
Estimating Task Execution Delay in a Real-Time System

via Static Source Code Analysis

by

Steven B. Treadwell

Submitted to the
Department of Aeronautics and Astronautics

in Partial Fulfillment of the Requirements for the Degree of

Master of Science
in Aeronautics and Astronautics

at the

Massachusetts Institute of Technology

June 1993

@ Steven B. Treadwell, 1993.

Signature of Author
Department of Aeronautics and Astronautics

May 7, 1993

Certified by

/ Professor Stephen A. Ward
Thesis Supervisor

Department of Electrical Engineering and Computer Science

Certified by

Technical Staff,

Di. Richard E. Harper
Charles Stark Draper Laboratory

Accepted by
SP9f6ssiorTharold Y. Wachman

Chairman, Department Graduate Committee
hero

MASSACHUSETTS INSTITUTE
OF Trfwhruf r.V

LJUN 08 1993
1a Ia Mt0a

Estimating Task Execution Delay in a Real-Time System

via Static Source Code Analysis

by

Steven B. Treadwell

Submitted to the Department of Aeronautics and Astronautics
in Partial Fulfillment of the Requirements for the Degree of

Master of Science

Abstract

In a hard-real-time system, it is critical that application tasks complete their
iterative execution cycles within their allotted time frames. For a highly configurable
parallel processing system, there exists an overwhelming set of hardware and software
configurations, and it is useful to know a priori if a particular configuration satisfies hard-
real-time constraints. This thesis presents an automated timing analysis tool which
attempts to accurately characterize the timing behavior of the C3 Fault-Tolerant Parallel
Processor (FTPP) developed at the Charles Stark Draper Laboratory. For each
application task hosted by the FTPP, this automated tool performs a static source code
analysis in an effort to estimate a lower bound on worst case execution delay. Then,
using the specified mapping between software tasks and hardware processing sites, the
analysis tool integrates the results of the individual task analyses in an effort to account
for delays due to operating system overhead. The final portion of the analysis involves a
prediction of possible performance failures based upon the given system configuration
and the timing deadlines imposed by the FTPP's rate group scheduling paradigm. It is
intended that the results of this timing analysis will help the user to develop a system
configuration that optimizes throughput while minimizing the risk of performance
failures.

Thesis Supervisor:
Title:

Stephen A. Ward
Professor of Electrical Engineering and Computer Science

Acknowledgments

I sincerely appreciate the support from everyone in the Advanced Computer
Architectures group at CSDL. In particular, I would like to thank Rick Harper, Bryan
Butler, and Carol Babikyan for their guidance, help and encouragement. I would also like
to thank Bob, Chris, Anne, and Nate for making my MIT experience an enjoyable one.

This work was done at the Charles Stark Draper Laboratory under NASA contract
NAS 1-18565.

Publication of this report does not constitute approval by the Draper Laboratory of
the findings or conclusions herein. It is published for the exchange and stimulation of
ideas.

I hereby assign my copyright of this thesis to the Charles Stark Draper Laboratory, Inc.,
Cambridge, Massachusetts.

Steven B. Treadwell

Charles Stark Draper Laboratory hereby grants permission to the Massachusetts
Institute of Technology to reproduce and to distribute this thesis in whole or in part.

Table of Contents
1. Introduction .. 9

1.1 Problem Statement.. .. 9

1.2 Objective.. ... 10

1.3 Approach... 10

2. Background 13

2.1 Fundamentals of Fault Tolerance..13

2.2 Fundamentals of Byzantine Resilience.. 13
2.3 Illustrations of Byzantine Resilience........................... 15
2.4 AFTA Hardware Architecture ... 19
2.5 Rate Group Scheduling... 22

3. Preliminary Processing.. 27

3.1 Requirements 27

3.2 Inputs.. .. 28

3.3 Tools 29

3.4 Flow of Execution.. 30

3.5 The DCL Program... 31

4. Software Analysis 33
4.1 Assumptions and Limitations 33
4.2 The Ada Software Structure.. 35

4.2.1 Subprograms and Packages..................................... 35
4.2.2 Tasks.36

4.3 Requirements of the Programmer........................... 37
4.3.1 Comment Information... 37

4.3.2 Naming Conventions.. 41
4.3.3 Undesirable Constructs 42

5. Abstraction 45

5.1 The Abstraction Methodology... 45

5.2 The Motivation for Abstraction... 46

5.3 Code Model Elements...47

5.4 Bottom-Up Construction.. 50

5.5 Expandability 52

6. Source Code Processing 53

6.1 The Big Picture .. 53

6.2 Establishing the Hierarchy...................................... 53

6.3 Code M odeling Tools 55

6.3.1 parse 55

6.3.2 readI ist 56

6.3.3 get line 56

6.3.4 search 58

7. M odel Analysis 71

7.1 M odel Preparation... ...72

7.2 M odel Reduction... 75

7.3 Execution Path Generation ... 80

7.4 M anaging M odel Analysis.. 87

8. Hardware M odel Analysis.. ... 89

8.1 Introduction... 89

8.2 Benchmarking... 89

8.3 Path Comparison Calculation 95

8.4 Organizing Application Tasks 96

8.5 Predicting Performance Failures 98

8.6 Assumptions... .. 102

8.7 Final Output File.................................... 103

9. Conclusions/Recommendations .. 105

9.1 Conclusions ... 105

9.2 Recommendations for Further Study..107

Appendix A HEADER.H Source Code 109

Appendix B START.C Source Code .. 13

main .. 113

read I i st .. 114

get _ line 115

search 116

write fi le .. 117

extract-name .. 118

Appendix C

Appendix D

s t r i p .. 119

g e t_ r g ... 119

D CL Source Code 121

A NA LY ZE.CO 121

FIND.COM................................ 121

FINISH.C Source Code 123

m a in 123

mat chup .. 124

process-l i st 126

task-parse 128

find-packages 130

updatepkg-l ist 131

parse 132

chec koverrun 134

read list 138

g e t l in e... 140

search .. 142

parse-comment .. 147

write file .. 148

w it h foun d 15 1

pkg found .. 152

task-found 153

packeti ze .. 153

procfound 154

find-parameter 155

process- loop 157

for loop found ... 158

end found 159

validca l .. 162

pr int- line 162

target found .. 163

eva lrangenu m... 164

eval natural num .. 165

eval-complex.num 166

eva ls imple-num 166

evaluat e..................................... 167

Appendix E

Appendix F

Appendix G
Appendix H

pr int -procedures .. 168

f ind -worst -path .. 169

red uce -mode l 170

nes t leve l .. 171

match loops 173

crunch 175

check ctrs 177

generat e-paths.................. 178

decide 180

parameteri ze .. 182

m o d e l o k... 184

calculate t i me..186

External Files.................................... 187

key-_words.dat... 187

constants.dat.. 187

An Illustrative Example ... 189

task_list.ada.. 190

app_test.ada.. 194

sys_fdi.ada ... 199

test_code.ada... 206

firstpackage.ada 206

second_package.ada 207

task_nam es.dat...208

listof_tasks.dat 208

filenames.dat... ...208

results.dat 209

errors.dat 2 11

A Checklist for Adding Critical Constructs........................... 217

R eferences.. 219

List of Figures

Figure 2-1, Minimal 1-Byzantine Resilient System ... 15

Figure 2-2, 1-Round Data Exchange................................... 16

Figure 2-3, All FCRs Agree... 17

Figure 2-4, First Round Exchange .. 18

Figure 2-5, Second Round Exchange.. 18

Figure 2-6, Results from Example #2... 19

Figure 2-7, AFTA Hardware Configuration....................................20

Figure 2-8, AFTA's Virtual Bus Topology .. 21

Figure 2-9, Rate Group Frame Organization 23

Figure 2-10, Scheduling for a Single Rate Group Frame 24

Figure 3-1, Sample Task Specification File Entry.................................. 28

Figure 3-2, Task Information Storage Format..................... 30

Figure 3-3, Preliminary Processing File Flow .. 31

Figure 4-1, Possible Distribution of Execution Times................................ 34

Figure 4-2, Sample Rate Group Task..36

Figure 4-3, Variable Tracing Example #1 38

Figure 4-4, Variable Tracing Example #2 39

Figure 4-5, Examples of Comment Information.........................40

Figure 4-6, Potential Infinite Loop 43

Figure 5-1, List of Critical Constructs .. 46

Figure 5-2, Sample Source Code Segment .. 49

Figure 5-3, Sample Source Code Model...49

Figure 5-4, An Ideal Software Hierarchy............................... 51

Figure 6-1, Timing Analysis Hierarchy... 54

Figure 6-2, The parse Algorithm.. 57

Figure 6-3, The search Algorithm 59

Figure 6-4, Ada's Framed Constructs..61

Figure 6-5, Example of end Statement Ambiguity..... 62

Figure 7-1, A Sample i f Construct.. 73

Figure 7-2, A Sample Nested i f Construct................................ 74

Figure 7-3, A Sampe Nested Loop and its Model............................... 76

Figure 7-4, Format for a COUNTER_SET Entry................................. 77

Figure 7-5, An Updated Model.. 77

Figure 7-6, A Nested i f Construct... 80
Figure 7-7, A Nested i f Decision Tree.. 81
Figure 7-8, The generat e-paths Algorithm.............................. 85
Figure 8-1, Minor Frame Overhead Model.................................... 90
Figure 8-2, Rate Group Frame Organization 98
Figure 8-3, A Simplified View of Rate Group Scheduling......................... 101

Chapter 1
Introduction

1.1 Problem Statement
The Fault-Tolerant Parallel Processor (FTPP) developed at the Charles Stark

Draper Laboratory is a computer architecture aimed at achieving high throughput while

maintaining a high level of reliability. These are necessary qualities for a computing

system that could be called upon to perform flight-critical and mission-critical tasks such

as those found in an aircraft flight control system. The FTPP utilizes multiple processing

elements (PEs) operating in parallel to achieve high throughput, and it maintains high

reliability through implementation of PE redundancy and Byzantine resilience. The high

throughput of the FTPP makes it an ideal host for hard-real-time applications, and its

custom-built operating system uses a rate group scheduling paradigm to properly

schedule iterative execution of real-time tasks. Application tasks are divided into rate

groups according to their required frequency of execution, and the operating system

schedules individual tasks for execution at regular, predefined intervals. For a real-time

system, it is critical that each task complete its execution cycle within its allotted time

frame; an inability to complete execution on time results in a condition known as a

performance failure.

The current incarnation of the FTPP is the Army Fault Tolerant Architecture

(AFTA). It is designed to be highly configurable and thus capable of supporting a

varying set of mission requirements. The AFTA can support as many as forty individual

processing elements, and these are organized into a flexible set of virtual groups (VGs) to

achieve PE redundancy. For any particular mission, the AFTA is uploaded with a suite of

application tasks, each of which may execute on one or more virtual processing groups.

Individual tasks vary according to function, required level of redundancy, required

frequency of execution, and expected execution delay. Given the variability of the AFTA

hardware and software configuration, one may produce an overwhelming set of all

possible mappings between tasks and processing sites. For a hard-real-time system, it is

critical for the task workload to be properly distributed among the virtual groups so that

all tasks are able to complete their iterative execution cycles within their allotted time

frames. In order to identify such a task distribution, one may use a form of operational

trial and error, but it is certainly preferable to know in advance if a chosen configuration

of hardware and software satisfies necessary real-time constraints. For that purpose, this

thesis presents an automated software tool to perform a timing analysis of any given

system configuration.

1.2 Objective
The automated timing analysis takes into account the full system configuration--

both hardware and software. It performs a static analysis of the source code for each
application task and uses system performance data to estimate a least upper bound on task
execution time. The timing analysis relies heavily on source code modeling techniques,

and the limitations of modeling prevent a precise calculation of execution time. A worst

case scenario is considered in the analysis, and a minimum (rather than maximum) worst
case delay is defined using the model. Once a least upper bound is established for every
task, the tasks are categorized according to their virtual group and rate group
specifications, and comprehensive calculations are made for each virtual group to
determine if the overall system can satisfy real-time constraints under worst case
conditions. This calculation is known as the frame overrun check, and it takes into
account the following: hardware configuration, application task characterization, task
scheduling overhead, and operating system performance data.

The use of the analysis tool is not valuable solely for the overrun prediction;
rather, the overrun check is simply the most comprehensive result produced. The more
important results are the intermediate values used in performing the overrun check.
These include the delay of the rate group dispatcher and the parameterizations of the
individual application tasks. One of the major goals of this analysis is to properly
characterize the software tasks for timing estimation, code optimization, and for further
analysis of global message traffic and virtual group phasing (to be accomplished by other
tools). After a single configuration analysis, it should be readily apparent what types of
changes could be made to the system for better performance results. These changes
might include streamlining application task code, altering the mapping between tasks and
virtual groups, adjusting the virtual group configuration of the AFTA hardware, or
switching the rate group specification of one or more application tasks.

1.3 Approach
This timing analysis uses a modeling approach to account for the combined

behavior of the hardware and software in any given system configuration. The analysis
tool examines the Ada source code for each application task and develops a model for its
flow of execution. From this model, every possible path of execution is generated and
characterized according to a predefined set of parameters. Using performance data for
the AFTA operating system, the analysis tool compares the estimated execution times of
all paths and thus identifies the worst case path. Once a worst case path is defined for all
application tasks, this data is input to a model of the hardware configuration. The

hardware model primarily accounts for the mapping between software tasks and

processing elements, and it uses the worst case path parameterizations to determine if the

full system can satisfy real-time constraints under worst case conditions.

All the analysis functions described above are performed by a combination of two

programs written in C, which require minimal user interaction. Also, two ".com" files

written in Digital Command Language (DCL) are used for file searching operations and

proper execution sequencing of the two C programs. The results produced by the analysis

are stored in two machine-readable files; one contains the numerical results and the other

serves as an error log.

Chapter 2
Background

2.1 Fundamentals of Fault Tolerance
A computing system designated to perform mission-critical and flight-critical

tasks must maintain a high level of reliability since faulty operation could cause loss of

aircraft control or at least compromise mission effectiveness. The total reliability of a

system is a function of the individual reliabilities of its components and their working

relationships with one another. The reliability of individual components is always

bounded and can usually be determined through experimentation; the goal of fault

tolerance is to use strategic component redundancy to achieve a system reliability which

is greater than that of the individual components. By definition, a fault-tolerant system

must be able to survive erroneous operation by some subset of its components and still

properly perform all assigned tasks [HAR91].

A typical reliability goal for a flight-critical computer system is 1 failure in 109

hours, while the components of that system may exhibit failure rates on the order of I in
104 hours [HAR91]. Some sort of redundancy scheme must be utilized to build a system

that is 105 times more reliable than its individual components. One approach is to first
examine all possible failure modes, the extent of their effects, and their associated
probabilities of occurrence. Then the system is designed to protect against all potentially

fatal failure modes which are judged to have a significant probability of occurring, and

the design must address a sufficient number of probable failure modes such that the

system reliability goal is achieved. This method is not only cumbersome and inexact, but

it is also difficult, if not impossible, to validate the reliability of the design. A
mathematical validation of the design's reliability requires that for every error which
occurs, the probability that the design does not adequately protect against that error must
be less than 10-5 [HAR91]. It is certainly conceivable that system designers could
overlook significant types of erroneous behavior that would eventually surface in field
operation at the expense of system reliability. It is therefore preferable to employ a
design methodology that addresses only the number of potentially fatal component

failures and ignores the exact behavior of faulty components; this is the objective of the

Byzantine resilience approach to fault tolerance.

2.2 Fundamentals of Byzantine Resilience
Byzantine resilience guarantees proper operation of a system for a predefined

number of component failures, regardless of the specific nature of the individual failures.

The concept of Byzantine resilience is derived from the solution to the Byzantine

Generals Problem; it is stated as follows:

1. Imagine several divisions of the Byzantine army camped around an enemy

stronghold; each division has its own commanding general.

2. Upon observation of the enemy, the generals must decide whether to attack or

retreat. They communicate with one another only by messenger.

3. Some generals may be traitors and thus try to prevent the loyal generals from

reaching an agreement. All messengers are considered loyal; traitorous

activity by a messenger is treated as traitorous activity by the general sending

the message.

4. The objective is to develop an algorithm to guarantee that all loyal generals

follow the same plan of action, and no small number of traitors can cause the

loyal generals to adopt a bad plan [LAM82].

This problem is analogous to that of designing reliable computer systems. The

commanding generals represent processors in a redundant configuration, the traitors

represent faulty processors, and the messengers correspond to the interprocessor

communication links [HAR91]. Using this analogy, the problem may be restated as

follows:

1. A redundant computer system consists of multiple processors.

2. The processors utilize identical inputs to produce required results. They

communicate with each other over data links.

3. Some processors may be faulty and may demonstrate malicious and even

intelligent behavior. Faulty communication links can be analytically treated as

faulty processors.

4. The objective is to force the system outputs to reflect an agreement among the

set of non-faulty processors and to effectively mask the behavior of faulty

processors.

The solution to this problem is best understood after explaining some

terminology. The physical components of a Byzantine resilient computer system are

typically organized into a number of subsystems referred to as Fault Containment

Regions (FCRs). Each FCR has a certain level of processing power and maintains

communication links with other FCRs in the system. By definition, any fault which

occurs within an FCR should not be propagated outside that subsystem to other FCRs. A

system is said to be f-Byzantine resilient if it can withstand a number of failures that is

less than or equal to f. One should note from the statement of the problem that an FCR

failure can denote any type of malicious or even intelligent behavior, and this ensures

proper coverage of all possible failure modes as long as the number of failures is less than

or equal to f. The solution to the Byzantine Generals Problem can be transformed into a

set of implementation requirements for an f-Byzantine resilient system; these are

summarized as follows:

1. There must be at least 3f+l FCRs [LAM82].

2. Each FCR must be connected to at least 2f+1 other FCRs through disjoint

communication links [DOL82].

3. For information emanating from a single source, there must be at least f+l

rounds of communication among FCRs [FIS82]

4. The activity of the FCRs must be synchronized to within a known and

bounded skew [DOL84].

For a 1-Byzantine resilient system, there must be four FCRs with each one

uniquely connected to the other three; and for single sourcing of information, two rounds

of communication are required. A minimal 1-Byzantine Resilient System is shown in

Figure 2-1.

FCR A

FCR D FCR B

FCR C

Figure 2-1, Minimal 1-Byzantine Resilient System

2.3 Illustrations of Byzantine Resilience
The following two examples illustrate the Byzantine resilience approach to fault-

tolerant computing.

The first example shows how communication among four FCRs in a 1-Byzantine

resilient configuration can overcome faulty operation by a single FCR. Suppose each

FCR contains a single processor and all four processors perform the same operation.

Also assume that FCR A is responsible for conveying the system outputs to an external

actuator. Simultaneously all four processors produce results for some required

computation, and the system must send these results to the actuator.

Figure 2-2 shows that the processors in FCRs B, C, and D all reach a result of '1'

while the processor in FCR A makes an error and submits a '0' as its result. In order to

determine the output for the system, the FCRs perform a single round of communication

as indicated by the arrows, and each FCR then knows what results were reached by all the

other FCRs. A majority vote of the four sets of data is performed by each FCR, and since

every subsystem works with the same set of four data values, the FCRs necessarily agree

upon the proper output for the system. Figure 2-2 shows that each FCR has a set of three

'1's and one '0' upon which to vote; thus they must reach the same conclusion.

Figure 2-2, 1-Round Data Exchange

The result of the inter-FCR communication and voting is that the processor in

FCR A is outvoted and the system result is given as a '1.' This example assumes that

FCR A itself is not faulty; rather, the processor in FCR A experiences a temporary

malfunction. Despite this malfunction, the actuator associated with FCR A still receives

the correct system output, and this is shown in Figure 2-3. Thus, the temporarily faulty

operation of a single processor is masked in the system output of this 1-Byzantine

resilient configuration.

Figure 2-3, All FCRs Agree

The example above illustrated the use of the "1-round" data exchange. This type

of communication is known as a voted message, and it is used when an exact consensus is

expected among redundant processors performing the same function. Another necessary

form of communication requires two rounds of data exchange, and this is known as

passing a source congruency message. A "2-round" exchange is required when a single

data source sends information to a specific processor or a group of processors [AFTA91].

The next example illustrates this type of communication for a 1-Byzantine resilient

system.

Suppose there is a sensor associated with FCR A, and it wishes to send data to

processors in each of the four FCRs. Let this data be represented by a binary value of '1.'

Figure 2-4 shows the sensor sending its data to FCR A; FCR A then transmits this

information to all the other FCRs. This is the first round of data exchange. Note that the

data properly reaches FCRs C and D, but an error between FCRs A and B causes B to

read a value of '0.' This type of fault is equivalent to traitorous activity by FCR B or

FCR A; without loss of generality, it is assumed that FCR B is faulty.

The first round of communication is followed by a second round in which the

FCRs exchange the values they received in the first round. Thus FCRs A, C, and D send

out 'l's to all their neighbors, and the traitor, FCR B, sends out 'O's to all of its

neighbors. Assume for now that the failure of FCR B to properly read A's first message

was a transient fault and does not occur on the second round. Figure 2-5 shows this

second round activity. At this point, all four FCRs have been presented with an identical

set of four values, and they vote individually to reach the same result.

Figure 2-4, First Round Exchange

Figure 2-5, Second Round Exchange

Figure 2-6 shows that all four FCRs reach a consensus value of '1' and pass this

value on to the processors associated with each FCR. Thus the second round of

exchanges allows the transient fault on FCR B to be overcome so that the processor

associated with FCR B could receive the proper value from the sensor attached to FCR A.

