number, showing the example string/diagram shown to students, and the expected semantic

representation (simplified from XML form)

RepID Example String/Diagram Simplified Semantic Representation

1 #f #f

2 #t #t

3 false False

4 true True

5 π PI

6 Π PI

7 Ω OMEGA

8

22/7

10 0 0

11 1 1

12 2 2

13 5 5

14 6 6

15 7 7

16 9 9

17 10 10

18 11 11

19 50 50

20 55 55

21 100 100

22 101 101

30 0.1 0.1

31 2.71828 2.71828

32 123.45 123.45

 72

Rep ID Example String/Diagram Simplified Semantic Representation

33 3.14 3.14

34 3.14159 3.14159

35 19.95 19.95

36 .007 .007

50 O O

51 I I

52 l l

53 / /

54 Z Z

55 S S

56 G G

57 > >

58 q q

59 g g

60 lo lo

61 II II

62 ll ll

63 // //

64 /l /l

65 so so

66 ss ss

67 loo loo

68 IOI IOI

69 lol lol

100 'done 'done

110 double-tree double-tree

120 cons cons

121 error error

122 list list

123 nil nil

124 quote quote

150 O(n) O(n)

151 pi pi

170 benzene benzene

171 methane methane

172 phenol phenol

173 carbolic acid carbolic acid

174 alanine alanine

175 acetic acid acetic acid

176 ethanoic acid ethanoic acid

177 proton proton

178 electron electron

179 neutron neutron

 73

Rep ID Example String/Diagram Simplified Semantic Representation

180 serine serine

181 phenylalanine phenylalanine

190 Ala Ala

191 Ser Ser

192 Phe Phe

200 [1 2 3] [1,2,3]

201 1, 3, 6, 10, 15 [1,3,6,10,15]

202 2 30 400 5000 [2,30,400,5000]

203 80, 90, 100, 110 [80,90,100,110]

220 defg abc [d,e,f,g,a,b,c]

221 A B E F G K L H C I J D [A,B,E,F,G,K,L,H,C,I,J,D]

222 a, b, c, d, e, f, g, h, i, j, k, l [a,b,c,d,e,f,g,h,i,j,k,l]

223 #, #, # -> # [#,#,#,->,#]

224 g, ng, ing, ring [g,ng,ing,ring]

240 number number [number,number]

241 boolean -> string [boolean,->,string]

243 lecture & recitation [lecture,recitation]

244 nbr, nbr, nbr -> nbr [nbr,nbr,nbr,->,nbr]

245 reading, talking, listening [reading,talking,listening]

300 152 kJ [152,kJ]

301 47 ohms [47,ohms]

302 1 kg [1,kg]

303 1.79 g/L [1.79,g/L]

304 2.9 lbs [2.9,lbs]

305 3 bonds [3,bonds]

306 32 F [32,F]

307 273.15 K [273.15,K]

320 - 11 N [-,11,N]

321 - 23 mm [-,23,mm]

330 $ 100.00 [$,100.00]

340 47 Ω [47,OMEGA]

350 37 oC [37,DEG,C]

351 78.1 gmol-1 [78.1,gmol,^-1]

352 3.53 Wm-1K-1 [3.53,Wm,^-1,K,^-1]

353 0.89 cm2 [0.89,cm,^2]

380 x + y = z [x,+,y,=,z]

381 a = b + c [a,=,b,+,c]

382 10 + 14 = 24 [10,+,14,=,24]

383 x = 23 y - 77 [x,=,23,y,-,77]

384 x y z = 503 [x,y,z,=,503]

385 y = x2 [y,=,x,^2]

386 x3 + 10 x2 - x + 15 = 0 [x,^3,10,x,^2,-,x,+,15,=,0]

400 n2 [n,^2]

 74

Rep ID Example String/Diagram Simplified Semantic Representation

401 n3 [n,^3]

402 x2 [x,^2]

403 ex [e,^x]

404 O2 [O,_2]

405 SO4
2- [S,O,_4,^2-]

406 10100 [10,^100]

407 a1 [a,_1]

408 b2 [b,_2]

409 x1y1 [x,_1,y,_1]

410 x2y2 [x,_2,y,_2]

