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ABSTRACT

This thesis is concerned with the use of state
variable techniques for solving Fredholm integral equations, and
the application of the resulting theory to several optimal commun-
ications problems. The material may be divided into the
following areas;

(i) the solution of homogeneous and nonhomogeneous Fredholm
integral equations;

(ii) optimal signal design for additive colored noise channels;

(iii) optimal smoothing and filtering with delay;

(iv) smoothing and filtering for nonlinear modulation systems;

(v) estimation theory for a distributed environment.

A method for solving Fredholm integral equations
of the second kind by state variable techniques is derived. The
principal advantage of this method is that it leads to effective
computer algorithms for calculating numerical solutions. The
only assumptions that are made ares; (a) the kernel of the integral
equation is the covariance function of a random process; (b) this
random process is the output of a linear system having a white
noise input; (c) this linear system has a finite dimensional
state-variable description of its input -output relationship.

Both the homogeneous and nonhomogeneous integral
equations are reduced to two linear first-vector differential
equations plus an associated set of boundary conditions. The
coefficients of these differential equations follow directly from
the matrices that describe the linear system. In the case of the
homogeneous integral equation, the eigenvalues are found to be
the solutions to the transcendental equation. The eigenfunctions
also follow directly.

In addition, the Fredholm determinant function is
related to the transcendental equation for the eigenvalues. For
the nonhomogeneous equation, the vector differential equations
are identical to those that have appeared in the literature for



optimal smoothing. The methods for solving these equations are
discussed with particular consideration given to numerical
procedures. In both types of equations, several analytical and
numerical examples are presented.

The results for the nonhomogeneous equation are
then applied to the problem of signal design for additive colored
noise channels. Pontryagin's Principle is used to derive a
set of necessary conditions for the optimal signal when both its
energy and bandwith are constrained. These conditions are
then used to devise a computer algorithm to effect the design.

Two numerical examples of the technique are presented.

The nonhomogeneous Fredholm results are applied
to deriving a structured approach to the optimal smoothing
problem. By starting with the finite time Wiener-Hopfequation
we are able to find the estimator structure. The smoother results
are then used to find the filter realizable with the delay. The
performance of both of these estimators are extensively discussed
and illustrated.

The methods for deriving the Fredholm theory results
are extended so as to be able to treat nonlinear modulation systems.
The smoother equations and an approximate realization of the
realizable filter are derived for these systems.

Finally, an approach to estimation on a distributed
medium is introduced. The smoother structure when pure delay
enters the observation method is derived, and a simple case is
illustrated.

Thesis Supervisor: Harry L. Van Trees
Title Associate Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION

One of the more powerful techniques used in the analysis
of communication problems is the Fredholm integral equation
1,2,3,4 . . aieps
theory. Often, however, this theory is difficult to use because
solution methods are either too tedious for analytic procedures or too
awkward for convenient implementation on a digital computer.
In recent years, state variable techniques have become

5,6, 7 This

increasingly useful, especially in optimal control theory.
is primarily due to their adaptability to computational approaches.

In this thesis we shall develop a state variable theory for solving
Fredholm integral equations. We shall then apply this theory to
several problems in optimal communications.

State variable methods have already provided solutions
to several important problems in communication theory. Undoubtably
the most significant of these is the original work of Kalman and Bucy
on linear filtering theory. 8 Starting with this work, many people
have used these techniques for the detection and estimation of random

9,10
processes.
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The major advantage that these techniques offeris
that they lead to solutions which are readily implemented on a
digital computer. Their essential aspect is that the systems or
random processes which are involved are represented in terms
of differential equations rather than by impulse. responses and
covariance functions. Since the digital computer is ideally suited
for integrating differential equations, we can see how this type
of formulation leads to convenient computational methods of
solutions.

There is a second important advantage of state variable
techniques. Historically, the concept of state found its first
application in optimal control theory. Over the years, control
theorists have developed a vast literature pertaining to state variable
methods. As a result, in using a state variable approach to our
problems, we can expropriate many of the methods that have been
developed in this area.

The application of the Fredholm integral equation
theory to communications is certainly well known. The homogeneous
integral equation, with its ej-genfunctions and ei'genvalues, is
probably most familiar in the context of a Karhunen-Loeve expansion
of a random process. = Since this expansion theory is often the
starting point in the analysis of a particular problem, it is easy
to see why we are interested in being able to determine the

eigenfunctions and eigenvalues for this equation. Similarly, the
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nonhomogeneous equation is often encountered. Its solution specifies
the optimal receiver and its performance for detecting a known
signal in additive colored noise. 3,4 Other applications of it include
the solution to the finite time Wiener-Hopf equation and accuracy
bounds for parameter estimation.

The major difficulty in using the Fredholm theory is
in obtaining solutions to these equations. With the exception of a
limited number of cases, finding analytic solutions is difficult
at best, while current numerical methods tend to use a large amount
of computer time. This is where major contribution of this thesis
lies. For a wide class of Fredholm equations of interest we shall
apply state variable methods to the problem of finding solutions
to these equations. Because of the inherent computational advantages
that these techniques offer, we shall be able to devise a solution
algorithm that is both well suited and efficient for implementing
on a digital computer,

We shall find, however, that our solutions are of more
general interest than for just solving these integral equations.
We shall apply our results to several problems in communications.

By coupling our method for solving the nonhomogeneous
equation with the Minimal Principle of optimal control theory, we
shall be able to formulate and solve a signal design problem for
additive colored noise channels where bandwidth and energy

constraints are imposed. 13,6
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We can also use the nonhomogeneous equation to
derive the state variable form of the optimal smoother. 4,15, 16
With the smoother equations we shall be able to find a structure
for the filter realizable with a delay. We shall also be able to
analyze the nerformance of both structures.

We shall also find that the technique we used in
solving the Fredholm equations may be used to solve new problems.
By extending these techniques,  we shall be able to find the
sm»other equations for nonlinear modulation systems. Again
borrowing results from control theory, we shall also derive an
a’~roximation to the realizable filter from the smoother structure
for this problem. 17

The final topic that we shall treat is apparently
quite divorced from the Fredholm theory. This is due only to
our approach. In processing array data, delay factors often
enter the signals. In this topic we shall use a variational approach
to derive the smoother structure when pure delay enters our
observation process. We use a variational approach for simplicity.
It is possible to develop and use a Fredholm theory approach; '
however, this leads to a significantly longer derivation.

Before proceeding let us outline the sequence of
material in the thesis. In Chapter 2 we shall introduce the

concepts for describing random processes by state variable methods.

We shall also derive an important result that is used throughout
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the thesis. In Chapter 3 we shall consider the solution of the
homogeneous Fredholm integral equation. We shall derive a
transcendental equation for the eigenvalues, and then determine
the eigenfunctions. We shall also show how to calculate the
Fredholm determinant. 2,4 In Chapter 4, we shall consider

the nonhomogeneous equation solution. We shall derive a set

of differential equations that specify its solution. Then we shall
present several solution methods which exist for solving this
particular set of equations.

In the remainder of the thesis we shall apply the
results of Chapters 2-4. In Chapter 5 we consider optimal
signal design for detection in additive colored noise channels.

In Chapter 6, we present an extensive discussion of linear smoothing
and filtering with delay. In Chapter 7, we extend our results

to treat smoothing and filtering for nonlinear modulation systems,
while in Chapter 8 we present an approach to estimation theory

when delays occur in the observation method.

We shall present many examples. We do this for
two reasons. We shall work a number of analytic examples to
illustrate the use of the methods we derive. We shall also
present a number of examples analyzed by numerical methods.

In the course of the thesis we shall emphasize the numerical aspects
of our methods. We feel this is where the major application. of

much of the material lies. Most problems are too complex to be
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analyzed analytically, so finding effective numerical procedures
is a very relevant problem.

We also want to indicate our notational conventions.
Generally, scalars are lower case symbols which are not underscored;
vectors are lower case symbols which are underscored; and matrices

are upper case symbols which are not underscored.
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CHAPTER 1I

STATE VARIABLE RANDOM PROCESSES

In this chapter we shall introduce some of the concepts
and properties of state variable random processes that we shall
need. First, we shall review the ideas of the description and
generation of random processes using state variable methods. Then
we shall develop some of the properties of the second order moments
of these processes. We shall also introduce two processes which
we use in many of our examples. Finally, we shall present a
derivation which is common to many of the problems that we

shall analyze.

A. Generation of State Variable Random Processes

In this section we shall briefly review some of the
concepts associated with the description and generation of random
processes using state variable methods. This is done principally to
establish our notation conventions and terminology. For a more
detailed discussion we refer to references 3 and 8.

In the application of the state variable methods to
communication theory problems, the random processes of interest
are usually characterized as being generated by a dynamical system
that is excited by a white noise process. Consequently, the

relevant information, which must somehow be provided, is the
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equations describing the operation of the dynamical system and a
description of the white noise excitation rather than the probability
density(ies) or moments of the processes. It is this point of view
that we shall assume regarding the description of our random
processes.

This is not a very restrictive assumption, as we can
generate a large class of processes of interest. In particular, we
can generate the important class of stationary processes with
rational spectra quite conveniently using constant parameter, linear
dynamical systems.

The majority of the processes that we shall discuss are
generated by a system whose dynamics may be described in terms
of a finite dimensional, linear, ordinary differential equation,

termed the state equation,

dﬁit) = F(t)x(t) + G(t)u(t), [linear state equation), (2. 1)

where
x(t) is the state variable vector (nx 1),
u(t) is the white excitation process (m x 1)’
F(t) (n x n) and G(t) (n x m) are matrices that

determine the system dynamics.

(For notational simplicity, we shall work with continuous time
processes. In the study of processes generated by a nonlinear
dynamical system, this introduces some attendant mathematical

difficulties; however, we shall not discuss them here.lo) In general,
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we shall assume that u(t) is white, i.e., it may be interpreted as the
derivative of an independent increment process. Consequently, we

have (assuming zero mean)

T
E[u(t)u™(1)] = Qs(t-7). (2.2)
In order to describe a state variable equation completely,
the initial state of the system must be considered. We are concerned
with representing a random process over the time interval
T,=t = Tf.

mean random vector with a covariance matrix given by

We shall assume that the initial state _}_g(TO) is a zero

E[x(T )x (T)]= P, (2.3)

In the case of a deterministic input signal and deter-
ministic initial conditions, knowledge of E(To) and u(T) for
To = 1 = t is sufficient to determine x(t) for all t. With a random

input and /or random initial conditions we can determine the

covariance matrix of the state vector,
_ T
K (t,7) = E[x(tx (7], (2.4)

for all t and T greater than T,. We should note that this is true
only when the state representation is linear as we have assumed

in Eq. 2.1.
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Generally, one does not observe the entire state vector
at the output of a dynamical system, e.g., in many cases only the
first component of the vector is observed. Consequently, we must
specify the relationship between the observed random process and the
state vector, of the dynamic system. For the majority of the
random processes that we shall consider, we shall assume that the
observation relationship is a linear, possibly time -varying,
no memory transformation, i.e., the observed random process

y(t) is given by

y(t) = C(t)x(t) (observation equation), (2.5)

(If the observation is a linear transformation which involves memory,
and this transformation is representable in terms of a system of
state variables, i.e., there is an ordinary differential equation
describing the operation, we can reduce it to the previous case by
simply augmenting the state vector and then redefining the matrix C(t))
In Fig. 2.1 we have illustrated a block diagram of the dynamic
system that generates the random processes of interest.

Finally, in a communications context, additive white
noise is often present in the actual observation. Consequently, we

shall consider signals of the form

x(t) = y(t) + w(t), (2. 6)

where
y(t) is a process generated as previously discussed,

w(t) is a white noise process,
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We assume that w(t) has zero mean and a covariance matrix given by

by
E[ wit)w (7) = R(t)8(t-7), (2.7

where R(t) is a positive definite matrix.

Before proceeding several comments are in order.

It is often convenient to describe the random processes
in terms of the system that generates them. On occasion we shall
do this, e.g. constant parameter systems refer to the processes
that may be generated by a dynamical system with a constant state
description, e.g. stationary processes, or the Wiener process.

We have avoided introducing the assumption of Gaussian
statistics for §(TO), u(t) and w(t). We shall indicate whenever it is
necessary to introduce this assumption; however, for many of our
derivations it is unnecessary since we use a structured linear
approach rather than an unstructured Gaussian approach.

In two of the chapters we shall analyze problems which
involve either processes which are generated by nonlinear dynamical
systems or those which are observed linearly through a distributed
medium, i.e., the observation method cannot be described in terms
of a finite dimensional state equation. Since the notation required
for the description of the generation of these processes is peculiar
to the individual chapter we shall defer introducing it until then.

Finally, we shall usually work with low pass waveforms.
In Appendix B we have introduced the concept of a complex state

variable. This concept allows us to analyze bandpass waveforms of
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interest with very little modification to the low pass theory that we

shall develop.

B. Covariance Functions for State Variable Processes

Several of our derivations concern the covariance matrix
Ky;(t, T) of a random process y(t) which is generated by the methods
described in the previous section. In this section we shall briefly
review how this covariance can be related to the matrices which
describe the system for generating the random processes.

The covariance matrix of y(t) is defined to be
E[y_(t)y_T(T)] a K {t, 7). (2.8)

By using Eq. 2.5, Kl(t’ T) is easily related to the

covariance matrix of the state vector x(t),
T
Ky(t, T) = C(t)Kx(t, T)C (7). (2.9)

In Appendix A, the following result is shown:

o(t, -r)KX('r, T) fort= T,
K (t,7) = - :

Kx(t,t)GT('r,t) for T =t, (2. 10)

where 6(t, 7) is the transition matrix for the system defined by the

matrix F(t), i.e.,
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Hdt“ 8(t, T) = F(t)6(t, T), (2. 11a)
o(r, ™) = L. (2. 11b)

Furthermore, in Appendix A, it is shown that the matrix Kx(t, t)

satisfies the following differential equation.

d _ T T
—d—t-Kx(t,t) = F(t)KX(t,t) +Kx(t,t)F (t) + G()QG " (t), (2.12a)
t> To N
with the initial condition
KE(TO,TO) = Po. (2. 12Db)

Because many of our examples concern stationary
processes and constant parameter systems we shall make some
comments regarding their generation. Let us assume that the
matrices describing the generation of y(t) are constant. Con-
sequently, the transition matrix 6(t, 7) is given by the matrix

exponential

F(t-'r).

o(t, ) = e (2. 13)

Furthermore, let us assume that PO is chosen to be the steady
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state solution P_to Eq. 2.12a. * Therefore, K¥(t,t+ At)is a

function only of At. We have

00 !
K (t,t+At = (2. 14)

We shall use two particular stationary processes in
several of our examples. The first is the first order Butterworth,

or one-pole, process. The covariance function for this process is

K (t,7) = seklt-T] (2. 15)

The state equations which describe the generation of this process

are

>kOne can evaluate P using transform techniques. It is easily

shown that

i 00
1 E [1s-F] ' GQaT[ -1s-FT] ~las
2] -j oo
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dx(t)

- = Ckx(t) +ut),  t>T, (2. 16a)
y(t) = x(t), | (2. 16b)
E[ u(t)u(m) =2kS &(t-7), (2. 16c)
E[x%(T ) = P, (2. 16d)

The matrices involved are

= -k C =1
G =1 o = S
Q = 2kS | (2.17 a-e)

We shall use this process to illustrate analytically many
of the techniques that we shall develop.

The second process we shall use in examples to illustrate
the numerical aspects of an analysis using our techniques. This
process is generated by a two dimensional state equation where the

matrices describing the process generation are

0 4 0
G = P =
1 °© lo 40 (2. 18a-e)
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The process y(t) is a stationary process whose covariance function is

K (¢, thAt) = %e"'At|(3cos(3At) + sin(3|At])), (2. 19a)

and whose spectrum is

40
S () = . (2. 19b)
y w? - 16w? + 100

We have illustrated these functions in Figs. 2.2a and
2.2b. We have included this process principally to illustrate some
of the computational aspects of our techniques. We have also chosen
to state matrices such that the spectrum of y(t) has a peak in it
away from the origin. This will introduce some interesting aspects
the some of our examples. We should also note that in all our
examples, any analysis involving this process would require a

prohibitive amount of time.

C. The Derivation of the Differential Equations for
T

f
L(T) = ‘Y Kz(t,'r)_i_'('r)d'r

T
o

Many of the problems in communication theory that we

shall analyze involve the integral operation
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T
L(t) = j—[ Kz(t,'r)ﬁ'r)d'r, T =t = Tf, (2.20)

T
o

In the study of Fredholm integral equations f(t) is either related to
the eigenfunction Q(t) in the homogeneous case,or it is the solution
g(t) in the nonhomogeneous case. In linear estimation theory, this
is the integral operation specified by the Wiener-Hopf equation. In
this section we shall derive a set of differential equations for this
integral operation. Solving these differential equations is
equivalent to performing the integral operation specified by
Eq. 2.20. In many of our derivations, we shall use these dif-
ferential equations to convert an integral operator to a set of dif-
ferential equations.

1et us now proceed with our derivation. By using

Eq. 2.9, we may write Eq. 2:20 as

L(t) = C(t)E(1), T,=t=T, (2.21)
where
A o
g(t) = j K (t, )CT(n)f(n)dr, T st=T, (2. 22)
g X
(0]

We shall now determine a set of differential equations
in terms of the function §(t). Substituting Eq. 2.10in Eq. 2.22,

we have
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t

£(t) = 5 e(t,T)KX(T,T)CT(T)_f(T)dT
T, =

Ty

+K_(t,1) 5 of(r.cTini(mar, T st=T, (2.2
t

If we differentiate Eq. 2.23 with respect to t, we obtain

(M) - ee(t,T) T
= 5 ot Ky(T: TIC (1)f(r)dr
TO

dK_(t,t) 1
t—E j oT(r, ycT(mg(mar
¢

T¢
Tir ty AT
90 L (r,
+K_(t,1) S 2 08 cTirgnar, T, St=T, (2.24)
= i

We have used Eq. 2. 11b and cancelled two equal terms. In the
first term of the right-hand side of Eq. 2.24 we substitute Eq. 2.11a,
and in the last term we use the fact that QT(T, t) is the transition

matrix for the adjoint equation of the matrix F(t).6 That is,

% oL(r,t) = -FL(t) 0L(r,1). (2. 25)



31

When we make these two substitutions in Eq. 2.24, we obtain

¢
%W - ry § ot ncTmgnar
J X

0

dK _(t, 1) Ty
gt~ KX(t,t)FT(t) 5 GT(-r,t)CT(-r)f(-.-)d-.-,
= t

T =t=T

o . (2.26)

By applying Eq. 2. 12a, we obtain

t
-rw | otmr (r ncTnsmar

To

dg(t)
Tdt

Ty

+[FIOK_(t,1) + G(Q G (1)] 5 o (r, ncT(me(myar,
t

T =t=T

o . (2.27)

After rearranging terms and using Eq. 2.23, we finally have

dg(t)

T
f
;;cFmam+GMQGWnSeT
t

dt (T,t)CT(T)_i(T)dT,

(2.28)
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At this point we have derived a differential equation
for £(t); however, we see that an integral operation still remains.
Let us simply define this integral operation as a second linear

functional of f(t):

Ty
n(t) = S oT(r,ycT(mf(mar, T =t=T, (2.29)
t
Therefore, we have
de(t
é(t) = F(HE(L) + GIIQ G L(t)n(t), T,<t=T, (2. 30)

It is now a simple matter to derive a second differential

equation which n(t) satisfies. Differentiating Eq. 2.29 gives us

v T
dn(®) T, 1 T
5t = "CT(Di(t) - F (t)j. 87 (7,t)C (7)f(7)dT,
t
T, =<t=T, (2.31)
where we have again used the adjoint relationship given by
Eq. 2.25. After substituting Eq. 2.27, we have
dn(t) T T
— = -cT L) - Fl(bn(h), T St=T, (2. 32)
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We now want to derive two sets of boundary conditions
which Eqs. 2.30 and 2. 32 satisfy. In all the applications that we
shall consider, the function f(7) is bounded at the end points, t = T0

andt="T Consequently, by setting t = Tf in Eq. 2.29, we

£

obtain

(T, = 0. - (2.33)

The second boundary condition follows directly from Eq. 2.23. If

we sett = To’ the first term is zero, while the second term may be

written
Ty
&(T,) =K (T _, T S eT(T,t)c(T)gT)dT, (2.34)
- T
(o]
or
B(To) =KylTo TnlTy) = Pon(Ty)- (2. 35)

It is easy to see that the two boundary conditions given by Eqs. 2. 33
and 2. 35 are independent.
We may now summarize the results of our derivation.

We have derived two differential equations:

dg(t)
=" = F(tE(t) +G(HQ G (t

5 j(t), T =t=T

(2.30)
(repeated)
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dn(t) T
5 = “CWI) - F(tnt), T =t=T, (2.32)
(repeated)
In addition, we have the boundary conditions
P (T, =&T)), (2. 35)
(repeated)
ﬂ(Tf) = 0. (2.33)
(repeated)
The relation to the original integral operation is given by
glt) = Clt)E(L) = j K_X(t:f)f(T)dT. T =t=T,. (2. 36)
T
o}

Notice that the only property of f(t) which we required
was its boundedness at the endpoints of the interval. (This
excludes considering equations of the first kind where singularity
functions may appear there.) Equations 2.23 and 2.35 each imply
n linearly independent boundary conditions. Since the differential
equations are linear, any solution that satisfies the boundary
conditions is unique. Finally, the derivation of these equations can
be reversed in order to obtain the functional defined by Eq. 2. 22;
that is, we can integrate the differential equations rather than differen-
the integral equation. Consequently, the solution §(t) to the
differential equations must be identical to the result of the
functional operation of Eq. 2.22. This implies that the existence

of a solution §(t) that satisfies the boundary conditions is both
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necessary and sufficient for the existence of the solution to the
operation defined by Eq. 2.22.

In this chapter we have developed the concepts that we
shall need. In addition, we have presented a derivation which we
shall utilize in several subsequent chapters. We shall now use this
material to develop a theory for the solution of Fredholm integral
equations. We then shall apply this theory to several problems in

optimal communications.
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CHAPTER 11

HOMOGENEOTUS FREDHOLM INTEGRAL EQUATIONS

Homogeneous Fredholm integral equations play an
important role in theoretical communications. As a theoretical
tool, their most important use arises in the theory of Karhunen-
Loéve expansions of a random processes. One of the more
difficult aspects of this theory is that, except in a limited number
of cases, it is very difficult to find solutions to these equations.
We shall now apply a state variable method to find a solution
technique that is both analytically efficient and is especially well
suited for determining solutions by computational methods. We
shall then work a number of examples to illustrate the technique.
Finally, we shall show how our results can be used to find the

Fredholm determinant function.

A. The State Variable Solution to Homogeneous Fredholm
Integral Equations
The homogeneous Fredholm integral equation is usually

written

T,

S Kz(t,T)Q(T)dT =M(m), T, =t=T, (3.1)
T
(0]
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where the kernel Kl(t’ T) is the covariance matrix of a vector
random process y(t) which is generated by the methods described
in the previous chapter, j)_(t) is an eigenfunction solution, and X\

is the associated eigenvalue. (We should note that we are using a
vector eigenfunction-scalar eigenvalue expansion. 18,3 In this

expansion we have

o0

y(t) = Z yiﬁ)_i(t), T0 =t STf, (3. la)

i=1

where the generalized Fourier coefficient is a scalar given by

T¢
¥; = S (g (s (3. 1b)
T

(0]

This type of expansion is necessary if\ihe components of y(t) are
correlated.)

The solution to this equation is an eigenvalue problem.
There are an at most countable number of values of A > 0 for which
solutions exist to Eq. 3.1 and there are no solutions for A < 0. If
Ky.(t, T) is positive definite, then the solutions to Eq. 3.1 have
positive eigenvalues and form a complete orthonormal set. However,
if Kél(t’ T) is only non-negative definite, then there exists solutions

(l)o(t) with zero eigenvalues, i.e., they are orthogonal to the kernel
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S Kl(t,’r)q)o(T)dT:E)_, T,=<t =T (3.2)
TO

We shall consider finding only those solutions with positive eigen-

values.

"If we index the eigenvalues and their associated eigen-

function by the subscript i, the integral Eq. 3.1 becomes

Te

S Ky(t, T)(pi(T)dT = xi(pi(ﬂ, T, =t =T, (3. 3)

To

When we employ Eq. 2.9 we may write Eq. 3.3 as

T
f

C(t) S Kz(t,T)CT(T)Qi(T)dT = xigi(t), T,St=Tp. (3.4
T
(o]

Let us now put Eq. 3.4 into such a form that we can employ the

results of Section II-C. If in Eq. 3.4 we set
9.t = £(t), (3. 5)

the result is that the integral enclosed by parentheses is the function

£(t) as defined in Eq. 2.22. Consequently, let us define éi(t) to be
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Ty

gw= § K {6 1C (;(nar, T, =t =Ty (3.6)

TO

so that Eq. 3.4 becomes

Clt)g;(t) = N0.(t), T =t=T,. (3.7

If we assume that xi is positive, which is guaranteed if Ky(t,-r) is

positive definite, we can solve for the eigenfunction in terms of gi(t).

This gives us

0.t) = o— Cl0IE (1), T =t=T, (3. 8)
1

If we examine Eq. 3.6, we see that the integral operation
which is defined is of the same form as the operation considered in
Section II-C. Consequently, we can reduce it to a set of differential
equations with a two point boundary condition. Let us identify ﬂ)_i(t)

in Eq. 3.6 with £(t) in Eq. 2.20. Then, if we substitute
£(t) = 0,(1) = +—C(bg,(t), T =St=T, (3.9)
1

in Egs. 2.20 and 2.32, we find that the differential Egs. 2. 30 and

2. 32 become
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'%f -g-i(t) = F(t)§; (t) +G(H)Q GT(t)ni(t), T, St=T (3. 10)
T
a%— ni(t) = g_._(%?__c_(_t_).éi(t) - FT(t)ni(t), To =t sTf, (3.11)
From Eqs. 2.33 and 2.35, the boundary conditions are
Ili(Tf) =0, (3.13a)
'g"i(TO) = Pon_i(To). | (3. 13b)

The desired eigenfunction is related to the solution _§_i(t) by Eq. 3.8,

or

(3. 8)

1
Qi(t) = ')\—1' C(t)_f;_i(t), TOStST
(repeated)

The net result of Eqgqs. 3.4 - 3.13 is that we have
transformed the homogeneous Fredholm integral equation into a set
of differential equations whose coefficients are directly related to
the state equations and covariance matricesthat are used to
generate the random process y(t).

Before we use the above results to determine the
eigenvalues and eigenfunctions, let us make two observations.

Notice that we have a set of 2n differential equations to

solve. This is consistent with previous methods for treating
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stationary processes. In these methods, one has a 2n-order dif-
ferential equation to solve, where 2nis the degree of the denomina-
tor polynomial of the spectrum.

Equation 3.8 implies that all of the solutions to Eq. 3.1
with positive \ are contained in the range space defined by C(t).
We should note that if C(t) is not onto for a set of t with nonzero
measure, then Ky(t,-r) is not positive definite. In this situation
there may be solations with N equal to zero which are not
contained in this range space.

We shall now specify a general solution technique for
solving these differential equations, which in turn specifies the
eigenvalues and eigenfunctions. With this technique we shall first
find a transcendental equation that specifies the eigenvalues. Given

the eigenvalues, the eigenfunctions follow directly.

Let us define the (2n x 2n) matrix W(t:\) as

Rty 1 GQGTwM |
L (CEV I R — H— S , (3. 14)
T ]
-CT(t)C(t) ! T
s “FO(Y)

so that in vector form Eqs. 3.10 and 3.11 become
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Furthermore, let us define the transition matrix associated with

W(t:\) by
9 Y = i )
5t T(t, T :N) = W(E:NE(t, T :N), (3. 16)
(T, T \) =1 (3.17)

(We have emphasized the N dependence of W(t:\) and \If(t,To:X) by
including \ as an argument.)
In terms of this transition matrix, the most general

solution to Eq. 3.14 is
----- = ¥(t, Tozxi) m-mm=== |2 T =t = Tf‘ (3.18)

After employing the boundary condition specified by Eq. 3.13, we

have

), (3. 19)
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Let us now partition \y(t,TO:)\) into four n by n matrices such that

\Ifgg_(-t,TO:)\.) i \Ifé (t,To:)\)
YT ) = | mmmmmmmoemee bmmmmm o m e e (3. 20)
| .
T TN L (T

£ .(t) \Iré—g_(t, To:ki)]?o + éll(’c, Tozxi)
----- = | mmmmmmmmmm s o s o mmm e m o 3_1.1(T0) (3.21)
Ili(t) \Ifng(t, To.)\i)P0 + \Ifnﬂ(t, To.xi)

To-<- t= Tf.
Taking the lower partition, the boundary condition given by Eq. 3.12

requires

ni(Ty = [¥, ¢ (Tp T )P, # ¥, (Tp Tellng(T) =0 (3.22)

This implies one of two consequencies. Either
ﬂi(To) = 0. (3.23)

which implies a trivial zero solution; or,
!

det[\Ifné(Tf,To:)\i)Po + \Ifn ,Tozxi)] = 0. (3. 24)

n( Tt
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If the latter is true, Eq. 3. 15 has a nontrivial solution which
satisfies the requisite boundary conditions. Because of the functional
equivalence of these differential equations and the original integral
equation, this nontrivial solution to Eq. 3.15 implies that )‘i is an
eigenvalue. That is, the eigenvalues of Eq. 3.1 are simply those
values of )‘i that satisfy the transcendental equation specified by
Eq. 3.24.

Now that we have found an expression for the eigenvalues,
we can show how the eigenfunctions follow.

For convenience, define A(\) as

A(\) = \Ifné(Tf, T NP, + {’n LT ) (3. 25)

n Tt
When M\ is equal to an eigenvalue, )‘i’ A()\i) has a vanishing
determinant. Consequently, the characteristic polynomial of A(ki)
has a root equal to zero and ﬂi(To) is the characteristic vector

"charac-

associated with this root. (We have used the adjective

teristic" in order to avoid confusing the eigenvalue properties of

the matrix A()‘i) with those of the integral equation, Eq. 3. 1.)
Therefore, to determine ni(To) to a multiplicative

factor we need to solve the linear homogeneous equation

A(MN)n,(T,) = 0. (3. 26)

Given :'li(To) we can find the eigenfunctions by using the

upper partition of Eq. 3.21 and Eq. 3.8. This gives us
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(1) = C)(:) [\réé(t,TO:)\i)Po + ‘I’gn‘t’To"‘i”Hi(To)’ (3.27)

To =t = Tf.
which is the desired result.
Before proceeding we should comment about multiple-

order roots of Eq. 3.24. In general, the function det A(\) vanishes

with nonzero slope, that is, near an eigenvalue A
_ - v 2
det A(M) = ¢ (N=N) + e y(M-N) 7 + .y (3.28)

where ¢y is nonzero. In the case of multiple-order eigenvalues,
the function det (A(\)) vanishes tangentially; that is, near an eigen-

value >‘i of order £
_ ' 241
det A(\) = cl()‘-)‘i) + Cpy l(x-xi) +oeee . (3. 29)

This implies that there will be £ linearly independent vectors

ﬂi( TO) satisfying

AM\)N(T,) =0, (3. 30)

i.e. A()\i) has rankn - £.
If we examine our solution we see that the only function
that we need to determine is the transition matrix of W(t:\),

T(t :To:)‘)' For the important case of kernels that are covariances

of the output of a constant parameter system, we can find an
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analytic expression for this transition matrix in terms of the

matrix exponential,

W()\)(t-To) (3. 31)

(t, T\ =e
This matrix exponential may be conveniently computed by Laplace

transform methods. We have

WINE = XML, - woul ™, (3. 32)

where Kl is the inverse Laplace operator. (In the inversion the
contour must be taken to the right of all pole locations of [Is-W(M)] 1.)
If one desires a numerical evaluation of this matrix exponential, as

is the case for systems of order greater than one, a possible

method of calculation is to truncate the series expansion

= iid
WL _ Z [Wgzx)] ko (3. 33)
j=0

In the case of time varying systems, there is no general
analytic method for determining this transition matrix. However,
we can still use our technique by evaluating this transition matrix
by numerical methods, e.g. by integrating the differential equation
~ defining it.

We can now summarize our results for homogeneous
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Fredholm equations. The eigenvalues )‘i are specified by the

roots of the transcendental equation

det A()‘i) =0 (3. 24)
(repeated)

where A(\) is given by Eq. 3. 25.
AN = \IfIlg (Tf, T MNP+ \Ifnn(Tf, T :N) (3. 25)
- (repeated)

The eigenfunctions are given by Eq. 3. 27

04(t) = C(t) [\Ifgg(t TP+ T (Tp T, 21, (T ) (3.27)

(repeated)
where ﬂi(To) satisfies the orthogonality relationship
A()‘i)ﬂi(To) = 0. (3. 26)
(repeated)

(The multiplicative factor may be determined by applying the

normality requirement.) The matrices

_§__§_(t T N, Ifg (t T N, ¥ g(T T :\), and \IfrL (Tf,TO:)\)

are partitions of the matrix I(t, T o:)‘) which is the transition matrix

associated with the matrix
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Ft) 1 GIIQGT(Y)
L I R — S -
i CT(t))\ cly) ! Ty (repeated)

These equations specify the eigenvalues and eigenfunctions for a
kernel Ky(t, T) which is the covariance matrix for the random
process i(t) . This random process is generated at the output of
a linear system that has a state variable description of its
dynamics and a white noise excitation.