Figure 2-6, Results from Example #2

Now consider the case where FCR B exhibits permanent faulty behavior rather

than the transient fault described previously. In this case, B could send out any random

value to its neighbors and also read back random values for the messages received from

its neighbors. This means it would be improper to assume that FCR B votes upon the

same set of data as the other FCRs; it must be assumed that FCR B reaches the wrong

value and its processor therefore receives faulty data from the sensor attached to A. This

scenario still does not compromise the effectiveness of the system as a whole, for the

perceived faulty operation of FCR B and its processors is masked by the proper operation

of the remaining FCRs. This property is demonstrated in the first example, where faulty

operation in A is masked by correct operation of FCRs B, C, and D.

2.4 AFTA Hardware Architecture
The Army Fault Tolerant Architecture is designed as a 1-Byzantine resilient

system organized as a cluster of either four or five fault containment regions. Each FCR

consists of a network element (NE), 0 to 8 processing elements (PEs), and 0 or more

input/output controllers (IOCs) for interfacing with external devices. Figure 2-7
illustrates the hardware configuration of AFTA.

Figure 2-7, AFTA Hardware Configuration [AFTA91]

Byzantine resilience requires that faults within one FCR do not alter the operation
of another FCR; thus the AFTA design allows for both physical and dielectric isolation of
FCRs. Every FCR maintains independent clocking and has its own power source,

backplane, and chassis. The only physical connection between FCRs is a fully connected
high speed fiber optic network which provides reliable communication without

compromising the dielectric isolation [AFTA91].

The processing elements are standard processor boards with local memory and

miscellaneous support devices; laboratory prototype tests use Motorola 68030 VME

processor boards. The PEs are organized into virtual groups (VGs) with one, three, or

four processors per group, and these groups are referred to as simplex, triplex, and

quadruplex, respectively. VGs with multiple processors execute an identical suite of

tasks on each PE to provide the redundancy needed for fault tolerance, and Byzantine

resilience requires that every member of a triplex or quadruplex VG resides in a different

FCR. Each VG operates independently of the others, and the combined processing power

of multiple VGs functioning in parallel is what allows the AFTA to satisfy its high

throughput requirement. A minimal AFTA configuration consists of four FCRs hosting a

single virtual group of three PEs. A maximal configuration supports forty PEs divided

evenly among five FCRs [CLAS92]. The virtual group configuration in this case can

range from forty simplexes to ten quadruplexes. Note that the specific virtual group

configuration for a given system setup depends upon performance, reliability, and

availability constraints, and can include mixed redundancy virtual groups. Figure 2-7

illustrates the organization of forty PEs into their respective VGs as well as the physical

separation of the individual members of redundant VGs.

The core of each FCR is the network element. The NE maintains the fiber optic

links between the FCRs and also keeps the FCRs properly synchronized. The network

element is designed to implement all message passing and data voting protocols required

by Byzantine resilience, and it is the NE that actually carries out the communication

between the PEs within a VG and between the VGs themselves. The PEs communicate

with the network element over a standard bus such as the VME bus and the NEs talk to

one another via the fiber optic network. The network element is responsible for receiving

messages from the PEs in a 64-byte packet format, transmitting message packets over the

fiber optic network, storing message packets destined for PEs within its FCR, and

notifying its PEs of message packet arrivals. The AFTA operating system works closely

with the NE hardware to ensure that the necessary communication protocols are

implemented smoothly, and the result is that the entire AFTA communication network

can be viewed as a virtual bus topology with all processors and virtual groups tied to the

bus [AFTA91]. This simplified view of the AFTA is shown in Figure 2-8. Message

passing between virtual groups occurs asynchronously over this virtual bus, and the

hardware is designed to guarantee that message packets are delivered correctly and in

order.

IOC IOC

Network Element Virtual Bus

Quadruplex Simplex Triplex Quradruplex Triplex Triplex Simplex Simplex Simplex
with I/O with I/O with I/O

Figure 2-8, AFTA's Virtual Bus Topology [AFTA91]

The AFTA provides a unique combination of parallel processing and fault

tolerance capabilities, and the inherent complexity of these combined disciplines could

cause unnecessary difficulty for software developers. Fortunately, the custom design of

the network element and the AFTA operating system make the system's hardware

configuration relatively transparent to application task programmers [HAR91]. The

programmer does not need to understand the requirements of Byzantine resilience or the

subtleties of parallel processing. The operating system provides a set of message passing

services that allow an applications developer to perform intertask communication via

simple function calls. Thus the programmer must know only the global communication

identification for the tasks with which he communicates; he may ignore the actual virtual

group configuration and physical system setup. This thesis primarily views the AFTA at

this level of abstraction.

2.5 Rate Group Scheduling Overview
The AFTA is designed specifically to support hard-real-time application tasks,

and a rate group scheduling paradigm is utilized to achieve hard-real-time response for

both periodic and aperiodic tasks [CLAS92]. A hard-real-time task is a process that is
executed in an iterative manner such that every execution cycle is completed prior to a

predefined deadline. Typically a task is allotted a certain time frame in which to execute,

and if execution is incomplete at the time of the deadline, a frame overrun condition is in

effect. A frame overrun denotes a failure on the part of system task scheduling, and it

could lead to catastrophic results if the outputs of a task are critical to a function such as

flight control.

The AFTA's processing resources and software task assignments are logically

divided among the system's virtual groups. Each virtual group is responsible for

scheduling the execution of its own set of tasks, and it utilizes a combination of two

scheduling algorithms. The first is rate group scheduling; it is useful for tasks with well-

defined iteration rates and guaranteed maximum execution times (i.e. flight control

functions). The second method is aperiodic non-real-time scheduling, and this is used for

non-real-time tasks whose iteration rate is unknown or undefined (i.e. mission planning).

Note that the task scheduling algorithms do not allow non rate group tasks to disturb the

critical timing behavior of rate group tasks [CLAS92].

In the rate group scheduling paradigm, the real-time tasks on a single VG are

categorized according to their required iteration rates. Presently the AFTA supports four

rate group designations; the names, frequencies, and frame allocations of these groups are

summarized in Table 2-1 [AFTA91].

Table 2-1, Rate Group Designations

Rate Group Name Iteration Rate Iteration Frame

RG4 100Hz 10ms

RG3 50Hz 20ms

RG2 25Hz 40ms

RG1 12.5Hz 80ms

At any given instant of time, all four rate group frames are simultaneously active,

although the processing power of the virtual group is dedicated to only one task within

one rate group. Rate group preemption is allowed such that tasks within a faster rate

group are always able to interrupt tasks within a slower rate group and thus divert

processing power to ensure that higher frequency tasks complete execution before their

next deadline. For example, if an RG3 task is executing when a new RG4 frame begins,

the RG3 task is suspended in favor of RG4 tasks. All RG4 tasks execute to completion,

and then execution of the suspended RG3 task is resumed.

minor frame index:
:0 "1 2 "3 4 5 "6 "7

Frame Frame Frame

RG2 Frame FRGae2 Frame

RG1 Frame

Figure 2-9, Rate Group Frame Organization

Figure 2-9 serves as a pictorial explanation of the organization of rate group frames

relative to one another for a single virtual group. Notice that for an 80ms slice of time

(one RG1 frame), RG4 tasks are executed 8 times, RG3 tasks are executed 4 times, RG2

tasks are executed twice, and RG1 tasks are executed once.

For a given rate group frame, the VG schedules tasks on a static, non preemptive

basis [CLAS92]. In other words, tasks within the same rate group cannot interrupt one

another even though higher frequency tasks are allowed to interrupt, and the ordering of

tasks within the rate group frame depends upon a task priority assignment made during

system initialization. Despite the preemptive activity between tasks of different rate

groups, each task on a VG should eventually execute until it reaches a state of self-

suspension. For each rate group frame, every task in that rate group must enter self-

suspension before the frame boundary; failure to do so constitutes a frame overrun.

When a task suspends its own execution, it has effectively completed its execution cycle

and the VG's processing power is passed on to another task. At the beginning of a new

rate group frame, every task in the rate group is once again scheduled for execution and

resumes execution at the point where it last suspended itself. Figure 2-10 shows how

tasks are scheduled within an arbitrary rate group frame. Notice that incoming messages

are delivered to the rate group tasks at the beginning of the frame and outgoing messages

are queued during the frame and then transmitted at the end of the frame.

Beginning of
Rate Group End of Rate

Frame R4: 10 ms Group Frame

R3: 20 ms 9
R2: 40 ms
R1: 80 ms

Tasks within Rate Group

T1 T2 T3 T4 T5 Mar in

Inputs and Messages Outputs and Messages
Delivered to Rate Delivered to Rate

Group Tasks Group Tasks

Figure 2-10, Scheduling for a Single Rate Group Frame

The actual task scheduling for a virtual group is performed by an RG4 task known

as the rate group dispatcher. It executes at the beginning of every minor frame (RG4

frame) and schedules execution of all tasks belonging to rate groups whose frame

boundaries coincide with the beginning of the current RG4 frame. Refer to Figure 2-9 for

a good illustration of the frame boundary synchronization.

The rate group dispatcher also performs several bookkeeping functions for the

operating system, and it triggers transmission of the messages that were queued during

the rate group frames that were just terminated. Any task overruns from the previous

frames are detected by the RG dispatcher, and the error handling system is notified. In

the case of an overrun, the RG dispatcher detects which tasks were unable to complete

execution and enter self-suspension [CLAS92]. It is possible that a task which causes an

overrun actually completes its execution and effectively forces lower priority and lower

frequency tasks to remain incomplete. Thus, the source of this type of overrun error is

very difficult to trace, and it is intended that the type of a priori configuration timing

analysis proposed by this thesis will prevent the occurrence of such errors.

Chapter 3
Preliminary Processing

3.1 Requirements
The AFTA timing analysis is divided into three distinct stages -- preliminary

processing, software modeling, and hardware modeling. Each stage builds upon the

results of the previous stage(s) and contributes to the formulation of final results. The

analysis begins with the preliminary processing stage, and its primary function is to

provide the other stages with an accurate and concise picture of the system configuration.

One of the goals of the timing analysis is to minimize user interaction so that the

computer bears the brunt of the analysis workload, and the preliminary processing phase

is designed to gather its information in an automated fashion from existing software files

and avoid querying the user about the system setup. The user is only required to provide

the name of the current task specification file; the analysis software does the rest.

Both the hardware and software analysis stages depend upon the configuration

information provided by the preliminary processing stage; however, these two types of

analysis view the system from different perspectives. The software analysis develops

models of the application task source code, and it sees the system as a collection of task

instantiations. The hardware analysis performs calculations relevant to the rate group

timing deadlines, and it sees the system as a collection of virtual groups. The goal of the

preliminary processing is to find the information required by both the software and

hardware analyses and to provide it in a format that is useful to both.

The gathering of system configuration data focuses upon the individual

application tasks, and the preliminary processing stage seeks answers to the following

questions:

1. What are the names of all application tasks in the suite?

2. On which virtual group(s) does each task reside?

3. To which rate group does each task belong?

4. What are the message passing limitations for each task?

5. Which file contains the source code for each task?

With regard to formatting this information, notice that the setup data is easily organized

according to tasks. This is a convenient format for the software analysis, but it is also

easily transformed it into a virtual group format for the convenience of the hardware

analysis. This transformation is explained in Chapter 8.

3.2 Inputs
Ada software development and maintenance for the AFTA currently takes place

on a VAX minicomputer. During AFTA testing, application task code is transferred from

the VAX file server to the AFTA's processing elements, and in the process, the operating

system is provided with a task specification file, which essentially explains the software

setup to the operating system. The preliminary processing phase utilizes this file to

gather most of its configuration information. The file is organized as a series of records

with each record containing information about a single task instantiation. A sample entry

is shown below in Figure 3-1.

1 => (
gcid => gcids.fdi,
gtid => gtidsfdi,
location = > config.all-vg,
vg => 0,
rg => config.rg4,
precedence => 12,
max.xmitsize => 200,
max xmitnum => 10,
max-rcvesize => 200,
maxrcve-num => 20,

num iors => 0,
iors => (

others => (
numchains => 0,
chains => (
others => (E => false,

B=>false, A
D => false, C
=> false)))))

=> false,

Figure 3-1, Sample Task Specification File Entry

Since the format here is somewhat cryptic, it requires some explanation. Figure 3-1

shows the first task entry in the file, as denoted by the "1 = >." The gc i d and gt i d lines

refer to the task's global communication identification and global task identification,

respectively, and these are necessary for message passing purposes. The name of the task

is fd i, and it is extracted from the line "gt i d=>gt i ds . fd i ." fd i is a software

service that performs fault detection and isolation; by convention, a "-t " is appended to

the task name, and the source code for fd i is found in a task body named f d i t. Note

that there is not necessarily any correlation between the name of the task and the name of

the package or file where it is held. The I ocat i on line shows that f d i is configured to

execute on all virtual groups in the system; a task can be configured to run on all VGs

simultaneously or only on one VG. The "vg= >0" line shows which VG hosts the task; in

this case, "0" is used because the task is mapped to all operational VGs. The rg line

indicates that f d i is an RG4 task, and its p r e c e d e n c e value determines how it is

mapped statically within an RG4 execution frame. The next group of four lines refers to

the message buffering requirements of the task. max_xmit si ze and

ma xr c v e-s i z e indicate the maximum size, in bytes, of messages that the task is

allowed to transmit and receive. Likewise, max xm i t _ num and max rcve _ num

determine the maximum number of messages a task can send and receive during a single

execution cycle. The final portion of the record concerns I/O requests, and this

information is currently irrelevant to the timing analysis.

Similar to the AFTA application software, the timing analysis program is resident

on the VAX. All file manipulations in the course of the analysis take place on the VAX,

completely separate from the actual FTPP. The user provides the analysis program with

the task specification filename, and the preliminary processing begins with an

examination of this file.

3.3 Tools
The preliminary processing stage consists of one C program named START.C and

one DCL program called FIND.COM. The execution of the C program is explained in

this section and the following section; the DCL file is examined in Section 3.5. Source

code listings are included as Appendices B and C, respectively.

START.C utilizes some simple tools to examine the task specification file and

pass on the information it finds to the DCL program and to future stages of the timing

analysis. The first tool is a procedure called r e a d I i s t . Its function is to read a pre-

defined file which lists a series of key words that are needed by START.C when

examining the task specification list. rea d I is t opens the file, grabs each key word

individually, and stores it in a structure called searc h- I i st.

The next procedure is get I i n e; its function is to pull characters from the task

specification file and assemble them into words and assemble the words into individual

lines. In this case, a line refers to the string of characters found between carriage returns.

Whenever it is called, g e t I i n e finds and returns the next line in the file. The line is

stored as a collection of words in a structure called t h i s_ I in e; all white space and

comments are deleted from the line.

The procedure called s ear c h is the workhorse of s t art . c. Its job is to search

a single line of the task specification file looking for the key words stored in

se arch I i st. When a key word is found, it means that there is vital information in

that line, and a specific procedure is called to extract that information. All relevant data

found in the file is stored in a structure called t as k; its format is shown in the

pseudocode of Figure 3-2:

task record (structure)
name (string)
virtual group (integer)
rate group (integer)
message buffers (structure)

max transmit size (integer)
max transmit number (integer)
max receive size (integer)
max receive number (integer)

Figure 3-2, Task Information Storage Format

The last major procedure is wr i t e -f i I e, and its function is to use the t ask

structure to generate two temporary output files for the DCL program and the software

modeling stage. The first file is "task_names.dat," and it contains a simple listing of all

the task names in the suite. The second file is "listof tasks.dat," and it is a listing of all

the information contained in t as k, with one line devoted to each task instantiation and

its associated data.

The other procedures used by START.C are extract _name, get r g, and

s t r i p. These are minor functions needed for gathering data from the individual lines of

the task specification file.

3.4 Flow of Execution
START.C is a simple series of procedure calls to extract information from the task

specification file, organize it, and pass it on through temporary files. It begins with a call

to re ad I is t, and this is followed by a filename inquiry. The task specification file is

opened, and then an iterative search process begins. g e t - I i n e is used to grab

successive lines from the file, and each call to g e t - i n e is followed by a call to

search. Thus the file is examined one line at a time until get _ i ne signals that the

end of the file has been reached. All information gathered is placed in the structure

t as k, and wr i t e-..f i I e is invoked to produce the two output files described above.

Figure 3-3 illustrates the flow of input and output files for the preliminary processing

stage.

3.5 The DCL Program
FIND.COM is an elementary file search program written in Digital Command

Language (DCL). Its purpose is to find the files which contain the source code for each

application task in the task suite. There is no convention which demands that the

filename in any way relates to the name of the task; also multiple tasks could be found in

a single file. Of course, it is assumed that the user already knows where the source code

can be found, but for purposes of automation, FIND.COM is utilized to avoid having the

user enter the filenames for the various application tasks.

tasklist.ada list of tasks.dat

START.C
FIND.COM

key_words.dat / filenames.dat

tasknames.dat temp.dat

Figure 3-3, Preliminary Processing File Flow

The Digital Command Language has a powerful search command which allows a

programmer to specify a word or group of words and then search all files in any number

of directories to find occurrences of that word group. FIND.COM is programmed to

search a specified set of directories where source code should be located. It first searches

for the occurrence of the phrase "task body is;" this phrase signifies the presence of task

source code. All filenames containing this phrase are stored in a file called "temp.dat."

This is followed by a second search in which the previously identified files are again

searched for the individual task names listed in "task_names.dat." When a file is found to

hold a specified task, the task name and filename are recorded together in an output file

called "filenames.dat." The interaction of input and output files is shown in Figure 3-3.

In conclusion, the preliminary processing phase is relatively simple, but it really is

essential to the analysis because the hardware and software modeling depend upon the

configuration data. The details of pre-processing are not critical to the analysis; what is

important is an understanding of the origin, motivation for, and contents of the two output

files -- "filenames.dat" and "listoftasks.dat."

Chapter 4
Software Analysis

4.1 Assumptions and Limitations
The software analysis is the second stage in the progression of the AFTA timing

analysis; its function is to examine the source code for the application task suite, develop

a parameterized model for each task individually, and pass that model on to the hardware

analysis stage to produce the desired timing results. The ultimate goal of the software

analysis is to define a worst case bound on execution time for any single cycle of an

application task. Recall that this information is necessary for the prevention of dynamic

performance failures as described in Chapters 1 and 2. The difficulty of predicting

software execution delay grows as the complexity of the code increases. High level

languages such as Ada give the programmer a great deal of latitude in formulating a

task's structure and flow of execution, and the problem of predicting execution time

through a static analysis of source code is almost unmanageable. For this reason, some

simplifying assumptions must be made, and the goals of the software analysis must be

further defined.

The fundamental assumption for the software analysis is that task execution time

can be accurately modeled according to a limited set of known functions, which are called

in the course of code execution. At this point in the AFTA's development, the set of

known functions primarily consists of benchmarked operating system calls [CLAS92],

but in the future, any commonly used function can be benchmarked and added to the

model. The source code analysis seeks to parameterize a task by determining how many

times each of the known functions is called during a single execution cycle under worst

case conditions. Since the delay for each function can be carefully designed and

benchmarked to be a deterministic quantity, some simple algebraic manipulation is used

to arrive at an estimated lower bound on worst case task execution time.

Notice that the timing analysis produces a lower bound on worst case delay, not

an upper bound as one might expect. This is due to the fact that the task source code is

modeled as an accumulation of function calls, where each call adds a known delay to the

total worst case execution time. The set of functions included in the code model does not

account for all of the processing performed by a task; this is clarified in the explanation of

the code model found in Chapter 5. It is probable that a substantial amount of processing

activity within the task could be overlooked by the model if such activity does not qualify

as a known deterministic quantity. This is why the timing analysis can only produce a

lower bound on worst case execution time; an upper bound would have to account for all

processing activity, and that is not possible for the code model developed in this thesis.

The objective here is to construct a flexible model for source code that will produce

increasingly accurate results as the model develops and becomes more sophisticated.

Though it is not known exactly how a single task's execution times may be distributed,

Figure 4-1 shows an exponential distribution as a reasonable possibility. Given this

assumption, it is the goal of the software analysis to produce a worst case estimate that

falls on the far right side of the curve. Since this analysis provides only a lower bound on

worst case delay, the estimate will never be on the extreme right, but as the AFTA

benchmarking efforts proceed and the code model grows and improves, the delay

estimate should shift significantly toward the tail of the curve.

Worst Case Estimate

of
cycles

Execution Time

Figure 4-1, Possible Distribution of Execution Times

The software analysis works with Ada source code, and it is assumed that the code

has been compiled and is free of errors. The analysis is heavily dependent upon Ada

syntax rules in extracting correct information from the source code, and in fact,

compliance with Ada syntax rules is the only guarantee afforded to the analysis tool when

it encounters a segment of code. All programmers develop their own style and use

unique text formatting and code structuring. For this reason, it is imperative that the

software analysis is able to understand any legal code construct, rather than being tuned

to accept a predefined code format. This allows full flexibility to the application task

programmer, and at the same time, it makes the software analysis quite complex.

The element of style flexibility also imposes some limitations on the effectiveness

of a static code analysis, for there are instances where it is useful to know the value of a

variable, but because of the variable's definition and the flow of execution, a static

analysis is not able to define that value. In such cases, the analysis relies upon extraneous

information from the programmer in the form of comments, and if these comments are

not included, default values must be assumed. The individual programmer makes the

decision whether or not to include the extra information, and if he chooses not to do so,
the analysis is dependent upon default values which could be highly inaccurate.

Another limitation of the software analysis arises from the fact that there is

currently a lack of actual application task code available for the AFTA. Since the AFTA

is only a prototype at this stage, software development efforts are primarily focused on

the operating system, with application task development being deferred. This serves to

limit the amount of operational testing that can be done with timing analysis. Certainly,
as a greater quantity and variety of task code is made available for testing, the timing

analysis will be modified and improved. The fact that this analysis tool must be able to

comprehend code that is not yet written reinforces the concept of allowing the

applications programmer full latitude in the realm of style and assuming nothing about

the source code except Ada syntax compliance. To date, the analysis tool has only been

tested on the fault detection and isolation software written for the AFTA.