411 6 x 1023 [6,x,10,^23]

430 C6H6 [C,_6,H,_6]

431 CH4 [C,H,_4]

432 C6H5OH [C,_6,H,_5,O,H]

433 HO2CCH(NH2)CH3 [H,O,_2,C,C,H,(,N,H,_2,),C,H,_3]

434 CH3COOH [C,H,_3,C,O,O,H]

450 C + O2 = CO2 [C,+,O,_2,=,C,O,_2]

451 2 H2 + O2 = 2 H2O [2,H,_2,+,O,_2,=,2,H,_2,O]

470 1 s1 [1,s,^1]

471 1 s2 2 s1 [1,s,^2,2,s,^1]

472 1 s2 2 s2 2 p3 [1,s,^2,2,s,^2,2,p,^3]

473 1 s2 2 s2 2 p6 3 s1 [1,s,^2,2,s,^2,2,p,^6,3,s,^1]

474 [Kr] 4 d10 [[,Kr,],4,d,^10]

475 [Ar] 4 s2 3 d5 [[,Ar,],4,s,^2,3,d,^5]

476 [Xe] 6 s1 4 f14 5 d10 [[,Xe,],6,s,^1,4,f,^14,5,d,^10]

477 He : 1 s2 [He,:,1,s,^2]

478 F : 1 s2 2 s2 2 p5 [F,:,1,s,^2,2,s,^2,2,p,^5]

479 F- : 1 s2 2 s2 2 p6 [F,^-,:,1,s,^2,2,s,^2,2,p,^6]

480 Ca : [Ar] 4 s2 [Ca,:,[,Ar,],4,s,^2]

481 Ca2+ : [Ar] [Ca,^2+,:,[,Ar,]]

482 Pb : [Xe] 4 f14 5 d10 6 s2 6 p2 [Pb,:,[,Xe,],4,f,^14,5,d,^10,6,s,^2,6,p,^2]

483 Pb2+ : [Xe] 4 f14 5 d10 6 s2 [Pb,^2+,:,[,Xe,],4,f,^14,5,d,^10,6,s,^2]

500 (a b) (a b)

501 (caar seq) (caar seq)

502 (cdddr exp) (cdddr exp)

503 (eq? id1 id2) (eq? id1 id2)

504 (map double-tree tree) (map double-tree tree)

505 (/ 2 tree) (/ 2 tree)

506 (a 7) (a 7)

507 (define x 3) (define x 3)

508 (1 2) (1 2)

509 (* 1 2) (* 1 2)

700 (cons (cdar seq) (cddr seq)) (cons (cdar seq) (cddr seq))

 75

Rep ID Example String/Diagram Simplified Semantic Representation

701 (first (second exp)) (first (second exp))

702 (car (quote (quote a))) (car (quote (quote a)))

703 (set-cdr! (last-pair x) x) (set-cdr! (last-pair x) x)

704 (lambda (new) (set! x new)) (lambda (new) (set! x new))

705 (element-of-tree? x (left-branch tree)) (element-of-tree? x (left-branch tree))

706
(define (list->stream l)
 (cons-stream (car l) (list->stream (cdr l)))

(define (list->stream l)
 (cons-stream (car l) (list->stream (cdr l)))

707 (lambda (a b) (+a b)) (lambda (a b) (+a b))

708 (list (m-eval init env)) (list (m-eval init env))

709
(define ints
 (cons-stream 1 (add-streams ints ones)))

(define ints
 (cons-stream 1 (add-streams ints ones)))

710 (cons (cons x (+ 1 (+ 1 (seq-length seq))) (cons (cons x (+ 1 (+ 1 (seq-length seq)))

720 (foo bar) (foo bar)

721 ((((foo baz))) bar) ((((foo baz))) bar)

1000

BENZENE

1001

BENZENE

1002

BENZENE

1003

METHANE

1004

METHANE

 76

Rep ID Example String/Diagram Simplified Semantic Representation

1005

PHENOL

1006

PHENOL

1007

ALANINE

1008

ETHANOIC_ACID

1009

ETHANOIC_ACID

1100

(foo bar)

1101

((((foo baz))) bar)

 77

Table A.2: List of 181 representative examples sorted by their Representative ID (Rep ID)

number, showing the expected type and sample student (the author’s) ink.