To conclude this section we point out some advantages
that this technique oifers.

1. We can solve Eq. 3.1 in the vector case. For
those techniques which rely upon spectral factorization methods the
vector case could ‘cause some difficulty. (In some respects we have
defined this problem away by our method of characterizing the
random processes of interest. It should be pointed out that
depending upon the problem this method of characterization may be
just as fundamental as the covariance method.)

2. Once .the state matrices are chosen to generate
y(t), the differential equations that must be solved follow directly.

3. One does not have to substitute any functions back
into the original integral equation in order to determine the
transcendental equation that determines the eigenvalues.

4. We can solve for each eigenvalue and eigenfunction
independently of the others, which is significant in actually obtaining

accurate solutions.
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5.  We can study a certain class of time varying
kernels.

6. TFinally, the most important advantage is that the
technique is very well suited to numerical methods. This allows one
to determine numerical solutions easily for problems in which an
analytic calculation is either difficult or not feasible.

The major disadvantage is that the class of kernels
that we may study is limited to those that fit into our state variable
model. However, we emphasize that most of the processes of

interest in communications do fit within our model.

B. Examples of Eigenvalue and Eigenfunction Determination

In this section we shall illustrate the method developed
in the previous section. To do this we shall consider several
examples. First, we shall do three examples analytically. We
do this principally to illustrate the use of the formulae in the
previous section. The processes in these examples are generated
by a first order system. In general these are the only systems for
which this type of analysis can be done in a reasonable amount of time.
We shall then present an example of the numerical analysis of a
second-order system. It is this type of problem for which the
technique is most useful. It allows one to obtain numerical

solutions very quickly with a digital computer.

Example 1 - Eigenvalues and Eigenfunctions for the Wiener Process

The covariance matrix of a Wiener process which starts

att = 0is
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K (t,7) = w? min(t, ), 0=t,T. (3. 34)
A state-variable representation of a system which generates y(t) is

dx(t)

3 = u(t), (state equation), (3. 35a)

y(t) = px(t), (observation equation), (3. 35b)
where

E[ut)u(n)] = 8(t-7), (3. 35¢)

E[x%(0)] = 0. | (3. 35d)

(The Wiener process starts with a known initial state by definition.)
For convenience let us identify the state matrices as

indicated in Fig. 2.1

=0 = M
G=1 Po = 0 (3.36a-¢)
=1

Let us find the solution to Eq. 3.1 when we choose
Tf =T and To = 0. First, we need the matrix W(\) (the system is
constant parameter) specified by Eq. 3.14. After performing the

required substitutions of Eq. 3.36 inEq. 3.14 we have
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-t

W) o= | mmmee-- poo----- (3. 37)

To find the eigenvalues and eigenfunctions we need to find the
transition matrix of W(\). If we apply Eq. 3.32 we find that the

transition matrix ¥(t,0:\) is

i cos(-- t) I 2 sin(-E-t)
4N ' N
W(E,00\) = | -mmmmmmmmeeee- N (3. 38)
~Eogin ()] cos()
X v x|

We now simply apply the results as summarized at the end of the
previous section.

First we substitute Eqs. 3.36e and 3. 38 evaluated at
t = T into Eq. 3.25 to find A(\). In order for an eigenvalue to

exist Eq. 3.24 implies

det(A(\,)) = cos( E_T)=o0. (3. 39)
X

i

The distinct solutions to Eq. 3.39 are given by
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2
_ 2uT

The eigenfunctions follow by substituting Eq. 3.38 in Eq. 3.27.

After determining the appropriate normalization factor, we have

0.(t) =/ = (2l "JOStsm (3. 41)

Example 2 - Eigenvalues and Eigenfunctions for a One Pole,

Stationary Process

Let us now consider the kernel of Eq. 3.1 to be

k|t-7] (3. 42)

Ky(t, T) = Se
This is the covariance of the output of a first order system with a
pole at -k and P0 chosen such that the process is stationary. The
state equations that generate this process are given by Eqgs. 2.16
and 2. 17.

Since the kernel is stationary only the difference
between the upper and lower limits of the integral are important.
Consequently, we again set Tf =T andT = 0.

Proceediﬁg as before, the matrix W(\) follows by

substituting Eqs. 3.44 in 3. 14.
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i
|
W) = | =------ oo : (3. 43)
(
|
I

The transition matrix for W(\) is

cos(kbt) - SBUBL 1 2E gin (epty ]
]
(£, 0:N) = | =mmmmmmmmmmmmmmnm bo oo oo , (3. 44)
{
1 sin(kbt) , sin(kbt)
B N ' cos(kbt) + —-b——_t
where
b2 [2 ., . (3. 45)

By substituting Eq. 3.46 in 3.24 and 3. 25, we obtain an equation

which determines our eigenvalues

det(A)) = 5-[1 - S ]sin(kb,T) + cos(kb,T) = 0 (3. 46)
1 1 '

In order to compute the roots by hand, Eq. 3.46 can be

put in a more convenient form. This form is

tan(kb, T) = i (3. 47)
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Solving Eq. 3.46 for \ gives us the expression for the eigenvalues,

)‘i’ in terms of the bi’

_ 28 24 -1
)\i——k—[1+bi] . (3. 48)

Applying Eq. 3.27 gives us the eigenfunctions. They are of the

form
— ]‘ 3 <
¢i(t) = yi[cos(kbit) + —l-)——-i s1n(kbit)] , 0 =t=T, (3. 49)

where Y; is a normalizing factor.

Example 3 - Eigenvalues and Eigenfunctions for a One Pole, Non-

Stationary Process

The output process of a constant parameter system is not
necessarily stationary e.g. the Wiener process. A second example
of this can be generated from the previous example. Instead of
setting PO equal to the mean-square power of the stationary process,

assume that we know the state at t = 0 exactly; that is,

P_=0. (3. 50)

In this case the covariance function becomes
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S e—kt(ekT— e—kT) fort > 7,

Ky(t,'r) =

'S e-kT(ekt- e-kt) for v> t. (3. 51)

By substituting Eq. 3.44 in Eqgs. 3. 24 and 3.25 and setting PO equal

to zero, the equation for the eigenvalues follows directly:

sin(kbiT)
det(A()\i)) = cos(kbiT) + ———-51—-— =0, (3. 52)
where, as before,
N (3. 45
= - 43)
or equivalently,
tan(kbiT) = —bi. (3. 53)

From Eqgs. 3.27 and 3. 44, the eigenfunctions have the form
¢i(t) = v; sin(kb,t) 0=t=T, (3. 54)

where V; is again a normalizing factor.

‘Example 4 - Eigenvalues for a Two Pole, Stationary Process

In this example we want to consider the analysis when

the kernel is the covariance of the output of a second-order system.
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In contrast with the previous examples, however, we shall consider
a particular system and analyze it by using numerical methods.
Obtaining analytic results for systems whose dimension is greater
than one is straightforward, but extremely tedious. Let us assume
that the kernel Ky(t, T) of Eq. 3.1 is the covariance function given by
Eq. 2.19 and illu_strated by Fig. 2.2a. The state equations for
generating y(t) are specified by Eq. 2. 18. In addition, let us set

T

f:2andT=O.

First, we need the matrix W(\). By substituting

Eq. 2.18 into Eq. 3. 14 we obtain

win=| (3. 55)
-~ 0 0 10
x
0o 0 -1 2

In order to determine det[ A(\)], we need to find the
transition matrix of W(\) evaluated at T = 2, i.e. we need to
exponentiate the matrix W(A)e'T. To do this, we used a straight-
forward approach by applying Eq. 3.33 and taking the first 30 terms
in a nested fashion. (For further discussion regarding our
numerical procedures, see .Reference 32.

Once we find this transition matrix, we performed the

operations indicated by Eq. 3.25 to find det[ A(\)]. By varying the
parameter N and repeating this procedure, we can plot this

function versus \. The resulting curve is indicated in Fig. 3. 1.
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In this figure the zero crossings are the desired
eigenvalues. This type of behavior for the function det(A(\)) is
typical of those that we have observed. In the region of the larger
eigenvalues, corresponding to those with significant energy, the
function is well-behaved and oscillating (nonperiodically).As we
approach the less significant eigenvalues, however, the amplitude of
the oscillation rapidly increases. Eventually, the eigenvalues
become so small that it becomes difficult to compute A(M\)
accurately. In this region the eigenvalues are approaching their

19 This behavior is

asymptotic behavior, as discussed by Capon.
governed by the "tail" of Sy(w) . (In Fig. 3.1 we have used arrow-
heads to indicate the location of the eigenvalues as indicated by
Capon's formulae. As the eigenvalues become small, the comparison
is quite good.)

Since this state-variable technique is well suited for
finding the significant eigenvalues, one could combine this method
with an asymptotic method in order to find all of the eigenvalues

conveniently. In all cases that we have studied, we could account

for at least 95 percent (often as much as 99 percent) of the total

energy
T, o
5 Tr[Ky(t,t)]dt =E = E A (3. 56)
0 i=1

by our method. The asymptotic method, or a comparable one for

non-stationary kernels, could be used to calculate the eigenvalues



58

-3

T it — .
. 0
o >
. A
W <
.ﬁm.. N>
= g
ey
()]
i)
BB SEEEE
; i
T o et
= SIS . . == smeae e




59

corresponding the residual energy not accounted for.
We can summarize the behavior of the eigenvalues for
this example by plotting in Fig. 3.2 the first six eigenvalues against

T, the length of the interval (T = Tf - TO). We see that the curves

satisfy the monotonicity requirement, 20,3

ON.(T)
— = MMM o, (3. 57)

In addition, the number of significant eigenvalues increases with T
reflecting the increase in the "2WT product'.

We shall conclude this example by discussing the
computer time required to find the eigenvalues for this kernel. We
used the Fortran language on the IBM 7094 computer (the method
has recently been reprogrammed for the IBM 360 as a general
purpose routine.) As indicated earlier, we did not employ any
sophisticated algorithms for computing A(\). The time required to
compute the data for Fig. 3.2 in order to find the first eight
eigenvalues (99. 8 percent of the energy) is approximately 20 seconds;
in addition, the eigenfunctions may be found with very little

additional computer time.

C. TheA Fredholm Determinant Function

In the application of the Fredholm theory to com-
munication theory problems, the Fredholm determinant function
is often used, _e____g___ in the design of receivers and the calculation of
their performance for detecting Gaussian signals in Gaussian noise.

This function is defined as
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[>e]

D (2= 11 (1420 (3. 57)
F i=1 M |

where the )\i‘s are the eigenvalues of Eq. 3.1. In this section,

we shall show how the theory developed in Section 3.1 of this chapter
can be used to find a closed form expression for this function. This
expression can be determined either analytically, it can be readily
calculated by the same numerical procedures employed in the
previous section.

To dé this we make some observations regarding the
function det [A(-Zl-)] where z may be a complex variable. (1.) It is
easy to argue that det[ A(%)] is analytic in the finite plane.

(2.) Because our test for the eigenvaluesis necessary and sufficient,
det[A(% )] has zeroes only at —)1\-; . (3.) The sum of the eigenvalues
converges to E(Eq. 3.56). Given these observations, one can show

that det[ A(%)] has the infinite product formZl

o0
det[A(2)] = A, TT (1-x2) (3. 58)
i =1
where
A= lm A(%) . (3. 59)
z >0

Comparing this with Eq. 3.57, we find that the Fredholm determinant

function is given by
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Do) = -ero— det{ A(- 2], (3. 60)

i.e. we can evaluate D(z) by using the same function that we

employed for determining the eigenvalues of Eq. 3.1 except we use
a negative argument.

The only issue that remains is a convenient method for
evaluating the constant AO; In a direct proof of Eq. 3.60 Collins
has done this. 22 For completeness, we shall include this part
of his derivation.

If weletz - 0 in Eq. 3.14, W(t:-;—) becomes

F(t) G(t) QG (t)
lim W(t: —1_) = (3.61)
z> 0 “ 0 FL
-F L)

Let us examine the differential equation, Eq. 3.16

defining \If(t,TO:%) when we substitute Eq. 3.61. We see that

d .. 1 T . 1

lim ¥ t, T (=) =-F7(t) lim ¥ t, T = 3.62
o Hm e ¢ (8 Toi5) (t) Hm ¥ (T 3) (3. 62)
Since the initial condition for this homogeneous equation is the

zero matrix, its solution is the zero matrix, i.e.

Zlinr; \Irné(t,To:-;-) =0 (3. 63)

Similarly we see that



lim ¥ (t,T:
z >0 ﬂﬂ o

N

)= —FT(t)'limo\Ifm(t, T i) (369
z > '

4
dt
However, its initial condition is the identity matrix. Therefore,

from the adjoint relationship we have

1, -17T
T, i2)=0"" (T T,) (3. 65)

lim \Ifﬂﬂ(Tf, o' %

z—>0

where G(Tf, To) is the transition matrix of F(t). Consequently,

from Eq. 3.25 we obtain

T
Al =Z1i_>nbdet[ A(—;—)] = detf ot (T4 To)] = [det] o(T,, To)]] -1

(3. 66)
Since a transition matrix is nonsingular, its
determinant cannot change sign, i.e., it must always be positive.
This implies that Ao is positive, and we can take its logarithm.

This yields?3

In(A ) = - £n(detf Q(Tf, TO)]) =

Ty
j = tn(det] o(t, T )])dt =
T

o

Ty T de(t,T_) T
S Te[07 (t, TN —gg—) ldt =
T

o]
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T

f
- 5 Tr[ F(t)] dt (3. 67)
T

o

Therefore, we finally have

Te
-S Tr[ F(t)] dt
TO
, Ao =e (3. 68)
and
Te
S Tr[F(t)]dt
To 1
Dg__(z) =e det[ A(- Z)] (3. 69)

For many of our problems, D‘sr(z) is not the most

convenient function to use; instead, we shall use the function

* .
any 2 iet%(_"i]_ =TT (+ 50, (3. 70)
° i=1

from WI;iCh '%(z) can be quickly determined. The function d(\)
approaches one as A\ =+ oor -e., Forpositive values of \ itis a
monotonically decreasing function of A, while for negative values
of N it has the same behavior as we have earlier discussed
regarding the behavior of det[ A(N)].

Before proceeding, we shall pause to mention an
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asymptotic expression for d(\) when y(t) is a stationary process
and the time interval, or 2WT product is large. Under these

assumptions it is easy to show that

pe S_(w)
nd\)~ T 5 In(l + y)\ )ydw (3. 71)

This formula allows use to determine the asymptotic behavior of
d(\) in our calculations.

Let us briefly determine d(\) for three of the examples
in the previous section. As beforé, we shall do two examples ana-

lytically and the third by numerical methods.

Example 5 - d(\) for a Wiener Process

Since F = 0, we have Ao =1. From Eq. 3.38 we have,

d(\) = det A(-\) = cosh( £~ T). (3. 72)
ey

Example 6 - d()\) for a One Pole, Stationary Process

Using Eq. 2.17 in Eq. 3.63 we find
A = tET (3. 73)

To determine det[ A(-\)], we use Eq. 3.44. Let us define

1
,6:[1+.§§_] . (3. 74)
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After some routine algebra, we obtain

. Rl .
a(\) = e—kT[( 8 ;1 ) sinh(k B8T) + cosh(kpT)] =

-kT 2 k@T

E—ZT[(B+ )% e --(ﬁ.-l)ze-kﬁT]

(3. 75)

Example 7 - d(\) for a Two Pole, Stationary Process
Let us find d(\) for the same stationary kernel considered
in Example 4. As in that example we shall use a numerical analysis.

" From Eq. 3.68 we find

A =e (3. 76)

Next, we use the same computational method that we used to determine

the eigenvalues; however, we must use a negative argument. In

Fig. 3.3a we have plotted the resulting d(\) with solid lines for time

interval lengths of 1, 2 and 3. As a meané of comparing our results

with those derived by assuming the time interval is large,

we have plotted the results indicated by Eq. 3.7l with dotted lines.

We can see that for T= 2, we are very close to the asymptotic

results indicated by a stationary process, large time interval analysis.
Finally, the function log (d(\)) is often used in com-

munications, e.g., as it related to the realizable fitter error. In

Fig. 3.3b we have plotted log(d(x)) vs. \ as found by our exact

analysis, the solid lines, and the approximate results found using

Eq. 3.71. Again we have the close comparison for T = 2.
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(This plot also indicates the behavior for large \, whereas Fig. 3.3a

did not.)
D. Discussion of Results for Homogeneous Fredholm Integral
Equations

In this chapter we have formulated a state variable
approach for solving homogeneous Fredholm integral equations. As
we indicated earlier, the technique has several advantages
particularly from a computational viewpoint. Consequently, in
problems where we need to evaluate the eigenvalues and/or eigen-
functions directly, we have a very general method available which
allows us to make just such an evaluation with a minimum of effort.

Quite often we do not need these solutions directly, but
we require an expression involving them. In many cases, we should
be able to determine such expressions ina closed form by using the
theory that we have developed, for example, as we did with the
Fredholm determinant function.

Proceeding with our discussion, several comments are
in order regarding the desirability of having a convenient method of
evaluating this Fredholm determinant function.

1. In the problem of detecting Gaussian signals in
Gaussian noise, it enters intwo ways. First, it appears as the
bias in calculating the threshold of the likelihood receiver. More
importantly, it is intimately involved in the calculation of
performance bounds for this problem. 12

2. In an estimation theory context if we consider the

problem of estimating the parameters of a Gaussian process
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(or the system identification problem), we can show that the Cramér
Rao bound can be determined using this function.

Finally, the solution method we have developed is
important in itself. As we shall see in Chapter V, the concept of
requiring a determinant to vanish for the existence of a solution is
important. In this chapter, we shall find a similar set of
homogeneous differential equations and boundary conditions that
specify the solution to the optimal signal design problem for
additive colored .noise problems. The method of solving these
equations is exactly analogous to the eigenvalue problem in that it
requires the vanishing of a determinant for a solution to exist.

Now that we have studied the solution of homogeneous

Fredholm equations, let us examine the nonhomogeneous equation.
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CHAPTER 1V

NONHOMOGENEOUS FREDHOLM INTEGRAL EQUATIONS

Nonhomogeneous Fredholm integral equations are of
considerable interest in communication theory. In this chapter
we shall use the results of Chapter Il to develop a state variable
method of solving these equations. As before, there are some
significant advantages to the methods introduced.

One of the more important applications of this integral
equation is the problem of determining the optimal receiver for the
detection of a known signal in the presence of additive colored noise.
Since we shall study this problem in detail both in this chapter and
in the next, we shall first pause briefly to review the communication
model for this problem. This is not meant, however, to imply that
this problem is the only place where we can apply our methods.
Other applications include the solution of finite time Wiener-Hopf
equations in order to find optimal estimators, as we shall do in
Chapter VI, and the calculation of the Cramer-Rao bound for the
estimation of signal parameters.

After this brief review we shall present our derivation.
The results come quickly since we have derived the required
formulae in Chapter II. The result of our derivation is a pair of
vector differential equations and boundary conditions. Since these

equations have appeared in the literature in another context, namely
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14,15,16
the linear smoother, we have several solution methods available.

We shall devote a section to introducing these methods and comments
upon their applicability.

Finally, we shall consider three examples. Two of
these will be worked analytically while we shall resort to numerical

procedures for the third.

A. Communication Model for the Detection of a Known Signal
in Colored Noise

Let us briefly introduce the communication model for
the problem of detecting a known vector signal in additive colored
noise. We have illustrated the model in Fig. 4.1. We have a
transmitter which on hypothesis 1 transmitss l(t), while on hypothesis
0, it transmits _§O(t) over the time interval T0 =t = Tf. For
discussion purposes let us assume that §_1(t) is s(t) while go(t) is
-_s_(t). The channel adds a vector colored Gaussian noise process
to the signal. We assume that this colored noise consists of two
independent components. The first component is a random process
y(t) that is generated according to the methods we discussed in
Chapter II. The second component is a white Gaussian process
w(t) that has a covariance as specified by Eq. 2.7. Consequently,

we have the following detection problem

on H1 r(t) = s(t) +y(t) + w(t), T =t=T

on H0 r(t) = -s(t) + y(t) + g(t), T =t=T (4. 1)
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Under these assumptions it is straightforward to show
that the optimal receiver can be realized as indicated in Fig. 4.1
This realization is a correlation receiver. We multiply (dot
product) the received signal r(t) with a function g(t), and then
integrate over the observation interval, i.e., the sufficient statistic

for the decision device is

Te

Ur) = SIT(T)g_(T)dT (4. 2)

To

The correlating signal is the solution to a nonhomogeneous Fredholm
integral equation.

This integral equation has the form

T
f
S K (t, T)g(m)dT + Rit)g(t) =s(t), T, =t = Ty (4. 3)
T
o
where Ky(t, T), the kernel of the equation, isthe covariance

‘of the random process y(t), which we assumed is
generated according to the methods discussed in

Chapter II;

s(t) is a known vector function, the transmitted signal;
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R(t) is the covariance weighting matrix of w(t), which
is assumed to be positive definite;
and

g(t) is the desired solution, the correlating signal.

One can also find the performance measure for this
system. It is again straightforward to show that this measure,

usually termed dZ, is given by
T
dz' = S sT(T)_g_(T)d'r (4. 4)
T

where s(t) and g(t) are defined above. Error probabilities, detection
and false alarm probabilities can all be determined in terms of this

measure.

As we metnioned earlier we shall study the nonhomogeneous
integral Eq. 4.3 in the context of this detection problem. We
emphasize, however, that the techniques developed are general in
that they do not need to be considered in this particular context.

Let us now proceed to develop our solution method.

B. The State Variable Approach to Nonhomogeneous Fredholm
Integral Equations
Let us make two remarks regarding the solution. First,
in contrast to the homogeneous equation that has an at most

countable number of solutions, this equation has a unique solution
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when R(t) is positive definite. Second, we may find a series
solution in terms of the eigenvalues and eigenfunctions of the
homogeneous equation; for example, when there is equal white noise

level o in each component channel, we have

e \. s.

gt) =0 [ st) - Z o 9,01, T St=T,, (4.5
: 1
1

(the general vector case requires a simple, but straightforward
modification).

Let us now proceed with the derivation. We rewrite
Eq. 4.3. (The first part of the derivation is due to a suggestion by

L. D. Collins?%)By using Eq. 2.9, we have

T
: f
glt) = rR™(t) [_s_(t) - C(t) S K (t, T)CT(T)g(T)dT]‘ T, St =T,
To (4.6)
Ifin Eq. 4.6 we set
g(t) = 1(t), (4.7)

we have the result that the integral enclosed in parantheses is the
function £(t) as defined in Eq. 2.22. Consequently, we define §(t)

to be
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=

Py
=
"
HC—

K (6, mC (g(mar, T =t=T, (4.8)

so that Eq. 4.3 becomes

=
1A
+
A
&

g(t) = R™ 1) [ s(t) - Ctgm],

gl o £ (4.9)

For the class of Kl(t,'r) that we are considering, we have shown in
Chapter II that the functional defined by Eq. 4.8 may be represented

as the solution to the following differential equations:

dag(t)

= = FOE(D) + G(HQ G (t)n(t), T,=t=T; (4.10)
dn(t)
S = -CT(hgt) - Fhitime), T St=T, (4.11)

plus a set of boundary conditions. If we substitute Eq. 4.9 in
Eq. 4.11, we obtain

dn(t) 1

—— = cTwRr™ wcmwam - Fliomnwm (4.12)

- TR s T stsT

Consequently, we have shown that the nonhomogeneous Fredholm
equation can be reduced to the following set of differential equations

and associated boundary conditions:
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ag(t) T — _
—ar = FIE®M + GIIQG  (tn(t), T, =t =T, (4.10)
(repeated)
dn(t) . _ T
=5 = CTwr  wewew -Flomm - S Wew 1 =t=r,
(4.12)
(repeated)
&(T,) = P_n(T), (4. 13)
Il(Tf) = 0. (4. 14)
The desired solution is given by Eq. 4.3 to be
gt) = R Ho)ls - cgml, T, =t=T, (4.9)
(repeated)
Quite often it will be convenient to write Eq.4.10 and Eq. 4.112
as one differential equation in the form
£(t) £(t) 0
adt— “““ =Wt) [-=-=-| ~=~—"7—~=~- (4. 15)
T -1
n(t) Aty | |CT (MR “(t)s(t)
| To =t = Tf,
where we define w(t) to be
and l T —
F(t) I G(t)QG ™ (t)
A I ;
W= |- - —p e — (4.16)

- L}
cTwrlwewy,  -rliy

- —
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We note that the coefficient matrix of Eq. 4. 16, W(t) is
similar to that which appeared in the homogeneous equation. The
ma jor difference is that positive definite matrix R(t) appears where
-\ did. We also note from our discussion of the Fredholm
determinant that one wants to find the transition matrix of W(t)
in order to compute %()\).

The solution indicated by Eq. 4.9, has an appealing
interpretation when one calculates dz as given by Eq. 4.4. For
simplicity, let us again assume R(t) = oI, o a scalar. Substituting

Eq. 4.9 into Eq. 4.4 gives us

o &
2 . t)s(t (t)C(L)E(t
T T
o O

The first term is simply the pure white noise performance, d; . The
second term represents the degradation, dé » caused by the presence

of colored noise in the observation. Therefore, we have

2 2 2
a®=al -d (4. 18a)
Te
Tysty|. 2
@, = 5 2 00 2 B (4. 18b)
a a
T
(0]
Te
2 Tty
dg = S = = (4. 18c)
T a :
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In the next chapter we shall consider the problem of maximizing the
performance by choosing s(t) when it is subject to energy and band

width constraints.

C. Methods of Solving the Differential Equations for the
Nonhomogeneous Fredholm Equation

In the last section we derived a pair of vector dif-
ferential equations that implicitly specified the solution of Eq. 4.3
As we shall see in Chapter VI, these equations appear in the optimal
smoother, or the state variable formulation of the unrealizable
ﬁlterﬁf In this section we shall exploit the methods that have been
developed in the literature for solving the smoothing equations in
order to solve the differential equations for the nonhomogeneous
equation. Since these methods have evolved from the smoothing
theory literature, the material in this section draws heavily upon
References 14 and 15.

Let us outline our approach. We shall develop three
methods, each of which has a particular application. The first
method is useful for obtaining analytic solutions. The second is
intermediate result in the development of the third method. It is
useful because it introduces some important concepts and results.

The third method is applicable to finding numerical
solutions since the first two methods have some undesireable

aspects. We should also note that the methods build upon one

*This is consistent with the estimator-subtractor realization of the
optimal receiver for detecting g(t).~3
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another. Consequently, one needs to read the entire section to
understand the development of the last method.

Before proceeding, let us summarize the results from
the previous section that we need and introduce some notation that

we shall require. We want to solve the differential equations

£(t) £(t) 0
d e | = W) ||| m == == , T =t =T, (4.15)
dt , T -1 repeated)
n(t) n(t) | {CT{)R “(t)s(t)
where we have defined
F(t) ata Ty
W(t) = ) ( 4.16)
' - ( ted
cTwr Moy -Friy repeated)
and we have imposed the boundary conditions
£T_ ) =P n(T) (4. 13)
© o= o (repeated)
n(Ty) = 2. ; (4. 14)
o (repeated)

Furthermore, let us introduce the following notation. We define

the transition matrix of W(t) to be ¥t, ), i.e.,

dit T(t, ) = W(t)E(t, 7), (4. 19a)
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T(t,T) =1. (4. 19b)

In addition, let us partition this transition matrix into four n x n

submatrices in the form

W(t,T) = | ==-=-mmmmm e . (4. 20)

Method 1
The basic approach of the first method is to use the

superposition of a particular and a homogeneous solution. First,
we generate a convenient particular solution in order to incorporate
the forcing term dependence. Then we add a homogeneous solution
so as to satisfy the boundary conditions. In order to find a particular
solution, let _g:_p(t) and np(t) be the solution to Eq. 4. 15 with the
initial conditions

£,(T) = (T)=0. (4. 21)
Since we have specified a complete set of initial conditions we can

uniquely solve the equation

) 5, £,
xia i AU il —T"—_-l-—-‘ » Ty=t.
np(t) np(t) CT (R “(t)s(t)
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In order to match the boundary conditions, let us add to this

particular solution a homogeneous solution of the form

£ (1) P «
Sh]=EeT) L2 n (T, (4.23)
nh(t) I ‘

where 3h(To) is to be chosen. Notice that the sum of these two
solutions satisfies the initial boundary condition (Eq. 4.13)
independent of 3_H(To). Therefore, we want to chose nh(To) such
that we satisfy the final boundary condition (Eq. 4.14). To do this,

let us rewrite Eq. 4{23 in the form

g0 % (£, T)
——— = ———————— - nh(TO) ) (4.24)

where we define the matrices

a

Qé(t, TO) ‘F_g_g(t’To)Po + \Il_g_n(t’To)’ (4. 25)

A .
@n(t, To) = \Ifné(t, TO)PO + \Ifnn(t, TO), (4. 26)

Consequenﬂy, we have
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£(t) Eplt) +8 (5T n (T)
= | mmmm e (4.27)
+ {
n(t) np®) + @ (6, Tohn (T.)
T,=t=T,
Applying the final boundary condition, requires that
_ -1
N, (T,) = - @ (T, T (Ty) (4. 28)

Substituting this in Eq. 4.27 gives us the final result for this method,
= - & -1 <t <
E(t) = _&;_p(t) <I>§(t, TO)@n (Tf, To)ﬂp(Tf) , To=t= Tf (4. 29)

nt) = 1(6) - @ﬂ(t,To)é;(Tf, Tn(T). T,=t=T; (4.30)

8
(The matrix & (t, T_) can be shown to be nonsingular for all t.)
nf

Let us briefly summarize the method. First, we need to
determine §g(t, To) and <I>n(t, To) as defined by Eqs. 4.19, 4.25 and’
4.286. (This—can be done independent of the signal, s(t).) We then
find the particular solutions _E,_p(t) and I]p(t) by solving Eq. 4.15 with
the initial conditions specified by Eq. 4..21. Finally, we substitute
these functions into Eqs. 4.27 and 4.28 to find £(t) and n(t).

Two comments are in order. For a large class of
problems the differential equations that one needs to solve using
this method have constant coefficients. Consequently, the method is
well suited for finding §(t) and n(t) analytically. We shall illustrate

the use of this method in the next section with two examples.



85

We also observe that the differential equations we need
to solve are unstable. e.g. if the system parameters are constant
W has eigenvalues with the positive real parts. Consequently, one
can (and does) encounter difficulty in numerically solving these
equations when the time interval [To’Tf] is long. This leads us to
the problem of finding an effective numerical procedure for solving
one equation.

In order to solve this problem we shall introduce two
more methods. The first of these will develop some important
concepts and results. The second shall use these concepts to develop

the solution method which has the desired numerical properties.

Method 2

The most difficult aspect of solving Eq. 4.151is
satisfying the two point, or mixed, boundary conditions. The
essential aspect of the second method is to introduce a third
function from which we can determine _g_(Tf). Since ﬂ(Tf) is always
identically zero, this allows us to specify a complete set of boundary
conditions att = Tf. With these conditions we then integrate Eq. 4.15
backwards over the interval.

From Method 1, let us define

A -1 £
B(t/) = 2yt T2 (£, Ty) . (4.31)

“The notation Z(t/t) is consistent with Chapter VL.
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We shall find a matrix differential equation that =(t/t)

satisfies. We have

de (t,TO)

ds,(t, T )
£ 7o _ d3(t/t) q;n(t,To) +2(t/t)y A9 (4.32)

dt - adt dat

Substituting from Eqs. 4.25, 4.26, and 4. 19, we find

F()8 (£, T ) + G(HQ GT(t)qsﬂ(t, T )=

d3At/t) Ty -1 T
—at It To) +ZWA(C TR (IC(H2 (L, T ) -F (1), (t, T ))

(4.33)

Multiplying by Q-nl(t, To) and using Eq. 4.31 yields

-‘?E(d_‘;/t_) = F()Z(t/t) + St/ F L (t)

- zit/mcTwr Mo/ +ameaTh (4. 34)
The initial condition follows from Eqs. 4.25 and 4.26

(T /T = P (4.35)
Consequently, we have the expected result that =(t/t) is identical to
the realizable filter covariance matrix since it satisfies the same

matrix Ricatti differential equation and has the same initial condition.
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Let us define a function § _(t)
2r

_ } -1 _ )
£t =E (1) - @ g6 T2 (6 Tn (8 = E(1) z(t/tmp(t)

2r
(4. 36)
We note that
E(Ty) = £ (T (4. 37)

Now we shall find a differential equation for ér(t). Differentiating

Eq. 4.36 and using Eq. 4.34, yields

d £ (t) T
_._dtr_ :F(t)_’é_p(t) + G(t)QG (t)gp(t) -

(F)=(t/t) + Ze/HF (1) + GHQG T (1) - =(t/t) CTHR l(’c)C(t)z:(t/t))np(t)

- st/n(c R M mewe S - Fl(t)y o)

-,CT(t)R-l(t)g(t)) ‘ (4. 38)
After cancelling and combining terms by using Eq. 4.36 we have

d §..(t -
éf( ) - Fiye 0+ 26 TR (s(-GHE (1) (4. 89)

The initial condition follows from Eqs. 4.36, 4.31 and 4. 22.

