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ABSTRACT

FINITE ELEMENT ANALYSIS OF
LARGE STRAINS IN SOILS

by

RODRIGO MOLINA FERNANDEZ

Submitted to the Department of Civil Engineering
on August 30, 1971, in partial fulfillment of
the requirements for the degree of Master of
Science in Civil Engineering.

Some problems of behavior of soils under given
boundary conditions involve large deformations and strains,
but finite element analyses of soil problems have
traditionally considered only infinitesimal strain
analysis.

Suitable large strain formulations in cartesian
coordinates for an incremental procedure are studied. One
of the formulations is based on the general tensorial
formulation when applied to cartesian coordinates. The
fact that the constitutive equations are not easy to obtain
for soils makes this formulation impractical. A second
formulation is based in Biot's incremental deformation
formulation, and, because physics and geometry are
separated, the constitutive equations can be easily found.

Two types of constitutive laws are used. One is
the perfectly plastic formulation for a Tresca Material,
the other one is obtained from a hyperbolic approximation
of the experimental stress-strain curve for the given soil.
An interpolation procedure is used to obtain the
constitutive equations of an anisotropic material from
active and passive tests.

Finite Element programs are developed, one for
each constitutive equation, for the solution of plane
strain problems. An incremental procedure with a mid-point
integration scheme is used.

Results from test runs are inconclusive. Good
results are obtained in simple problems, and some
improvement over an "infinitesimal strain" approach is
observed in one case. Some major problems are encountered,
however, especially lack of equilibrium between stresses
and nodal forces, instability of the solution after



failure, impossibility of using unloading procedures, and
deviation from the correct solution, especially after
failure.

The lack of equilibrium between stresses and
forces can be traced to the midpoint integration procedure
and a post yielding modification of stresses to keep them
in the yield surface. The other problems are thought to
be mainly caused by the imperfect constitutive equations.
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Chapter 1

INTRODUCTION

The object of the research is to develop analytical

techniques for the prediction of displacement and stress

fields on soils submitted to forces, such that an appreciable

change in geometry is obtained during loading. The physical

properties of the material have to be readily obtainable

from standard testing techniques, and the constitutive equa-

tions must be simple enough to be formulated mathematically.

The influence of the changes in geometry may be

important in the analysis of stress distribution and defor-

mation of test specimens, in the analysis of field testing

devices, and in post-failure behavior of foundations.

The work is divided into three phases:

1) Formulation of the problem.

2) Development of appropriate numerical tech-

niques to solve the differential field equa-

tions, namely finite element computer programs.

3) Testing of the programs.

Two types of non-linearity are involved in the

formulation of a large displacement problem in soils:

a) Non linear constitutive relations. This is a

physical non-linearity that is indeed a property of all

soils even at very low values of strain. Because of the



complicated particulate structure of soils and the influence

of physical and chemical interaction between particles, con-

stitutive laws are not only non-linear but extremely variable

from soil to soil and even dependent on location in the soil

layers. The formulation of a mathematical model, simple

enough to be operational becomes an enormous task. Scores

of such models have been suggested and used. All of them

obtain the parameters from the results of standard tests,

mainly triaxial cell tests and plane strain tests. The re-

sults of these tests have been traditionally given as stress-

strain curves where the values of strain are obtained from

the displacements, dividing the total displacement by the

original height, and the values of the stresses are cor-

rected to take into account the change in cross-sectional

area, so the actual stress at each moment is obtained. It

will be seen below how this definition of the constitutive

law affects the formulation of the problem.

b) Geometric non-linearity: This is caused by

the change in geometry throughout the problem.

The effect of geometric non-linearity appears in

many different problems, sometimes under different labels.

It is, for example, the basis of buckling and stability

analysis and the cause of increased torsional stiffness of

prismatic bars under high tractions.

There are two main approaches to the formulation

of problems involving non-linearity:



a) A general approach by the use of a tensorial

formulation.

b) A problem-oriented approach using geometric

concepts and "physical" properties of the

material.

The first one is in a sense more comprehensive

and very beautiful, the second is, however, more practical,

easier to understand, and immediately applicable to real

problems. The tensorial formulation does not have a direct

physical representation and has been often misinterpreted

and misused.

In both of them, the geometric non-linearity

appears at two levels:

a) A non-linear relation between strain and

actual displacements.

b) The equilibrium and boundary conditions have

to be satisfied in the deformed position.

The geometric non-linearity and the material

non-linearity will be the object of Chapters 2 and 3,

respectively.

Two methods of analysis have been used to solve

the non-linear problems:

a) Direct iteration, in which the final state

is determined by the iterative solution of

the system of non-linear equations.



b) Incremental analysis, in which the final state

is reached after a certain number of "linear-

ized" steps.

Both procedures can be used when dealing with

small strains and conservative constitutive laws, because

the final result is not path dependent. Even in the case

of small displacements and non-conservative constitutive

laws the iterative procedure can be used if an equivalent

conservative constitutive law is found. But in the case

of a large strain non-conservative material problem the

final result is totally path dependent and an incremental

procedure has to be used. This is, of course, the case

for large strain in soils. This incremental procedure, al-

though more time-consuming, gives information about every

step, and both load-deformation relations and a general his-

tory of the loading or unloading is obtained.

Finally the problem is reduced to the solution of

a differential field equation. In this case that will be

the Euler equation of the functional that gives the total

potential energy, which has to be minimized to obtain

equilibrium in each step. Actually what is normally done

is to equate the first variation of the total strain energy

to zero which is an equivalent equation (Elsgolc, 1961).

This makes it possible to solve a problem in which the

strain energy function is not defined, using the principle

14



of virtual work.

The finite element method was chosen to solve

this equation because of its versatility and flexibility.

A superficial description of the several methods and a

more thorough description of the particular portions that

deal with the large displacement parts and the integration

procedure are contained in Chapter 4.

Chapter 5 is dedicated to the study of the results

of the testing of the method; and Chapter 6 to conclusions

and recommendations.

Appendices, including the development of the

formulation and the documentation of the computer programs,

are provided.

15



Chapter 2

THE LARGE STRAIN FORMULATION

2.1 INTRODUCTION AND BACKGROUND

A large strain formulation for an incremental

procedure with a finite element method is the object of

this chapter. A general tensorial formulation and an

"incremental deformation" formulation will be discussed.

In the literature there are several examples of

finite element programs to handle large displacements or

large strains, see Martin (1965). Most of the work has

been done for plates, shells, and columns, and for stabil-

ity analysis. In general,the formulations are very spec-

ialized, are made to meet the problem at hand, are often too

complicated, and are many times restricted to large rotations

and small deformation of the elements.

An attempt to formulate the problem in a general

tensorial form was made in 1966 by Felippa. Felippa's

formulation for the incremental solution was the first form-

ulation used in this work, but the investigation of the lack

of equilibrium in some of the simple tests led to the con-

clusion that some of the assumptions made by Felippa were

wrong.

16
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2.2 TENSORIAL FORMULATION *

2.2.1 Large Strains

It is very important to define correctly the

meaning of strain when dealing with finite elasticity. In

general, strain is a measure of unitary deformation, but

there are various ways of expressing this deformation. A

simple example will show this very clearly. In a traction

test, the ratio of the final length of the sample Z to the

initial length k0 is:

A = - (2-1)
0

Strain can be defined as

a) a) 0 = (A- 1) Cauchy (2-2)
0

0b) 1=(1 ) Swainger (2-3)

c) ) (A - 1) Green (2-4)
2 R 0 2

d) 1 0 90 1 1
(1 - ' ) = (- 2) Almansi (2-5)

e) / dL lnL I= In = InA Hencky (2-6)

0 0 0

where L is the instantaneous length.

* The continuum mechanics sign convention is used in this
work except where otherwise specified.



If the rod length doubles, A = 2, the values of the

strains are:

a) = 100% b) = 50% c) = 150%

d) = 37.5% e) = 66%

There is an infinite number of possible strains;

a general equation is given by Karni and Reiner (1962). Only

the Cauchy, Green, and Almansi strain tensors are of interest

here.

The Cauchy strain tensor is

1 (u. au.S + a--i (2-7)
j13 2 Daa. a.

The Green strain tensor is: *

E.. 1 3 k k  (2-8)13 2 3a. aa. a . @a.

The Almansi strain tensor is:

1 (au au. aukauk

1 1 1 Je = Tk X + Ti x. axj (2-9)

where u. is the displacement field, a. are the coordinates of1 1

the points of the undeformed body, and xi and the coordinates

of the points of the deformed body, everything referred to

the same Cartesian frame.

The Cauchy strain tensor gives the well known

expressions for the infinitesimal strain.

k* The Einstein summation convention is used except where
specifically suppressed.



Both Green and Almansi tensors are obtained by

expressing the change in the square of the length of a

segment. The Green tensor is obtained when it is expressed

as a function of the undeformed geometry, and the Almansi

tensor when it is expressed as a function of the deformed

geometry. The derivations can be found in general, well

known texts.(Fung, 1965; Green and Zerna,1954; Prager,1961).

2.2.2 Stresses

The concept of stress is unique as opposed to the

concept of strain. Rigorously, it has to be defined as a

tensorial field such that its contraction with the normal

vector of a differential area gives the actual force acting

in such area. This definition, however, should not obscure

the simple, well known interpretation. This tensor, named

after Euler, will be expressed as a...

There are many other tensors defined to give some

required forces on some given differential areas. They are

called stress tensors.by extension, but the forces that they

give in an area are not the real ones acting there. These

tensors are defined for convenience in developing a theory.

Two of these additional stress tensors are very

useful for the basic finite elasticity theory. The Eulerian

stress tensor (aij) is defined in the actual geometry, that

is, in the deformed geometry. But the deformed geometry is

not known "a priori", and it is convenient to relate



everything to the undeformed geometry. It is possible to

define a tensor such that it will give a differential force

corresponding to a differential area in the undeformed

position that will be equal to the actual differential force

acting in the deformed differential area. This is called the

Lagrangian stress tensor.

Figure 2.2 shows the situation for a two

dimensional case.

dTL) = dT. (2-10)

where T. and T0i are components of force in the deformed

and the undeformed geometry, respectively, and (L) stands

for Lagrangian.

If V and v. are the unitarian normal vectors to

the differential surface, before and after deformation,

respectively, and dS 0 , dS are the corresponding areas of

the differential surface, then:

dT. = c..v.dS (2-11)
1 J1 j

by definition of aji,

dT - T..v.dS = dT. (2-12)
01 33 3 0 1

Tji is the Lagrangian stress tensor and it is defined by

this equation (2-12).

The relation between both tensors (Fung, 1965), is:

20
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p0 la.
T. =0 _ a (2-13)31 P xm mi

where p0 and p are the densities before and after deformation.

Although ami is symmetric, Tji is not, as the

Equation (2-13) shows. Because of lack of symmetry, this is

very inconvenient to use in formulating constitutive

relations. A different tensor is then defined such that it

will give on a differential area before deformation a

differential force dT0i , such that:

K a.(K) idT dT. (2-14)Oi ax.
3

where dT. is the actual force in the differential area

after deformation. (K) stands for Kirchhoff, after whom this

tensor is named.

The relation between Kirchhoff's tensor sij and

oij (the actual value of stress in deformed position

[Eulerian]) is (Fung, 1965):

PO a. 3a.
S.. = a x--2 a (2-15)31 p ax ax Ba

and this is a symmetric tensor.

It is important to realize that the only way to

know what these tensors represent is through the definition.

2.2.3 Equilibrium

Equilibrium has to be established in the deformed



position, but equivalent expressions for equilibrium can be

found in the undeformed position as a function of T.. or S..
13 13

(Fung, 1965),
aa. V

Eulerian pF. + = 0 , a..v. = T. (2-16)' ax. 31 3 1

aT.. V,
Lagrangian POF i + --3 i 0, T..v = T0i a.- ji 0j Oi (2-17)

3

ax.
Kirchhoff o Foi + (Sik ) = 0, (2-18)

j k

axi  ,
Sj . j V = Toi

surface tractions referred to the deformed area, and T * are
Oi

the surface tractions referred to the undeformed area, but

keeping the direction they have in the deformed position.

Equivalent virtual work equations can.be derived for

the three tensors (Fung,1965!*)

Virtual work for the Eulerian and Lagrangian stress

tensors is, respectively:

a 6 u i V
fV ax dV - f PFi6u dV - J T.6u.dS (2-19)
V I V S

a6u. v
T.. --- dV0 - f P0F0i6u dV0 - T0 6u dSO1 a0 0 V0  o 0

(2-20)

For the Kirchhoff stress tensor:

* The derivation by Fung is based in the strain energy
function, but it is valid for virtual work.



SSj.6EjdV0 - POF i6u dV- f 06udS
SV 1 0 S 01 0

(2-21)

where

SE.. 6u
6E.. - 3 - (2-22)31 a uk  Da

-

Virtual work must be 0, then equilibrium is

obtained.

2.2.4 Incremental Procedure

For an initial state where strains are 0 and

stresses have some finite value, there is a stress tensor, of

Eulerian type, that is not identical to 0. Such a tensor

will be called a ij . A corresponding set of surface

tractions will also exist Toi such that:

V (2-23)
0ij0i Toi0

For these to be in equilibrium:

96u.
O = a0ji --- dV 0 - I  P0F0i6uidV0

0 0

-f T i6uidS0  (2-24)
0

If a set of surface tractions is now applied

to the body such that the total surface traction in the

deformed position is T, the corresponding Eulerian stress

tensor will be a.., and T. and S.. will be the Lagrangian
13 1 13



and Kirchhoff tensors.

Equilibrium conditions in the undeformed position

will be the Equations (2-20) and (2-21) for the Lagrangian

and Kirchhoff tensors respectively.

If:

a) the body forces remain constant,

b) the surface tractions are conservative, that

is they keep a constant direction; then:

v v
dT tdS0 = dTidS (2-25)

c) and AS.. and AT.. are defined as:

ASij = Sij - aoi j  (2-26)

AT..ij = T.ij - i j  (2-27)
13 1] Oij

then, from Equations (2-20) and (2-24):

6u. v v
f AT.. dV - f [Ti - T i]6udS0 = 0
V0  S0  (2-28>

which can be expressed as:

86u. v
f AT.. ' dV - AT o6u dS 0 (2-29)

0  j s0

where

AT = T - T (2-30)Oi 01 Oi

this value, because the surface tractions are conservative,

is the real value of the increment of surface tractions



referred to the undeformed position.

In a similar way, realizing that (Fung,1965)

1 uk  8U k 6 u k
6E.. - 6 + 6 a+ j + 6 U

(6 2 k it ik j£ a 6 a

(2-31)

and that a 0i j = a0j i and S.. = S..
Oij 01 31

0 -i6j +a 6i + AS.ji6Ej. V

- I A T i6uidS (2-32)

0

where

6.. = 1 if i = j

= 0 if i f j (Kronecker delta)

2.2.5 Constitutive Relations

To be able to solve the problem, the relations
S6u k  a 6 k

between AT.. and k and between AS.. and have to be
13 Da9 13 a9

known.

Because Equations (2-29) and (2-32) describe the

same phenomenom, the constitutive relations have to provide

for the differences, mainly the fact that in (2-29),

the geometric influence of a0i j is not explicit as it is in
86u

(2-32); therefore, the relation between AT.. and will
1 3  aak

depend on OOij , not only physically, but also geometrically.