RepID Expected Type Ink Sample

1 True-False

2 True-False

3 True-False

4 True-False

5 Symbol

6 Symbol

7 Symbol

8 Number Fraction

10 Number

11 Number

12 Number

13 Number

14 Number

15 Number

16 Number

17 Number

18 Number

19 Number

20 Number

21 Number

22 Number

RepID
Expected

Type
Ink Sample

30
Decimal
Number

31
Decimal
Number

32
Decimal
Number

33
Decimal
Number

34
Decimal
Number

35
Decimal
Number

36
Decimal
Number

50 String

51 String

52 String

53 String

54 String

55 String

56 String

57 String

58 String

59 String

60 String

61 String

62 String

63 String

64 String

 78

RepID
Expected

Type
Ink Sample

65 String

66 String

67 String

68 String

69 String

100
Quoted
String

110
Variable
String

120
Scheme
String

121
Scheme
String

122
Scheme
String

123
Scheme
String

124
Scheme
String

150
Math
String

151
Math
String

170
Chemistry
String

171
Chemistry
String

172
Chemistry
String

173
Chemistry
String

174
Chemistry
String

175
Chemistry
String

176
Chemistry
String

177
Chemistry
String

178
Chemistry
String

RepID
Expected

Type
Ink Sample

179
Chemistry
String

180
Chemistry
String

181
Chemistry
String

190
Chemistry
String

191
Chemistry
String

192
Chemistry
String

200
Number
Sequence

201
Number
Sequence

202
Number
Sequence

203
Number
Sequence

220
Single
Char
Sequence

221
Single
Char
Sequence

222
Single
Char
Sequence

223
Single
Char
Sequence

224
String
Sequence

240
String
Sequence

241
String
Sequence

243
String
Sequence

244
String
Sequence

245
String
Sequence

79

RepID
Expected

Type
Ink Sample

300
Chemistry
Sequence

301
Chemistry
Sequence

302
Chemistry
Sequence

303
Chemistry
Sequence

304
Chemistry
Sequence

305
Chemistry
Sequence

306
Chemistry
Sequence

307
Chemistry
Sequence

320
Chemistry
Sequence

321
Chemistry
Sequence

330
Chemistry
Sequence

340
Chemistry
Sequence

350
Chemistry
Sequence

351
Chemistry
Sequence

352
Chemistry
Sequence

353
Chemistry
Sequence

380
Chemistry
Sequence

381
Chemistry
Sequence

382
Chemistry
Sequence

383
Chemistry
Sequence

384
Chemistry
Sequence

385
Chemistry
Sequence

386
Chemistry
Sequence

RepID
Expected

Type
Ink Sample

400
Chemistry
Sequence

401
Chemistry
Sequence

402
Chemistry
Sequence

403
Chemistry
Sequence

404
Chemistry
Sequence

405
Chemistry
Sequence

406
Chemistry
Sequence

407
Chemistry
Sequence

408
Chemistry
Sequence

409
Chemistry
Sequence

410
Chemistry
Sequence

411
Chemistry
Sequence

430
Chemistry
Sequence

431
Chemistry
Sequence

432
Chemistry
Sequence

433
Chemistry
Sequence

434
Chemistry
Sequence

450
Chemistry
Sequence

451
Chemistry
Sequence

470
Chemistry
Sequence

471
Chemistry
Sequence

472
Chemistry
Sequence

473
Chemistry
Sequence

80

RepID
Expected

Type
Ink Sample

474
Chemistry
Sequence

475
Chemistry
Sequence

476
Chemistry
Sequence

477
Chemistry
Sequence

478
Chemistry
Sequence

479
Chemistry
Sequence

480
Chemistry
Sequence

481
Chemistry
Sequence

482
Chemistry
Sequence

483
Chemistry
Sequence

RepID
Expected

Type
Ink Sample

500
Flat Scheme
Expression

501
Flat Scheme
Expression

502
Flat Scheme
Expression

503
Flat Scheme
Expression

504
Flat Scheme
Expression

505
Flat Scheme
Expression

506
Flat Scheme
Expression

507
Flat Scheme
Expression

508
Flat Scheme
Expression

509
Flat Scheme
Expression

RepID Expected Type Ink Sample

700
Nested Scheme
Expression

701
Nested Scheme
Expression

702
Nested Scheme
Expression

703
Nested Scheme
Expression

704
Nested Scheme
Expression

705
Nested Scheme
Expression

706
Nested Scheme
Expression

707
Nested Scheme
Expression

708
Nested Scheme
Expression

709
Nested Scheme
Expression

710
Nested Scheme
Expression

 81

RepID
Expected

Type
Ink Sample

720
Flat
Scheme
Expression

721
Nested
Scheme
Expression

1000
Chemistry
Diagram

1001
Chemistry
Diagram

1002
Chemistry
Diagram

1003
Chemistry
Diagram

1004
Chemistry
Diagram

1005
Chemistry
Diagram

RepID
Expected

Type
Ink Sample

1006
Chemistry
Diagram

1007
Chemistry
Diagram

1008
Chemistry
Diagram

1009
Chemistry
Diagram

1100
Box-and-
Pointer
Diagram

1101
Box-and-
Pointer
Diagram

 82

Appendix B

Representation Results

Table B.1: Representation results for our different interpreters on the same data set grouped by

the different representative examples in the field of introductory computer science

