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ABSTRACT

An investigation of the quality of matching between a pre-
selected model and systems chosen through the lower limit for-
mulation was carried out. From this analysis, a new functional
relationship of the states was developed which not only permits
one to select analytically the optimum value for lower limit

but allows the direct selection of the optimum set of free
parameters. The capabilities of the new formulation were tested
through a series of examples, in which we tried to focus the
case in which zeroes show up in the transfer functions, a situ-

ation not properly handled by any previous work.
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LIST OF PRINCIPAL NOMENCLATURE AND NOTATION

Definition

order of the system
number of system zeros

system characteristic polynomial coefficient

1
of s

system transfer function numerator polynomial

coefficient of si

system output variable

system input wvariable

steady state value of the output variable
system transient response variable
laplace operator

indicates derivative with respect to time
system's pseudo initial condition vector
system's transient response vector
system's extended transient response vector
system's coefficient vector

system's extended coefficient vector
Model Performance Index

indicates transpose of a vector

indicates the length of x'(t)&

pseudo initial condition weighting factor
model's coefficient vector

model's extended coefficient vector

model's extended pseudo initial condition

vector
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=

d(t)

PIC

G(s)
G (s)

é(s)

LL

A(t)

Definition

order of model
Identity matrix
null matrix

extended pseudo initial condition weighting

matrix

instantaneous distance between trajectories
Pseudo Initial Condition

desired response state vector

desired pseudo initial condition vector
error state vector

system's coefficient matrix

model's coefficient matrix

initial error state vector

transpose of a matrix

error input excitation function

model's characteristic polynomial of si

model's transfer function numerator polynomial

coefficient of s*

indicates a functional relationship of a

particular set of free parameters
the closed loop transfer function of a system
the closed loop transfer function of a model

a modified transfer function in Palsson's

approach
a particular value of lower limit

area under d(t) curve



CHAPTER ONE

INTRODUCTION

l.1 Historical Summary of Problem Area

Wiener (1) and Kolmogorff (2) are the first formulation
of filter design as an optimization problem. Their problem is
referred to as the "free-configuration" that selects the fil-
ter from the class of all possible linear filters that mini-
mizes the mean squared error between the actual and desired
signals. Later Hall (3) and Phillips (4) formulated the
"fixed-configurations," using a mean squared error Performance
Index. In designing, the lef the characteristic frequences,
time constants and gains unspecified, to be determined by the
optimization process. Phillips derived a procedure for evalu-
ating the mean squared error over an infinite time interval as
an explicit nonlinear function of the free design parameters.
The only work is to select the free parameter values that cor-
respond to a minimum point of the function.

Hall and Phillips's method was that the resulting design
could allow excessive signal magnitudes within the system that
may exceed the range of assumed linearity or saturate. Newton,
Gould and Kaiser (5) proposed constraining any signal magni-
tude by adjoining the mean squared value of that signal to the

original Performance Index by a Lagrange Multiplier. The
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augmented Performance Index can be evaluated as a function of
the free design parameters and Lagrange Multiplier using tabu-
lated integrals. The design selected is the one in which the
values of the free parameters minimize this augmented Perfor-
mance Index while requiring the signal magnitude constraint to
be satisfied.

Aizerman (6) proposed a new concept for representing the
desired system response within a Performance Index. Rather
than using the squared error between the desired and actual
response, Aizerman used a linear combination of the square of
the actual transient response and its derivatives. The rela-
tive weighting of these squared variables in the Performance
Index was chosen so that the absolute minimum value of the
Performance Index would correspond to a system design with a
transient response identical to the desired response. 1In
general, the absolute minimum value can be obtained if one
has complete freedom in selecting the closed-loop system de-
sign. Since the feedback configuration and design parameter
values are usually constrained due to practical requirements,
it is not usually possible to obtain the desired response
identically. However, minimizing Aizerman's Performance Index
would tend to force the system's response to be similar to the
desired response, at least for a certain class of system and
types of desired response. Aizerman's concept could provide
a significant computational advantage in the optimization pro-

cess over model-referenced performance indices in that the



model's response never enters the computational problem.
Aizerman's Performance Index is rather limited in application
but represented a distinctly different phildsophy in analyti-

cal design.