At the same time, AT.. is not symmetric, which makes the
13constitutive relations more complicated.

constitutive relations more complicated.



6uk
The relation between AS.. and presents some

13 a-- presents some
problems, mainly because AS.. does not have any physical13

meaning. This is made clearer by realizing that the

Kirchhoff stress tensor (Sij) represents also the actual

state of stress referred to the undeformed geometry and to

the convected frame. A convected frame is defined in such

a way that the covariant coordinates of a point with respect

to this convected frame remain constant throughout the

deformation (Green and Zerna, 1956). This definition

involves the use of curvilinear coordinates, even if the

original frame is cartesian, and can not be expressed as a

rotation of the original frame only. Because a0ij and Si j

(it is a contravariant tensor) are referred to different

frames, AS.. does not have any physical meaning and it is13

not certain that a constitutive relation for AS.. would
13

depend physically on o0i j only.

It is difficult in any case to find the

constitutive laws from the simple tests that are the only

meaningful measures of soil properties, because of this lack

of physical meaning of the incremental stress tensors.

2.2.6 Stress Transformation

If a constitutive law could be found and the field

equations solved so that for a given set of applied forces,

the corresponding field of displacements was obtained,

the constitutive equations and the definition of the strain



in each case would give at the end the stress tensor field.

Depending on what formulation has been used, the stress

tensor would be the Lagrangian or Kirchhoff's.

To be able to do the next step, the Eulerian

stress tensor has to be found. Again, the conversion

equations are given by the definition of the different stress

tensors (Fung, 1965).

3x. 9x. x.
= p T = 1 3- S (2-33)

1i P0 aap pj P0 O

au.
These can be expanded as functions of 1 . If the exterior

forces are given as surface tractions, a transformation from

T o to T. has to be done. This is not necessary in the
01 1

case of a finite element analysis where all exterior forces

are given as nodal forces.

2.3 FELIPPA'S FORMULATION (1966)

This formulation is the one that has been followed

above with the Kirchhoff stress tensor.

A simplification is made and Equation (2-32)

becomes:

0 0
(2-34)

where:

6E.. = 6n .. + 6E.. (2-35)31 31 ]

au Du Thu1 - 1Uk u z6 6uk
6ji = ~ a 6l + T ik ~a (2-36)



1 + 6Uk
6 . (2-37)ji 2 ('jki£ + ikj a (2-37)

That is:

ASji6nji = 0 (2-38)

This is based on the assumption that ASji..ji.. is a third

order infinitesimal, that is, that AS.. is an infinitesimal

with respect to a ij

The constitutive equations are:

ASij = Cijk'k (2-39)

Some comments have been made already about the

difficulty of obtaining Cijk£ because of the lack of physical

meaning of AS... The worst assumption, however, was made

when, instead of using the transformation Equation (2-23) to

obtain a.. from S.ij, the following one was used:

1J1

.. .. (1 -Ekk) + ( + 2 wj ) (2-40)13 13 kk 2 ik jk jk

+ 1 S (E + 2w2 jk ik + ik)

where
Du au.

.. 1 (2-41)S 1aa

This transformation would be valid if S.ij, instead

of being the Kirchhoff stress tensor, were the expression

for Tij referred to the cartesian axes rotated on an angle w

counterclockwise.

The reason behind using this transformation is



that for very small strains in the body but large rotations

(a common case in structures), the tensor S.. is very similar.13

to the values of T.. referred to the rotated axes.
13

As it will be shown in Chapter 5, Felippa's

formulation led to lack of equilibrium in a simple problem,

because the simplifications and assumptions were not done

consistently throughout the formulation, in such a way that

when some of these assumptions were violated, the results

were not only wrong, but inconsistant among themselves.

A solution would have been to use the correct

transformation equations. However, the insecurity about

the constitutive relation remained. Furthermore, once it

was decided to assume that AS.. had to be an infinitesimal
ii 13

with respect to a0 ij' then a more consistent and, if

possible, more "physically" based formulation was sought.

2.4 BIOT'S FORMULATION

This formulation was developed by Biot(1965)

for incremental deformations of initially stressed mediums.

Everything is based on physical and geometrical

considerations.

The main assumption is that the incremental stress

is an infinitesimal with respect to the initial stress.

The derivation of the formulation for a plane

strain case is given in Appendix B; an outline of this

derivation is included here.



The formulation is based on the separation of

physics from geometry. The deformation of a continuum

gives to a small region around a material point:

1) a translation

2) a rigid body rotation

3) a pure strain, that is, the strain caused

by a deformation such that it is possible to

find three orthogonal directions that remain

orthogonal after the deformation.

It is well known that for these three directions to

exist, E.. = E.. , when E.. are the components of the pure
13 31 13

strain.

After some geometric considerations, the

expressions for Eij, for plane strain, to the second order

are:

1 2
E =e +e W+ 2
11 xx xy 2

1 2
E =e -e w+ -L2 (2-42)
22 yy xy 2

E =e + -(e -e )
12 xy 2 yy xx

where:

aue xx ax

ave
YY ay (2-43)

1 av au
e =e =- (-- + -)
xy yx 2 x ay

1 v u
2 Dx Sy



where u and v are the displacement field components with

respect to the original cartesian frame x,y and where E
11

E E are referred to axes 1,2 rotated an angle e
22 12

counterclockwise from x and y respectively (Figure B.2).

The stress in the body before deformation is S

S = Syx , Syy referred to the x,y axes;after deformation
xy yy
it becomes:

a' = S + s'xy xy xy

o' = S + s'xx xx xx (2-44)

o' = S + S'
yy yy yy

Sxx, S'x , s are the total incremental stress

referred to the axes x,y. But, they do not depend only

on the strain, but also on the rotation, in such a way that

if there is no strain but only a rigid body rotation, s' # 0.

If the stress after deformation is referred to the

rotated axes 1,2 then:

O' =S + s'11 xx 11

' S +s' (2-45)
22 yy 22

o' = 0 = S + s'
12 21 xy 12

S1' etc., depend only on the pure strain, because in a rigid

body rotation they are 0; see Figure B.3.

From geometric considerations and assuming that



the incremental stress and the rotation are quantities of

the first order

s' = s! - 2S w
xx xy

s' = s' + 2S w (2-46)
yy 22 xy

Sxy 2 + (Sxx- Syy

Equilibrium is established in the deformed position and

equilibrium equations in Sxy and sl2 etc., are found (Biot,

1965).

In order to obtain an equivalent variational or

virtual work principle the components of the stress have to

be referred to the undeformed areas and the rotated axes.

To the first order

T = S + t = o + S e - S e11 xx 11 11 xx yy xy xy

T = S +t = a2 + S e - S e22 yy 22 22 yy xx xy xy

I2 x2 xy xx yy

1(S + S )e2 xx yy xy

Now the principle of virtual work is:

V T.. 6E dV0 = PXi (E)6uidV0 + fi6u idS0V V S 0
(2-48)

if body forces X. (() = 0

Because of the equilibrium of the initial state:



11 -~~

f SijY 6ed = S 6udS (2-49)

0 0

and, keeping only second order terms:

f (ti3.6e.13 + S. .6nij )dV = fi 6 u dS0  (2-50)
V 13 S0  o0

where

nij = 1(e ia + ej ai + Witw. ) (2-51)

and t ij6J is a third order term.

So far in this formulation, only second order

terms have been kept in order to establish the virtual work

with all the second order terms. The theory is then a

linear theory, but it is consistent throughout the

formulation.

Furthermore, t.. is the real increment of stress13

due to the strain; this is because t.. is what has to be13

added to the initial stress to get the final stress when

both are referred to the same axes and geometry.

It can be said then, that for an elastic increment

tij = Cijki k (2-52)

To the first order (2-52) becomes

t.ij = C.ijkekk (2-53)

where C ijk are the same constants that relate stress and

strain in infinitesimal elasticity; in an isotropic case,

they can be reduced to combinations of two parameters.



To obtain these parameters from standard testing

procedures, it has to be remembered that ekk would be the

incremental Cauchy strain; this is the incremental

deformation referred to the geometry just before the

increment. In the same way, t.. is the real increment of13

stress referred each moment to the geometry just before

deformation. The last step is to recover the value of

y' x' , a' y, that is the stress in the body after

deformation referred to the x,y frame.

From the virtual work equation, once fi are known

the displacement field can be obtained and from it,

through the constitutive equations, t... The value of t..13 13
will be exact to the first order only, so the transformation

equations from T.. to o' , etc., have to be exact to the

first order only.

The first order transformation equations are

xx T11 - Sxxe 2 2 
+ Sxy (e12 2w) (2-54)

(' = T - S e + S (e + 2w)
yy 22 yy 11 xy 12

' = T - -S (e + e22) + S (e + 2w)xy 12 2 xy 11 22  xx 12

+S1+ yy(el2 - 2w)

These are the transformation equations used by

Felippa, if instead of Sxy' T12, etc., is used. That gives

some second order terms.

In summary, Biot's formulation is consistent; it

does not require the assumption of rotations being of a



larger order than strains, and it uses a constitutive

equation defined between physical quantities, where

geometric characteristics do not have influence and

which can be easily related to the standard tests.
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Chapter 3

CONSTITUTIVE EQUATIONS

3.1 INTRODUCTION

When loads are applied to a body, three basic

kinds of response can be expected:

a) Elastic The deformation is instantaneously

dependent on only the load and independent of how the load

was applied. Essentially, the body has a natural state that

is free of stress and strain, to which it returns when

unloaded. (Fig. 3.l,a)

b) Plastic The state of deformation is stress

path dependent; different loads can give the same deformation

and vice versa. (Fig. 3.l,b)

c) Viscous The deformations are time

dependent.

Mixed responses are common, as for instance,

elasto-plastic and viscoelastic responses. Soils show all

three kinds of behavior. No attempt will be made here to

treat time dependent effects. A literature survey,

formulation, and some solutions are presented by B. J. Watt

(1969).

3.2 SOIL AS AN ELASTO-PLASTIC MATERIAL

The widespread use of linear elastic theory to

treat problems in soils has been caused by the possibility

of obtaining analytical solutions. Even with the use of



computers, many problems have been solved taking the soil

as a linear, bilinear or non-linear elastic material (for

references, see Hagmann, 1971).

However, the soil is elastic only at very low

strains and stresses. Residual deformation after very small

cyclic loads are noticeable. Soils, then, are plastic

materials.

The application of the plasticity theory to soils

centers on the determination of the yield function. A large

amount of research has been done in this field lately; see

Hagmann for a review (1971). The first yield functions used

to obtain a formulation valid for perfectly plastic

materials were the well known Tresca and von Mises yield

criteria (Christian, 1966). The generalized Mohr- Coulomb

failure law, and the stress hardening theory have also been

used (Hagmann, 1971) in an effort to simulate more closely

the real behavior of soils.

The use of plasticity theories has been possible

because of the availability of high speed computers, through

techniques such as finite differences (Ang and Harper,1964),

and finite elements (Zienkiewicz and Y.K. Cheung,1967).

A different approach to the problem has also been

made possible because of these techniques, especially with

the use of finite elements and incremental procedures. The

method defines two elastic laws, one for loading and another



for unloading, thus obtaining a pseudo-plastic behavior or a

deformation plasticity. The unloading law is usually

linearly elastic, and the same law is used for loading until

the maximum previous load is reached.(Fig. 3.1,b) The loading

law can be non-linear, and a failure criterion can be

defined such that, once the yield surface has been reached,

the law gives a finite, but very large, value of strain for

small increments of stress.

This approach has the advantage over a rigorous plastic

law that it is easier to formulate and easier to use in a

finite element program.

This kind of approach has been used several times,

with different mathematical models to define the non-linear,

elastic, loading law (Wong,1971),(Duncan and Chang,1970),

(Desai,1971).

3.3 PSEUDO PLASTIC STRESS-STRAIN LAWS

In the incremental procedures, each increment is

supposed to be isotropically elastic; one of the two

parameters that define the isotropically elastic constitutive

law is usually constant throughout the complete problem,

namely, either the Poisson's Ratio or the Bulk Modulus,

depending on the selection of parameters. The other is

obtained as the tangent, or the local secant, of a given

stress-strain curve.

The stress-strain curve is obtained from plane

strain or triaxial tests. The experimental data is plotted

~
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and a curve is fitted through it. Kondner (1963),Kondner

and Zelasco (1963) suggested a hyperbolic approximation;

this approximation has been used by Duncan and Chang (1970)

in a finite element analysis. Wong (1971) suggested a

polynomial least square method, and Desai (1971) a spline

curve defined by the experimental points. From the

normalized curve, a set of curves can be found for

different values of the stress level.

The hyperbolic approximation is good for many

normally consolidated clays and loose sands. It can be

used for overconsolidated clays and dense sands to

approximate the first part of the curve until the peak

of the curve is reached. The second part has to be

approximated by a straight line. It is not always possible

to approximate the test results by a hyperbola, and in such

cases, one of the other two methods can be used. The

hyperbolic method is simpler, however, and is the one

chosen here.

The other constitutive law used in this study

is the simple elasto-plastic relations derived in the

perfect plasticity theory from the Tresca yield criterion.

3.4 ELASTIC PERFECTLY PLASTIC TRESCA MATERIAL

The Tresca yield criterion for plane strain is

defined by: 2

f = x yy + 2 _ k =0 (3-1)2 xy
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physically it means that at some value, k, of the maximum

shear stress the material will yield, independently of the

value of the normal stresses.

This is a valid assumption in soils only in an

undrained and saturated condition, where the effective

stresses* are independent of the total stress, and only

depend on the consolidation stress. The value of the

maximum shear stress at failure is then constant in a total

stress analysis.

The behavior of the soil inside the yielding

surface will be considered linearly elastic and isotropic.

The constitutive law for plane strain is

(Timoshenko and Goodier,1951):

xx (l+v) (1-2v) [(1-)xx + vE

yy (l+v) (-2) [(l-)yy + xx (3-2)

E
yx (i+v) yx

If, instead of E, Young's modulus, and v, Poisson's ratio,

the chosen parameters are G, shear modulus, and B, bulk

modulus, the law becomes, in a matrix form:

= B + (4/jG B - 12/3G o0

y = B - (2/3G B + (4/3G 0 (3-3)

S = o 0 2G E

* For the effective stress definition and similar basic
concepts in soil mechanics, see any text book [Lambe and
Whitman(1968), Terzaghi (1943)]



The derivation of the perfectly-plastic Tresca

material formulation can be found in Harper (1963), Whitman

(1964), or Christian (1966), and it will not be included

here.

The formulation in an incremental form is for plane

strain:

4G+3B G y xx YY)]

k

+-2G+3B i xx2

k 2

k 2  2 xy

Aa -[2G+3B G xx ayy
oyy + 2 2YY k -2

'4G+3B G xx Y2 A
3 k2 2 /

+ [. xx y 2 AE:Aa =

2 
xy

kxy 2 yy
a 2 14

xx

AC
yy

(3-4)
xx

AE

y y

3.5 HYPERBOLIC STRESS-STRAIN RELATION

3.5.1 Hyperbolic Approximation

Kondner (1963) and Kondner and Zelasko (1963) have

shown that many stress-strain curves of sands and clays can



be approximated by a hyperbola. The proposed equation was:

i- 3 =  E (3-5)
1 3 a+be

where a1 and a3 are the major and minor principal stresses,

e is the axial strain, and a and b constants. This curve is

based on the results of compression triaxial tests, where

a3 remains constant throughout the test. The main phenomenon

involved in the test is a shear failure, so the hyperbolic

relation could be written alternatively:

Y (3-6)
a'+b'y

where T is the maximum shear stress, y the maximum

engineering shear strain and a' and b' constants.