RepID Semantic Representation INKv3 INKv1 NDDI NCVI-10 NCVI-4 Microsoft

1 #f 86.11 86.11 86.11 86.11 86.11 22.22

2 #t 100.00 100.00 100.00 100.00 100.00 62.50

3 false 100.00 100.00 100.00 100.00 100.00 87.50

4 true 100.00 100.00 100.00 100.00 100.00 93.75

10 0 100.00 100.00 45.45 45.45 45.45 9.09

11 1 100.00 100.00 36.36 36.36 36.36 0.00

12 2 100.00 100.00 100.00 100.00 100.00 9.09

13 5 100.00 100.00 100.00 100.00 100.00 9.09

14 6 100.00 100.00 100.00 100.00 100.00 0.00

15 7 100.00 100.00 100.00 100.00 100.00 0.00

16 9 100.00 100.00 90.91 90.91 90.91 0.00

17 10 100.00 100.00 100.00 100.00 100.00 27.27

18 11 95.45 95.45 95.45 95.45 95.45 18.18

19 50 90.91 90.91 90.91 81.82 90.91 54.55

20 55 100.00 100.00 100.00 100.00 100.00 63.64

21 100 100.00 100.00 100.00 100.00 100.00 45.45

22 101 96.97 96.97 96.97 96.97 96.97 51.52

50 O 72.73 72.73 72.73 72.73 72.73 18.18

51 I 63.64 63.64 63.64 63.64 63.64 0.00

52 l 8.33 8.33 8.33 8.33 8.33 0.00

53 / 81.82 81.82 81.82 81.82 81.82 0.00

54 Z 81.82 81.82 81.82 81.82 81.82 0.00

55 S 100.00 100.00 100.00 100.00 100.00 0.00

56 G 90.91 90.91 90.91 90.91 90.91 9.09

57 > 90.91 90.91 90.91 90.91 90.91 0.00

58 q 63.64 63.64 63.64 63.64 63.64 0.00

59 g 100.00 100.00 100.00 100.00 100.00 0.00

 83

RepID Semantic Representation INKv3 INKv1 NDDI NCVI-10 NCVI-4 Microsoft

60 lo 63.64 63.64 63.64 63.64 63.64 22.73

61 II 27.27 27.27 27.27 27.27 27.27 4.55

62 ll 0.00 0.00 0.00 0.00 0.00 0.00

63 // 0.00 0.00 0.00 0.00 0.00 0.00

64 /l 0.00 0.00 0.00 0.00 0.00 0.00

65 so 100.00 100.00 100.00 100.00 100.00 18.18

66 ss 100.00 100.00 100.00 100.00 100.00 9.09

67 loo 33.33 33.33 33.33 33.33 33.33 24.24

68 IOI 30.30 30.30 30.30 30.30 30.30 15.15

69 lol 30.30 30.30 30.30 30.30 30.30 24.24

70 IO 45.00 45.00 45.00 45.00 45.00 10.00

100 'done 97.14 97.14 97.14 90.00 90.00 82.86

110 double-tree 98.30 98.30 98.30 98.30 98.30 93.18

120 cons 100.00 100.00 100.00 100.00 100.00 87.50

121 error 100.00 100.00 100.00 100.00 100.00 91.25

122 list 100.00 100.00 100.00 100.00 100.00 57.81

123 nil 100.00 100.00 100.00 100.00 100.00 83.33

124 quote 100.00 100.00 95.00 90.00 95.00 92.50

150 O(n) 60.94 60.94 60.94 60.94 60.94 40.63

200 [1,2,3] 68.75 61.61 68.75 66.96 65.18 60.71

201 [1,3,6,10,15] 97.60 83.65 92.31 90.87 91.35 86.54

202 [2,30,400,5000] 98.89 95.56 98.89 98.89 93.33 86.67

203 [80,90,100,110] 97.78 91.11 95.56 95.56 85.56 75.56

220 [d,e,f,g,a,b,c] 87.92 64.17 78.33 76.25 65.83 60.83