E (T )=0 (4.40)
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From Eq. 4.38 we have the expected result that gr(t)

satisfies a differential equation of the same form as realizable
filter estimator equation. We should note that in this particular
application of solving the nonhomogeneous integral equation, the
input _s__(t) is deterministic rather than a random process, e.g.,
some received signal r(t).

Equations 4. 34 and 4, 38 are the key to the second .
method. We simply integrate them forwardin time tot = Tf, applsr
Eq. 4.37 to find g(Tf), and then integrate Eq. 4.15backwards in
time using the complete set of boundary conditions at t = Tf.

Expressed in terms of an integral operation we have

o) ET | i 0
=== _\I,(t3 Tf) - + S \E(t, t‘) ~~~~~~~~ dt',
1 (t) 0 t cTenr™ Hens(tn
T St=T,.  (4.41)

Let us examine this method for a moment. The basic
approach was to convert a tvfo point boundary problem into an
initial, or final,- value problem. Since the g_r(t) function that we
developed for this conversion is the output of a realizable filter
structure, it has many desirable properties. In particular, a lot is
known regarding effective procedures for calculating § r(t)
numeric aliy .

However, we will still have difficulty integrating



89

Eq. 4. 41 backwards in time since Eq. 4. 16 is also unstable when
integrated backwards. For example, with constant parameter
system W has eigenvalues in the left half plane. These produce
growing exponentials as we integrate Eq. 4. 16 backwards from the
endpoint. ‘With our third method we shall eliminate this undesirable

feature.

Method 3

In this method we shall derive a result which allows us
to uncoupi'e the equations for g(t) and n(t). After we do this we shall
observe that the resulting differential equations for §(t) and n(t) have
some desirable features from a computational viewpoint. First, we
need to derive one key result.

Let us consider the difference of é(t) and ér(t).

Substituting Eqs. 4.39 and 4.36
B0 - 00 = 8(t. T {-2 (Tp. Ton (To+a (6, T n (0} =
2yt T2 (1, To) fn (0= @, (6, T T Ty T (T} =
S/ne (4. 42)
Consequently, we have the result

(1) - £_(t) = Z(t/H)n(D), (4. 43)

or

a(t) = 7 EANE) - & (1) (4.44)
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If we substitute this into Eq. 4.10 we can obtain
separate the differential equations for §(t) and n(t). We find

substituting for n(t)

AEW - ) goe) + @ T N/ - € () =

(F(t) +GHIQGT (1) = (t/1E() - GHIQGT (12 L t/Hg (1),

T, St=Tg. (4. 45)
Similarly, substituting for §(t) yields
dn(t) B} |
10 - cTir i cE(t/ons + & 6)

1

-Fhgnt) -c TR st =

Lwat) T -

T

~(F(t)-Z(t/0G ()R MR (B (st -Clr)g (),

T =t=T, (4. 46)

We now note that by finding _g_r(t) we can solve either Eq. 4. 45
or Eq. 4.46 fpr_g(t) or n(t) respectively. The initial (or final)
condition for Eq. 4.45 is given by Eq. 4.37 while for Eq. 4.46
is given by Eq. 4. 14. Either function can be obtained from the
other by using Eq. 4. 43.

" Now let us examine the stability aspects of these
equations when integrated backwards. Our discussion is essentially

qualitative. First, we need to examine the coefficient matrices of
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Eq. 4.45and Eq. 4.46. In Eq. 4.46, this matrix is
«(F(t) - S/t cTtR™ Uty ce)) T, which is the negative transpose of
the coefficient matrix of the realizable filter. Consequently, if it is
stable, sois Eq. 4.46 when integrated backwards.

For constant parameter systems, we can see heuristically
that Eq. 4.45 is also stable when integrated backwards over large
time intervals. If the intervalis "long",

d =(t /t)
—dt

e

0 : (4.47)

over most of the interval. If we assume equality, i.e., =(t/t) = T

we have

F+GQa s =5 [-(F-z_cTr o=k (4.48)

or, F+G QG Zois si_miiar to ~(F-, CTR™C)T. This implies that
both matrices have the same eigenvalues; therefore, Eq.4. 45

is also stable when integrated backwards over the interval.
Consequently, one can numerically solve either Eq. 4.45 or Eq. 4.46
and obtain stable solutions. However, ii/‘\\jz(t/t) is also available we
should point out that Eq. 4.45 requires its inversion whereas

Eq. 4.46 does not.

Summary of Methods

In this section we have developed in considerable detail

methods which exist for solving the differential equations we derived
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for the nonhomogeneous Fredholm integral equation. Let us now
summarize these methods by discussing their applicability.

If we have a constant parameter system and want to find
an analytical solution, method 1 is probably most useful since the
differential equations have constant coefficients for a large class of
problems. However, if we want to obtain a numerical solution,
especially over a long time interval, method 3 is probably the best,
since methods 1 and 2 can create some difficulties when integrated
numerically. We really never use method 2. The essential reason for
introducing it is that it was an intermediate result in our derivation
of method 3. |

Let us now apply the results of this section to analyze
some examples of solving nonhomogeneous Fredholm equations with

our method developed in Section B of this chapter.

D. Examples of Solutions to the Nonhomogeneous Fredholm
Equation

In this section we shall consider three examples to
illustrate the results of the last two sections. Again, we shall work
two examples analytically while we shall use numerical procedures
for the third. In those examples that we work analytically, we shall
use method 1 as discussed in the last section. The computer
program used in the numerical example integrated the second
differential equation of method 3.

We shall present the examples in the context of detection
in colored noise. After determining the solution g(t), we shall

compute the d2 (and d;) performance measures discussed at the end
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of the previous section. Finally, in all three examples we shall set

T =0and T
o f

signal, AS(t) is a pulsed sine wave with unit energy over this interval,

= T and assume that the forcing function, or transmitted

s(t) = .\/_ZT_ sin (n_l‘li) , 0<t=T. (4.49)

We also assume that R(t), or the white noise level, is a scalar

constant
R(t) = > 0 (4.50)

Example 1 - g(t) for a Wiener Process

Let us consider the problem of finding g(t) when the
kernel is the covariance of a Wiener process. Equations 3.35 and 3. 36
describe a system for generating this process. First, we substitute
the parameters of these equations into Eq. 4.15 in order to find

the equation that we need to solve. We obtain

e a1 -
gt)| | o 1| | 0
d - |
el e I R I e I Rt ,0=t=T
2
|
nw| [y of Iaw| [E4/5 sin(BT
!

(4.51)
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From Eq. 4.13 and Eq. 4. 14 the boundary conditions are

£(0) (4. 52)

n(T)

1
o

I
o

(4. 53)

Referring to the last section, method 1, we find particular solutions
§p(t) and np(t). These are the solutions to Eq. 4. 15 with E,p(O) =

np(O) = 0. Doing this we obtain

£ (1) [ sin(3) |
_____ o

7 /T‘ ---------- , (4. 54)
n (t) 2T cos(ETE)

P - —

where, for this problem, we deﬁne yz to be

2
2 _ nw,2 M '
y"(T)+cr, (4. 55)

Next, we need to find the transition matrix associated with Eq. 4.15,

After some straightforward calculation we find

T(t,0)= [ -=--=mmmmm e e oo R et . (4.56)

—
N —
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We need to add a homogeneous equation of the form Eq. 4.23

2 '% 2 %
En(t) [ET sinn({E£-1 1) |
= _ l ﬂh(o) (4.57)
2 2
| 1) | ] cosh({t-1 t) .

From Eqgs. 4.57 and 4. 54 we find that we must choose n,(0) to be

Eq. 4.28

o - Lo [ 2 (5h(-" . (4.58)
oy 2 2
cosh([%—] T) .

Consequently, we ‘have

1
1 2 2

' 2 . amty nw HZ-_Z— n
§(t) = =] 7 Sln(-T—) (—T-)[—‘o-:'] (‘1)

The solution g(t) is found by substituting Eq. 4.59 into Eq. 4.9
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nTrt nmw pz -1 .\ n
| sin(=) +(—’f —&_] Y (-

(3
~

I , 0<t=T, (4. 60)

After some straightforward but tedious manipulation we can also
: d4§ s
calculate dg as given by Eq. 4. 18c

1
[PZ 2 L
2 2 tanh((E-1 T L
a2 = b (.‘,}_“) Gl . (4. 61)
& oy 2 2
0
i

Example 2 - g(t) for a One Pole Stationary Spectrum

Let us con31der the kernel tobe the covarlance function

T o
for a one pole stationary process as described by Egs. 2 16 and 2. 17.
From these equations and E'q. 4.15,the differential equations that we

need to solve are

{g(t);l [ k1 st] {g(t)] 0 |
e bl i eies S B e T E , 0St =T,
n(t) ey % _| [ n(t) 1 ﬁ sin(2T
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subject to the boundary conditions specified by Eqs. 4. 13 and 4. 14,
We shall now use the first solution method which we discussed.

After some manipulation, we find

_ /71 . fomt) S nw [ kAt -k
ép(t) = T ;;Z—(st sm(—-—,r X T (e e )),(4. 63)

nptt) = [ (1 sin( ) + 57 cos (02)

_om (1 _l)ekkh nl(1+i)e‘k’~"), (4. 64)

3T x 3T x
where
1
) 28 77
A = [1+ e , (4. 65)
2 2 22
v =(£,l:. +k>\). (4. 66)

1 1\ kxt, 1 1 k\t} S Kkt S -k\t
z(1-x)e +7(1+x oYX e -xe
| |
W(t,0) = | == mmm e e e o e e
1
1 K\t 1 -k\t S| 1y kit 1 1\ -k\t
| e ¢ TN :i(”i‘)e tz(t-%)
]
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Therefore, according to Egs. 4.29 and 4.30

) = /3 L

cy

2

nmty _ S
) %

o (ekxt _e-kkt))

n(t) = % —l—z(k sin(n;t)+ Tcos

oy
_(nﬂﬁe _-n?
7oy o
where
2 ‘ 2
_ {0+ )? T (-1
(0 = ( D T T

(n'rr’c.‘)

o KAT )

(1_ kNt _ nm
) - 5

(“x) kxt)

'k)‘t) n (0), 0st=T (6. 69)

7

-1

sl ((-1)“-% (14 2)e M- 2 (1-4) e‘k"T) :

(4.70)

Finally, using Eq. 4.9 we find the solution g(t)

gt) = ZT——IT [(E‘II’) +k]sin(2{,i)-»

cy
S nm (x+1)2ek>cr_ (n-1)2 .
s NT \"—2n 7

-KAT )

-1

(continued)
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KAt _-kA(T-t

) +(r-1) (_l)ne-k)\t_e-k)\(T-t))

x((x+1) (-1)%e

0=t=T (4.71)
¥/
One can continue and evaluate the performance by
computing 4% and dé according to Eq. 4.18; however, the result is
rather complex and is not too illustrative. Instead of presenting an

2 and d°
g

analytic formula, we shall plot d against n for a partiéular
choice of parameters. The reéults are presented in Fig. 4.2
whenk =1, 0o =1, S=1, and T = 2. For the casen =1, we see that
the presence of the colored noise degrades our performance
approximately 50 percent from that of the white noise. For n =8,
however, our performancé is within 2 percent of the performance
for the white noise only performance.

We can easily see that this is what we would intuitively
expect. For n = 1, the bandwidth of the signal is approximately
/T = 1.57. Consequently, most of the signal energy appears in the
frequencies where the spectrum of the colored component of the
noise is significant compared to white noise level. | For n = 8 we have
a bandwidth of 8n/T = 12.56. Therefore, most of:\{ts energy appears
where the Wh;te noise _vz(t) is the dominant component of channel
observation noise.

It should be apparent from the complexity of these two
simple examples that an analytic solution for g(t) (and the
performance) is indeed a very difficult task when the kernel is. the

covariance of a process generated by higher order system.

Consequently, it is desirable to have an efficient numerical method,
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Example 3 - g(t) for a Two Pole Stationary Spectrum

For the second example, we shall consider a numerical
approach to the analysis of a second-order system. In particular,
we choose Ky(t, T) to be the covariance given by Egs. 2.18 and 2.19
o=1land T =2. To find g(t) we deterrﬁined £(t) by using method 3
in the last section.

In Figs. 4.3 and 4. 4 we have drawn the signal s(t) and
the corresponding solution g(t) for n = 2 and n = 8. For the low-
frequency (n = 2) case, we find that functionally s(t) and g(t) differ
significantly only near the end points of the interval, while for the
high-frequency (n = 8) case we find that s(t) and g(t) are nearly
identical. Hére, we are approaching the white noise, o.r matched -
filter, solution. We have summarized the results for this example
in Fig. 4.5 by plotting the d% vs n behavior. We see that for
n > 8 we are within 4 percent of the white noise only performance.

Again we can see the effect of the colored noise upon the
detection performance. For n = 2, most of the signal energy appears
‘at the peak of the spectrum of the colored component of the noise.
Consequently, the performance is degraded the most. Forn = 8,
the signal e'nergy is centered around f = 12. 56 where the white noise

is dominant,

The computer time that we required to find a solution
g(t) and to calculate its performance is approximately 5-10 sec of
-IBM 7094 computer time, using the Fortran language.

The method has recently been rewritten as a general

purpose routine for the IBM 360.
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g(t) and s(t) for a Second Order
Covariance Function s(t)
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E. Discussion of Results for Non—Homogenéous Fredholm Integral
Equations

In this chapter we have formulated a state variable
approach for the solution of non-homogeneous Fredholm integral
equations. Let us briefly compare our approach td some of the
existing ones. |

The approach of reducing an integral equation to a '
differential equation certainly is now ne\ers.’Zé’%[r'?l’ c1>g'1é3form or another
it is undoubtedly the most common procedure used. In comparison
to other differential equation methods, our approach has several
advantages (many of which are shared with our solution method for the
homogeneous equation).

1. We can solve Eq. 4.3 when s(t) is a vector function.

2. The differential equations that must be solved
follow directly once the state matrices that describe the generation
of the kernel are chosen.

3. We do not have to substitute any functi}ons back into
the original integral equation in order to find a set of linear
equations that must be solved.

4. We can study a wide class of time varying systems.

5. The technique is well suited for finding numerical
solutions.

There are two major disadvantages.

1. The class of kernels that may be considered is
limited. However, the technique is applicable to a large and

important class of kernels that appear in communications.



106

2. We cannot handle integral equations of the first
kind, e.g. when the white component of the noise is identically zero.3’ 21
For these equations singularity functions appear at the interval
endpoints. We precluded these in our derivation. We should note
that we have observed the limiting behavior of our solution approaching
these singularity functions when the white noise is small.

A second method that is in contrast to the differential
equation approaches is to find the inverse kernel of the integral

equation. The inverse kernel Q(T,u) is defined so that it satisfies a

second integral equation

T _
f
S {R(H8(t-7) + K (t, )} Q(7, wdr = 15(t-v)
To _
To<t, u<Tf (4.72)
In terms of the inverse kernel the solution g(t) is found to be

Tf |

glt) = S Q(t, ws(udu, T <t <T, (4.73)
rI‘o

One common numerical method that usesthis approach is to

approximate the integral operations 4. 72 and 4. 73 by matrices
[K] [Q] =1 (4.74)

g =[Qls (4.55)
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Let us briefly compare the computation required
using this approach to that of our approach. If we assume that we
sample the interval at NI points,Equations 4. 73 and 4.74 are NI
dimensional. One can show that the number of computations required
to find [ Q] as given by 4.73 goes as (NI) cubed. If we assume that
we find Q by specifying the coefficients of our differential
equations, the computations we require increases only linearly with
NI. The computation required to implement Eq. 4.3 1is proportional
to NI squared, whereas the computations required to solve our
equations again is linearly proportional to NI. The conclusion is that
for large NI, which is required for high accuracy, the differential
equation approach is superior.

Before we leave the topic of the inverse kernel, we shall |
point out an important concept that we shall use in a later chapter.
We can consider that the non-homogeneous integral equation
specifies a linear operation. In an explii:it integral representation,
this linear operation is given by Egqg. 47)(2 It is completely equivalent,
however, to specify g(t) implicitly as the solution to our differential
equations.

‘In the two following chapters we shall apply the results
of this chapter. VIn the next we shall apply them to the problem of
designing optimal signals for detection in additive colored noise
channels. Our basic approach is to regard the differential
equations we have developed as a dynamic system with initial and
final boundary conditions When the problem is expressed in this
form we can apply the Maximal Principle of Pontryagin for the

optimization. 13.6



108

In the subsequent chapter we shall present a new approach
to solving Wiener-Hopf equations by using the results of this chapter.
We shall then proceed to develop a unified theory of linear smoothing

and filtering with delay.
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CHAPTER V

OPTIMAL SIGNALS DESIGN FOR ADDITIVE
COLORED NOISE CHANNELS VIASTATE VARIABLES

In the problem of detecting a known signal in the presence
of additive colored noise, the signal waveform affects the per-
formancé of the receiver. For a given energy level, certain
signals result in lower probabilities of error than do others.
Consequently, by choosing the signal waveform in some optimal
manner, we may maximize the performance of the system.

If one does this obtimization, however, the signals that
result tend to have large bandwidths. For example, when the noise
is stationary, it places the signal energy in a frequency band that is
on the tail of the colored noise spectrum. Often the available band-
width is restricted; therefore, in this case one must perform this
optimization with some form of constraint upon the bandwidth of the
signal waveform. This is the problem which we want to consider in
this chapter. For a given energy level, we want to find the signal
waveform that optimizes the detection performance when the band-

width (defined later) is constrained.

A. Problem Statement
We introduced the problem of detecting a known signal

in the presence of additive colored noise in Chapter IV. Let us
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briefly review some of its aspects for the optimization problem that
we want to consider. The model of the systemthat we want to study
is illustrated in Fig. 4. 1. Depending upon the hypothesis, a known
signal, s(t) or -s(t) is transmitted over an additive scalar colored
noise channel. In general, we shall assume that this colored noise
is a zero mean Gaussian process that consists of a white component
w(t) plus an independent component y(t) with finite power. It is
easy to show that the optimal receiver computes the log-likelihood
ratio by correlating the received signal with a second known function
g(t).

This correlating signal may be determined by solving a

Fredholm integral equation, Eq. 5.1, of the second kind,

T

f
S Ky(t,’r)g(‘r)d‘r + -11120— glt) =s(t), T ,St=Tgy (5. 1)
T,
where

s(t) is the transmitted signal;

g(t) is the optimal correlating signal;

No/ 2 - is the power per unit bandwidth level of the
white noise (identified as ¢ in the previous
chapter);

and

Ky(t, T) | is the covariance function of the colored
(finite power) component of the additive noise.

[To’ Tf] is the observation interval.
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(We shall study only scalar channels here. However, all the results
can be extended to vector channels with little or no difficulty.)
For this problem the appropriate performance measure

is given by

Ty
a% = NZO S s(t) g(t) dt. (5. 2)
T .
(0]

Under the Gaussian assumption that we made, we can determine
probabilities of error, false alarm and detection. If we relax this
assumption, we can still interpret d2 as the receiver output
signal to noise ratio.

The choice of the signal s(t) is not completely free. We
impose two constraints upon it. The first is an energy constraint,

or

S SZ(T)dT =E. (5. 3)

Since Eq. 5.1 is linear, it is easy to see that d is linearly
dependent upon E. Secondly, one can define bandwidth in a
multitude of ways. Initially, we shall require that our signal

satisfy the constraint
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" T,
S W[5 (w)] S ds("‘ ? 47 = EB2. (5. 4)
- 00 T

i.e., we have used a meaﬁ square constraint upon the derivative of
the signal. (We do not need a normalization factor because of
Eq. 5.3.)

We shall set up and solve the optimization problem using
the constraint of Eq. 5.4. After we have done this, we shall show how

we can extend our results to other types of constraints, e.g.,

We can now state the optimization problem in terms of
Egs. 5.1 through 5.4. We want to find a signal s(t) that maximizes
the performance measure d2 given by Eq. 5.2 where g(t) is related
to s(t) by Eq. 5.1, and yet satisfies the energy and bandwidth
constraints imposed by Eqgs. 5.3 and 5.4.

The firét approach which one may want to consider is to
formulate the optimization problem in terms of the eigenfunctions
and eigenvalues of the homogeneous equation which may be
associated with Eq. 5.1. If one does this, he finds that the optimal
signal is the eigenfunction with the smallest eigenvalue which
satisfies both Eqs. 5.3 and 5.4. This approach neglects two
important issues. Unless Eq. 5.4 is satisfied with equality, we can
find better signals. In addition, it neglects discontinuity effects

caused by turning the signal on and off at T0 and Tf respectively.
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A second approach as proposed by Van Trees is to apply the calculus
of variations while introducing Liagrange multipliers to incorporate
the constraints.sthe resulting integral equation can then be
converted to a set of differential equations by using results we
derived in Chapter IV. For the particular form of constraints upon
the signal that we have initially used, i.e., Eqgs. 5.3 and 5.4, this is
undoubtedly the most direct method of the minimization. However,
the approach that we shall use is more general. Many of the

results that we shall develop can be extended to constraints which
cannot be readily handled with the classical calculus of variations.
We assume that the colored component of the noise y(t) is a random
process that is generated as we described in Chapter II. Making
this assumption we recognize that we can represent the linear
integral Eq. 5.1 as a set of differential equations as discussed in
the previous chap'ter. Next we consider that this set of differential
equations can be viewed as a dynamic system with boundary
conditions and an input s(t); consequently, the Minimum Principle

of Pontryagin can be used to perform the optimiza’r;ion.13 By using
this approach we shall first find a general solution to the problem,
then we shall consider two specific examples in order to illustrate

the techniques involved. )

B. The Application of the Minimum Principle

In this section we shall develop a state variable formulation
for the problem. Using this formulation we shall apply the
minimum principle to find the necessary conditions for the

existence of an optimal signal. We shall then exploit these conditions
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to find an algorithm for determining the optimal signal.
Since there are several important issues that arise in
the course of our derivation, we shall divide this section into

subsections as listed below:

1. The State Variable Formulation of the Problem
2. The Minimum Principle and the Necessary Conditions
3. Thé Reduction of the Order of the Equations by 2n
4. The Transcendental Equation for M, and Az and
the Selection of the Optimal Signal Candidates

5. The Asymptotic Solutions

1. The State Variable Formulation of the Problem

In order to apply the Minimum Principle we need to
formulate the problem in terms of differential equations, boundary
conditions, cost functionals, and a control. First, we need to find
a set of differential equations and boundary conditions which relate
g(t), the solution of the Fredholm integral equation expressed by
the solution of Eq. 5.1 to the signal s(t).

We can do this by using the results derived in the
previous chapter. Reviewing these results we have shown that

g(t), the solution to Eq. 5.1 is given by Eq. 4.9

IA
[ d
IA
=

gt = & (s(t) - CE®), T . (5.5)
O

The vector function, §(t), satisfies the differential equations,

Egs. 4.10 and 4.12
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dg(t) _ T

—5i— = F &Y + G QG (tn(t), T =t=T, (5. 6)

dn (t) T 2 T T 2

- = ¢ () NgC(t)Q(t) - Fo(t)n(t) - C(t) -N-—O—S(t), (5.7
T =t=T,

The boundary conditions which specify the solution uniquely are

Egs. 4.13 and 4. 14.
f,_(TO) = Pon-(To) (5.8)
ﬂ(Tf) = 0. | (5.9)

Consequently, we have the desired result that we can relate g(t) to
s(t) by solving two vector differential equations where we have a
two point boundary value condition imposed upon them.

Let us now develop the cost functional for the problem.
The performance measure of our system is given by Eq. 5.2. If we

substitute Eq. 5.5 in Eq. 5.2 and use Eq. 5.3, we find that

T
£
@ = § stn (st - cm g
T o]
O
Ty
- _ZNF; - ﬁi S s(T)C(7)E (T)dr. (5. 10)
0O (o] T

o
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The first term in Eq. 5. 10 is the performance when there is just
white noise present. The second term represents the degradation in
performance caused by the presence of the colored component of the

noise. As in Chapter IV, let us define dg to be

. ~ s(t)C(T)E(TdT (5. 11)
-0

OH(,/“)H:-B

and the function L(§(t), s(t)) to be

L(g(t), s(t) = g s(IC(Hg(L), T, =t =T, (5. 12a)
4 o
T
dé - S L(E(T), s(T)dT (5. 12b)
T
(o]

Since the energy E and the white noise level NO/Z are constants, it
is obvious that we can maximize d2 by fninimizing d;'

The state variable formulation requires that the system
variables be related by derivative rather than integral operations.
Since we are constraining both the signal and its derivative, .we
cannot use s(t) as the control. Instead, let us define the control

function, v(t), to be the derivative of the signal.

vl(t) = dsa(tt) (5. 13)
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Furthermore, we require
s(TO) = s(Tf) =0 (5. 14)

Eq. 5.14 is a logical requirement. Since we are constraining the
derivative of the signal, it is reasonable to require that there be no
jump discontinuities (implying singularities in v(t)) at the endpoints
of the interval.

We now have all the state equations and boundary
conditions that describe the dynamics of the system. The state

equations are given by Eqgs. 5.6, 5.7, and 5. 13.

dg(t ,
L0 rwew rawqaTwn®, T st=T (5. 6
o f (repeated)
dn(t) _ T 2 T T, 2
—== = CT(t) g CE) - Fr(tn(t) - CT () g— slt),  (5.7)
o o (repeated)
To =t= Tf
ds(t) _ vi(t), T =t=<T (5. 13)
dt ° f (repeated)

We have (2n + 1) individual equations. The boundary conditions are

given by Egqs. 5.8, 5.9, and 5. 14.

ET ) =P n(T ) | . (5. 8)
- 02 ° (repeated)
——(Tf) = _O_ (5. 9)
(repeated)
S(To) = s(Tf) =0 (5. 14)

(repeated)
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Notice that there are (2n +2) individual boundary conditions.
Consequently, these conditions cannot be satisfied for an arbitrary
v(t).

In order to introduce the energy and bandwidth constraints,
we need to augment the state equations artificially by adding the two

equations

de(t) 4 sz(t)

.M, T <t=T,, (5. 15)
dx(t) 2
(ﬁ = Vz(t) . T =t=T,. (5. 16)

(We have introduced the factor of 1/2 for a later convenience.) The

boundary conditions are

xp(T,) = xp(T ) =0, (5. 17)
xp(Ty) = E/2 ' (5. 18)
xp(T) = mBB%/2 (5. 19)

It is easy to see that these differential equations and boundary
conditions represent the constraints described by Egs. 5.3 and 5. 4.
With these last results, we have formulated the problem

in a form where we can apply the Minimum Principle.
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2. The Minimum Principle and the Necessary Conditions

In this section we shall use Pontryagin's Minimum
Principle to derive the necessary conditions for optimality. Before
proceeding, two comments are in order. First, the control function
is v(t) not s(t), which is one of the components of the state vector for
the system. Secondly, we shall not develop much background
material on the Principle itself. For further information we refer
to References 6 and 13.

The Hamiltonian for this system is
H(E, 0. 8, X Xp, Py P » PP dge Ape Vo 1) =

PoLE(t), s(t) + T g(t) £(t) + BT (8) A1) + py(t) 51

+ \glt) ;cE(t) + \g(t) Xp(t) =

£ s(t) () &(t)

o

P

+pg (O(F(H) £(8) + Gl QG (6) n(t)

p, T(B(CT(H) = C( &1 - F (1) () - CT(0) (1)
o o
s(t) ve()
p (1) vit) +ag(t) Sy Y se =T,

(5. 20)

“We shall drop the arguments when there is no specific need for them.
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‘We have denoted thé costate vector of the state equation describing
the dynamics of the system (Egs. 5.6, 5.7 and 5. 13) by the variable
p(t). The subscript indicates the corresponding state variable. The
costates of the constraint equations are denoted by )\E(t) and )\B(t).
The system that we want to optimize may be explicitly time -
dependent (non-autonomous), has a fixed time interval and has
boundary conditions at both ends of the time interval.

Let £(t), n(t), and s(t) be the functions that satisfy the
differential equations expressed by Eqgs. 5.6, 5.7 and 5.13; the
boundary conditions given by Egs. 5.8, 5.9 and 5. 14; and the
constraints of Eqs. 5.3 and 5.4, when the control function is v(t).
The Minimum Principle states: In order that G(t) by optimum, it is
necessary that there exist a constant P, and functions ﬁg(t), _ﬁﬂ(t), Ss(t),
I)\»E(t), and ')\{B(t) (not all identically zer o)‘such that the fgllowing four

assertions hold:

a. Blt) = Vgﬁ,* (5. 21)
B (t) =v_H, ' 5. 22
_En() n (5. 22)
ﬁs(t) - -2H/os, (5. 23)
Rg(t) = -0H/aE | (5. 24)

A AN AN A A A

B N N A A »n
H :H(E:H:S,XE; XB pO’E‘g,En’ ps, >\.E, )\B,V, t)
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As expected the energy and bandwidth constraint costates are

constants (therefore, we shall drop the time dependence notation.)
Since we have no boundary upon the control region, we

can minimize the Hamiltonian vs. the variable v(t) by equating the

derivative to zero.

oH o n -
v A =0 —ps(t) ‘*‘)\B v(t), TOStSTf. (5.31)
VvV = Vir)
Furthermore, for this to be a minimum, we require that
9%H
— =0 equivalently, from 5. 31 (5. 32)
ov N
v = vty
=
)‘B =0

In general, we can show that 7\B >0. Then we can solve Eq. 5.31

for v(t). This yields

v(t) = -p )/ Ag & T, =t =T, (5. 33)
Substitute Eq. 5.33 in Eq. 5.13. Now we shall write the canonical
equations expressed by Egs. 5.6, 5.7, 5.13, 5.26, 5.27 and 5. 28
in an augmented vector form. This yields a homogeneous set of

4n + 2 equations,
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Aglt) = aH/axB; (5. 25)

b. for all t in the interval [To’Tf] the function
AN A A ol A AN A N . o = .
H(§, 1,8, XE’XB’E_‘é_’Bn_’ps’)‘E’)‘B’V’t) is minimized

as a function of the variable v;
c. P, is a constant with P, = 0;

d. the costate vector is perpendicular to the manifold

defined by boundary conditions at each end of the interval.

Let us now examine what each of these assertions implies.
If we perform the derivative operations indicated by Eqs. 5.21 to

5.25, we find

A 2 T, A T, .\A T 2 A
(t) = -p, = C (1) s(t) - F (t)p.(t) - C(t)  C(t)p_ (1),
B o N, Pe N, Ry
T, St=T,; (5. 26)
£, =-ama aTi) Bel®) +F() B (), To=t=Ty (5.2

(1 = -p, 5 c T Ew +cTw)

o

2

TS

s 'ﬁﬂ(t) - Ag(t) Stt), (5.28)

~ ozl

A

o tsTﬂ

Ag(t) = 0, (5. 29)

Aglt) = o.’ . - (5. 30)



2o

F(t)

cﬁnﬁian
(o]

Gty o
_FT(t) CT(t);NZ——
0 0
0 -0, Tt &~
0 0
0 -\

“FL()

cTmaat

0 0
0 0
0 -1/\
-cﬂué{m) 0
(o]
FL(t) 0
.
~ C(t) 0
(o]
=t=T,.

€cl
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(From now on, we ’shall drop the ® notation and assume that we
refer to the optimal solution.)

If, in assertion (c) of the Minimum Principle, the
constant Py is identically zero, then we have what we shall call an
asymptotic case. We shall return to this case later; however, let
us for the interim set Po equal to unity. Since the costate
equations are linear, this entails no loss of generality.

‘Let us consider the boundary,or transversality, conditions
implied by assertion (d). At the initial time, these conditions

imply
Bn(To) = -POE§_(TO)’ (5. 35)

and ps(T 0) is unspecified. At the final, or endpoint, time we have
gg(Tf) =0, (5. 36)

and gn(Tf) and pS(Tf) are unspecified. We also have that )‘E and )”B
are unspecified constants ()\B = 0). We also have the boundary
conditions given by Egs. 5.8, 5.9 and 5.14. Therefore, we have a
total of 4n + 2 boundary conditions. In addition, we should notice
that we do not have to find the control v(t) in order to find s(t),

although we may easily deduce it from Eq. 5.33.

3. The Reduction of the Order of the Equations by 2n
We are now in a position to show how the assertions of
the Minimum Principle may be used to find the candidates for the

optimal signal. However, before proceeding we shall derive a
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result that significantly simplifies the solution method. We shall

prove that, in general,

(5. 37)

IA
o+
IA
H

é(t) P Il( t) ) To fr

(5. 38)

=
I
-+
1A
—

t) = pel), o ‘o

This reduction was suggested by the variational approach of Van Trees.
We point out though that our derivation is independent of the type of
constraint imposed upon the signal; i.e., it only depends upon the
differential equations for g(t) and n(t).

