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Abstract

The mass �uctuation kinetics (MFK) model is a set of coupled �rst-order di¤eren-
tial equations describing the temporal evolution of means, variances and covariances
of species concentrations in systems of chemical reactions. It generalizes classical mass
action kinetics (MAK) in which �uctuations around the mean are ignored. This thesis
begins with the motivating background theory for the development of MFK. The model
equations follow from the time-evolution of the molecule number moment generating
function obtained from the chemical master equation (CME). A closed-form expression
for the MFK Jacobian matrix that describes small deviations from equilibrium is de-
rived. An MFK software toolbox prototype, developed in MATLAB (and available at
http://www.mit.edu/~azunre/MFK), applies this Jacobian in the context of single sub-
strate enzyme kinetics to exploring the local dynamics of MFK equilibria. MFK means
and covariances are observed to be locally decoupled at the equilibrium in the large-
volume thermodynamic limit, providing an alternative explanation for why MAK is an
accurate approximation for system behavior there. Increasing discreteness of system
behavior with decreasing system volume, a characteristic that the MAK model cannot
capture, is captured by the MFK model via the growth of its variance. This ability
is limited to a threshold beyond which MFK ceases to be a useful approximation for
system behavior. Systematic extensions to higher order moments to correct for this are
suggested.
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Title: Professor of Electrical Engineering
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Preface
The high-level purpose of this text is to provide a self-contained exposition of the mass

�uctuation kinetics (MFK) model for the temporal evolution of means, variances and

covariances of concentrations of species in systems of chemical reactions. The moti-

vating background theory for the model�s development is provided in Chapter 1. The

presentation of concepts here is heavily in�uenced by Daniel Gillespie�s lecture on sto-

chastic chemical kinetics, a video of which is available at http://mbi.osu.edu/2004/

ws2abstracts.html. The remaining chapters contain several original contributions to

the MFK framework.

The model equations are shown in Chapter 2 to follow from the temporal evolution

of the molecule number moment generating function obtained from the chemical master

equation (CME). This connection highlights the possibility of systematically extending

the MFK model to speci�c higher-order moments and studying their e¤ects on system

behavior. A general analytic result for computing evolution equations up to any order

has (independently of our work) been established in [1] via a similar approach.

An expression for the MFK Jacobian matrix is established in Chapter 3.

Chapter 4 describes a software toolbox prototype developed in MATLAB, a popular

numerical computing environment, to automate the analysis of systems within the MFK

framework. The toolbox is available for download at the companion website for this

thesis, http://www.mit.edu/~azunre/MFK. Chapter 5 applies the toolbox to exploring

the local dynamics of MFK equilibria, and relating them to the local dynamics of the

traditional mass action kinetics (MAK) model in the context of single substrate enzyme

kinetics. This exploration is backed by analytic justi�cation as much as possible, to

enable it serve as a tutorial for anyone interested in studying the model and/or apply-

ing the software toolbox. Bifurcation movies described in Chapter 5 and an electronic

(.pdf) version of this text are available for view and download at the companion website.

Appendix A describes key matrix results used in arriving at the equations in Chapter 3

(and to a smaller extent, Chapter 2). Several relevant matrix identities not covered by
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Appendix A can be found at http://matrixcookbook.com.
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Chapter 1

Stochastic Chemical Kinetics

1.1 Introduction

Evolution with time of concentrations of reacting species in systems of chemical reactions

is traditionally modeled in chemical kinetics by deterministic, continuous reaction rate

equations based on mass action kinetics (MAK). These equations dictate that the rate

of a chemical reaction is proportional to the product of the concentrations of reacting

species, with constant of proportionality known as the reaction�s rate constant. While this

description is empirically accurate for systems of test-tube size or larger, it breaks down

at smaller volumes found in, for example, gene networks and cellular signaling pathways,

where stochastic e¤ects can dominate and where the discrete nature of the evolution of

molecule numbers becomes signi�cant. Stochastic chemical kinetics is concerned with de-

veloping modeling methodologies that correct for this de�ciency by introducing elements

of stochasticity, and perhaps discreteness, into the rate equations.

This chapter reviews popular approaches and their theoretical connection to the de-

terministic MAK reaction rate equations. The purpose of this chapter is to provide the

background and motivation for the development of the mass �uctuation kinetics (MFK)

model. The next section describes the theoretical setting for an arbitrary system of

chemical reactions.
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1.2 System of chemical reactions

Consider molecules of n chemical species, fXigni=1, known as the reactants, interacting

through reactions of the form

nX
i=1

siXi
k!

nX
i=1

siXi (1.1)

in a constant volume v. Each such reaction may be broken down into elemental reactions

that describe single instantaneous physical events, i.e., either collisions of su¢ ciently high

energy of two or more reactant molecules, or spontaneous molecule formation/dissociation

events. Since instantaneous collisions of three or more reactant molecules are extremely

rare, elemental reactions may be restricted, without loss of generality, to the four cate-

gories in Table 1.1. Note that ? denotes the empty set.

Reaction category Representation

1. zero-order reaction ? k! Xi

2. �rst-order reaction Xj
k!

nP
i=1

siXi

3. homogeneous second-order reaction Xj +Xj
k!

nP
i=1

siXi

4. heterogeneous second-order reaction Xj +Xl
k!

nP
i=1

siXi j 6= l

Table 1.1: Elemental reactions and their representations.

It is assumed that the system is completely described by L elemental reactions, de-

picted as (
Rl :

nX
i=1

sliXi
kl!

nX
i=1

sliXi

)L
l=1

(1.2)

and the quali�er elemental is henceforth dropped. Parameter kl is the rate constant for

reaction Rl, the constant of proportionality for its MAK reaction rate equation. Upon

each �ring of Rl, sli molecules are consumed and sli molecules of Xi are produced.

The stoichiometric coe¢ cient of Xi in Rl, de�ned as the change in the number of Xi

molecules upon each �ring of Rl, is calculated as sli = sli�sli. Stoichiometric coe¢ cients

16



are grouped into the stoichiometry vector for each Rl as

sl =

26664
sl1
...

sln

37775 2 Zn (1.3)

Stoichiometry vectors are arranged into the system�s stoichiometry matrix as

S =
h
s1 � � � sL

i
2 Zn�L (1.4)

System size is de�ned as


 = Av (1.5)

where A is Avogadro�s number, the number of molecules in onemole of a chemical species.

Molecule numbers for all species at time t may be grouped as the column vector

x(t) =

26664
x1(t)
...

xn(t)

37775 2 Zn (1.6)

and concentrations may be obtained in units of moles per unit volume as

y(t) =
x(t)



2 Rn (1.7)

The system is assumed to be evolving at a constant temperature T , hence to have

achieved thermal equilibrium, but not chemical equilibrium. Temporal evolution of the

system towards this chemical equilibrium (if it exists and is attained, otherwise the nature

of its unstable behavior) is of interest. The next section describes molecular dynamics, a

detailed method for characterizing this evolution.
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1.3 Molecular dynamics

A detailed characterization of the system�s temporal evolution may be obtained via molec-

ular dynamics [2]. This method involves specifying initial positions and velocities of every

molecule in the system and tracking their evolution with time based on the deterministic

laws of classical mechanics. It follows from physical principles that when two molecules

collide with su¢ ciently high energy (speci�cally, energy greater than the reaction�s ac-

tivation energy), a second-order reaction occurs and appropriate molecule numbers in

x(t) are updated. This describes a reactive collision. All other collisions are nonreactive

in that they merely alter the motions of colliding molecules. Zero-order and �rst-order

reactions are driven by underlying molecular processes, which introduce an element of

stochasticity into the evolution of x(t) if reactions of this type exist in the system.

This method tracks an enormous amount of state information, making it computa-

tionally intensive and infeasibly slow for most practical systems. The assumption of

spatial homogeneity allows a signi�cant truncation of state information at the expense

of treating x(t) as a stochastic process regardless of reaction categories in the system.

The next section makes this assumption and establishes a continuous time, discrete state

Markov process model for x(t).

1.4 System Markov process model

If reactive collisions are assumed to be separated in time by many nonreactive collisions,

the amount of state information may be signi�cantly reduced. Under this assumption,

the system is kept well-stirred, and hence spatially homogeneous, by the nonreactive

collisions, thus allowing the reactive collisions and internal molecular processes to occur

at uniform rates throughout the system. Thus, nonreactive collisions may be ignored and

attention restricted to the zero-, �rst- and second-order reactions. The bene�t of this state

information truncation is that x(t) can be reasonably modeled as a Markov process with

well-de�ned exponential state transition rates that need to be speci�ed. The treatment

18



below draws from the work of Daniel Gillespie, particularly from his lecture on stochastic

chemical kinetics available at http://mbi.osu.edu/2004/ws2abstracts.html.

The propensity function al(x) for each reaction Rl is de�ned such that the probability

of Rl �ring within the next in�nitesimal time interval dt is given by al(x)dt (in the

absence of all other reactions and given that the current state is x). Under the standing

assumptions, al(x) may be derived from physical principles for each Rl depending on its

category, as shown in Table 1.2, with cl for a �xed 
 denoting a constant associated with

Rl. Note that xi = fxgi is the ith entry of x.

Reaction category Propensity function [al(x)]
1. zero-order reaction cl
2. �rst-order reaction clxi
3. homogeneous second-order reaction cl

xi(xi�1)
2

4. heterogeneous second-order reaction clxixj i 6= j

Table 1.2: Propensity functions expressed in terms of physical rate constants.