221 [A,B,E,F,G,K,L,H,C,I,J,D] 92.00 53.87 92.00 88.53 87.47 48.80

222 [a,b,c,d,e,f,g,h,i,j,k,l] 84.27 60.00 84.27 84.27 80.80 55.20

223 [#,#,#,->,#] 67.78 41.11 67.78 59.44 63.33 37.22

224 [g,ng,ing,ring] 85.56 78.89 85.56 81.11 76.67 58.89

240 [number,number] 99.11 99.11 99.11 97.78 93.33 94.67

241 [boolean,->,string] 85.26 90.88 82.46 82.46 78.60 80.00

243 [lecture,recitation] 89.67 96.00 88.67 87.67 87.67 92.00

244 [nbr,nbr,nbr,->,nbr] 71.15 66.92 71.15 71.15 69.23 66.54

245 [reading,talking,listening] 91.01 96.30 91.01 91.53 84.39 90.74

500 (a b) 77.27 77.27 77.27 77.27 77.27 72.73

501 (caar seq) 73.33 73.33 73.33 73.33 76.67 68.89

502 (cdddr exp) 81.00 81.00 82.00 84.00 82.00 93.00

503 (eq? id1 id2) 71.82 71.82 71.82 73.64 75.45 72.73

504 (map double-tree tree) 96.50 96.50 96.50 96.50 97.00 93.50

505 (/ 2 tree) 82.50 82.50 82.50 83.75 83.75 78.75

506 (a 7) 95.00 95.00 97.50 97.50 97.50 87.50

507 (define x 3) 92.00 92.00 92.00 92.00 92.00 86.00

 84

RepID Semantic Representation INKv3 INKv1 NDDI NCVI-10 NCVI-4 Microsoft

508 (1 2) 100.00 100.00 100.00 100.00 100.00 97.50

509 (* 1 2) 68.00 68.00 68.00 66.00 68.00 58.00

510 (if test #f #t) 83.33 83.33 83.33 83.33 83.33 79.17

700 (cons (cdar seq) (cddr seq)) 83.75 83.75 83.33 83.33 83.33 71.25

701 (first (second exp)) 97.22 97.22 97.22 97.22 97.22 94.44

702 (car (quote (quote a))) 92.50 92.50 92.50 91.50 91.50 80.50

703 (set-cdr! (last-pair x) x) 91.30 91.30 91.30 91.30 91.30 83.09

704 (lambda (new) (set! x new)) 96.14 96.14 96.14 96.14 96.14 91.79

705 (element-of-tree? x (left-branch tree)) 94.14 94.14 94.14 94.14 94.14 90.43

706
(define (list->stream l)
 (cons-stream (car l) (list->stream (cdr l)))

81.31 81.31 81.31 81.31 81.31 77.95

707 (lambda (a b) (+a b)) 88.89 88.89 88.89 88.89 88.89 90.20

708 (list (m-eval init env)) 80.95 80.95 80.95 80.95 80.95 76.72

709
(define ints
 (cons-stream 1 (add-streams ints ones)))

81.63 81.63 81.63 81.41 81.41 80.73

710 (cons (cons x (+ 1 (+ 1 (seq-length seq))) 77.45 77.45 77.45 77.45 77.12 69.93

711 ((p 'SET-CAR!) new-car) 77.55 77.55 78.23 78.23 78.23 79.59

712
(define x (let ((two '(2)))
 (list (cons 1 two) (list 1) two)))

78.11 78.11 78.11 78.11 78.11 76.23

Total (Equal Weight) 81.82 80.18 80.52 78.53 78.44 51.00

 85

Appendix C

Features Considered

This section describes the features we considered in greater detail than what we

have already listed in Table 4.2.