1.2 Previous Work done by Rediess and Palsson

In 1968, Rediess (7) developed a new concept for Model
Performance Index. It is based on a geometrical representa-
tion for matching a dynamical system or the model by another
actual system. In other words, it is an interpretation of the
relationship between the transfer function representation of
a system and the geometrical representation by its character-
istic plane and Pseudo Initial Condition vector. The basic
form of the resulting "Model Performance Index" is the same as
that of quadratic function frequently appearing in modern con-
trol theory. When the Model Performance Index is minimized,
the system response becomes closer to or identical to the spe-
cified model response. By response is meant not only the
displacement response but also the velocity, acceleration, etc.
Since the Model Performance Index not only weights the dis-
placement but also their higher derivatives, because the zeros
in the system transfer function effect the error response,
Rediess added a quadratic term in the initial error state to
the Performance Index.

By choosing models whose excess of polies over zeros is

no greater than that of the system, Palsson (8) apparently
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eliminated the need for initial errors in the Model Perfor-
mance Index. He also defined the "error excitation source" in
both state space and transfer function representation, and
found that MPI is the infinite integration of squaring this
scalar error excitation source.

Chang Ho, in 1976, developed the concept of the lower
limit which consists in beginning the integration in an in-
stant larger than zero. This formulation allows the selection
of a set of parameters with good conditions of matching but it

is a completely arbitrary process.

1.3 Purpose of this Work

The purpose of this work was to obtain a way in which one
could select the lower limit value of Ho's formulation without
the present trial and error procedure. Besides, we should
establish a way of quantifying the quality of matching, which
is an aspect not treated in previous works. During this
analysis, we were able to develop a functional relationship
of the states which led to a new performance index which proved

to have very definite advantages over the previous formulations.
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CHAPTER TWO
REVIEW AND ANALYSIS OF REDIESS, PALSSON AND HO'S WORKS

In order to allow a better understanding of the problem
in hand, of the difficulties found and of the different formu-
lations tried for its solution, we are going to follow briefly
the works done by Rediess, Palsson and Ho. Where necessary,
specific examples will be presented and comments added in a

suitable way to clarify the reader.

2.1 Rediess Formulation

Herman Rediess (ref. 7), in 1968, based in a geometric
"criterium" for the approximation of a dynamic system (the
model) by another (the actual system), developed a new perfor-
mance index which allows a direct interpretation in terms of
a certain model of the desired response. This index has re-
ceived the title "Model Performance Index" or "Model P.I."

Let a system be described by the differential equation

below
yo(t) + an_lyn_l(t) + ...t azii' (t) + a;y(t) + a y(t) =
m ¥
bmu () + ... + blu(t) + bou(t) (2-1)

where: y is the output
u is the input
m < n—-1

initial condition assumed to be zero
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The corresponding transfer function is

() bsm+...+bls+b
Yy\S) m (@] (2_2)

2
. -+
H(s) s + a s + .. azs + als ao

If we assume the existence of a finite steady state value for
the output, et in response to a step input, one can write
the transient portion of the response as

x(t) = y(t) - Yoo

The laplace transform of the transient response can now be ob-
tained from (2-2), in the form below:

{m=1) 2

wles] = bms ¥ wus bBS + bzs + bl +
s(n) a g (n-1) + e a.s + a
(n-1) =t 2 1 o
bo (s(n-l) + an_ls(n—z) + ... a s + al.)
ao : (2-4)
n n-1 2
s + an_ls + ... a,s + a s + a,

Defining a set of hypothetical initial conditions here called
"pseudo initial conditions," capable of producing a response
identical to that of a unit step, made possible the inclusion
of the zeros of the tranfer function in the index to be devel-
oped. Therefore, the transient response become described by

the homogeneous differential equation
(n) (n-1) 2 = -
= (t) + a _q¥ (e} + ... alx(t) + aox(t) =0 (2-5)

subject to the pseudo initial conditions
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]
»

x (0)

o
x(o) = ko
x (o) = Xo

These initial values are then determined in a way that assures

the already mentioned equivalence and are given by

B, = bo/ao
0 for i>m
_ n-i-1
X —
© (5) :
bl = aj+1xo for i =1,2,...m (2.6)
j=n-m

In this expression, the summation is zero when n-m < i-1.