Let us define two vectors € (t) and_gz(t) as

Tf) (5. 39)

IA

£,(t) = €(t) "'BIL(‘E)J T =t

€,(t) =nlt) - pe(t), T =t=T,. (5. 40)

IA
IA

If we differentiate these two equations and substitute Eqs. 5.6, 5.7,

5.26 and 5.27 (with Py equal to 1), we find

€ )t = FH &8 + G QG (1) n(t) - GHIQG (tp(t) +F(tip (0
- Fit) g,(0) +GHQGTMe, M, T stsT,  (5.4)
T 2 T T 2
£5(t) = CT(0 = COEM - F (6 0(t) - C(6) - sl

T, 2 : T T,. 2
+ CT(t) - Cthp. (1) + F(t)pe(t) +C (t) =— s(t)
o - E_g_ N,

T, 2 T
C (t)T\T—;C(t)gl(t) -FU g, T =St=Tn (5. 42)
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The boundary conditions that the solution to these differential
equations satisfy may be found by using Eqs. 5.8, 5.9, 5.35 and

5.36. They are
£4(T) =P n(T)) - PoBg(To) =P e (T) (5. 43)

€5(Tp =n(Tp - Ty = 0. (5. 44)

Consequently, Eqgs. 5.41 to 5.44 specify two vector linear
differential equation with a two point boundary value condition.
However, these equations are just those that specify the eigenvalues
and eigenfunctions for the homogeneous Fredholm integral equation
as shown in Chapter III, Eqgs. 3.10 to 3.13 . We have shov§n that
in order to have a nontrivial solution to this problem, we require

that

l\.‘[o
-—7_-=)\i> 0. | (5.45)
where hi is an eigenvalue of a Karhunen-Lo&ve expansion of the

colored noise. Clearly, this is impossible since )‘i = 0. Consequently,
the only solution is the trivial one, i.e., g_l(t) = §_2(t) = 0, which

proves the assertion of Eqs. 5.37 and 5. 38.

4. The Transcendental Equation for )\E and )‘B and the Selection of
the Optimal Signal Candidates
In this subsection we shall use the necessary conditions

to derive a transcendental ‘equation that must be satisfied for an
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optimal solution to exist.

The method and result are very similar

to that which we used in Chapter III to find the eigenvalues of the

homogeneous Fredholm equation. The most important distinction is

that this equation is in terms of two parameters, )‘E and )‘B’ whereas

we had but one before.

Once we satisfy this equation, we can

generate a signal which is a candidate for the optimum solution.

Because of the linear dependencies derived in the

previous subsection we can reduce the 4n + 2 equation specified in

Eq. 5.34 to a set of 2n + 2 equations. We have
£(t) F(Y) amQa 0 o || &
o | |cTmgcw  -Frm cTiwg o || aw
d o) ’ o)
T = .
s(t) 0 0 0 N s(t)
B
p (1) -4 Cit) 0 g o || byt
(o]
T =t=T, (5. 46)

The boundary conditions are given by Eqs. 5.8, 5.9, and

5.14. These conditions specify 2n + 2 boundary conditions that must

be satisfied for an optimum to exist.

Since Eq. 5.46 is a homogeneous linear equation, we may

not, in general, have a nontrivial solution.

In order to find where we

may obtain a nontrivial solution, let us define the transition matrix

associated with Eq. 5.46 to be x(t, TO: )\E,)\

B)' We emphasize the
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dependence of ¥ Lipon )\E and )‘B by including them as arguments.
Since Eq. 5.46 is linear, we can determine any solution

to Eq. 5.46 in terms of this transition matrix. If we use the boundary

conditions specified by Egqs. 5.8 and 5. 14, we find that any solution

that satisfies the initial conditions may be written in the form

£(t) P nalT)
n(t) AT
= x(t, T hgs Ag) y (5.47)
s(t) 0
Lps(‘c)_ _pS(TO) .
T,=t=T,

The final boundary condition requires that n( Tf) and s(Tf) both be
zero. In order to see what this implies, let us partition this

transition matrix as follows (we drop the arguments temporarily):

[~ ] t 1 T
Xee | Xgn | Xes | Xepg
S L . SO

] ] ]
x ] 1 ]
L 2
X = L S (5. 48)
i ] i
Xi‘i::'. ] Xsll 'XSS'XSpS
] ] [}

L S
X 1 1

L ps_g_: Xpsn- :Xps : Xpsps
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By substituting Eq. 5.38 in Eq. 5.37, we find that in terms of these

partitions,- the requirement that n(T f) vanish, implies
0= [x,]_g_(Tf, Torg s M) Po + Xy (T Tt A In(T)
+x pS(Tf, TO:)\E,KB)]pS(TO) (5. 49)

ul

Similarly, we find that s(Tf) being zero requires
0= [xsé(Tf, T, :Ag Mg)P, + Xsﬂ(Tf, T Mg Ag)1n(T,)

+ Xg ps(Tf’ TO:)\E , xB)ps(TO) (5. 50)

We can write Eqs. 5.49 and 5.50 more concisely in matrix-vector

form
e I —— —
X_g(Tf’ T0 )\E,)\B)PO | Xllps(Tf,To. KE,)\.B) ﬂ(TO)
|
l
+x (Tf’ TO )\E, )\B) |
0= | — - — e — ~ — .I_ ______________ —_

(5. 51)
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or by defining the matrix in Eq. 5.51 to be D()\E,)\B), we have

0 =D(rg,\ - (5. 52)

B

Equation 5.51 specifies a set of n + 1 linear homogeneous
algebraic equations. The only way that this set of equations can have
a nontrivial solution is for the determinant of the matrix D()\E, XB)
to be identically zero. Consequently, the test for candidates for the

optimal signal is to find those values of A, and )‘B (> 0) such that
det[D(xE,xB)] = 0. (5. 53)

Once Eq. 5.53 is satisfied, we canfind anon-zero solution
to Eq. 5.52 up to a multiplicative constant. Knowing n(To) and
ps(To), allows us to determine the candidate signal(s), S)‘E’)‘B(t) , for
the particular values of AE and )‘B that satisfy Eq. 5.53. The

multiplicative constant may be determined by applying the energy

constraint of Eq. 5.3; i.e.,

T
S 2 (T)dT = E (5. 54)
T



131 Tl

By using Eq. 5.33 we can determine the bandwidth of the signal.

We have that
T
Eras, , (m\ T
2 _ 1 5 Mg _ 1 2
B = ’E‘S T Ir=_7 S Ps ag agl 9T
T, B T, '

(5. 55)

In order to satisfy Eq. 5.53, we require that only the
rank of D()\E,XB) be less than or equal to n the dimension of £(t) and
ﬂ(t). The case when this rank is less than n presents an
important aspect of this optimization. For convenience, let us
define

np=n+l- Rank[D(xE,xB)]. ' (5. 56)
np specifies the number of linearly independent solutions to Eq. 5.52
that we may obtain for the givenvalueé of )‘E and )‘B' These
solutions in turn specify nn functions, v(t), that satisfy the
necessary conditions for optimality given by the Minimum Principle.

We see that because of the linearity and quadratic
constraint of any linear combination of these functions that have the
same values of )‘E and )‘B also satisfy the necessary conditions
given by the Minimum Principle. Consequently, any time we find np
is greater than 1, we must consider these linear combinations when

checking to see which candidate is indeed optimum. Of course,
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these candidates are subject to the same constraints as any other;
i.e., the energy and bandwidth constraints given by Eqs. 5.54

and 5. 55.

5. The Asymptotic Solutions

An issue which we deferred was the question of the
asymptotic case when Py equals zero. Since these solutions provide
an useful in the analysis of a particular problem, it is worthwhile
to examine them before proceeding with the discussion of the
algorithm of our design procedure. We shall call the solutions
that satisfy the necessary conditions of the Minimum Principle when
Po is zero thé asymptotic solutions. (They are often called
pathological solutions.) In order to test for their existence, we set
P, equal to zeroin Eq. 5. 34 and examine the differential equations for
_p_g—(t) and [_)_n(t). If we write these equations in augmen’ged vector

form, we obtain the following homogeneous equation

o - | _ - -
T T, 2
p(t) -Fo(t) | -CT(t) 1 Cl(t) P ¢(t)
d £ ‘ Mo .
A o T T -l T
_ T
,_E,nft)_ _G(t)QG (1)) F(t) _ _En.(t)_
T,=t =T, (5. 57)

The appropriate boundary conditions are specified by Egs. 5.35 and
5. 36.

From Chapter III, Eq. 3. 13,
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“F () } ¢t £ c)
——m = S| =-wh:-N_/2) (5. 58)
-G QGT (1) | F(t)

Let us define the transition matrix associated with Eq. 5.57 to be
(t,T: —NO/Z). We note that &t, T:-NO/Z) is related to the transition

matrix ¥(t, T: N_/2) associated with W(t :—NO/Z)
@(t,T.-NO/Z) = (T,t.-No/Z) (5. 59)
Any solution to Eq. 5.57 may be found in terms of

a(t, T:—NO/Z). In order to find the solution to Eq. 5.57 that satisfies

the bomdary conditions, we partition @(t,T:—NO/Z) into four n x n

submatrices,
: N | N
T o T o
I -——)\ o - ——
N, A
Ht:Ti- ) = |- - -G - e R (5. 60)
2 N N
oL (e o2 1 2T (r,1:- 2
En 2| "m 2

If we incorporate the boundary condition specified by Eq. 5.36

that the solution to Eq. 5.57 is

— N

R(t)| \I’;I]'_Q(Tf,t - —)

- - e - - p'(T). (5.61)
(t W ruety |2

12 ! Te b =)
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The initial condition specified by Eq. 5.35 requires

N

B (To) = Y1 (Tp, Tyim —2)p (T (5. 62)

_ I .-

= -POB_g(TO) = PO\I,BE(TP TO- NOZ)Bn(Tf)’

or
N, N
T ..o T .._0O
9. = [\p‘_lm](Tf’ TO.- -2 ) + PO \Ifgg-(Tf: TO.- 2 )J En(Tf)
(5. 63)

The only way that Eq. 5.36 can have a nontrivial solution is for the

determinant of the matrix enclosed by brackets in Eq. 5. 63 to vanish.

N N
det [:\I;I‘nn(Tf,TO:- —) + Poﬁrgg('rf, T, _29-)] =0. (5.64)

If we transpose the matrix in Eq. 5. 64 (thisdoes not change the
determinant value), we find that we have the test for an eigenvalue
that we developed in Chapter III. There we showed that the only way

for this determinant to vanish is for

N )
o _
" =N 2>0

where )\i is an eigenvalue associated with the Karhunen Loeve
expansion colored noise process. Clearly, this is impossible.

Consequently, the only solution is the trivial one, i.e.,
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C. The Signal Design Algorithm

In the previous section we have derived the results
nece'ssary for solving the signal design problem. In this section
we shall use these results (and a fair amount of experience) to
devise an algorithm which when implemented on adigital computer
will find the optimal signals and their performance.

| Ideally, we want to be able to find the optimum signal
for given values of E and B. Although this is certainly possible, it
is far more efficient to solve a particular problem where we let B
be a parameter and then select the specific value in which we are
interested (the energy is normalized to unity). The reason for this
approach will become apparent when we consider some specific
examples.

The Minimum Principle has provided us with a set of
necessary condition from which we found a test (Eq. 5.53) for an
optimum signal. The result of this test is that we essentially have
an eigenvalue problem in two dimensions. The most difficult aspect
of the problem becomes finding the particular values of )\E and )‘B
that both satisfy this test and correspond to a signal the desired
bandwidth. The algorithm that we suggest here is simply a systematic
method of approachidg this aspect of the problem.

The algorithm has several steps. First, we shall
outline it. Then in the next section we shall discuss it in the context
of two examples.

a. Find the loci points in the )‘E’ ‘)‘B plane that
satisfy Eq. 5.53. This requires that we have an effective procedure

for calculating transition matrices. In general, one can simply
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(5. 65)

If we substitute Eq. 5.65 in Eq. 5.34, we find that the

differential equations for s(t) and ps(t) are

IA

1A
|

s(t) = - _)\173 P (1) T St=T,, (5. 66)

1A
[
iA
=

pg(t) = -Ags(t), T, £ (5. 67)

The only solution to these equations that satisfies the boundary

conditions specified by Eq. 5. 14 is

_ZE . t-T,
s(t) -.\/ - Sin (n"T -TTT;— s T, =t= Tf! (5. 68)
with
A 2
E _ nmw
-7‘5'(1*_?’1*\ Mg <0 (5. 69)
f 7o

Several comments are in order. (1.) The bandwidth of
these signals is easil&r’shown tobe nn/T. (2.) We have not violated
assertion (‘a) in our application of the Minimum Principle since ps(t)
is non zero. (3.) We did not- require our system to be time
invariant, nor did we specify the dimension of the system.
Consequently, these solutions, which are probébly the most
practical to transmit, exist for all types of colored noise that fit

within our model.
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numerically integrate the differential equations that specify the
transition matrix. However, if the matrices that describe the
generation of the channel noise (F,G,Q, C) are constants, then we can

use the matrix exponential, i.e.,

Z(Mps Ap)(E-T )
X(t, T Ay Ag) = e ol o (5. 70)

o)
where Z()\.E, )\B) is the coefficient matrix of Eq. 5.45.

b. For a particular point on these loci, solve Eq. 5.52
for H(To) and pS(TO). Then use Eq. 5.47 to determine the signals

s t), p (t) and § (t).
Mpodp ) Pedgi g SN .

E’

c. Since the performance is linearly related to the energy,

E’

normalize these signals such that s, ,g(t) has unit energy.

d. Calculate the bandwidth and performance of the
normalized signals as specified by Eqs. 5.55 and 5.11, respectively.

e. Repeat parts b, ¢, and dat appropriate intervals
along these loci in the }‘E’ )‘B plane. (The interval should be small
enough so that the bandwidth and performance as calculated in part d
vary in a reasonably continuous manner. ) As we move along a
particular locus in the. )\E, }‘B plane, plot the degradation vs.
bandwidth in a second plane, a dé, szlane.

f. As mentioned earlier, we needto pay special
attention to the case when Eq. 5.53 has more than one solution. This
situation corresponds to a crossing of two or more loci in the
)‘E’ )‘B plane. In this case find the solutions and plot the locus

produced in the dg, B2 plane by linearly combining the different
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signals. Probably the most convenient means of doing this is to use
the Fredholm integral equation technique discussed in Chapter IV.

g. For agiven value of bandwidth constraint the
optimal signal is the one that corresponds to the lowest value of
dg. This signal is the absolute minimum, while the others correspond
to relative minima.

h. We recommend that one use his engineering judgment
in determining which loci on the Az, Mg plane are on interest and in
deciding when the white noise performance is being approached.

The problem of determining which loci in the )\E, )‘B plane
generatei the optimal solution is time consuming. As we shall see,
these loci can be rather complex. In the two examples that we have
studied, we have observed a phenomenon which, if it were generally
true, wouid considerably simplify this aspect of the algorithm. If
one chooses a value of A and finds the solution of Eq. 5.53 with the
largest value of Ag» the signal that corresponds to this point is
globally optimum for the value of B that the signal has. (Similarly,

one can fix A, and find the solution of Eq. 5.53 with the largest )‘E

B
in absolute value.) With this conjecture the bandwidth then becomes
a monotonic function of either }‘E or )\B' The only possible
difficulty that would be in finding the points corresponding to loci
crossing.

We have not been able to prove that this phenomenon
is true in general. However, it seems quite promising in view of the
evidence that we have and the analogy to the smallest eigenvalue

optimization procedure when there is no bandwidth constraint

impos ed.3
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D. Examples of Optimal Signal Design

In this section we shall illustrate our technique. We
shall consider the colored noise to have the one and two pole spectra

described in Chapter II.

Example 1- Signal Design with a One Pole Spectrum

The equations describing the generation of the colored
component of the observation noise are given by Eqs. 2. 15 and 2. 16.
Since the process is stationary, let us also set TO = 0 and Tf =T.

In order to set up the test for the optimum signal, we
need to find the coefficient matrix in Eq. 5.46. If we substitute the

coefficients of the Eqs. 2.15 and 2. 16 into Eq. 5.46 we obtain

e) 1 [ -k 2kS 0 o T [&]
B TS 2 k -F o0 n(t) |
a?—: ° ° (5. 71)
s(t) 0 0 0 - s(t)
; B
4
Py(t) -~ O A O P (t)
- - . O — —]
From Eqgs. 5.8, 5.9 and 5. 14 the boundary conditions are
£(0) = Sn(0), (5. 72a)
nT) = O, (5. 72b)
s(0) = s(T)=0 (5.72c)
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Step (a) in our algorithm requires us to find the loci
in )‘E’ )‘B plane that satisfy Eq. 5.53. To do this, we need to
calculate the transition matrix (4 x 4) of Eq. 5.71 (T, O:XE,XB).
From this matrix we can compute D()\E, )\B) (2 x 2) by using
Eq. 5.51.

To illustrate this, let us choose specific values and use

a computer to perform the required calculations for the parameters

k, NO/Z, S, and T. Let us set

(5. 73 a-d)

SN I
1

The loci of points in the )‘E’ )‘B plane that satisfy Eq. 5.53 are
illustrated in Fig. 5. 1.

| In this figure only six loci have been plotted. Other loci
with lower values of )‘B for a given >‘E exist but are not significant in
the final solution. (They correspond to signals with a large band-
width and performance very close to the "white noise only" limit.
We found these loci by first fixing )“E and then locating the zeroes
of Eq. 5.53 as a function of )\B.

According to Eq. 5.32, we need to look for solutions

only in region of the plane where )‘B > 0. In'this particular
example we did not observe any loci in the first quadrant of the plane.
Consequently, the only region of interest is where Ag > 0 and

)\E< 0.
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The reason for considering the asymptotic solutions
should now be apparent. We have sketched their loci as given by
Eq. 5.69 with dotted lines. We see that the loci asymptotically
approach those of the asymptotic solutions. Therefore, for large
values of Ap 2 convenient place to start searching for the loci is
near those specified by Eq. 5.69. We should point out that the loci
of the asymptotic solutions do not cause the determinant specified
by Eq. 5.53 to vanish. This is because in determining their
existence we used the equations directly derived from the Minimum
Principle rather than the reduced set of equationsthat were used to
derive Eq. 5.53.

Now, if we take the solutions specified by these loci
and deterfnine the bandwidth and performance of the corresponding
signal according to steps (b) through (e), we produce a second set of
loci in a d;-B2 plane. These are illustrated in Fig. 5.2. We can
identify the corresponding loci by the numbers 1 through 6). In
addition we have indicated the bandwidth and performance of the
asymptotic solutions by a large dot near the identifying number of
the loci aht approaches it. (We can indicate it by a single dot
because the entire loci for the asymptotic solution corresponds to
just one signal.)

In the A\, = A\

E-'"BP
to right on the solid lines, those that cause the determinant of

lane of Fig. 5.1 aswe move from left

Eqg. 5.53 to vanish, we generate the loci in the dg —B2 plane with
the solid lines in the direction indicated by the arrowheads. We see
that they evolve from the dots corresponding to the asymptotic

solutions. As can also be seen, the loci corresponding to numbers
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one and two are well behaved, while those corresponding to the
remaining numbers have a rather erratic behavior.

As indicated by step (f) the other aspect of the optimization
that needs to be considered is the crossings of the loci that occur in the
)‘E - )‘B plane. At these crossings, there are two signals with the
same values of \p and )\B that satisfy the necessary conditions.

If we find the degradation and bandwidth of all possible linear
combinations of these signals (normalized to unit energy), we produce
the loci in the dg - Bz/?rllilrilc?ated by the dotted lines. (There is no
relation between j:he dotted lines in each plane.) Since it is evident
that only some crossings are significant, i.e., aré candidates for
the absolute minimum, we have not plotted the loci produced by all
the crossings. Once we have generated these loci over the band-
width constraint region of interest, we can find the optimal signal
corresponding for any particular bandwidth constraint value. We
merely select the signal which produces the absolute minimum
degradation, or the lowest poiht in the d; —"B2 / F;%Jaxfl :he specified
value of B.

.At‘ this point we pause to discuss the'phenomenon we
mentioned in the last section. To do this, let us trace the loci in
the two planes. Let us start at the top right of the graph with )‘E
large in absolute value. As we start to increase )‘E by moving
downward, the locus in the dé - BZ plane eminates from point one
and proceeds across to the right. The point on this locus where
the dotted line starts corresponds to the first loci crossing in the

)‘E - RB plane. All the points on this dotted line correspond to

this crossing point. As we again move downward increasing )‘E
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and take the largest A\, solution, we generate the solid line. This

B
continues until we reach another dotted line which again éorresponds
to a loci crossing. We can continue in this manner as far as we

wish. The important point is that we could ignore the complicated
patterns corresponding to remaining values of )‘B that satisfied

our test. ‘

Let us illustrate the actual form of some of the optimal
signals for two different values of the bandwidth constraint, B. In
the first illustration we have sz equal to 9. If we examine the dé - B2
of Fig. 5.3, we see that the optimal signal is a linear combination
of the two solutions that are produced by the first crossing of loci
one and two in the )‘E - )‘B

constraint is illustrated in Fig. 5. 3. We see that we can achieve

plane. The optimal signal for this

a degradation of 23. 6 percent less than the white noise only
performance.

In addition, we have drawn g(t), the correlation signal for
the optimal receiver. The signal(s) exhibit no particular symmetry
for this constraint value of B equal to 3 as it is composed
principally of the signals sin(nt/T) and sin(2nt/T). We should note
that because of the possibility of two different sign reversals there
are actually four signals that are optimal. All of these, however,
basically have the same waveshape.

In Fig.5.4 we show the optimal signal s(t) and its
correlating signal g(t) when we allow twice as much bandwidth,
1__e___, B2 = 36. In this case, the optimal signal does ﬁot correspond

to a crossing in the )\E - XB plane, as it didpreviously. The band-

width is sufficiently large enough so that we can attain a performance
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only 6.4 percent below that of only the white noise being present.
The signal does display some symmetry in that s(t) = -s(T-t); and
the correlating signal is almost identical to s(t) indicating that we
(nearly) have a white noise type receiver.

We coﬁclude this example by discussing the improvement
over a conventional signal that is attainable by transmitting an
optimal signal. We proposeA the following comparison. Let us
transmit a unit energy pulsed sine wave, i.e., ﬁi:_f'f sin(nwt/T).
The bandwidth that this signal consumes is nw/T, i.e., B%= (an/T)2.
We can find the performance of these signals d; sin by referfin‘g to
Fig. 4. 2 or from the large dots on Fig. 5.2 since these signals
also correspond to the asymptotic solutions. For this same amount

of bandwidth, let us find the performance of the optimal signal

2

dg opt” (We can do this by looking directly beneath the dots i}n'

. ‘ 42
Fig. 5.2.) we now compare dg opt

sine wave. We have done this in Table I. Index I1 reflects the

with the performance of the pulsed

improvement when referenced to the pulsed sine wave performance
while I, references it to the white noise only performance. I, is
probably the index of mbst significance since it reflects the total
improvement of the system.

We can ’see that the performance improvement
indicated by I2 is hardly outstanding. We can c.:‘onjecture two
reasons for this. For the parameter values chosen, the white noise
is just as significant in effect as the colored component. Also, the
one pole or first order spectrum is difficult ’to work with since the

noise does not have much structure to exploit by designing the

signals correctly.
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TABLE I
Comparison of Performance for Optimum

and Pulsed Sine Wave Signals

30 1.6

a® - a? 2

2 2 Esin opt sin ™ opt
d d I, = 5 Pt 1007 I, = 5 x 1007

8sin gop’c d d w

€sin

1 0.490 0.490 0 0
0.239 0.235 1.7 ' .4
0.130 0.105 19 ) 2.5
0.078 0. 057 27 | 2.3
0.053 0.037
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Example 2 - Signal Design With a Two Pole Spectrum

. In this example we shall consider the signal design
problem when the colored component of the observation noise has
a two pole spectrum. We do this primarily for several reasons.
First, we want to develop a better understanding of the problems

involved in implementing our algorithm. Secondly, we want to

RS 12 R

verify the phenomenom that we observed with the one pole spectrum.

Thirdly, the one pole spectrum considered in the previous example 2

B

can give deceiving results at times. Finally, we want to demonstrate
that our optimization procedure can produce more significant impro-
vements when working with a process that has more "structure' to
it.

We assume that the colored component of the observation
noise is generated by Eq. 2.18. In addition, we set the white noise
spectral level to unity and éssume that the interval length is two,
=0, T

i.e., T =T = 2. Hence, the colored component of the

2 f
observation noise dominates for all frequencies less than say . 8 Hz.
This particular colored noise spectrum is particularly
interesting because of its shape. Suppose we constrain the bandwidth
to be less than 3, or B'2= 9. This corresponds to allowing
frequencies which are lower than that frequency where the spectrum
has its peak. We certainly do not want to put all the signal energy
in frequencies near the peak. Yet, if the bandwidth is available we
should be able to use it to our advantage. Although one can
conjecture from either our previous example, or his engineering

judgment that a linear combination of pulsed sine waves should be N

close to optimum, it is not apparent that this is so.
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Let us proceed with the steps in our algorithm. The
first six loci in the )‘E - )‘B plane are illustrated and numbered in
Fig. 5.5. Again, we observe the asymptotic behavior for large
negative values of )‘E' In two respects the loci exhibit a some what
more complicated behavior than those for the one pole spectrurﬁ.
First, they do not cross simply pairwise. Apparently, they cross
with the adjacent locus; i.e., the second crosses the first and
third, the third crosses the second and fourth, etc. Seéondly, in
some regions they are extremely close together.

In Fig. 5. 6 we have plotted the corresponding loci in the
dé -BZ plane. Their behavior is very similar to the one pole case.
We see that the first and second loci are. well behaved, while the
others exhibit the same type of erratic behavior. As indicated by the
dotted lines, there are regions where we must consider the linear
combinations of signals corre sponding to a loci crossing in the
)\E - KB plane. Most importantly, the maximum XB phenomenom
still occurs.

Let us now examine the shape of an optimal signal when we
constrain the bandwidth such that the colored noise is dominant over
the allowed frequency range. If we chose B2 = 13, the optimum
signal s(t) and its cofre lating signal g(t) are illustrated in Fig. 5.7.
The signalis principally composed of functions of the form sin(wt)
and sin(3nt). The degradation realized by this signal is .53 which is
approximately 15 percent below what one might expect using a non-

optimum approach of selecting the pulsed sine wave with the best

performance that still satisfies the bandwidth constraint.
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TABLE II
Comparison of Performance for Optimum

and Pulsed Sine Wave Signals

dZ _ dZ
. g.: g . -d
dZ dZ Il - s21n opt 1009, sm‘2 opt - lOOZ
€sin Eopt d g d"w
sin
.68 .68 0 0
.73 .57 22 16
.59 .42 29 17
.25 - .23 8 2
.14 .08 57 6
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In Table II we have summarized the performance in the
same way that we did in the first example of this section. In this
example the optimization has improved our performance more
significantly. This is probably due to the colored noise being more

dominant in this example.

E. Signal Design With a Hard Bandwidth Constraint

In this section we shall derive the differential equations
that specify the necessary condition for optimality when we
constrain the absolute value of the derivative of the signal, i.e.,

we require

1
ds(t Z
vy | = | 250 |5E B, T =t=T, (5. 74)
As before, we constrain the signal energy by
Ty
S s?(t)dr = E (5. 75)
To

We can formulate the problem in a manner very similar

to that used previously. The resulting Hamiltonian is
H( g’ n; S, )SE’E'Q’ En: pS: XE’V) =

po—l\zl'—o s(t)C(t)E(t) + E']é_‘(t)(F(t)g_(t) + G(t)QGT(t)ﬂ(t))

(continued)
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P (O(CT() - Cg) - Flon(®) - CT(8) = s(o)
(o] o

Ml 5
tpg(tv(t) + —— s7(t) : (5. 76)

Taking the required derivatives, we find

oH _ = _ T 2 T
E-g = Bé(t) = poc (t) """NO s(t) +F (t)_I_)-g(t)
T 2
< .77
+ C7(t) NOG(t)Pﬂ(t) (5. 77)

C e s T i}
5a = "Ryt =GIIQG (p (1) - Fltip (1 (5. 78)
8 - b (t) = p, & CIEW) - o= Cltp_ ()
o (o] n'
+ Aglt)s(t) (5. 79)
o = —;\E(t) -0 (5. 80)

The transversatility conditions imply

PpglTy=-R (To): (5. 81)

gg(Tf) = 0. (5. 82)

PS(Tf) and p(T ) are free.
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We again have that )‘E is a constant. Furthermore, we
note that Eqs. 5.77, 5.75, 5.81, 5.82 are identical to Egs. 5. 26,
5.27, 5.35, 5. 34 respectively. Consequently, we can again show by

using the results of Section B-3 that

E(t) —gn(t) (5. 83a)

n(t) = pglt) (5. 83b)

Therefore, Eq. 5. 79 becomes (assuming Py equals unity)

py(t) = §; ClE)E(t) - Aps(t) (5.84)

The major difference between the application of the
Minimum Principle to this problem and the one in the text comes
in the minimization of the Hamiltonian as a function of the control

v(t). I ps(t) is non-zero, this minimization implies

1
v(t) = -E”B sgn(p (1) (5. 85)

This implies that the optimal signal has a constant linear slope of
+E 1/ZB when ps(t) is non-zero.
The differential equations, now non-linear, that specify

the necessary conditions are

dg(t)

—=— = F(h&(t) + GIHQG (n(t) (5. 86)
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~an(t)

T, 2 T T, 2
g " C(t) _N—o C(t)é(t) - F (t)_'ﬂ_(t) - C 7 (t) —N—os(t) (5. 87)
1
a5l - vit) = -E” B sgn(p (1) (5. 88)
dpg(t) 4
I = - N Clt)E(t) - Ngs(t) (5. 89)

The boundary conditions are

f;_(To) = Poﬂ(To) (5.90)
n(Ty =0 (5.91)
s(TO) = s(Tf) =0 (5.92)

It ps(t) is zero over any region, we cannot determine v(t) by Eq. 5.85.

In such region

Pg(t) = 0 (5.93)

implies

4

ENo ‘

s(t) = -

X C(t)E(t) (5.94)
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If we combine this equation with Eq. 5.86 , we find that the two
equations have the same form as those that specify the eigenfunctions
associated with the colored noise.

This leads us to the following conjecture: the optimal
signal consists of regions of a constant slope of iEl/ZB and regions
where the signal has the same functional form as the eigenfunction of
the colored noise. Finding a solution technique for solving these

differential equations will be part of future research.

F. Summary and Discussion

We have presented a state variable method for designing
optimal signals for detection in colored noise when there are energy
and bandwidth constraints. The performance measure was given
by dg, which specified the loss of receiver performance due to the
colored noise being present. We used the differential equations and
their associated boundary condition that specified the optimal receiver
and performance measure as if they described a dynamic system.
We then applied Ponttyagin's Minimal Principle to derive the
necessary conditions that the optimal signal must satisfy. These
conditions specified a characteristic value problem. We could
determine the optimal signal by solving this characteristic value
problem.

We suggested a computer algorithm for doing this.
By using this algorithm we were able to analyze two examples of
colored noise spectra. In addition to finding the optimal signal and
its associated performance, the algorithm displayed several

interesting features.
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One may argue that we did not need to use the Minimum
Principle to solve this problem since we could proceed directly to
the 2n + 2 differential equations and boundary conditions via the
usual calculus of variations and the estimator-subtractor realization
of the receiver. The advantage of this formulation becomes apparent
when we change the type of constraints upon the signal. In Section E
we derived the differential equations that specify the optimal signal
when we impdse an energy constraint and a hard (bandwidth)
constraint, |ds(t)|dt|=B. This problem is readily solved using a
Minimal Principle, whereas the calculus of variations would require
much more effort.

We intend to continue studying the issue of hard constraints
by examining the design problem when we impose peak constraints on
the signal itself and/or its derivative. We expect that the important
aspect will be to find an efficient computer algorithm to solve the
resulting differential equations.

There are several other important issues.

1. The most difficult aspect of our method is to select
the signal that is globally optimum from all those that satisfy the
necessary conditions optimum. As we have discussed in the text,
we have observed a phenomenom which eliminates this problem.

We feel that there is sufficient empirical evidence to spend some
time trying to verify this theoretically.

2. The equivalence of §(t) and -En(t), and n(t) and Rg(t)
is a very general result. Because of this generality it seems that
there should be a means of formulating these problems with a

stochastic minimum principle which would allow us to obtain the
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final differential equations directly. However, this means has not
been apparent so far. 29
3. One can alsopose the optimization problem when we

use a suboptimum receiver. For example, if we constrain the

receiver to be a matched filter, one wants to minimize the functional

Ty Ty T¢
/
dé = S S S(t)Ky(t, T)S(T)dT = S s(t)Ct)&(t)at (5.95)
TO rI‘O | TO
where we have defined
Te
E(t) = S Kx(t, T)C(T)s(T)dT TO =t = Tf (5.96)
5 X
(o]

The results of Chapter II are now directly applicable, and we can
proceed in a manner analogous to the way we did in this chapter.
Similar results should exi‘st for other types of suboptimal receivers,
e.g., those operating in a reverberation environment.