Table C.1: Features we considered, their descriptions and our hypotheses

No. Name Description and Hypothesis

F1 Total number of
strokes

This feature counts the total number of strokes (from pen-down to pen-up)
an ink sample has, a useful metric for generally distinguishing simple and
complex ink samples.

F2 Total number of
positive inter-stroke
adjacent spacing

Inter-stroke adjacent spacing is the distance between two adjacent strokes
in an ink sample. This feature counts the number of such positive spacing
and hence allows differentiation of short or diagrammatic ink samples
from long sequence-like ones.

F3 Sample height span The total height of an ink sample measured in ink space units. Diagrams
are generally taller than regular text.

F4 Sample width span The total width of an ink sample measured in ink space units. Sequences
and Scheme expressions are generally longer than numbers.

F5 Sample width-height
ratio

The ratio of an ink sample’s total width to total height. This feature is
useful for telling ink samples that are taller than wide or vice versa, and
has greater importance since we do not do scale normalization. Diagrams
in our domain are generally square-shaped while text is flat.

F6 Stroke area density of
points

This feature computes the density of pen-tip points over an ink stroke’s
bounding box, effectively measuring the amount of ink for each stroke.
This density is helpful in differentiating different types of strokes for
diagrams or characters.

F7 Stroke horizontal
density of points

This feature computes the density of pen-tip points over the horizontal
width of each ink stroke, effectively measuring the amount of ink for each
unit of width of the stroke. This density is helpful in differentiating
vertical and horizontal strokes in text or diagrams.

F8 Stroke heights The height of each ink stroke measured in ink space units. Useful for
telling tall characters like ‘l’, ‘f’, ‘g’, etc. from short ones like ‘-‘, ‘,’ or
‘a’.

 86

No. Name Description and Hypothesis

F9 Stroke widths The width of each ink stroke measured in ink space units. Useful for
telling wide characters like ‘w’, ‘z’, ‘—‘, etc. from narrow ones like ‘/’,
‘I’, or ‘!’.

F10 Stroke lengths The length of each ink stroke measured in ink space units. Useful for
telling long characters like ‘|’, ‘—‘, ‘}’, etc. from short ones like ‘,’, ‘c’, or
‘^’.

F11 Stroke points count The amount of ink of each ink stroke. Useful for telling diagrams or dense
complex characters like ‘*’, ‘&’, ‘B’, etc. from sparse or simple ones like
‘s’, ‘(‘ or ‘o’.

F12 Stroke adjacent
spacing

The inter-stroke spacing distance between each pair of adjacent strokes
measured in ink space units. Useful for differentiating sequences and
strings from single characters and numbers.

F13 Stroke adjacent
spacing differentials

Once all inter-stroke adjacent spacing distance is calculated for an ink
sample, the distances are sorted in ascending order. A first order
differential on this discrete number sequence is then computed by taking
the differences between each adjacent element of the spacing sequence.
This differential ‘profile’ computed is a useful feature that tells sequences
apart from strings because of the wider inter-word gaps that inter-character
gaps in sequences.

F14 Number of stroke
intersections

The total number of intersections a stroke has with itself and also with
other strokes. Useful for differentiating characters that have strokes that
intersect like ‘+’, ‘x’, ‘#’, etc. from others like ‘v’, ‘s’, or ‘=’. Also useful
for differentiating diagrams and text.

F15 Stroke angles The angle of orientation for each part of an ink stroke measured in radians.
Useful for telling certain characters that slant and curve apart from others.

F16 Stroke speeds The ratio of stroke length to the number of pen-tip points (amount of ink)
for each stroke. Useful for telling strokes that were written/drawn faster
than others, e.g., diagrams are generally drawn faster than printed text.