The form of equation (2.5) suggested an extention of the
state space in one dimension to (n+l) order. In this space,
referred as the "extended state space," the eqdation might be
interpreted as defining a hyper-plane perpendicular to the

vector @, that's to say

£ 8- o0
where % = (x,k,...x(n_z),x(n-l),x(n)) (2.7)
a = (ao,al,...an_z,an_l'l)

The trajectory of g'as a function of time, which is the same as
the transient response and its first n derivatives, is com-

pPletely contained in this hyper-plane. Any other system which
might generate a trajectory also contained in this hyper-plane,

would differ from the first one only by the pseudo initial
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conditions. We then conclude that the hyper-plane contains the
trajectories of all systems possessing the same characteristics
equation. In other words, a linear invariant system is com~
pletely described by this plane and corresponding set of pseudo
initial conditions. Rediess called this plane the "character-
istic plane."

We must stress that the representation of a system by its
characteristic plane and pseudo initial conditions does not
bring any new information from the mathematical point of view.
However, it brings a very useful way for visualizing the pro-
cess of approximation of a system by another, using the Model
Performance Index.

If both system and model could be represented by its
characteristic planes and pseudo initial conditions, it would
then be possible to establish a geometrical "criterium" for
evaluation of its approximation. The Model Performance Index
developed by Rediess is one of these criteria. Its basic form
is a generalized measure of the distance between system's tra-

jectory and model's characteristic plane, as can be seen below.

fm X gl
MPT = [(-—===--=Z--- ) at (2.8)

where: & = ‘“o.“l,“z,...“n-z, n-1+1) and refers to the charac-

teristic plane of the model. The subscript ' means a transpose

matrix or vector.
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The vector a is a function of design parameters and the
equation (2.5) allows one to determine for each set of these
parameters, the vector X(t).

In the case in which system and model do not have zeroes
in their transfer function, Rediess proved that a necessary
and sufficient condition for a perfect matching of the tra-
jectories was the perfect matching of the characteristic
planes. However, the functional relationship §_= é(p) in most
cases rules out the possibility of a perfect matching of tra-
jectories. In this case, however, it is possible to consider
that the best matching condition corresponds to the closest
proximity of system's trajectory and model's characteristic
plane, which means the lowest possible value for Model Perfor-
mance Index.

In the case in which zeroces do show up in the transfer
function, Rediess realized that, to obtain a correct solution,
it would be necessary to add to the performance index a term
representing the difference between the pseudo initial condi-
tions of model and system. Without this correction, we might
get very close characteristic planes but with trajectories

well apart. With this modification, the performance index be-

comes:
L. 2 IZTwE]l
MPI = r|| % - %_| -+j (mm==mmmmToeee ) “at (2.9)
W Zo &1l
2
Where: || ”ﬁ indicates here (20 i gmo)%(éo = %mo)
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and W is a sguare, positive matrix {--QJ

of order 2 (% £n).

In this expression, the scalar quantity 'r' must be selected by
the designer in order to establish the relative weight between
the matching of the pseudo initial conditions and of the char-
acteristic planes.

This last comment should be examined with care. Would it
be enough to make 'r' equal to 1 in (2.9)? The experience has
shown that this is not enough and, to make some points clear,

we reproduce here the example 3-3 of ref. (7).

Example

Consider the system shown in the figure below, where kl
and k2 are free design parameters. The objective here is to
select kl and k2 in a way that the closed loop step response

become close to that of the model.