4.2 The Ada Software Structure
The Ada programming language is designed specifically for large, real-time,

embedded computer systems, and it was created as a Department of Defense standard for

software engineering. As such, Ada was chosen to be the language for software

development on the AFTA [AFTA91]. An intimate knowledge of the Ada programming

language is not necessary for one to understand the AFTA timing analysis, but a

simplified understanding of the code framework is useful.

4.2.1 Subprograms and Packages

Ada code structures can be divided into three primary types of program units:

subprograms, packages, and tasks. These program units generally have a two-part

structure consisting of a specification and a body. The specification details the interface

to the unit, and the body contains the unit implementation details which can be logically

hidden behind the interface [B0087]. The AFTA software analysis is interested in only

the program body; the specification is generally ignored.

Ada subprograms are the basic units of execution, and the body of a subprogram

holds the sequence of statements that define some algorithm. Subprograms are divided

into two classes: functions and procedures. The software analysis deals primarily with

procedures, but the methods presented in this thesis are fully applicable to functions as

well.

An Ada package is a unit of encapsulation which allows the programmer to group

logically related entities such as subprograms and tasks. The software analysis relies

upon examination of package bodies to find source code for application tasks and relevant

procedures. Note that task source code is always enclosed within a package.

4.2.2 Tasks

Ada's real-time processing capabilities are based upon the use of program units

known as tasks. A task is defined as an entity that can operate concurrently with other

program units [B0087], and the central concern of the software analysis is the

examination of application task source code. A rate group task must have a well-defined

cyclic execution behavior, and it should never reach a point of termination until system

shutdown. These characteristics imply an infinite loop structure for a task, and this is

shown in the following sample code fragment.

with scheduler;

package body appl.test is
task body appll1t is

my.cid : constant communication-idtype := appil;
num.deleted natural := 0;
frame-time time := startup-time;

begin
loop

scheduler. waitfor.schedule;
end loop;

end appllt;
end appl-test;

Figure 4-2, Sample Rate Group Task

Figure 4-2 illustrates the general code framework an application task. The

statement w i t h schedu I er signals the inclusion of all subprograms in an external

package called schedu I e r. This is followed by the definition of the package body for

app I t est, which includes the body for a single application task known as app I 1 t.

The definition of m yc i d is necessary for intertask communication, and numd e I et ed

refers to the number of messages deleted in the previous frame due to inadequate

buffering. The variable f r am e-t i me contains the value of the time when the current

rate group frame was started. These variables are unimportant to the software analysis;

what is critical to note here is the structure of task app I 1 . Figure 4-2 shows a p p I 1 as a

minimal rate group task consisting of an infinite loop surrounding a single call to the

wa i t f or-s chedu I e procedure that is defined within the schedu I er package. The

infinite loop ensures that a pp I 1 executes in an iterative manner for an indefinite length

of time, and the call to wa i t for schedu I e allows app I 1 to suspend itself after

each progression through the loop. The task is revived when scheduled by the rate group

dispatcher during its next rate group frame. Thus, the w a i t f ors ched u I e call

regulates the rate group behavior of a task in the following manner:

1. A task begins execution when scheduled by the rate group dispatcher.

2. When a task finishes a single execution cycle (in this case, one progression

through the infinite loop), it calls wa i t f orschedu I e.

3. The task then enters a state of self-suspension, and its processing resources are

freed for use by other tasks.

4. When the next rate group frame begins, the rate group dispatcher schedules

the task for another execution cycle.

5. Once scheduled, the task begins execution with the code immediately

following the last wait _ for _ schedule call and proceeds until it

encounters another w a i t f or.schedu I e call.

The progression of events described above is the basis of the software analysis.

4.3 Requirements of the Programmer
One of the goals of the software analysis is to be able to accept and comprehend

source code written in almost any programming style, provided that the code complies
with Ada syntax rules. In general, the programmer is not restricted to following any pre-
defined format for the benefit of the timing analysis; however, there are a limited number

of simple directives that, if followed, make the analysis much more effective.

4.3.1 Comment Information

When one performs a manual static analysis of source code, it is quite easy to scan

the code both forwards and backwards to extract the information needed to trace the flow
of a program. The human mind is capable of performing complex searches for variable

values through many levels of definition, and one can almost mentally simulate source

code as he reads it. Unfortunately, such a manual analysis is impractical and prone to

errors when dealing with exceptionally large bodies of code; thus, in the interest of speed
and accuracy, automated analysis replaces manual analysis. The problem is that it is a
difficult task to train a computer to read and understand source code the same way that a
human would, and in order to simplify this task, some compromises must be made.

The first compromise is to force the computer to read code in only the forward
direction. Certainly it is possible to have the computer search a piece of code in both
directions to find information, but the logic to control such a search involves unjustifiable
complexity. Therefore the AFTA software analysis reads and examines source code one
line at a time in the order in which it is encountered. Any information that could be
useful later in the analysis must be properly extracted and stored (or remembered)
because there is no way to refer back to code that has already been processed. This
approach may seem to be too limited, but the implementation of some simple strategies
make it surprisingly effective.

One limitation of single-line processing is its inability to fully trace variable
values. This is easily demonstrated with the following example:

task body examplet is
counter : natural := 50;
S: natural;

begin
loop

for i in 1..counter loop
end loop;
scheduler,waitfor-schedule;
counter := 100;

end loop;
end examplet;

Figure 4-3, Variable Tracing Example # 1

Now look at the code in Figure 4-3 from the computer's perspective -- read only one line
at a time and do not refer to previously read lines. The computer sees the variable
count er take on an initial value of 50, and then it finds a for. . I oop that is iterated
50 times during the first execution cycle of the task named e x amp I e. When the task is
scheduled for its second cycle, count er assumes a value of 100 and the for. . I oop is
now executed 100 times. Unfortunately though, the computer has already associated a
value of 50 iterations with the inner loop and cannot go back and find out how the new

value of c o u n t e r affects previously processed code in subsequent execution cycles. A

simple solution to this problem might be to require the computer to remember that the

variable named count e r affects the inner loop so that when co u n t e r changes, a new

iteration value can be associated with the inner loop. This sounds simple until one

considers that the value of count e r could change within a deeply nested procedure, and

the attempt to follow a variable into and out of a nest of procedures would require some

very complex logic. Such a process borders on simulating code rather than performing a

static analysis, and code simulation really has no advantage over actual code execution.

Another solution would be to just dismiss single-line processing as an inadequate

approach because of such a shortfall, but before doing so, consider the following

example:

task body example-t is
counter : natural;
S: natural;

begin
loop

counter := temperature (format => kelvin);
for i in 1,,.counter loop
end loop;
scheduler.wait for_schedule;

end loop;
end examplet;

Figure 4-4, Variable Tracing Example #2

The example in Figure 4-4 illustrates the possibility that a loop control variable could be

determined by some quantity that is defined only at run time. In this particular case, the

variable c o un t e r is a function of the temperature measured by some external sensor.

No form of automated analysis can properly define a value for count e r, and instances

such as these require that the programmer provide some extra information to help make a

static code analysis effective. Recall that the AFTA timing analysis is interested in worst

case scenarios, and for this example it would be helpful to know that a value such as 500

is a reasonable limit on the value of c o u n t e r. Only a programmer with extensive

knowledge of the system could provide such input; an automated analysis tool cannot be

expected to bridge such information gaps.

The first example illustrates a situation where programmer input is not required
but serves to simplify the static analysis process, while the second example demonstrates
that there are certain situations in which programmer input is absolutely necessary to
make the static analysis effective. If the programmer uniformly provides information
about loop iteration maximums, he guards against the analysis roadblock presented by the
second example and at the same time provides a simplified solution to the variable tracing
problem of Example #1. Situations of both types arise during a static code analysis, and a
simple request that the programmer provide information about maximum loop iterations
ultimately makes any static analysis more useful and actually establishes single-line
processing as a viable approach.

The AFTA timing analysis benefits from four types of extraneous information that
the programmer should be able to provide. They are as follows:

1. What is the maximum number of iterations in a for..loop?
2. What is the maximum number of iterations in a while..loop?
3. What is the maximum number of bytes in a message passed between tasks?
4. What, if any, is the maximum number of iterations for a basic loop?

This information must be provided in a conventional format that is convenient for
the programmer to understand and easy for the analysis tool to read. The most
appropriate method to communicate such data is through comment lines within the source
code. These are the rules governing the use of comment information:

1. The information must be conveyed using a single comment line which begins
with the standard "--" format.

2. This is followed by a "*" and an identifier denoting the type of information.
3. Next there is a statement of the form "ma x= " followed by a base 10 integer or

the word "unde f i ned" for infinite loops or unknown values.
4. The comment information must precede the corresponding loop or message,

although it does not have to be placed immediately before the code statement.
5. To avoid confusion with constructs such as nested loops, information relating

to an inner loop must fall within the adjacent outer loop.
6. Refer to Figure 4-5 for some examples.

The concept of asking for extra information from the programmer is not
unreasonable or uncommon. In [PARK90], the authors describe a requirement for both
maximum and minimum loop bounds for input to their program timing tool. Similarly,
[PUSC89] discusses alterations to the original programming language for the
specification of loop maximums in terms of an iteration count or a time delay. The

40

comment information method described here has the advantage of being simple to

implement and flexible with regard to expansion. Its primary disadvantage is that there is

no compiler enforcement of this convention. The programmer is free to omit the

information, or if he chooses to include it, he might use an improper format.

-- * for loop: max = 100
-- * while loop: max = 200
-- * message: max = 300
-- * basic loop: max = 400
-- * basic loop: max = undefined

Figure 4-5, Examples of Comment Information

4.3.2 Naming Conventions

Early generation programming languages like FORTRAN and COBOL

implement global naming conventions and burden the programmer with name space

management. When naming an object, the programmer is forced to reference name

listings to ensure that the name is used in the proper context and does not conflict with

any other name in the system. Ada attempts to avoid this problem through the

implementation of scope rules and the overloading concept. The objective is for code

nesting and overloading to allow programmers to pick the most meaningful and

convenient names for their objects without being concerned about the use of the same

names in other parts of the system. The compiler sorts out the details in cases of name

conflicts and thus gives the programmer a great deal of freedom. Unfortunately, the

AFTA timing analysis tool is not as smart as the Ada compiler, and it is necessary to

impose a few simple naming conventions.

The first convention is that all task names end with "_t " when used to define the

body of the task. The analysis tool finds the task names in the task specification list and

automatically appends the "t " when searching for the source code of the task body. If

the task name is not appended in this manner, its source code will not be found and will

not be evaluated. For an example task body definition, refer back to Figure 4-3.

The second convention is that all procedures and functions defined within a single

task must have unique names. The reason for this is that the software analysis builds

source code models based upon procedure calls, and a specific model is associated with

each procedure name. If a task makes use of two procedures with the same name, the

analysis tool will be confused as to which procedure model to use. Refer to Chapter 5 for

a more detailed description of code model construction. Ada scope rules allow the same

subprogram name to be used for multiple procedures or functions within a nested code

structure, and the compiler is forced to figure out which body of code is being referenced

for each occurrence of the name. Likewise, the overloading concept permits the

programmer to use identical names for similar functions and procedures, provided that the

compiler can distinguish them according to the parameters included with the subprogram

name. The logic to sort such details is quite complex and is not included in the AFTA

software analysis. This naming convention is the result of a simple engineering tradeoff

where the need for simplicity in the analysis tool outweighs subprogram naming freedom

for the programmer.

4.3.3 Undesirable Constructs

For a hard-real-time system, it is desirable for the software to exhibit a predictable

timing behavior so that task scheduling constraints may be satisfied, and a software

timing analysis is usually interested in examining worst case scenarios to ensure that

execution timing deadlines are always met. When dealing with a worst case scenario, a

static code analysis can be easily confused by certain programming constructs and thus

provide no insight into their timing behavior. In practice, such constructs may

demonstrate perfectly acceptable behavior, but they have a tendency to cripple the

effectiveness of any a priori analysis.

One undesirable construct for real-time software involves the use of recursion. As

mentioned previously, the AFTA timing analysis builds source code models based upon

procedure calls. If Procedure A calls Procedure B, the model for Procedure B is inserted

into the model for Procedure A. If Procedure A calls itself, the attempt to build a model

for Procedure A is like trying to sketch the reflection of one mirror appearing in another

mirror. Recursion may be the most efficient implementation for certain algorithms, but

its timing behavior is usually unpredictable or at least very difficult to define. The AFTA

software analysis notes the presence of recursive constructs, but it does not attempt to

model them or analyze them.

As with traditional recursion, the use of mutual recursion is an undesirable

construct for real-time software. Mutual recursion refers to the situation where Procedure

A calls Procedure B and Procedure B calls Procedure A. The problem of trying to

accurately model such a situation is similar to the one described above, and the AFTA

software analysis notes the situation but does not attempt to analyze such a construct.

Another dangerous construct involves the use of basic loops and while loops. In

order for the timing analysis to be effective, the programmer must specify the maximum

number of iterations for each instance of these types of loops, or a call to the

wa i t_ for _ schedu I e procedure must be included inside the loop. Even if a

wa i t for schedu I e call is placed inside the loop, there is a possibility that the

timing analysis could signal the presence of a potential infinite loop. Obviously, an

infinite loop is an unacceptable possibility for a real-time task. Figure 4-6 shows an

example of such an undesirable situation.

loop
if FLAP-STATUS = FULL_UP then

compute(ALT I TUDE, Al IRSPEED);
else

scheduler.waitforschedule;
end if;

end loop;

Figure 4-6, Potential Infinite Loop

Notice that the loop shown above has no defined maximum iteration count but does

contain a call to w a i t for _schedu I e. Thus, one might assume that any single

execution cycle eventually escapes this loop by reaching the w a i t -_ f o rs c h e d u I e

call; however, the software analysis looks at the worst case scenario only. In this case, it

is possible that the wa i t_forschedu I e call is never reached, and an infinite loop ties

up processing resources and breaks timing deadlines. The AFTA timing analysis notes

this situation but does not attempt to analyze it.

Chapter 5
Abstraction

The primary challenge of the software analysis is to identify and parameterize the

worst case execution path for each application task. An execution path is defined to be

any sequence of statements encountered between two successive calls to the

wa i t_ f o rs c h e d u I e procedure; thus an execution path determines the task's activity

for a single rate group frame. In order to identify the worst case path, all possible paths

must be explored, and a valid method of path comparison must be employed. For a static

analysis, the best way to identify execution paths is to model the flow of execution for a

given segment of source code, and the software analysis utilizes the concept of

abstraction to construct such flow models for each task instantiation in the task suite.

Abstraction is a method of hiding details in order to simplify analysis, and it is ideal for

achieving the goals of the AFTA timing analysis. Recall that the fundamental assumption

of the software analysis is that task execution time can be accurately modeled according

to a limited set of known functions; abstraction is a way to eliminate details and highlight

the role of these known functions. The goal of abstraction is to examine the task source

code in full and develop a model that preserves only the information necessary for

parameterizing the task in terms of known deterministic functions.

5.1 The Abstraction Methodology
The process of building source code models is rather complex; thus, it is best to

begin with a high level discussion of the abstraction methodology. Task source code is

input to the software analysis as a stream of characters from a file. These characters are

assembled into single lines of code, and the code lines are processed individually and

sequentially. In the context of this analysis, a single line is defined as that which falls

between successive semicolons. Abstraction serves as a filter that transforms highly

detailed source code into a simplified flow model for execution path analysis. As each

line of code is processed, relevant information is extracted from it, and the code itself is

then discarded. Information that is considered relevant falls into two categories: flow

control items and known deterministic functions. The first category is a closed set of Ada

constructs that are used by the programmer to define the flow of task execution. These

include loop constructs, if-then-else constructs, case statements, and

w a i t f or schedu I e calls. The second category is an open set of functions composed

of subprograms whose execution delay is deterministic and has been measured as part of

AFTA system benchmarking efforts. Presently, this set of functions primarily consists of

operating system calls and in particular, message passing functions. Figure 5-1 shows a

full list of the critical constructs that are extracted from the source code in the process of

model construction.

loop
exit
for. I loop
while. .loop
end loop
if..then
else
end if
case. ,.when
end case
scheduler wait.for.schedule
rg.communicat ion. queue.message()
rg-communicat ion retrievemessage()
rgcommunicat ion.send.message()
rg-communicat ion. read-message()
rglog.rg-logentry()
debugt race.debuglog()
rgdispatcher, io_uti Is()

Figure 5-1, List of Critical Constructs

Each program statement is searched for items belonging to this list. When a critical

construct is found, it is appended to the end of the model along with any data associated

with the construct, and the model thus becomes a reflection of the task source code with

all unnecessary details removed.

5.2 The Motivation for Abstraction
Familiarity with the abstraction methodology makes it is easy to understand the

motivation for source code modeling and the use of abstraction. The justification for this

approach to software analysis is best summarized as follows:

1. The use of code models expands the power of single-line processing.

Examining program statements one at a time and in sequential order is a very

restrictive way of analyzing source code. With the abstraction method, single

line processing is only an initial stage that serves to build the task model; it is

not responsible for code analysis. Thus, any static analysis limitations of

single-line processing disappear once the model is built.

2. The source code model is stored as a collection of integers, and this makes it

easy to analyze and manipulate in an automated fashion. The timing analysis

deals only with the task model; it completely ignores the original source code

once the model is built. This allows the analysis to be greatly simplified

because it is not wrapped up in code interpretation or string manipulation, and

simplicity is vital to the improvement and maintenance of the analysis tool.

3. The task model is constructed in a format that is ideal for identifying and

comparing possible execution paths. In contrast, examining the source code

itself for execution paths is an extremely complex task. The abstraction

process is designed specifically to transform the source code into a format that

allows the most efficient execution path identification, parameterization, and

analysis.

4. Abstraction serves to expose the message passing characteristics of an

application task because all the message passing procedures are included in

the list of critical constructs. When all tasks are considered simultaneously in

the hardware analysis stage, the analysis tool develops a picture of worst case

global message passing activity. This is important in determining the timing

behavior of the rate group dispatcher, which is executed as part of the system

overhead in every minor frame.

5.3 Code Model Elements
The source code model for an application task is stored as a collection of integers.

Integer manipulation is easily accomplished within a high level language like C; thus the

format of the model lends itself to a simple and efficient implementation of the model

analysis procedures discussed in Chapters 7 and 8. The model is a one-dimensional array

of entries, and each entry is a set of five integer elements. These elements are outlined

below:

1. TYPE: An integer value representing the type of critical construct that is

found in the source code and recorded as a model entry. Every critical

construct listed in Figure 5-1 has a specific integer associated with it and is

recognized by the computer according to its numerical value. The constant

definitions for the analysis tool are found in "header.h," and for purposes of

code readability and maintainability, these constants are referred to by the

names listed in "header.h" rather than their respective numerical values.

2. VALUE: Some of the critical constructs have a value associated with them,

and this value is required for analyzing worst case scenarios. For instance, for

all loop constructs, the VALUE element represents the maximum number of

iterations for that loop. Loops whose behavior is undefined are assigned one

of two constant values whose names best describe the nature of the loop. The

names of these constants are UNDEFINED and INFINITE; their meanings are

self-explanatory. Message passing constructs also have an associated value

which represents the maximum size of a message in 64-byte packets. If no

maximum value is specified by the programmer, the message passing

limitations listed in the task specification file (refer to Chapter 3) are used as

default values.

3. DEPTH: After the model is created, each entry is assigned a DEPTH value to

represent its level within the nested structure of the source code. The DEPTH

element helps the model emulate the modular construction of the original

code, and the information conveyed by the depth element is vital to the task of

identifying possible execution paths.

4. POINTER: Not to be confused with a pointer in C, the POINTER element is

a value assigned to a model entry after the model is fully constructed. It is the

index value of another closely associated model entry, and its assigned value

is essential for proper identification of possible execution paths. For example,

the end I oop construct uses the POINTER value to identify the index for

the model entry that represents the beginning of the loop construct. The

specific rules governing the assignment of the POINTER value are explained

in Chapter 7. Not all model entries require the use of this element, and in such

cases, the POINTER element is assigned a constant value named

UNDEFINED.

5. FLOW: This element is used only during the generation of execution paths

through the code model. It is required for bookkeeping purposes, and its value

assignment conventions are discussed in Chapter 7.

The figures on the following page illustrate a sample model construction. Figure

5-2 is a segment of test code designed to highlight the occurrence of critical constructs; it

is not intended to represent any particular algorithm. Notice in the parameter

specifications for the message passing procedures that only the fourth parameter is

specified. This parameter indicates the size of the message; the other parameters are

unimportant to the timing analysis and are not included. It is important to understand that

the source code lists the message size according to bytes while the model stores the

Ioop

for i in 1..20 loop
rg_communication.queuemessage(--,--,--,100,--,--);
if VAR1 > VAR_2

rgcommun i cation. queuemessage(--, ,150--,--,--)
elsif UARR2 > UAR_3

rgcommunication.retrievemessage(--, --, --,175, --, --);
else UAR_2 := 0;
end if;
schedulerwaitforschedule;

end loop;
while (UARI < 100) loop

UAR_1 := UAR_3 + 5;
scheduler.waitforschedule;

end loop;
rg-communi cat ion . queue_message(-, -- , 200, ----);

end loop;

Figure 5-2, Sample Source Code Segment

Figure 5-3, Sample Source Code Model

message size according to the number of packets since all analysis calculations deal with

packets rather than bytes. Figure 5-3 shows the code model that is constructed from the

preceding code segment; notice that the flow element is deliberately left unspecified since

it is only used during execution path generation.

The model follows the source code very closely since the code is primarily

comprised of critical constructs. Each occurrence of a critical construct is represented by

a single model entry. For purposes of readability, the TYPE element is listed according

to the name of the appropriate constant; the actual constant value is shown in parentheses.