In a plot T vs. y (Fig. 3.2), the value of a' is

the inverse of the initial tangent to the curve, i, = G

and b' is the inverse of the value of T that defines the

horizontal asymptote to the curve,

1 = Tult

An easy way to find a' and b' would be to plot the

curves in transformed axes: y/T vs. y as suggested by Kondner

(Fig. 3.3). From Equation (3-6)

= a' + b'y (3-7)T

* The sign convention in section 3.5 will be the standard
for soil mechanics, that is, compression positive.

I



a' is the initial value of I for y=O and b' the slope of the
T1

resulting straight line. It does happen that Tutt= s, is
bigger than the strength of the soil, so it can be said then

Sf= RfTuxt (3-8)

where rf is the value of the maximum shear stress at

failure; Rf is called the failure ratio. Its value has

been found to be,for different soils, between 0.75 and 1.00

(Duncan and Chang,1970).

3.5.2 03 Dependency

1
Both parameters G.= -, (initial shear modulus) and1 a

Tutt = I' depend on a3. If the relations between Gi and 3

can be found, a family of hyperbolae with a3 as parameter

will be derived.

Janbu (1963) recommended a relationship

03 n
E. = kp (' ) (3-9)1 a P a

for the initial value of the tangent Young's modulus; where

Pa is the atmospheric pressure and K and n constants. Of

course, for a given Poisson's ratio: G = klE, therefore, a

similar equation can be applied to Gi
a3 n'

G. = K'p ('a) (3-10)
1 a pa

A plot of Gi vs. a3 in log log scale gives the values of K'

as the value of Gi for a3 = 1, and n' as the value of the
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slope of the straight line, (Fig. 3.4) . This equation can

be transformed into

G = K'a3  (3-11)

for n' = 1. This is the basis for the normalized

representation of test results, and the result will be

useful when the data for the problem is scarce.

The Janbu equation does not hold for total stress

analysis of undrained cases where the stress-strain curves

depend only on the value of the consolidation stress.

The Mohr-Coulomb failure criterion provides the

relationship between Tf(and TuI t , therefore) and 03.

T = c cos + a sin4 (3-12)

where c is the cohesion intercept and * the friction angle

(Fig. 3.5).

3.5.3 Tangent Modulus

Duncan and Chang (1970), from Equations (3-5),

(3-9), and the equations equivalent to Equations (3-8) and

(3-12), that is:

(o1a-3)f = Rf(al-o3)u1 t (3-13)

* A term is dropped to develop this; from Equation (3-10):
logGi  logK'+n'loga3+ log pa(1-n'), so (1-n') log pa is
considered 0. This is exact if the dimensions of 03 are
such that pa- 1.



and

2c cos4 + 2 3sin4 (3-14)
(a -c ) = 31 3 f 1 - sinh

obtain an expression for the tangent Young's modulus as a

function of a3 and 01

Et Rf(1-sin)(a - a0 3 ) 2 (3 (3-15)
t 2ccoso + 2a 3sin apa

A similar expression can be derived from Equations

(3-10),(3-6), (3-8) and (3-12).

From (3-6) and (3-8):

= ' (3-16)

The tangent shear modulus is defined as:

G =a (3-17)

so
Rf Rf

T f T 1/G

t 1 +Rf 2 1 Rf 23-18)

but from (3-16)

T

and then (3-9) becomes, after some transformations

2
Gt = G (1 - R-) (3-20)

S i  fT

If the values of G. and Tf from Equations (3-10) and (3-12)



are introduced in (3-20),

3) T(1-sino)
t KP l-Rf c cos4 + 3 (3-21)

Observe that after substituting T for its value

a1-O
3

2

(3-21) has the same form as (3-15). This makes it very

simple to change the computer programs to define the elastic

constitutive equations as a function of E and v instead of

G and B.

3.5.4 Unloading Stress-Strain Law

The hyperbolic law gives the values of the

incremental modulus for loading; during unloading and

reloading, the material can be considered linearly elastic.

The value of the unloading-reloading Young's modulus has

been suggested by Duncan and Chang to vary with a3 in the

same fashion as Ei does. The value of K would be different,

bigger usually, but the same value of n would be used. In a

similar fashion as Equation (3-10)

Gu = Ku(y a3 (3-22)

* Equation[3-15]is good for triaxial test results; if the
results are from plane strain tests,E has to be
multiplied by (l-v2 ) to get the actual value of Et; this
follows from the existence of an intermediate principal
stress Aa #0 in plane strain tests while Aa2=0 in
triaxial pests.



3.5.5 Post-Yielding Behavior

When the hyperbolic approximation is used, the

yield surface is not the curve given by the Tult , but by the

smaller value Tf. After yielding, the stress-strain relation

has to be defined. In many cases, especially for over-

consolidated clays and dense sands, there is a decrease in T

with y increasing (Fig. 3.6). Because negative elastic

parameters cannot be used, it is impossible for an

incremental procedure to model such behavior, except by using

strain softening plasticity theory. The best approximation

that can be made in a pseudo-plastic approach is a straight

line with a very small slope; zero slope is not possible

because of numerical instabilities. The value of the slope

will be the value of the ultimate E or G, whichever is used.

3.5.6 Election of Elastic Parameters

In a pseudo-plastic approach, the non-linear

loading law gives one of the two elastic parameters needed

to describe the isotropic,linearly elastic behavior, usually

the Young's modulus; the other one, usually the Poisson's

ratio, is given a constant value. However, when the elements,

in a finite element method, reach yielding values, the small

value of E causes some inconveniences. Sometimes, the

element becomes so "soft" that a negative area is obtained,

(D'Appolonia, 1968).

A way to overcome this is to fix the value of the

bulk modulus, and to use the hyperbolic approximation to



obtain the shear modulus. This choice has some physical

meaning. First, the stress-strain curves are obtained in

tests where the main phenomenon is shear, and, second, the

isotropic compressibility of a soil (the bulk modulus

measures its inverse) cannot decrease with shear as much as

the shear modulus does. Certainly, to give it a constant

value, for a given 03, is a better approximation than to

make it decrease as much as the shear modulus.

The dependence of the bulk modulus on a3 can be

expressed in the same way that the dependence of Ei Gi or Gu:

B (2= KB a  (3-23)

3.5.7 Anisotropy

So far, the soil has been considered as

homogeneous, isotropic material; both assumptions are not

true. The non-homogeniety is handled through the finite

element method, assigning different material properties over

different zones.

Anisotropy in soils can be shown by running

isotropically consolidated active and passive plane strain

tests. The anisotropy in these tests is a characteristic of

the soil, independent of the stresses, and probably caused

by the way it was deposited. A second type of anisotropy

can be caused in soils because of anisotropic consolidation,

or an anisotropic state of stress in the soil (Ladd, 1964);

this anisotropy appears mainly in undrained shear. A third
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case of "anisotropy" can be obtained if triaxial compression

and extension tests are used instead of plane strain active

and passive tests. It is caused by the influence of 02 (Ladd,

1964). It is not a property of the soil as such, and if the

problem being solved is a plain strain problem, the triaxial

tests are going to give the wrong information. Plain strain

tests should be preferred. Of course, in order to take into

account both classes of anisotropy, the tests should be

anisotropically consolidated if undrained.

To take into account the anisotropy of the soil

without having to determine the five elastic constants

necessary to characterize a layered material, an

interpolation procedure is used after an idea of Duncan and

Dunlop (1969). The values of Gt are found for both active

and passive tests. These give, then, the corresponding

values of Gt when the maximum principal stress, al , is

vertical and horizontal, respectively. When 01 forms an

angle 6 with the vertical direction, then

4
Gte = Gth - (Gth-Gtv)cs (3-24)

7T 4Gtv is obtained for 0 = 0, and Gth for 8 = ; cos is

symmetric.

Duncan and Dunlop used a sin 0 interpolation

function, and, when the results were not very satisfactory,

a 0.2sin228 modification. However, cos4 has been shown by

Christian (1970) to be theoretically based, thus giving good

51

I



results.

The Mohr-Coulombe failure criterion is considered

a non directional property of the soil, and no anisotropy

is considered in its parameters. However, in undrained cases

a pseudo failure criterion in total stresses is considered,

with = 0 and c = Su then, anisotropy appears as a result

of anisotropic consolidation. In such cases, S u is

determined in the standard passive and active tests and

the same interpolation Equation (3-24) is used with c instead

of with Gt.

3.5.8 Experimental Determination of Parameters

A summary of how the parameters are obtained in the

different analyses is presented here.

a) Drained cases

The procedure is the same for all different

soils. Two sets of tests have to be made: a set of drained

plane strain active tests and a set of drained plane strain

passive tests. If plane strain tests are not feasible,

triaxial tests can be made; a set of drained compression

tests, loading, and a set of drained extension tests, loading.

Volume changes have to be measured in order to

obtain the horizontal displacement, and to determine from

horizontal and vertical displacements the maximum shear

strain y.

Every set must be of at least three tests to obtain

the variation rate exponent, n', and the modulus nimber, K',
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of Equation (3-10). If only one test is available, n' can

be assumed to be 1. If only compression or active tests are

run, isotropy has to be assumed.

To obtain a stress-strain curve valid for an

incremental procedure, both stress and strain have to be the

actual values. The actual value of the stress is obtained as

a standard testing procedure, when the correction due to the

change in cross-sectional area is made. Strain, however, is

customarily referred to the initial length of the specimen;

it has to be corrected in such a way that each increment of

strain is the increment of length divided by the actual

length of the specimen before that increment. In many cases,

this correction has no practical importance.

From the curves of maximum shear stress vs. maximum

shear strain, K', n', and Rf can be obtained, as shown before,

for both active and passive cases. q and c can be obtained

from any two of the tests as usual. An unload-reload cycle

can be made in one of the tests to obtain values of Ku

Values of KB (bulk modulus) for a3 = 1 can be

obtained from isotropic consolidation or from the value of

K' (initial shear modulus for 03= 1), assuming a reasonable

value of v and using the well known relation:

B = 2(l+v) (3-25
3(1-2v) G (3-25)

b) Undrained cases

Analysis of undrained cases is made in total



stresses. Therefore only two tests are necessary: one

undrained active and one undrained passive plain strain test,

or one triaxial undrained compression test and another one in

extension. y is readily obtainable from the axial strain

in both cases, because the volume remains constant. Stress

and strain have to be defined as in drained cases; the

unloading and reloading value of G can be obtained from an

unloading-reloading cycle. Bulk modulus is infinite in

theory, though, in practice, the value has to be chosen so it

will not create numerical problems when it is matched with

the final value of G (see Chapter V).

As has been said before, the stress-strain curve

for undrained analysis in total stresses is unique, and

independent of the value of a3, for each point in the soil

mass. Therefore, from the two tests two values of G. and

c = Su, as well as Gu for unloading and reloading, can be

obtained; is 0.

The stress-strain curve for undrained cases, which

is unique in each element, varies from element to element,

depending on the consolidation stress in each one. The

procedure to obtain the local stress-strain curves from tests

varies, depending on the type of clay.

1) overconsolidated clays

The profile has to be divided in horizontal

layers of constant consolidation stress, overconsolidated

ratio and coefficient of lateral stress at rest K . Tests



have to be made for each layer. Tests should be

anisotropically consolidated to obtain better results.

2) normally consolidated clays

In a profile in which K0 remains fairly

constant, only two tests are necessary to obtain the stress-

strain curves, if the clay is normally consolidated. In a

N.C. clay, K0<1. Therefore, the consolidation is aniso-

tropic, and the tests should be anisotropically consoli-

dated. The results of the tests have to be normalized,

dividing the stresses by the vertical consolidation stress.

The corresponding stress-strain curve for any element can

be found by multiplying the G. and c parameters, of the
1

normalized curve, by the corresponding vertical stress act-

ing in the element (Ladd, 1964, b).

When the available data for saturated N.C. clays

is from isotropically consolidated tests, an approximation

can be done. This is a good approximation only for clays

that do not show a big difference in the shapes of their
a1 + 3  1-O 3

plots 2 vs. 2 between undrained shear after isotro-

pic consolidation and undrained shear after anisotropic

consolidation (Ladd, 1964, b).

The approximation is based in the equation by

Skempton and Bishop (1954):

C 1K 0 +Af ( 1 -KO)J sin(
a c 1 +( 2Af-l)sin (3-26)

where alc is the vertical consolidation stress and Af the

value at failure of Skempton's parameter A defined as:



A u - 3  (3-27)A A-AG3

where Aa 1 and A03 are the increments of the principal total

stresses, and Au the increment of the pore pressure.

If in Equation (3-26) K 0 = i, isotropic

consolidation, then:

c _ sin (3-28)
ac  1 +( 2A f-)sine

where c is the value of the isotropic consolidation stress.

Therefore, if for a given ac a value of c is obtained, the

equivalent value of ac that will give the same c is:

[1 +(2Af-l)sin. [K +Af(1-K )]sin
c sin 1 lcTO+ (2Af-1sin]

= 1c [KO+Af (1-K0)] (3-29)

Equation (3-29) gives the equivalent ac for a given allc
K0 and Af for the active test, or compression test; for the

passive, or extension test, (3-29) becomes

1 1
c = [ + Af(1- )] (3-30)
c lc K f K0 0

If the data from the isotropic tests is now normalized by

dividing T by ac , then the values of c, and similarly G i ,

for a given point, can be found by multiplying the normalized

values by the ac values given by Equations (3-28) and (3-29)

respectively. alc is again the vertical consolidation stress.



3.5.9 Plotting of Anisotropically Consolidated Test Results

The hyperbolic approximation was derived for

stress-strain curves from isotropically consolidated tests.

They pass through the origin of the stress-strain plot.

However, if a soil is anisotropically consolidated, only

anisotropically consolidated tests well give reliable values

of c and Gi, in both active and passive undrained tests,

values that will take into account the actual soil

anisotropy.

The typical T vs. y curves from undrained

anisotropically consolidated tests in N.C. clay could be the

curves in Figure 3.7; if the passive test curve is rotated

1800 around the origin of the stress-strain plot, a single

curve is:obtained (dotted in Fig. 3.7). If this curve is

divided into two new curves at the intersection with the y

axis, the T axis is translated to this point, and the lower

curve is rotated 180 0 again, then, two curves are obtained

to represent the active and passive tests that can be

approximated by hyperbolae (Fig. 3.7). Of course, the part

of the curve that changed from the passive to the active

curve will have a different curvature than the hyperbola,

but in most cases, that part is almost a straight line. The

translation of T can be made because the strain is only

considered incrementally in the large strain theory, and

the curve is identified by the value of T, which has not



changed.

3.5.10 Formulation

The tangent value of G, Gt and the corresponding

value of B, bulk modulus, both dependent on the stress

level, will give, when introduced in Equations (3-3), the

desired isotropic linearly elastic incremental constitutive

equations.
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Chapter 4

FINITE ELEMENT PROGRAMS

4.1 FINITE ELEMENT ANALYSIS

This powerful tool of numerical analysis was

developed originally to find the solutions of field

equations for two dimensional structural members. Because

of its origin, the method was developed as a generalization

of matrix methods in structural analysis. Later, however,

the method was described more generally as a numerical

technique to solve the"quasi-harmonic function", and its

use was extended to many problems in engineering

(Zienkiewicz and Cheung, 1967, Oden,1969).