SYSTEM

u(s) ¥ 1 +s v (s)

 J
=

MODEL

u(s) 1+/2 s Y (s)

\
\

s24v/7 s+1
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The autonomous representation of the transient response in

closed loop form is

The corresponding model performance index is

kq 5 C ey
MPI = r(—=-=== - V2) +——-.f (x + 2 x + x)° dt (2.10)

1 + k2 4 o

The values of the free parameters which minimize the MPI are

presented, for two values of the scalar 'r', in Table 1 below:

TABLE 1

NUMERICAL RESULTS OF PROBLEM 3.3

1
o)

[ 542

r x A
1 =

0.0025} 1.59 0.48 1.08/ 1.40/ 1.0 -1.0/ 1.08/ -0.45

0.25 1.82 0.32 1.38/ 1.60/ 1.0 -1.0/ 1.38/ -0.86

Figures (1) and (2) reproduce the solutions for these two

values of 'r', respectively.

Some comments

a) The reader probably has noted that Rediess included in
(2.10) only the initial value of the first order state. This
was done based on the fact that W was a square matrix of order
'1' (2 in this case). Apparently Rediess did not pay attention
to the fact that we are dealing with pseudo initial conditions

and the second order states must be accounted for. In other
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words, W should be a 1+1 matrix. In this particular example,

the second order states are different.
b) We are going to use, as an ultimate measure of quality

of matching, the instantaneous distance between trajectories,

here referred as d(t). Table 2 below summarizes these results,
for t=0.
TABLE 2
States Model System(r=.0025) d(t)comp. System(r=.25) d(t)comp.
X -1.0 -1.0 0 -1.0 0
io 1.41 1.08 0.33 1.38 0.03
‘x‘o -1.0 -.45 -0.55 -0.86 -0.14

Notice that d(0) is 0.6414 and 0.1432 for 'r' 0.0025 and 0.25,
respectively. These results confirm, now based on the new tri-
dimensional figure of merit, that 'r' = 0.25 gives the best
result, at least for the set of values under scrutiny.

c) If we observe the behavior of the integral term in
(2.10) for t=0, we would see that this term is in fact intro-
ducing an excessive weight for the PIC values in MPI calcula-

kh order state which, by any

tions. Being more specific, the 0
logical reasoning, ought not contribute to the index (at t=0),
is being fully charged (we recall that, at t=0, X and X o are

equal). And more, the first order state receives a weight of

1.4142 which in terms of our figure of merit is distorting the
picture of 4(0).

These facts suggest that the scalar 'r' is effectively
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releasing the weight unduly introduced through the integral
term. This conclusion is important and, as will be shown dur-
ing the present work, has its counterpart in the 'lower limit'
mechanism introduced by Ho in Palsson's formulation.

In order to summarize this presentation, we can say that
Rediess' method works pretty well in the case in which there
are no zeroes in the transfer functions. When these zeroes
show up, the expression (2.9) of MPI can be applied still with
success, but the value of the scalar 'r' is selected by trial

and error, which is a drawback.

2.2 Palsson's Formulation

In 1971, Thorgeir Palsson (ref. 8) introduced his concept
of system's error equation. Through the representation of the
transient response by the matrix equations below

x = Ax
x(0) = x (2.11)

and the desired response by the equations

2=4%x

x(0) = % (2.12)
Palsson defined the error equation in the following form

Ax = R Ax + AAx

Ax(0) = AEO (2.13)

where: AX = x - %
"y =y = By
AR = A
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This last equation is valid only for the case where system
and model are of same order.

We observe that the homogeneous part of equation (2.13)
is identical to the model's equation, with the state of the
model replaced by the state of the error. The particular
term is expressed only in terms of the states of the system
and, being so, the response of the error might very well be
imagined as shown in Fig. (3).

Even considering that, in practical situations, the model
is of lower order than the system, no comments will be made
here on the modifications necessary to take care of the case.
Such details would lengthen without reason this work and, when
needed, the very symbology will alert the reader for the
proper case. We suggest here, to those interested, ref. (2).

The error state equation allows a very simple and objec-
tive interpretation of the Model Performance Index, as we will
see in the sequel.