The top entry indicates an infinite I oop, which is followed by a f or.. I oop with a

maximum of 20 iterations. The q u e u em e ssage procedure call is included as the third

model entry, and the message size (100 bytes/2 packets) is shown in the VALUE element.

The i f construct in entries 3 through 8 demonstrates one use of the POINTER element.

When a conditional statement is encountered during code execution, alternate paths may

be followed. The POINTER value indicates where execution continues if a given

condition is not satisfied. For example, if the condition associated with entry #3 is not

met, execution continues with entry #5, and if the condition there is not met, execution

continues with entry #7. The POINTER value holds the key to following the proper path.

Notice that the model includes no information about what conditions are imposed by the

i f statement in entry #3 or the e I a i f statement in entry #5. The timing analysis is not

intended to simulate the source code; rather, its intermediate goal is to find all possible

execution paths. For this reason, the actual test condition is ignored; it is only important

for the model to indicate that alternate execution paths exist due to the presence of a

conditional statement. Following the i f -t hen -e I s e construct, entry #9 indicates a call

to wa i t f orschedu I e (WFS); a WFS call marks both the beginning and the end of

any execution path. Entries #10, #13, and #15 illustrate the use of the POINTER element

to link the end of a loop with the beginning of that loop. A final point of interest for this

model is the use of the DEPTH element to indicate the nesting level for each entry. In

Figure 5-2, the use of indentation shows the logical nesting of code statements. Likewise,

the value of the DEPTH parameter in Figure 5-3 carries the same information. For any

complete subprogram or task, the DEPTH value begins and ends at zero, and each level

of nesting has a successively greater value.

5.4 Bottom-Up Construction
The power of high level languages springs from the use of modularity, and it is

essential that a static analysis tool is able to recognize and properly interpret the use of

procedures and functions within an application task or within a supporting subprogram.

When one manually performs a static analysis and encounters a procedure call, it should

be easy to find the code for that procedure and examine it within the context in which it is

called upon; however, such a searching task is not so trivial for an automated analysis

tool. For an automated analysis, when a procedure call is found, the analysis is

suspended while the computer searches for the source code belonging to that procedure.

The source code could be in the file that is already open or it could be in a separate file, in

which case two or more files are simultaneously left open for examination. The problem

grows in complexity when one considers the possibility that the first procedure could call

another procedure whose source code resides in yet another file. Of course, this type of

procedure nesting can go on for many levels and would result in multiple open files and

multiple suspensions of the analysis process. Note that each suspension of analysis

results in a complicated effort to save present state information in a useful format.

Obviously this is an unwieldy method of dealing with modular source code.

The use of a source code model avoids the problems inherent in the cyclical

analyze and search method described above. The tasks of processing source code and

analyzing source code are separated through the use of the code model. All the code

processing is directed toward building the model for an application task, and then the

model is analyzed independently with no further references to the source code. In order

for the model to be accurate and effective, whenever a procedure call is encountered, the

modeling tool must already know the name and nature of that procedure so that it does

not have to search for its source code. Thus, the source code model must be constructed

in a bottom-up fashion -- precisely the opposite of the top-down manner in which

software is created. In other words, the modeling tool begins by examining the most

elemental procedures and progresses upward to higher level procedures, which often call

upon the more elemental procedures. Figure 5-4 illustrates this concept.

Software Model
Development Application Task Development

Figure 5-4, An Ideal Software Hierarchy

This type of bottom-up model development depends upon an understanding of the

program unit linking mechanisms employed by Ada. An Ada compilation unit is defined

as the specification or the body of a program unit, which can be compiled as independent

text; the body of an application task is one example of a compilation unit. It may be

preceded by a context clause that identifies other compilation units upon which it

depends, and the context clause uses w i t h statements to name the supporting program

units [B0087]. In general, the package containing a task body begins with a context

clause that indicates which packages contain subprograms utilized by the task body, and

this is the key to identifying the particular hierarchical structure of a task. A package

referenced by the task's context clause may have its own context clause for the

subprograms upon which it depends. Thus, an examination of all relevant context clauses

reveals the task's dependency relationships and enables the model building process to

begin at the bottom of the pyramid as shown in the preceding figure. Chapter 6 explores

the procedure by which the software hierarchy of an application task is exposed and

utilized during the modeling process.

5.5 Expandability
A key feature of the abstraction approach is the ability to later expand upon the

code models that are generated and thus improve the results of the timing analysis.

Current benchmarking efforts for the AFTA [CLAS93] are aimed at quantifying

operating system overhead, and it is for this reason that the critical constructs list (Figure

5-1) is primarily composed of operating system calls. As the project progresses, system

benchmarking will determine the execution delay for many more functions that could be

used by the operating system and/or the application tasks. Once a function is measured, it
will be added to the list of critical constructs, and its delay will be accounted for in the
hardware modeling stage of the analysis. The timing analysis software is written in such

a manner as to facilitate the addition of critical constructs to the system model, for there

are a limited number of procedures affected by such an addition. Appendix G outlines

the specific steps that should be taken to update the timing analysis software for

additional critical constructs.

Chapter 6
Source Code Processing

The software analysis stage is divided into two phases: source code processing

and task model analysis. The goal of the source code processing is to build a complete

and accurate model of the application task source code. Once the model is developed, the

source code is no longer needed, and the task model alone is presented for further

analysis.

The primary objectives of source code processing are defined as follows:

1. To understand the program unit hierarchy for each application task and to

know where to find every relevant unit of source code.

2. To properly interpret program statements and understand modular code

construction regardless of any specific programming style in use.

3. To extract relevant information in an orderly manner, store it in an efficient

format, and apply it to task model development.

6.1 The Big Picture
An explanation of the execution flow for source code processing is rather tedious,

and it is helpful to first understand the basic structure of the timing analysis software. On

the following page, Figure 6-1 illustrates the hierarchy of procedures used in both the

software and hardware analysis. Notice in this diagram that subordinate procedures are

physically linked to their parent procedure(s); these links should help demonstrate the

context in which each procedure is called. The source code for all procedures shown is

listed in FINISH.C and is included in Appendix D.

The source code processing progresses on a task by task basis, and the procedure
called t as k-p a r s e is primarily responsible for the model development of individual

tasks. t a s kpar s e is called from proc es s- I i s t, and it is passed the name of a
single task and the name of the file in which the task body is defined. Notice that

t as k.p arse is a pivotal node in the analysis hierarchy and essentially orchestrates all

the activities associated with the software analysis. When t as kp a rs e is complete, it
passes control back to pro ce s s I i st and also returns a parameterized representation

of the original task.

6.2 Establishing the Hierarchy
The code processing begins with the development of the task's program unit

hierarchy, and this is achieved by the procedure called f i ndpac kages. As Chapter 5

main

process_list match_up write_file check_overrun

read_list task_parse

find_packages

update_pkg_list

with_found findworst_

parse

_path

get_line

end_found valid_call task_found procjfound

reducemodel

inch nest_level match_loops modelok check_ctrs

search

packetize process_loop pkg_found find_parameter

target_found for loop_found

eval_range_num

generate_paths

decide parameterize calculate_time

evaluate

Figure 6-1, Timing Analysis Hierarchy

explains, application task software is typically organized according to package units

whose names are specified in context clauses. f i n dp a c k age s is given the filename of

the package containing a given task (as specified during preliminary processing), and it

compiles a list of all packages containing subprograms used by that task and its

supporting subprograms. This list is an array of filenames stored in a structure called

pkgl ist. The procedure updat e pkg I i st does most of the work for

f i n dpac kage s. It is given a filename and opens that file to search for the w i t h

statements of the file's context clause. For each w i t h statement, it uses the procedure

called w i t h f o u n d to extract the name of the associated program unit and then adds

that name to the end of p kg I i st, if it is not already present. The first time

f i nd packages calls updat epkg_ I i s t, it sends in the name of the file containing

the application task, and this begins the construction of pk g I i st. On subsequent calls,

f i n d.pac kages extracts package names from p kg _ i st and converts them to

filenames to be passed to updat epk g- I i s t for processing. This process continues

until the context clause for every entry in p k g I i st is examined. In this way, all

subprogram dependencies are explored in such a manner that the program units at the top

of p k g- I i st are supported by the units found further down the list. No program unit

should depend upon a unit that appears above it in the final package list.

6.3 Code Modeling Tools
Once p k g l i s t is fully constructed, the actual code modeling begins.

t as k.p a r s e starts by examining the units at the bottom of the list so that models are

first developed for the most elemental procedures and functions. For each entry in

p kg I i st, t askpar s e utilizes the procedure called par se to perform the code

examination and model construction. After each subprogram is modeled, any pertinent

information is stored in a data structure called procedures. As the modeling process

progresses, calls to previously modeled subprograms are encountered, and when this

occurs, the model for the subordinate subprogram is inserted directly into the growing

model of the parent subprogram. Once each package unit in p k g_ I i s t is processed by

parse, the package containing the task body is sent to par s e so that a complete model

of the task is developed for later analysis.

6.3.1 parse

The p a r s e procedure is a generic unit designed to process any type of source

code, whether it belongs to a package, a subprogram, or an application task. It is used by

t askp arse as a black box processing tool that directs the low level parsing activity of

bottom-up task model development. The algorithm employed by pars e is a simple

iterative process as is shown on the following page in the flow diagram of Figure 6-2.

Basically this procedure opens a designated file, grabs individual program statements

with a procedure called get - I i n e, and examines them with a procedure called

search. The parsing process ends when any one of three conditions is satisfied. These

conditions are as follows:

1. A fatal processing error occurs.

2. The task model is complete.

3. The end of the file is reached.

The inputs to parse describe the context in which the code processing is taking place,

and these include items such as the name of the current task, the name of the file to be

opened, the name of the package being parsed, and the message passing default values for

the current task. The outputs from parse include an updated version of the procedures

data structure, and if the task body itself is submitted to parse, the procedure outputs a

complete model of that task. The operation of p a r s e depends upon three key

procedures: read_ I i st, getl i ne, and search.

6.3.2 read. I st

One of the initial functions of process_ I i st is to call read_ I i st in

preparation for the parsing activity to follow. r ead. I is t is designed to read a pre-

defined file called key-w ords . dat and extract from that file a list of key terms that act

as a guide to interpreting source code. The list is stored as an array of string variables in

a structure called search I i s t . Also stored in search. I i st is an integer called
I engt h to specify the number of items found in k e y words . dat. This version of
read I i st is identical to the one described in Chapter 3, Preliminary Processing. The
se ar ch. I i st structure really could be hard-wired into the timing analysis source code,

but the use of read_ I i st encourages code modularity and maintainability since the list

of key terms can be altered without changing the source code for the analysis tool and

forcing a recompilation.

6.3.3 get-l i ne

The purpose of get I i n e is to pull individual characters from a specified input

file and construct a single program statement that is stored in a structure called

t h i s I i ne. t h i s- I i ne is formatted as an array of string variables with each string

representing a single word within the program statement. It also has an integer called

I engt h to describe the number of words in the program statement and an integer called

No

Task Model
Done?

No

Yes

Figure 6-2, The parse Algorithm

mark e r, which can act as a pointer to a specific word of the program statement when

t h i s I in e is passed between procedures. One function of ge t I i n e is to eliminate

all white space and unnecessary comments from the source code and reduce a code

segment to an unformatted series of program statements. The removal of indentation

formatting from the code forces the code processing to ignore that aspect of programmer

style. get - I i n e also reduces all upper case characters to lower case characters as they

are read from the input file; this makes the source code processing case independent and

removes yet another element of programmer style.

6.3.4 search

A procedure named search is responsible for finding and extracting important

information from the individual program statements, and it simultaneously directs the

development of the current code model. See Figure 6-3 on the following page for a flow

diagram of searc h. The current code model is stored in a structure called s k e I e t on

(since it is a bare bones representation of the source code). Both s e arch I i st and

t h i s I i n e are inputs to s e a r c h, and for each program statement, this procedure

compares every word to every entry in search I i st. When an exact match is found,

the current code model is usually updated, and part of the update may require that

additional information is extracted from the program statement or from other data

sources. For instance, if a message passing call is found, search activates a procedure

called f i n d.p a r am e t e r in order to determine the maximum size of the message

involved. Likewise, for any looping construct that is found, search uses a procedure

called p r o c e ss_ I o op to determine the type of loop and the maximum number of

iterations associated with that loop. search is essentially a grand s w i t c h statement

with a single case entry corresponding to each item in search I i st . The use of the

s wit c h statement allows the overall comparison process to remain generic while

preserving the uniqueness of response for matches with various items in sear c h- I i s t.

Keep in mind that the code processing algorithm is intended to be as generic as

possible so that the parse procedure can be used to deal with any segment of code,

whether it belongs to a task, a package, a procedure, or a function. This approach does

involve a simple tradeoff, however. The advantage is that only one set of searching

procedures is written, tested, and maintained. The disadvantage is that the code

examination process must be flexible enough to handle all situations and intelligent

enough to recognize the source code from different types of program units. In other

words, there is no master procedure that recognizes what type of code is being processed

and selects the appropriate searching procedure; rather, all the processing decisions are

Compare Search_List
Entry with Program

Statement Word

Yes

Insert Subprogram
Model into Current

Model

No

Yes

End Search

Figure 6-3, The search Algorithm

made at a low level as the search progresses. One consequence of this approach is that

some overhead state information must be carried in and out of the search procedure

through the passing of pointers in the parameter list. This information is needed by

se arch in order to understand the context in which the current program statement is

written. Every time search is called, it receives a single program statement along with

pointers to information about the state of the current search process. The s e a r c h

procedure continuously gathers and maintains this state information to enable it to

understand program statements that it will have to examine in the future.

Two variables that hold state information are strings called t ask-n am e and

p kg.nam e. Recall that t ask.parse processes code in two stages: the first stage

examines and models all supporting subprograms and the second stage examines and

models the task code itself. The task name is needed only in the second stage when the

task code itself is being processed; otherwise, it is defined as "none." This differentiation

alone tells parse whether it is dealing with task code or supporting subprogram code.

The reason the name is necessary for task processing is that the source code for several

tasks may be included within the same file, though tasks are analyzed only on an

individual basis. Preliminary processing identifies the file containing a particular task,

and when it is time to process that task, the appropriate file is opened. If there are

multiple tasks within that file, the source code processing is applied only to the specified

task; other source code is ignored. The only way that the code processing algorithm

knows which code to examine and which code to ignore is if it can find the beg i n and

end statements for the specified task. The be g i n statement always contains the task

name, and the en d statement typically uses the task name as well, although it is not

required. Refer back to Figure 4-2 for a specific example. Thus the t as k-n a m e

variable is used by the code processing algorithm as a guide to determine where the task

body definition is located within the file that is currently being examined. If tao skna me

is defined as "none," parse knows to process all source code and not to search for only

the executable code of the task body.

The variable called p kg.name is needed for proper identification of

subprograms. Once a procedure or function is examined and modeled, its model is stored

in the structure called procedures, and a name is associated with it for identification

purposes. When a subprogram is called from outside of the package within which it is

defined, the appropriate package name precedes the name of the subprogram. For

example, the procedure w a i t for sche du I e is defined within the package called

schedule r, and a call to this procedure from the task body uses the name

schedu I er . wai t-f or.schedu I e. Thus, for every subprogram model, the name is

stored in the "package_name.subprogram_name" format so that when the subprogram

call is encountered by sear c h, the contents of the program statement exactly match the

name of the model stored in procedure s.

The name of the file currently being processed is also passed to the s e a r c h

procedure, and this is necessary for error tracking. When a critical error occurs in the

model building process, the package name, procedure name, and filename are all included

in the message recorded in the error file. Such error tracking is particularly helpful in

developing and testing the timing analysis program, but it should also be helpful to the

user in finding and correcting any undesirable constructs that are detected in the course of

the timing analysis.

Also included in the parameter list

end- I i st. This is a one dimensional

nesting structure of the source code. Ada

with an end statement, and a list of these c

package body [name]
task body [name] is.
procedure [name] is.

name];
function [name] is..
loop
if
case...............
record
begin
select

of search is a pointer to the structure called

array of strings that is useful in tracking the

syntax requires that many constructs conclude

onstructs is included below:

end
end
end

end
end
end
end
end
end
end

[package name];
[task name];
[procedure

[function name];
loop;
if;
case;
record;
[block name];
select;

Figure 6-4, Ada's Framed Constructs

The ability to properly interpret a given program statement often depends upon

knowledge of previous program statements, and this is particularly true when dealing

with en d statements. The maintenance of the en d I is t structure gives the code

processing tools critical information about the context in which a specific program

statement is written, and it also helps keep track of the nested structure of the source

code. Whenever the beginning of a framed construct is detected, a corresponding string

entry is added to the tail of end- I i st. Then, when an end statement is encountered, it

is compared with the last entry in en d- I i st, and the two strings should match. If they

do not match, a processing error has occurred and is properly noted in the error file. For

instance, if the beginning of a loop is found, the string "end I oop" is appended to

e n d_ I is t, and the code processing tools then know to expect that the next e n d

statement encountered will be an "end loop." This seems to be quite trivial for

statements like "end i f, end I oop, end case," and "end se I ect" because the

program statement explicitly defines the type of construct to which the end statement

belongs. However this tracking process is absolutely necessary for the other constructs

whose end statements remain rather vague. The end statements for packages, tasks,
procedures, functions, and block statements do not have to include the name of the

construct, though many programmers prefer to include the name for code readability and

debugging purposes. When the code processing tools encounter a non-specific e n d

statement (with no name included), there is no way to determine what program unit or

construct is affected, but by checking the last entry in en d_ I i s t, it is easy to interpret

the meaning and significance of the en d statement. This is illustrated in the following

example:

package body ambiguous is
task body example_t is

procedure compute is
begin

end;
begin

end;
end;

Figure 6-5, Example of end Statement Ambiguity

After processing the first three program statements shown in Figure 6-5, the

endl I i st data structure has the following three entries: "end ambiguous, end

examp l e t, end compute." When the first end statement is found, the analysis

program is uncertain whether that statement belongs to the package, the task, or the

procedure, but after referring to the last entry in e n d_ I i s t, it finds that the e n d

statement belongs to a construct called compute. The strings called pkg name and

t a s k-n a m e hold the names of the current package and task, and the structure called

procedures holds the name of the current procedure. The states of these variables are

checked to find out that c o m put e is the name of the current procedure. This is valuable

information since it indicates that code processing is complete for the procedure called

comput e, and its model is ready to be sent to the model reduction tools (Chapter 7) for

final processing. Once the first end statement is properly deciphered, last entry in

end. I i st is eliminated, and two entries remain. The interpretation process is similar

for the next two end statements, and when processing is complete for the code segment

of Figure 6-5, end_ I is t is left empty since the code processing properly works its way

into and back out of the nested source code. If end- I i st is not empty when the end of

a file is found, a fatal error has occurred and is so noted in the error file.

Yet another useful state variable needed within the s e ar c h procedure is a

structure called f Ig s. This is a set of five boolean variables used to maintain and

transfer status information during code processing. Each of the flags performs a

necessary function although the types of functions vary widely. The set as a whole is

actually an ad hoc compilation of status variables that is assembled to make it easy to

pass different types of information between procedures under a single pointer name. All

flags are initialized to a value of "n o" at the beginning of the source code processing for

each task, and the current values of the flags help the analysis program to make critical

decisions about code processing and model development. What follows is a detailed

description of the function of each of the five flags.

1. mode I a c t i ve: The executable code for a program unit generally follows

some declarative statements such as variable definitions. There is no need to

include these declarative statements in the model building process, and the

model is considered to be inactive until the executable code is encountered.

The executable code is bound by beg i n and end statements, and when the

beg i n statement is found, mode I-act i ve is given a "ye s" value.

Likewise, when the end statement is found, mode I act i ve is given a "no"

value.

2. task found: A file may contain more than one task body definition. It is

therefore useful to know when the code for a specific task body is found so

that code from other task bodies does not improperly contribute to the current

task model. Once the statement "t ask body [name] is . . . " is found,

the t askfound flag registers a "yes" value. When the end statement for

the task is encountered, t ask found returns to its initial "no" value. Note

that the mode Iact i ve flag is dependent upon the t ask_ fo und flag

during parsing of the file containing the task body definition. The

mode ILact i ve flag cannot register a "yes" value until the t ask found

flag indicates a "yes" value; thus the model building process begins only after

the executable code for the appropriate task is located.

3. pkg found: The software hierarchy for an application task is developed as a

series of package names that are found within context clauses. The source

code processing examines each package in succession while progressing

upwards from the bottom of the package list. When search encounters the

beginning of the specified package body, it sets p k g- f o u n d to a value of

"ye s," and it likewise deactivates the flag when it encounters the end of the

package. Neither the t ask-found flag nor mode I-act i ve flag can be

activated unless the p kg- found flag is already activated.

4. f i n i shed: A single file may contain several task body definitions, but tasks

are processed on an individual basis. Therefore, it is reasonable for the

software analysis to discontinue file parsing once the appropriate task body is

examined and modeled. When the task body's end statement is encountered,

the f i n i shed flag is set to "yes," and this leads to an exit from the parsing

loop.

5. fata lerror: A fatal error occurs when the end- I i st construction

encounters a mismatch. In other words, the source code processing might

expect to find the end statement for a procedure but instead finds a statement

like "end i f." Such an error indicates an interpretation mistake or oversight

by the source code processing, and the current code model is labeled as

invalid. This type of error undermines the effectiveness of the modeling and

analysis for a given task because it indicates that part of the task model is

incorrect, and thus the entire model cannot be trusted to produce accurate

results. Fatal errors also disrupt the analysis for the entire system, since the

system is analyzed as a simple collection of tasks. When the fat a I e r r or

flag is set to "y es," code processing is halted for the current task, and the

software analysis proceeds to the next task. The conditions causing the error

are noted in the error file, and the final system analysis ignores any tasks that

fall subject to a fatal error. It is not necessary to halt the entire system analysis

because of errors experienced with an individual task, but the user must be

aware that the system results produced are actually incomplete. In such cases,

the user is responsible for focusing on the results of individual task analyses

rather than depending upon the conclusions from the full system analysis.