The finite element method has many advantages

compared to equivalent numerical approaches. Because of its

versatality and flexibility, it is possible to treat very

different problems at many different levels of accuracy.

The method can handle any geometric or material properties

and any kind of boundary condition. It can also treat

composite materials and anisotropy. Together with an

incremental procedure the finite element method can treat

changing geometry; furthermore, its analogy with structural

analysis gives the method a physical nature, always

valuable when dealing with real problems.

The literature about the finite element method is



abundant. Zienkiewicz and Cheung (1967) treat the method

and give a selected bibliography in each chapter. The

method is already well known and no treatment of it will be

given here, except for those parts that pertain to large

strain analysis, mainly the generation of the stiffness

matrix and the integration procedure.

4.1.1 Introduction to the Displacement Method

The continuum is divided into a finite number of

elements interconnected at a finite number of joints or

nodal points and continuous across their mutual boundaries.

In each element, the values of the displacements, strains,

stresses, temperatures, and geometrical properties are

constrained to belong to a finite class of interpolating

functions, such that:

a) the displacement field is continuous and can

be made to satisfy boundary conditions,

b) such functions can be determined by the

values that they have at the nodal points.

The virtual work equation, or the analogous

variational principle, that is applicable to the whole

continuum can be applied to each element. The finite

element approximation will be better for a larger number of

elements and/or for a higher class displacement function

(Felippa,1965,Chapter II).

The stiffness of each element is then developed



from the variational principle, and obtained as a system

of equations with forces and displacements at the nodes as

unknowns. The element stiffness is added to the general

stiffness, the sum of the forces in each node must be equal

to the external forces acting on the nodes and the

displacement of each node is unique.

A system of equations, linear or not, represents

the variational principle in the continuum. From a solution

for the displacements at the nodes, the values of the

strains and stresses can be backfigured with the

interpolating functions for each element and the

constitutive equations.

In an incremental procedure the equations are

linear. The geometry of the continuum and the constitutive

equations for each nodal point or element are updated after

each increment. The true value of stress is recovered if a

large strain analysis is being done.

4.1.2 Element

For the plane strain case, the element is two

dimensional. Possible two dimensional elements simple

enough to be practical are the rectangle with four nodes

and eight degrees of freedom; the triangle with six nodes

and twelve degrees of freedom; and the triangle with three

nodes and six degrees of freedom. The rectangle would be of

no use after the first increment,because it would no longer



be a rectangle. The six node triangle, with three nodes

in the vertices and three at the midpoints of the sides, is

a very efficient element. The displacement function is a

complete second order polynomial and,therefore, it satisfies

all the requirements for the deformation field (Felippa,

1965, II.1.2); however, the updating of coordinates would

transform the six nodes triangle into a hexagon or a

curvilinear triangle, with second degree polynomial

equations for the sides. This kind of element would be

very difficult to treat.

The three nodes triangle was adopted. It defines

the displacement as a first order complete polynomial, and

therefore, the strain, stress and constitutive equations

are constant throughout the element.

To improve the efficiency of the analysis, the

triangular elements are grouped in sets of four to form a

quadrilateral with five nodes. The stiffness of each

triangle adds up to form the stiffness of the quadrilateral.

The center node is independent of any other element outside

the quadrilateral, so a static condensation can be done,

and the stiffness of the quadrilateral found as a function

of only the four outside nodes (Wilson, 1965). The value

of the strain and stress for the quadrilateral element is

then taken as the average of the values for the four

triangular elements.



4.1.3 Stiffness Matrix

The element stiffness is obtained from Equations

(2-50) or (B-49) applied to each element. Because all

forces are applied as nodal forces instead of as surface

tractions, the second member of the equation becomes the

simple product of forces at the nodes times the

corresponding displacements, in the direction of the forces.

A matricial notation is introduced now for

convenience (matrices are denoted by square brackets [ J).

If [F] is the 6xl matrix of the incremental force

components at the nodes and [6U] the Gxl matrix of the

virtual displacement components at the nodes,

(4-1)
SAfi6uidSO = [F]'[6U]

S0

where [F]' is the transpose of [F].

The left hand side of the virtual work equation

(B-49) is:

f (e C ei + S. 6nij)dV (4-2)
Ski ijk 13 i 0

0

In matrix form, Equation (4-2) becomes

A ([]' [B]' [C] [B] [6 ] + [U]' [D]'[S] [D] [6U]) (4-3)

Where A is the area of the element, [U]' is the transpose

of [U], the incremental displacement matrix, and [B] is a

matrix such that:

68



[B] [6U] = [6e] (4-4)

[U]'[B]' = [e]'

where [e]' and [6e] are the matrix expression for e.. and

6e. respectively. In (4-3), [C] and [S] are the matrix

forms of Ci and S. respectively, and [D] is definedijk 2j

as a matrix such that (Appendix C):

[U]'[D] [S][D] [U] = Sij6ni (4-5)
ij ij

If, in (4-3)

A[B]'[CJ [B] = [Kc] (4-6)

A[D]'[S][D] = [Kg]

and if Equations (4-3) and (4-1) are combined

[U]'([Kc]+[Kg 1) [6U] = [F]'[6U] (4-7)

Equation (4-7) has to be true for any set of

virtual displacements, then:

[U]'([Kc]+[K ]) = [F]' (4-8)

The stiffness matrix for the element is then:

[K] = ([Kc]+[K ]) (4-9)

where [Kc is the normal stiffness matrix for infinitesimal

strain analysis, and [K g] reflects the geometric influence,

and is called the "geometric stiffness". Matrix [K] is

symmetric. If a quadrilateral element is used, the [K]

matrices of the four triangles are added up to obtain the

[K] of the quadrilateral where the static condensation may



be done. The statically condensed quadrilateral stiffnesses

add up to form the overall stiffness matrix, which is

banded and symmetric.

4.2 INCREMENTAL PROCEDURE

The solution of the system of linear equations

[U]'[K] = [E]' (4-10)

or

[K] [U]= [E]

where [K] is the overall stiffness matrix, and [U] and [E]

the incremental displacement field and incremental exterior

forces, give all the unknown incremental forces and

displacements, if the problem is well formulated. The state

of stress, the new geometry and the new constitutive

parameters are then found, and the problem is again

formulated and solved in a similar fashion. The procedure

described above is a single step procedure. It requires

very sraall increments to obtain a good result.

A common solution in numerical analysis to obtain

higher accuracy with large increments is to iterate

several times, using each time the values of the parameters

from the preceeding iteration; iterations are usually made

until the consecutive iterations differ by less than a

given amount. This can be done in infinitesimal analysis,

if the secant elastic parameters are used instead of the



tangential parameters, because the only nonlinearity is

the constitutive equations nonlinearity. However, when

large strains are involved, the change in geometry has to

be taken into account, because it will influence the

stiffness matrix as much as will the change in tangential

constitutive equations throughout the increment. This is

a difficult task, and furthermore, the convergence of the

iterative process can not be proven.

A midpoint integration procedure was used. It

makes the error a second order error, instead of first

order as it would be for a single step per increment

procedure (Felippa 1965, IV. 1.5).

The stiffness matrix is calculated at the

beginning of the increment, with this stiffness the geometry

and state of stress of the body is found for half an

increment, the stiffness corresponding to that middle point

state is then calculated. This middle point stiffness is

used now as the stiffness for the whole increment. The

solution,incremental displacements and forces,is now added

to the initial state to give the final state for the

increment. If, instead of finding the final state, another

middle point is calculated and the cycle repeated,

additional accuracy may be obtained (see Chapter V), but

convergence, again, is not assured.

The incremental strains, to the first order, that



are backfigured from the displacements, are used to

calculate the stresses (Equation (2-53)), and also to

transform the stresses referred to the old geometry and

rotated axes to the stresses referred to the new geometry

and original axes (Equation (2-54)). If the middle point

integration is done, the stresses that are in equilibrium

with the forces, are the stresses obtained from strains

that are referred to the middle point geometry, using the

constitutive laws of that middle point. The stresses are

also referred to that middle geometry. This is a

consequence of using the middle point stiffness, which is

equivalent to the establishment of equilibrium in the middle

point geometry, with everything referred to that geometry,

as can be deduced from the derivation of Biot's incremental

formulation (Chapter II and Appendix B). To obtain the

components of the stress referred to the new geometry and

original axes, the strains in the transformation Equation

(2-54) have to be calculated from the displacements that

would have to be imposed on the body to obtain the final

geometry from the middle point geometry.

4.3 POST YIELDING STRESS

The Tresca material constitutive equations have

a sharp change when the yield occurs and the formulation

changes. If the yielding occurs in the middle of an

increment, the use of the elastic formulation increases



the stiffness of the finite element model, so an iteraction

is made and the increment repeated with the perfectly

plastic formulation. In the hyperbolic stress-strain

relation, the change is very smooth, so no iteration is

made.

For both formulations, after yielding the

stresses do not remain on the yield surface, in the Tresca

material formulation because of the finite size of each

increment, and in the hyperbolic stress-strain relation

because the value of the post yielding shear modulus (Gui)

is not 0. If the value of the stresses are not corrected

back to the yield surface, they will increasingly diverge,

and the error will be significant.

The correction is made at the end of each

increment; the maximum shear stress T is brought back

perpendicular to the pseudo yield surface, defined in

each case by the value of T corresponding to the yielding

state of stress (formulation and figure in Appendix D).

The angle 6 that the principal compressive stress forms

with the vertical is kept constant during the correction.

The approximation leads to faulty equilibrium

between stresses and forces; therefore, the value of the

calculated T should be less than 10% larger than the

corresponding yielding value of T. This limits the size

of the increments in order to obtain equilibrium.



4.4 COMPUTER PROGRAMS

Two computer programs were written, both for

plane strain analysis, one with the Tresca material

formulation and the other with the hyperbolic stress-strain

relation formulation. A different logic is used, but many

of the subroutines and variable names are common. They

are written in Fortran IV language, level G, to be used

with a storage capacity of 450K bytes in double precision.

External temporary storage is required, but the stiffness

matrix is assembled and solved in block , in core. The

storage has been reduced to a minimum by recalculating

the necessary matrices instead of storing these matrices,

except in rare occasions. This resulted in a more

economical procedure for the small size meshes of the test

runs and the particular pricing of time,core usage and

input-output operations in the IBM 360-65/40 ASP/MVT System

at the Information Processing Center in MIT, where the

runs were made.

Appendix E gives the User's Manual and Appendix F

gives the description of the main program and the

subroutines.



Chapter 5

TEST RUNS

The behavior of the program is discussed in

this chapter. Two types of test runs were made:

a) simple examples to help in the debugging

of the program and to verify equilibrium and failure

b) models of experimental cases.

5.1 COMPRESSION TEST

The problem in two dimensions is reduced to the

vertical compression of a square section of unit sides.

The square will deform into a rectangle; the vertical

stress will be equal to the applied force divided by the

width; the other stresses must be zero. If an elastic

material is used, such that the relation between the

incremental strains and stresses is a linear relation

independant of the stress or strain level, it can be seen

that (Appendix G):

u = XP
(5-1)Y/X

v = (1+ XP) - 1

where u is the total increment of width, v the total

increment of height, P the vertical force, and:

X E 
(5-2)

1 2Y = -(1-v )E



where E and v are are Young's modulus and Poisson's ratio

respectively. Test runs were made for values of E and v

such that the bulk modulus B was 100 and the shear

modulus G was 2. Table 5.1 presents the results of tests

made with FELSP and with a mesh formed by one element.

a and a were 0 all the time. FELSH was checked and the
x xz

results were the same as that for FELSP. A run was made

with eight elements and the results were symmetrical and

identical with the correspondent run with one element.

The results in Table 5.1 were obtained with

Biot's forumlation, where the geometric stiffness matrix

becomes zero, because there is no rotation. The same

problem was run with Felippa's formulation, and the results

were wrong by ten to twenty percent. Hence, the tensorial

formulation was reconsidered and Biot's formulation

adopted. Also, from previous runs on the same problem,

it was found that the best procedure to obtain the stresses

with the midpoint integration is the procedure explained

in Chapter 4.

Table 5.1 includes two kinds of information

a) Displacement values

It can be seen that the midpoint

integration is very effective in obtaining good results

with a small number of increments.

b) Equilibrium



The values of az should be in equilibrium with Pi

A cause of lack of equilibrium is the fact that the incre-

mental strains are not infinitesimal. The main effect is ob-

served, in this case, in the transformation of stress Equa-

tions (2-54). The values of the stresses referred to the

rotated axes and the old geometry are in equilibrium with the

forces; however, when the strains are not infinitesimal, the

transformation equations (2-54) are not exact and an error is

introduced in the value of stresses referred to the general

axes and new geometry; lack of equilibrium results then. The

performance of Equation (2-54) is improved by using Felippa's

version, Equation (2-40). The effect of this error is iso-

lated by a single step procedure where no midpoint integra-

tion is done,(0 iterations). However, from Table 5.1, it can

be seen that the equilibrium is very good for zero iterations;

the cause for the lack of equilibrium in the other cases has

to be the midpoint integration. Again the stress transforma-

tion must be the cause; now the strains used in Equations

(2-54) are also obtained in an approximate way.

5.2 SIDE WALL

This is another simple case where the main

phenomenon involved is shear, if a smooth bottom and an

undrained case are considered.

The solution for the theoretical Rankine active



case is (Lambe and Whitman, 1969):

x = -[YtZ-2Su (5-3)

The height of the wall is six meters and yt =

1.8 T/m2 . K was chosen as 0.5.

A first run with FELSH and with S. = 1.75 gave

the results shown in Figures 5.1 and 5.2. Figure 5.1 is

obtained from the stresses in the elements next to the

wall, in the first increment after all the elements were

in failure. The theoretical resultant force acting in the

wall is, from the integration of Equation (5-3), -11.4 T.

From the stresses shown in Figure 5.1, the resultant force

is -10.4 T. In Figure 5.2 the incremental force is

plotted against the wall displacement. As it can be seen

the failure occurs at AF = +6.8T; that means that total

force is -9.4T, because the initial force under K0

conditions will be -16.2T.

Figure 5.3 gives the stress distribution in the

wall, after failure, for four different cases, all of them

with Su = 2.6T/m2. From these four runs and some others,

it was found that the values given by stresses and by

forces in the wall differ only by about 0.2 percent when

forty increments were used and by about 5 percent when

ten increments were used. In the case of the run with

Su = 1.75 T/m2, the lack of equilibrium was about 10



percent, as has been seen above.

Three aspects can be considered.

1) Failure

Figure 5.2 shows that there is no increase

in the thrust of the fill over the wall once the active

condition was reached, as the theory predicts. If the

problem is run with FELSH, a slight increase in AF is

obtained because of the shear modulus.

2) Values of a at failure.
x

It can be seen that the solutions for S =u

2.6 T/m2 are better, in general, and that a larger number

of increments gives better results, and that quadrilateral

elements give better values than triangular elements. The

reason behind obtaining better values for a higher Su is

2
that, for S = 1.75 T/m , the lower part of the wall is

in failure under K0 conditions, from the program's stand

point. Because of that, the correct solution is never

obtained. The fact that the use of FELSH (Fig. 5.3) gives

the same kind of behavior has a similar origin; the

shear modulus will be very low for the lower part of the

wall in the hyperbolic approximation.