4. The algorithm that we used requires an accurate
method for calcuiating transition matrices. All the problems that
we have examined to date have involved constant parameter
systems. Consequently, we could use the matrix exponential. By
being reasonably careful we have not encountered any difficulty when
we used a straightforward series sum approximation. Howéver,

this is certainly no guarantee that this series approach will always
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work, for example as the dimension of the system increases. We
think that it is worthwhile to investigate other methods to compare
their accuracy and speed to the present method.

5. Finally, the results in this section can be extended
to bandpass signal design by using the material in Appendix B. The
possibility of a noise spectrum that is not symmetrical about the
carrier introduces some interesting questions on how to best take

advantage of this situation.
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CHAPTER VI

LINEAR SMOOTHING AND FILTERING WITH DELAY

In this chapter we shall use the results derived in
Chapter IV for solving nonhomogeneous Fredholm integral equations
to develop a unified approach to linear smoothing and filtering with
delay. In the smoothing problem we receive a signal over a fixed
time interval [T_,T;]. We then want to find X(t), T =t =T,, the
estimate of the state vector that generated this signal over the
same fixed interval. In a filtering problem we receive a signal
continuously, i.e. the endpoint time .of the interval, Tf, is constantly
increasing. We then want to produce an estimate which evolves in
time as a function of this endpoint. For the realizable filter we want
to find _Q_( Tf) vs. Tf, the estimate of the state vector right at the
endpoint time, Tf. For the filter with delay, we are allowed a
delay before we Ihake our estimate. We want to find _%(Tf- A) vs.
Tf; the estimate of the state vector A units prior to the endpoint of
the interval. w

Our approach to these problems is straightforward. We
start with the Wiener-Hopf equation that specifies the impulse
response for the optimal linear estimator.3 We then show how we can
find a set of differential equations that specify the optimal estimate
implicitly as part of their solution. From these equations we can

derive matrix differential equations which determine the covariance
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of error.

Our approach to the problem of filtering with delay is
also straightforward. In the solution to the optimal smoother, we
simply allow.the endpoint time of the observation interval to be a
variable. We then derive a set of differential equations which are a
function of this variable endpoint time rather than the time within
a fixed observation interval as for the smoother. The performance
is also derived in an analogous manner.

Several comments are in order before proceeding.

First, all the derivations in this chapter are original. Many of the
results, however, have appeared in the literature. They are
referenced Where appropriate. The most important point to be made
concerning our methods is the approach. The entire theory can be
developed concisely and directly starting from a few basic results.

Secondly, we shall employ a structured approach to this
topic. We shall require the estimator structure to be linear,
regardless of the statistics of the processes involved. Existing
approaches to this problem are unstructured; it is assumed that the
prbcesses involved are Gaussian and then the estimator structure
is derived. It is well known, however, thatlboth approaches yield
the same estimator. '

Thirdly, we shall assume that the reader is familiar
with the well known results for realizable filtering by using state
variable techniques, i.e., the Kalman-Bucy filter.

Finally, although thesetopics have been extensively
studied in the literature, several incorrect derivations and results

have appeared. We shall point out these errors and give the
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correct results.

A. The Optimal Linear Smoother

In this section, we shall derive a state variable realization
of the optimum linear smoother, the state variable equivalent of the
unrealizable filter. First, we shall establish our model.

Let us assume that we generate a random process y(t)
by the methods described in Chapter II. Let us also assume that we
observe this process’in the presence of an additive white noise w(t)
over the interval T, =t= Tf. That is, we receive the signal

r(t) = y(t) + w(t) = C(t) x(t) +w(t), T_ =t=T (6.1)
where x(t) is the state vector of the system that generates
y(t), w(t) is an additive white observation noise that has

a covariance R(t)é6(t-T) as given by Eq. 2.7.

In the optimal smoothing problem we want to find a state -
variable description of the linear system that minimizes the mean-
square error in estimating each component of the state vector x(t).
We shall find that this description consists of two first-order vector
differential equations having a two-point boundary restrictions.

Let us now proceed with the derivation of these equations.

First, we define the matrix impulse response of the

optimal linear smoother to be go(t, T), Or
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Ty

S = S h (t,mr(ndr, T St=T,.

To

(6. 2)

This operator produces an estimate of the state vector, g(t) at time
t by observing r{f) over the entire interval [To’Tf] .

vIt is well known and can easily be shown by classical
methods that this impulse response satisfies the following Wiener-

Hopf integral equation.

Ty

t,T) = S h(t, V)KE(V, T)dv, T, <t, 7= Tf’
TO

K (6. 3)

dr(

where Kdr(t, T) is the cross covariance of the desired

signél and the received signal, Kr(t, T) is the covariance

of the received signal.

For our application, the desired signal is the state vector, x(t).

Therefore, we have

Ty

Kx(t,T)CT(T) = S hit,v)K (v, 7)dv, T =t, 7=T,,
X ¥ r

o

*Although h (t, ) is a matrix and should be denoted by a capital letter
in our notaTi%n convention, we shall defer to the conventional notation.

TWe have assumed zero meaus for x(Ty), v(t) and w(t). If the means
were non zero, we would need to add a bias termTo Eq. 6.2.
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with

Kﬁ(t’ T) = Kl,(t,'r) + R(t)6(t-7). (6.5)

The first step in our derivation is to solve this equation
for l'_l(ot, 7). In order to do this, we need to introduce the inverse
kernel Qr(t’ T) of Kr(t, T), the covariance of the received signal.

Let us now introduce some material from Chapter IV on
the nonhomogeneous that we need. From Eq. 4.3 we can write the

nonhomogeneous Fredholm integral equation as

Ty

S Kf_(t, T)g(T) = s(t), To =t .<_Tf, (6. 6)

T
o

As we discussed in Chapter IV, we can consider that this integral
equation specifies a linear operator upon s(t), with the solution g(t)
being the result of this linear operation. We define the integral

representation of this operation to be (Eq. 4.73).

T

g(t) = S Qr(t, T)s(T)dT, To =t= Tf. (6.7)
7 r

(0]

Operating upon s(t) with Qr(t, T) to find g(t) is equivalent to solving

the integral equation by means of our differential equation approach.

It is easy to show that the inverse kernel satisfies the following
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integral equation in two variables

Ty

S Kr(t,V)Qr(v,T)dv =I8(t-7), T _=t, =T (6. 8)

rI‘o
Let us multiply both sides of Eq. 6.4 by Qr(-r, z) and then

integrate with respect to 7. This yields

T, T, T,
S K?i(t,’r)CT(T)Q}:(T, z)dr = S ll(t,v)SKE(V,T)QE(T,Z)deV
T, - T, T
T
= _lqgt,v)Ié(v—z)dv =E&t,z), ToSt, zSTf. (6.9)
T ‘
(o]

We are not directly interested in the impulse response
of the optimum estimator. What we really want to find is the estimate
x(t), which is the output of the estimator. We can obtain this by

substituting Eq. 6.9 into Eq. 6.2,

T¢ T¢
2(t) = SKX(t,T)CT(T) SQr(T,z)E(z)dz dv, T <t =T,
T ~ T ~
o o

(6. 10)

'ﬁWe should observe that the inverse kernel can be shown to be
symmetric, i.e. Qp(t,7) = QL(7,t); therefore, we can define it as
a pre- or post- multiplier operator.
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Thus, the optimum estimate is the result of two integral operations.
We now want to show how we can reduce Eq. 6. 10 to two differential
equations with an associated set of boundary conditions. The
estimate g(t) is specified implicitly by their solution.

Let us define the term in parenthesis in Eq. 6. 10 as

g .(7), so that we have

_ v

gr(T)::S Q.(7,z)r(z)dz, T, =<7 =T;. (6. 11)
=9 =

(o]

Substituting this into Eq. 6.9 gives us

T,

X(t) = S K (t,nCT(ng (ndr, T =t=T,
3z r

(6. 12)

Observe that Egs. 6.10 and 6. 11 are integral operations of the type
encountered in Chapters IV and II, respectively. Consequently, we
can convert each into two vector differential equations with an
associated set of boundary conditions.

From our previous discussion, g_r(—r) is the solution to

the nonhomogeneous Fredholm integral equation when the signal

s(t) is replaced by r(t). From Chapter IV, we have

g (7) = R(7Xr(1)-C(T)E(T)), (6. 13)
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where §(7) is the solution to the differential equations, (Eqs. 4.10

and 4.12

dﬁ( ) - F( )g(t + G(T)QG (T)ﬂ.l(T)’ TO =TrT= Tf (6. 14)

dn ,(7) _ _
—— =R me@g -FL () (1) - cTm R ne(n)
T =T=T, (6. 15)
The boundary conditions are(Egs. 4.13 and 4. 14)
E(T) =P n (T, (6. 16)
n (T = 0. (6. 17)

In Chapter II we found that the integral operation given
by Eq. 6.12 also has a differential equation representation. If in

Eq. 2.22 we set
f(t)=g.(t), T_ =t=T, (6. 18)

and then substitute Eq. 6.13 for gr(t), we  find that x(t) can be

found by solving the differential equations

ax(t A
20 - roo +am@ 6T, T, =t=T, (6.19)
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dn ,(t)
dt

-cTitg (1) - FL(t)n,(t)

Yoz,

cTmr™ WCmED - Fr(tn,(t) - CT(HR™

Tost =T (6. 20)

f

The boundary conditions for these equations (Egs. 2.33 and 2.35)
. v
X(Ty) =pn,(T)) (6. 21)
1,(Ty) =0 (6. 22)

Upon a first inspection it appears that we need to solve
four coupled vector differential equations with their associated
boundary conditions. However, if we examine Egs. 6. 15 and 6.20,
we find that ﬂl(t) and ﬂz(t) satisfy the same differential equation.
Since both equations have the same boundary condition at t = T £
(Egs. 6.17 and 6. 22), they must have identical solutions. Therefore,

we have

1A
1A

n {t) = n,(t) 2 p(t), T,St=T; (6. 23)

By replacing ﬂl(t) and 32(1:) by p(t) in Egs. 6.13, 6.15, 6.18 and
6.20, we see that §(t) and %(t) satisfy the same differential
equations (Eqs. 6.14 and 6.19) and have the same boundary
conditions (Egs. 6. 16 and 6.21).

Therefore, we must also have
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A =&, T

A
-+
1A
=)

(6. 24)

Consequently, we have shown that two of the four differential
equations are redundant.

We finally obtain the state variable representation of the
optimum linear smoother. The optimum estimate }?(t) satisfies the

differential equations

ax(t A
B - rogw +cmecTwpm, T, =t=T, (6 -25)
dp(t) ] R i
— = cTmRrR™ mcmEn - Frwmpw - cTHR (),
T St=T, (6. 26)
where we impose the boundary conditions
A
X(T ) =P_ p(T,), (6. 27)
p(Ty) =0. (6. 28)

The smoother realization specified by Eqs. 6.25t0 6.28 is well
known. It was first derived by Bryson and Frazier in reference 14
be assuming Gaussian statistics and then using a variational approach
to maximize the a posteriori probability of the state vector.

When we compare these equations to those in Chapte’r v

that specified our solution to the nonhomogeneous Fredholm integral
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equation, we observe that they are identical in form. The major
difference is that our input is now a random process r(t), whereas
before we had a known signal s(t). The result of this observation is
that the solution methods developed in Chapter IV, Section C are also
applicable to solving the above estimation equations for the smoother.
(In fact, the methods presented there were originally developed in
the literature for solving these estimator equations. We have
exploited the above identity of form to solve the equations

we derived in Chapter IV. In order to make use of these methods, it
is obvious that one must identify g(t) with _g_(t) and p(t) with n(t).

Since we shall need the results in the next section, it is
useful to relate the smoothing structure derived above to the realizable
filter structure. To do this we shall review some of the relation-
ships that we derived in Chapter IV. If we make the identity
suggested above, the variable _{ELr(t) is easily seen to correspond to
the realizable filter estimate, X (t). It is well known, or it can be

seen from Eq. 4.39 , that %r(t) satisfies the equation

% g{_ L) = F(t)k L8+ z(_fc:_)cT(t)R‘ 1(t)(g(t)—C(t)_g_\sr(t))

e
b4
I

To <t, (6. 29)

where 3(t/t) satisfies the variance equation (Eq. 4.34).

az(h

—— = Fd) + Flozd - s(hecTmr memad)+amaeaTm

(6.30)

*We shall use the notation =(t/T) and Z(T}) interchangeably. Both
symbols denote the covariance of error at time t (= T) when we have
observed the signal r(T) over the interval [To’T] .
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We have not dem‘onstrated directly that =(t/t) is indeed the covariance
matrix of the realizable filter. It is straightforward to do so,
therefore, we omit it.

The smoother estimate g(t) is related to the realizable
estimate gr(t) in two ways. Quite obviously, the estimate correspond

at the end of the interval as stated by Eq. 4.37

%(t) = gr(Tf). (6. 31)

t=Tf

In addition we have the important relationship throughout the interval

as expressed by Eq. 4.43

1A
o+
-
3

shpm =20 -2 (0, T (6. 32)

We shall often exploit this relationship in the remainder of the
chapter.

There is one important contrast between the two
structures. In the realizable filter, the covariance of error,
=(t/t), was implicit in the filter structure. In the smoother, the
corresponding covariance =(t/ Tf) is not. Deriving an equation for

this covariance is the topic of our next section.

B. Covariance of Error for the Optimum Smoother

In this section we shall derive four matrix differential
equations, each of which specifies the performance of the optimal
smoother. Since this is a rather long section, we shall pause

briefly to outline our development.
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First, we shall derive differential equations for both the
smoother error and the realizable filter error processes. We shall
evaluate three expectations which involve these error processes
and the noise processes u(t) and w(t). Using these expéctations we
shall then derive the four differential equations that specify the
covariance of error, Z)(t/Tf), of the optimal smoother. We shall
point out and correct some errors that have appeared in the literature
on this topicr.14’1%‘ina11y, we shall suggest an algorithm for
finding the steady state covariance of error of the realizable filter,
Z)oo, by using some of the results that we have derived for the
smoother performance. Let us now proceed.

The starting point for our analysis is finding the
differential equations for €(t) and er(t) , the error process for the
optimal smoother and the realizable— filter respectively. First, we
consider the smoother error.

We note that the process x(t) as generated by Eq. 2.1

satisfies the differential equation

dx(t)

= = F(H)x(t) + G(t)u(t), T =t. (2. 1)

(repeated)

We define the smoothef estimation error to be

ety 2 () -x(t), T =t=T.

(6. 33)
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If we subtract Eq. 2.1 from Eq. 6.25, we find that the error

satisfies the differential equation

= = F(t)e(t) + G(1)Q GT(t)g(t)-G(t)g(t), T St =T, (6. 34)

We can also write Eq. 6.26 in terms of the error, €(t). By
substituting Eq. 6.1 into Eq. 6.26, we obtain
1

dp(t) 1

Y cTiyr”

A (CHR(M) - F(tpt) - CT(HR

(t(C(t)x(t) +w(t))

=cTwr Yncwem - Fhimpw) - cToR twit),

(6. 35)

We can also find the boundary conditions for Egqs. 6. 34

and 6.35. We still have at t = Tf

p_(Tf) =0 (6. 28)
(repeated)

To find the initial conditions, let us consider Eq. 6.27. We have
X(T_) =%(T) - x(T,) - (-x(T_)) =P _p(T_); or
X(T,) = x(1) - x(T, Llol) = FoRi bl

€(Ty) = (-X(T,)) = Pp(T,). (6. 36)

However, -zc_(To) is the a priori error, € in the estimate of the

initial state. From our as sumptions in Chapter II, this a priori
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error has zero mean and a covariance of Po and is independent of

u(t) and w(t). Consequently, we may write Eq. 6.36 as

"e(T.) -€,=P_p(T,). (6. 37)

ILet us now find a differential equation for the realizable

filter error. We define this error to be

et =% (1) -x(t), T =t (6. 38)

If we substitute Eq. 6.1 into Eq. 6. 29 and then subtract 2.1, we
find

e (0 = (Fw -2 heTwr ™ mewe (v - aiou(

& e

-2HcTHR Ww), T, =t (6. 39)

We need to specify the initial condition of Eq. 6.39. Since we have

assumed zero a priori mean for x(TO), we have

x (T.) =0. (6. 40)

Therefore, from Eq. 6. 38 the realizable filter error at t = To equals the

"a priori error

o (6. 41)
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Finally, we can relate the smoother error to the realizable

filter error. By using Eq. 6.32, we can write

) - R0 = &) - x(0) - E_(1) - x(b) =

t
€(t) - §_r(t)=2(-f) p(t), T, =t= Tf. (6. 42)
(Since € (T, =€, Eq. 6.37 is obviously a special case of Eq. 6.42
evaluated at t = TO.)

Let us now summarize the important equations that we
shall use in our analysis.

1. Writing the smoothing equations 6. 34 and 6.35 in

augmented vector form, we have

L lew] | Fo GHQGT() || e(t)
at_ ‘ =
pw)| [cTwr Mwew  -FTw || p
G(t)u(t)

cTwmr  nw(n)

€(t) G(t)u(t)
W(t) , T =t=T,.

pt) | | cTwRrR tywit)
(6.43)
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where we can identify the coefficient matrix as it has been defined

previously by Eq. 4. 16 . The boundary conditions for this equation

are

E(To) -€, 7 PoE(To) (6.37)
(repeated)

P(Ty) =0 (6. 28)
(repeated)

where €, is the a priori error of the estimate of the initial state.

2. The realizable filter error is the solution to Eq. 6.39

— €. = (F) - mncTmR HCwe (6 - Glhul

st R ww, T <t (6. 39)
(repeated)

where the initial condition is

€T ) =€, (6. 41)

(repeated)
and Z:(:—) is the covariance of g_r(t).

3. The smoothing error and the realizable filter error

are related by
&t - e () = (E)p(t) (6. 42)
(repeated)

In order to derive the differential equations for the

performance of the smoother, we shall need to evaluate three
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expectations. We shall simply state the results of the evaluation of
these expectations. The interested reader can follow the derivations

which follow these statements.

Expectation 1

E[g(t)gTT)] =0, T =t, 1=T,. (6. 44)
Proof: By classical arguments, the received signal r(t) can be
shown to be uncorrelated with the error €(t) for all t, Te [TO, Tf] . As
given by Eqgs. 6.25 through 6.28, the random process p(T) is the
result of a linear operation upon the received signal; consequently,

it is also uncorrelated with €(t) for all t, T€[ T, Tf] }

Expectation 2

b, =)
= Tty |z wet, T T =t=T
Alt) =E Ep(0) |2 ¥, T |m——m- ==, T =t=T,
0
(6. 45)
‘where ¥(t, T,) is the transition matrix for W(t) and (l)(Tf,t) is the
realizable filter transition matrix.
Proof: In order to evaluate this expectation, we need to write the
solution of Eq. 6.43 as an integral operation. From Eq. 6.31, we
have |
£(t) =€ (T) (6. 46)

=Tf
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With Eq. 6. 28 this provides a complete set of boundary condition
for Eq. 6.43 at the endpoint of the interval. Therefore, we can

write

€(t) e Ty Tf Gi)u(7)
—-=| =T, TY |-~~~ + S T(t,7) e e ——— —— ar,
p(t) 0 { cTmr M mwir)

T =t=T, (6. 47)

Let us now substitute this equation into the above expectation. Since
the realizable error g_r(t) is independent of u(7) and w(t) for 7> t,

one of the terms is identically zero. Therefore, we have

€(t)
AlW) =E | {-—--} e N(t) |= w(t,T) Ele (Tge T0)],
p(t) |

(6. 48)

The expectation in this equation can be evaluated by writing € r(Tf)

as an integral operation,

T

f
€ Ty = O(Tp e (t) - S T4 MG W) + ZHCT (MR (nw(n]dr,
t

T =t=T

o £ (6. 49)

When we substitute Eq. 6.49 in Eq. 6. 48, we find that the second

term vanishes since gr(t) is again independent of u(r) and w(r) for



183

T = t. Therefore, we finally obtain the desired result.

—

Alt) =E{ |-=-e (D) = ¥(t, T |[=—=——~=-=— , T St=T,
p(t) 0
(6. 45)
(repeated)
Expectation 2
€(t) Gituty | T G(HQG T (1),
Blt) = B4 || == =———- -1 STttt
pt | [cTtR  (tywit) 0 » cTyr Ynew
0 (T, nameaTw « dTLnz(heTmr wew
+ (T - - - - - - - - R LT St=T,
0 ! 0
(6. 50)
Let us substitute Eq. 6.44 into the above. This yields
e AT)| G(7)u(7)
B(t) =E \I,(t,Tf) ’ + \Y(t, T) -———— ———ldr !
0 : cTnr Hr)w(in)
Gouw | T
X — e T, <t=T, (6.51)

ct Rt w(t)
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We can relate e_r(Tf) tou(t) and w(t), and we can also evaluate the

second expectation. We find"

/

B(t)=W(t,TIE| | §(Tp T e (T )

Tf ‘.‘.'_

+ S 0T, MG + 2D MR (nwm]ldr

— i — e i o — oo — o oot — — — o— ——_

0 0
GlyuT (1)
X ———————
cTiyr Hitywit)
Ty G(maaT( | 0
+ g T(t,7) |—— — — —: ——————— §{(t-T)dr,
¥ 0 | cTiwyr Hitye(n)
Tost STf. (6.52)

In Eq. 6.52 we note that e_r(TO) is independent of u(t) and w(t);
consequently, we can easily evaluate the first term. In order to
evaluate the second term we need to split the impulse since it is
evaluated at 7 = t, the endpoiht of the integration region. This yields
the desired result of Eq. 6.50.

With these expectations we can now derive the differential
equations for the covariance of error of the optimal smoother. Let

us proceed by differentiating the definition of the covariance. We
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want to evaluate

£
Lty = S ElemeT(t)] = E[&me T(+eE ")), T <t =T

£ t f

(6. 53)

Since the terms in the above are transposes of each other, we shall

consider only one of them. Substituting Eq. 6.34, we have
E[E(te T(0] = FHE[e(te T(t)] + GHIQGTHEL plt)e *(1)]

cE[uwe "] =Pzt - aweaTwoT (T, yete, Ty -

>GHQGTMm, T (6.54)

IA
-
1A
H

where we have used Expectations 1and 3. Adding the transpose
term we have the first differential equation for the smoother

covariance.

Differential Equation 1 for Z(t/T,)

do, t, t t T T
EEE(?I‘—I.) = F(t)ZIT;) + Z‘T% JE7(t) - G(t)QG ~(t)

“We use the notation =(t/Ty) to indicate the covariance of error at a
time t(= Ty) where we have observed the signal r(T) over the interval
T0 =T = Tf’
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- [t THNT, 0GHRETM] -[amRG T (T, et (6, T1,

*
T =t=T

. o (6.55)

There are two difficulties with this expression. First, the forcing
term is difficult to evaluate. Secondly when integrated backwards
over long time interval it becomes unstable.

Wé shall now derive a second differential equation form
for Z(t/Tf) which eliminates these difficulties.

If we solve Eq. 6.42 for p(t) we obtain

-1
pit) = = L )ewt) - e (). (6. 56)
Now we substitute for p(t) in Eq. 6. 34 (this is similar to the approach

of Method 3 in Chapter IV) we find

de (t)

— = Fte() + Git)Q G 0)Z ) (e(t)-€ (1) - GleIw(t) =

(F(t) + 6@ 6Tz HENew) +Gma T mE e b

(6. 57)

-G(t)v(t), T, St=T

Let us now substitute Eq. 6.57in Eq. 6.53. If we use Expectations
2 and 3, we have a cancellation of terms, and we obtain the desired

result

*A relationship of this form was first derived by Baggeroer in the
1966 WESCON Proceedings.
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Differential Equation 2 for Z(t/Tf)

dZ(’I?_f) T 1.t t
—aT (F(t) + G(H)QG (t)= (t—)z('T—f) +
S )(F) +ameaTmz" T -amqaTw, T =t =T,
f
(6. 58)

Several comments are in order here. This formula was
first derived by Rauch, Tung and Striebel using a discrete time

15 The covariance of

analysis and then passing to a continuous limit.
error for the realizable estimate, Z(t/t) enters Eq. 6.58 in two
ways. Obviously, its inverse appears as part of the coefficient terms.

In addition, it supplies the required boundary condition att = Tf, for

B = B(§) (6. 59)

£,
t=T;

Consequently, we can solve Eq. 6. 5ﬂ8 backwards in time from t = Tf.
Finally, we discussed the stability of equations with this coefficient

in Chapter IV. We canreach the same conclusions here as we did
there, i.e., when integrated backwards fromt = Tf, the solution to
Eq. 6.58 will in general be stable. Consequently, obtaining solutions
for long time intervals ‘does not cause any numerical difficulties

when done this way.
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We can derive a third differential equation for finding
Z(t/Tf) by using the covariance of p(t), which we denote by Tr(t/Tf).
First, we relate this covariance to Z(t/Tf). We can rewrite Eq. 6.42

in the form

IA
-+
A
-

) - S(Hpm) = (0, T, g (6. 60)

. (D
Post multiplying Eq. 6.60 by its transpose, taking the expected

value of the result and using Expectation 1 gives us
t t IRV S 61
Z(TE) +z(t_)T”T—f)Z(F) ”_E(T)’ TOStS T, (6.61)

By using an analysis similar to that used in deriving form 2 for
E(t/Tf), we can find a differential equation for ’\T(t/Tf). This

gives us our third form.

Differential Equation 3 for Z(t/T,)

ATy ()

P S LR | T t
—gr— = ~(F(t) + Z(£)CT (MR (t)C(t)) TT(r—I?)

-Trﬁt;)(mmz:( LyeTwmr  wew) -cTmr™ wcw,

T =t=T

o ¢ (6.62)

where T (t/Tf) is related to E(t/Tf) by Eq. 6.61. Since p(T,)

is identically zero, the boundary condition at t = T, is obviously
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M(——) =0. (6. 63)

Again, some comments are in order. The same issues of
integrating backwards and the stability of the solution still apply as
discussed earlier fof form 2 still apply. In ad/dit;l:)n, if =(t/t) is
already available, it may be better to use this’ fbrm rather than
form 2 since taking an inverse matrix at all points in the interval is
not required.

The first three differential equations that we have derived
are not well suited for finding analytic solutions for =(t/ Tf) . Even
in the case of constant parameter systems, the matrix differential
equations have time varying coefficients. We can eliminate this
difficulty by considering a 2n x 2n matrix differential equation rather
than an n x n one as we have considered before. To do this we
need to combine forms 2 and 3 in an appropriate manner.

One can show by straightforward manipulation of
Eqgs. 6.58, 6.61 and 6.62 that the following matrix differential

equation is satisfied.

Differential Equation 4 for E(t/Tf)

o awaaT 0
d o, t T
-aT-P(—E) = WE)PEHBFIW (t) + |- - —— — 5 ——— ————-|
o . cTmr  new
T <t=T (6.6 4a)
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where W(t) is defined by Eq. 4.15

2o) | LCAEEY
|
and P(JT—f)é I Rl (6. 64b)
“B() T ()| - Mg
5 f g

We can specify the boundary condition at t = Tf by using Egs. 6.59)

and 6.63)
) STl ST ]
T; :
T, |=———e4q-—-=
P(T_E) = ] (6. 65)
0 ; 0

where Z(T,/T,) is the realizable filter error at T,.
Consequently we can solve Eq. 6.64a backwards over
the interval using this boundary condition. This is analogous to

method 2 that we developed in Chapter IV.

If we extend the concept developed there, it is easy to
find an integral representation for the solution to Eq. 6. 64

We have, 30
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T
£l
(L) 0
T, :
Plp) = (L Ty |7 7T v Ty
o | o |
T G(MQG () : 0
- S\I!(t,'r) _______ e o o (t, ) dr,
' I |
t 0 | C(m)R “(7)C(7)
f\;{'"‘
T =<t=T,. (6.66)

We should point out that solving for =(t/ Tf) using thié
form does have certain advantages when the system parameters are
constant. In this case, the coefficient matrix W is a constant
Iﬁatrix, which allows us to see the matrix exponential. This is
certainly an analytic advantage. However, we should remember
that we have a larger dimensional set of equations with which to
deal. Finally, we observe that this form is not well suited for
finding numerical solutions of E(t/Tf). Sinpe it involves W(t) as a
coefficient matrix, it introduces virtually the same stability
problems that we had for method 2 in Chapter IV.

This completes our discussion of the differential equation
forms for Z(t/Tf). Before proceeding, we shall discuss the merits
of each. Form 1 was the starting point of our derivation. Although
it was relatively simple in appearance, the forcing term for it was
difficult to evaluate. In addition, it introduced stability problems.

Forms 2 and 3 were well suited for numerical procedures, since they
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were stable When'integrated backwards of the interval. However,
they were not well suited for analytic procedures because they involved
time varying coefficients. Form 4 was well suited for analytic
methods, since the coefficient matrix was a constant for systems
with constant parameters. It, however, also introduced stability
problems when used numerically over long time intervals.

Several errors have been made in the literature regarding
the covariance of p(t), 77 (t/Tf).M’ 13 we apply the results of these

papers, we can quickly show that they imply

’IT(TfT—fdt | = -cT(Tf)R' l(Tf)C(Tf)dt (6. 67)

which is clearly impossible for a covariance. We shall now correct
these errors.

The differential equation of 6. 64, form 4, for 'z(t/Tf)
was first derived by Bryson and Frazier.l4 However, they
erroneously interpreted the partitions of P(t). They state that the
lower right partition should be ’ﬂ’(t/Tf); we have seen that it is
-ITt, Tf) which(agrees‘with what Eq. 6.67 would indicate. They also
interpret the off diagonal partitions as E[¢ (t)BT(t)] . From
expectation 1, we knéw that this is identically zefo. These
partitions are actually TV (t/ Tf)Z(t/t) as we have indicated. Their
upper left partition for P(t/I‘f) however is E(t/Tf) . Consequently, if
we naively apply their results to find E(t/Tf) , we would obtain
correct results. However, their incorrect assertions regarding the

covariance of p(t) leaves their derivation rather suspect.
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Rauch, Tung and Striebel state that the error €(t) is correlated
with p(t) which is incorrec’c.15 They also have not related
E(t/Tf) and ’|T(t/Tf) correctly, as indicated by Eq. 6.63. Their
equation for Z(t/Tf) is correct as we have discussed previously
form 2

Equation 6.58 also provides an interesting relationship
between the ralizable and unrealizable errors when calculated using
the classicual Wiener approach. This corresponds to the case when
the system parameters are constant and the time interval [ T, Tf]

is large. If we are somewhere in the "middle" of the interval

dZ ()

f ~ 0, T0<<1;<<T

—g— = (6. 68)

e
Denoting the realizable Wiener error by Z  and the unrealizable
error by =(t/), we obtain

F+acT= hzd) + zid)yrraqeT= T -caeT = 0 (6.69)

=)
This equation has an interesting implication. Z(t/«) is easy to
determine since it is the unrealizable covariance;

however, 2;01 is usually difficult to determine. Eq. 6.69) provides

a linear matrix equation for finding = _ (really E—i’). Since there

are several ways of solving this linear equation, Z <>0fo'llows directly.
Notice the linearity of the equation eliminates the ambiguity of
solutions which arises by setting the Ricatti equation to steady state.

This completes our discussion of the performance of
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the optimal smoother. Let us now illustrate it with several examples.

C. Examples of the Optimal Smoother Performance

In this last section we analyzed the performance, or
covariance of error, of the optimal smoother. Iﬁ this section we
shall illustrate this performance by considering several examples.
First, we shall work two examples for first order systems
analytically. We shall apply Eqgs. 6.64 and 6.6 5to do this. Then we
shall consider the analysis of a second order system by numerically

integrating Eq. 6.62and then applying Eq. 6.61.

Example 6.1 - Covariance of Error for a Wiener Process

In this first example we shall find the covariance of
error for a Wiener Process that is received in the presence of
additive white noise. The system for generating this process is
described in Egs. 3. 35 and 3.36. We repeat the system matrices

here for convenience

=0 = M -
=1 PO =0 (3.36)
Q =1 (repeated)

In addition we assume that the spectral height of the additive white
noise is ¢ and the observation interval is [0,T], i.e., T, =0
and Tf = T. Fortunately, we have available many of the required
results from previous examples which concern the process. As a

result, we can find the solutions rather quickly.
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The first step is to find the matrix W(t) and its
associated transition matrix ¥(t, ). We did this in Chapter IV and
the results are indicated by Eqs. 4. 51 and 4.56 . (We need to
substitute t - 7 for t as the system has constant parameters.) Next
we need to find =(T/T). We do this by using the partitions of

¥(t,T) as indicated by Eq. 4.31 . This yields

1 1
T 2 |72 2 "2
Z(5) = L*&_ tanh HT T |- (6. 70)

Consequently, Eq. 6.66 becomes

Plrie) = (6, T) | = == == === == - - L Lo - el )
_ 0 oo |
T 1 ' o
|
S\If(t,'r) 1| #h¢, mar, o<t< T (6.71)
t P2
o 1 B
i a

where ¥(t,T) is as defined by Eq. 4.56 asindicated above. Separating
our the upper, left partition for =(t/T), we find after some

straightforward manipulation
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1 1
1 22 - W22
1z cosh = (T-t) - sinh = t
Z(t /T =| &

I , 0=t =T.
2|2
cosh L T
[on
(6.72)
Example 6.2 - Covariance of Error forg One Pole Process
Let us now consider the performance for a random
process generated by a system with a pole at -k. The generation of
this process is described by Eqs. 2.16 and 2.17. The state
matrices are repeated here for convenience
F = -k c =1
=1 P0 =S (2.17)
= 2kS (repeated)

Let us consider a slight variation of this representation. Instead of
choosing Po = P such that the process generated is stationary, let

it remain a free variable. In addition, we chose the level of the

observation noise to be o and the observation interval tobe [0, T].