For zero-order and �rst-order reactions, the constant parameter cl arises from the rates

of the underlying spontaneous formation/dissociation events. For zero-order reactions, it

speci�es the probability that spontaneous formation will occur anywhere in the system

(or can represent in�ow of species). For �rst-order reactions, it speci�es the probability

that a randomly chosen molecule of the reactant will undergo spontaneous dissociation,

while the term xi re�ects the number of such molecules that may be randomly chosen. For

second-order reactions, the constant parameter cl arises from collision theory arguments

and speci�es the probability that a randomly chosen reactant molecule pair will collide

with su¢ ciently high energy; in this second-order case, cl varies inversely with 
. The

terms xi(xi�1)
2

and xixj re�ect the number of such distinct molecule pairs, for homogeneous

and heterogeneous reactions respectively, that may be randomly chosen. Since every cl

arises from the physics describing the system, they are collectively referred to as the

physical rate constants.

A continuous time, discrete state Markov process model for the system of chemical

reactions, with state x(t) 2 Zn and exponential state transition rates fal(x)gLl=1, has
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thus been established. Transitions out of an arbitrary state x into the states fx+ slgLl=1
correspond to the �ring of reactions fRlgLl=1 at rates fal(x)g

L
l=1, respectively. The total

transition rate out of x is then
LP
l=1

al(x). Similarly, transitions out of states fx� slgLl=1
into the state x occur at rates fal(x� sl)gLl=1 respectively. The forward Kolmogorov

equation for the Markov process may then be written as

dPx(t)

dt
=

LX
l=1

[Px�sl(t)al(x� sl)� Px(t)al(x)] (1.8)

to describe the rate of change of Px(t), the probability of being in state x at time t

conditioned on some initial state x(0). This is the chemical master equation (CME),

which completely characterizes the temporal evolution of the system�s stochasticity under

the standing assumptions.

Since the number of possible states is typically large, solving the CME explicitly is

infeasible in most practical situations. The stochastic simulation algorithm (SSA), which

computes sample trajectories from the CME without solving the full set of equations for

each possible state, alleviates this drawback and is presented in the next section.

1.5 The stochastic simulation algorithm (SSA)

The stochastic simulation algorithm (SSA) [3] computes sample trajectories from the

CME without solving it for each possible state. Let p(j; � jx) be the joint probability

density function between the index of the next reaction to �re, j 2 f1; :::; Lg, and the

time until it �res, � , given that x(t) = x at the current time t. Then

p(j; � jx)d� = Prob. no reaction in [t; t+ �) and jth reaction in [t+ � ; t+ � + d�)

= e
�
 

LP
l=1

al(x)

!
�

� aj(x)d� =

p1(�)z }| { 
LX
l=1

al(x)

!
e
�
 

LP
l=1

al(x)

!
�

�

p2(j)z }| {
aj(x)�
LP
l=1

al(x)

�d� (1.9)
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It should be clear from Equation (1.9) that a random sample (j; �) may be drawn from

p(j; � jx) by drawing independent samples from the exponential p1(�) and the uniform

p2(j). This is done at every step of the algorithm, with molecule numbers updated as

x(t+ �) = x+ sj and time advanced by � .

Since samples are drawn (i.e., reactions are simulated) one at a time, this method

can be prohibitively slow (although not infeasible with su¢ cient computing power) in

practical situations where many molecules are present and reactions �re frequently. The

tau-leaping algorithm, which approximates the SSA, alleviates this drawback and is pre-

sented in the next section. Yet other approaches to e¢ cient stochastic simulation may

be found in the literature, see for example [4].

1.6 The tau-leaping algorithm

Typically, a time interval � (over which each reaction may �re several times) can be

adaptively found such that the expected changes induced in the propensity functions

fal(x)gLl=1 are relatively small. This is known as the leap condition and reliable procedures

have been developed for �nding suitable candidates [5]. If such a � can be found, the

propensity functions fal(x)gLl=1 may be assumed to remain constant over � . Then, the

number of times that each Rl �res over � is a sum of a random number of independent

exponential random variables of rate al(x)� , and hence is a Poisson random variable

with mean and variance equal to al(x)� . Let this Poisson random variable be denoted

by P(al(x)�).

Reliable procedures exist for generating random samples from Poisson probability dis-

tributions. Thus, the SSA may be approximated by drawing L Poisson random samples,

fP(al(x)�)gLl=1, updating molecule numbers as

x(t+ �) = x+
LX
l=1

slP(al(x)�) (1.10)
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and advancing time by � . This is the tau-leaping algorithm [6].

The chemical Langevin equation (CLE) may be viewed as a direct consequence of

tau-leaping and provides a bridge to the MAK reaction rate equations. It is presented in

the next section.

1.7 The chemical Langevin equation (CLE)

If a � can be found to satisfy the leap condition such that the quantities fal(x)�gLl=1
are su¢ ciently larger than 1, then the Poisson random variables fP(al(x)�)gLl=1 may

be approximated by normal random variables with means and variances both equal to

fal(x)�gLl=1. Let these be denoted as fNl(al(x)� ; al(x)�)gLl=1.

If such a � can be found, the tau-leaping state update equation (1.10) may be ap-

proximated as

x(t+ �) = x+
LX
l=1

slNl(al(x)� ; al(x)�)

= x+
LX
l=1

slal(x)� +
LX
l=1

sl
p
al(x)�Nl(0; 1) (1.11)

where Nl(0; 1) is a zero-mean unit-variance normal random variable. It can be shown

that this equation reduces to

dx(t)

dt
=

LX
l=1

slal(x(t)) +
LX
l=1

sl
p
al(x(t))�l(t) (1.12)

where f�l(t)gLl=1 are independent unit-intensity zero-meanGaussian white noise processes.

This is the chemical Langevin equation (CLE) [7]. Technically, it is a stochastic di¤er-

ential equation (SDE). It should be noted that in moving from Poisson random variables

to normal random variables, discrete system temporal evolution is being approximated

as continuous. The thermodynamic limit of the CLE yields the MAK reaction rate equa-

tions, as shown in the next section.
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1.8 Mass action kinetics (MAK)

The thermodynamic limit of the system is de�ned as its limiting behavior with large

molecule numbers, x(t), and system size, 
, i.e.,

thermodynamic limit
4
= limfx(t);
g!1fsystemg (1.13)

such that concentrations, y(t) = x(t)


, remain unchanged. It may be shown that substi-

tuting x(t) = y(t)
 in (1.12) and taking the limit of 
!1 yields the traditional set of

MAK reaction rate equations in terms of concentrations rather than molecule numbers:

dy(t)

dt
= lim
!1

(
LX
l=1

sl
al(y(t)
)




)
=

LX
l=1

sl
_
r l(y(t)) (1.14)

Microscopic reaction rates are de�ned as
n
�l(y(t))

4
= al(y(t)
)




oL
l=1

for reactions fRlgLl=1
respectively. Taking the limit of 
!1 yields the macroscopic reaction rates

n
_
r l(y(t))

4
= lim
!1 �l(y(t))

oL
l=1

(1.15)

We list in Table 1.3 the microscopic and macroscopic reaction rates and make explicit

the de�nition of the rate constant kl in terms of the corresponding cl for each reaction

category. Note that yi = fy(t)gi is the ith entry of y(t).

Reaction category �l(y(t))
_
r l(y(t)) kl

1. zero-order reaction cl kl cl
2. �rst-order reaction clyi klyi cl
3. homogeneous second-order reaction cl

2
yi (yi
� 1) kly

2
i lim
!1

cl

2

4. heterogeneous second-order reaction cl
yiyj i 6= j klyiyj i 6= j lim
!1 cl


Table 1.3: Reaction rates and relationships between rate constants.
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1.9 Summary

The MAK reaction rate equations have been shown to be the thermodynamic limit of

a more detailed and accurate model of system evolution. In this limit, the stochasticity

of the system becomes negligible in comparison to the deterministic part and drops out

of the reaction rate equations. Applications far from the thermodynamic limit may be

of interest. The CME, which is a detailed characterization of the system�s stochasticity

evolution under the assumption of spatial homogeneity, is infeasible to solve in most prac-

tical situations. The SSA and the tau-leaping algorithm can compute sample trajectories

from the CME, but do not provide a complete picture of system evolution. Monte Carlo

methods can be used to approximate moments of the CME but are signi�cantly more

computationally intensive.

The remainder of this text focuses on mass �uctuation kinetics (MFK), a set of coupled

�rst-order di¤erential equations that deterministically approximate the evolution of �rst

and second moments of the CME by ignoring central moments of higher order.

24



Chapter 2

Mass Fluctuation Kinetics (MFK)

2.1 Introduction

The mass �uctuation kinetics (MFK) model approximates the evolution of �rst and

second moments of the chemical master equation (CME) by ignoring central moments

of higher order [8][9]. Because it incorporates the e¤ects of second moments on �rst

moments and vice versa, it is capable of capturing system dynamics better than MAK

equations, which only track the �rst moments. MFK is a deterministic model and is thus

signi�cantly less computationally intensive than Monte Carlo methods.

This chapter is devoted to arriving at the MFK equations through a di¤erent approach

from that presented in the original MFK papers. Speci�cally, the derivation presented

here uses the temporal evolution of the molecule number moment generating function

obtained from the CME to arrive at the equations. The original motivation for this

approach was to provide, in the view of this author, a more transparent derivation, as

well as to explore the possibility of systematically extending it to speci�c higher-order

moments and studying the associated e¤ects on system behavior. A paper currently

in press (earlier than but independent from the work presented here) obtains a general

analytic result for computing moment equations up to any order [1]1 using a similar

1Many thanks to Dr. Colin Gillespie for providing a prepublication version of this paper.
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approach. The results here di¤er in emphasis and some details of development.