In the case of system without zeroes in the transfer
function, we can see from expression (2.6) that all the states,

except the 0th

order, are null for t=0, since in this case

m=0. Moreover, this state is equal to the system static sensi-
tivity with a minus signal applied. Therefore, if we assume
that system and model have the same value for static sensiti-
vity, the iﬁitial state of the error will be zero. We recall

that this assumption is reasonable since in most practical

situations, the steady state output error due to a unit step
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will be zero by a project requirement.
The error equation, written in detailed form, is

- - 4 .
FAR | FB 1 0 0 ... O Axl 0 - 0 ';

A% 09 D 1 O wos 0 sz 0 “ua 0 X

- . . L] . - - -
L] . . - . . - - -
. . - . - . . - -

Aﬁn —e g —e (Axn)(mo—ao)"‘(mn-l_an-l) L
e o -— ] 25 ] L- —
(214)
T
where: a~ = (agraqre..a 4]
T = o oC <
= ( o717 n_l)

are the coefficients of the characteristic equations of system
and model respectively.

There are two potential sources of excitation to the
error, as can be seen in Fig. (3). First, any initial error
will result in an error response. For the case in which the
model and system do not have zeroes in the tranfer functions,
this effect does not need to be considered, since the initial
‘state of the error is zero as already seen. The second source
is represented by the scalar

n-1

i6) = ) (= - ay) x,) = (= - a)Tx

i=0
As the matrix of the model, A, is a constant, the response of
the error can only be influenced if we change the sources of
excitation of the error. It is clear, for instance, that the

response of the error is zero for all values of t when i(t) is
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identically null, since there is no other perturbation to the
error equation in this case. Therefore, one obvious manner to
reduce the error between the response of the system and the
desired response would be a minimization of some measure of

the excitation to the error'equation which is a scalar when the
equations are written in phase variable form.

One of these measures is

00

J = JrET(S “ @)= = Q)T x dt (2.15)
0

It should be noticed that the Index is still a function of the
free parameters, since a = a(p).
In the case in which 1l<n, we can define al o (¢ o «
- O’ l’ 2,

ceeTp g 1,0,...0) in such a form that the Index will take the

form below:

1 =f§T @ &l x at (2.16)
0

For the case in which zeroes appear in the transfer func-
tions, Palsson suggested an approach that would eliminate the
need for including the error initial states in the performance
index. He had previously proved the (in the simpler case)

validity of the expression below.
1(8) = oo - 1) u(s) {2.17)

Writing this expression explicitly for the case in which we

have zeroes
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i) = (G I7pm1f  inf1To Paf o BiSThe e 2am)

n
Bes +...Bys + B s'+a .S T+...a; sta

If we define a new system whose transfer function contains the
zeroes of the model as poles of the system (which means added

to the regular poles of the system) in such a way that

Etm] = BBl Lot s S (2.19)

then it would be possible to write expression (2.18) in the
same form we had for expression (2.17). Therefore, Palsson
shows that it was possible to reach the same performance index
as in expression (2.15), without having to add any term rep-
resenting the initial states, as Rediess did.

To summarize, Palsson's method works pretty well in the
case with no zeroes. In the other case, however, if the dif-
ference in the initial states was big enough, his mechanism
did not work as he thought. It may, at most, be considered
satisfactory if and only if there is no emphasis on the be-
havior around t=0. In other words, since we accept as unavoid-
able a certain difference during the initial portion of the
transient response. In any way, as Palsson's formulation had
some conceptual advantages and as its form really facilitates
the computation of the performance index, the efforts then be-
came focused in how to reach a weighting of the initial states

similar to Rediess' method.
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2.3 Ho's Formulation

In 1967, Chang Ho, after applying Palsson's method to a
series of examples in which, due to the particular arrangement
of zeroes of model and system, the error input excitation func-
tion presented a strong initial spike (Fig. 4), which contri-
buted heavily to the performance index, suggested that this
undesired behavior could be screened out the calculations if
we began the integration in an instant larger than zero. This
method would certainly produce lower performance indexes and
it might very well allow the selection of a set of parameters
with better conditions of matching. The experience confirmed
this suggestion, but the process of choosing the lower limit
is still a trial and error one, as in Rediess' formulation.