Again, we have many results available from previous examples.
The matrix W(t) and its associated transition matrix
¥(t, ) are given by Eqs. 4.62 and 4.68, respectively. (Again, we
need to substitute (t=7) for t.) Next, we need to find E(T/T). By
using Eq. 4.31 the realizable filter covariance of error =(T/T) for

an arbitrary covariance of the initial state, Po’ is given by
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(6.73 a)
where
1
_ 4S 2
A= (H—m_o_) (6.73b)
For this system, Eq. 6.66 becomes
T 1
Z)(—T) g 0
Plg) = W(LT) | - -k - - (€T -
0 | 0
T 2kS | 0
S\If(t,‘r) _——— _=___ \I;'Zt, T)dT, 0=t=T. (6. 74)
t o 1 L
' g

where Z(T/T) is defined above by Eq. 6.73a. Taking the upper left

portion for Z(t/ T) we find after some straight forward manipulation

2(%) - [cosh[kx('r-t)] + Sinh[l)f"(T‘t)] x

\})(%—-)cosh[k)\(T-t)] + (2 1)- 25) 8tk “;\MT‘”]] , 0=t=T.

(6. 75)
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In order to illustrate this result let us consider three choices of Po‘

Case a - P = S (Stationary Process)
Here we have chosen P0 such that we are estimating a

stationary process. In this case

kAT
kAT

+1)eM 4 (- 1ye”

2 kAT

e (6. 76)
(M1)"e -(A-1)% e

T,
=( T) = 2S
If we substitute this equation into Eq. 6.75 , we can show that

r | (cos h[ kM(T-t)] +%sinh[k>\(T—t)])(cosh [ k\t] +71\- sinh[ k\t])

t
2(m) = =)
T T cosh[ kKAT] + % sinh [ kKAT]

0<t<T. (6. 77)

Therefore, we see that the covariance of error is symmetric with
respect to the midpoint of the interval. We can easily show that they
approach thé large time results, i.e. the Wiener filtering results,
quite easily. In Fig. 6.1 we have plotted Eq. 6.77 where we have

chosenk =1, ¢=1, S=1and T = 2.

Case b - _1?‘;) = 2S5 /\+1 (Steady State Realizable Filtering Error)
In this case we have chosen the initial covariance such

that we do not gain any improvement by realizable filtering, i.e.

T, o _ 28
Ax) =P, = 1771 (6.78)
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for all T. Substituting this equation into Eq. 6.7 we find

SR (%‘H‘) L2K(T-t) _

25
A+l

1 1 1 1, =2k(T-t)
7(1"'7\*) t s(l-y)e , 0=t=T.

(6. 79)

Therefore, we see that the performance approaches a constant as we
move backwards from the endpoint. This constant is the unrealizable
filter error as we could calculate from the classical theory. The
behaviqr near the endpoint, i.e., near T, reflects the gain in
performance which the realizable filter could attain by allowing some
delay before making its estimate. (We shall develop this concept

in detail in the next section.) In Fig. 6.2 we have plotted Eq. 6.79

for the choice of parameters in the previous figure.

Case ¢ - _130 = 0 (Known Initial State)

Let us consider the case when we know the initial state
exactly, i&, Po = 0. This case reflects the extent of correlation
time between estimétes of the state ofthe system at different times.

For this choice of P_ we have

2S sinh[ kAT] (6.80)

=Ly =
T) = XN coshlKNT] + sinh[ KENT]

When we substitute this into Eq. 6.75 we find
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¢ 28 sinh[ kXt](cosh[kx(T-t)] + .)1: sinh[ kA(T-t)])
Z(T) = ~

I , 0<t<T.
cosh(kAT) + x sin h[ k\T]

(6. 81)

In Fig. 5.3 we have plotted =(t/T) for the same choice of parameters.
We can see that after .6 secs.where it approaches Z(t] =), the
information regarding the initial state is virtually useless in making
our estimate. (We should point out that'we did not take the observation
interval quite long enough for this case. There is a plateau in middle

of the interval if the interval is long enough.)

Example 3 - Covariance of Error for a TwoPole Process

We have analyzed about all the systems that one can do
analytically in a reasonable amount of time. In order to study higher
dimensioned systems, we use numerical methods. To do this we
shall numerically integrate Eq. 6.62 to determine Tr(t/Tf). Given
this function we find Z(t/Tf) by using 6.61 . First though, let us
consider the system that we wish to study.

We shall assume that we want to estimate the stationary
process y(t) which is described by Eqs. 2.18 and 2.19 . It has a
covariance function and a spectrum as illustrated in Figs. 2.19a
and 2.19b, respectively.

Instead of performing the type of analysis done in the
previous example, let us consider a variate of a pre-emphasis
probelm.

Since we have a two state system, let us see if we can

improve our performance by including the second state, or the
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derivative of the message, in our transmitted signal. In this context,

we then have that the output of the system is

. dx,(t)
y(t) = alxlﬁ)+-a2xzﬂ)==alxﬂt)+ @, —g— (6.82)

where we desire to estimate xl(t) as our message. It would not be a
fair comparison to simpbly add the second state, since this would
increase the transmitted power. Let us, therefore, constrain the

power to be fixed to its original level of 4. We have

E[y%(H)] = a/E[x2(t)] + £ E[x%()] =

4af+40a§=4 (6.83)

dx, (t)
(E[xl(t) —?lf——— ] =0 for a stationary differentiable random process).

Therefore, we shall vary @, and o, within the constraint of Eq. 6. 83
to see if it can improve our performance. We shall also assume
that the additive white noise level is 1and the interval length is 2.

In summary, the state matrices for our system are

PO
G = [?1 | R

H
n

[a; | o]

]
fo—
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Q = 160 P = (6. 84 a-e)
0 40

with @, and @, constrained to be on the ellipse

2

+ 1002 = 1 (6.83)
(repeated)

2
@,

In addition we choose the interval length to be 2, or To = 0 and

T

f=T=2.

If we proceed with our analysis by numerically integr.ating
. Eq. 6.63 to find =(t/T) for various value @, and a, that satisfy

Eq. 6. 83 , we generate the curves of Fig. 6.4. Here we have plotted
Ell(t/T) (normalized), the covariance of the message.

We can make several observations regarding these
curves. Although we are estimating a stationary process, the curves
are not 4symmetrical about the midpoint of the interval as in
Fig 6.1 unless the observedsignal contains only one of the states,
ie., a, =0, or a, = 0. Secondly, we have plotted the curves only
for positive values of P if a, is negative with respect to Q,,we
generate curves which are exactly inverted in time. At the present
time, we do not have a good physical interpretation for this observation.

Let us also consider the improvement in performance.

We have summarized this in Fig. 6.5. In this figure we have plotted
Z:ll(Tl T)(normalized), the realizable estimate at the endpoint of the

interval, and Ell(T/Z | T), the smoother performance of the midpoint

of the interval. These points are very close to their asymptotic
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limits, = and le(t/oc;. First, we see that transmitting some of

11 =
the derivative in the signal does not improve the smoother performance.
However, it can either degrade or improve the realizable estimate
significantly. Choosing a, = .2 improves our performance (over oz2=0)
by approximately 25 percent, whereas choosing a, = -. 25 degrades

it by 50 percent. This would indicate from this particular problem

that this‘ type of preemphasisis not useful when doing smoothing

(or filtering with delay), while it can yield significant improvement

for realizable filtering.

D. Filtering with Delay

The optimal smoother uses all the available data, both
that in the past and in the future, in making its estimate at a
particular point. However, one of the disadvantages of the optimal
smoother structure is that it operates over a fixed time interval
[To, Tf] . Consequently, as more data is accumulated, i.e., T;
increases, we must resolve fhe smoothing equations if we are to use
this added data.

In contrast to this, the realizable filter produces an estimate
that evolves as the data is accumulated. It, however, uses only
past data in making its estimate, whereas, the smoother makes use
of both past and future data for its estimate.

The filter realizable with delay combines the advantages
of both the realizable filter and the smoother. By allowing a fixed
delay before we are required to make our estimate, we can find a
filter whose output evolves in time as the data is accumulated yet it

is able to take advantage of a limited amount of future data in making
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its estimate.

Let us discuss the filter structure in more detail. We
assume that we have received the signal E(t) over the interval
[To’ Tf] . We want to estimate the state vector at the point ‘

t=T,-A, i.e., find ’_>2_(Tf-A)(Tf - A>T,), where the independent

f
variable in our filter structure is Tf, the endpoint of 6bservation
interval. We note that like the realizable filter, the filter with
delay is a point estimator whereas the smoother estimates
the signal over an entire interval.

Our approach to finding the filter structure is straight-
forward. * We use the integral representation specified by solution
method 2 of Chapter IV to find ?{_(t) for the optimal smoother. We

then sett = T, - A in this integral representation. This gives us

f
/}\c(Tf - A) in terms of the received data and the realizable filter._ We
then differentiate this integral to find a set of differential equations'
for the desired estimate %( Tf - A). We note that the independent
variable for these equations is Tf rather than t, some internal point
in a fixed interval.

Let us proceed with our derivation. First we write the

smoothing equations Egs. 6.25 and 6.26 in an augmented matrix

form,

sk
This approach to the problem was first used by Baggeroer in the
1966 WESCON Proceedings. v
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x(t) x(t) [
d = - — S GwNe G — e— w— ——— —
Tt |- = W |---- ' (6.85)
-1
p(t) p(t) cTor™ e
TO =t= Tf.
From Eq. 4.41 the solution to these equations in an integral form is

T0.<_t.<_Tf, (6.86)

where _:'_E_ r(Tf) is the realizable filter output at the endpoint of the

interval Tf'. Let us evaluate Eq. 6.86 att = Tf - A, with

T, -A> T,
) A T
X(Tp D) % (T f 0
------- = W(Tf"A:Tf)--—" + \I(Tf'A:T) T T = ==
p(T,~2) 0 | Ty0 cT(nR mr(m)

This is the desired integral representation. We note that the only
time variable involved is Tf. Let us now determine a differential

equation that Eq. 6.87 satisfies, where the independent variable
is Tf the endpoint of an increasing interval rather thant, some

internal time in a fixed interval. Differentiating Eq. 6.87 we obtain
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A
dx r( Tf)

- 4) X r( Tf) _d_Tf_

=TT = - (T A, T)) |77 |+ 2(T-A, T +
£ p(Te-4) £ 0 0

—— et a— v — —— — [ - ——— ——— — S — — — — —— w— —

T, 0 |
+ S a%_f(qf(Tf_A, 1)) ) dr (6. 88)
Tp-a cTimr ()

It is a straightforward exercise to show

_dde\I:(Tf “A,Ty) = W(T;0) ¥(Tp- A&, Ty - ¥(Ty- A, TYW(T,). |
(6.89)

We also have

g ) ) ] ,
—dTI,—i:-\II(Tf-A,T) = W(T-A)E(T,- 4, 7). (6.90)

Let us substitute these two equations plus the expression for

dx (T;)/aT; from Eq. 6.29 . We obtain
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L [Tl % (Tgj] o 0
aﬁ ————-- =W(Tf-A) \If(Tf-A,Tf) ————— +S \II(Tf-A,'r) 'T' - _—1— - - =ldT
p(T,-4) o |Toa cTinRr Y mr(n
Xr(Tf) °
CHY(T-A, T { -W(T) |- ===l |~ = —— — == === +
9 cH(THR™ N (Tox(T)
—FT“ Ty + 3 )Ty R NT ) (T -C(T 0 T—-
5 0 _
| o
— e . (6.91)

cT(T- &) R™HT-A) (T4

First, we identify the term in the first bracket as

from Eq. 6.85. If we write out the term in the second bracket, we

find that it can be written as
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T
£
Z( =)
Te

(CTTYR™HTYH(TY-CITYR (T))
I

Therefore, we finally obtain the desired differential equation

(T~ 4) X(T;-4) 0
d—d— it L (4 O L el e e
f p(Ty- A) p(Ty A) CT(Tf-A)R'l(Tf-A)E(Tf-A)
- p,-
mr)
+u(Tea, Ty | 7777 | TR T (T -ClTpR (T )
I

(6.92)

The only issue that remains are the initial conditions. In order to
specify g(TO) and .E.(To) we must solve the smoothing equations over the
interval [T , T +A4].
o’ "o
Let us now see if we can simplify our structure by
eliminating E(Tf’A)- From Eq. 6.42 we have
T.-A

B(Tg=4) = E(TE:Z‘)(%(T{A) - X_(T4-4)) (6.93)

b3
This equation was first obtained by Baggeroer inthe 1966 WESCON
Proceedings.'®
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Substituting this into Eq. 6.92 we find

d§(Tf

de

- A) L T.-A
(F(T-A)4G(T,-A)QG T (T,-8)G (T p-A)Z 1(Fl,.:___&))g('rf-A)

T -1 Tf‘A A
G(T;-2)QG (T;-2)2 (T?K),;_;r(Tf-A)

T
(T (Tp- 4, Tf)z:(Tf) g (T A,Tf))cT(Tf)R'l(Tf) X
(E(T) - C (TPE (TP) (6.94)

One of the difficulties in implementing Eq. 6.94 is the

calculation of the coefficient matrix \I'gg(Tf' A, Tf)Z(Tf/Tf) +

‘I'Ql(Tf' A, Tf). For constant parameter system \Iféé(Tf- A, Tf) and
¥, (T.- A,T,) can be computed independent of T..
En' 1 f which t

need only evaluate E(Tf/Tf)/is already available from the realizable

Therefore, one

filter structure. For time varying systems it may be more efficient
to compute this coefficient matrix by solving a differential equation
for it. It is a straightforward exercise using Eq. 6.89 to show that

the coefficient matrix satisfies the equation
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T, |
g_g’r AL, T f)+\If§_(Tf—A,Tf)] =

1 -l

T,-A
[F(T;-8) +G(T-2)QG (T -A) (——-Z)] x

T,
[w g(T AT)Z( f)+\1r§ (T ATf)]

T,
-[xxfg_g_(Tf- A,Tf)z(-,ri-) (T A, )] %

[F(T) + Girpa (T n ). (6.95)

The initial condition follows by setting Tf =T, + A. Eqgs. 6.94
together with 6.95 are the same as those derived by Meditch. 31
using a discrete time approach. We simply:iooint out that depending
upon the system, we may be able to compute the coefficient matrix
more conveniently then by solving a matrix differential equation.
The most important aspect of implementing Eq. 6.94 is that it
appears to be unstable. Indeed, if implemented directly it would be.
To illustrate where the difficulty lies let us pause a moment in our
discussion.

Let us consider a differential equation representation for

the linear time invariant system with an impulse response

Pt 0<t<A B> 0

hit) = (6.96)
0 elsewhere
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Certainly, this system is stable under any realistic criterion. The

output of this system is given by

o+

g
y(t) = \y x(’r)eB (t-T)dT. (6.97)
t-A
One can easily show that y(t) satisfies the following differential
equation
W - gyy +x(t) - P2 x(t-2) (6.98)

dt

Since P is positive, this would indicate an unstable system which
contradicts what we had above. The difficulty lies in that we are
trying to subtract two responses which are in general unstable to
yield a stable net response. This is not very feasible to do in a
practical sense.

The consequence of our discussion is that Eq. 6.94
which has the same form as Eq. 6.98 is not suitable for
implementation. We should manipulate into an integral form like
Eq. 6. which has inputs Ofl‘r(Tf' 4a), §(Tf) and _1_*_(Tf). We should
then realize this representation with a topped delay line. Note that
our delay line will have a finite length of A; consequently, we can

always realize it as é::losely as desired by decreasing the top spacing.

This ends our discussion regarding the structure of the

filter with delay. Before proceeding with our discussion of its
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performance two comments are in order. First, it is straightforward
to find a differential equation for E(Tf'A) as well as _)’é(Tf-A) from

Egs. 6.92 and 6.93 . Second, we emphasize how quickly the filter
equations have been derived from the smoother structure by using

our technique.

E. Performance of the Filter of Delay

‘In this secti‘on we shall employ the techniques that we have
developed to derive a matrix differential equation for Z(Tf- A/Tf),
the covariance of error for the filter with delay. This equation is
important in two respects. First, it tells us how much we gain in
performance by allowing the delay and using the more complicated
filter structure. Second, we can find how long the transient effects
are before we can attain steady state performance. Since we have
already derived many of the required results our derivation is short.

There are two ways in which we can proceed. We can
work with Eq. 6.58 and derive Z(T,- A/Tf) from it. However, to be
consistent with our approach to deriving the filter structure we shall
use Eq. 6.64 and separate out the partition for Z(T,- A/Tf) . This
also has an advantage in identifying some terms in a form which is
easily to compute.

To proceed let us work with Eq. 6.64, the integral

representation for the solution of Eq. 6.66 . Settingt =T, - A we

f
have for Tf -A> T0
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f

B T, - A | T, - A T;
| ) I =TT ) Z=( )
Tf Tf Tf
T;- A _:_
P( T ) s l—m — - Lo =
Tf Tf -A | Tf - A
T i
2(_f_) ] 0
Tl T
U(Tp-A,TY)  |——=- | - = =TTy A, Ty -
0 | o
T T, . |
f G(TQG(7) |
‘If(Tf- A,T) |—m———— - — -:-——-———--———-—\If (T A, T)dT
Tf-A . 0 J C (T)R (T)C(‘r)
(6.99)
Let us now differentiate this expression with respectto Tf. We need
to use Egs. 6.89 , 6.90 and 6.29. Doing this we obtain
f |
|
g Te-b Z(T)'OJ
) = _ - - - -
T, P( ) -»[W(Tf AN (Tg- A, Ty)- ¥( Ty A, Tf)_W(Tfil 4 (Tp-2,Ty
0 | O
B T T 1 ~
f f...T T
F(Tf)Z(—,I‘—E)i-E(T—f-)F (Tf)+G(Tf)QG (Tf) : 0
T Tf :
|
T
F+U(T.-A,T )|~ === === == === - == m === =u I= = -\ (T-A,T
(Tg=2.Tp) | O, T)
- 0 1 0]
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T L]
(=)l 0
£
+ (T4, T,) ~— k- [ (T~ 8, TYWT (T,-28)-w T TYU (T;-A,T,)]
0 10
G(TYQG (T
“U(T=AT) |--==----- |=====----- v(T,-A,T))
' -
| 0 ICT(Tf)R l(TfC(Tf)
_ - -
G(Tf-A)QG (Tf-A): 0
+ - - — = ——— ]
i 0 : CT(Tf-A)R‘l(Tf-A)C(Tf-A)_J
Te G(1NQG () ! 0
+W(T,-A) S (T8, 7) | —m e e A \IrT(Tf-A, T)dT
Tp-A 0 : cT(mr Yr)c(n)
a(mQGT(nl 0
S YTp-0,7) |——— — - : ——————— (T~ A, 7 ar | WT-a)
o 1cTmr Y ncm

(6. 100)

To reduce this equation, we first note that
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o, 7T
Z) 0 F(T,)
W) |-—==—|= == ——
| o o] |cTiTprX

[

|
T
z(-,I—,ff-) : 0
e e L
T, |
Tf)C(Tf)E(T—f) | 0

(6.101)

After we combine terms with common factors and use Egs. 6.99

and 6. 101 , we have

T

T (T,-0,T)

T
(T4, T)

—

GT-2)QGT(T,-4)

Simplifying the second term on the

- W(Tf—A)P(—_f————) + P

— i, c— o— ——— — — o—— e o——

N T, - A
T

Ty

| 0

— e — — — — p— —— — — o——

(T

-1
| C (T=MR (Tf—A)C(Tf-A)_

right, we have finally

W (T4 -

g

(6.102)
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- A T,
)+ P(
f f

-1
C (T,-A)R (T.-A)C(T.-A

T
cH(TrR™ NTC(THI z(r—r—;)i Nel(T,-a, T

g

(6.103)

We see that with the exception of the added term the final equation

is very similar to the corresponding one for the smoother.

To find the initial condition P(TO/I‘O+A) we need to solve- one of the

form(s) of the smoother performance equations for Z(TO/T0+ A) and

T (T,/T +A). Doing this we find

T
o
o ¥z)
TO
A
P T
o TO-FZ

——

l T
] - T Toiz )Po
|
{

r————————

1 To
[ Mlr=g)

o

(6.104)



PAGES (S) MISSING FROM ORIGINAL



223

Let us now consider the upper left partition for Z(Tf— A/Tf). Using

Egs. 6.99 and 6.61 witht =T, - A,. we find

f
Ty -A |
dz(""—Tf—) : T Ty-A T; - A
T, - A p Tem B
+E(“TTT"'[F(Tf - ) +G(T, -a)Qat (Tg-A)Z (""‘7:)]

+GT(Tf—A)QGT(Tf-A)

- | o
_[\Ifg( MZ(T?)+QEH(Tf LA ]CT(Tf)R-l(Tf)C(Tf)

[wgg(f\,&ﬁ)z(T )+ (T T | (6. 105)

To find the initial condition ZXTO/ T0+ A) we again need
to solve the smoother equations over the interval [ To’ TO+A] . We
can again identify the coefficient matrix \Ifgg(Tf—A/Tf)E(Tf/Tf) +
\Ifgn(Tf— A/Tf) that we had in the filter strucTure. As before we can
e;—;luate this by one of two ways. We finally note that Eq. 6. 105
together with Eq. 6.95 was first derived by Meditch in Reference 31.

One interesting aspect of Eq. 6.106 is that it is a linear
equation unless A = 0 whereupon it becomes the matrix Riccati

equation for =Z(T /T.) as would be expected. The second aspect is
, ¥~ f
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that it is unstable when integrated forward. We, therefore, suggest
a backwards integration as we have done in previous problems. To
do this one will need to solve the smoother variance equation over the

entire interval of interest .

F. Example of Performance of the Filter With Delay

Let us illustrate the results of the previous section with
an example. To do this we numerically integrated Eq. 6.

The coefficient matrix was evaluated by using the matrix exponential.

The ekample that we shall study is a one pole process
with the initial covariance matrix chosen such that a stationary process
is generated. The equativonsthat describe the generation of the process
are Eq. 2.16 and Eq. 2.17 . In Fig. 6.6 we have plotted the
Z(Tf— A/Tf) that results from our numerical intégrati on vs.

, Tf - A for various values of A. The top curve is for A = 0, which is
the realizable filter covariance as calculated by solving the Ricatti
equation; therefore, we can quickly see how much we gain by allowing
a delay. We have also indicated the lower limit on the covariance of
error, as calculated from the classical Wiener theory.

Several observations should be made. The transient
behavior has about the same duration as that of the realizable filter.
The curves approach the asymptotic limits very closely over the
interval length considered. Finally, we integrated Eq. 6.92 forward
in time, We have previously indicated that this equation is unstable
when integrated in this direction. If we plotted these curves over
several more time constants, we could see this instability entering.

The curves no longer remain constant as they start to grow exponentially.
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This oscillation is even more pronounced in the second order systems
that we have studied. This is indicative of the type of behavior we
could expect if we integrated the differential equation, Eq. 6.92

describing the estimation structure directly.

G. Discussion and Conclusions

In this chapter we have extensively discussed linear
"smoothing and filtering with delay. As we stated in the introduction,
we feel that our approach is a unified one in that everything follows
from the differential equations for the optimal smoother.

‘The starting point for our development was the finite
time Wiener-Hopf equation. We presented a method for deriving
the smoothing differential equations from this integral equation by
using our results for the Fredholm theory developed in Chapters II
and IV. We then derived several different forms for the differential
equations specifying the covariance oferror for the smoother.

After working several examples of the smoother
performance, we discussed the filter with delay. Both its structure
and performance could be derived directly from the smoother
resulfs. We also indicated possible instability difficulty in impleme ﬁting
these results. We suggested a way to avoid this difficulty; however,
we did not develop the suggestion extensively. We concluded the
discussion of filter with delay be presenting an example of its
performance for various amounts of delay allowed.

The smoother and/or filter with delay are not specifically
limited to the area of estimation theory. For example, quite

frequently in problems in radar/sonar the receiver has the optimal
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.smoother as one of its components. 3 Consequently, we can apply
our results to realize this part of the receiver. Certainly this is
not the only application, for further discussion we refer to

Reference 12.
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CHAPTER VII

SMOOTHING AND FILTERING FOR
NONLINEAR MODULATION SYSTE MS

In the previous chapters we have assumed that the
generation of the random processes of interest could be described
by a linear system with a finite dimensional linear state represen-
tation. In this chapter we shall extend our techniques so as to treat
the problems of smoothing and filtering when the observation
method is a non-linear function of the state of the system.

With this extension we can represent many modulation
schemes and channels of current interest in communications. We
should point out though that this is not the most general problem that
can be incorporated in the state variable framework. We shall
still require that our state equation be linear.

Let us outline our procedure. We shall briefly review
our model in order to introduce the notation required for- the non-
linearity. We shall then show how we can use our techniques to
convert an integral equation for the optimal smoothed estimate to a
pair of differential equations for it. We shall solve the filtering
problem by use of an approximation technique for converting the
smoothing equations described over a fixed time interval to a pair
of equations which described the realizable filter with a moving end-

point.
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A. State Variable Modelling of Non-Linear Modulation Systems

In Chapter II we introduced the notation required for the
generation of random processes by systems with a linear state
representation. Let us modify our generation method to allow the
observed output, _y_(t); to be a non-linear function of the state vector,
x(t). As before, we shall require that the internal dynamics of the
generation be described by a linear state equation with a random
excitation process and random initial conditions. However, here we
need to assume that the state vector generated is a Gaussian random

process. Consequently, we have

'c%—i—tz = F(t)x(t) + G(t)u(t), (linear state equation), (7. 1)
. - |
E[u(t)u™(m]=Qé(t- 1), (7.2)

E[x(T)x (T, = P (7.3)

o
where (t) is a white Gaussian process, with a "spectral height' of
Q, and §(To) is a Gaussian randomvector.

The non-linear aspect of this problem enters in how we
observe the state vector. We shall assume that the output, or
observed process, is a continuous, non-linear, no memory function

of the state vector,

y(t) = s(x(t),t), T =t. (7. 4)
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Let us also introduce for the gradient of g with respect to the state

vector x(t),

(05 (x(t) , 1)1 oS (x(1), 01 - - 195 (x(1), 1) |
JENG) JEN AN | T

_____._,___.___!_____I _____

‘asm(gt),t) | lEism(X(’c),t)

B, () | :”8(_an‘—t)>
T =1t (7.5)

Therefore, in the special case of linear systems C(x(t),t) is
indepefident of 3:_(’6) and may be identified as the C(t) which we have
been using previously.

We can incorporate certain types of non-linear memory
operation in our structure. If we can interpret the modulation, or
observation, operation as the cascade of linear system (with memory)
which has a state representation for its dynamics then followed by a
non-linear no memory operation, we can simply augment the state
vector to incorporate the memory operation and then redefine the

modulation operation. Probably the most important application of

this is FM modulation, where we interpretﬁt as the cascade of an
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integrator followed by a phase modulator.
The final aspect of our model isthe received signal r(t).
Again, we shall assume that the signal\wb'xih the receiver observes

over the interval [To’ Tf] is corrupted by added white noise,

r(t) = s(x(t), ) + w(t), T <t=T (7. 6)

Where‘
Elw(tyw 1(1)] = R(t) 8(t-7) (7.7)

with R(t) positive definite. Here we must assume that w(t) is also
Gaussian.

Let us summarize the differences between what we have
assumed here and in Chapter II. First, we allowed the observed
signal to be a nonlinear function of the state vector. Secondly, we .
have assumed that v(t) and w(t) are Gaussian random processes and
§(To) is a Gaussian random vector. In Chapter II, we made
assumptions regarding only their second order statistics.

Wec/?:rolnsider the problems of smoothing and filtering
when the state equation is also non-linear. However, we need to use
a different approach. In this approach, we maximize the a posteriori
density directly where we incorporate the constraint of the state
equation by using a time varying Lagrfd‘ngian multiplier. This was

1o

first done in Ref.  and later in Ref.
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Finally, we have termed the observation operation as a
modulation. This is simply a convenience. One can model a large
class of communication systems and channels using this formulation.
One simply has a large augmented state vector to incorporate the

10
dynamics of all the systems involved.

B. Smoothing For Non-Linear Modulation Systems

In this section we shall derive the differential equations
and their boundary conditions which implicitly generate the optimal
smoothed estimate g(t) when the received signal is generated
according to the methods of the previous section. The starting
point for our derivation is an integral equation for g(t) as derived
by Van Trees in Ref. 3 using an eigenfunction expansion approach.
From Eq. 5. 160 in this reference, it is necessary. that the optimal

estimate x(t) satisfy the following integral equation

T
f
x(t) = SKX(t, 7CT (&™), DR (M)(x(m)-s(£(7), NdT, T St=T,
T

o
(7.8)
We now observe that we have the same type of kernel for
the integral operation as we discussed in Chapter II, Section C. The
only difference is that before the kernel operated upon CT(-r)i( T)
whereas now we have CT(_}?(T), ™R~ l('r)(z(-r)-g(g(-r) ,T)). Consequently,
if we want to use the results that we derived in that section, we
must examine how this difference of terms affects the derivation.

When we do this, we see that the derivation is unaffected. Therefore,
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in Eq. 2.22 we can replace CT(T)f_(T) by CT(I}_\(_(T), T)R-I(T)(E(T) -:_;_(g(-r),’r)
and reduce Eq. 7.8 to two differential equations with a set of
boundary conditions. The differential equations that describe the

optimal smoother for this problem are

—_—_—— = —F (t)p( ) (__( ), ) ( ( ) ( ( ), ))’ .

(7. 10)

The boundary conditions that are imposed are the same. We have

UT,) = PoR(T,), (7. 11)

p(Ty) = 0. (7. 12)

We shall make two comments regarding Eqs. 7.9 through
7.12. First, our derivation of these differential equations and
boundary conditions from Eq. 7.8 is exact. There are no
approximations involved. Second, we emphasize that the integral
Eq. 7.8 is only a necessary condition. It is usually not sufficient;
consequently, its solution need not be unique.

Contrasting Eqs. 7.9 through 7. 12 to those derived for the
corresponding linear problem in Chapter VI, Section A; we see that

the equation for g(t) is the same, while the nonlinear aspects of the
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estimator are introduced in the equation for p(t).

Now that we have derived the equations for x(t) we must "
consider methods of solving them. First, let us run through the
methods discussed for solving the parallel set of linear equations
developed in section C of Chapter IV. Method 1 employed the
superposition principle; therefore, itis notapplicable. In method 2
we found a complete set of boundary conditions att = Tf by introducing
a function that corresponded to realizable filter output. If we
could parallel this we could also solve Eq. 7.9 and 7. 10 backwards
from the endpoint. In the next section we shall derive an approximate
solution for the realizable filter, so this technique is certainly
feasible. However, we shall still have instability problems with
this method. The key to the third method was a linear relation
vbetween the functions _}?_(t), gr(t) and p(t) as given by Eq. 4. 42.
Unfortunately, we do not have such a relationship at the current
time. Therefore, only method 2 seems at all promising.

Certainly, there do exist other methods of solving non-
linear two point boundary value problems. One technique is the
method of quasi-linearization. With this technique, the estimation
equations are linearized around some a priori estimate of the
solution. Then these linear equations are solved exactly, by use of
the transition matrix associated with this system. This new
solution provides the next estimate around which the nonlinear
equations are linearized. This technique isrepeated until a
satisfactory convergence criterion has beensatisfied. One of
the problems, however, is generating the required a priori estimate

of g(t) and p(t). A reasonable choice might be to use the estimates
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found by applying method 2, in effect combining this method with a
quasilinearization approach.

We have seen how the realizable filter is important in
solving the smoothing equations. This filter is certainly of much
more interest than its use for this application. Let us now discuss
how we can use the smoothing equations to find an approximate

realization of the realizable filter.

C. Realizable Filtering for Non-linear Modulation Systems

In this section we shall present a derivation for an
approximate realization of the optimum realizable filter. Our
derivation is a modified version of that presented by Detchmendy
and Shridatrl*.7 " %r?; particular, the modifications that we shall make
eliminate some of the troublesome issues in their results.

The fundamental difference between the interval estimator
and the realizable filter is the time variable involved. In the
smoother the important time variable is the time within the fixed
observatioh interval, whereas in the realizable filter the important
time variable is the end-point time of the observation interval, which
‘is not fixed but increases continually as the data are accumulated.
For the realizable filfer we want the estimate at the end point of the
observation interval as a function of the length of the interval.