2.2 Preliminaries

For notational convenience, the time dependence of x(t), y(t) and P (x; t) is henceforth

made implicit, with the variables respectively referred to as x, y and P (x). It should

be recalled that the variables stand for the number of molecules at the current time t,

the corresponding concentration and the probability of the system being in this state,

respectively. The CME is restated here for convenience as

dP (x)

dt
=

LX
l=1

[P (x� sl)al(x� sl)� P (x)al(x)] (2.1)

The mean concentration vector is de�ned as

� = E[y] =
1



E[x] 2 Rn (2.2)

and the concentration covariance matrix as

V =
1


2
E[(x� �) (x� �)T ] 2 Rn�n (2.3)

Equations (2.2) and (2.3) contain the state variables for MFK. For application purposes,

it is convenient to rewrite the microscopic reaction rates, de�ned as

�
�l(y)

4
=
1



al(y
)

�L
l=1

(2.4)

in terms of the reaction rate constants fklgLl=1 that are readily available from reaction

speci�cations, thereby substituting out the physical rate constants fclgLl=1, as shown in

Table 2.1.

For the reaction categories being considered, each �l(y) may be expressed in quadratic
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Reaction category �l(y)
1. zero-order reaction kl
2. �rst-order reaction klyi
3. homogeneous second-order reaction kl



yi (yi
� 1)

4. heterogeneous second-order reaction klyiyj i 6= j

Table 2.1: Propensity functions expressed in terms of reaction rate constants.

form as

�l(y) = kl
�
bl + c

T
l y + y

T
l Dly

�
(2.5)

with the parameters bl, cl and Dl collectively named the microscopic rate parameters.

2.3 Moment generating function evolution

The moment generating function for the molecule number vector x 2 Rn is de�ned as

Mx(v) = E
h
ev

T x
i
=
X
x2Zn

h
ev

TxP (x)
i

(2.6)

where v 2 Rn and the de�nition of E, as the expectation operator over x, has been made

explicit. The temporal evolution equation forMx(v) may be found by multiplying the

CME by ev
T x and summing the result over all possible values of x, yielding

dMx(v)

dt
=

LX
l=1

"X
x2Zn

h
ev

TxP (x� sl)al(x� sl)� ev
TxP (x)al(x)

i#
(2.7)

This may be simpli�ed further as

dMx(v)

dt
=

LX
l=1

"
ev

T sl
X
x2Zn

h
ev

T (x�sl)P (x� sl)al(x� sl)
i
�
X
x2Zn

h
ev

TxP (x)al(x)
i#

(2.8)
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Recognizing that

X
x2Zn

h
ev

TxP (x)al(x)
i
=
X
x2Zn

h
ev

T (x�sl)P (x� sl)al(x� sl)
i

(2.9)

(which may be veri�ed by recognizing that the support of x� sl is just a shifted version

of that of x, and is a subset of Zn) allows rewriting the moment generating function

evolution equation as

dMx(v)

dt
=

LX
l=1

"�
ev

T sl � 1
� X
x2Zn

h
ev

TxP (x)al(x)
i#

(2.10)

Deriving evolution equations for all moments from the equation above is a systematic

task.

2.4 Mean evolution

The mean concentration vector � may be generated fromMx(v) as

� =
1




�
dMx(v)

dv

�
v=0

=
1



E
h
xev

T x
i
v=0

=
1



E[x] (2.11)

Thus, the evolution equation for � may be generated from Equation (2.10) as

d�

dt
=
1




�
d

dv

�
dMx(v)

dt

��
v=0

=
1




LX
l=1

264 slev
T sl

P
x2Zn

h
ev

T xP (x)al(x)
i

+
�
ev

T sl � 1
� P
x2Zn

h
xev

TxP (x)al(x)
i
375
v=0

=
1




LX
l=1

"
sl
X
x2Zn

[P (x)al(x)]

#

=
LX
l=1

slE [�l(y)] (2.12)
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This can be simpli�ed further by observing that

E [�l(y)] = E[kl
�
bl + c

T
l y + y

T
l Dly

�
] = kl

�
bl + c

T
l �+ E

�
yTl Dly

��
(2.13)

and using the identity [10]

E
�
yTl Dly

�
= Tr(DlV) + �

T
l Dl� (2.14)

to obtain
d�

dt
=

LX
l=1

�
slkl

�
bl + c

T
l �+ �

T
l Dl�+ Tr(DlV)

�	
(2.15)

De�ne the average rate for reaction Rl as its propensity function evaluated at �, �l(�),

its stochastic rate as

�l(V)
4
= klTr(DlV) = klvec fDlgT vec fVg (2.16)

and its e¤ective rate as the sum of its stochastic and average rates as

rl
4
= �l(�) + �l(V) = E [�l(y)] (2.17)

De�ning the corresponding rate vectors as8>>><>>>:� =
26664
�1(�)
...

�L(�)

37775 ; � =

26664
�1(V)
...

�L(V)

37775 ; r =

26664
r1
...

rL

37775
9>>>=>>>; 2 Rn

and recalling the de�nition of the stoichiometry matrix allows rewriting Equation (2.15)

as
d�

dt
= Sr = S(�+ �) (2.18)
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This is the mean evolution equation. Note that de�ning the matrices

D =
h
vec(D1)j ::: jvec(DL)

i
(2.19)

K = diag
n
k1 � � � kL

o
(2.20)

C =
h
c1j � � � jcL

i
(2.21)

allows writing the e¤ective rate r in compact form as

r = K
�
b+CT�+DT (�
 �) +DTvecfVg

�
(2.22)

2.5 Covariance evolution

The covarianceVmay be generated from the central moment generating functionMx��(v)

as

V =
1


2

�
d2Mx��
(v)

dvTdv

�
v=0

=
1


2
E
h
(x� �
) (x� �
)T

i
(2.23)

To derive the evolution equation for V, we accordingly modify Equation (2.10) to obtain

the central moment generating function evolution equation as

dMx��
(v)

dt
=

LX
l=1

"�
ev

T sl � 1
� X
x2Zn

h
ev

T (x��
)P (x)al(x)
i#

(2.24)

This equation is readily obtained by replacing the term ev
Tx with ev

T (x��
) in the steps

leading up to the derivation of Equation (2.10). Thus, the evolution equation for V may

be generated from Equation (2.24) as
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dV

dt
=
1


2

�
d2

dvTdv

�
dMx��
(v)

dt

��
v=0

=
1


2

LX
l=1

264 d

dvT

264 slev
T sl
P
x=x

h
ev

T (x��
)P (x)al(x)
i

+
�
ev

T sl � 1
� P
x=x

h
(x� �
) evT (x��
)P (x)al(x)

i
375
375
v=0

=
1


2

LX
l=1

26666666664

sls
T
l e

vT sl
P
x2Zn

h
ev

T (x��
)P (x)al(x)
i

+sle
vT sl

P
x2Zn

h
(x� �
)T evT (x��
)P (x)al(x)

i
+

� P
x2Zn

h
(x� �
) evT (x��
)P (x)al(x)

i�
sTl e

vT sl

+
�
ev

T sl � 1
� P
x2Zn

h
(x� �) (x� �)T evT (x��
)P (x)al(x)

i

37777777775
v=0

=
1


2

LX
l=1

26666664
sls

T
l

P
x2Zn

[P (x)al(x)]

+sl
P
x2Zn

h
(x� �
)T P (x)al(x)

i
+

� P
x2Zn

[(x� �
)P (x)al(x)]
�
sTl

37777775
=

LX
l=1

�
1



sls

T
l rl + sl

�
E
�
yT�l(y)

�
� �T rl

�
+ (E [y�l(y)]� �rl) sTl

�
(2.25)

To complete the derivation, an expression for the term E [y�l(y)] = E
�
yT�l(y)

�T
needs

to be found. This term can be simpli�ed as

E [y�l(y)] = E[kl
�
bly + yc

T
l y + yy

T
l Dly

�
]

= kl
�
bl�+ E

�
ycTl y

�
+ E

�
yyTl Dly

��
(2.26)

To proceed further, the following identity [10] is useful:

E
�
y
�
cTl y
��
= E

�
y
�
yTcl

��
=
�
V + ��T

�
cl (2.27)
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Also, when third central moments can be ignored [10],

E
�
yyTl Dly

�
= Tr fDlVg�+VDl�+VDl�+ ��

TDl�

= Tr fDlVg�+ 2VDl�+ ��
TDl� (2.28)

Then,

E [y�l(y)] = kl
�
bl�+

�
V + ��T

�
cl + Tr fDlVg�+ 2VDl�+ ��

TDl�
�

(2.29)

and

E [y�l(y)]� �rl = kl
�
bl�+

�
V + ��T

�
cl + Tr fDlVg�+ 2VDl�+ ��

TDl�
�

� kl
�
bl + c

T
l �+ �

T
l Dl�+ Tr(DlV)

�
�

= kl (Vcl + 2VDl�) (2.30)

Hence

dV

dt
=

LX
l=1

�
1



sls

T
l rl + slkl

�
cTl V + 2�

TDlV
�
+ kl (Vcl + 2VDl�) s

T
l

�

=
1



S�ST +

LX
l=1

�
slkl

�
cTl + 2�

TDl

�
V +V (cl + 2Dl�) kls

T
l

�
=
1



S�ST +

 
SKCT + 2

LX
l=1

klsl�
TDl

!
V

+V

 
CTKST + 2

LX
l=1

klDl�s
T
l

!
(2.31)
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De�ning the �uctuation dynamics matrix M as

M = SKCT + 2

LX
l=1

klsl�
TDl

= SKCT + 2SK

26664
�
vec
�
�TD1

	�T
...�

vec
�
�TDL

	�T
37775

= SKCT + 2SK

26664
(vec fD1g)T (In 
 �)

...