3) Equilibrium among forces and stresses

The use of higher Su, such that no element

is initially in failure, gives better results. The use of

more increments clearly improves the equilibrium. Because



strains are really small in this case, the lack of

equilibrium cannot be caused by the transformation

equations as in the case of the unit cube. The cause is

the reduction of post failure stresses to the. yield

surface. When more increments are used, the modification

is smaller and the equilibrium is better. This is checked

by verifying that before any element fails, equilibrium is

satisfied in all runs.

5.3 FOOTING ON LAYER OF UNDRAINED CLAY

This case was taken from Christian, 1966. The

depth of the layer is 140 feet, the loaded surface has a

width of 120 feet. Although the soil is considered

undrained, the Poisson's ratio is taken as 0.2 and B is

1660 T/ft , while G is 1250 T/ft2 . The value of S is
2u

taken as 1.75 T/ft2 . The standard finite element mesh

that was used is given in Figure 5.4. When triangular

elements were used, each quadrilateral was divided into

two triangles. From the value of Su and the width, the

bearing capacity (Lambe and Whitman, 1969) is:

Bearing capacity = 5.14 Su = 9 T/ft2  (5-4)

Figure 5.5 gives the settlement of the center

of the footing for triangular elements and quadrilateral

elements, both with FELSP and FELSH. The values of B and

G used in FELSP are used in FELSH as initial values.

Three main results are obtained from the comparison.



First, the hyperbolic stress-strain relation gives a

smoother curve than the plastic relation. Second, the

prediction of failure improves when the hyperbolic

approximation is used. Finally, the quadrilateral element

is softer than the triangular element.

All the test runs in Figure 5.5 were run with

one iteration and twenty increments, with the standard

mesh.

Figure 5.6 shows the influence of increasing

the number of elements and the number of increments. The

elements are triangular and FELSP was used.

It can be seen that increasing the number of

elements gives a better prediction for the bearing

capacity. However, the result is very irregular and

unstable. A large heave is observed in increment 20

although the load is increased. The run with more

increments gives the same value for the bearing capacity,

but a much smoother behavior after failure. This suggests

that the modification of stresses to stay in the yielding

surface may be one of the causes of lack of smoothness

and instability.

Figure 5.7 shows the influence of the midpoint

integration; again the result improves when the midpoint

integration is used. The other curve shows the result

obtained when elements that yield during the increment



are considered as yielded throughout the increment instead

of elastic as usual. The program requires more time for

the softer procedure, because extra iterations have to be

done, but the results improve.

FELSP with quadrilateral elements and twenty

increments is used to obtain the results of Figure 5.7.

All the runs represented in Figures 5.5,5.6

and 5.7 were made without taking into account the fact

that unloading stress-strain laws are different than

loading stress-strain laws. Many attempts were made to

obtain results using the general procedure, all of them

unsuccessful. The signs of both shear strains and

stress were considered as a measure of loading and

unloading. The increment was repeated with the correct

stress-strain law; usually, the program entered in a

closed iteration cycle, if the cycle was then broken, the

results were unreliable, and sometimes a high instability

was obtained.

The main problems were obtained when some

elements were in failure; in general, the elements in

failure were the ones that changed sign. The modification

of stresses seemed a possible cause of trouble; however,

an increase in increments and elements had no positive

influence. Furthermore, if the modification of stresses

was not done, the result was more unreliable and instable.



Similar problems were encountered when displacements were

imposed, instead of forces.

The same kind of problems were found in the

other examples when the unloading law was considered;

therefore, all the results in this chapter are obtained

for materials that in FELSP remain plastic once they

have yielded, and in FELSH behave as non-linear elastic

solids.

5.4 SIMPLE SHEAR

This case is based in experimental results

reported by Duncan and Dunlop (1969). FELSH is used,

the soil parameters are obtained from the reported

results of plane strain tests in San Francisco Bay Mud.

Table 5.2 gives the parameters that were obtained and

used in the modeling of the simple shear test. K0 is

about 0.45. The consolidation stress was taken as

1 Kg/cm2; the tests were made at consolidation stresses

ranging from 0.9 to 1.34 Kg/cm2 . The tests were made in

the simple shear apparatus developed at Cambridge, England;

the dimensions of the sample are 6x2 cm.

Figure 5.8 presents the comparison among

experimental. and computed values of the horizontal shear

stress in the center of the sample. All the results are

from runs with a mesh of forty-eight square and

equidimensional elements, one iteration and ten increments.



Runs with four times more elements in the mesh and four

times more increments give the same results as the run

with ten increments and forty-eight elements, as far as

shearing stress in the center of the sample is concerned.

In Figure 5.8, it can be seen that the use of

large strain theory and modification of coordinates gives

better results than the use of the classical infinitesimal

strain approach. The other curve in Figure 5.8 is obtained

when the initial values of K' are increased from 10.42 and

62.5 Kg/cm2 to 20 and 80 Kg/cm2 respectively. It shows

how dependent is the result on the initial values. The

fact that all computed curves tend to be stiffer at

failure than the corresponding experimental curves can be

caused by the use of an ultimate shear modulus greater

than zero, when in many cases the clays are actually strain

softening.

Figure 5.9 presents the distribution of stresses

in the upper face of the sample at ten percent strain.

It can be seen that the experimental decrease in vertical

force is represented in the computer modeling. The

influence of the number of elements is here important,

smoothing the distribution of forces. It can also be seen

that equilibrium among stresses and forces is fairly good.

Finally, Figure 5.10 gives the plastified zones

for both runs with forty-eight and one hundred-ninety-two



elements. The results are perfectly symmetric about the

center of the sample, so only one half is represented.

The value of B, Table 5.2, is a low value; runs

were made with a higher value (21,000 Kg/cm 2) and strange

results were obtained. The value of the normal stresses

became positive after two increments. If the modification

of coordinates was passed over, the result was correct; it

was verified that only the modification of coordinates

was causing this problem, when the bulk modulus was very

big.

5.5 MODEL FOOTING

Some model footing cases were run in Boston Blue

Clay by Kinner (1970). The parameters of the used clay are

obtained from results of plane strain tests; tests A.6

and P.4. The Figures 5.11 and 5.12 show how the parameters

are obtained.

K0 is 0.53, KB is 1000, the ultimate value of
# 2G/aic is 0.27; the soil is consolidated at 3.83 kg/cm

Although the problem is an undrained case with v = 0.5,

KB is chosen small to avoid numerical instabilities.

Two runs were made, one with a mesh of two

hundred forty-eight elements and twenty increments, the

other with a mesh of forty-two elements and eighty

increments. The normalized results of the settlement

versus the force per unit area are presented in Figure



5.13. Figure 5.14 gives the results in the initial part

of the curve.

The results are bad. First, there is a

tremendous lack of equilibrium among stresses and forces

on the footing. Second, the program does not identify the

failure load. Finally, the settlement versus force per

unit area curve before failure is not predicted when the

finer mesh and less increments are used; the prediction

is a little better for the run with a coarse mesh and

more increments (Figure 5.14).

The lack of equilibrium increases with the

number of increments, instead of decreasing as in other

cases.

The fact that the active curve in Figure 5.11

can not very well be model by a hyperbola, and the fact

that there is a residual Gu' t as opposed to the strain

softening obtained in test A.6, may be what causes the

runs not to fail.

A conclusion that can be obtained from these

runs is that an increase in increments with coarse meshes

is a better way to gain accuracy than an increase in the

number of elements with small numbers of increments.

It can also be seen that the solution for the

stresses is better than the solution for the forces,

because the stresses are modified to remain on the yield



surface, while the forces are not.
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CHAPTER 6

SUMMARY,CONCLUSIONS AND RECOMMENDATIONS

In order to obtain better predictions of the

behavior of soils by means of computer modeling, the in-

fluence of large deformations has been taken into account.

A suitable formulation of the large strain problem for

the use of finite element techniques was found. Biot's

formulation was used because it is a consistent formula-

tion, and because the separation of physical effects from

geometrical effects allows the use of constitutive rela-

tions between stresses and strains that can be readily

obtained from normal testing procedures in Soil Engineering

practice.

Two constitutive relations were used; one for perfect-

ly plastic Tresca Materials, and another one a hyperbolic

stress-strain relation described by Kondner (1963). The

Tresca Material formulation is valid for undrained condi-

tions; the hyperbolic stress-strain may be used for both

drained and undrained conditions. An interpolation proce-

dure was used to handle anisotropy.

Two finite element programs were developed, one

with each constitutive relation. Quadrilateral elements

were used. The programs have an incremental approach, and

in order to improve accuracy a mid-point integration scheme
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was employed.

Some test runs were made where some results were pre-

dictable either theoretically or experimentally. The re-

sults obtained in the runs are inconclusive. While some

simple cases are predicted very well the more complicated

ones give results that are far from satisfactory.

Although in one of the cases the use of the large

strain formulation led to greater accuracy than the use of

the infinitesimal formulation, there is not enough evi-

dence to assure that the increase in accuracy is worth the

use of the large strain formulation. On the other hand,

the drawbacks of the formulation are important:

1) There is an increase in computing time when

the large strain formulation is used instead

of a conventional infinitesimal strain ap-

proach.

2) Because of the large strains the convergence

of iterative procedures can not be estab-

lished; furthermore normal procedures to

determine when an element is loading or un-

loading do not work properly.

3) Instability, that is the existence of more

than one solution for equilibrium, creates

problems, especially when the elastic para-

meters are very small, at failure, and when
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forces are specified instead of displace-

ments.

4) The constitutive equations after yielding

are not very well known, and it is at that

level when the large strains influence the

solutions; therefore what is gained in

accuracy using large strain formulation,

may be lost in the constitutive equations.

Some conclusions can be obtained about the use of the

program:

1) In undrained cases the value of B will have

to be a low value in order to obtain meaning-

ful results.

2) Elements should not be in failure initially,

and K conditions should be adjusted so the
O

maximum shear stress is less than the un-

drained shear strength, or in the case of

drained conditions that the K line is al-
o

ways below the failure envelope.

3) The use of the mid-point integration proce-

dure gives better results for the displace-

ment field but it also gives more causes for

lack of equilibrium among stresses and

forces.

4) To repeat several times the mid-point inte-
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gration for the same increment is not ef-

fective.

5) An increase in the number of increments is

a much more effective way to increase the

accuracy in the displacement field than an

increase in the number of elements.

6) Stress distribution iS improved with finer

meshes.

Two main problems are encountered in the results of

the runs.

1) The displacement solution, or the force

solution whichever the case is, becomes

highly inaccurate after yielding occurs.

The cause for this behavior has to be

basically the inadequacy of the stress-strain

relations. The hyperbolic stress-strain

relation can not model the usual strain-

softening, and sometimes it can not even

model the pre-yielding relation satisfac-

torily. Of course if very large increments

are used the modification of stresses may

have some influence, and it is possible that

the integration scheme diverges from the

theoretical solution if large increments are

used.
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2) The stresses and the forces are not in

equilibrium. Several trends are observed:

a) If the strains in each increment are

fairly large the transformation equa-

tions for the stresses are inexact,

and the lack of equilibrium increases.

b) When the mid-point integration is used,

the lack of equilibrium increases.

c) The modification of stresses back to

the yield surface has an important role

in the lack of equilibrium.

The use of more increments reduces the effect of a and

c, but b remains.

Several recommendations for future research can be

given:

1) The influence of every parameter on the lack

of equilibrium should be determined, in part-

icular the influence of the mid-point inte-

gration; the way the stresses are obtained

in the second step of the mid-point integra-

tion is the most likely cause of the lack of

equilibrium.

2) The reasons why the use of unloading laws

always gives instability and closed itera-
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tion cycles should be determined.

3) The development of a strain-softening consti-

tutive relation could be very helpful for

post-yielding behavior.

4) The extra accuracy obtained with the large

strain formulation should be determined in

order to judge the effectiveness of the pro-

gram.

5) Some test runs should be made for drained

cases to see how the hyperbolic stress-

strain relation behaves in such cases,
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Appendix A

LIST OF SYMBOLS AND NOTATIONS

[ ] Denotes matrix, even row and column matrices.

[ ]' Inverse of a matrix

a Cohesion intercept in the Mohr-Coulomb

criterion for maximum shear stress.

Constant in the hyperbola equation, a vs. E

a' Constant in the hyperbola equation, T vs. y

aj Cartesian coordinates of points in a body

before deformation, in tensorial formulation

Horizontal projections of the sides of the

triangular elements

aij Components of the deformation tensor in Biot's

formulation

[al Column matrix of values a. for an element

A Area of an element

Skempton' s parameter

Af Skempton's parameter at failure

Aj Areas of subtriangles defined by a point in an

element

Aij Areas of triangles formed in an element with

the origin and side ij

b Constant in the hyperbola equation, a vs. E

b' Constant in the hyperbola equation, T vs. y
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Vertical projections of the sides of the

triangular elements

Column matrix of values b. for an elemen

Bulk modulus

Matrix that applied to [U] gives the mat

Cauchy's strains

Cohesion intercept in the Mohr-Coulomb

criterion

Constitutive equations parameters

Matrix of* Cijk
ijki

t

rix of

Matrix obtained in the search for a symmetric

matrix formulation for S.ij.6ij (Biot's

formulation)

Almansi strain tensor components in tensorial

formulation

Components of the Cauchy strain tensor in

Biot's formulation,(i,j will be x,y)

Column matrix of the components of Cauchy's

strain tensor

Young's modulus

Initial Young's modulus

Tangent Young's modulus

Green's strain tensor components

Failure law
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[b]

B

[B]

c

C.CijkZ

[C]

[D]

e.13

[e]

E

E.

Et

E. •
13

f



f. Surface tractions referred to original axes
1

and original geometry

F. Body forces per unit mass, tensorial
1

formulation. Components of a force vector.

Foi Body forces per unit mass referred to

undeformed geometry.

[F] Column matrix of nodal forces for each element

[F] Total nodal force matrix

gi Natural coordinates of a triangle

[g] Column matrix of gi

G Shear modulus

G. Initial shear modulus1

Gu Unloading shear modulus

Gult Ultimate shear modulus

Gt Tangent shear modulus

k Yielding constant in the Tresca criterion, by

extension value of T at yielding for a given p

in the Mohr-Coulomb criterion

K Modulus number, value of Ei for 03= 1

K' Modulus number, value of Gi for a3 = 1

K0  Coefficient of lateral stress at rest

K1  Constant

Ku  Modulus number, value of Gt during unloading

for a3= 1.
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KB Modulus number, value of B for a3 = 1

[K] Total stiffness matrix for an element

[K] Overall stiffness matrix

[Kc ] Normal stiffness matrix

[K g] Geometric stiffness matrix

R Final length of sample

k0 Original length of sample

L Instantaneous length of sample

n Variation rate exponent in Janbu's equation

for E.

n' Variation rate exponent in Janbu's equation

for G.

p Value of (a1+ C3 )/2

Pa Atmospheric pressure

P Point in a body before deformation

P' Point in a body after deformation

P* Modified value of p

Rf Failure ratio

s'.. Incremental stress referred to deformed

geometry. Components with respect to original

axes if i,j are x,y, if i,j are 1,2 the

components are with respect to rotated axes.