In order to make the transition between the two time
variables, we shall use the concept of 'invariant imbedding".
However, before we do this, let us motivate its use for this
particular problem.

We consider a sample function of p(t) near the end point



236

of the observation interval or near t = Tf. From Eq. 7. 12 we have
that it vanishes at t = Tf. However, att = Tf - AT, we have from

Eq. 7.10

dp(t)

dt

E(Tf-AT);-
" t=T

AT =
f

T, A -1 A A
CTRTY, TIR™NTY(H(T-sE(TY, THAT = - A (7.13)

Now, we shall examine the same problem with the same sample
functions from a slightly different viewpoint. Let us consider the
trajectories for x(t) and p(t) over the interval [TO, Tf-AT] . We can
way that these trajectories solve a second problem defined over this
shortened interval. For this problem the initial conditions are the
same. However, the endpoint time is now Tf - AT, and B(Tf-AT)
is equal to An as defined in Eq. 7.13 instead of being identically zero.
We can produce the same trajectory by considering an appropriately
chosen non-zero boundary condition for E(Tf—AT).

This leads us to the following hypothetical question. If
we imbed our smoothihg problem in a larger class of problems with

the boundary condition
E(Tf) =n (7. 14)

for Eq. 7.10, how does the solution of Eq. 7.9 at Tf depend upon

changes in Tf and n ? This question is answered by the invariant
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imbedding equation, which is a partial differential equation for the
solution of Eq. 7.9 at Tf as a function of Tf and 7.

First, we shall sketch its deriva1:ion.17

Let us consider the solutions to Eqgs. 7.9 and 7.10 when
we impose the final bundary condition specified by Eq. 7.14. We
shall denote these solutions by x(t, Tf, 1) and p(t, Tf,_11). We have
introduced arguments 'Z[‘f and n to emphasize that these solutions are
dependent upon these parameters. We also point out that we are

assuming n to be an independent variable. We have

x(t, Tp, 0) = 2(1:)’ T St=T,, (7. 15)

P(Te, Teom) = 7. (7. 16)
We define

&(Tem) = (T, Tpy ). (7. 17)
We note

§(T;, 0) = 'g\(Tf) (7. 18)

For future convenience let us also define the function I"' by
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A dx(t, Tf,m)
r(_}_{_(Tf, Tf’ﬂ.)’ﬂ.’ Tf) = _;.._d—t___n_._ =

t= Tf
F(TPE(T ;1) + GITYQG (T (7. 19)
and the function A by
: A dp(t, Tg)n)
ATy Tpn)n. Ty = —g—— | =
t= Tf

-FHTn - CT(E(T ), TPR™UTY(E(T- 5 (E(Tg ), T

(7. 20)

which is the desired realizable filter estimate at Tf. We shall now
determine a partial differential equation for §(Tf:ﬂ) in terms of the
variables Tf and n .

Let us examine the solutions x(t, Tf, m) and p(t, Tf,n) as

illustrated in Fig. 7.1. We have from Eq. 7.10

dp(t, Ten)
I_).(Tf"AT,Tf,T]) =ﬂ. - —-—d—t——-—'

H - A(}—('(Tf, Tf’ﬂ)’n’Tf)AT =

A
n - AE(Ten)n, THAT = 1 - A9 (7.21)
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x(T -AT, Tg,1y) = p_(Tf-AT, Tf,g)=
- AT, T -AT,N-an)= n-4 p(T_,T_m) =
g(,lf T 4 o) n-an l g el

x(T,, T = 1}
N 7“&)

N\

Te t—e Tf-AT T, T t —s T-AT Tf
z(t,Tf,‘_fL) ' p(t, T 4
vs, t vs. ft
- Fig, 7.1

Diagram for Invariant
Imbedding Argument
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Now, we can interpret §(Tf- AT, Tf, 1) as being the solution to a
second problem producing the same trajectory over the interval

[T, T~ AT] with the boundary condition n - An, i.e.,

E(Tf—AT, Tf, n) = x( Tf-AT, Tf-AT, n-An) =
_g_(Tf_ AT:I]_" An)- (7. 22)
We also have
ax(t, Ty, m)
KTyAT, Tpn) = (T Ten) - ——gg— | _ . AT+
B §
Combining Eqgs. 7.22 and 7.23, we find

We also can expand ij.(Tf, 1) in a two dimensional ‘

Taylor series. Doing this, we obtain

3_§_(Tf,rl) 3§(Tf,n)

_g_(Tf—AT,q—Aﬂ),:é_(Tf,ﬂ) - ~—8—T}_— AT - —-—3_7_]—— An

(7. 25)

*We interpret 9§ (T, n)/dn as in Eq. 7.5.
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However, as given by Eq. 7.21, we have constrained An to be
An = A(E(T;, n),n, THAT (7. 26)

Substituting Eq. 7.26 in Eq. 7.25, equating the result to Eq. 7.24 and

dividing by AT we obtain the desired invariant imbedding equation

9E(Tpm)  0E(Tem)
anf + @nf A(§(Tp )., Tp) =T(E(Tpm),n, Ty (7.27)

This equation relates the value of the solutionto Eq. 7.9 at t = Tf to
changes in Tf and n, the endpoint time of the interval and the
boundary condition for Eq. 7.10 att = Tf.

We now want to solve Eq. 7.27 and evaluate its solution
at n = 0 as prescribed by Eq. 7.18 to find the realizable estimate

n
x(Tf) vs Tf.

Let us see if we can find a set of ordinary differential
equation that will generate the solution to Eq. 7.27. This equation is
a partial differential equation; therefore, we would expect that its
solution would require an infinite set of equations. In general, this is
true; however, let us try a finite order approximation. Since we

are interested in the solution at n =0, let us use a power series

“We point out that we have made an expansion in terms of AT. Since
there is currently some controversy regarding the significance of

the terms in the expi%nsion, we are certainly involved in this issue
with our approach.
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expansion in . We shall try a solution of the form
N
_&,_(Tf,n) = §(Tf) + Pl(Tf)ﬂ + terms of O( (7. 28)

Eq. 7.28 implies that we shall consider explicitly only terms linear

in 7.

Let us substitute our trial solution into Eq. 7.27. Using

Egs. 7.17 and 7. 18 and expanding terms to first order we obtain

dx(T)  dP (T

ar. de11+

f

-1

P (T, { -FHUTn - CTET), TYR™NT(x(TY-s(KT)), T)

- 5 (CTE TPR UTHR(TY-sR T |, P(Tyn } +
X = E(Tf)
2
terms of O(Inl )

F(T A X(T) + PY(Tn] + GITHQGT(T,) + terms of O(|n|?)

¢
(7. 29)

Now we combine terms of the same order in . We find

A
dP,(T.) )
(————;Tff - P(T,)F(Tp)-P,(T,) %(CT(Q, TIR™NTY((Ty-s(E, T)

P1(T¢)
S}‘:%(Tf)
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-F(T)P (T, - G(TYQ GT(Tf)) n + terms of O(|q|%) =0
(7. 30)

Demanding a solution for arbitrary n gives usa first order
approximation to the realizable filter. For arbitrary n the coefficients

of each power of n must vanish. We find

N
dx(Tg) _ A T A -1 o
—qr, = FTPX(Ty) + Py(TC ((Ty), TPR™(Tp (x(Tp-sR(Tp), Tp)
(7. 31)
dPl(Tf) T
aT, - F(TPP (T + P (TYF (Ty) + G(TPQG (T,
-P (Ty) 52 (CT(h THR™HTHK(T) - 8(& T)) P (T
' ox = °f f—f—-’f}?:;\{f)lf
| (7.32)

To complete the solution we need to specify some initial conditions
for Egs. 7.32 and 7. 23. To do this we set Tf = T0 in Eq. 7.28.

We have

(T, 1) =XT)=0, (7. 33)
n=2

since we have assumed zero a priori means. We also have that

Eq. 7.28 must satisfy the condition of Eq. 7.11. This implies
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o~

P(T)) =P (7.34)

(This also requires that the initial condition for the coefficients in any
higher order expansion must be zero.)

Several comments are in order.

1. Although we have not made an issue about terms of
order AT in our expansion, we have derived the same appr oximation
as found by Snyder who approximated the solution to an a posteriori
Fakker-Planck equation. 10

2. If the observation method is linear, Equations 7. 31
through 7. 34 are identical to those describing the Kalman-Bucy
filter. This is certainly to be expected. For the linear case, it is
easy to show that a first order expénsion yields an exact solution to
the invariant imbedding equation.

3. Pl(Tf) is conditioned upon the received signal;
therefore, it cannot be computed a priori as in the linear case. We
also point out that we have no reason from this method to equate
Pl(Tf) to a conditional covariance matrix. However, in Snyder's
approach one can make this identification.

4. Finally, if we want toconsider higher order
approximations, we should observe how Pl(Tf) couples to the estimate.
In general, the higher order terms will couple both ways also, i.e.,
with the estimate and With the other terms. In addition, the number
of elements in the higher order approximations are going to be

large, e.g. on the order of (NF)rl where NF isthe state vector

dimension and n is the approximation order.
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D. Summary

In this chapter we have briefly outlined an approach to
smoothing and realizable filtering for non-linear modulation systems.
We started with an integral equation that specified a necessary
condition for the optimal smoothed estimate. We then demonstrated
how some of the techniques which we developed earlier in Chapter II
could be extended to reduce this integral equation to a pair of non-
linear differential equations for the optimal smoothed estimate.

This reduction was an exact procedure; therefore, solving the
differential equations is equivalent to solving the integral equations.

These differential equations specified the smoother
structure for our problem; however, we were still faced with the
issue of solving them. One of the methods suggested employed the
realizable filter.

With this motivation in addition to the general desirability
of solution for the realizable filter, we introduced the concept of
invariant imbedding. This concept used the smoother structure to
derive a partial differential equation for the realizable filter estimate.
This equation was difficult to implement; therefore, we introduced
an approach which allowed us to find an approximate solution which
could be implemented conveniently. Using this approach, the filter

structure followed directly.
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CHAPTER VIII

STATE VARIABLE ESTIMATION
IN A DISTRIBUTED ENVIRONMENT

In the application of state variable techniques to com-
munication pfoblems, the issue of delay arises quite naturally. For
example, since these methods are well adapted tovector processes,
they appear to be well suited for problems in array data processing.
In these problems, the delay enters because of the finite propagation
time of the signals between elements in the array.

When we try to incorporate the issue of delay into our
model, several difficulties arise. Although delay is certainly a
linear operation, there does not exist a way of representing it with
the methods that we introduced in Chapter II. If we examine the
issue of delay more closely, we can see why this is true.

A delay'operation inherently involves spatial as well as
temporal aspects, whether itis caused by a wavefront propagating
across an array, or a signal passing through a delay, or transmission.
We must recognize that this type of operation is created by a
mechanism that is distributed across a spatial environment. Since
the model introduced in Chapter II involved only a single time
variable, we should not expect that they would be able to handle this

situation where there is both a time and spatial variable.
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In this chapter we shall extend our state variable techniques
so that we can handle a certain class of problems that involve a
distributed environment. This class of problems arises quite often
in array data processing. We shall discuss our approach in the
context of incorporating a delay operation; however, the methods
are directly extendable to other distributed environments where the
medium may have several spatial coordinates, be nonhomogeneous
and/or lossy. As we shall see, even the simple delay mechanism
causes a fair amount of difficulty. |

Our approach here is also goingto be different. Previously,
we worked with integral equations and used our methods to reduce
them to differential equations. In this chapter, we are going to derive
the differential equations directly by assuming that the processes
involved are Gaussian and then maximizing the a posteriori density
by a variational approach. This does not mean that we cannot
extend our previous methods, e.g., the Fredholm integral equation
theory to this problem. We have done this; however, it is not of

enough general interest to develop it here for this single problem.

A. A State Variable Model for Observation in a Distributed
Environment
In this section we shall extend the concepts for the
generation of random processes of Chapter II so that we can
incorporate the distributed aspects of the delay operation. Our goal
is to find a set of state and observation equations to represent

signals of the form
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m
y(t) = a_s(t) + Z a;slt-7y), 0=7,=7T,<...=7T
1=1
(8.1)

where s(t) is a signal process generated by the methods we have
previously discussed. (We shall allow vector observations; this
feature does not require any additional modifications to the theory.)
Let us assume that we have generated a signal s(t)
according to fhese methods. This implies that we have a state and

observation equation describing its generation,

dx(t)
gt = F(t)x(t) + G(t)u(t), TO < t (state equation)’ (8. 2)
s(t) = C(t)x(t), To < t (observation equation), (8. 3)

This also implies that we have made the following assumptions regard-
ing the statistics of the initial state §(TO) and the driving noise

process v(t),

T
BIx(T)x (T)] = B, (8.4)

E[utyul()] = Q s(t-7) (8. 5)

For the purposes of the derivation in the next section, we shall also
assume that these are a Gaussian random vector and a white

Gaussian random process respectively. We emphasize that the
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- result is not dependent upon this assumption, since an alternate,
but more complex,derivation can be made without it by structuring
the filter to be linear.

As can easily be seen, the generation of s(t) is described
by a set of ordinary differential equations, or equations with only
one independent variable. However, if we want to use state
variable techniques, the functional description of the delay operation
as expressed in Eq. 8.1 is not applicable. We need to introduce an
equation whiéh describes the dynamics of the system which produces
the delay operation. This operation cannot be described in terms of
a finite dimensional ordinary differential equation; it is a partial
differential equation with a spatial variable z as well as a temporal

variable z,

9U(t,z)  BU(t,z)
5t — + 9z

=0 (8. 6)

For this problem with pure delay, we have assumed a unity velocity
of propagation with no loss of generality.

It is easy to see how this equation describes the dynamics
of the delay operation. Let us show how we can represent g(t—'ri) in
terms of this equation and a boundary condition at z = 0. The

general solution to Eq. 8.6 is

¥(t,z) = ¥ (t-z) (8.7)

“We should not confuse the vector ¥(t,z) with the earlier transition
matrices used.



250

where \Ifo is an arbitrary function to be determined. If we impose

the boundary condition

T(t,z) = s(t), (8.8

z =0

we find

T (1) =¥t 2) = s(t). (8.9)
z =0

(We could consider that Eq. 8.8 describes the input to a delay line.)
If we evaluate T(t,z) at z = T;» OF at the output of the delay line, we

obtain

T(t,z)| = (t-7.) = s(t-T)) . (8. 10)
z = Ti

Consequently, we can rewrite Eq. 8.1 as

m

y(t) = @ s(t) + E o ¥(t, 7)), T, <t, (8. 11)

i=1

where ¥(t,z) is the output of the dynamic system whose operation is
described by Eq. 8.6 and whose input is described by the boundary
condition of Eq. 8.8. Thus, we can eliminate the functional

description of the delay that appears in Eq. 8.1,
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We are now able to write a set of state and observation
equations to represent the effect of a delay in our observation. We

have the state equations

dx(t
%(t) = F(t)x(t) + G(t)v(t), T0 = t, (8. 2)
(repeated)
o (t, z) 0¥ (t, z) - -
e = = =t, 0= 8.6
ot 9z To=th 0=z (8. 6)
(repeated)
We impose a boundary condition upon ¥(t,z) atz = 0,
T(t,0) = s(t) = Ct)x(t) (8. 8)
(repeated )
upon ¥(t,z). The observation equation becomes
m
y(t) = aoC(t)_g(t) + E aiC(t-'ri)zc_(t—-ri) =
i=1
o
as (t) + E Q% (t, ;) (8. 11)
i=1

As we can see, the equation describing the dynamics of
the delay operation enters as a state equation. However, there is an
important point to be made regarding the difference between

Egs. 8.2 and 8.6. The state of Eq. 8.2 at a particular time can be
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described by a set of numbers the state vectof. To describe the
state of Eq. 8. 6,‘ we must specify a set of functions of the variable z.
One cannot determine the state of this equation at a future time without
knowledge of these functions. In dealing with distributed media, the
extension of the state vector to a state function is intrinsic to the
idea of a system state.

The concept of the state of the delay operation leads us to
the problem of the assumptions that must be made regarding its
initial state \-If(To’ z), 0=z = T For the present we shall assume
that it is a zero mean Gaussian random process as a function of z with

a covariance
E[Z(T ,z)Z(T,t)] = K (2,0) 0=z, ¢{=r (8. 12a)

To complete our assumptions regarding our model, we
shall assume that we observe y(t) over the interval T o =t = Tf in the
presence of an additive white Gaussian noise. Therefore, our

received signal r(t) is
r(t) = y(t) + w(t), T =t=T (8. 13)

where y(t) is given by Eq. 8.9 and the covariance of w(t) is

Elw(t)w ()] = R(t)s (t- ) (8. 14)
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Before proceeding to the next section where we shall
derive the receiver structure for estimating x(t), let us briefly
discuss how we could generalize our model for other types of
propagation media. The key to this is recognizing that the equation
we introduced to describe the delay operation is actually a state
equation which describes the dynamics of the distributed media of
interest. It is, therefore, appropriate to consider modifying
equation 8.6 as a generalization of our model. For example, the

dynamics of the medium may be described by the equation

0¥ (t, z) ' 0¥ (t, z)
Ayt z) —g— + A (t,2) ——5— + B(t,2)¥(t,2) =0, T _<t, 0<z

(8. 15)

where we impose the boundary condition of Eq. 8.9. Eq. 8.15is
obviously a generalization of the delay mechanism equation. By
choosing the coefficient matrices appropriately, one can model non-
homogeneous and/or lossy media.

We can also generalize Eq. 8.5 to include time varying

gains at each element. In this case Eq. 8.11 becomes

[

y(t) = ao(t)_s_(t) + ai(t)g(t,’ri), T0 <t (8. 16)

=
fl
—

where ¥(t,z) is the solution to Eq. 8.15.
We have illustrated our model in Fig. 8.1. In this

model, s(t) is generated by a system as described in Chapter II. It
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passes through a propagation, a distributed, medium whose dynamics
may be described by Eq. 8.15. The signal is then spatially sampled
at various points in the medium and linearly combined according to
Eq. 8.16. The resulting signal then has white noise added to it
before being observed at the receiver. We éan generalize the model
even further by allowing different propagation paths. In this case,
we would have a separate medium description for each path.

The model assumed allows a large degree of flexibility.
In some respects too much, since it requires us to make detailed
assumptions regarding the medium, which in turn makes the receiver
quite detailed and difficult to implement. However, if one is faced
with a problem which does have thié type of problem entering in
its observation process, one must somehowincorporate the spatial
aspects of the problem. We feel that our approach is a reasonable

attempt at doing this.

B. Stéte Variable Estimation in the Presence of Pure Delay

In this section we shall derive the equations that specify
the optimal smoother when pure delay enters into the observation
method. We shall find that these equations are a set of differential-
difference equations that specify the desired estimate implicitly as
part of their solution.

We shall assume that the generation and observation of
the received signal may be described by Eqs. 8.1 - 8.14 of the
previous section. Our approach to deriving the smoother structure is
different than that used in Chapter VI. We shall use a variational

approach to maximizing an a posteriori density. In maximizing this
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density web shall need to introduce Lagrangian multipliers to incorporate
the constraints among the different variables. We should also note
that since the delay operation is introduced as a dynamic system with
a state equation, we shall be required to estimate its state also. Let
us proceed with our dérivation.

Since the processes involved were assumed to be Gaussian,
it is straightforward to show that the joint a posteriori density for

x(t) and ¥(t, z) has the form

Py, |p (X(0),Z(t,2)[2(t) = k exp(-J(x(T ), Wt), MT,2) (8.17)

where k is a constant and the functional Jis given by

Tg

HHT ) ut), (T, z2) = STy IP;1 +3 SI Ig(t)IIQ_ldt

o

“ (T, 2)Q(z, L)E(T, t)dzdL”

chﬁgq
|
p_]

Ty
+ 3 Slla(ﬂ -z(t)IIR_l dt+ 5
Y A
(¢)

(8.18)

E 3 AN
HXHA= xAX
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We note that x(t) is related to §(To) and u(t) by Eqs. 8.2, ¥(t,z)is
specified by Eqs. 8.6 and 8.8, and y(t) is given by Eq. 8.11. The
arguments for J are E(To)’ v(t) and g(TO, z) since these variables
uniquely determine x(t) and Ht,z).

It is easy to see that tomaximize this density, we could
just as well rﬁinimize J as a function of the variables §(To), u(t) and
\_If(TO, z). However, to perform this minimization we need to incor-
porate the constraints between the different variables. First, we
need to relate x(t) to u(t) and _>£(TO). We Car,l'.\\éo this by using a time-
varying Lagragian multiplier p(t) for Eq. 8.2. We shall add to the

functional J an identically zero term LO of the form

T
T ax(t
L =\ p (t)( —— - Flt)x(t) —G(t)g(t)) at (8. 19)
T

It will be useful to integrate the first term by parts. Doing this,

we have
Ly = p (TPx(T) - pT(T )x(T ) -

f T
dp " (t) T T :
i E(t) +p (t)F(t)E(t) +p (t)G(t)_l_l_(t) dt (8.20)

(o}

To incorporate each of the delay operations _s_(t—'ri) need

to introduce a Lagrangian multiplier —}fi(t’ z) which is a function of
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both space and time. The state equation describing the delay
operation is given by Eq. 8.6. Consequently, we add to J in terms

Li which are all identically zero

-
T aYt, z) a\g(t, z) .
pit, z) 5 1 5o dtdz,i=1,m, (8.21)
0

We shall also need to have this term integrated by parts. Doing this

with respect to both variables t and z, we obtain

f

T
L, = g (£t mpmee, =) - plie, 0 Cext) )dt
T

-0

T.
1

¢\ (efrp T, - T, z)\g(To,z))dz

T0
T, T,
| '
pt(t,z)  Bul(t,z)
_ - n - U(t,z)dtdz, i = 1, m, (8.22)
T 0
o

where we have substituted C(t)x(t) for ¥(t, 0) according to Eq. 8.8.
We add Lo and Li as given by Eq. 8.20 and Eq. 8. 22,
and then we substitute the expressions for y(t) and s(t) as given by

Eq. 8.9 and Eq. 8.3. Doing this,we find,
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T, 9T = STl L+ g § 1] T

Sllr(t - a  Clt)x(t) - Zm\lf(t T, || dt+

i=1

T T
m m
15 S\IrT(T 2)Q (z,0)¥(T ,¢)dt dz
2 = 1o * ot R 2 B2
0 0
Te
T T dp (t) T T
+pHTIR(TY - pT(TIK(T,) - MR O T 7 (B GlEuD dt
T

¥

( pilt, ), 7)) - E?(t,O)C(t)g(t)) at

il
OH ("'_)H:ﬂ

(1T 2Ty 2) - 5Ty DH(T G20 ) a2

ol— 1

ap (t z) BE?(t,z)
0z

: ) T(t, z)dt dz (8. 23)

or-]L/j =
OC-//—’
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Let us now proceed with our optimization procedure to

A
minimize J. First, we define g(To), u(t) and ¥(T_,z) to be the

optimum choice for minimizing J. Now we expand J about these

optimal estimates, i.e., we let

x(T ) XT) + €6 x(T)

u(t) ut) + € &ult)

‘ A
(T, 2) = T, 2) +es (T ,z)

Substituting Eqs. 8.24 through 8.26 into Eq. 8.23, we

Jx(T ), ult), YT, 2) = JIX(T), ult), LT, z))

Ty

e < 2T )P ex(T ) + S ul(1)Q ™ Lau(t) +
T

o

f ' m
(x(t) - @ ClHX) - z o, )T

i

—

o

m
R'l(t)(-aOC(t)ax(t z @, 6%(t,7,))d

(8. 24)

(8. 25)

(8. 26)

find
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m m
f(f &h(r_,0)Q (L, 2)dt
0 0

T

Gg(To, z)dz

dp (t)
+p (Tf)éx(Tf) P (T Gx(T )~ f( 6x(t)+p (t)F(t)Gx(t)+p (t)G(t)ou(t)| d

T
o

(E’ir(t,Ti)ﬁg(t,Ti) - E’f(t,O)C(t)agt)) dt

:'_MB
OHK ,_b'ﬂ

Ti .
f (Erir(Tf,z)ég(Tf,z) - E?(T(),z)é?(T(),z)dz
0

T.

opl(t,z) O (t,z) | N
5T + o 6¥(t,z)dt dz + termsof O (€)
0

4

(8.27)

Now let us combine the common variations. We obtain

Jx(T ), Wt), ¥(T , 2)) = JX(T ), Wt), T(T_,2)) +

T

p(T,) 6x(T,) + (R (T )Pt -pT(T ))6x(T )+ f (BT Q™ -plvia()s )
T
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T = |
T _de g T
+(g (tha Clt) - —— - p (DF(t) - Ln_i(t,O)C(t))éix(t)
i=1

m
Z(( -a"(t)e, + E'].I.‘(t,'ri)cﬁ\?(t, +.) |at +
i=1

Tm Tm m 7
f I%T(TO:E)QO(Q,ZNE - Z B_rir(To,z)u_l(-ri-z) §%(T,z)dz
o | i=1

T,

m T
T Z 3p-q€t,z 891(’0 z)
B (Tf, z)6g(Tf,z)dz

e

L8

5 | 8% (t, z)dt dz

o

+ terms of O(e?), (8. 28)

where

m

A 1. 'S
g(t) =R l(t)(_lg‘_(t) - OlOC(t)g_(t) - Z Oli‘g(t,‘ri)) (8.29)

i=1

We shall now make a series of arguments to cause the ¢
variation of the functional to vanish. First, we shall require that the
Lagrangian multiplier functions satisfy equations such that the
coefficient of some of the variations vanishes identically. We shall

then argue that the coefficients of the remaining variations must
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vanish because of the optimality of g(_(TO), ‘?_(t)’ and \E(TO, z).
First, we shall impose restrictions upon E(t), the
Lagrangian multiplier for the state Eq. 8.2. We shall require that

it satisfy the differential equation

) m
dp(t) T T z ,
—_—— - - < <
& F~(t)p(t) - C(t) aog(t) + Ei(t’ 0], To_t Tf.
i=1
(8.30)
In addition, we shall impose the boundary condition
p(Ty) = 0 (8.31)

Next, we shall restrict the Lagrangian multipliers for each of the

delays T - We shall require

aﬁi(t,z) Bgi(t,z) ,
- <7
5 + 5 =0, T =t=T

o £’

We note that these equations can be solved functionally,

Ei(t,z) =P (t-z), T =t=T

o f’0<Z<Ti’1=1’m (8. 33)

.

L

where Mo (t) is a function yet to be determined. In addition, we
shall impose both temporal and spatial boundary conditions. We

shall require
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a. Ei(Tf’Z) =0, 0=z=rT, (8. 34)

or from Eq. 8.33

Eo (Tf—z) =0, O0=z=-T; (8. 35)
i

b py(t,T) = @ d(t), T =t=T (8. 36)

or from Eq. 8.33

Bo. (t-Ty) = @d(t), T =t= T (8.37)
71 :

We can interpret each of these conditions in terms of results we
developed earlier. Eq. 8. 34 is the parallel to Eq. 8.31 in that it
specifies a terminal state. Eq. 8.36 is a spatial boundary condition
parallel to the one imposed upon ¥(t,0) as specified by Eq. 8. 8.

If we substitute Eqs. 8.30, 8.31, 8.32, 8.34 and 8. 36

in Eq. 8.28

Jx(T ), u(t), ¥(T , 2)) = JX(T),81), (T _,2) +
Tg
e [ ETrgPy fry)exry) + f (ﬁT(t)Q‘l—pT(t)Gu)sy_(t)

T
o

(continued)
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T T
m m m
2T T
f f T (T, 0)Q, (L, z)dt - Z pi(To2hu_ (7;-2) [8X(T ,2).
o | o i=1

(8. 38)

If we examine the variations in the above we see that
they are the control parameters. Consequently, we can argue that in
A A
order for g( To), u(t) and g(To, z) to be optimum, their coefficients

must vanish. We have then

X(T_) = P_p(T,) (8. 39)
WH =G (bpit), T =t=T, (8. 40)
m Tm
A
> wlTeauyrz) = [ Qa LT, ba, 0sas T
i=1 0
(8. 41)

Eq. 8.40 allows us to eliminate _@(t) in the differential

equation for %(t). We obtain

A
dx(t)

—— = FR + G cTiop, T, st=T,.

(8. 42)
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Egs. 8.39 and 8. 41 specify initial conditions upon the
state of the syst’em. Eq. 8.41 presents a problem since it is in an
integral equation form. Quite often we shall be able to reduce this
integral equation to a differential equation by techniques similar to
those we have previously discussed. It may be realistic to assume
that the initial state estimate is spatially white. This is certainly

a worst case situation. In this case we have

Ky(z,0) =K (2)8(z-), 0=z, ¢ =r_ (8. 43)
for which Eq. 8.41 becomes
m
> Ty 2)u(r-2) = KZ U2 (T ,2), 0=z=r_ (8.44)
/. Bittezu\Tymz) = B 22 .2), 0=2=7T .
i=1

This completes our derivation of the estimator structure
by minimizing the functional J. Let us now summarize our results

for this structure. We have for To =t = Tf (all the equations are

repeated).
N
dx(t) A T
g = F(t)x(t) + G(t)Q G (t)p(t) (8. 42)
A A
0¥ (t, z) 0¥ (t, z)
- - =, 0=gz=n1 (8. 6)

ot 0z
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m
dp(t) 1 T
—a = T pn - <Tw | agan + > w0 (8. 30)
S i = 1
Bgi(t, Z) 'a—Ei(t’ Z) ) :
——ﬁ_:_—az—’ OSZSTi,1=1, m, (8. 32)
where
m
-1
aw = R7(x0 - agC txt) - D o, T (8. 29)
i=1
The temporal boundary condition are
P _ A
HRATH) = x(T ), (8. 39)

m
-1, 2
Y eylTo 2 (ri-2) = K M) U(T,2), 0=z=r_, (8.44)
i=1
E(Tf) =0, (8. 31)
pi(Tpz) =0, 0<z<7, i=1, m, (8. 34)

The spatial boundary conditions are
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N A
T(t,0) = C(t)x(t), T =t=T (8. 8)

ﬁi(t’Ti) = ozig(t), T, =t sTf, i=1, m. (8. 36)
If we compare these equations to those for the case of ordinary state
variable equations, we can see that these equations are a logical
extension to them.

I_n the above representation, we used the partial
differential equations to specify g(t,z) and the Ei(t' z). When we are
concerned with a pure delay operations, we can solve these partial
differential equations and convert the above representation to a set
of differential-difference equations. In the general case of
arbitrary delay spacing, this representation can be rather complex
due to the various time intervals involved. However, in the case of
equally spaced delays we can obtain a structure which is easier with

which to work. Let us illustrate this with an example.

Example 1 - Estimator Structure for Two Equal Delays

We shall consider the case when m =2, and

T =0
o)
Tf = T > 4AT
T, = AT
T = 2AT (8. 37 a-d)
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This model would correspond to a three element receiver. We
shall allow the system for the generation of s(t) to have an arbitrary
state description.

To convert our receiver to a differential-difference
equation form we need to solve the equations for ,\if(t, z) and
gi(t,z). We have done this in Eqs. 8.10 and 8. 33. First, we want
to determine d(t) over the interval [0, T]. To do this, we need

A
¥(t,z). We have

¥ (t-z) = C(t-2)X(t-z) 0=t-z<T
E‘(t, z) =

N
(0, z-t) -2AT<t-2<0
(8. 38)

Therefore, we obtain

R™H [ x(t)- @ CHZ(H)- @) T(0,AT-t)-a,¥(0, ZAT-H], 0=t =AT,

d(t) = R"l(t)[g(t)-aoC(t)g(t)-aIC(t~AT)g(t-AT)-a2§f(0, 2AT-t)],
| | AT=t=2AT,
RO £(t) -0 CIHE()- @, C(t-ADR(t-AT) -, C(t- 24T 3(t-24T)]

2AT=t=T. (8.39)

Now we need to find the functions TR (t). From Eqgs. 8. 35 and 8. 37
i
we have
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0, T - AT=t =T,

Ky () =
1 @ d(thAY),  -AT=t=T - AT; (8. 40a)

0 T - 2AT=t =T,

B (1) = ‘

azg(HZAT), -2AT=t T - 2AT. (8. 40Db)

We are now able to write the estimation equations solely
N\
in terms of %(t), p(t) and ¥(0,z). The equation for g(t) is the same

throughout the interval

dx(t)

—— = F(b)X(t) + GIQ G (t)p(t), 0=t=T (8. 41)

By substituting Eqs. 8.39 and 8. 40 for d(t) and Ei(t’ 0) respectively,

we find for the different time intervals

dp(t)
—— = -FL(t)plt) -

T -1 | A - a
CH(t) | e R (M) -a Clx(t) -, T(0, AT-t)-a,%(0, 2AT-1)]
+ @ R™HEHAT) [ 2{t+AT) - S CHHAR(E+AT) -y C(1I%(1) -012%0,AT -t)]

+ azR'l(t+z A r(t+24T) -a OC(t+2AT)_§§(t+2AT) -a 1C(t+AT)_§§(t+AT)-ozzo(tr.)iicc)

0=t=At



272

dp(t)
—— = “FL(t)p(t) =

T -1 A A A
CTt) | a,R “(t)r(t)-a C(t)x(t)-a C(t-AT)x(t-AT)-a, ¥(0, 2AT-t)] +
+ta; R Ltrat)] r(t+AT) - OC(t+AT)g(t+AT) -0y C(t)X(t) -, C(t -AT) X(t-AT)]

aZR‘l(t+’_2A_T)[ r{t+2AT) - C(t+2AT)R(t+2AT) - C(++AT)R(1+AT) -a, C)R(1)]),

AT < t < 2AT, (8. 42c)

dp(t)
= “F(op(t) -

cTi) (aoR‘ Yol - aoC(t)g(t)—dIC(t—AT)_}E(’s-AT)-QZC(t-'ZAT)z:_(t— 2AT)
0 R (HHAT)[ £(t+AT) - C(t+AT)R(+AT) -, C(HR(H) -, C(AT)E(E-AT)]

+ azR'l(HzAT)[ X{t+2AT) @ C(t+24T)X(t+2AT) - ) C(t+AT) R(t+AT) -0, C(t)R (1)]
2AT <t < T - 2AT
(8. 42d)

dp(t)
. FTyp) -

(continusd)
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cT o R 1) t)-a ClHZ() -e, Clt-ATYR( T -AT) -a,C(t- 2AT) X t-24T)]

o R™H(E+AT)] £(t) - o C(EHAT)R(H+AT) - & CH) x(1) - 0, C(£-AT)R(¢ - AT)]

T -2AT <t<T -AT.  (8.42d)

dp(t)
3 = “FL(t)p(t) -

Tt {o B 0L £(0)- o COR(H) -0 C(t- ATIR(E-AT) -, Clt -2AT)x(t-2AT)] ).