(vec fDLg)T (In 
 �)

37775
= SK

�
CT + 2DT (In 
 �)

�
(2.32)

allows rewriting Equation (2.31) as

dV

dt
=MV +VMT +

1



S�ST (2.33)

2.6 Summary and future work

Equations (2.12) and (2.33) de�ne the MFK model. The MFK equations have thus

been shown to follow from the molecule number moment generating function evolution

equation that is obtained from the CME. The most pressing extension of this task, in

the view of this author, is the systematic extension of the approach to speci�c higher-

order moments and the study of associated e¤ects on system behavior. In preparation

for Chapters 4 and 5, note that f
;Vg= f1;0g is an equilibrium MFK setting for V,

since Equation (2.33) is zero at that point. A quick look at Equations (2.12), (2.16),

(2.17), (2.4) and (1.14) reveals that this MFK setting captures MAK dynamics.
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Chapter 3

MFK Jacobian Matrix

3.1 Introduction

The goal of answering various questions about the local dynamics of the mass �uctuation

kinetics (MFK) model necessitates establishing an analytic expression for its Jacobian

matrix. This matrix contains the �rst-order derivatives of the MFK evolution equations

with respect to each state variable. It is particularly useful in analyzing local stability

properties of equilibria. If the real part of any Jacobian eigenvalue at an equilibrium is

positive, the equilibrium is locally unstable. In particular, if this is true for all eigenvalues,

the equilibrium is classi�ed as a repellor, whereas when this applies to some but not all

eigenvalues the equilibrium is a saddle point. Local stability of an equilibrium may be

inferred from observing that eigenvalues have strictly negative real parts, classifying the

equilibrium as an attractor. The Jacobian is also used in a variety of algorithms, among

them the popular Newton-Raphson algorithm for computing equilibria.

This chapter establishes an analytic expression for the MFK Jacobian matrix, with

the aid of several matrix results presented in Appendix A.
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3.2 The vectorized model

To �nd the Jacobian, it is convenient to �rst vectorize the MFK model as

vec

�
d�

dt

�
=
d�

dt
= Sr = S(�+ �) (3.1)

vec

�
dV

dt

�
= vec

�
MV +VMT

	
+ vec

�
1



S�ST

�
= (In 
M+M
 In)vec(V) +

1



(S
 S)vec f�g

= (In 
M+M
 In)FnvechfVg+
1



(S � S)r

) d fvech fVgg
dt

= En(In 
M+M
 In)FnvechfVg+
1



En(S � S)r (3.2)

where

r = K
�
b+ CT�+DT (�
 �) +DTvecfVg

�
= K

�
b+ CT�+DT (�
 �) +DTFnvechfVg

�
(3.3)

M = SK
�
CT + 2DT (In 
 �)

�
2 Rn�n (3.4)

The state vector for the vectorized MFK model as described above is

z =

24 �

Vvech

35 2 Rn(n+3)
2 (3.5)

where Vvech denotes vech fVg. Let the vectorized MFK model be denoted as

dz

dt
= g(z) =

24 d�
dt

dVvech

dt

35 2 Rn(n+3)
2 (3.6)
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3.3 The Jacobian matrix

The Jacobian for the vectorized model is de�ned as

J =
dg(z)

dz
=
h
dg(z)
d�

dg(z)
dVvech

i
2 R

n(n+3)
2

�n(n+3)
2 (3.7)

This may be written more explicitly as

J =

24 d
d�

�
d�
dt

	
d

dVvech

�
d�
dt

	
d
d�

�
dVvech

dt

	
d

dVvech

�
dVvech

dt

	
35 (3.8)

Hence, �nding the Jacobian just amounts to �nding the four terms in the block matrix

above. Three of the four terms are found as

d

d�

�
d�

dt

�
=

d

d�
fSrg = SK

�
CT + 2DT (In 
 �)

�
=M (3.9)

d

dVvech

�
d�

dt

�
=

d

dVvech

fSrg = SKDTFn (3.10)

d

dVvech

�
dVvech

dt

�
=

d

dVvech

fEn(In 
M+M
 In)FnVvechg (3.11)

+
d

dVvech

�
1



En(S � S)r

�
(3.12)

= En(In 
M+M
 In)Fn +
1



En(S � S)KDTFn (3.13)

Finding the last term is more complicated. The expression needs to be �rst rearranged

and simpli�ed to ensure that dimensions remain correct:

d

d�

�
dVvech

dt

�
=

d

d�

�
En(In 
M+M
 In)FnVvech +

1



En(S � S)r

�
=

d

d�

�
En(vec fMVg+ vec

�
VMT

	
) +

1



En(S � S)r

�
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=
d

d�
fEn(V 
 In + (In 
V)Pnn)vec fMgg

+
1



En(S � S)K

�
CT + 2DT (In 
 �)

�
(3.14)

= En(V 
 In + (In 
V)Pnn)
d

d�

�
vec
�
2SKDT (In 
 �)

		
(3.15)

+
1



En(S � S)K

�
CT + 2DT (In 
 �)

�
= En(V 
 In + (In 
V)Pnn)

�
In 
 2SKDT

� d
d�
fvec fIn 
 �gg

+
1



En(S � S)K

�
CT + 2DT (In 
 �)

�
(3.16)

Finding the last unknown expression involves thinking about the de�nitions of the vec

and 
 operators and performing further rearrangements as

d

d�
fvec fIn 
 �gg =

d

d�

8>>><>>>:vec
8>>><>>>:
26664
� � � � 0
...
. . .

...

0 � � � �

37775
9>>>=>>>;
9>>>=>>>;

=
d

d�

8>>><>>>:vec
8>>><>>>:
26664
1 � � � 0
...
. . .

...

0 � � � 1

37775
9>>>=>>>;
 �

9>>>=>>>;
= vec

8>>><>>>:
26664
1 � � � 0
...
. . .

...

0 � � � 1

37775
9>>>=>>>;


�
d

d�
f�g

�

= vec fIng 
 In (3.17)

) d

d�

�
dVvech

dt

�
= En fV 
 In + (In 
V)Pnng

�
In 
 2SKDT

�
(vec fIng 
 In)

+
1



En(S � S)K

�
CT + 2DT (In 
 �)

�
(3.18)

Equations (3.9), (3.10), (3.13) and (3.18) de�ne the MFK Jacobian matrix.
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Chapter 4

MFK Software Prototype

4.1 Introduction

Our interest in exploring various properties of the mass �uctuation kinetics (MFK) model

makes the development of an MFK software toolbox appropriate. A software prototype

has been developed in MATLAB, a popular numerical computing environment, to au-

tomate the analysis of systems of chemical reactions within the framework. It is avail-

able to download at http://www.mit.edu/~azunre/MFK (note that MATLAB and its

SimBiology and Symbolic Math toolboxes are required to run it). The current version

performs the basic functions of describing the model, �nding equilibria and studying the

variation of local dynamics with varying system size. This chapter reviews the technical

speci�cations of the software prototype and the theory behind its current capabilities.

4.2 Technical speci�cations

The prototype was developed with the aid of MATLAB�s SimBiology and Symbolic

Math toolboxes. SimBiology allows model description via a Graphical User Interface

(GUI) and provides routines for all algorithms that have been discussed in this text

so far, such as Gillespie�s stochastic simulation algorithm (SSA). It is also capable of

39

http://www.mit.edu/~azunre/MFK


interpreting models described in the Systems Biology Markup Language (SBML), a

widely used standard for encoding such models. Thus, it may potentially be applied to

numerous SBML models readily available online. The Symbolic Math toolbox allows

handling expressions in symbolic form, which enables their human-readable display in

many cases. This may be useful in establishing analytic conclusions about speci�c aspects

of system behavior without having to explicitly perform all of the supporting algebra.

A system to be studied must be �rst described, along with its initial conditions

and key parameter settings, via the SimBiology GUI (or an SBML model opened with

the GUI) and saved under a desired name in SimBiology�s .sbproj format (SimBiology

documentation includes a thorough description of this procedure). The path to the model

must then be provided as input to function PrepareModel, which prepares its MFKmodel

description and stores it in the MATLAB workspace. Subsequently, any function may

be called on to manipulate this description. The beginning of each function �le provides

detailed instructions on use and a brief description of its capabilities. The theory behind

each currently available capability is provided in the next section. Chapter 5 applies

these capabilities to speci�c examples.

4.3 Capabilities and supporting theory

4.3.1 Preparing and displaying the MFK description

The core functionality of the prototype involves preparing and storing the MFK descrip-

tion of a system in the MATLAB workspace, with the aid of function PrepareModel.