Certainly, some of the lower level results are useful, and it is for this reason

that errors in a single task model are not allowed to halt analysis for the rest of

the system.

The final item in the parameter list for sear c h is a pointer to a structure called

pr o ce d u r e s. This data structure holds a collection of subprogram models that are

developed during the bottom-up task model construction. procedures is organized as

a list of entries with each entry corresponding to a unique subprogram. An individual

entry holds the name, filename, and code model description for a single procedure or

function. Whenever code processing and model reduction are completed for a

subprogram unit, the appropriate data is added to the list held in procedures. During

the search process, every program statement is examined to see if it contains a call to one

of the subprograms that has been modeled and is presently stored in p r o c e d u r e s. If

such a call is found, the model for the subprogram is inserted directly into the current

code model. This is the method by which code modularity is recognized, exposed, and

captured in the course of task model development.

As mentioned previously, search is essentially a grand switch statement which

triggers specific responses for each of the critical constructs that might occur within a

given program statement. The following paragraphs briefly describe the actions taken

when dealing with the various types of critical constructs. The boldface word at the

beginning of each paragraph corresponds to the name of the identifying constant used

with each construct.

WFS: When a call to wa i t for schedu I e is found, a WFS entry is simply

added to the current code model, provided that the m o d e I a c t i v e flag indicates a

"ye s" value. No further action is necessary.

LOOP: There are four different types of Ada program statements that could

contain an instance of the word " I oop." These are listed below:

1. end loop

2. while., loop

3. for.. loop

4. loop (basic)

The search procedure is responsible for differentiating between these possibilities and

updating the current model appropriately. The test for an "end loop" statement

requires a simple examination of the program statement stored in t h i s- I i n e. If an

"end I oop" is found, no action is taken because the presence of the word "end" will

have already triggered all the necessary processes during a previous iteration of the

search loop. The remaining three possibilities signal the beginning of a loop construct,

and it is important for search to identify the type of loop and its iteration limitations.
For this purpose, a procedure called proces s I oop is called, and its job is to scan the

program statement to determine what type of loop is being used. p r o ce ss_- I o o p
utilizes yet another procedure called t a r g e t f o un d that searches the program

statement in reverse to find out if a "w h i I e" or a "fo r" precedes the occurrence of the

word "I oo p." The results of this search determine what type of loop to add to the code

model, and the value element of the loop entry is determined in one of two ways. The

first method is to use the comment information preceding the loop statement. If no

comment information is provided, the value element is recorded as UNDEFINED for

wh i I e. . Ioops and for.. I oops or INFINITE for basic I oops, and could trigger an

analysis error during the model reduction stage (Chapter 7). The second method is to

search for stated limits within the program statement, and this method is used exclusively

with for. . loops. A procedure called for l oop found identifies the range

statement used in the loop initialization and sends it to a function called e v a I u at e to

determine the number of iterations. e valuate uses various tools to interpret the

iteration range and transform it to a decimal format. If it is unsuccessful, the loop entry

for the model is given a value element of UNDEFINED. Regardless of the loop type or

its iteration limitations, the beginning of a loop construct also requires that an "e n d

I oop" entry is added to end I i st to maintain an accurate picture of the code nesting.

IF: When an i f statement is found, an appropriate entry is added to the model,

provided that the mode I act i ve flag indicates a "yes" value. Recall that the nature of

the test utilized by the i f statement is irrelevant in this analysis and does not affect the

development of the source code model. Also, the presence of an i f construct requires
that an "end i f" entry is added to end I i st to help track the source code nesting.

ELSE, ELSIF: The e I s e and e I s i f statements are handled in a manner similar

to the i f statement. If the model is currently active, an appropriate entry is made and no

further action is necessary.

QUEUE, RETRIEVE, SEND, RECEIVE: Whenever a valid message passing

procedure call is found, an entry is added to the model, given that the model is active. An

important part of this type of entry is identifying the correct size of the message being

passed, and there are three possible sources for such information. The first source is the

comment information provided by the programmer. If no comment information is

available, the s e a r c h procedure attempts to find the size of the message within the

parameter list of the procedure call. A function called f i ndparamet er extracts the

size parameter from the program statement and uses the eva I u at e tool to transform the

size parameter into an integer value that is returned to se arc h. If either

f i n dparamet er or e va I uat e is unsuccessful in determining the message size, a

default value is used for the value element of the model entry. This default value is taken

from the task specification file during preliminary processing and is stored in a data

structure called messages. A pointer to messages is passed to search in the event

that these default values are needed during model development.

END: As discussed previously, an end statement in Ada is critical to

understanding the structure of the source code. When an e n d statement is found, a

procedure called end_ f ound attempts to match it to the last entry in end. I i st. The

en d- I i st entry indicates the type of construct to which the e nd statement belongs, and

each case merits a unique response. Listed below are the actions taken upon finding the

end statement for each type of framed construct:

1. SUBPROGRAM: First the mode I a ct i ve flag is deactivated since the end

statement indicates that the executable code for that program unit is complete.

Next the current code model stored in ske I et on is passed to

reduce.model (see Chapter 7) in order to refine the model and remove

unnecessary entries. Finally, the subprogram name and model are added to

the structure called procedures for use in constructing subsequent code

models.

2. PACKAGE: Finding the end of a package is critical to following the naming

rules for subprogram calls. If a procedure is defined within a package, any

calls to that procedure within the package simply use the procedure name.

Calls to that subprogram from outside the package must use the package name

as a prefix so that the call looks like "package_name.subprogram_name." In

order for the code modeling process to recognize subprogram calls and

associate them with the proper body of executable code, it stores subprogram

names so that they always match the names that will be encountered in the

current segment of source code. Thus, when the end of a package is

encountered, the names of subprogram defined within that package are altered

to include the package name.

3. TASK: When the end of a task is found, the model is deactivated, and the

f i n i shed flag is set to a "yes" value in order to cease the model building

process.

4. LOOP: If an "end I oop" statement is found, an END_LOOP entry is added

to the model, provided that the model is active.

5. IF: If an "end i f" statement is found, an END_IF entry is added to the

model, provided that the model is active.

6. CASE: If an "end case" statement is found, an END_CASE entry is added

to the model, provided that the model is active.

7. SELECT, RECORD: No specific action is taken.

In all cases, once the tail entry in en d- I i st is matched and the appropriate action is

taken, that entry is removed from end I i st. If a mismatch occurs, the fat a I _error

flag is set to "yes" to cease the current model building process.

TASK: When the word "t ask" is encountered, a procedure called

t as k- found extracts the name of the task and compares it with the name of the task

that is currently being processed. If there is a match, the t as k- f o u n d flag is set to

"yes." Also, an appropriate entry is added to end- I i st regardless of whether a match

is found.

PACKAGE: The bottom-up model construction requires that all packages listed

in the context clause of an application task are examined so that any executable code can

be modeled. Thus, the source code processing searches for packages on an individual

basis, and when the word "pack age" is found, a procedure called p k g_ f o u n d

compares the package name with the name of the package which it expects. If there is a

match, the pkg found flag is set to "yes," and regardless of whether a match is found,

an appropriate entry is added to end I i st to signify the beginning of a package unit.

PROC: When the beginning of a subprogram body is found, a procedure called

proc- found extracts the name of the subprogram and stores it in procedures along

with the current filename. proc found also adds an appropriate entry to end I i st to

track the source code nesting.

BEGIN: A beg i n statement is used by tasks and subprograms to indicate where

the executable code starts, and the source code processing uses b e g i n statements to

activate the current model. If the beg i n statement belongs to the current task or any

relevant subprogram, the mode ILact i ve flag is set to "yes."

SELECT, ACCEPT, RECORD: When an instance of"se I ect, accept," or
"record" is found, an appropriate entry is added to endl i st. These constructs do

not affect the code model, but it is necessary to recognize their presence in order to

properly track the source code nesting. It is important that end statements for these

framed constructs are not confused with the end statements of other constructs.

CASE: When a case statement is found, an "end case" entry is added to

en d-l i st, and a CASE entry is added to ske I et on, provided that the model is active.

The specific object of the c as e statement is irrelevant to the modeling process and has

no effect.

WHEN: Each instance of "w he n" that is included in the case statement merits

its own entry in the model, for each one represents a different execution path through the

source code. The specific activity within the w he n statement is modeled in the same

manner as all other executable code.

pr o ce d u r es: The s e ar c h procedure examines every program statement

looking for subprogram calls, and the list of subprograms that have been modeled is

stored in procedures. If a subprogram call is found and the current model is active,

the subprogram model is copied directly from procedures into the model stored in

ske I et on. Some simple adjustments are made during the transfer to ensure that the

values held in the pointer element of the model remain accurate.

In conclusion, the s e a r c h procedure is the true workhorse of the source code

processing. When search completes the model development for an individual task, the

parsing loop terminates, and the current code model stored in sk e I e t on is returned to

t askparse for model analysis.

70

Chapter 7
Model Analysis

The second phase of the software analysis involves code model analysis. The

preceding chapter explains how source code processing transforms Ada code into a

simplified model that is stored as a collection of integers. The model analysis uses these

task models produced by the source code processing to perform an efficient, automated,

worst case analysis of the AFTA application task suite. All model analysis takes place

independent of the original source code, and the final results are passed on to the

hardware analysis stage.

In the analysis of each application task, the model analysis tools are called upon to

perform two different functions. The first function is to reduce subprogram models into a

more efficient form before they are stored in the procedures data structure. When the

end of a subprogram's executable code is encountered during source code processing, the

procedure called e n d- f o un d is responsible for transferring the current subprogram

model held in s k eleton to its final storage place in procedure s. Prior to the

transfer, end- found sends the model to a procedure called reduce_mode I, where

model development is completed and unnecessary model entries are eliminated. The

methods used by reduce mode I are fully explained in Section 7.2. The second

function of the model analysis involves the final parameterization of an application task.

Once t askparse fully develops the task model, it calls upon f i nd_wors t _pat h to

identify and quantify the worst case execution path for that task. The results are recorded

in the appropriate output file and stored for later use by the hardware analysis. The

methods employed by f i ndworst path are explored in Section 7.4.

Code model analysis consists of three distinct stages: model preparation, model

reduction, and execution path generation. The model preparation stage takes the crude

model produced by source code processing and completes its development by defining

the depth and pointer elements for each model entry. The model reduction stage

eliminates unnecessary model entries and produces summary entries to replace inefficient

groups of model entries. Lastly, the execution path generation stage uses the model in its

final form to identify all possible execution paths and compares the paths in order to

single out the worst case path. The following text details the methods and motivations for

each of the three stages.

7.1 Model Preparation
During source code processing, each entry is added to the current model with only

the type and value elements specified. The depth, pointer, and flow elements are all left

undefined during initial model construction and later added during model analysis. The

model preparation stage uses the n e s t I eve I and mat c h_ I o op s procedures to define

the depth and pointer elements for each entry of a given model, and the result is a model

that is sufficiently complete for execution path analysis.

The nes t - l e v e I procedure is responsible for defining the depth element for

each model entry, and in doing so, it provides a clear picture of the nested structure of the

original source code. The depth element is actually just an intermediate value that is

needed later to establish the pointer element values required during execution path

generation. Essentially, the depth values produced by n e s t - I e v e I can be eliminated

from the model after the pointer elements are defined, but they remain part of the model

for purposes of model readability and simplified debugging of the timing analysis

software.

Table 7-1, Nesting Rules for nest. I eve I

Entry Type DEPTH = nest is...

LOOP nest incremented

FOR LOOP nest incremented

WHILE LOOP nest incremented

IF nest incremented

ELSIF nest - 1 incremented

ELSE nest - 1 incremented

CASE nest incremented

WHEN nest - 1 incremented

END LOOP nest - 1 decremented

ENDIF nest - 1 decremented

END CASE nest - 1 decremented

other nest no action taken

The n e s t - I e v e I algorithm uses an elementary loop to examine individual

model entries in consecutive order. An integer called n e s t is established at an initial

value of zero, and the model is examined one entry at a time from beginning to end.

Certain model entries signal a deeper level of nesting in the source code while other

model entries signal the opposite. For each type of entry, n e s t - I e v e I defines the

depth element according to the present value of n e s t and follows a predefined rule to

determine how that entry affects the present nesting level. For instance, a LOOP entry

signals an increase in the nesting level, and an END_LOOP entry signals a decrease in

the nesting level. Table 7-1 summarizes the rules used in the algorithm; the second

column shows what value is used to define the depth element, and the third column shows

how the nest value changes for each entry type. Note that for any complete body of

executable code such as a subprogram body or a task body, the nesting level always

begins and ends at zero. If this is not the case, it signifies that a fatal error has occurred

during the source code processing, and it is properly noted in the error file.

The m a t c h. I oo p s procedure is responsible for linking related model entries

through appropriate definitions of their pointer elements. When the model analysis

attempts to identify possible execution paths through the original source code, the

analysis must be able to recognize connections between related model entries in order to

trace a functionally correct path. Thus the pointer element becomes a key factor during

the path generation stage. The following example should clarify this concept.

1: if A = B then
2: compute (X => 10);
3: elsif B = C then
4: compute (X => 20);
5: else compute (X => 30);
6: end if;

Figure 7-1, A Sample i f Construct

Figure 7-1 is a simple Ada i f construct that illustrates the use of the pointer

element in a source code model. There are three possible execution paths through this

construct. If the conditional test in line 1 is true, execution proceeds from line 1 to line 2

to line 6. If the condition in line 1 is false and the condition in line 3 is true, the execution

path includes lines 1,3,4, and 6. Lastly, if both conditionals are false, the execution path

includes lines 1,3,5, and 6. Following the logic of the construct shown above seems to be

a trivial task, but for an automated analysis, the logic must be built into the code model in

a format that is understood by the path generation tools. When generating an execution

path, the analysis must know that if the first conditional is assumed false, the execution

path skips line 2 and proceeds to line 3. Likewise, if the second conditional is assumed to

be false, the execution path skips line 4 and proceeds to line 5. For this reason, the
pointer elements for conditional entries in the model are needed to direct the execution
path generator to the next valid section of code in the event that a particular section of

code is bypassed due to the outcome of a conditional statement. The exact methods of

path generation are explained in Section 7.3; at this point, it is only important to
understand the motivation for the pointer element.

The mat c h- I oo ps procedure examines a given model after the depth elements
are specified, and it proceeds to link related entries and install execution path logic

through the pointer elements. Only certain types of model entries must have their pointer

fields defined, and in such cases, the following rules apply:

1. A LOOP entry points to its corresponding ENDLOOP entry.

2. A FOR_LOOP entry points to its corresponding END_LOOP entry.

3. A WHILE_LOOP entry points to its corresponding ENDLOOP entry.

4. An END_LOOP entry points to the entry representing the beginning of the

loop.

5. A CASE entry points to the first corresponding WHEN entry that follows.
6. A WHEN entry points to the next corresponding WHEN or END_CASE

entry.

7. An END_CASE entry points to the corresponding CASE entry.

8. An IF entry points to the next corresponding ELSIF, ELSE, or END_IF entry.

9. An ELSIF entry points to the next corresponding ELSIF, ELSE, or END_IF
entry.

10. An ELSE entry points to its corresponding END_IF entry.
11. An END_IF entry points to its corresponding IF entry.

Notice in the rules listed above that the key to proper pointer definition involves finding
the corresponding entry of a particular type. This is where the depth element becomes
necessary. Consider the following nested i f construct:

1: if A = B then
2: if B = C then
3: compute(X => 10);
4: end if;
5: else compute(X => 20);
6: end if;

Figure 7-2, A Sample Nested i f Construct

When setting up pointer elements for the construct shown in Figure 7-2, there is some

confusion if the depth element is not utilized. The pointer definition rules state that the IF

entry taken from line 1 should point to its corresponding END_IF entry, which is taken

from line 6 in this example. If the mat ch I oops procedure defines the pointer element

in accordance with the next END_IF entry, it commits an error by designating the

END_IF entry taken from line 4 of the preceding figure. The depth element is the key to

distinguishing between the "end i f" statements in lines 4 and 6. Notice that for both

the outer i f construct and the nested i f construct, the related "i f" and "end i f"

statements have identical depth values defined within the model. Thus, for an IF entry,
mat ch_ I oops is able to find the corresponding END_IF entry by searching for the next

END_IF entry that has a depth value identical to that of the IF entry. Essentially, the

depth element allows the automated model analysis tools to understand the concept of

corresponding model entries.

7.2 Model Reduction
After a given model is processed by nest I eve I and match I oops, that

model is complete, but it is not necessarily an efficient representation of the original

source code. There are situations where model entries can be eliminated without altering

the analysis results, and there are other situations where a group of model entries can be

summarized effectively by a single model entry in order to reduce the size and

complexity of the model.

The process of entry elimination is reserved for situations involving empty loops.

An empty loop is defined as a LOOP entry followed directly by an END_LOOP entry. It

is reasonable to assume that the original source code does not contain such empty loops,
but it is incorrect to make the same assumption about the source code model. The

concept of abstraction allows the code model to omit details that are considered

irrelevant to the timing analysis, and it is possible that the source code processing could

add a loop structure to the model and simultaneously find nothing within that loop that is

important enough to record in the model. The result is an empty loop that adds

unnecessary complexity to the task of generating execution paths for the complete model,

and the proper course of action is simply to delete the loop from the model. However,
there is a restriction on the types of empty loops that can be eliminated without altering

the analysis results. The primary constraint is that the loop's iteration limit must be

defined before the loop can be deleted. In other words, if the value element for the LOOP

entry is listed as UNDEFINED or INFINITE, the loop must remain in the model to

ensure that the undefined behavior of the construct is properly noted in the error file

during future analysis. As long as the loop's value element is defined, any empty

for. . loop, wh i I e. . I oop, or basic loop is removed during model reduction. This

elimination process may seem to be a reckless omission of detail by the model analysis,

but the responsibility for model accuracy actually lies with the source code processing. If

the source code processing recognizes a program statement as significant to the timing

analysis, it is recorded in the model and accounted for in the model analysis. If a program

statement is ignored in the model development and an empty loop results, the model

analysis is held accountable for it.

When the model analysis attempts to generate execution paths, the processing

workload is significantly decreased by reducing the model to a more efficient format.

Consider the following loop and its model:

loop
for i in 1..3 loop

rgcommuni cat ion .queuemessage(-,-,-,50, -,);
end loop;
scheduler.waitfor_schedule;

end loop;

INDEX TYPE UALUE DEPTH POINTER
0 LOOP INFINITE 0 5
1 FORLOOP 3 1 3
2 QUEUE 50 2 UNDEFINED
3 ENDLOOP UNDEFINED 1 1
4 WFS UNDEFINED 1 UNDEFINED
5 ENDLOOP UNDEFINED 0 0

Figure 7-3, A Sample Nested Loop and its Model

When the model analysis generates an execution path for the model shown in Figure 7-3,

it produces the following sequence: 0,1,2,3,1,2,3,1,2,3,4. Notice the repetition of the

inner loop, and imagine what the sequence would look like if the loop bound was 100

iterations rather than three iterations. In situations such as this, the path generation

process is inefficient and at times unmanageable. It is therefore advantageous to

summarize the inner loop with a single model entry called a COUNTER_SET entry. The

COUNTER_SET entry parameterizes the execution information held in a contiguous

group of model entries and is then used to replace that group of entries. The

COUNTER_SET entry is merely a collection of integers that indicate how many times

each critical construct is encountered during execution of a given segment of code; its

format is shown below:

counterset (structure)
num.sent (integer)
numread (integer)
num.queued (integer)
num-retrieved (integer)
rg-logentries (integer)
debug-entries (integer)
io utils (integer)

Figure 7-4, Format for a COUNTER_SET Entry

Notice that the COUNTER_SET structure includes a counter for every critical construct

that does not pertain to the control of execution flow. In other words, it accounts for

events like operating system calls while ignoring the elements of loop constructs and

conditional statements. This structure is also used to store the final parameterized

representation of the application task that is ultimately produced by the model analysis.

In this particular example, the COUNTER_SET entry records a value of 150 bytes for the

n u mq u eued counter because a 50 byte message is queued for each of the three inner

loop iterations. All other counters remain at their initial values of zero. In this manner,

COUNTER_SET records all the necessary execution information held by entries 1,2, and

3 in the model of Figure 7-3, and it greatly simplifies the process of execution path

generation. Refer to Figure 7-5 for an updated version of the model shown in Figure 7-3.

Figure 7-5, An Updated Model

Notice that the inner loop disappears, and the pointer value for the top entry is adjusted
accordingly. The COUNTER_SET entry is given a value of 0 since it is the first entry of

its type in the model, and it assumes a depth value equal to the depths of the first and last

entries in the set of entries that is replaced. Part of the data structure used to store code
models is reserved for an array of COUNTER_SET records having the format shown in

Figure 7-4. The value element of the COUNTER_SET entry corresponds to the

COUNTER_SET array index used to access the counters. The proper execution path

sequence for the updated model is now shortened to the following: 0,1, and 2. The

method by which a COUNTER_SET entry is accounted for in the quantification and

evaluation of execution paths is explored in Section 7.3.

The process of summarizing groups of model entries may seem to be modeling

overkill, but it is necessary to make the task of execution path generation a manageable

one. It also may seem that the application of this process is not properly bounded because

it theoretically could be applied to any coherent set of entries, but this is not so. This type

of model reduction is strictly limited to the following classes of constructs:

1. A for. I oop with a defined iteration limit and no WFS entry within the

loop.

2. A wh i I e, I oop with a defined iteration limit and no WFS entry within the

loop.