S Areas in deformed geometry

SO  Areas in undeformed geometry

116

I



S Undrained strength of soils
u

S.. Components of Kirchhoff's stress tensor in13

tensorial formulation

Components of the initial stress referred to

the original axes in Biot's formulation (the

use of x,y or 1,2 or i,j is immaterial)

[S] Matrix of combinations of S.. obtained in the13
search for a symmetric matrix formulation for

Sij..6j (Biot's formulation)

tij Incremental stress components referred to

undeformed geometry and rotated axes

Ti Force components in the deformed geometry

T L) Force components in the undeformed geometry

due to a Lagrangian stress tensor

(K)Toi Force components in the undeformed geometry

due to a Kirchhoff's stress tensor
V
Ti Surface traction components referred to the

deformed geometry
V
Toi Initial surface traction components in

equilibrium in the undeformed position
V
T * Surface traction components referred to the01

undeformed geometry but in the direction of
V

the correspondent T.

u Horizontal displacement

Pore pressure
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u. Components of displacement

1[u Column matrix of horizontal nodal displacements

[u] Column matrix of nodal displacements

[U] Overall matrix of nodal displacements

v Vertical displacement

[v] Column matrix of vertical nodal displacements

V Volume in deformed geometry

V0  Volume in undeformed geometry

x Horizontal coordinate of a point before

deformation in Biot's formulation

xi  Cartesian coordinates of a point after

deformation in tensorial formulation

Horizontal coordinates of the nodal points

X i( j)  Body forces per unit volume referred to

deformed volume, Biot's formulation

Xi (xj) Body forces, after deformation, per unit volume

referred to undeformed geometry, Biot's

formulation

y Vertical coordinate of point before deformation

in Biot's formulation

Yi Vertical coordinates of the nodal points

Pseudo friction angle in the Mohr-Coulomb

criterion for maximum shear stress

Y Maximum engineering pure shear strain
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Yt  Total unit weight of soil

y Engineering pure shear strain y 2E

6 Variation of... . Virtual...

6.. Kronecker delta
13

E Axial strain

Ei Cauchy's strain tensor components in tensorial

formulation

Components of pure strain in Biot's formulation

(where i,j are 1,2 , etc.)

In Vertical coordinate of deformed point in Biot's

formulation

Iij Second order terms of the Green strain tensor

E.. in tensorial formulation
13

Second order terms in the expression of pure

strain in Biot's formulation

6 Exact value of local rotation, in two

dimensions

v Poisson's ratio

Vi Components of unit normal vector of an

infinitesimal area in deformed geometry

Noi Components of unit normal vector of an

infinitesimal area in undeformed geometry

Horizontal coordinate of deformed point in

Biot's formulation
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p Material density after deformation

p Material density before deformation

a1 Major principal stress (remember sign

convention)

a2  Intermediate principal stress

a3  Minor principal stress

a c  Consolidation stress, isotropic

alc Vertical consolidation stress for normally

consolidated clays

a.j Eulerian stress tensor components

Coij Initial Eulerian stress tensor components

a.. Total stress referred to deformed geometry.

Components with respect to original axes if

i,j are x,y , if i,j are 1,2 , the components

are with respect to rotated axes.

"o1 Modified values of a!.

Maximum shear stress

Tf Maximum shear stress at failure

Tuk t  Asymptotic value of T in the hyperbolic

approximation

Modified value of T

Friction angle in the Mohr-Coulomb criterion

w Local rotation in two dimensions, to the

first order
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W.. Infinitesimal local rotations
13

A Increment of.....

Value of k/10
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Appendix B

BIOT'S FORMULATION

This is the derivation of Biot's formulation; it

follows Biot's own derivation, omitting anything that does

not lead to the desired result. This derivation is for

Plane Strain.

B.1 STRAINS

Given a point P of initial coordinates (x,y)

with respect to a cartesian frame that transforms into a

point P' of coordinates (C,n) with respect to the original

frame,

= x+ u
(B-l)

S= y + v

where u and v are the components in the original frame of

the displacement vector, that is a function of x and y.

In the vicinity of the point P the continuum

undergoes a linear transformation; differentiating

Equations (B-l):

dC = dx(l+2-) + D- dy
ax Dy

(B-2)
v avdn = dx + (l+--)dy

This transformation is also homogeneous.

If a linear symmetric transformation is defined

such that:
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d ' = dx(l+ 1 1) + dyE 1 2

dn' = dx1 2 + dy(l+E-2 2 )

it can be said that this transformation represents a pure

deformation, because there are two perpendicular directions

in the continuum that remain perpendicular after

deformation. This can be proven for any symmetric

transformation.

It can be seen that transformation (B-2) can be

considered a combination of a rotation and a symmetric

transformation (B-3).

If only the infinitesimal region around P is

considered, and the values of u and v are made 0 at P,

which is always possible with an appropriate translation

that does not affect the deformation; given a square of

unit side P,A,B,C (Fig. B.1), the symmetric transformation

(B-3) will give the transformed parallelogram P,A',B',C'.

If the deformed parallogram is now submitted to a rigid

body rotation of angle 0 counterclockwise to obtain

P, A",B", C", the transformation done is given by

d cose-sin d (B-4)

dn sin6 cose dn'

where d' dn' are components with respect to the axes 1,2

that rotated with the parallelogram and d(,dn are

components with respect to the dx,dy axes.
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From Equations (B-3) and (B-4),

d] cos6-sine 1+E11 E 12  d
dn sine cos E12 1+E 22 dyJ

(B-5)

This transformation has to be equivalent to (B-2). If, in

(B-2)

alla11

a12
(B-6)

-= a21

=y a 22

(B-2) becomes

d- F1l+all a dx

jd = a2 1  1+a 2 21 Ldyi

Then, from (B-5)

+all = (1+E 1 1 )COS-E 12sine

a21 = (l+E1 1 )sinO+E12 cose

(B-7)

(B-8)

1+a22 = (1+E 2 2 )COSe+E 1 2 sine

a12 = -(1+E 2 2 )sinO+E12COSe

Solving the first two equations for Ell and E12 and the

last two for E22 and E12

125



Ell = a2 1cosG - (l+all) sine

E12 = a l 2 cose + (l+a 2 2 )sin6
(B-9)

S+ Ell = (l+a 1 ) cose + a 21sine

1 + E22 = (l+a 2 2 )cose - al2sine

From the first pair of equations:

a 2 1 -a 1 2  (B-10)
2+all+a22

So the rotation contained in transformation

(B-2) is given by Equation (B-10), and the pure deformation

contained in (B-2) is

1 1
E12 =(a 2 1 +a 1 2 )cose + (a 2 2 -all ) sine

Ell = allcos + a21sine + cos8 - 1 (B-11)

22 = a22cos - al2sine + cose - 1

For a general point P where u and v j 0, the

Figure B.2 gives the locally rotated axes 1,2 with respect

to which the pure deformation is defined.

So far, the derivations have been exact. If the

values of aij can be considered infinitesimals

aij << 1 (B-12)

then to the first order:

1S= (a21-a 2) (B-13)2 21 12
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Defining

1 1 av auw= (a -a 2 ) (2 21 121 2 x Dy

e = all =x

3v
e = ayy a22 y

e 1 (a +a1) 1 (v u
xy 2 (a 2 1+a 1 2  2 )

to the first order

e =w

sin6 = w

cos6 = 1

(B-14)

(B-15)

and to the second order

1 - cosO = 12 (B-16)2-

Then, substituting in Equations (B-11), to the second order

S = e + (e -e )
12 xy 2 yy xx

E = e + e w + 1 2  (B-17)
11 xx xy (B17

£22 = eyyYY
1 2- e xy + -

xy 2

To the first order:

12 = exy

xx

E22 = eY

which are the infinitesimal strains.
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B.2 INCREMENTAL STRESSES

The two dimensional stress at a point is a second

order symmetric tensor with four components

xx xy (B-19)

xy yy

These components are referred to axes x,y , the components

referred to a set of axes 1,2 rotated an angle a

counterclockwise would be (Timoshenko and Goodier,1951)

2 2a11 = cos c + a sin2a + o sin2a11 xx yy xy

2 2a22 = sin a + a cos a - a sin2a (B-20)

1
a -a= )sin2a + a cos2a12 2 y xx xy

The initial stress field referred to axes x,y

(Fig. A.3) is:

S S
xx xy (B-21)

S Sxy yy

these components give the initial value of the stress at

point P of coordinates x,y. After deformation, P becomes

P' of coordinates ,n, and the components of the stress

at P', referred to the same reference frame xy, are

o' = S + s'xx xx xx

' = S + s' (B-22)
yy yy yy

a' = S + s'
xy xy xy
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where the prime denotes values referred to the deformed

geometry at point P' (C,n), and the subindices refer to

the axes. s' , s' , s' are therefore the components of

the incremental stress.

If the stress is referred to the locally rotated

axis 1,2 (Fig. B.3)

a' = S + s'11 xx 11

o2 = Syy+ s22 (B-23)

a12  Sxy+ s12

but the Equations (B-20) give a relation between ao2 and

xy . Assuming that incremental stresses are infinitesimalsxy

of the first order, and that to the first order:

U=w

cosa = 1

sina = w (B-24)

cos2a = 1

sin2a = 2w

then the relation between the incremental stresses is

s' = sil- 2S XY
s' = S' 2S x

yy s 22 xy

s' = s' + (SXX - S )W
xy 12 xx yy

These are relations (B-20) where only first

order terms have been kept.

So far, the stress in the body has been referred
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to the deformed geometry, that is as a function of and

n, however, Sxx, Syy, Sxy is the real stress before

deformation when referred to rotated axis and undeformed

geometry, and the strains, Equations (B-17) are also

referred to the undeformed geometry as can be seen in

Equations (B-14); so an expression of the stress after

deformation referred to the geometry before deformation

will be necessary.

The components of the stress referred to

undeformed geometry with respect to rotated axis 1,2

are

T S +t
T = S + t22 yy 22
12 = Sxy 12

T21 = Sxy+ t21

Remember that S S S are the components ofxx yy xy
the initial stress respect to axis x,y , if a solid body

rotation is given to the body the components of the stress

with respect to rotated axis are still S, S S that
xx. yy xy

can be called

xx 11

Syy = S22 (B-27)

Sxy = S12

Therefore, if no deformations, but only rotations are
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imposed in Equations (B-23) and (B-26)

t.. = s!h = 0 (B-28)

where both deformed and undeformed geometries are

identical. From Equation (B-25)

s' 0 s' 0 s' 3 0 (B-29)xy xx yy

The relation between t.. and s!. can be found
13 13

from geometric considerations. Considering rotated axes

1,2 and a deformed element dt',dn' (Fig. B.4); the dF in

this element will have components on axes 1,2

d = o' dn' - o' d 'dF 1 = aldn - 12 (-30)(B-30)

dF 2 = a 2dn' - o d '

If a unit square is now considered P'ABC, and its deformed

shape parallelogram P'A'B'C' the forces in the

corresponding sides of both figures have to be the same;

with Equations (B-30), the force on sides P'A', P'B', etc.,

can be found. The values of the components of those forces

will be the values of the components of the stress T.ij

because the undeformed square P',A,B,C is unitarian.

The coordinates of points A',B',C', relative to

P' are

A 1+ 1112

B 1+11 12 1+E22+E12 (B-31)

C F12 1+E22
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T = fB dF = fBa d n '- fB 2dCI
A A 1 A

= oiln'1 ( ) - 1i2

'1l ("+'22) - 'i2'12

(B-32)

In a similar fashion

T * = o' (+ ) - o'
21 1 2 (1+ 2 2) - 22 12

T = ' (1+E ) - I1' E

22 a 2(1+ 1 1 12 12

(B-33)

To the first order, and substituting values from Equations

(B-23), (B-26) and (B-27)

11 = 11 + S 1 1 2 2 - S1212

21 12 + S12 22

T* = S
12 12 12 11

S22 12

-Sll12
(B-34)

T = 2 + S 22E - S 121222 22 22 11 12 12

The stress tensor is not symmetric, however, for

work principles T2 * and T*2 are of no interest, so the

average is used.

1 1
12 12 2 1 2 (E 1 1 s2 ) (+S 22 12

(B-35)

If in (B-34) and (B-35), E. are replaced by their values

given by Equations (B-17); to the first order
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11 = 1i + Slleyy
-S e

12 xy

T = ' + S ex- S e (B-36)22 22 22 xx 12 (3

1 1
T 2 = 12 + 12(exx+e yy)- (S 1 +S 2 2 )exy

Now, from Equations (B-36),

il = Tll

C1 2 = T22

a12 T12

Slleyy + 12xy

- S 2 2 exx + S 1 2 exy (B-37)

1 1(S+S)e
-- S (e x+e ) + - (S +S )ey

2 12 xx yy 2 11 22 xy

and from Equations (B-22), (B-23) and (B-25)

a' = a' - 2S wxx 1 xy

a' = oa + 2S w
yy 22 xy

a' =a' + (S -S )W
xy 12 + (Sxx-Syy

and considering (B-27), (B-37) and (B-38)

O' = Txx 11

a' = T
yy 22

a' = Txy 12

-S e
xx yy + Sxy (e xy-2w)

- Syy exx + S xy(e xy+2w)
yy xx xy xy

- S  (e+e ) + -S (e +w)
2 xy e x x y y ) + xy

(B-39)

+ -8 (e -w)
2 yy (xy-

with only first order terms.

B.3 CONSTITUTIVE EQUATIONS

Because T.. E.. and S.. are all referred to13 13 13

rotated axis and undeformed geometry, it can be said that
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t..= T..- S., is the real increment of stress, and that
13 13 13

for an elastic material

t ijkC.Z.ke (B-40)

if the increment is considered linear , Cijkk are

constants. Because in each increment the material is

considered linear elastic and isotropic, Cijkz are all

functions of two parameters.

The constitutive equations would be the ones in

Equations (3-2) or (3-3) where, instead of a xx yy, axy

tll' t22 and t12 would be used.

Considering the equation only to the first

order,

t.ij = C ijk ek (B-41)

For the plastic formulation, the constitutive

equations would be (3-4) with the same changes in the

stresses as before.

B.4 EQUILIBRIUM

If a virtual work formulation is used, because

T.. is conjugate of e. (both referred to the same geometry13 aj

and to the same axes) for a field of virtual displacements

6ui, the principle of virtual work states that:

i T..6E..dV pXi()6uidV0 + f u.dS
V 1 1 0 0 0

S0 i0  S
(B-42)
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where p is the density of the material after

deformation and f. is the boundary traction referred as
1

everything, except body forces Xi(), to the undeformed

geometry.

PXi (  ) = POXi(x ) (B-43)

if X*(x ) are the body forces after deformation referred

to undeformed geometry.

Biot (1965) proves that if Equation (B-42) is

considered only to the second order, and the equilibrium

of the initial stress field is considered,the resulting

equation is equivalent to the statement of equilibrium

in the deformed position, to the first order.

Because of equilibrium in the initial state:

SS..6e. .dV = S..v 6u dS (B-44)
V 13 13 0 S 13 Oj 0

0 0

where S. .v are the surface tractions, because v are
ij .Oj Oj

the components of the normal to the surface in the

undeformed geometry.

Body forces are considered 0 in Equation (B-44),

such assumption will be made from here on, because they

are 0 in this application.