This task theoretically entails �nding non-redundant symbolic expressions for the MFK

evolution equations and the associated Jacobian matrix. The procedure for eliminating

redundancy of species used in describing a system, in slightly modi�ed form from that

described in [11] (see also [12]), is addressed next.
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Moiety conservation analysis

The total amounts of some subgroups of species in systems of chemical reactions may

be conserved, in which case not all species present are needed to describe their temporal

evolution. These subgroups are termed conserved moieties and the time-invariant amount

of each one depends on the initial conditions of its constituents. They are present if the

stoichiometry matrix S is row-rank de�cient. The rows of every S may be rearranged as

S =

24 SI

SD

35 2 Rn�L (4.1)

which corresponds to rearranging the vector of species X into independent species XI

and dependent species XD as

X =

24 XI

XD

35 (4.2)

Here, SI is a full rank matrix of rows of S corresponding to the independent species inXI ,

while SD corresponds to the dependent species in XD. Let the rank of SI , corresponding

to the number of independent species in XI , be denoted by nI . Every row of SD may be

expressed as a linear combination of some rows of SI , as captured by the link-zero matrix

L0 2 R(n�nI)�nI in

SD = L0SI (4.3)

Then, S may be written as

S =

24 SI

SD

35 =
24 InI
L0

35SI (4.4)

Combining this with the de�nition of the stoichiometry matrix allows establishing the

following relationship between the initial number of molecules, x(0), and the number of
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molecules at time t, x(t):

x(t)� x(0) =

24 InI
L0

35SIm (4.5)

Here, m 2 RL is a column vector representing the number of times each reaction �res in

the time interval [0; t]. Equations (4.2) and (4.5) are combined as

24 xI(t)� xI(0)

xD(t)� xD(0)

35 =

24 InI
L0

35SIm
) xD(t)� xD(0) = L0 [xI(t)� xI(0)]

) �L0xI(t) + xD(t) = �L0xI(0) + xD(0) (4.6)

De�ning the conservation matrix as

� =
h
�L0 InI

i
(4.7)

allows writing Equation (4.6) as

�x(t) = �x(0) (4.8)

The subgroups of species whose molecule numbers/concentrations are conserved, the

conserved moieties, are then given by �X. Their time-invariant concentrations of interest

are obtained from initial concentrations as

� = �y(0) (4.9)

The concentrations of dependent species may be expressed in terms of independent con-

centrations as

� = �y(t) =
h
�L0 InI

i24 yI(t)

yD(t)

35
) yD(t) = � + L0yI(t) (4.10)
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Dependent concentrations may now be substituted out of all MFK evolution equations

and system evolution described by independent concentrations only.

The SimBiology function sbioconsmoiety implements a number of algorithms for

obtaining � and hence the time-invariant concentrations in �. An algorithm based on the

QR-decomposition of S, which is more e¢ cient at handling large systems [11], is used by

the software prototype. If necessity to perform moiety conservation analysis is detected,

the user is asked to specify indices of independent species of interest as a row vector via

the MATLAB command window.

Displaying the MFK description

The prototype enables display of symbolic expressions for the MFK evolution equations

and the Jacobian matrix in human-readable form. This is not available for all systems, as

in some cases (perhaps most practical cases), the expressions are too long to be displayed

e¤ectively (nothing is displayed in this case, so it doesn�t hurt to try). To alleviate

this drawback at the expense of desktop clutter, an option is included for each MFK

evolution equation and each row of the Jacobian to be shown in separate windows.

All symbolic expressions are based on the equations derived in Chapters 2 and 3, with

appropriate parameters extracted from the SimBiology model description. In particular,

the microscopic rate parameters are extracted from the MAK rate law for each reaction.

The MFK state vector is also shown if the display option is enabled.

4.3.2 Plotting trajectories

The function TrajectoryPlot generates plots of MFK trajectories using initial condi-

tions as speci�ed in the SimBiology model description. The trajectories are obtained by

integrating the MFK equations using MATLAB�s ode15s ODE solver, capable of han-

dling moderately sti¤ systems. Options are provided to simulate exact trajectories via

the stochastic simulation algorithm [SSA] or the tau-leaping algorithm.
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4.3.3 Finding equilibria via Newton-Raphson

Let the MFK state vector, which contains the means and covariances of the nI indepen-

dent species only, be denoted as z 2 R
nI (nI+3)

2 . Let the vectorized MFK model be denoted

as dz
dt
= g(z). An equilibrium �z is characterized by the condition

g(�z) =

�
dz

dt

�
z=�z

= 0 (4.11)

Hence, equilibria are simply the zeros of g(z). An equilibrium may be found iteratively

using the Newton-Raphson algorithm. At the ith iteration, the de�nition of the Jacobian

matrix J establishes the expression

[J]z=zi (zi+1 � zi) � g(zi+1)� g(zi) (4.12)

Here, zi+1 is the next successively better approximation for the equilibrium and

[J]z=zi =

�
dg(z)

dz

�
z=zi

(4.13)

is the Jacobian evaluated at zi. The following iteration can then be established:

zi+1 =
�
[J]z=zi

��1
[g(zi+1)� g(zi)] + zi (4.14)

Starting at some initial guess z0, iterations are performed until the fractional change in

solution over one iteration, kzi+1�zikkzik , is below some user-speci�ed convergence tolerance.

Figure 4-1 visualizes two iterations of the algorithm in a toy one-dimensional example.

The algorithm starts at z0 and moves on to points z1 and z2, approaching the zero at �z1.

As is evident from the �gure, the algorithm may �nd di¤erent equilibria depending on

the initial guess and often can�t �nd all of them (assuming equilibria exist). However,

it provides su¢ cient results for the purposes of this text. The use of more sophisticated

root-�nding algorithms would be a worthwhile next development step for the software
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prototype. Function FindEquilibrium implements the Newton-Raphson algorithm on

the model of interest, to a user-speci�ed convergence tolerance. The initial guess is

obtained from the initial concentration vector speci�ed in the SimBiology model.

g(z)

z z0 z1 z2

g(z2)

g(z1)

g(z0)

z̄1

Figure 4-1: Two iterations of the Newton Raphon algorithm on a simple example

4.3.4 Local bifurcation analysis

Local bifurcation analysis studies the evolution of the local stability properties of an

equilibrium with changes in a model parameter of interest. The parameter that readily

comes to mind for MFK is 
, since the MFK setting f
;Vg= f1;0g captures MAK

dynamics. The understanding of MFK as a modeling tool bene�ts from the exploration

of its local bifurcation link to MAK, the point of reference for most of stochastic chemical

kinetic theory. This exploration begins with �nding the MAK equilibrium via Newton-

Raphson at the MFK setting f
;Vg= f1;0g. Let this equilibrium be denoted as �zMAK .

De�ning inverse system size as

f =
1



(4.15)
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allows expressing this MFK setting as ff;Vg= f0;0g. A di¤erential equation for the

evolution of the equilibrium with f is established next. This is done by di¤erentiating

the vectorized MFK model g(z;f), now considered as a function of both z and f, with

respect to f to obtain

d fg(z;f)g
df

=

24 0

En(S � S)r

35 (4.16)

A �rst-order Taylor expansion of the model around an arbitrary equilibrium �z, realized

at f =
_

f, is performed as

g(�z; �f) = 0

)
�
d fg(z;f)g

dz

�
f�z;�fg

� ��z +
�
d fg(z;f)g

df

�
f�z;�fg

� � �f � 0

) �
�
[J]z=�z;f=�f

��1 24 0

En(S � S)r

35 � ��z

� �f
(4.17)

In the limit of small perturbations ��z and � �f, this expression becomes a di¤erential

equation for the evolution of the equilibrium with inverse system size, as can be seen

from

d�z

d�f
= limf��z;��fg�!0

�
��z

� �f

�
= �

�
[J]z=�z;f=�f

��1 24 0

En(S � S)r

35 (4.18)

Beginning at
�
�z; �f

	
= f�zMAK ;0g, this equation is integrated with MATLAB�s ode15s

ODE solver, until some user-speci�ed �nal value of f (note that analysis may terminate

early due to the Jacobian becoming singular). This yields a sequence of equilibria �z

corresponding to a sequence of �f values. At each
�
�z; �f

	
pair along this equilibrium

evolution path, the Jacobian may be evaluated and its eigenvalues found. The evolution

of the real and imaginary parts of the Jacobian eigenvalues provide an insight on the

evolution of the local stability properties of the equilibrium. If the �nal f value is large

enough (
 small enough), the MFK equations are expected to become unstable due to

the 1


S�ST term in Equation (2.33), corresponding to a bifurcation (an attractor turning
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into a saddle or a repellor). Assuming that true system behavior remains stable, which

is typically expected to be the case, a range outside which MFK is no longer a useful

approximation for system behavior is thereby established.

Function BifurcationPlot generates eigenvalue evolution plots for a user-speci�ed

range of f (beginning in the MAK regime
�
�z; �f

	
= f�zMAK ;0g). The bifurcation may

be visualized in the time domain by plotting MFK trajectories with TrajectoryPlot

for f at regularly sampled values in the interval of interest. A bifurcation movie may

be generated by combining a speci�ed number of trajectories as frames over a range of

f, producing an animation that provides more intuition on the bifurcation. The script

BifurcationMovie, included with the prototype download, may be used to generate

bifurcation movies.

4.3.5 Local mean-covariance coupling analysis

Since the temporal evolution of means in � at the MFK setting ff;Vg= f0;0g captures

MAK dynamics, � and covariances in V are locally decoupled at the MAK equilibrium

�zMAK . Evolution of the local coupling between � and V at this equilibrium with f,

as captured by participation factor evolution of the linearized MFK model along the

equilibrium evolution path described in the previous subsection, provides further insight

into the connection between MAK and MFK.