3. A basic I oop with a defined iteration limit and no WFS entry within the loop.

4. An i f construct containing no WFS entry.

5. A case construct containing no WFS entry.

The reason why these constructs must not encapsulate a call to w a i t f or: schedu I e

is that the WFS call is critical to the process of execution path generation. Recall that a
single execution cycle consists of all program statements executed between two
consecutive WFS calls. As such, all WFS calls must remain in the model for any

subprogram or application task so that they can be referenced as beginning and end points
for various execution paths. Concealing a WFS call inside the summary of a
COUNTER_SET entry destroys the functionality of WFS entries within the realm of

model analysis.

The transformation from a qualified group of entries to a single COUNTER_SET

entry takes place in a procedure called crunch. This procedure is called five separate

times by its parent procedure, reducemode I, and each call corresponds to one of the

five types of constructs that are listed above. Once invoked, crunch first searches for
qualified groups of entries belonging to a particular type of construct; for instance, it may

search for all w h i I e ,, I oops that contain no WFS entries. For each group that is

found, crunch creates a temporary model containing only the entries from that group,
and it sends the temporary model to a procedure called generat e pat hs for a "mode

1" path analysis. The function of generat ep at hs is to identify all execution paths

through a given model, parameterize them, compare them, and single out the worst path.

A "mode 2" path analysis refers to the process of identifying and comparing execution

paths that proceed from one WFS call to the next WFS call. This is the type of analysis

that is performed on the complete application task model in search of the worst case

parameterization of that task. A "mode 1" analysis involves finding all execution paths

that strictly proceed from the first model entry to the last model entry. Since c r u n c h

deals only with groups of model entries containing no WFS calls, a "mode 1" analysis is

the correct and logical choice. It may seem too complex to give the same procedure the

responsibility for performing two different types of analyses, but the implementations of
"mode 1" and "mode 2" path analyses are so similar that using two versions of

genera t ep a t h s would create unnecessary redundancy. The results produced by

g e ne r a t e-p a t h s are sent back to c r u n c h in the form of a COUNTER_SET entry,
and crunch performs the COUNTER_SET substitution within the original subprogram

model or task model.

The example shown in Figure 7-3 illustrates how the length of execution path

sequences is significantly reduced through model reduction. It is also important to

understand how model reduction further decreases the analysis workload by eliminating

possible execution paths from consideration during the final task analysis. Suppose a task

model contains a basic i f construct that includes both an e I s i f and an e I se statement.

Such a construct has two conditional statements and three possible paths of execution.

The crunch procedure finds the construct, develops an independent model from it, and

submits it to generat e-pat hs for a "mode 1" analysis. The path analysis generates

the three possible paths through the construct, parameterizes them, compares them, and

singles out the worst of the three. It returns its results to c r u n c h in the form of

parameter set, and crunch replaces the original i f construct with a COUNTER_SET

entry and reduces the size and complexity of the task model. The actual model reduction

is a positive result from this process, but it is not the most significant result in this

particular case. It is more important to recognize the fact that an i f construct that allows

three distinct paths is replaced by a COUNTER_SET entry that allows only one path.

Thus the total number of possible execution paths through the task model is decreased by

a factor of three. By isolating the i f construct to identify its own worst case path, the

workload required to process the full task model is tremendously reduced. In a similar

manner, replacing a case construct with four options cuts the number of execution paths

through a task by a factor of four.

7.3 Execution Path Generation
Recall that the purpose of source code modeling is to provide an effective and

efficient means to identify the worst case execution path through a given application task.

The processes of model development, preparation, and reduction lay the foundation for

the most crucial stage of the analysis: execution path generation. The path analysis

process has the following three objectives:

1. To identify all possible execution paths through a given model.

2. To accurately parameterize each path generated.

3. To evaluate the parameterizations and identify a single worst case path.

In order to understand the methods employed by the path analysis, it is best to first

explore the general nature of the task at hand.

if A = B then compute (X => 10);
elsif A = C then

if B = D then compute (X => 20)
elsif B = 10 then compute (X => 25)
else compute (X => 30)

end if;
elsif A = D then compute (X => 35);
else A = 10;

end if;

Figure 7-6, A Nested i f Construct

Consider the nested i f construct shown in Figure 7-6. There are six possible

paths through this construct, and each path must be explored and compared against the

others with respect to execution delay. A decision tree developed from this construct is

shown in Figure 7-7; notice that the circled items represent the leaves of the tree, which

are actually the endpoints of the six execution paths. Each conditional statement in the

construct is shown as a decision point in the tree, and each decision has two possible

results, as represented by the left and right branches. The various locations on the tree are

uniquely expressed in a binary format based upon which branch is taken at each decision

point encountered along the path to that location. A left branch is represented by a '1,'

and a right branch is represented by a '0.' The digits are listed in the order in which the

decisions are made. The critical result of all these conventions is that the location of each

leaf or endpoint is expressed as a binary number that directly correlates to the execution

path taken to reach that endpoint.

1

011

IF

0

LEFT = 1

RIGHT = 0

[N ELSIF

01 00

THEN IF ELSIF

0 001 000

ELSIF THEN ELSE

0101 0100

Figure 7-7, A Nested i f Decision Tree

A manual path analysis would probably utilize a decision tree similar to that

shown in Figure 7-7, for once the tree is developed, it is a trivial task to map out all the

possible execution paths. The challenge of the automated model analysis is to develop an

algorithm that uses analogous methods to produce the same results as the manual

analysis. The resulting algorithm must achieve the following three goals:

1. The algorithm must be able to comprehend the functionally of the code model

and generate execution paths using the tree-like format shown in the figure

above.

2. It must be able to fully explore the paths through the tree and know when all

paths have been explored.

3. The algorithm must be efficient enough to avoid tracing the same execution

path more than once.

The predefined format of the code model and the ability to define a path through the tree

as a binary number are key facilitating factors in the development of the path generation

algorithm. The following explanation and walk-through example highlights the methods

used to achieve the goals listed above.

The path generation algorithm primarily focuses upon the process of generating

the binary values that correspond to the individual paths and their respective endpoints.

Two integer variables control all activity involved; one is called sh i f tnumber and the

other is known as the dec i s i on integer. sh i f t nu m ber tracks the length of the

current execution path, and the value of the d e c i sa ion integer predetermines the

decisions made at each decision point along the current path. It is best to think of the

dec is i on integer in terms of its binary representation, for the 'l's and 'O's are what

actually determine the decisions made. dec i a i on is initialized to a value of zero, which

determines the first path that is explored, and after each path is completed, the value of

dec ision is updated in such a manner that it predetermines the next path to be

examined. The updating process is designed specifically to ensure that all paths are

explored once and only once and to notify the algorithm when the exploration is

complete. For an illustrative example, the path generation algorithm is applied to the tree

in Figure 7-7, and the values of s h i f t_n umbe r and d ec i s i o n at each step of the

algorithm are laid out in Table 7-2.

The de c i ion integer is shown in an eight bit binary format with the most

significant bit separated from the others. The MSB is called the "done bit" because when

it changes from a 'O' to a '1,' it signals the algorithm that the path generation process is

complete. The presence of the "done bit" leaves only 7 bits of the dec i a i on integer for

use in the path generation process, and this is signified in the initial value of

sh i f tnumber. The algorithm begins with dec i s i on initialized to zero, and it starts

at the top of the tree with the first decision point. The outcome of the first decision is
determined by the value of the bit adjacent to the "done bit," and accordingly the right

branch is chosen. Once a decision bit is referenced, it is not used again until the next path

is explored. Subsequent decisions are made by referencing the next least significant bit

within the decision integer. For every decision bit used, sh i ft _number is decremented

once to track the number of available decision bits remaining. For the first execution path,

all decision bits are 'O's, and the right branch is taken at three successive decision points

until the endpoint labeled "000" is reached. As expected, the binary value of the endpoint

is identical to the series of decision bits referenced in arriving at that location. The

second line of the table shows the three decision bits used, and it lists s h i f t-numb e r

with a value of 4 since there are four decision bits unused for the first path. At this point,

the decision integer is updated to prepare for the next path. The update consists of adding

a '1' to the last decision bit used, and this is accomplished by taking an integer value of 1

and shifting its bits left by 4 places. Notice the correspondence to the current value of

shi ftnumber.

Table 7-2, A Path Generation Example

Path Decision Integer Shift Number Comment

1 0 0000000 7 Initial value of decision

1 0 0 00 4 First three decision bits are used

2 0 0 0 1 0 0 0 0 7 A 1 has been added to last bit used

2 0 0 0 1 _ 4 First three decision bits are used

3 0 0 1 0 0 0 0 0 7 A 1 has been added to last bit used

3 0 0 1 00 3 First four decision bits are used

4 0 0 1 0 1 0 0 0 7 Add 1 to the last active bit

4 0 0 1 0 1 3 First four decision bits are used

5 0 0 1 1 0 0 0 0 7 Add 1 to the last active bit

5 0 0 1 1 4 Only three decision bits needed

6 0 1 000000 7 Add 1 to the last active bit

6 0 1 6 Only a single decision bit is needed

7 1 0000000 7 The MSB changes; process is done

The updated value of dec i s i on predetermines the decisions that will be made in

exploring the next new path. It guarantees that the new path will not be a repetition of

any previously explored path because the decision integer assumes a new and unique

value. The next state of the decision integer always depends upon the present state, and

the use of addition to transition between states guarantees that all states are unique. The

only way that a state can be repeated is if the integer becomes so large that its value rolls

over, but before this happens, the "done bit" is forced to transition from a '0' to a '1.'

Such a transition automatically triggers the end of the algorithm and thus prevents state

repetition. The basic idea behind the update methodology is that changing the last

decision made leads to at least one new endpoint, and it possibly leads to a whole series

of new endpoints springing from previously unencountered decision points. If the last

decision that was made corresponds to a left branch decision (a decision bit equal to '1'),
adding a '1' to the appropriate bit invokes a "bit carry" and effectively changes a decision

bit further upstream. It simultaneously clears or refreshes all the downstream decision

bits. The refresh activity ensures a complete exploration of any new branch in the same

manner that the initial zero value for dec i s i o n ensures complete exploration of the

entire tree. The update process is deceptively simple, for a seemingly trivial addition

process automatically deals with all issues of path repetition, path exhaustion, and

notification of completion. The third line of the table lists the updated dec i s i on integer

that is used to generate the second path. As with the first path, the first three decision bits

are used, and this leads to a bit carry when updating dec i s i on for the third path. The

bit carry appropriately changes the value of the second decision bit and refreshes the

value of any downstream decision bits. The algorithm continues as described until all six

paths are explored. While updating the decision integer in preparation for a seventh path,

the "done bit" registers a '1,' and the algorithm automatically terminates.

The algorithm implemented in g e n e rat e.p a t h s is quite similar to the one

described in the preceding example, but it is slightly more complex because it must

transform the code model into a decision tree format as it executes the path generation

algorithm. A flow chart for generat ep at hs is included on the following page. As

described previously, this procedure performs two types of path analyses. The algorithm

is identical for both types; the main differences between the two are the starting points

and the ending conditions for individual paths. The "mode 2" analysis is for finding

paths through the complete task model. Each path begins at the entry following a WFS

entry and ends with a WFS entry. The "mode 1" analysis is used during model reduction,

and every path begins at the first model entry and ends with the last model entry. As the

procedure proceeds through the path generation, the index values for entries encountered

along the path are stored in a one-dimensional integer array called pat h. When called,

generat e.pat hs is given the index value for the first entry on the path. It evaluates

that entry to determine if it is a decision point, and if it is, a procedure called dec i d e is

used to manipulate the dec i s i on integer to find the next step along the path. Note that

the dec i s i on integer is expanded to a 64 bit number in this implementation of the

algorithm to account for the complexity of complete task models. Only a few types of

model entries prompt a decision process; these are listed below:

1. IF

2. ELSIF

3. ELSE

4. WHEN

5. WHILE_LOOP

6. END_LOOP

Depending upon the outcome of the decision, the flow element is sometimes activated for

certain entries that follow the decision point. Consider the case of an i f construct in

Establish the Next
Entry # According to

the Decision Made

Yes

Yes s flow element
defined?

No

No Is it the End of
a Path?

Yes

Update the Decision
Integer and Reset the

Shift Number

YesEnd
Figure 7-8, The generat e-pat hs Algorithm

which the i f condition is assumed to be true. This corresponds to taking the first left

branch in the decision tree of Figure 7-7. Once the left branch is chosen, all e I s i f and

e I s e branches within that i f construct are excluded from the execution path. The flow

elements of the ELSIF and ELSE branch entries are set to a value called NO_EXEC in

order to signal the algorithm that those entries are no longer valid steps along the path.

When generat e.pat hs encounters a NO_EXEC entry within its path, it knows not to

add the index value of that entry to the current pa t h array, and it proceeds to examine

the next consecutive entry.

Now consider the situation where an i f condition is assumed to be false, and the
i f . then branch is excluded from the path. The value of the pointer element at the IF

entry allows generat e-paths to skip the entries of the if . . then branch and go

directly to the next decision point or to the conclusion of the i f construct, whichever

comes first. When gene rat ep at h s encounters a model entry that is not a decision

point and does not have its flow entry defined, it merely adds that entry index to the path

and continues on to the next consecutive entry.

When a path trace is complete, generat e-p pat hs sends the pat h array to a

procedure called parameteriz e, which quantifies the path in terms of the
co u n t e r-s e t structure described in Section 4.6.2. The parameterization essentially

retraces the path and examines the type and value elements of the appropriate model
entries. When it finds an entry which contributes to one of the execution delay factors

specified in the count er set structure, it simply updates the value of the related

counter according to the value element of the model entry. The result of this process is a

simple collection of counters that quantify the timing behavior of a given path through a
given model. It may seem that the co u n t e r-s e t structure is too limited in scope to
properly characterize the timing behavior of an execution path, but keep in mind that the
parameter list can and will be expanded in future efforts to improve the code modeling
process. The current set of critical constructs that drive the code model development will
grow as the AFTA testing and system evaluation progress.

Once the parameterization is complete, the parameter set is returned to

g en erat e-pat h s, which sends it to the hardware analysis tools where an actual lower

bound on execution delay is estimated based upon the parameter values submitted. The

hardware analysis methods are explored in Chapter 8. Given a single delay value for

each path, generat e pat hs easily compares the paths and identifies which path

causes the greatest execution delay. After all paths have been traced, parameterized,

evaluated, and compared, genera t e-p at hs returns to its parent procedure a single set

of parameters that represent the worst case path through the given model for the given

mode of analysis.

7.4 Managing Model Analysis
The preceding sections focus upon the motivations and methodology of code

model analysis. It is now useful to discuss the manner in which these analysis activities

are managed.

A procedure called reducemode I is a simple series of procedure calls that

oversees model preparation and reduction. It begins with a call to n e st - I e v e I, which

is followed by a call to mat c h I oop s. Once the model preparation is complete, the

model is submitted to a procedure called mode Iok, where the model's validity is

confirmed prior to any further processing. mode I ok performs a series of routine

checks to ensure that the model is able to undergo execution path analysis without

causing a run-time error for the timing analysis software. A list of these diagnostics is

included below:

1. Does model depth begin and end at zero?

2. Are all I o o p, i f, and case constructs complete with end statements?

3. Are there any true infinite loops with no WFS calls inside?

4. If the model is a task model, is there at least one WFS entry?

5. Are any non-existent COUNTER_SET entries included in the model?

Any errors identified by mode I _ok are specifically noted in the error file. Obviously, no

errors are expected, but this type of preventive check helps avoid a situation in which a

single erroneous subprogram model crashes the entire AFTA timing analysis. After the

model is examined, reduce-m o d e I proceeds to a series of five calls to the crunch

procedure. Recall that crunch performs model reduction according to a specified type

of Ada construct. This procedure is called once for each of the following constructs:

I oops (basic), for, . I oops, wh i I e. . I oops, i f constructs, and case constructs.

After model reduction is complete, r e d u c e-m o d e I terminates and returns the final

model to its parent procedure.

The r e d u c em o d e I procedure is called in two types of situations. First, it is

called each time the source code processing completes a subprogram model, and it is

invoked from the procedure called end- found. The subprogram model returned by

red u c e-m ode I is stored in the procedures data structure for later reference. The

second situation involves model analysis for a single application task. After an

application task model is constructed, t ask par s e submits it to a procedure called

f i ndworst _pat h, which is responsible for reducing a task model to a single

parameter set representing the worst case execution path. f i n d-w o r s tp at h begins

by calling upon reduce_mode I to perform model preparation and reduction. It then

examines the resulting model to find all WFS entries. Since a single cycle execution path

must begin and end at a call to wait _f orschedul e, find worst path uses the

list of WFS entries as starting points for "mode 2" path analyses. For each WFS entry,

f i ndworstpat h calls upon generat e_pat hs to perform a "mode 2" analysis

using that entry as the starting point. g en e ra t e-_p at h s returns the parameter set

representing the worst case path beginning from the specified WFS entry, and

f i nd-worstpat h compares the parameter sets returned for all WFS entries. The

result is a single worst case parameter set that is used to represent the entire application

task for the remainder of the timing analysis. f i n dw o r s t -p a t h returns the parameter

set to its parent procedure, t a sk-pars e, and the software analysis for that application

task is then complete.

Chapter 8
Hardware Model Analysis

8.1 Introduction
The hardware model analysis is the last of the three phases of the AFTA timing

analysis. The fundamental output of the first two phases (preliminary processing and

software analysis) is a collection of worst case delay parameterizations -- one for each

task instantiation in the task suite. The primary function of the hardware analysis is to

examine these parameterizations with reference to the AFTA system configuration in

order to predict performance failures. In this role, the hardware analysis is essentially an

integration phase, for it utilizes models of the rate group scheduling system and the

AFTA virtual group configuration in performing a comprehensive examination of the task

models. During the software analysis, task models are developed and analyzed strictly on

an individual basis in an effort to quantify a single worst case execution delay for each

task instantiation. In contrast, the hardware analysis views tasks collectively according to

their virtual group designations, and it uses known performance characteristics of the

operating system to determine if, under worst case conditions, the task groupings as a

whole can satisfy the hard-real-time constraints of the rate group scheduling system. A

discussion of this process begins with Section 8.4.

A second function of the hardware analysis involves calculation of a lower bound

delay value for a given execution path. The results of this calculation are needed by the

software analysis to effectively compare different execution paths through the same code

model and thereby identify the worst case path through that model. This function is so

closely associated with the software analysis that it is difficult to distinctly classify it as

part of the hardware analysis, but since it depends heavily upon knowledge of system

specific delays, it is best to discuss this calculation process in conjunction with other

hardware-related analyses. This process is presented in Section 8.3.

8.2 Benchmarking
The timing behavior of a hard-real-time system is critical to its success, and a

proper understanding of the timing behavior enables the user to maximize a system's

performance without compromising its effectiveness. To this end, Draper Lab is

conducting a thorough study of the AFTA's performance characteristics, and the results

to date are reported in [CLAS93]. The objectives of the performance measurement study

are as follows:

1. To develop analytical models useful in predicting system performance under

various configurations and workloads [CLAS93].

2. To be able to quantify system overhead on a frame by frame basis in order to

calculate the time available for application tasks [CLAS93].

3. To identify potential performance bottlenecks so that they are eliminated in a
cost-effective manner at an early stage of development [CLAS93].

The first two objectives listed above are closely related to the goals of the AFTA timing

analysis. The execution model that has emerged from the performance measurement

study is used by the hardware analysis to examine the timing behavior of virtual groups
within the confines of rate group scheduling. Also, the actual performance measurement
data enables the timing analysis to quantify both overhead and application task delays for

a particular virtual group on a frame by frame basis. It is these calculations that lead to

the final performance failure predictions.

Figure 8-1 shows a model of the operating system overhead involved in each

minor frame. This figure is not drawn to scale and is intended to illustrate the

chronological progression of overhead tasks relative to scheduled interrupts.

Frame Timer I/O Completion Frame Timer
Interrupt Interrupt Interrupt

Interrupt Handler Interrupt Handler

R Disp (part 1) R Disp (part 2) IOSC & RM

V Disp F IR I P

_user application tasks

I/O transactions

queued message passing

Figure 8-1, Minor Frame Overhead Model [CLAS93]

Each minor frame begins with a hardware-generated timer interrupt that is scheduled by

the operating system, and the frame time is partitioned into two sections by a second

timer interrupt known as the I/O completion interrupt. The first portion of the frame is

dedicated to operating system functions and I/O operations, and the second portion is

filled with another round of operating system functions followed by user application task

time. Notice that the amount of processing time allotted to the application task suite is

clearly affected by the amount of time dedicated to operating system overhead within the

second portion of the frame. The software analysis determines how much time an

application task requires under worst case conditions; the hardware analysis then groups

tasks according to their designated VGs and further calculates worst case operating

system overhead for each VG within each minor frame. The total of all required

processing times for a particular virtual group is then compared against the time allotted

for the second portion of the minor frame to determine if a performance failure could

occur. In simple terms, a performance failure indicates that the second portion of one

minor frame overlaps into the first portion of the next minor frame. This type of "overrun

check" is the main thrust of the hardware phase of the AFTA timing analysis, but it is

important to notice that a second type of overrun condition can also occur. If the

operating system overhead within the first portion of the frame exceeds its allotted time, it

overlaps into the second portion of the frame. This type of overrun is heavily dependent

upon the activity of the I/O dispatcher, but at this point in the AFTA's development, the

implementation of I/O operations is not well-defined. As such, the current timing

analysis does not attempt to quantify the I/O dispatcher execution delay or predict this

form of intraframe overrun.

The following paragraphs give a brief description of the various overhead tasks

that are executed as part of each minor frame. A simple equation is included with each

task description to indicate how much frame time the task occupies and what variables

affect its execution delay. These equations are taken from [CLAS93], and they are based

upon data taken during AFTA performance measurement study.