Equation (B-42) to the second order with body

forces equal to 0 is

f (t 6e.. + S. .6E )dV = S f 6u dS (B-45)
V j 13 1j i 0 00
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Subtracting (B-44)

S (t..6e.. + S .6n )dV
V (ti 1 1ij ij 0
V0

= (f.-S.ij. 0j)6udS0

(B-46)

If surface tractions are conservative, that is,

they do not change direction during deformation, then:

f - S ..ij = Af.Ss defned as:j

rlj is defined as:

1i = E..
ij 1J

(B-47)

- e .

From (B-17)

1 2
) 1= - + e wxx 2 xy

1 2
nyy 2 - exyw

1
n - (e -e )wxy 2 yy xx

(B-48)

Substituting (B-47) and (B-4

(ek Cijk 6eij

1) in (B-46)

+ S.6ij6ij )dV = Af6u idS 0
(B-49)
(B-49)
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Appendix C

DERIVATION OF THE STIFFNESS MATRIX

To derive the stiffness matrix equivalent to

Equation (4-2), it is necessary to create a coordinate

system in each element such that the strains in the element

can be expressed as a function of the displacement of the

nodal points.

In an effort to obtain symmetry, a natural

coordinate system is used. In Figure C.1, x,y represent

the global coordinate system, and ai,b i are the global

dimensions of the triangle; each point in the triangle is

represented by three numbers, two of them independent.

The numbers are

A A A
91g T , g2 =  2 , g3 =  3 (C-l)

where A is the area of the element

A = V0  (C-2)

and A1 A2 A3 the areas of the triangles in which the

element is divided by the represented point and the nodes.

Of course

gl + g 2 + g 3 = 1 (C-3)

The equations of the sides are
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Side 1 2

Side 2 3

Side 3 1

g3 = 0

gl = 0

g2 = 0

(C-4)

and the coordinates of the nodal points are

N.P. 1: gl = 1, g2 
= 0, g3 = 0

N.P. 2: gl1 = 0, g 2 = 1, g3 = 0 (C-5)

N.P. 3: gl = 0, g 2 
= 0, g 3 

= 1

Values of gi = constant represent lines parallel

to sides jk, etc. The coordinate system is invariant in

linear transformations, homogeneous, and dimensionless.

The relation between global coordinates and

natural triangular coordinates are (Felippa, 1965)

x = Xl

Y Yl

[l]92

Lg31

1 x 2y 3-

= A x3Yl-

xlY 2-

2A231
2A 2A31

2A
12

1 g
x3 2

Y3 3

x 3 Y2

xl Y3

x2Y 1

bI a 1
b2 a2

b3 a3

Y2- Y3

Y3- Yl

Y1- Y21
x

(C-6)

x 3 - x2 1
x- x3  x

(C-7)

where 2A = ajbi-bai., where j

going counterclockwise around

in (C-7).

is the next node to i when

the element. A.. are defined13
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From Equation (C-7)

g.i b.
1 1

ax 2A
(C-8)

g.i ai

3y 2A

and then

S bl +2 2g2 2 2g
1

(C-9)

+a a + a
ay 2A +1 D91 2 g2 3 3

The displacement of any point in the triangle can be

expressed as a linear function of the displacements in the

nodes; if u and v are the horizontal and vertical components

of the displacement respectively

u = u 11 + u 2 g 2 + u 3g 3 (C-10)
v = vl I 1 + v 2 g 2 + v 3 g 3

if
u[u] = [u

L U 3]

[v] v 2 (C-11)
v

143



S1

[g] = g2

g3

then

u = [g]' [u]

v = [g]'[v]

= [u]' [g]

= [v] ' [g]

The same equations are used for virtual displacement if 6u

is substituted instead of u and 6v instead of v.

From Equations (2-43) and (C-9)

e (b + b u + b )xx 2A 1 ag1 2 8g2 3 -ag3

but the value of u is given by (C-10), then

1
exx (blul + b 2 u2 + b 3 u3 )

(C-13)

(C-14)

or, in matricial form

1 1e = -i- [u' [b] 2A [b]'[u]xx 2A 2A

b] =

b 3

[a] = a2

a 3

(C-15)

(C-16)

In a similar form

e
yy

1
= - [v]' [a]2A

exy 4 [v]' [b] + [u]' [a)

W 4A( [v]' [b] - [u]' [a].
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Similar expressions with 6u, 6v would give 6e...

Always:

[v]' [b] = [b ' [v] etc. (C-18)

From equations (B-48)

n = w6w + e 6w + 6e w
xx xy xy

6nyy = w6w - 6ex 6 - 6e w (C-19)Yxy xy

1 16ny = [6w(e -e ) + -1(6e -6e )]xy 2 YY xx 2 6yy xx

If the expressions for ei, w, 6eij and 6w from

Equations (C-17) are introduced in (C-19), and each 6n,

multiplied by Sij and all the terms added up to obtain

Equation (4-5), then after ordering the terms

1
S.ijn 16A2 [(3S 2 -S 1 )u'a a'6u+2S3u'ba'6u
'j i3 16A2 2 1 3

+ 2S3u'ab'6u + (3S1 -S 2 )v'b b'6v

+ 2S 3v'ba'6v + 2S 3v'ab'6v

- (S1+S 2 )u'ab'6v - 2S3u'b b'6v

- 2S 3u'a a'6v - (Sl+S2 )v'ba'6u

- 2S 3v'b b'6u - 2S 3v'a a'6ul (C-20)

where v', u', v, u, b, b', a, a' stand for [u]',[u]', [v],

etc.; S= S , S = Syy and S = S xy1 xx' 2 yy 3 xy
The different matrices in Equation (4-3) are

[U] = , [6U] = 6v I (C-21)Iv] [6v]
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The product e C ijkSe.ij can be expressed as
kZ ijkZij1

(C-22)

dexx
[e e Y [C] 6 e.

xx yy xy yy
L xyJ

= 2e and C is a matrix such that

[e e y ][C] = [o a a ]xx yy xy xx yy xy
(C-23)

From Equation (3-3)

4
B+ G

2
[C] = B-PG

30
0

2B-HG 0

4
B+0G 0J

0 G3

From Equation (C-17) and (C-21)

YY = [0 [a]'

Yxy [a]' [b]'

(3x1) (3x6)

Therefore, the (3x6) matrix is [B]

b I b 2

[B] = 0 0

Equation (C20)

Equation (C-20)

in Equation (4-3),

b 3  0 0 0

0 a a 2  a 3
a3 bl b2 b3

can be written as
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(C-24)

1[U 1
2T (C-25)

(6x1)

1
2A

(C-26)
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1 [u'au'bv'av'b]
16A

(3S -Sxx) 2S -2S -(S +S
yy xx xy xy xx yy

2S
xy

-2S
xy

0 0 -2S

0

-(Sxx+Syy) -2Sxyxx yy-2y

(lx4)

0 2S
xy

25 (3S -Sxy xx yy-

(4x4)

a' 6u

b'6u

a'6u

b'6v

(4x1)

(C-27)

So the center (4x4) matrix is [S] in (4-3). The matrix

D in (4-3) will be

a'6u

b'6u

a'6v

b'6v

(4xl)

1
[D] - 8A

(4x6)

a1

b1

0

0

[6U] (C-28)

(6xl)

a2
b2

0 0 a a 2

0 0 bl b2

0

0

a3

b3

(C-29)

And [Kc ] and [K g] for each element are given by Equation

(4-6).
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Appendix D

ADJUSTMENT OF STRESSES TO YIELD SURFACE

When the maximum shear stress calculated by the

program is larger than the corresponding maximum shear at

yielding, the stresses have to be adjusted back to the

yield surface.

In two dimensions, the Mohr's circle provides

a useful representation of the stress and the yield

surface. Instead of the Mohr-Coulomb yield surface, a

yield surface defined by the corresponding points of

maximum shear stress at yielding is used (Fig. D.1)

a = arctan (sin $)
(D-1)

a = c (cos p)

for ¢ = 0 c = k, the Tresca yield surface is obtained.

a= 0, a = c = k, are the corresponding parameters.

So, in the general case, from Figure D.1 and

geometric considerations, if. the adjustment is made

perpendicular to the pseudo yield surface:

2T* = T-(T-k)cos (D-2)(D-2)

p* = p-(T-k)cosesina

where T* is the modified maximum shear, k is the

corresponding value of the maximum shear at yielding, p*

is the modified value of p, and:
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a + a' +;'01+03 XX' + '1 3 xx yy
2 - 2

(D-3)

From the modified values T* and p*, it is

impossible to obtain uniquely the modified values of exx'

o' ,a' , if no further condition is imposed. The other
yy xy

condition is that the principle planes do not rotate.

The angle 6 is the angle between the vertical

direction and the direction of the minor principal stress,

(remember that continuum mechanics convention is being

used).

The values of a', o' a,' are then
xx' yy, xy

a'* = p*+T*cos2e
xx

o'* = p*-T*cos28
yy

o'* = T*sin28
xy

(D-4)

where T* is always positive, the sign of the shear stress

is always the sign of 6.

If, in Equations (D-2) a = 0:

= k (D-5)
p* = p

because before modification

tan26 = xy
' -a'
xx yy2

(D-6)
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Ci' _I
xx yy

cos2e =

T (D-6)sin2O = -Y

Equation (D-4) becomes, considering (D-3), (D-5), and

(D-6)

Oi' .0'

* xx (1+) + (1-xx 2 T

'* XX (- + (I+ (D-7)
yy 2 T 2 

'*= ' -
y x xy T
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Appendix E

USER'S MANUALS

Computer Programs

FELSP

FELSH
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

DIVISION OF SOIL MECHANICS

PROGRAM NAME "FELSH"

"FELSP"

LANGUAGE FORTRAN IV-G LEVEL

DATE JULY 1971

PROGRAMMER RODRIGO MOLINA

DESCRIPTION

These are two Finite Element programs for the

analysis of Large Strains in Soils in plane strain loading.

FELSH uses an incremental constitutive equation based in

a Hyperbolic stress-strain relation, FELSP uses the

constitutive equations of a perfectly Plastic Tresca

material. FELSH will handle drained or undrained cases,

FELSP will handle undrained cases; both programs do a

total stress analysis. The procedure is incremental, and

a middle point integration is carried in each increment.

Although this integration is optional and direct solution

in each increment as well as various iterations may be

done, the recommended procedure is a single middle point

integration.
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Elements are constant strain quadrilaterals. No

triangular elements can be handled by the program, but two

sides of the quadrilateral may be in the same straight

line; the resulting initial shape of the element will then

be a triangle, while the program will treat it as a

quadrilateral. The use of such elements should be avoided

if possible, and they should be restricted to low

deformation zones, in order to avoid negative areas in the

triangular subelements that form the quadrilateral.

The geometry and state of stress is updated

after each increment. Because of the updating of post

failure stresses, increments should be kept small. Better

results are obtained with coarser grids and more increments

than with fine grids and less increments for the same

computing time.

The sign convention is the continuum mechanics

sign convention. Axis X or R is horizontal, positive to

the right; axis Y or Z goes in a vertical, positive

direction upward. Force, strain and displacement

components are positive if they are in the direction of

the positive axis when applied to a face whose normal is

positive. (That is, tension is positive.) Angles are

positive counterclockwise.

Subroutines MODIFY and BANSOL were taken directly

from program FEAMOC written by A. Hagmann, and are based
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on E.L. Wilson's routines in FEAST-i.

The program operates in double precision.

PROGRAM CAPABILITIES

The program incorporates a data generating

facility, whereby the amount of input is reduced. Material

properties can be input element by element or as layered

systems. The program provides printed and punched output.

With the later as input, the program CONTRPLT-ALFRED-M

plots the data on a STROMBERG-CARLSON 4020.

Printed output includes:

1. Input and generated data

2. Displacements and forces at the nodal

points

3. Stresses and yielding information at the

center of the elements

4. Error messages, control information and

value of highest residual in the inversion of

the stiffness matrix.

Punched output provides:

1. Plots of initial and distorted structure

mesh

2. Plots of stress contours

3. Load-deformation curves at specified nodes.

INPUT DATA FORMAT:(Both programs)

A. Title Card, Format (18A4)
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Any information in columns 1 through 72 will be

reprinted at the top of the output. This card must be

provided.

B. Control Information Card, Format (715)

Column Information

1-5 Number of Nodal Points, (300 max)

6-10 Number of Elements, (250 max)

11-15 Number of Materials (10 max)

(Leave this field blank if the

material properties are input by

layers)

16-20 Number of Horizontal Layers (10 max)

(Leave this field blank if the

material properties are input by

elements)

21-25 Number of Load Increments

26-30 Number of Iterations

1 for normal use

0 for no middle point integration

n for n middle point integrations

31-35 Plotting Indicator (NPLOT)

NPLOT = 1 output prepared for

SC4020

NPLOT = 0 if no plots are

required

157



C. Soil Properties Information

Two options are available

1. Soil Properties Input by Elements

One set of two (or three) cards must be

provided for each different material, each set consists of:

C.1.1 Initial Stress Card, Format (I5,2F 10.0)

Column Information

1-5 Material Identification Number

6-15 Initial Z Stress (vertical)

16-25 Initial R Stress (horizontal)

C.1.2 Material Properties

(see cards C.2.2.2)

2. Soil Properties Input by Layers

One card describes the surface, then a set of

two (or three) cards must be provided for each layer.

C.2.1 Surface Card,Format (2F 10.0)

Column Information

1-10 Z coordinate of Surface

11-20 Initial vertical stress at the

surface

(remember the sign convention)

Set of cards for each layer

C.2.2.1 Initial stress card, Format (4F 10.0)

Column Information
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1-10 Z Coordinate of Base of this

Layer

11-20 Total Unit Weight of Soil, yt

21-30 Lateral Stress Ratio at Rest,

K0

31-40 Final Value of Skempton's

Parameter, Af

if FELSP A = blank

if drained case Af= 0

if O.C. clay A f=0

if N.C. clay and the data

comes from anisotropically

consolidated tests A f=l1

if N.C. clay and the data

comes from isotropically

consolidated tests A = its

measured value.

C.2.2.2 Material Properties

Different information has to be input for

FELSP and FELSH.

FELSP Material Properties Card, Format

(4F 10.0)

Column Information

1-10 Shear Modulus, G

11-20 Bulk Modulus, B
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21-30 Yield Constant, k=c=Su

31-40 Poisson's Ratio, v

FELSH Material Properties Card, 2 cards

Card One Format (7F 10.0)

Column Information

1-10 Cohesion, c (passive test)

11-20 Cohesion, c (active test)

21-30 Friction Angle, (in radians)

31-40 Atmospheric Pressure, pa

41-50 Bulk Modulus Number, KB

51-60 Poisson's Ratio, v

61-70 Ultimate Shear Modulus, Gult

Card Two, Format (8F 10.0)

Column Information

1-10 Modulus Number, K' (passive)

11-20 Modulus Number, K' (active)

21-30 Unloading Modulus Number,

Ku (passive)

31-40 Unloading Modulus Number,

K u(active)

41-50 Failure Ratio, R (passive)

51-60 Failure Ratio, Rf (active)

61-70 Variation Rate Exponent,

n (passive)
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71-80 Variation Rate Exponent,

n' (active)

See Chapter 3 and Table E.1 for description of

parameters.

D. Nodal Point Cards, (215, 4F 10.0)

One card for each nodal point. The cards must be

input in increasing order of number of nodal points. If

cards are omitted, the omitted nodal points are generated

at equal intervals along a straight line between the

defined nodal points. All such generated points will have

no load on them. All displacements and loads in the

positive direction of the axes should be input as positive.