The MFK model linearized around a stable equilibrium �z is given by the linear time

invariant system
d f�zg
dt

= [J]z=�z � �z (4.19)

Here, �z 2 Rnv with nv = nI(nI+3)
2

stands for small perturbation in z from �z. If [J]z=�z is

diagonalizable (for which a su¢ cient though not necessary condition is that its eigenvalues

f�qgnvq=1 are distinct), then given some initial condition �z0, a solution for the temporal
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state evolution of this system may be written as

�z = V e	tW�z0 =

nvX
q=1

vqw
T
q e

�qt�z0 (4.20)

Here, V and W are matrices with qth column vq and qth row wTq equal to the q
th right

eigenvector and qth left eigenvector of [J]z=�z respectively, and 	 is a diagonal matrix of

eigenvalues f�qgnvq=1. This suggests de�ning the participation factor of the kth perturba-

tion f�zgk in the qth mode �q as

pkq = fvqgk
�
wTq
	
k

(4.21)

See [13] and [14] for developments of this idea. ChoosingW = V �1 ensures that
nvP
k=1

pkq =

1 and enables a matrix of participation factors with rows corresponding to �z and columns

corresponding to eigenvalues f�qgnvq=1 to be computed as

P =
�
V �1

�T � V (4.22)

Here � denotes the Hadamard elementwise product. The relative magnitudes of partic-

ipation factors highlight the relative participation of each state variable in each mode.

Disjoint sets of state variables that participate in disjoint sets of modes are likely to be

decoupled. When the participation of a state variable in a set of modes is low compared

to other state variables, an opportunity for model reduction may be present.

Function ParticipationFactorPlot generates an evolution plot of the participation

factors of a given state variable in each of the nv modes along the equilibrium evolution

path, beginning at �zMAK and ending at some user-speci�ed value of f.
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Chapter 5

MFK Enzyme Kinetics

5.1 Introduction

Enzyme kinetics is the study of chemical reactions that are mediated by the presence

of chemical species known as enzymes. The underlying mechanism of action involves

manipulation of molecules of other chemical species known as substrates. This chapter

analyzes MFK enzyme kinetics in the presence of a single substrate. Analysis is facilitated

by the software toolbox prototype described in Chapter 4. All �les required to replicate

the presented results are included with the prototype download, available at http://

www.mit.edu/~azunre/MFK. Bifurcation movies for the three examples studied, which

provide time-domain visualization of the local bifurcation analysis procedure central to

this chapter, are also available on the companion website. The purpose of this chapter is

to provide an example application of the model and software to speci�c systems, while

attempting to further the understanding of local dynamics properties of MFK equilibria

and their connection to MAK. This exploration is backed by analytic justi�cation as

much as possible, to enable it serve as a tutorial for anyone interested in studying the

model and/or applying the software prototype. Note that parameter settings and initial

conditions for computational analysis were selected by trial and error to illustrate varying

points.
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5.2 Single substrate enzyme reaction system

As the name suggests, the single substrate enzyme reaction system involves a single

substrate S interacting with the enzyme E to form product P, via two stages. The �rst

stage involves formation of a complex C through a reversible reaction written as

E + S
k1

k2
C (5.1)

The forward reaction is denoted as R1 and the backward reaction as R2. This reversible

reaction is referred to as complex formation and dissociation (CFD). During the second

stage, C decomposes to form P and E. When the second stage is not reversible, the two

stages are written as

E + S
k1

k2
C

k3�! P + E (5.2)

The second stage reaction is denoted as R3. This is the irreversible enzyme reaction

system (IERS). When the second stage is reversible, the two stages are written as

E + S
k1

k2
C

k3

k4
P + E (5.3)

The forward reaction for the second stage is denoted as R3 and the backward reaction as

R4. This is the reversible enzyme reaction system (RERS).

5.3 Analysis and discussion

5.3.1 Complex formation and dissociation (CFD)

Analytic expressions describing complex formation and dissociation MFK are derived

explicitly and compared with corresponding toolbox output. The purpose of the treat-

ment here is to con�rm prototype output credibility while providing a thorough example

application of MFK. Analysis of local dynamics is also presented.
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Preliminaries

Stoichiometry vectors for R1 and R2; s1 and s2 respectively, are grouped into the stoi-

chiometry matrix S as

S =
h
s1 s2

i
=

E

S

C

R1 R226664
�1 1

�1 1

1 �1

37775 (5.4)

S may be veri�ed by recalling that each of its entries indicates how many molecules of a

species are produced (if entry positive) or consumed (if entry negative) by each reaction.

The correspondence of rows to species E; S and C, and the correspondence of columns

to reactions R1 and R2, has been made explicit. Thus, S corresponds to the species

concentration vector

y =

26664
yE

yS

yC

37775 (5.5)

Analytic expressions

Time-invariant concentrations of conserved moieties in this simple system may be ob-

tained by inspection. One molecule of E is consumed by R1 to produce one molecule of

C, which is reversed exactly by R2. Thus, the quantity

�1 = yE + yC (5.6)

must be conserved. Similar reasoning concludes that the quantity

�2 = yS + yC (5.7)
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is conserved as well. Moiety conservation analysis, as described in Chapter 4, obtains

conserved moieties in a systematic fashion that extends easily to systems of greater

complexity. This procedure is applied next.

Since s2 is a scalar multiple of s1, S has rank one, containing one independent row

(corresponding to an arbitrarily selected independent species) and two dependent rows

(hence, two conserved moieties). If C is chosen as the one independent species of interest,

the concentration vector may be rearranged as

y =

24 yI

yD

35 =
26664

yC

yE

yS

37775 (5.8)

and the concentrations of conserved moieties obtained as

SI =
h
1 �1

i

SD =

24 �1 1

�1 1

35 =
L0z }| {24 �1
�1

35SI

) � =

24 �1
�2

35 =
�z }| {h

�L0 I2

i
yz }| {26664
yC

yE

yS

37775 =
24 yC + yE
yC + yS

35 (5.9)

This matches expressions obtained by inspection.

The MFK state vector after conservation analysis (containing means and covariances

of independent concentrations in yI only) is

z =

24 E [yI ]

cov fyI ; yIg

35 =
24 �C

�CC

35 (5.10)
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To clarify notation, it should be noted that

�CC = cov (yC ; yC) = var (yC) = �
2
C (5.11)

To determine the MFK evolution equations, microscopic reaction rates are �rst written

for R1 (a heterogeneous second-order reaction) and R2 (a �rst-order reaction) as

�1(yI) = k1yEyS = k1 (�1 � yC) (�2 � yC)

= k1
�
�1�2 � (�1 + �2) yC + y2C

�
(5.12)

�2(yI) = k2yC (5.13)

The microscopic rate parameters may now be obtained by direct comparison with Equa-

tion (2.5) as

b1 = �1�2

c1 = � (�1 + �2)

D1 = 1

b2 = 0

c2 = 1

D2 = 0

(5.14)

The MFK evolution equations may now be obtained via direct substitution of these

parameters into Equations (2.12) and (2.33). The mean evolution equation is obtained

as

d�C
dt

= SIr = SIK
�
b+ CT�+DT (�
 �) +DTF1vechfVg

�

=

SIz }| {h
1 �1

i rz }| {24 k1 0

0 k2

3524 �1�2 � (�1 + �2)�C + �2C + �CC
�C

35
= k1

�
�1�2 � (�1 + �2)�C + �2C + �CC

�
� k2�C (5.15)
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the �uctuation dynamics matrixM as

M = SIK
�
CT + 2DT (I1 
 �)

�

=

SIKz }| {h
k1 �k2

i CT+2DT (I1
�)z }| {24 � (�1 + �2) + 2�C
1

35
= k1 [2�C � (�1 + �2)]� k2 (5.16)

and the covariance evolution equation as

d�CC
dt

= E1(I1 
M+M
 I1)F1vechfVg+
1



E1(SI � SI)r

= 2M�CC +
1




E1(SI�SI)z }| {h
1 1

i rz }| {24 k1�1�2 � (�1 + �2)�C + �2C + �CC
k2�C

35
= 2�CC (k1 [2�C � (�1 + �2)]� k2)

+
1




�
k1
�
�1�2 � (�1 + �2)�C + �2C + �CC

�
+ k2�C

�
(5.17)

The MFK Jacobian matrix is obtained as

J =

24 d
d�C

n
d�C
dt

o
d

d�cc

n
d�C
dt

o
d
d�C

�
d�CC
dt

	
d

d�CC

�
d�CC
dt

	
35 (5.18)

=

24 k1 [2�C � (�1 + �2)]� k2 k1

4k1�CC +
1


(k1 [2�C � (�1 + �2)] + k2) 2k1 [2�C � (�1 + �2)]� 2k2 + k1




35
All of the preceding analysis, which becomes increasingly tedious with increasing sys-

tem complexity, is automated by the toolbox through a function call to PrepareModel. A

screenshot of the independent species speci�cation procedure, along with returned MFK

evolution equations, the Jacobian matrix and the conservation relations, is shown in

Figure 5-1. These match the derived expressions exactly. Note a section of the documen-

tation for function PrepareModel on the right (found at the beginning of the function
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�le and containing speci�c instructions of use).

Figure 5-1: [Color] PrepareModel function call and output for CFD

Computational analysis

In the thermodynamic limit (Equation (1.13)) the MFK evolution equations reduce to

�
dz

dt

�
f=0

=

24 d�C
dt

d�CC
dt

35
f=0

=

24 k1 [�1�2 � (�1 + �2)�C + �2C + �CC ]� k2�C
2�CC (k1 [2�C � (�1 + �2)]� k2)

35 (5.19)

and the Jacobian reduces to

[J]f=0=

24 k1 [2�C � (�1 + �2)]� k2 k1

4k1�CC 2k1 [2�C � (�1 + �2)]� 2k2

35 (5.20)
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If �CC is initialized to be positive, and noting from Equations (5.6) and (5.7) that

2�C � (�1 + �2) � 0

we conclude that
d�CC
dt

< 0

Thus, �CC must approach 0 with time. Also, since�
d�CC
dt

�
(f;�CC)=(0;0)

= 0 (5.21)

�CC = 0 is an equilibrium covariance value (regardless of the equilibrium value of �)

in the thermodynamic limit (we have already seen this speci�ed as the MFK setting

f
;Vg= f1;0g). The assumption that initial concentrations are known exactly allows

setting initial covariances to 0 and the mean evolution to capture MAK dynamics.