IHi: The interrupt handler updates the current time value held by each member of

the virtual group. For fault-tolerant operation, it is critical that all VG members maintain

the same clock value, and this time update serves to eliminate clock skew. The interrupt

handler also schedules the next interrupt time, which in this case is the I/O completion

interrupt. The most time consuming portion of the interrupt handler is the message

scoop. This involves the transfer of all message packets destined for the VG from the

network element's dual port RAM to the local memory space of the individual members

of the VG. The delay incurred by the scoop process varies according to the number of

packets added to the virtual group's network element input buffers since the last scoop.

IHI = (110 * number_ofpackets) + 103 (psec)

RGD 1: This is the first of two manifestations of the rate group dispatcher. Its first

function is to establish a constant time reference for each of the various rate groups whose

frame boundaries coincide with the beginning of the current minor frame. This reference

is set to the congruent clock value established by the interrupt handler at the beginning of

the frame, and it ensures that all members of a VG use identical values for any time-based

calculations executed within the application tasks. For the present rate group

designations, the RG4 reference value is updated every minor frame, whereas for RG 1,

this value is updated only once every eight minor frames. Refer to Figure 8-2 (page 98)

for an illustration of the rate group frame organization and frame boundaries. The second

function of the rate group dispatcher is to check for overrun conditions. It first looks for

an overrun on the most recent execution of the rate group dispatcher, and then it checks

for overruns on any tasks that were scheduled to complete within the previous minor

frame. The overrun checking occupies the majority of the time for the RGD, and its

delay is a function of the number of application tasks that were supposed to complete

within the last minor frame. The longest delay is incurred in minor frame 0 (refer to

Figure 8-2) because tasks in all four rate groups are scheduled to complete in the

preceding minor frame (#7). In contrast, the shortest delay is incurred in minor frames

1,3,5, and 7 since the RGD only monitors RG4 tasks within those minor frames.
RGD1 = (10 * number of suspended_ tasks) + 69 (gsec)

IOD: The I/O dispatcher is responsible for handling all I/O requests. It begins by

initiating all requested outgoing data transmissions and then waits for a predetermined

time period to allow for completed transmission of all data. Following this idle period,

the IOD begins reading in any received data, and the duration of this task is a function of

the number of input requests and the total amount of data transmitted. At this stage of the

AFTA design, the I/O operations are not fully refined, and the delay incurred by the IOD

has not been accurately measured or analyzed. As such, the AFTA timing analysis

presently overlooks all execution delay incurred by I/O operations and related operating

system overhead. It will be a feasible task to later include such considerations in future

revisions of the timing analysis.

IH2 : The execution of the interrupt handler in the second portion of the minor

frame is identical to that which occurs in the first portion of the frame. This second

execution serves to scoop all message packets delivered for the VG since the previous

execution of the interrupt handler. The use of two scoop operations within the same

minor frame is needed to maintain synchronization between members of the same VG.

IH2 = (110 * number_of ackets) + 103 (psec)

RGD 2: The second part of the rate group dispatcher is responsible for a number

of functions. It begins by checking for overrun conditions on the first part of the RGD

and on the preceding execution of the I/O dispatcher. This is followed by the

send-queue and updat e.queue functions. Together these functions perform a data

transfer of all message packets that were queued by tasks which completed their

execution cycles during the previous minor frame. The delay incurred by these functions

therefore varies according to the number of tasks whose messages require transfer as well

as the size of those messages. A summary equation is given below:
Send_and Update_Queue (per task) = (123 * number of packets) - 12 (psec)

Following the message passing operations, the RGD schedules all rate group tasks whose

frame boundary coincides with the beginning of the current minor frame. For example,

during minor frame 0, the RGD schedules all rate group tasks since all rate group frames

begin anew with minor frame 0. In contrast, during minor frames 1,3,5, and 7, the RGD

only schedules RG4 tasks because no other rate group frames begin with these minor

frames. A summary of the delay incurred by task scheduling is shown below:
Schedule_Tasks (per Rate Group) = (26 * number of_rg_tasks) + 15 (psec)

By combining the two previous equations and adding a constant delay incurred by the

overrun checking and other minor functions, the total delay for the second part of the rate

group dispatcher is summarized as follows:

numtsk num_rgtsk

RGD2 = £ [(87* num_pkti) + 27] + £ [26 * num_rg_tski) +151 + 49 (psec)
i=1 i=1

where: num tsk is the number of tasks that completed execution cycles
during the previous minor frame.

numkti is the number of packets that task i queued during its
previous execution cycle.

num_rg_tsk is the number of rate groups whose frame boundary
coincides with the beginning of the current minor frame.

num_rg_tski is the number of tasks belonging to rate group i

FDIR: The fault detection identification and recovery task is the software

complement to the AFTA's hardware redundancy and fault masking capabilities. Local

FDIR enables a virtual group to monitor itself and potentially perform some recovery

operation. It is executed on all virtual groups and its execution delay is a known constant

of 84 gsec. System FDIR allows the AFTA to monitor the global system and to

determine the health of shared components such as the network elements [AFTA91]. It

executes as an RG4 task on a single redundant VG known as the system VG. In its
present developmental state, system FDIR incurs a 1316 psec delay.

IOSC: The I/O source congruency manager ensures that all members of a virtual

group receive identical copies of any input value read by one or more members of the

group. This involves complete message passing operations, and the delay incurred is a

function of the number of I/O input values as well as the number of VG members

receiving these values from external systems (most likely one member or all members).

Since the AFTA's I/O capabilities are not yet refined and ready for testing, there is no

data on this source of overhead.

IOP: The I/O processing task resolves multiple input values into a single quantity

that is used by all members of the VG. Suppose that each member of a triplex VG is

interfaced with an external air temperature sensor. It is not likely that all three sensors

would return identical values to their respective processors, and it is therefore necessary

for the IOP to implement some algorithm for data resolution. The IOP is not fully

implemented at this time, but initial measurements show that the minimal IOP overhead
is 15 gsec.

In addition to overhead evaluation, the performance measurement study also

focuses on operating system functions related to user application tasks. For example, data

has been taken to determine the amount of delay required for a context switch, which

occurs every time a task completes an execution cycle and suspends itself so that the next

scheduled task can begin execution. Results indicate that the average context switch
requires 19 gsec. Naturally, the amount of time devoted to context switching varies

according to the number of tasks that complete execution during a given minor frame.

For the sake of this analysis, it is assumed that all rate group tasks complete execution

during the last minor frame of their respective rate group frames. For instance, it is

assumed that RG1 tasks complete execution during minor frame 7, and RG2 tasks

complete their cycles during minor frames 3 and 7.

The most time consuming operating system calls utilized by application tasks are

the message passing functions. Evaluations of these operations yield the following

results:

queuemessage = (45 * num msgpackets) + 43 upsec

ret r ieve message = (61 * num_msgpackets) + 67 psec

These functions are closely related to a few of the overhead tasks described previously.

The q u eu e-message procedure is used by the application task to prepare a message for

exchange over the AFTA optical network and to transfer the packets to the processor's

local memory. The s e n dq u e u e procedure is later activated by the rate group

dispatcher and transfers the message packets from local memory to the dual port RAM

buffers on the NE. It is important to maintain the distinction between these two

operations, for q u eu emessage occupies application task execution time while

send-queue occupies RGD overhead time. The contributions of these two delays

occur during different minor frames and therefore are not considered as a single delay

entity, although the operations are actually performed on the same message packets.

Similarly, ret r i e v emessage is closely related to the scoop message operation

included in the interrupt handler. The IH scoop transfers message packets from the NE

message buffers to the processor's local memory; ret r i evemessage reconstructs the

message from the packets stored in local memory and delivers it to the appropriate

application task. Once again, these operations are performed on the same message

packets but occur during different minor frames. Thus, the corresponding delays are

considered independently.

8.3 Path Comparison Calculation
For each instantiation of an application task, the software analysis generates all

possible execution paths through the appropriate task model. In order to determine which

path represents the worst case delay, there must be a quantitative comparison of the

individual paths, and the necessary calculations require the system specific delay data

discussed in the previous section. As part of the path generation process,

gener at e.paths calls upon ca I cu I atet i me to produce a single delay value to

represent each complete execution path. cal culat e-t i me uses the path

parameterization produced by par a met e r i z e in combination with the list of constants

derived from the performance measurement study to return a single integer value that

represents the lower bound on execution delay for the given path. generat e_pat hs

then compares this value to the values for the previous execution paths to identify the

worst case path.

ca I cu I at e.t i me is essentially a simple series of algebraic manipulations that

transforms a path parameterization into a tangible time value. At the beginning of the

timing analysis, the read. I i st procedure develops a list of system specific constants

and coefficients by reading integer values from the file called "constants.dat" and storing
them in the data structure called de I a ydat a. All values are in terms of gsec and are

derived from the AFTA benchmarking efforts. Note that these values are intentionally

stored in an external file to be read at run-time so that any future changes to the

benchmarking results do not force a recompilation of the timing analysis code. The

integers held in de I aydat a correspond to the coefficients and constants listed in the

delay equations of Section 8.2, and they also directly relate to the various elements of the

path parameterization. Given the proper constants and the necessary path parameters,

ca I cu I at e-t i me simply applies the given equations to arrive at the lower bound on

execution delay. The present list of path parameters is quite limited, and the same is true

for the integer list held in d e I a yd a t a; however, as the AFTA prototyping and

benchmarking efforts progress, the parameter list will expand and the list of constants

will grow accordingly. The timing analysis code is designed specifically to allow for

such growth, and Appendix G outlines the process of adding new elements to the list of

path parameters. As the AFTA project progresses and the timing analysis is revised,

ca I cu I at e.t i me will account for a broader range of delay factors and the values it

returns will become more accurate.

8.4 Organizing Application Tasks
The fundamental goal of the hardware model analysis is to successfully integrate

the results of the software analysis with the established system delay data in order to

predict potential performance failures. Whereas the software analysis evaluates

application tasks purely on an individual basis, the hardware analysis deals with tasks

collectively according to their virtual group assignments. As such, the virtual group

serves as the basic unit of analysis in this final phase, and the first objective is to properly

categorize the application tasks according to the given system configuration.

The preliminary processing phase (Chapter 3) produces a file called

"list_of_tasks.dat," which contains the complete AFTA software configuration. The file

is organized so that each task instantiation is listed on a single line along with the

appropriate virtual group and rate group specifications and message passing limitations.

Multiple instantiations of the same task are treated as distinct entities in order to simplify

the task organization process and to allow for separate software analyses of the same task

code with potentially different message passing limitations. The procedure called

proce ss I i s t is responsible for reading the configuration file and sorting the tasks

into an array of 40 virtual groups. It is important to note that the software analysis is

actually initiated within this sorting process, for as each task is taken from the

configuration file and placed in the proper VG, it is submitted to t as kpars e, which

returns the worst case delay parameterization for the given task instantiation. Information

about each virtual group is stored in a relatively extensive data structure; what follows is

a detailed description of each element in the structure:

1. present: A boolean variable to indicate if a particular VG exists within the

given system configuration. The AFTA allows up to 40 VGs within its

configuration, but it is not likely that most configurations will utilize all the

VGs. Therefore, this "presence bit" simplifies processing by signaling the

analysis to ignore all non-existent VGs.

2. overrun: This is a one dimensional array of integers that is established by

the o verrun chec k procedure. For every timing deadline that is not

satisfied in the worst case analysis, a particular integer is stored in this array to

indicate the nature of the performance failure. Section 8.4 explains this

seemingly cryptic form of information storage.

3. num-t asks: An array of five integers used to establish the number of

application tasks resident in each of the four rate groups on the given VG.

Note that the fifth integer is simply a sum of the other four and thus indicates

the total number of tasks associated with the virtual group.

4. t ask s: An array of task-based data structures. For each task instantiation

belonging to the virtual group, this structure stores the name, rate group

specification, and worst case execution path parameterization. It is the

development of this element of the virtual group structure that initiates the

software analysis for each task in the suite.

5. r gt ot a I s: An array of four integers that tracks the cumulative delay for

tasks within each of the four rate groups. As a task is added to its respective

virtual group, its worst case delay value is added to the total for its respective

rate group. In other words, rg-t ot a I [1] contains the cumulative worst case

delay for all RG1 tasks within the VG.

6. m s gt t a I s: A four element array of integer pairs that tracks the

cumulative message traffic for each of the four rate groups. This information

is required in calculating the overhead for each of the eight minor frames since

the rate group dispatcher delay is a function of the rate group message traffic.

As each task is added to the VG, its queued message parameters are added to

the appropriate ms g - t ot a I s integer pair. The first integer of the pair

indicates the number of messages queued for the given rate group during a

single execution cycle (under worst case conditions), and the second integer

denotes the total number of packets queued for that RG during one execution
cycle. Note that message traffic is tracked only according to the number of
messages queued, while the messages retrieved, sent, and read during an

execution cycle are effectively ignored. Section 8.6 addresses the assumptions

involved in focusing only upon queued message traffic.

Once the information in "list_of_tasks.dat" is exhausted, the virtual group records are
considered complete, and the actual timing calculations begin.

8.5 Predicting Performance Failures
The procedure called overrunchec k is responsible for the final timing

calculations in the hardware analysis phase. The objective of these calculations is to

predict potential failures to satisfy the hard-real-time constraints imposed by the AFTA's

rate group scheduling paradigm. In more concrete terms, the overrun check attempts to

identify possible situations in which the combined delays of system overhead and

application task execution exceed the time allotted within the second portion of any minor

frame (refer to Figure 8-1).

Under the present rate group configuration, an 80ms time slice contains at least

one full iteration of the tasks in all four rate groups, and as illustrated in Figure 8-2, it is

comprised of 8 unique minor frames, each of which follows the execution pattern
described in Section 8.2. Since the 80ms time slice contains at least one frame boundary

for each rate group, all relevant timing constraints can be validated through a timing

analysis that is limited to a set of 8 contiguous minor frames which spans a single RG I
frame, as shown below:

minor frame index:
i0 :1 i2 :3 i4 I5 6 17

- - ---- mm-----R2 Frame Frm Frans Frm Frame m3G2 Frame

RG1 raam R 111111
I i I I IM i : " i:

Figure 8-2, Rate Group Frame Organization

Since this analysis deals with worst case scenarios, it is naturally assumed that if

timing deadlines are satisfied for a single complete time slice, they are satisfied for all

time. For every virtual group, the overrun check attempts to determine if, under worst

case conditions, the tasks within each rate group can complete execution prior to the

appropriate frame boundaries. Figure 8-3 (page 101) illustrates the deadlines that must be

considered in such an analysis. For each minor frame, all overhead tasks and RG4 tasks

within a given virtual group must complete a single execution cycle. Any remaining time

within the minor frame is dedicated to scheduled tasks within the other rate groups.

Notice that higher numbered rate groups have execution precedence over lower numbered

groups, and until all tasks belonging to a higher priority rate group complete their

execution cycles, tasks within lower priority rate groups are not granted any frame time.

At each minor frame boundary, execution priority returns to the overhead and RG4 tasks.

A mathematical summary of these timing constraints accompanies Figure 8-3 as a list of

15 inequalities. If all 15 inequalities are satisfied, the timing deadlines are satisfied.

Evaluating the inequalities themselves is a trivial task. What is important here is

to explain the elements involved in the calculations and the rationale behind the

inequalities. The first priority of o verrunc h e c k is to evaluate the delay due to

system overhead in the second portion of each of the eight minor frames. As discussed in

Section 8.2, this value is based on the sum of the following factors:

1. 11H2 = (110 * number of fackets) + 103 (psec)

numtsk num_rg_tsk

2. RGD2 = [t(87 * numpkti) + 27] + 2 [(26 * num_rg_tski) + 15] + 49 (psec)
i=1 i=1

3. context switches = 19 psec each

4. local FDIR = 84 psec

For each of the equations above, it is important to understand that this analysis

assumes that rate group tasks always complete their execution cycles during the last

minor frame prior to their respective frame boundaries. For instance, it is assumed that

all RG1 tasks complete execution during minor frame 7, and it is assumed that all RG2

tasks complete execution cycles during minor frames 3 and 7. This type of assumption

creates a worst case scenario for the system overhead because the burden of message

passing operations imposed by the various rate groups is thereby concentrated in the

minor frames that follow common frame boundaries, rather than being evenly distributed

among all eight minor frames. The same concept applies to the overhead imposed by

context switching and the overrun checking performed by the rate group dispatcher.

For the first overhead equation shown above, the variable called

number ofp ackets is based upon the values stored in the ms g t o t a I s element of the

VG record. In calculating the overhead for minor frame 0, numberofackets is a sum

of the packets queued by all four rate groups because it is assumed that all application

tasks complete execution cycles during the previous minor frame. In a similar manner,

when calculating the overhead for minor frame 6, number of packets is based upon the

msg tot a I s values for RG3 and RG4 tasks, since both of these groups complete

execution cycles during minor frame 5. The same principles apply in the second equation

when calculating numpkti and num_tsk for each minor frame. Also included in the rate

group dispatcher equation is the overhead for overrun checking. This requires that within

each minor frame, the RGD checks the status of all tasks that should have been completed

within the previous minor frame. Figure 8-3 indicates how the frame boundaries affect

various minor frames, and the information contained in the VG record is sufficient to

determine the number of tasks to be checked by the RGD in a given minor frame. The

evaluation of context switching overhead follows the same rules as used with the

overhead for overrun checking. Lastly, local FDIR affects all minor frames and is

appropriately added as a simple delay constant. As the minor frame overhead values are

calculated, they are stored in an eight element array of integers called OH[].

The first eight inequalities ensure that the RG4 tasks meet their timing deadlines

in each of the eight minor frames. They simply compare the sum of overhead delay and

RG4 task delay to the amount of time allotted within the second portion of the minor

frame. The next group of four inequalities ensures that RG3 tasks complete their

execution cycles without exceeding their frame boundaries. These calculations account

for delays due to overhead and RG4 task execution to determine if there is sufficient

frame time left over for the lower priority RG3 tasks. The next two inequalities are

dedicated to validating the two frame boundaries encountered by RG2 tasks, and the last

inequality ensures that RG1 tasks meet their timing deadlines. Notice that the

calculations for each rate group account for delays due to all tasks with higher priorities

while ignoring delays incurred by tasks with lower priorities. The inequalities are

numbered 1 through 15, and the integer corresponding to each inequality that is not

satisfied is stored in the overrun array of the VG record.

100

FRAME BOUNDARIES

RG3

RG2

RG3

RG1

RG2

RG3RG3

RG4 RG4 RG4 RG4 RG4 RG4 RG4

r r-I\"N [\ IlZI I'
k%U Ih%1Y 2I Y~ -h Y1IINN IIN ! !N I

SF I I
I I nI, !

RG4 Tasks RG3 Tasks RG2 Tasks RG 1 Tasks

Figure 8-3, A Simplified View of Rate Group Scheduling

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:

OH(O) + RG4 < 1 minor frame
OH(l) + RG4 < 1 minor frame
OH(2) + RG4 < 1 minor frame
OH(3) + RG4 < 1 minor frame
OH(4) + RG4 < 1 minor frame
OH(5) + RG4 < 1 minor frame
OH(6) + RG4 < 1 minor frame
OH(7) + RG4 < 1 minor frame
OH(0) + OH(1) + 2xRG4 + RG2 < 2 minor frames
OH(2) + OH(3) + 2xRG4 + RG2 < 2 minor frames
OH(4) + OH(5) + 2xRG4 + RG2 < 2 minor frames
OH(6) + OH(7) + 2xRG4 + RG2 < 2 minor frames
OH(0) + OH(1) + OH(2) +OH(3) + 4xRG4 + 2xRG3 + RG2 < 4 minor frames
OH(4) + OH(5) + OH(6) +OH(7) + 4xRG4 + 2xRG3 + RG2 < 4 minor frames
OH(0) + OH(1) + OH(2) + OH(3) + OH(4) + OH(5) + OH(6) + OH(7) +
8xRG4 + 4xRG3 + 2xRG2 + RG1 < 8 minor frames

OH(x) refers to the overhead delay in minor frame x
RGx refers to the cumulative delay of all tasks belonging to rate group x

101

RG4

I
RG4
Tasks

RG3
Tasks

RG2
Tasks

RG1
Tasks

Overhead

Overhead

8.6 Assumptions
Throughout the AFTA timing analysis, a number of simplifying assumptions are

introduced in an effort to produce useful results. It is important for the user to understand

the nature of all assumptions made, for the accuracy of the analysis is significantly

affected by the validity of the underlying assumptions. The following paragraphs discuss

the assumptions that play a critical role in the integration of the application task models

with the system specific delay data during the hardware analysis phase.

When the software analysis generates all possible execution paths through a

particular code model, c a I cu I at et i me is used to gauge the minimal worst case delay

incurred by each path so that the paths can be effectively quantified and compared. In

order to definitively state that Path A incurs a greater delay than Path B, the delay

estimates for both paths must be based upon the same set of known deterministic

quantities. This analysis assumes that for each critical construct included in the code

model, an exact delay value can be added to the time total for an execution path which

includes that construct. In other words, it is assumed that a task such as message retrieval

incurs the same amount of delay every time it is called, regardless of the nature of the

execution path. In the future, the AFTA will feature multiple architecture types for PEs,

and in such a case, the delay for a message retrieval task would vary as a function of the

VG on which a task resides. However, for any given task instantiation, the same critical

construct always contributes the same delay for every possible execution path. The

underlying assumption here is that problems such as network contention and bus
contention have a negligible effect on the total delay for a critical construct. The results

from the performance measurement study indicate relatively insignificant standard
deviations for the operating system functions and message passing functions evaluated

thus far. Problems may arise in the future as the AFTA's performance limits are tested

and the global message traffic increases, but at this point it is safe to assume a high level

of determinism in regard to those constructs presently included in the analysis. Also, VG

phasing can be selected to minimize these effects.