T-AT <t<T. (8. 42e)

The boundary conditions are
A
P, p(0) =x(0) (8. 43)
p(T) = 0 | (8. 44)

K l0w(o, =
0y R™H(AT -4)[ (AT -t) -0 C(AT-H)}(AT-1) -t }0, 1) -0, (0, AT+)]

@, R (2AT-4)] £(28T-1) -, C(2AT-t)%(2AT -t) - @ C(AT-HR(AT ) -, (0, 1)]

0 =t = AT, (8. 45a)
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K L1)2(0,1) = [£(24T-t) - C(2AT-t)x(2AT-1)- 0, ¥(0, AT+) -0, (0, )] ,

AT = t = 2AT. (8. 45Db)

Eqgs. 8.41 through 8. 45 specify our receiver structure. It would be an
understatement to say it is simply complex.

The major difficulty encountered is that :}g\(t) enters the
equations both delayed and retarted, i.e., %(t), X(t-AT), and |
lgc\_(t-l-AT) all can enter the same equation. Unfortunately the mathematical
theory for solving this type of equation has not been developed very
extensively, if at all. Therefore, we shall suggest two possible
approaches.

First, oﬁe can approximate the delay operation by some
finite Pade approximation. The order would of course be dependent
on how large the delay is compared tothe correlation time of the
process involved. We should point out that we are approximating the
receivér, not the environment and then designing the receiver.

A second approach is to augment the state vector to
include X(t-24T), ¥t-AT), Xt+AT) and %(t+2AT), and the corresponding
function D(t-2AT), P(t-AT), P(t+AT) and D(t+AT). Obviously, this
increases the dimension of the system involved quite quickly which
will impose a severe computational demand. Finding efficient

solution algorithms is one of the issues for our future research.
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C. Discussion of Estimation for Distributed Systems
To cdnclude this chapter we shall make some general
comments on the status of estimation theory for distributed systems.
As we have done in many parts of this thesis we have
borrowed heavily from optimal control theory methods. The research
concerning the optimal control for distributed systems if far more
advanced than it currently is for estimation theory. Because of the
relationship between the two we shall briefly mention some of the
more pertinent work that has been done in this area.
The initial research in the area of optimal control theory
for distributed systems was done in a series of articles by
‘Butkovskii and Lerner.35-38 - In these articles they developed a
maximal (or minimal) principle for such systefns. They have also
studied approximation procedures by the use of truncating an
orthonormal expansion series.
From the aspect of applications to a particular system,
all their studies have been concerned with the heat, or diffusion,
equation. This particular equation has been investigated in almost
all the studies of distributed systems which have appeared in the
control literature. This is perhaps unfortunate since this equation,
- which is of the parabolic type, is not representative of those
which commonly describe a dynamic system. Theseequations are .
usually of the hyperbolic type, and they are, in particular, related
to propagation phenomena. 34,39
Since Butkovskii's wérk several people have made studies

40,41

in the area. Most notable is Wang. He has employed dynamic

programming principles to the control problem. This gives a
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functional equétion which the optimal process satisfies. He has also
formulated the concepts of observability and cdntrollability for
distributed systems. In his examples (the héat equation) he resorts
to expansion teéhniques’ in order to determine the solution. Wang's
studies are probably the most‘concise formulation of the concepts
which arise in distributed,‘systems which has appeared to date.

Sakawa 42 has also studied the optimal control of a system
described by the heat equation. He exploits the fact that the input-
output relationship fdr such a system can be analytically determined.
Again expansion techn‘ique's are used to actually find a solution. |
Other investigators in this area include Goodson, Pierre, and
Murray. 43-45

Recently, the realizable filter structure for the problem
that we studied in the last section was obtained by eitending the
Kalman-Bucy approach.qﬂ6 Many of the same issues enter, in
particular, delaye;i and advanced differential-difference equations.
In addition the variance equation the results is a function of two
essentially spatial variables which further complicates the issue.
We could derive the realizable filter from the smoother in Chapter VI.
Whether we can do this for the problem considered here remains to
be seen. In array processing the realizable filter is not usually
employed; however, we have seen that it is very useful in
conjunction with the solution of the interval estimation equations.

A current disadvantage of thé state variable approach is
that a method to determine the mean square error performance has
not been determined, whereas one does exist for the classical theory.

In the classical theory, however, the system is limited to be
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stationary and of infinite time. In addition, numerical integration
techniques must be used because of the non-rationality of the spectra
involved. A state variable approach to this problem may possibly be
computationally easier and at the same time allow one to study the
transient or time varying aspects of the problem. This would allow
us to determine how much we lose by using an asymptotic analysis.

‘We mentioned in the introduction that we could derive a
Fredholm theory for this problem. We can employ these results to
find a second, or modal, approach to this problem. If we actually
compute the eigenvalues and eigenfunctions involved we can expand
our receiver in terms ‘of them. By truncating this expansion we can
obtain an approximate our receiver structuré. (This is similar in
concept tothe approach of Butkovskii and Lerner3.5—38)A bank of
correlations may be an appreciable simpler structure than that
derived in last section. Furthermore, we can calculate the

performance using-this method.
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CHAPTER IX

SUMMARY

We have presented an extensive discussion ot the
use of state va;riable techniques forl solving Fredholm integral
equations and fhe application of the resulting theory to problems
in optimal communications. The material in Chaptefs 2-4
developed the solgtion techniques for the integral equations,
while the remaining Chapters 5-8 exploited various aspects of
the theory to solve various communication theory problems.

In Chapter 2 we introduced the concepts of generating
random processes with systems described by state variables. We
were particularly il;terested in the properties of thé covariance
of the state vector Kx(t,’t). By using these properties we were
able to reduce the linear operator specified by this covariance to
a pair of differential equations with an associated set of boundary
conditions. These equations were the key tb many of our derivations.

In Chapter 3 we applied these concepts and results to
solving homogeneous Fredholm integral equations. We first
reduced the integral equation to a homogeneous set of differential

equations with imposed boundary conditions. The coefficients for
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these equations and the boundary conditions were determined
directly in terms of the state matrices that describe the generation
of the kernel of the integral equation. We then used the transition
matrix associated With these equations to find a transcendental
function whose roots specified the eigenvalues. Given these eigen-
values, the eigenfunctions follow directly from the same transition
matrix. Finally, we used the same transition matrix that specified
the eigenvalues to find the Fredholm determinant. As a result,
we had that the only function that needed to be calculated in order
to find the eigenvalues, eigenfunctions and the Fredholm determinant
function was the transition matrix.

In Chapter 4 we again used the results of Chapter 2
to reduce the nonhomogeneous Fredholm integral equation to a
set of nonhomogeneous differential equations with a set of boundary
conditions. The coefficients of the differential equations and
boundary conditions were again directly related to the state matrices
which describe the generation of the kernel. We noted that the
differential equations and boundary conditions derived were the
same as those that specify the optimal smoother structure. Then
we exploited the methods that have been developed in the literature
for solving the smoother equations so as to solve the nonhomogeneous
integral equation. We were also careful to note the applicability
of each method that we introduced.

Chapter 5 considered a problem in optimal signal
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design. One of the more important applications of the nonhomogeneous
integral equation occurs in the communication problem of detecting
a known signal in additive colored noise. We viewed the results of
Chapter 4 as describing a dynamic system which related the correl-
ating signal in the optimal receiver to the transmitted signal. We
then used Pontryagin's Principle to derive a set of necessary conditions
for the signal that optimizes the system performance when both the
signal energy and its bandwidth are constrained. By using the
necessary conditions we devised an algorithm to design optimal
signals and their resulting performance when the channel noise had
first and second order spectrums. In the course of doing these
examples, the aigorithm displayed several interesting features.
Chapter 6 was an extensive presenation on a unified
approach to optimal smoothing and filtering realizable with a delay.
Our starting point was the finite time Wiener-Hopf equation. We used
the nonhomogeneous integral equation results from Chapter 4 and
those from Chapter 2 to derive the state variable structure for the
smoother. We then found the differential equations for the realizable
with delay filter directly from the smoothing equations. We presented
several different methods for calculating the covariance of error of the
smoother and the filter realizable with delay.
In Chapter 7 we extended the results derived in
Chapter 2 so as to treat nonlinear modulation systems. Using these

results we reduced an integral equation that specifies a necessary
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condition for the smooth estimate to a set of differential equations
and boundary conditioﬁ for it. Our derivation was exact, so the
results were equivalent to the original integral equation. We then
introduced the concept of invariant imbedding in order to derive
an approximate realization of the realizable filter from the nonlinear
smoothing equations.

In Chapter» 8 we recognized that when pure delay
enters our obsérvation, we cannot describe it with a finite dimen-
sional state equation. Consequently, we extended our concept of
state to include function states in a space-time domain. With
this concept we were able to derive the smoother structure for
delayed observations. The methods we used were extendable to
other types of distributed media; however, the structure even in
the case of pure delay was rather complex.

This completes the general summary of the results.
In the course of our discussion we worked many examples to illustrate
the methods derived. Although the methods were certainly analytic-
ally efficient when used properly, we emphasized the numerical
aspects of our methods since this is where we think their major
application lies.

We also indicated that the techniques that we used were
quite often powerful enough to be either extended or applied to

more complex problems. These problems suggest topics for further
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research. We shall list them by chapters:

2-4.

extending the results on solving the Fredholm integral
equations when the kernel is generated by a nonlinear
or dispersive system;

signal design for spread channels; solution algorithms
for problems when hard constraints are imposed;

effective implementation of filters realizable with delay;

solving the smoothing equations for nonlinear modulation
systems;extension of invariant imbedding to treat

filters realizable with delay; finding the relationship

between the covariance of error and the invariant
imbedding terms;

evaluation of the smoother performance; effective
solution procedures for the smoother; the use of a
modal or eigenfunction expansion for realizing the
filter structure.

In addition there are many direct applications of the theory we

have already developed. Many of these are mentioned at the end

of each of the respective chapters.
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APPENDIX A

DERIVATION OF THE PROPERTIES OF
COVARIANCES FOR STATE VARIABLE
RANDOM PROCESSES

In this Appendix we shall sketchthe derivation of the
properties stated in Chapter II-B. We assume that x(t) is generated
as discussed in Chapter II-A.

First, we derive Eq. 2.10. Consider the case when
t > 7. The state at time t is related to the state at time T and

the input u(t') over the interval t> t'> v by

:
x(t) = 0(t,m)x(7) + j o(t, t")G(t" u(t") at’ (A-1)

T

where 6(t,t") is defined by Eq. 2.11. If we post-multiply A-1 by
§T(T), and take expectatiohs we obtain
T,
Elx(t)x (1] = o(t, IK_(7,7) +

t
[ et G BLaenx (m] e (A-2)
J
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However, because of the Markov nature of the state vector, u(t")
and x( T) are independent over the range of integration. Consequently,

the second term of A-2 is zero, and we have
KX(t’ T) = e(t: T)KX(T’ T)’ t Z T (A_S)

which is the first part of the desired result. The derivation of the
second part of Eq. 2.10 is identical; therefore, we omit it.
We now derive Eq. 2.12. We proceed by differentiating

the definition of Kx(t, t)

q dx(t) ax' (1
T Kyt =B | S x (0 +x(t) —g— (A-4)
By substituting the state equation, we obtain
= K (6,6) = FOK (6,1) + KE(t,t)FT(t)
+ G E[ux (H] +Elxtu (m]laT () (A-5)

Since the last two terms are transposes of each other, we consider
only the second term. The state at time t in terms of the initial

state §(To) and the input u(t’) for T0< t' <t is given by

t
x(t) = O(t, T ) x (T ) + g o(t, t")G(t ) u(t") at’ (A-6)

T
o
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Therefore, we have

E[xt)u ]G (1) = {o(t, TYE[x(T Ju" (1] +

t
X o(t, t")G(tNE[ utNu (t)]dt'}G (1) (A-7)
T

o
We assume that the first term is zero for t > To' The second term

becomes upon performing the expectation

t
E[x(tu’ ()]G (¢) =S o(t, tNG(t)Q 6(t'-t)at' G (1) (A-8)
T

o}
The integral is non-zero at only the endpoint of the integration
interval. We must assume that the limiting form of the delta function
is symmetrical; therefore, only one-half the "area' is included in

the integration region. IntegrationEq. A-8 thus yields

Elxtu (1167 = 5 Gy @aT(y (8-9)

Substituting this term plus its transpose into Eq. A-5 gives the

desired result

dK_(t,t)

T T
ST = F(t)KE(t,t) + K.’.‘_(t’t)F (t) +G(HQG (1), t> To

(A-9)

The initial condition Kx (To, T ) must be specified.
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APPENDIX B

COMPLEX RANDOM PROCESS GENERATION

All of the waveforms considered in the text were low pass
signals. In many applications, e.g. the signal design problem that we
considered, it Vis useful to be able to extend these concepts to the
case of bandpass waveforms. In this section we shall show how we
can do this by using the concept of a complex state variable.

The use of complex notation for representing narrow band
processes and functions is well known. For example, if y(t) is a
random process that has a spectrum which is narrow band about a

carrier w, we can represent it in the form

e dw t
y(t) =y (tcos(w t) + y (Dsin(w, t) = Re[T(t)e €] (B-1a)
Where
T =y (0 - §y ) (B-1b)

yc(t) and ys(t) are low pass processes. Under the narrow band and

stationarity assumptions, one can show

Kycyc(At) = KySyS(A't) (B-2a)
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and

K At) = -K -At B-2b)
ycys( ) ycys( ) _ (

Both components have the same covariance, and the cross covariance
is an odd function. There are two important points to be made here.
We can represent y(t) as sinusoidal modulation of a low pass

complex process y(t), termed the complex envelope.The real and
imaginary parts of y(t), yc(t) and ys(t) respectively, are random
processes that have identical auto covariances, and a very particular
form for their cross covariance. This provides a key to our analysis.

The use of complex state variables is purely a notational
convenience. It is obvious that all the problems which one wants to
consider may be solved by expanding the terms into their real and
imaginary components. However, for the problem where the complex
notation is applicable, this expansion is too general a formulation
and it leads to a needlessly cumbersome description of the
processes involved.

If we are to describe random processes by complex
notation, we want to have é convenient form for representing the
various covariances of the components. Obviously, if we have to
enumerate them all individually, we have not gained anything over
using the higher dimensioned representation. The complex
notation for describing random processes is applicable when there
are two processes; e.g., the quadrature components yc(t) and

ys(t) of a narrow band process, which have the same auto
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covariances and the particular form for the cross covariance between
them. We now want to show that we can find a state representation
which generates a complex random process which satisfies Eq. B-2.
In addition we want to generalize our concepts so as to include the

non-stationary vector process case.

Random Process Generation with Complex Notation

In this section we shall develop the theory needed to
describe the generation of complex random processes. Let us assume

that we have the following state variable description of a linear

system
Ax(t) o o~ e
@& - F(t)x(t) + G(t)u(t) (linear state equation), (B-3a)
i(t) = 'E}J(t)g(t), (linear observation equation) (B-3b)

where all the coefficient matrices may be complex. In order to
describe the generation we shall make two assumptions regarding the
statistics of the driving noise _?1_(1:) and the initial state vector E(To).
With these two assumptions we shall develop the entire theory.
Finally, we shall demonstrate that such representations can indeed
be used as a convenience to describe the complex envelope of narrow
band processes by showing that they yield results consistent with
Egs. B-1 and B-2 in the stationary case.

First, let us consider the white noise driving function

~ o . .
u(t). The complex covariance function for the process assuming zero
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mean is

~ ~ ~t ~N

Kot, 7) = E[U(t) T ()] = Qsé(t- 7), (B-4)
where we have used the notation

T = [an™ T, (B-5)

i.e., the conjugate transpose. Let us expand this complex

covariance in terms of the quadrature components.

(O, () + 5, (] =

Kyt =Bl (05, "

K (t,7) + K
u_u

(t’T) +JK (t:T) -JK (t:T) =
SES H('.:E‘S E"SEC

u
N
Q6(t-T) (B-6)

In order that the covariance matrix be a convenient method of
representing the covariances and cross covariances of the

components of ﬁ(t), we shall require that

1 ~
K, o 61 =K, _ (t.7) = >Re[Q]&(t-7), (B-7a)
—Cc—cC —s—s8

K, o 67 =-K . (t7) = 2Im[Qls(t-7). (B-7b)
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The covariance matrices for the two components are identical non-
negative definite matrices, and the cross covariance matrix is a
skew symmetric matrix. This implies that 6(t) is a Hermitian
matrix with a non-negative definite real part.

We also note that the conjugate operation in the definition
of the complex covariance matrix, for under the above assumption

we have

E[ ¥y (1] = Qt s(t-7) = o, (B-8)

Quite often, one does not have correlation between the
components of u(t) (i.e., E[Ec(t).‘lsT(t)] = 0) since any correlation
between the components of the state vector may be represented in
the coefficient matrices F(t) and G(t). In this case, Q(t) is a real
non-negative definite symmetric matrix. Also, note that under the
assumptions we made, u,. is uncorrelated with U for all 1.

The next issu; which we want to consiéer is the initial
conditions. In order that we be consistent with the concept of state,
whatever assumptions which we make regarding the state vector at
the initial time To’ should be satisfied at an arbitrary time
tE=T,).

‘ First, we shall assume that E(Ti) is a complex random

vector (we assume zero mean for simplicity). The complex

covariance matrix for this random vector is
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~ ~
P =K

~ ~t
o = Kg(To Tg) = BIETYE (T )] =

Ky x (TorTg) +K S(TO,TO) +

X X

S

(T, T, . (B-9)

The assumptions which we shall make about the

covariance of this random vector are

(B-10a)

KX < (T Ty =KX - (Ti’T') = (B-10Db)

—C—S —C—S

Consequently, the complex covariance matrix of initial condition is a
Hermitian matrix with a non-negative definite real part. We also note

that under the above assumptions

B[X(T)% (T)] =0 (B-11)

Let us now consider what these assumptions imply about
the covariance of the state vector x(t) and the observed signal y(t).
Since we can relate the covariance of y(t) directly to that of the

state vector, we shall consider KX(t,-r) first.
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In the study of real state variable random processes one
can determine 'I‘é;{(t, T) in terms of the state equation matrices, the
function Q asso_ciated with the covariance of the excitation noise
ﬁ(t), and the covariance I'\éﬁ(To, TO) of the initial state vector, g(To).
The results for complex st_ate variables are exactly parallel. The
only change is that the transpose operation is replaced by a conjugate
transpose operation. The methods for determining Alg%l(t, T) are first

to find I’?%(t,t) as the solution of a linear differential equation and then
use the transition matrix associated with the matrix F(t) to relate

~ ~
ﬁ%)(t, T) to K,i(t,t). sz(t,t) satisfies the linear matrix differential

equation

pY)
dKx(t,t) -y

A ~ ~4 ~
—S— = Fekyen + ﬁg(t,t)F b+ Gt QG (y) (B-12)

~
where the initial condition K~X(TO, To) is given as part of the system

o X
description, Ksl{(t, T) is given by

~ A/
9(t,T)K§('r,-r), t > T

~
Kg(t, T) =

K;(t,t)e (T,t)’ T > t. (B-13a)

where 6(t, T) is the complex transition matrix associated with F(t).

We also note for future reference that
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Ktt,m) =K', (B-13b)

We can readily show that K;{'(t,t) is Hermitian for all t.

In order to do this, we simply perform the conjugate transpose

operation upon Eq. B-12. This yields

&+
dKX (t, t)

Ty
dt - X

fe oty + Fok fie + G086 (B-14a)

Q 1is Hermitian; therefore, 'ﬁ;(t,t) and ﬁ;+(t,t) satisfy the same
linear differential equation. Since I'Z;{'(t,t) and I’E§+(t,t) have the same

initial conditions (Kx(t,t) and K~(T_, T ) is Hermitian by assumption),

they must be identical. Consequently, complex covariance matrix

~
K;(t,t) is Hermitian for all t. We can also show that

E[ZHE ()] =0 (B-14b)

for all t. In order to do this we note that this expectation satisfies

the linear differential equation

- ElE0E ] = FoRE0x m] + BIZ0E 0] F (@) +

Gt)Q'E T (15)

Since Q1 equals zero (Eq. B-8), the forcing term in this equation is

zero. In addition, the homogeneous solution is zero for all t
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(Eq. B-11). This proves the assertion.

By using the above, we may prove that E['g(t)_f_{r( 7)] equals
zero for all t and T. To do this we note that
o
0

tE[Z(OE(D],  t > 7

E[%(0% (1] =4

E[Z0g 18T, T > t. (B-16)
Since the expectations on the right side of the above equation are
zero, the expectation on the left equals zero for all t and 7.

We note here that the assumptions which we have made on
the covariance of the initial state vector _?E'(TO) are satisfied by the
covariance of the state vector 'g(t) for allt = To'

Usually, we are not concerned directly with the state
vector of a system. The vector interest is the observed signal,

y({t), which is related to the state vector by Eq. B-3b. We can
simply state the properties of the covariance K"'X (t, ) since it is

related directly to the covariance of the state vector. This relation-

ship is given by

~; Vad lJ~ ~o
K‘I‘(t,'r) = C(t)KE(t,T)C (7) (B-17)

Consequently, it is clear that iés;(t,t) is Hermitian and that
E[’z’(t)g-r)] is zero.
We are now in a position to derive some of the

properties regarding the individual components of the observed
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signal. First, let us prove that the covariances of Xc(t) and

Xs(t) are identical. We have

~ ~T,  ~%T
y(t)+y (t) y(n+y “(7)
Bly (0 (0] = E {( Z \)( 2 ) ‘

= 3 EIYHyT (] +E[F0T ] +
E[3(t)5 T(m] + B[ty (m15

Re[ Ko (

y_t,'r)] (B-18a)

|
N =

~ oLk ~T,  ~%T
y(t) -y (). Yy (m)=y “(7)
E[Xs(t)ZS(T)] E J(———Z“——'—) J ( >— )

Y/

= ZE[F0TT(n] + E[FwF Tn] +

E[¥ty T(n1* - B[yt 3 n]

1 e[ I?fi(t, ] (B-18b)

o)

Consequently, the covariances of both components are equal to one-
half the real part of the complex covariance matrix.
The cross covariance between components may be found

in a similar fashion. We have
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"

FOH W (TN T T(r)
Ely (By ] = E{ (-————-) j )

) I 2

= Z(EFHY) - EGHY (1) +

*
)

BT L) - BEGHY ()

|
™)

»
Im[K;(t, )] (B-19)

By using Eqs. B-18 and B-19, we have a convenient
method for finding the auto- and cross-covariance of the real and
imaginary components of the complex signal y(t) in terms of the
complex covariance function Ki(t, T). This provides the notational
convenience of working with just one covariance matrix, yet it
allows us to determine the covariances of the individual components.

This is a major advantage of our complex notation.

Stationary Random Processes

We now want to show that the assumptions which we made
lead to results which are consistent with those which have been

developed for stationary scalar random processes. By choosing
~

Po to be the steady state solution to Eq. B-12, i.e.,

~ ~
P lim K~
- 00 E

0% (t, 1),

(B-20)



297

~

We can show that the covariance matrix Ki(t’T) is stationary.

Equivalently, we could say that under this assumption for the initial
~N

state vector x(T;), i(t) is a segment of stationary random processes.

For stationary random processes we shall use the notation
~ ~

i.e., we shall use only one argument.

Since we have already proven that the real and imaginary
components have the same covariance (Eq. B-18), then Eq. B-2a
is certainly satisfied. Therefore, we need only'to prove that the
cross covariance is an odd function. In general, we have

(Eq. B-14),
Re[ Kv(At)] + 3 Im[ Ko(at)]
Y ) JIm| :}',_( )

= Re[ﬁi(At)]T - jIm[ﬁi(At)]T. (B-222)

By equating the imaginary parts and substituting Eq. B-19, we

obtain

(At) = -KX (-At), (B-22b)

which for the scalar case is consistent with Eq. B-2b. These
conditions are sufficient to show that y(t) has a real, positive

spectrum in the scalar case.
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Summ ary

In this section we introduced the idea of generating a
complex random process by exciting a linear system having a
complex state variable description with a complex white noise. We
then showed how we could describe the second order statistics of
this process in terms of a complex covariance function and then we
discussed how we could determine this function from the state
variable description of the system. The only assumptions which we
were required to make were on ':_Lf(t) and g(TO). Our results were
independent of the form of the coefficient matrices F(t), G(t), and
C(t). Our methods were exactly parallel to those for real state
variables, and our results were similar to those which have been
developed for describing narrow band processes by complex
notation. We shall now consider two examples to illustrate the type

of random processes which we may generate.

Example 1
The first example which we consider is the first order

(scalar) case. The equations which describe this system are

~ ~ew ~

B0 = k() + ult) (state equation), (B-23)
and
;r(t) = E(t) (observation equation) . (B-24)

~
The assumptions regarding G(t) and x(TO) are
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E[a(t)3 (1)] = 2Re[k]Ps(t-7) (B-25)

1

and

E[|X(T)|*] = P (B-26)

Since we have a scalar process, both P and Pbmust be real. In
addition, we have again assumed zero means.

First, we shall find K (t,t). The differential equation,
"Eq. B-12, which it satisfies is

~

dK;((t: t) ~ o~ ~e~ ~
—— = KKt 1) - kKt t) + 2Re[ k] P

]

-2Re[1~<]1~<;(t,t) + 2Re[k] P (B-27)
The solution to this equation is

N -2Re][ E](t-TO)
K(t,t) = P + (P-Pye , t> T (B-28)

o)
In order to find ~Kx(t,-r), we need to find o(t, T), the transition matrix
for this system. This is easily found to be

-l'z(t-'r)

N
6(t,T) = e (B-29)

By substituting Eqs. B-28 and B-29 into Eq. B-13, we find 12;{ (t, 7)

which is also Izy(t, T) for this particular example. Furthermore, we
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find the auto- and cross-covariance of the individual components by
applyting Eqs. B-18 and B-19 respectively.
Let us now consider the stationary case in more detail.

In this case
P =P. (B-30)
If we perform the indicated substitutions, we obtain

~

pe kAt At = 0

~sk
pe k At At = 0 (B-31)

This may be written as

- -Re[ k] |At| -jIm[K]At
K;{’(At) = Pe e (B-32)

By applying Eqs. B-18 and B-19 we find
cos(Im[ k] At) (B-32a)
-Re[ k] | At]

sin(Im[ k] At) (B-33b)

The spectrum of the complex process follows easily as
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2Re[ k] P
(w-Im[ K])? + Re[ k] 2

S7lw) = (B-34)

The spectra and cross spectra of xc(t) and xs(t) may easily be found
in terms of the even and odd parts of S;(w).

From Eq. B-34, we see that in the stationary case, the
net effect of allowing a complei gain is that the spectrum has a
frequency shift equal to the imaginary part of the gain. In a narrow
band interpretation this would correspond to a mean Doppler shift
about the carrier. In general, we would not expect such a simple
interpretation of the effect of a complex state representation. This
suggests that we should consider a second example where we have a

second order system and two feedback gains.

Example 2

In this example we want to analyze a second order system.
In the steady state, it corresponds to a system with two poles. Note
that the pole locations -k1 and —k2 need not be complex conjugates
of one another. Again, we shall analyze the stationary case, the
analysis for the non-stationary case is straightforward, but is not
especially informative The state and observation equations for this

system are

X (t 0 1 X (t 0]
gt ~1() i 1 (®) . J
_xz(t) -klk2 -(kl+k2) xz(t)
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and

[

yit) = [1:0] | x,(t)

%, (1) (B-36)

The covariance of the driving noise is
3k ~ o~ ~
E[ )T (7] = ZP(Re[klkZ] Re[klkz]

e [Im(ié1E2)Re('121+§2)—nn(Elﬁ;Z)])a(t—T)

(B-37)

‘ . ~ ~

| jIm[k,k, ]

| — —~ ~ .
: Re[k1+k2]
]
l

(Re(k lkZ)Re[ k 1+k2] +Im(k k)

Re[ k1+k2]

(B-38)

Therefore, we have a stationary process §(t) with power P.
In order to find the covariance matrix we need to find the
transition matrix for the system. We do this by using matrix

Laplace transform techniques. We find.
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r ~ | ~ ~
~ -~k (t-7) -k, (t-7) 1 k. (t-7) -k, (t-T)
[k,e 1 -k,e 25 ] e "7 e 2
B(t,T) = =—=—— |- " "= == === == ==~ - y = = == === -~ - -
k,-k -k, (t-1) -k, (t-7) ! k. (t-7) ~k(t-T
271 ~o~ 1 2 ! 1 ~ 2
_—(klkz)[e -e 1 - ke ke ﬂ_

If we substitute Eqs. B-38 and B-39 in Eq. B-13 and then use

Eq. B-17, we o'btain

~k ~ ~ b3 b3
« koAt Im{k k] KAt koAt

P ~k 1T v 2
W(kze -k,e )+m(e -e © ) At<O
ﬁ;(At) = ) ) - ) )
—E (Eze—klAt-Ele—szt) -———jImEkll,jZ] (e—klAt-e-kZAt) A> 0
(k,-k) Rel k +k,]
(B-40)

We now want to determine the spectrum Sy(w) from Eq. B-40. Let us

define two coefficients for convenience:

* ~
~ k, +k; Re[kz]
Al == * —T=—= (B-41)
(k, -k;) Re[k1+k2]

{;
|

N k3 +k, Rel k, |

A= ——%— * —=——=— (B-42)

(k, k) Re[kl +k2]
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After a fair amount of manipulation, we can compute Sy(w).

Re[ K IRelR,] + 1wl K ] (o+1ml &,])
+

S (w) = 2P = —
y Rez[kl] +(w+Irn[kl])2

\

Re[RZ] Re[iz] + Im[KZ] (w+1m[E2] )

_ - (B-43)
Rez[kz] + (w+Im[k2])2

We have plotted this function for various values of ﬁl and

~

k2 in Figure B-1 through B-4. The values of §1 and k., for a

2
particular figure are illustrated onthe figures by the pole location
they produce, i.e., the system. has a pole at 'El and -'122.

In Figures B-1 and B-2 we illustrate that by simply
choosing the poles as complex conjugates we can produce either
spectrum which is either very flat near w = 0 or is peaked with two
symmetric lobes. If one wanted to use real:state variables to
generate this spectrum, a fourth order system would be required.
In this case, the complex notation has significantly reduced the
computation required.

Figure B-3 illustrates an interesting observation about
mean Doppler shifts. Let us draw the pole-zero locations for the
complex system. If there exists a line w = W, about which the pole-
zero pattern is symmetric, then in the stationary case the complex
notation effectively produces a spectrum which is symmetric about

w=w,. For example, in Figure B-3, the pole pattern is symmetric

about w = 1/2. We see that the spectrum is symmetric about
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w=-1/2 also. Consequently, we can use the complex notation to
introduce mean Doppler shifts of narrow band processes.

Figure B-4 illustrates that we can obtain spectra which
are not symmetric about any axis. This is a relatively important
case. In dealing with narrow band processes if one can find a
frequency about which the spectrum is symmetric, then the component
processes yc(t) and ys(t) are uncorrelated. However, if there is no
axis of symmetry (or if the choice of carrier is not at our disposal)
then the components are definitely correlated. This example shows
that we can model narrow band processes with non-symmetric

spectra very conveniently with our complex state variable notation.
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B-2

Fig.
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