To summarize the discussion up to this point, we can say
that the present difficulties in Model Performance Index Devel-
opment can be traced to the existence of zeroes in the transfer
functions. Both Rediess' method and Palsson's modified lower
limit method are arbitrary, a fact that renders the minimiza-
tion algorithm only partially useful. Both present limitations
as follows:

a) Model and system must have the same static sensitivity,
which is a reasonable hypothesis, as seen before.

b) The model should have an excess of poles over zeroes
lower or at most equal to that of system.

This last restriction was raised with the idea that, in

mathematical terms, there is no difference in which transfer
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function is associated to the model and which is associated to
the system.

The reader certainly has noticed the fact that we con-
stantly used words as "good matching" when speaking about
trajectory closeliness. And certainly has noticed also that
no effort was made to quantify such statements. The search of
a function which could be used as a yardstick of the quality

of matching is the departure point of the present work.
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CHAPTER THREE
THEORETICAL DEVELOPMENT

The most important difficulty affecting Ho's formulation
is the process of selecting the lower limit, which is entirely
arbitrary. Palsson's performance index has no usefulness now
that the index decreases monotonically as we increment the
lower limit. It can be verified that this course of action
can even lead to trajectory matchings which can be considered
very bad. Example 3 (ref. 11), was solved for different
values of lower limit. Table 3 below presents a summary of

these results.

TABLE 3
Lower limit values MPI Matching quality evaluation
0.00 1.39876 Bad
0.01 0.556044 Bad
0.02 0.181143 Good
0.03 0.048856 Bad
0.05 0.040300 Bad

NOTE: Figures 5 and 6 present displacement and first
derivative for this example. From these fig-
ures one could say that lower limit 0.02 cer-
tainly is better than the others but can not
say a word to answer the question "Is it the
best?" nor to try a classification of quality.

In the examples 2a and 2b of ref. (11), Ho tried to show
that displacement token by itself was not enough to judge the

merits of two values of MPI and matching conditions associated
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with it. Ho plotted the first and second derivatives in order
to have a better appreciation which, we must say, was very far
from being a clear cut one.

Extending these ideas, we could say that as we have the
trajectories in a three-dimensional extended state space (in
this example), it would be interesting to see how these tra-
jectories match one another directly in the extended space,
instead of each state at a time.

Following this line of thought, it was proposed a plot-
ting of the trajectories using a tri-dimensional plotter in
the IPC (Calcomp ), which is valid for any second order
model and particularly suited for the analysis of Ho's example
three. Some of the principal points will be aborded here in
a brief manner.

Basically, a cataloged procedure allows the plotting (in
Calcomp Plotter) of any bi-dimensional array, interpreting the
value of each element of the array as the "Z" component and
the subscripts as the components "X" and "Y." This procedure
is particularly suited for plotting surfaces, the functional
relationships of which could be considered as well behaved in
the interval of definition of "X" and "Y." The plotter is an
off-line device, which means that we cannot control the para-
meters of the plotting subroutine during the picture producing
process.

In our specific case, in which "X," "Y" and "Z" corres-

pond to x(t),%(t) and X (t) respectively, due to the sinusoidal
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behavior of these functions, we have some additional complica~-
tions, as explained below:

a) as "x" and "y" are not monotonically increasing or de-
creasing functions of time, the program must provide a way of
transforming these coordinates into an array. In other words,
the program must sort them to be monotonically increasing or
decreasing functions which can then be used by the plotter.

b) as "x" and "y" are interpreted as subscripts of an
array, they must be converted into positive, integer guantities
before they can be used by the plotter. This means a certain
distortion in the picture which, in this case, did not change
the qualitative result.

c) the plotting had to be done using the "histogram mode,"
since the "point to point mode" (an ideal option in plottings)
would blur the picture. This means that we are going to see
cylindric surfaces instead of curves in the extended state
space, making the task of interpretation somewhat difficult.
This difficulty has played an important role in the example
under scrutiny, and we had to plot each curve at a time, super-
imposing the pictures afterwards in order to evaluate the
results.