In what follows, the initial concentration vector is set to

y(0) =

26664
yE(0)

yS(0)

yC(0)

37775 =
26664
15

15

15

37775 (5.22)

the reaction rate constants are all set to 1, so that

K =

24 1 0

0 1

35 = I2 (5.23)

and the concentrations of conserved moieties are

� =

24 �1
�2

35 =
24 yC + yE
yC + yS

35 =
24 30
30

35 (5.24)
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Following the preceding discussion, the MFK state vector is initialized as

z (0) =

24 �C(0)

�CC(0)

35 =
24 15
0

35 (5.25)

Setting the mean evolution equation to 0 with �CC = 0 yields two possible MAK equi-

librium mean concentrations of 25 and 36. However, 36 is not realizable since �C � 30.

Hence the MFK equilibrium corresponding to MAK is

�zMAK =

24 25
0

35 (5.26)

The Jacobian at this point is

JMAK = [J](f;z)=(0;�zMAK)
=

24 �11 1

0 �22

35
This is an upper triangular matrix with eigenvalues equal to its diagonal elements, which

are both real and negative. Thus, this is a locally stable equilibrium. Exploring its

variation in value and stability with f provides an insight on the connection between

MAK and MFK. Assuming that the system is stable (stability may be ascertained from

the behavior of an exact SSA trajectory) and that this is the realized equilibrium (which

happens to be the case for this simple system, as we shall soon see), the range of f where

this equilibrium is stable indicates a regime where MFK is a useful approximation for

system behavior. This is the essence of the MAK equilibrium local bifurcation analysis.

The screenshot in Figure 5-2 shows a call to function BifurcationPlot, along with

function text output, which con�rms the MAK equilibrium and corresponding Jacobian

eigenvalues that have been computed. Note that the slight numeric deviation of func-

tion output from calculated values is a consequence of the nonexactness of the Newton-

Raphson solution due to nonrestrictive convergence tolerance (0:05 only).
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Figure 5-2: [Color] BifurcationPlot function call and text output for CFD

The local bifurcation plot produced by the BifurcationPlot function call in Figure

5-2 is shown in Figure 5-3. It is observed that the equilibrium becomes unstable, evi-

denced by the real part of a Jacobian eigenvalue becoming positive, at f � 4:7. Since

the imaginary parts of both eigenvalues remain zero throughout the analysis, the said

eigenvalue can be visualized as crossing the j!-axis through the origin of the complex

plane. At the crossing point, the Jacobian becomes singular and local bifurcation analysis

cannot proceed further. This causes the integration tolerance warning shown in Figure

5-2.

To picture the bifurcation in the time-domain, three trajectories are generated in

stable, (approximately) marginally stable and unstable MFK regimes (f = 1; 4:5; 5 re-

spectively) with TrajectoryPlot. These trajectories are shown in Figures 5-4, 5-5 and
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5-6. Real system behavior (as captured by the SSA trajectories) is observed to become

more discrete and stochastic in nature but remain stable with increasing f. Thus, MFK

is only a useful approximation in the range f 2 [0; 4:7]. The MFK trajectories cap-

ture increasing randomness via the growth of the variance error bounds. The fact that

there is no way for the MAK model to capture this e¤ect provides intuition on why it

becomes inaccurate at smaller volumes. However, it appears that the continuous MFK

equations can only capture noisy behavior up to some variance threshold, beyond which

they collectively become unstable.

To study evolution of local coupling between means and covariances, a participation

factor plot of �C in each of the two modes f�ig
2
i=1 along the equilibrium evolution path

is generated by function ParticipationFactorPlot. This plot is shown in Figure 5-7.

Since �C participates only in �1 at f = 0 (and �CC participates only in �2) �C and �CC
are completely decoupled here. Hence, the evolution of �C can be completely described

by itself alone and the inclusion of �CC in the model (i.e., the use of MFK) is not needed.

The coupling is observed to become steadily stronger with increasing f, but to remain

relatively weak until f � 1. Hence, MAK is expected to be an accurate reduced model

for system behavior up to f � 1. Beyond this point, the signi�cant coupling between �C
and �CC indicates that the use of MFK would provide more accurate results.

5.3.2 Irreversible enzyme reaction system (IERS)

Having con�rmed toolbox output credibility analytically for CFD, the analytic results for

IERS are not derived explicitly here. Key parameter values that were used in simulations

are listed here for reproducibility and concreteness. Analysis of local dynamics is also

presented, just as for CFD.
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Figure 5-3: [Color] Local bifurcation plot for CFD
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Figure 5-4: [Color] CFD trajectories in stable MFK regime
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Figure 5-5: [Color] CFD trajectories in (approximately) marginally stable MFK regime
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Figure 5-6: [Color] CFD trajectories in unstable MFK regime
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Figure 5-7: [Color] Participation factor evolution for CFD

Preliminaries

The stoichiometry vectors for reactions R1, R2 and R3 (s1, s2 and s3 respectively), are

grouped into the stoichiometry matrix S as

S =
h
s1 s2 s3

i
=

E

S

C

P

R1 R2 R326666664
�1 1 1

�1 1 0

1 �1 �1

0 0 1

37777775 (5.27)

The correspondence of rows to species and columns to reactions has been made explicit.

S corresponds to the species concentration vector
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y =

26666664
yE

yS

yC

yP

37777775 (5.28)

Analytic expressions

A function call to PrepareModel automates moiety conservation analysis and obtains the

MFK evolution equations and the Jacobian. A screenshot of the function call and most of

its output is shown in Figure 5-8. This is an example where each expression (each MFK

evolution equation and each row of the Jacobian) must be shown in a separate window

to be visible (due to the prohibitive lengths of expressions). The screenshot exposes

the complexity of the underlying MFK model and makes one appreciate the symbolic

capabilities of the prototype.

Computational analysis

In what follows, the initial species concentration vector is set to

y(0) =

26666664
yE(0)

yS(0)

yC(0)

yP (0)

37777775 =
26666664
1

5

0

0

37777775 (5.29)

the reaction rate constants are all set to 1, so that

K = I3 (5.30)
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Figure 5-8: [Color] PrepareModel function call and output for IERS

and the concentrations of conserved moieties are

� =

24 �1
�2

35 =
24 yE + yC

yC + yS + yP

35 =
24 1
5

35 (5.31)

The MFK state vector is initialized as

z (0) =

26666666664

�S

�C

�SS

�SC

�CC

37777777775
=

26666666664

5

0

0

0

0

37777777775
(5.32)

Local bifurcation analysis is automated by a BifurcationPlot function call in Figure
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5-9. The MAK equilibrium is the origin and its bifurcation plot is shown in Figure 5-10.

It is observed that the equilibrium becomes unstable at f � 4:5. The eigenvalue which

crosses the j!-axis does so away from the origin of the complex plane (the imaginary part

of the eigenvalue is nonzero at the crossing point). Hence, the Jacobian does not become

singular and local bifurcation analysis proceeds without any warnings throughout the f

range of interest.

Figure 5-9: [Color] BifurcationPlot function call and text output for IERS

Three trajectories are generated in stable, (approximately) marginally stable and

unstable regimes (f = 1; 4; 6 respectively) with the aid of function TrajectoryPlot.

The three trajectories are shown in Figures 5-11, 5-12 and 5-13. This example illustrates

an important point. At f = 1, a valid SSA trajectory is generated while at f = 4,

the SSA trajectory remains �at and never changes. The reason for this is the fractional
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Figure 5-10: [Color] Local bifurcation plot for IERS

number of initial enzyme molecules at f = 4. For y(0) as speci�ed in Equation (5.29),

f > 1) xE(0) =
yE(0)
f < 1. Thus, no whole enzyme molecules are initially present for the

reaction to occur and this is a nonphysical regime. This highlights that an unsuspecting

user may be easily misled by MFK trajectories while exploring nonphysical regimes.

Inclusion of a single SSA trajectory along with MFK as a sanity check recti�es this

problem and is highly recommended. For this discussion to be complete, the nonphysical

regime assertion needs to be tested more thoroughly. One way of doing this is to simulate

a trajectory at f = 1:1, which just satis�es the condition of interest f > 1. This

trajectory is shown in Figure 5-14. The SSA trajectory is indeed �at here, lending

credibility to the assertion made. A feature that may be interesting for future exploration

is the "onion" shape of MFK trajectories in Figure 5-12.

To study evolution of local coupling between means and covariances, a participation

factor plot of �S in each of the �ve modes f�ig
5
i=1 along the equilibrium evolution path

is generated by function ParticipationFactorPlot. The plot is shown in Figure 5-15.