F17 Similarity of a stroke
to a number

There are many ambiguous strokes that can look like numbers or Roman
alphabets and thus it was important to differentiate these two if we could.
Template matching [Ouyang & Davis, 2007] is a popular feature generator
for such single character comparisons to a pre-computed template
dictionary. We opted for a simple approximation here, however: we chose
to use an unbiased and untrained Microsoft recognizer to interpret each
ink stroke. We count the proportion, within the interval of [0, 1]. of the
ink sample’s strokes that had numbers returned by the recognizer and use
the proportion as a feature.

 87

Appendix D

Feature Importance

This section includes three figures of the individual monochrome grids

highlighting feature importance making up the visualization shown in Figure 4-3 for non-

color printing. In order, the figures show summaries of feature importance for three

different feature selection algorithms: SVM-Weight, GainRatio and InfoGain. The

darker a cell in the diagrams, the more important a feature is. (Note that this is different

from Figure 4-3 which presents all three grids as color channels, with brighter colors

denoting greater importance.)

F
ig
u
re
 D
-1
.
T
h
is
 v
is
u
al
iz
at
io
n
 s
u
m
m
ar
iz
es
 t
h
e
w
o
rk
 o
f
th
e
S
V
M
 W
ei
g
h
t
fe
at
u
re
 s
el
ec
ti
o
n
 a
lg
o
ri
th
m
,
h
ig
h
li
g
h
ti
n
g
 t
h
e
im
p
o
rt
an
t
fe
at
u
re
s
am
o
n
g
 a
ll

fe
at
u
re
s
th
at
 w
e
ex
tr
ac
te
d
 w
it
h
 d
ar
k
er
 c
el
ls
.

F
ig
u
re
 D
-2
.
T
h
is
 v
is
u
al
iz
at
io
n
 s
u
m
m
ar
iz
es
 t
h
e
w
o
rk
 o
f
th
e
G
ai
n
R
at
io
 f
ea
tu
re
 s
el
ec
ti
o
n
 a
lg
o
ri
th
m
,
h
ig
h
li
g
h
ti
n
g
 t
h
e
im
p
o
rt
an
t
fe
at
u
re
s
am
o
n
g
 a
ll

fe
at
u
re
s
th
at
 w
e
ex
tr
ac
te
d
 w
it
h
 d
ar
k
er
 c
el
ls
.

F
ig
u
re
 D
-3
.
T
h
is
 v
is
u
al
iz
at
io
n
 s
u
m
m
ar
iz
es
 t
h
e
w
o
rk
 o
f
th
e
In
fo
G
ai
n
 f
ea
tu
re
 s
el
ec
ti
o
n
 a
lg
o
ri
th
m
,
h
ig
h
li
g
h
ti
n
g
 t
h
e
im
p
o
rt
an
t
fe
at
u
re
s
am
o
n
g
 a
ll

fe
at
u
re
s
th
at
 w
e
ex
tr
ac
te
d
 w
it
h
 d
ar
k
er
 c
el
ls
.

91

Appendix E

Ink Type Prediction Confusion Matrix

Table E.1: Confusion matrix of our classification over 8 expected type classes for all 1958

samples using the SMO classifier and InfoGain feature selection algorithm. Precision (P), recall

(R) and F-measure (F) values are also shown for each class.

x classified as X A B C D E F G H P R F

True-False (a) 36 0 0 0 27 0 0 1 0.923 0.563 0.699

Scheme Exp (b) 0 203 0 0 4 1 0 41 0.886 0.815 0.849

Symbol (c) 0 0 27 0 3 0 0 2 0.931 0.844 0.885

Fraction (d) 0 0 0 10 0 0 0 0 1.000 1.000 1.000

String (e) 1 4 2 0 431 1 37 41 0.775 0.834 0.803

Diagram (f) 0 0 0 0 4 117 0 0 0.983 0.967 0.975

Number (g) 0 0 0 0 29 0 168 16 0.771 0.789 0.780

Sequence (h) 2 22 0 0 58 0 13 657 0.867 0.874 0.870

Correctly 1649 84.22 % = Accuracy

Incorrectly 309 15.78 % = Error Rate