To summarize, in terms of usefulness as a project tool,
this approach is limited to second order models, has low effi-
ciency since the program must be adjusted to each case (we
recall that some of the parameters in the ploéting subroutine

must be closely controlled), and the program is expensive even
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number of points.

Now considering the results for this example, we can see
from Fig. 7, 8, 9, 10, which represent the trajectories for
values of lower limit equal to 0.00, 0.01, 0.02 and 0.03 that
LL = 0.02, represents the better matching condition, at least
for the set of values under scrutiny (we recall that this ap-
proach does not provide a method for finding "the best"
curve). It is interesting to note that for LL = 0.00 the
initial distance between trajactories is very small, while the
whole system curve is very far from the model's one. If we
observe the behavior for other values of LL, we can see that
the initial distance is increasing as we increase LL and, at
the same time, we obtain trajectories which are much closer on
the whole. This fact is very important because it shows that
the lower limit mechanism is different from Rediess' weighting
term (we recall that in Rediess' formulation we made the ini-
tial distance close in order to get better matching condition).

Due to the difficulties found in the previous approach,
we began to consider an alternate solution which consisted in
a direct measurement of the distance between trajectories and
plotting against time (two dimensions). This was done for the
same set of lower limit values and the resultant curves are
presented in Fig. 11.

There are some interesting points in this figure which
deserve a comment:

a) As we increase the value of the lower limit, in all
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curves (except the one for LL = 0.01), the initial distance
d(0) assume monotonically increasing values. This confirms
that the initial states are not being made closer through the
lower limit mechanism (in the form that the initial quadratic
term of Rediess used to work); this unexpected result led us
to the conclusion that the lower limit method has no correla-
tion with Rediess' formulation.

b) As we increase the values of lower limit, we observe
that all the curves cut the one corresponding to LL = 0.00 in
an instant of time t = t which is each time lower. In other
words, it is possible to develop a qualitative relationship

as a function of lower limit in the following form:

T(LL) <71 (LL + 1)

where LL is a general value for the lower limit. Besides, it
can be seen that the curve corresponding to (LL+1) is kept
essentially below the one corresponding to (LL), for all t>T.

c) Once more we can see that there exists a trade-off
between the behaviors in low and high frequency. This fact
was indicated by the tri-dimensional plotting, as we have seen
before. In other words, as we increase the value of lower
limit, we observe that the state of the initial error becomes
bigger and bigger, and, at the same time, a better matching
condition becomes evident in the low frequency range. This
trade~off suggests that some generalized measure of d(t) may
go through a minimum while we change the value of the lower

limit.
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d) The curves corresponding to LL = 0.00 and LL = 0.01
present a very curious behavior in their initial portion --
they grow for a certain time, going even beyond 4 (0). This
fact suggests that Palsson's formulation would have been apply-
ing an excessive weight to the pseudo initial conditions (we
recall that we reached a similar conclusion when we made the
analysis of the integral term of Rediess). Then, the method
of lower limit would be releasing this undesired situation and
allowing the minimization algorithm to select a better match-
ing condition.

e) It is not possible to tell, by inspection, that a
particular curve represents a better matching condition than
any other curve. That is to say, even having a function as
d(t), which was selected in rather logical grounds, as the
ultimate measure of matching quality, it is necessary to find
some other generalized function of d(t) or some other function
which can describe more effectively the quality of matching.

Following the line exposed in comments c) and e) above,
we decided to try the area under the curve d(t) as a general-
ized measure of matching quality. We calculated this function
for the curves corresponding to LL = 0.00, 0.01, 0.02, 0.03
and 0.05. The results are presented in Table 4 below. As can
be seen, the area in fact goes through a minimum and this mini-
mum corresponds to LL = 0.02, a condition better than any of

the values under scrutiny, as we have seen before.
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TABLE 4

Area under curve d(t) for some values of lower limit

Lower limit Area
0.00 3.331800
0.01 3.156600
0.02 1.058634
0.03 1.212800
0.05 2.078300

It should be noticed that we have only a small sample of the
universe of possible values, a fact which keeps us from using
the term "best possible condition," at least until now. It
should be stated in this point that the function area under
d(t) in fact should be submitted to a formal minimization
algorithm. This task, however, can't be made within the time
allocated to this work.