Column Information

1-5 Nodal Point Number

9 String Information Number J

10 Loading Code (ICODE) indicates

whether displacements or forces are

to be specified

11-20 X coordinate

21-30 Z coordinate

31-40 UX These forces/displacements

41-50 UZI acting on unit thickness are

shape functions that will be

multiplied by the incremental

loads from Card G.1

161

i



If ICODE in column 10 is:

UX is a force

UZ is a force

1 UX is a X-displacement

UZ is a force

2 UX is a force

UZ is a Z-displacement

SUX is a X-displacement
3

SUZ is a Z-displacement

If J in column 9 is:

0 The string of nodal points that finish in

this nodal point will have an ICODE = 0.

1 The ICODE in the string will be the same as

it is in the last nodal point.

E. Element Cards, Format (615)

One card for each element. The cards must be

input in order of increasing element number. If cards are

omitted, elements will be generated by adding one to each

node number of the preceeding element. The material

numbers are kept constant in the generation. The last

element card must always be supplied.

Column Information

1-5 Element Number

6-10 Node Number I

11-15 Node Number J
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16-20 Node Number K

21-25 Node Number L

26-30 Material Number

Number the nodes counterclockwise around the

element.

The maximum difference between node numbers for any

element must not exceed 24.

If material properties are input in layers, Columns

26-30 are left blank (any information existing in

these columns will be ignored).

F. Plotting Information Cards

The following three cards are used only if plots

are requested (NPLOT = 1 in Columns 31-35,Card B.)

F.1 Instruction Card , Format (215, F 10.0)

The nodes at the ends of straight lines on the

boundaries are called Boundary Nodes. All nodal points on

the boundaries with ICODE = 0, and any other node that can

have displacements out of the initially straight boundary

are Boundary Nodes.

Columns Information

1-5 Number of Boundary Nodes (NUMBN

max. 50)

6-10 Load Displacement Plot Code

(LODE)

11-20 Maximum Load (TLOAD). This

163



If LODE (Card

= 0

If LODE is:

If LODE is:

value must be specified only when the

load-deformation plots are to be scaled

for larger loads than the maximum

applied in the problem. TLOAD will

then determine the right hand side of

the graph.

F.1)

No load displacement plots required

ILODEI is the number of plots required

> 0 Displacements will be plotted against

the value of QNOW (Card G.1)

< 0 If NUMBN :

>0 Displacements will be plotted

against the value of the total vertical

force acting in any surface with

displacements different than 0.

<0 In this case, the total force in

the moving surface, against which

displacements are plotted is the

horizontal force.

F.2 Boundary Cards, Format (1615)

The numbers of the boundary nodes are listed up

to NUMBN nodes (16 nodes per card, max. 53). Numbers of

the nodes have to be given in counterclockwise order.
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F.3 Load Displacement Plots, Format (815)

Only if LODE 3 0

The number of the nodes at which a load -

displacement curve is required (LODEC (I)) have to be input

in this card, (max 8).

If LODEC(I) is:

> 0 the plotted displacement at nodal point

LODEC (I) is the vertical displacement,v.

< 0 plotted displacements at nodal point

ILODEC(I)I will be the horizontal

displacements, u.

G. Load Increment Cards

Load increment cards must be in the same order in

which the load is applied. The program multiplies the

incremental load (or displacement)- that is, the difference

between successive specified loads (or displacements)- by

the UX and UZ figures specified in Card D, and solves for

the incremental nodal displacement field caused by this

load (or displacement).

One set of two cards must be provided for each

increment. If cards are omitted, the information is

generated for equal size load increments between two given

sets.

G.1 Load Card Format (I5,F 10.0,13,12)

165



Information

1-5

6-15

18

19-70

If NCODE

= 0

=-1

If JJ is:

Load Increment Number

Total Load or Displacement

(QNOW). This is not the

incremental value but the

total value.

Generated Data Code, JJ.

Output Specification Code,NCODE

is:

only printed output is obtained in this

increment.

printed and punched output is generated.

no output for this load increment

= 0 NCODE = 0 in the generated load data

= 1 NCODE in the generated data is equal to

NCODE in this first increment after the

generated data.

G.2 Plot Control Card, Format (2F5.0, 6F10.0)

This card is used only if plots are requested

for the current load increment (NCODE = 1)

Column Information

1-5 Distortion factor for displaced

mesh, SMSH. Displacements are

multiplied by this factor to
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6-10

11-20

21-30

31-40

41-50

51-60

61-70

For all plots:

obtain an exaggerated plot.

Vector scale factor for

principal stress plots, STRPLT.

Value is length of largest

vector in inches.

Sigma R contour plot code

Sigma Z contour plot code

Tau RZ contour plot code

Sigma Maximum contour plot code

Sigma Minimum contour plot code

Tau Maximum contour plot code

0. or blank - no plots desired

Negative value of DMSH;

only distorted mesh will be punched and plotted.

The contour codes are interpreted as:

positive value - is the interval between contours

negative value - is the number of desired

contours. The plotting program

will find a suitable, rounded

interval.

If NCODE = 1, all stress data are punched, even though no

stress plots are wanted (because plotting is controlled in

CONTRPLT-ALFRED-M). In the case where only the deformed

mesh plot is required, this unnecessary punch can be
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avoided by putting a negative sign in front of the

distortion factor DMSH.

PROGRAM USE

The program has a length of approximately 450 K

Bites. External temporary storage is necessary in logical

units 1 and 2. In the IBM 360-65/40 under ASP/MVT at the

IPC, MIT, the control cards for logical units 1 and 2 are:

//G.FT01F001 DD UNIT=SYSDA,SPACE=(3000,(100,50)),

DCB=BLKSIZE=3000

//G.FT02F001 DD UNIT=SYSDA,SPACE=(3000,(100,50)),

DCB=BLKSIZE=3000

inserted before the //GSYSIN DD * card. The source deck

has been punched on the 029 Key Punch (EBCDIC).

Any number of problems can be submitted in

the same job. If a job is flushed because of errors, the

next one will be executed. Problems must be separated by

a card with ****(A4) in the first four columns. The last

problem should have two consecutive four star cards at

the end.
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UNDRAINED
DRAINED

N. C. CLAY (I) O. C. CLAY

S(PASSIVE ) Cohession, some value Su / -c  (pass.) Average Sjor layer(pass)

C ( ACTIVE) f or both Su / "c  (active) Average Sufor layereacti

# its value 0 0

Po U nits should be chosen so Po I

K8  (2) B / oc Average B for layer

v its value 0.5 0.5

'uIt 0.002 KB <rult 4 Smallest K (I - Rf I

K' ( pass. and act. ) (2) Gi / c Average Gi for layer

K'u (pass. and act.) (2) G / oc Average Gu for layer

Rf (2) (2) (2)

n' (2) 1.0 1.0

(I) cc is the vertical consolidation stress if the data is from anisotropically
consolidated tests .

(2) See description of the Hyperbolic Approximation (Chapter 3)
TABLE E- I

---- --- L~~ -~'~~--~I-~ ~-'-' '



Appendix F

PROGRAM DESCRIPTION, MAIN AND SUBROUTINES

Both programs, FELSP and FELSH, have very

similar logic, and many subroutines are common. The

descriptions will apply for both programs except where

specifically indicated.

MODIFY modifies the general equilibrium

equations by introducing the specified displacements and

boundary conditions.

It is only called by GESTF.

BANSOL solves the modified system of equilibrium

equations for displacements by Gauss elimination.

It is only called by GESTF.

STIFFS assembles the instantaneous stiffness

matrix for a triangular element with the expressions of

Appendix C. The standard stiffness matrix is calculated

first, then the geometric stiffness is calculated and

added to obtain the total stiffness matrix.

It is only called by QUAD.

QUAD assembles the quadrilateral stiffness, by

calling the subroutines MPROP and STIFFS, for each one of

the four triangles. The statically condensed element

stiffness is then calculated. Half way through the

calculation, there is a logic check. SFLAG is the logical
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variable, if it is:

TRUE : QUAD has been called from STRESS, and

the result sought is a stage of the static condensation

that allows the back-calculation of the center node

displacements from the boundary nodal displacements; the

displacements are necessary to calculate strains in the

triangular elements.

FALSE : QUAD has been called from GESTF, and

the static condensation is finished to obtain the

statically condensed quadrilateral element stiffness.

GESTF assembles the general stiffness matrix by

calling QUAD for each element.

It stores the matrix externally to allow back -

calculation of forces.

It modifies the stiffness by calling MODIFY

for each imposed displacement.

It stores the modified stiffness externally to

allow the calculation of residuals.

It solves the system of equations by calling

BANSOL.

It calculates residuals.

It recovers the force vector.

If midpoint integration is being done, logic

variable IFLAG will be true for all steps but the one that
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gives the final result for the increment.

If IFLAG is true:

no recovery of the force vector is done, and

therefore no previous storage of the unmodified matrix is

necessary;

values of displacements are halved.

GESTF is only called by MAIN.

MPROP is different for each program.

It calculates the constitutive equations, matrix

[C] in Equation (4-3).

It is called by QUAD to calculate stiffness

and by STRESS to back-figure stresses from strains.

FELSP MPROP has two parts.

1. Elastic constitutive equations are calculated.

2. If the element has yielded, the plastic terms

of the constitutive equations are added to the elastic

terms.

FELSH MPROP has also two parts.

1. The values of the two instantaneous elastic

constants are calculated.

2. The incremental elastic constitutive

equations are assembled.

In part 1, there are six different possibilities:

a. By means of FI (or 4) = 0 or / 0 the

case is classified as drained or undrained
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b. In any case, three situations are possible:

b.1 loading : KSD(NV) = 0 is the value of

the control variable that indicates

loading

b.2 unloading : KSD (NV) = 1 indicates

unloading

b.3 post yield loading : if TAU is greater

than or equal to VM, where TAU is the

calculated value of T, and where VM is

the yielding value of the maximum shear

stress at that moment.

STRESS

This subroutine is slightly different for each

program, although both calculate the same things.

a. By calling QUAD, it computes the

displacements of the center nodal points for each element.

b. A loop, DO 300, calculates for every

element

1) The strains from displacements.

2) In FELSH, the strains from the middle

point geometry to the new geometry are calculated at the

same time if FFLAG = FALSE. FFLAG is TRUE for the first

step in each increment, and FALSE for the next ones.

In FELSP, the same instructions that calculate

the normal strains calculate the mid-point to final strains
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in a second cycle that is triggered by FFLAG, the control

variable is NENA.

3) In FELSP, the control variable APES is

made equal to 1 if there has been a change in the sign of

the shear strain.

4) Incremental stresses referred to the old

or middle point geometry are calculated from the normal

strains with the help of MPROP.

5) Total stresses are found by adding the

incremental ones to the initial stresses that are recovered

in the case of mid-point integration.

6) The transformation of stresses is done and

the stresses referred to the new geometry and normal axes

are found,by using the strains from mid-point to final

geometry if FFLAG = FALSE.

7) In FELSH, the angle that a3 forms with the

vertical is found.

8) In FELSH, if there is change in the trend

of T (the maximum shear stress) the control variable NAPE

is made equal to 1.

9) In both programs, if APES or NAPE are

equal 1 and the loading law have been used in the program,

the logic variable UFLAG is set as TRUE and PLAST or KSD

for the element are set equal to NO or l,resepctively.

This is in preparation for repeating the step with

174



different material properties for the element.

10) If the unloading-reloading law has been

used, but the obtained stresses or strains are over the

maximum recorded values, the variables PLAST or KSD are

given the values YES and 0. In the case of FELSP, UFLAG is

put equal to TRUE in order to repeat the step with a

softer procedure.

11) In both programs, if the element is in

failure, PLAST is made equal to YES and then the stress

modification back to the yield surface is done.

12) If UFLAG is FALSE, the principal stresses

are found. In FELSP IFLAG has to be FALSE also in order

to obtain the principal stresses. The angle between a3

and the verticals is also found in FELSP

c. Total forces and displacements are found

if UFLAG and IFLAG are FALSE

d. The original geometry is recovered if UFLAG

and FFLAG are FALSE.

e. The coordinates of the nodal points are

modified if UFLAG is FALSE

f. The coordinates of the center of the elements

are found if UFLAG is FALSE.

g. If IFLAG and UFLAG are FALSE and NCODE > 0,

1) the displacement and stresses are printed,
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2) if NCODE = 1, the information is also

punched.

h. If UFLAG is TRUE, the old values of stresses

and the sign of the strain are recovered in order to

repeat the step.

MAIN

The main program is also a little different for

each version.

a. Control information, material properties

and nodal point data are read, intermediate data is

generated for nodal points. Data is printed.

b. Element data is read; missing data is

generated. When the material properties are input in

layers, every element is assigned to its corresponding

layer. The initial stresses are calculated; in the case

of FELSH, the initial principal stresses are also

calculated as well as the initial angle of 03 with the

vertical. In the case of FELSH, the values of the

corresponding equivalent consolidation stress are also

found. Data is printed.

c. Plotting data is read and printed. The

required initial data is punched.

d. The band width is determined.

e. Variables are initialized.

f. A load increment is started by reading load
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increment data; if necessary, intermediate data is

generated.

1) Increment data is output.

2) The initial values of stresses and nodal

points coordinates are stored.

3) The first step of the increment is run by

calling GESTF and STRESS. If, at the end of STRESS, UFLAG

is TRUE, the step is repeated. KAKO in FELSH counts the

number of repetitions of the step in order to be able to

limit the repetitions by conditioning the UFLAG = TRUE

statement in STRESS to a given number of KAKO.

4) If mid-point integration is done, one or

several times ( one or more iterations), the logical

variables are arranged and again GESTF and STRESS are

called, etc., as in part 3.

5) When the last step of the increment is

done, IFLAG is FALSE, and then, if load deformation plots

are required, the information for the plots from the

increment is prepared. Depending on the values and signs

of the input information, the total incremental force,

either horizontal or vertical, or the value of the

increment load is given as well as the horizontal or

vertical displacements of the selected points.

g. When the last increment is run, the data
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for the load deformation plots is punched.

h. If there are any more decks to be processed,

they will be, even if the end of the program has been

reached through an error and abnormal termination.
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Appendix G

THE UNIT SQUARE

If A is the width of the deformed square and

H the height, the incremental strains will be

du
de -du

x A

dv
de -

z H

where

A = 1+u

H = l+v

(G-1)

(G-2)

for the unit square.

The incremental stress will be at each moment

dP
dozz A (G-3)

where dP is the increment in the vertical load.

The instantaneous elastic relations will be for

plane strain

de = - (da - v(vda +(1+v)dx

de -= 1 (dox - v(l+v)do +v2 do)x E x z

(G-4)

but da = 0 , so:x

1 2de = (1-v )da = Ydaoz E z z

de 1 2de - (-v-v )d = Xdo
x E z z

Y = ( 1-v 2 )

(G-5)

(G-6)
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X (v+v 2)

From (G-3), (G-1) and (G-5)

du dPA X--
A A

u = XP + C

for P=O u=O , so C=o and

u = XP

Also from (G-l) , (G-3) and (G-5)

dv dP
H A

with (G-2)

dv dP dP
Y Y1+v l + u  1 + X P

and integrating

In(1+v) = Y In(l+XP) + C 1

for P=0 v=0 and then C1 = 0 so

v = (I+XP)Y/X - 1
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(G-11)
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