The state variable �S is observed to participate only in the modes �1 and �2 at f = 0
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(the modes corresponding to the means). This suggests that means and covariances are

completely decoupled here. The coupling appears to increase more rapidly with f here

than in the case of CFD, quickly making MFK the preferred model for capturing system

behavior.
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Figure 5-11: [Color] IERS trajectories in stable MFK regime

5.3.3 Reversible enzyme reaction system (RERS)

The discussion of results for this system will be brief. Simulation settings are listed, for

completeness of discussion, as

S =

E

S

C

P

R1 R2 R3 R426666664
�1 1 1 �1

�1 1 0 0

1 �1 �1 1

0 0 1 �1

37777775 (5.33)
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Figure 5-12: [Color] IERS trajectories in (approximately) marginally stable MFK regime
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Figure 5-13: [Color] IERS trajectories in unstable MFK regime
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Figure 5-14: [Color] Test of IERS SSA molecule number assertion
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Figure 5-15: [Color] Participation factor plot for IERS
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y(0) =

26666664
yE(0)

yS(0)

yC(0)

yP (0)

37777775 =
26666664
10

10

0

0

37777775 (5.34)

� =

24 yE + yC

yC + yS + yP

35 =
24 10
10

35 (5.35)

z(0) =

26666666664

�S

�C

�SS

�SC

�CC

37777777775
=

26666666664

10

10

0

0

0

37777777775
(5.36)

Computational analysis

The local bifurcation plot is shown in Figure 5-16. It is observed that the Jacobian is

singular at the eigenvalue crossing and that the crossing happens at f � 4:5. Trajecto-

ries in stable, (approximately) marginally stable and unstable MFK regimes are shown

in Figures 5-17, 5-18 and 5-19. All observations regarding the randomness of SSA tra-

jectories and its e¤ect on the stability of MFK trajectories made in the case of CFD can

be made here as well.

The participation factor plot for �S is shown in Figure 5-20. As is expected at this

point of the discussion, means and covariances show complete decoupling at f = 0. The

coupling is observed to become stronger with f, but at a much slower pace than for CFD

and IERS. This suggests that MAK remains a good approximation for RERS behavior

and that MFK does not become useful until f � 2. An opportunity to reduce the MAK

model further in the range f � 2may be present, due to the relatively small participation

of �S in �2 as compared to �1.
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Figure 5-16: [Color] Local bifurcation plot for RERS
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Figure 5-17: [Color] RERS trajectories in stable MFK regime
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Figure 5-18: [Color] RERS trajectories in (approximately) marginally stable MFK regime
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Figure 5-19: [Color] RERS trajectories in unstable MFK regime
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Figure 5-20: [Color] Participation factor plot for RERS

5.4 Conclusions and future work

A number of interesting observations can be made from the exploratory study performed

in this chapter. Increasing randomness of system time-domain behavior with decreasing

system volume, a characteristic that the MAK model cannot capture, is captured by

MFK via the growth of its variance error bounds. This ability is limited to a threshold

beyond which MFK becomes unstable and ceases to be a useful approximation for sys-

tem behavior. This is perhaps due to third-order (or perhaps some other higher order)

moments becoming more and more signi�cant with decreasing system volume. System-

atically extending the model to higher order moments via the procedure described in

Chapter 2 is expected to improve its accuracy and stability.

Participation factor analysis highlights that MFK means and covariances are locally

decoupled at the MAK equilibrium in the thermodynamic limit, providing an alternative

explanation for why MAK is an accurate approximation for system behavior there. The

ability of participation factor analysis to give a sense of ranges of system volume where
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switching from MAK to MFK is prudent, as well as its ability to highlight opportunities

for model reduction, were noted. The danger of MFK providing misleading results in

nonphysical regimes, and its alleviation via the inclusion of a single SSA trajectory, was

demonstrated.

Several studies could be performed from here. Bifurcations with respect to other

MFK parameters may provide further insights into MFK characteristics. A theoretical

quanti�cation of the MFK f-stability bound would be useful. In more complex (real)

systems, local bifurcation analysis may make misleading suggestions about system be-

havior because the equilibrium under study can be reasonably expected to cease being

the realized one at some point along the equilibrium evolution path. A way to detect

this e¤ect would render MFK local bifurcation analysis signi�cantly more rigorous.
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Appendix A

Matrix Theory Overview

This appendix provides a brief overview of matrix results used in the text. More speci�c

results do not appear here but are provided within the relevant portions of the document,

as needed (see also [10]).

A.1 Matrices and vectors

A matrix A 2 Rm�n is a rectangular table of m rows and n columns containing m � n

elements, depicted as

A =

26664
a11 � � � a1n
...

. . .
...

am1 � � � amn

37775 (A.1)

Single elements are indexed from A as

aij = fAgij (A.2)

In this document, matrices are represented by capital letters. Note that the notation R

restricts elements of A to be real numbers. Analogously, the notation Z would restrict

elements of A to be integers.
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The transpose of A 2 Rm�n is an operation that converts rows to columns and vice

versa, depicted as

AT =

26664
a11 � � � am1
...

. . .
...

a1n � � � amn

37775 (A.3)

The trace of a square matrix (a matrix with the same number of rows as columns) A

is de�ned as the sum of its main diagonal elements, depicted as

Tr fAg = Tr

8>>><>>>:
26664
a11 � � � an1
...

. . .
...

a1n � � � ann

37775
9>>>=>>>; =

nX
i=1

aii (A.4)

A symmetric matrix D 2 Rn�n is a square matrix that is equal to its own transpose.

The product of matrices A 2 Rm�n and B 2 Rn�q is de�ned as

AB =

266664
nP
i=1

[fAg1i fBgi1] � � �
nP
i=1

h
fAg1i fBgiq

i
...

. . .
...

nP
i=1

[fAgmi fBgi1] � � �
nP
i=1

h
fAgmi fBgiq

i
377775 (A.5)

Note that the de�nition of the matrix product requires the number of columns of A to

be equal to the number of rows of B to be dimensionally compatible.

The identity matrix In 2 Rn�n is a square matrix with main diagonal elements equal

to 1 and all other elements equal to zero, depicted as

In =

26664
1 0 0

0
. . . 0

0 0 1

37775 (A.6)

In is an example of a diagonal matrix and a binary matrix. The product of In with a
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matrix of compatible dimensions is the matrix itself. The subscript n in In makes the

dimension of the identity matrix explicit, which is useful when writing software.

A column vector b 2 Rm is a matrix containing m rows and only one column (hence

m elements), depicted as

b =

26664
b1
...

bm

37775 (A.7)

Single elements are indexed from b as

bi = fbgi (A.8)

A row vector is analogously a matrix containing only one row. In this document, vectors

are represented by small letters.

A.2 Vectorization

The vectorization of matrix C 2 Rr�s is de�ned as the stacking of its columns into a

single column vector, i.e.,

vec fCg = vec
nh

c:1 � � � c:s

io
=

26664
c:1
...

c:s

37775 2 Rrs (A.9)

Here, c:i is MATLAB-compatible notation for the ith column of C. The following result

relates vec
�
CT
	
to vec fCg:

vec
�
CT
	
= Psrvec fCg (A.10)

Here, Psr is called the commutation matrix, a permutation matrix obtained by rearrang-

ing rows of Is�r in a speci�c order [15].
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For symmetric matrices, the vectorization contains duplicate versions of all but the

main diagonal elements, and is thus redundant. In this case, the half-vectorization oper-

ation that vectorizes only the lower triangular portion of the matrix, is used instead. It

is denoted by the notation vech. The relationship of this operation to the vectorization

for a symmetric matrix D 2 Rn�n is

vechfDg = EnvecfDg (A.11)

FnvechfDg = vecfDg (A.12)

The binary matrices En 2 R
n(n+1)

2
�n2 and Fn 2 Rn

2�n(n+1)
2 are aptly named the selection

and duplication matrices respectively. The following useful vectorization relationship

holds for matrices of compatible dimensions.

TrfATBg = (vecfAg)T vecfBg (A.13)

A.3 The Kronecker product

The Kronecker product between matrices A 2 Rm�n and B 2 Rp�q is de�ned as

A
B =

26664
a11 � � � a1n
...

. . .
...

am1 � � � amn

37775
B =
26664
a11B � � � a1qB
...

. . .
...

am1B � � � amqB

37775 2 Rmp�nq (A.14)

For matrices of compatible dimensions, the vectorization and the Kronecker product are

related by

vec fABCg =
�
CT 
 A

�
vec fBg (A.15)
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A.4 The Khatri-Rao product

TheKhatri-Rao product, denoted by the � symbol, is de�ned as the columnwise Kronecker

product for matrices with the same number of columns [16], i.e., for A 2 Rm�n and

B 2 Rp�n

A �B =
h
a:1 
 b:1 � � � a:n 
 b:n

i
2 Rmp�n (A.16)

For a diagonal matrix G and a matrix of compatible dimensions A, the following result

holds.

(A
 A) vec fGg = (A � A) diag fGg

This is straightforward (although not easy) to verify via a brute-force index book-keeping

argument.

A.5 Matrix derivatives

The derivative of a scalar function f with respect to vector a 2 Rn is de�ned as

df

da
=

�
df

da1
� � � df
dan

�
2 R1�n (A.17)

The derivative of a scalar f with respect to matrix A 2 Rm�n is de�ned as

df

dA
=

26664
df
da11

� � � df
dam1

...
. . .

...
df
da1n

� � � df
damn

37775 2 Rn�m (A.18)

Thus, the matrix products df
dA
A and df

da
a are dimensionally compatible. Derivatives of

matrices are de�ned by applying the de�nitions above to the matrix, entry by entry, i.e.,
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for matrices A 2 Rm�n and B 2 Rp�q

dA

dB
=

26664
da11
dB

� � � da1n
dB

...
. . .

...
dam1
dB

� � � damn
dB

37775 2 Rmq�np (A.19)
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