In any way, considering the actual matching condition for
LL = 0.02, particularly in terms of the an order state ("2"
coordinate in Fig. 9), it seems that we have still some margin
for improvement. In order to explore this situation, we have
chosen an inverted way, which consists in plotting A(t) against
LL (supposing that a nice functional relationship really exist
between them) (Fig. 12), guessing the LL value which corres-
ponds to the lower value of A(t) and the final use of the
present algorithm to verify the true value of A(t). These re-

sults are presented below.
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TABLE 5

Verification of the behavior of A(t)
for LL = 0.0225

Lower limit Area under d(t)
0.00 3.331800
0.01 3.156600
0.02 1.058634
0.0225 2.3890
0.03 1.212800
0.05 2.078300

This unexpected resulf deserves some comments:

a) It is clear that our previous assumption on the be-
havior of the pair A(t)-LL is wrong, that is to say, this
functional relationship is far from being smooth, a fact which
render our forecast useless.

b) It is very interesting to note that a small variation
in LL had brought such a big departure from optimality. For
comparison, we present below the values of the free parameters

for LL = 0.02 and 0.0225:

LL = 0.02 LL = 0.0225
Parameter 1 0.39067 0.51603
Parameter 2 0.79100 0.83061

At this point, as the parameters for LL = 0.225 were
obtained using a different minimization algorithm, some extra
runs were tried which have indicated 0.49699 and 0.76628 as
the new parameters for LL = 0.02. These values are far from

the previous ones but MPI(s) are quite the same. Within
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the new situation, A(t) would then select the set correspond-
ing to LL = 0.03. This seems to show that there is no specific
correlation between A(t) and LL. However, it does not render
the new function invalid -- it only stresses the necessity for
submitting A(t) to a minimization algorithm.

In another effort to check the capabilities of the new
function, we did a follow-up of an actual computer run (which
still uses Palsson's formulation through a minimization algo-
rithm), calculating A(t) for each set of parameters. The

results are presented below:

TABLE 6

Computer Follow-up

Parameter 1 Parameter 2 MPI wvalue Area under d(t)

0.44056 0.86849 0.193162 2.1395
0.43596 0.83349 0.191412 2.1201
0.42387 0.83579 0.187253 2.0801
0.40862 0.81246 0.183488 2.0475
0.39384 0.79423 0.181372 1.0768
0.39067 0.79100 0.181143 1.0586

These results show that A(t) can in fact be used for
selecting directly the best set of free parameters, which in
turn means that the new function A(t) can be used to define a

new form of Model Performance Index.
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CHAPTER FOUR

CONCLUSION

As a conclusion, it is perfectly safe to say that we de-
veloped a new performance index based in a generalized measure
of the distance between the trajectories of a particular sys-

tem and a chosen model, in the form below:

MPI =/ /(;(t) - g{_mo(t))zdt €3.1)
O

In the case in which 1<n, or the model is of an order lower
than that of the system, one must project the extended state
space of the system over the one of the model, and expression
(3.1) is still applicable.

The new formulation has some advantages, if compared to
the previous work, as summarized below:

a) Eliminate, as seen, the necessity to use a trial and
error method in order to include the effect of the states of
the initial error which was a major drawback in the previous
formulations.

b) As there is no difference, in mathematical terms, be-
tween model and system, we have raised the restriction about
the excess of poles over zeroes, which was common to the other
formulations. The artifice used until now to take care of the
case in which model had a greater poles over zeroes excess

consisted in an inversion of the roles played by the transfer
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functions of model and system. When the system possessed
right half plane zeroes, a case which is very common in lat-
eral control systems of airplanes, this idea brought a diver-
gent performance index (since i(p) would have right half

plane poles) and, therefore, useless.
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(a) r=0.0025

Pigure 1 CGeometrical Representation for Example 3.3
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