A second assumption with regard to system delays is that the total time required

for an execution path increases monotonically as a function of the frequency of
occurrence for the critical constructs considered. In other words, an increase in the

frequency of a critical construct within an execution path never results in a decrease in the

total time delay incurred by that path; likewise, a decrease in the frequency of a construct

does not result in an increase in time delay. This may seem to be an inherent assumption

that need not be stated, but the coupling of overhead delays with application task delays

through the message passing functions creates the possibility for unusual delay behavior

102

that should at least be addressed. It is possible that a particular combination of critical

constructs within a worst case path could unexpectedly improve the efficiency of the

overhead functions for the virtual group and thus transform a worst case path into a less

than worst case path. Such unusual behavior would likely arise from some unforeseen

system limitation which would prevent the overhead tasks from processing all given data

and thus require less frame time. Fortunately, this type of non deterministic behavior has

yet to appear in system testing, and the analysis presented here is conservative with

respect to increases in efficiency.

The final assumption to be discussed in this section involves the nature of the

global message traffic. For a static analysis, it is impossible to anticipate the number or

the size of messages that are received by an application task or group of tasks within a

given execution cycle. As such, it is assumed for this analysis that a VG only

communicates with itself -- in other words, no inter-VG communication is considered.

The result of this assumption is that for worst case evaluations, the number of message

packets scooped for an execution cycle is set equal to the number of packets queued

during that cycle. This type of assumption primarily affects overhead calculations, and its

validity is critical since the per-packet processing time is quite significant in the delay

calculation for the interrupt handler. The AFTA prototype testing has not yet addressed

the detailed nature of global message traffic under various configurations, and thus the

accuracy of this assumption cannot yet be gauged. Future system testing could call for

some adjustments to the message scoop delay calculations.

8.6 Final Output File
The final output file for the AFTA timing analysis is called "results.dat." It is

designed to present the results of both the software and hardware analysis an efficient and

readable format. The results are organized according to virtual groups, and for each VG

the following information is included:

1. An individual listing of each task instantiation that includes the task name,

filename, rate group designation, and full worst case path parameterization.

2. For each of the four rate groups, a total worst case application task delay is

listed to help the user recognize which rate groups are overburdened or

underloaded.

3. For each of the eight minor frames, the total worst case overhead delay is

listed.

103

4. A matrix of delay values lists the delay contribution from the overhead and
each of the rate groups within each minor frame. This is intended to help the

user identify potential timing problems and the sources of those problems.

5. A listing of all timing deadline violations as discovered through the evaluation

of the 15 inequalities discussed earlier in this chapter.

The contents of the results file should reinforce the concept that this analysis tool

is not valuable solely for the prediction of possible performance failures; rather, the

overrun check is simply the most comprehensive result produced. The more important

results are the intermediate values used in performing the overrun check. These include

the overhead delay totals and the worst case path parameterizations of the individual

application tasks. One of the major goals of this analysis is to properly characterize the

software tasks for timing estimation, code optimization, and for further analysis of global

message traffic and virtual group phasing. After a single configuration analysis, it should

be readily apparent what types of changes need to be implemented to improve

performance results. These changes might include streamlining application task code,

changing the mapping between tasks and virtual groups, varying the VG configuration

itself, or altering the rate group specification of one or more application tasks. As stated

previously, the user always must consider the contents of the error file when evaluating

the data in "results.dat," for both sources of output from this analysis are relevant and

should not be examined independently.

104

Chapter 9
Conclusions/Recommendations

9.1 Conclusions
This thesis presents an automated timing analysis tool that is designed specifically

to characterize and evaluate the timing behavior of a given system configuration for the

current AFTA prototype. The preceding chapters discuss a modular approach to the

development of this automated tool, and the accuracy of the timing analysis depends upon

the successful execution of each stage as well as the proper interaction between these

stages. It is appropriate now to consider independently the effectiveness of each part of

the analysis and then critique the usefulness of the analysis tool as a whole.

1. Preliminary processing is the first stage of the timing analysis. Its goal is to

accurately describe the system's hardware and software configuration through

an automated evaluation of the task specification file. This portion of the

analysis is both simple and successful. No further development is required.

2. The accuracy of the analysis depends upon proper characterization of the

system overhead in terms of both constant and variable delay elements. The

AFTA performance measurement study addresses this task and presents the

results to date, and the timing analysis tool depends upon these results for

delay calculations and for the proper approach to those calculations. Given

the state of the AFTA prototype, the overhead data is both accurate and

thorough, but it will be necessary in the future to study the effects of I/O

operations and network loading on system overhead. Such results must then

be incorporated into the timing analysis that is presented here.

3. The accuracy of this analysis also depends upon the definition and

measurement of significant sources of deterministic delays within application

tasks. At this point, the estimated application task delays depend primarily

upon the presence of message passing calls within the source code, and this

focus is far too limited. In the future, the list of known deterministic delays or

"critical constructs" must be expanded in order to better characterize the worst

case timing behavior of individual application tasks. What is important here is

that this tool currently includes all the necessary infrastructure for expanding

the list of delay elements considered in a static analysis. At this stage of

development, minimal marginal effort is required to expand the list of known

deterministic delays, and this facilitates rapid improvement in the accuracy of

the worst case delay estimates.

105

4. The second stage of the timing analysis consists of a static source code

analysis for each application task in the suite, and the first phase of this

analysis involves the development of source code models. At present, the

modeling process is both tedious and delicate, but it stands as proof that an

automated tool can effectively understand and evaluate the flow of execution

through complex high level source code. The approach to code modeling is

sound and allows for a great deal of flexibility in terms of the types of delay

elements upon which to focus during a static analysis and the range of code

constructs that can be analyzed successfully. Certainly, the modeling

approach presented here is valid for other high level languages and could also

be adapted to work with assembly language code. The primary weakness in

this portion of the analysis tool is the lack of AFTA application task source

code with which to test the modeling process. The intricacies of the code

parsing and modeling tools create a great deal of room for minor errors, and it

is important to subject these tools to rigorous testing with any relevant source

code that becomes available.

5. The second phase of the software analysis involves the quantitative evaluation

of the source code models constructed for the various application tasks. Since

the model conventions are well-defined and limited by design, this portion of

the timing analysis lends itself to extensive testing and improvement. Given

any valid model, the model analysis phase successfully finds all possible

execution paths and then parameterizes, quantifies, and compares them in

order to identify the worst case path. This part of the analysis tool is by far the

most successful, and the principles involved and the algorithms developed can

easily be adapted to future changes in the modeling conventions or the path

quantification process.

6. The final stage of the analysis involves the integration of the individual task

analyses in a manner that reflects the system virtual group configuration and

accurately characterizes the amount of variable minor frame overhead incurred

by the given task groupings. This part of the analysis is relatively straight

forward and quite robust, but it is not complete. Due to the absence of I/O

overhead data, the calculations of the hardware model analysis are not

completely accurate. It should be a simple task to later add the I/O

measurement results to the hardware model used by this analysis tool, but until

then, one must remember that the results produced are somewhat incomplete.

106

As a whole, the analysis tool presently produces results of limited utility, but both

the code infrastructure and the approach to an automated timing analysis are robust and

very valuable. All the necessary elements of a successful analysis tool are present, but

there is a need for further development and testing.

9.2 Recommendations for Further Study
The following list details recommendations for further development of the

automated timing analysis tool:

1. In order to improve the accuracy to the worst case estimates, the list of critical

constructs must be expanded. As more application task source code becomes

available, it should be easy to determine what types of functions and Ada

constructs significantly contribute to the execution delay of application tasks.

Another good source of critical constructs would be the standard Ada libraries.

If one were to benchmark all the functions included in those libraries, any

standard Ada function could be accounted for in the software analysis.

2. As application task source code is developed for the AFTA, it should be

subjected to the code modeling tools presented here. Extensive testing will

expose some minor errors in the code modeling process, and it is important to

correct these problems as soon as possible.

3. When the I/O portion of the AFTA operating system is fully developed and

tested, its timing characteristics should be measured, modeled, and

incorporated into the hardware model analysis. The accuracy of the system

overhead calculations depends upon knowledge of I/O operations, and any

enhancements to these calculations will improve the usefulness of the analysis

results. Likewise, any I/O operations that typically appear in the application

task source code should be quantified and added to the list of critical

constructs.

4. Another useful improvement to the overhead calculations involves proper

characterization of the system's global message passing operations. Presently

it is assumed that a task receives the same amount of message traffic that it

sends, and it would be useful to either validate this assumption or develop a

more accurate model of global message traffic to be incorporated into the

overhead calculations.

107

Appendix A
HEADER.H

/* This is a common header that is utilized by both START.C and FINISH.C */

'include <stdio.h>
'include <ctype.h>
#include <stdlib.h>
#include <string.h>
'include <math.h>

/* The following constants identify critical constructs and also serve as */
/* indices to the searchlist array. The code refers to critical constructs */
/* and searchlist entries according to the names shown below. */
#define WFS 0
'define LOOP 1
'define IF 2
#define ELSE 3
'define ELSIF 4
'define CASE 5
#define WHEN 6
'define QUEUE 7
#define RETRIEUE 8
'define SEND 9
#define READ 10
*define TASK 11
#define EQUAL 12
'define RANGE 13
#define PACKAGE 14
'define PROC 15
'define BEGIN 16
#define END 17
'define GTID 18
#define UG 19
'define RG 20
#define XMITSIZE 21
'define XMITNUM 22
#define RCUESIZE 23
'define RCUENUM 24
#define SELECT 25
#define RECORD 26
'define ACCEPT 27

/* These constants are for model entries only. There are no */
/* corresponding entries in searchlist */
'define ENDLOOP 51
#define END-IF 52
#define END.CASE 53
'define COUNTERSET 54
'define FOR.LOOP 55
'define UHILELOOP 56

/* Defines the various pertinent classes to which a string may belong */
'define UNKNOWN 0
'define SIMPLENUM 1
#define NATURALNUM 2
'define COMPLEXHUM 3
'define RANGENUM 4

109

Appendix A

#define UARNAME 5

/* These constants describe the status of the processing */
#define BLANK 0
#define LOST -1
#define UNDEFINED -2
#define INFINITE -3
#define DEFAULT -4
#define EXEC -5
#define NOEXEC -6

/* Define the minor frame time here */
#define MINORFRAME 10000

enum boolean (NO = 0, YES = 1);

struct msg-pair
{

int num-msg-queued;
int num-packets;

struct varinfo
(
char name[100];
int value;

struct var-list.info
{

struct var-info entry[100];
int length;
int marker;

struct string

char name[100];

struct l ist-info

struct string
int marker;
int length;

entry[100];

struct match-info
{

char name[100];
char filenme100;ist

struct counter I ist

int
int
int
int

num-sent;
num-read;
numqueued;
num-retrieved;

110

Appendix A

int num.msgqueued;
int msg.retrieved;
int total-time;

struct task.parseinfo

char name[100];
int rate-group;
struct counter-list counter-set;

struct message-limits
{

int xmit.size;
int xmit.num;
int rcve-size;
int rcue-num;

struct task-spec.info
(

char name[100];
int virtual-group;
int rate-group;
struct messagelimits limits;

struct vg-info
{

enum boolean present;
int overrun[201;
int numtasks;
struct task-parseinfo task[20];
int rg .total[5];

int overhead[8];
struct msg.pair msg-total[5];

);

struct range-info
{

char description[100];
int first;
int last;
int span;

struct flag-list
{

enum boolean taskfound;
enum boo ean pkg found;
enum boolean ctr.active;
enum boolean finished;
enum boolean fatal-error;
enum boolean enablewhen;
int proc-depth;

struct comment-info

111

Appendix A

int basic loop.limit;
int for-looplimit;
int while loop-limit;
int message-size;

struct modelentryinfo

int type;
int value;
int depth;
int pointer;
int flow;

struct modelinfo

int length;
int num.counters;
struct model-entryinfo entry[100];
struct counter-list counterset[100];

struct proc.info

char name[100];
char filename[100];
enum boolean done;
struct model-info skeleton;

struct proc.list-info
{
struct proc-info entry[100];
int length;
int marker;
int pkg-marker;

struct constant-list

int queuecoeff;
int queueconst;
int retrieve-coeff;
int retrieve.const;
int IH-coeff;
int IH.const;
int RGD.msgcoeff;
int RGD.msg-const;
int RGD.tsk.coeff;
int RGD-tsk.const;
int RGD.overall const;
int RGD.empty.queue-const;
int context-switch;
int local.FDIR;
int sysFDIR;

112

Appendix B
START.C

sinclude "header.h"

/*' --
CALLHAME: START.C
AUTHOR: S. Treadwell
CREATED: 19 MAY 92
UPDATED: 20 JUL 92

This is the preliminary processing code. It opens up the task specification
file and processes the contents. All required system configuration info is
stored In two output files "task.names.dat" and "list.of.tasks.dat" and
passed on to future stages in the analysis.
--

main()
{

struct task-spec-info task[201; /* temporarily stores all config info */
struct list.info search-list;
struct list-info this-line;
FILE *infile;
int i,c;
int signal = 1;
int num-tasks = 0;

/* Establish the list of key words that control the search for config info */
read-list(&search-list);

/* Open the task specification file */
infile = fopen("taskjlist.ada","r");
if (infile --== HULL)
(
printf("Cannot open task-list-io_.ada \n");
exit (2);

}

/* Search the file line by line and extract relevant info */
do
(
signal - get-line(&thisa line,infile);
search(&searchlist,&this-line,task,&numtasks);

while (signal 1= 0);

fclose(infile);

/* Produce the output files to be used by the DCL search and the remainder */
/* of the analysis */
write-file(task,numtasks);

}

113

Appendix B

/ --
CALLHAME: READ LIST
AUTHOR: S. Treadwell
CREATED: 13 APR 92
UPDATED: 15 JUN 92

This procedure establishes the list of key words that control the search
for configuration information. The list is taken from "keywords.dat"
and is stored in search-list. Each key word occupies a separate line in
the external file.
--

read list(search-list)
struct list-info *search list;
{

FILE *list-file;
int signal = 0;
int value = 0;
int num = 0;

list-file = fopen("key-words.dat","r");
if (list.file == MULL)

printf("Cant open keywords.dat for input\n");
exit(2);

while(signal !- EOF)
signal = fscanf(list-file,"%s\n",search-list->entry[num++].name);

searchJlist->length = num - 1;
fclose(list.file);

114

Appendix B

/*--
CALLMNAE: GETLINE
AUTHOR: S. Treadwell
CREATED: 22 APR 92
UPDATED: 10 JUN 92

1ill use the stream of characters provided by the specified file to assemble
a buffer of single word items all of which belong to a single line of code.
The key here is to gather words until a carriage return is found.
Blank lines are not recorded in the buffer. Comment lines are recorded as
a single word denoted as '--'; all additional words on a comment line are
ignored. This procedure will not record a line of words if it is terminated
by a EOF character.

--*

int get.line(this line,infile)
struct listinfo *this line;
FILE *infile;
{

int c,k;
int num = 0;
int count = 0;
int comment * NO;
int signal = 1;
char temp[80];

while(isspace(c - fgetc(infile))); /* bleed off white space */
do
{

if (c == EOF) break;
do
temp[count++] = c; /* append character to word */

while(!isspace(c = fgetc(infile)));
temp[count] = '\0';
strcpy(this-line->entry[num].name,temp); /* append word to line */

do
if (c == '\n') break;

while(isspace(c = fgetc(infile)));

count = 0;
if ((k = strcmp(temp,"--")) == 0) comment = YES;
if (comment == NO) ++num;

)
while (c 1= '\n');

if (c --== EOF) signal = 0;
this-line->length = num;
thisline->marker = 0;

return(signal);
)

115

Appendix B

* ------ ------------------------ ------ --

CALLAME: SEARCH
AUTHOR: S. Treadwell
CREATED: 11 APR 92
UPDATED: 22 JUN 92

Will do the primary parsing for the "start" stage. Once a line of code is
available for analysis, 'search' will inspect it for a given list of ada
constructs and system calls and will branch to other parsing and analysis
functions as dictated by what is found.
This procedure looks for call names and ada constructs exactly as given by
the user in auxiliary files. When searching for matches, names that are
similar but not exactly the same as the names sought will not be
sufficient to warrant a match.

search(searchl ist,this-line,task,numtasks)
struct list-info *search list;
struct list.info *this line;
struct task-spec-info task[];
int *num-tasks;
{

int i,j,k;
int size;

for(j = 0; j < searchlist->length; ++j)
for(i - 0; i < this.line->length; ++i)

if((k= strcmp(this.line->entry(i].name,searchlist->entry[j].name)) == 0)
{
this.line->marker = i + 2;
switch(j)
{
case GTID: /* extract the task name */
extract-name(thisline,task,num-tasks);
break;

case UG: /* extract the task's virtual group assignment */
task[*numtasks].virtual-group = strip(this.line->entry[i+2].name);
break;

case RG: /* extract the task's rate group designation */
task[*num-tasks]rate-group = get.rg(this.line->entry[i+21.name);
break;

case XMITSIZE: /* extract message passing limitations */
task[*numtasks. limits.xmit-size = strip(this.line->entry[i+21.name);
break;

case XMITNUn:
task[*numtasks].limits.xmitnum = strip(this.line->entry[i+21.name);
break;

case RCUESIZE:
task[*num-tasks].limits.rcve-size = strip(this.line->entry[i+21.name);
break;

case RCUENUn:
task[*num-tasks].limits.rcuenum = strip(thisline->entry[i+2].name);
*num-tasks += 1;
break;

default: break;
}

116

Appendix B

/*--
CALLNAME: URITE.FILE
AUTHOR: S. Treadwell
CREATED: 26 MAY 92
UPDATED: 12 JUN 92

This procedure is called at the end of the "start" stage. It will produce
two output files for use by later stages. The first file contains names of
the tasks implemented in the task suite; it is used by the DCL search in
finding the files where the tasks reside. The second file contains all

pertinent info about the task suite, and it is used by the "finish" stage in
parsing the tasks and calculating overruns.

--

writefile(task,numtasks)
struct task-spec.info task[];
int num-tasks;
{

int i,j,k;
int repeat;
FILE *outfile;

outfile = fopen("list-of-tasks.dat","w");
if (outfile == NULL)
{
printf("Cannot open list-of-tasks.dat\n");
exit(2);

for(I = O; i < num-tasks; ++i)
fprlntf(outfile,"%s %d %d %d %d %d %d\n",

task[i].name,task[il.uirtual-group,task[i].rate-group,
task[i].limits.xmit-size,task[il.limits.xmit-num,
task[i].limits.reve-size,task[il.limits.rcve-num);

close(outfile);

outfile = fopen("task-names.dat","w");
if(outfile == NULL)
(
printf("Cannot open the output file\n");
exit(2);

for(i - 0; i < num-tasks; ++i)

repeat = NO;
for(j 0; j < i; ++j)

if ((k = strcmp(task[i].name,task[j].name)) == 0)
repeat = YES;

if (repeat == HO)
fprintf(outfile,"%s\n",task[i].name);

fprintf(outfile,"done\n");

fclose(outfile);)

117

Appendix B

/*--
CALLNAME: EXTRACT-NAME
AUTHOR: S. Treadwell
CREATED: 26 MAY 92
UPDATED: 09 JUN 92

Used to extract task name from the task specification file.
-- *

extract.name(this.line,task,numtasks)
struct list-info *this line;
struct task.specJinfo task[];
int *num-tasks;
{

char temp[40];
char task.name[40];
int count = 6;
int count2 = 0;
int num;

num = this.line->marker;
strcpy(temp,this-line->entry[num].name);

/* eliminate the prefix "gtids." from the task name */
while (temp[countJ != ',')

task.name[count2++] = temp[count++];
task.name[count2] = '\0';

/* Adhere to the naming convention for task names */
strcat(taskname,".t");
strcpy(task[*num.tasks).name,taskname);

)

118

Appendix B

/*--
CALLHAME: STRIP
AUTHOR: S. Treadwell
CREATED: 26 MAY 92
UPDATED: 12 JUN 92

Used to take the comma off the end of a number and convert it from a string
to an integer.
--*

int strip(argument)
char argument[];
{

int count = 0;
int value = 0;
char temp[20];

/* strip the comma off the end */
while(argument[count != ',')
{
temp[count] - argument[count];
count++;

temp[count] - '\0';

/* convert the string to an integer value */
value = strtol(temp,(char **)HULL,10);
return(value);

/*--
CALLHNAE: GET.RG
AUTHOR: S. Treadwell
CREATED: 26 MAY 92
UPDATED: 12 JUN 92

This extracts the rate group number for a task from the task spec file.
--

int get-rg(orgument)
char argument[];
{

char rg[10];

/* grab the rg # directly and convert it to an integer */
rg[O] = argument[9];
rgl] = '\0';

return(strtol(rg,(char **)NULL,10));}

119

Appendix C
DCL Source Code

ANALYZE.COM
This program orchestrates the entire analysis process from start to finish.

$run start
$find
$run finish
$exit

FIND.COM
This program finds the files that hold the application task source code and produces

"filenames.dat" as output.

$task = "task"
$body = "body"
$is = "is"
$!search /window=O /output=temp.dat /match=and-
$! [ftpp.afta.source.cmslib...].ada-
$! 'task','body','is'
$search /window=O /output=temp.dat /match=and-
[treadwell.afta...].ada-
'task','body','is'

$open/append outfile temp.dat
$write outfile "done"
$close outfile
$type temp.dat
$open/write outfile filenames.dat
$open/read taskfile task.names.dat
$bigloop:
$read taskfile taskname
$if taskname .eqs. "done" then goto finished
Swrite outfile taskname
$open/read infile temp.dat
Sloop:
$read infile filename
$if filename .eqs. "done" then goto done
$search 'filename' 'taskname'
Smatch = $severity .eq. 1
$if match then write outfile filename
Sgoto loop
$done:
$close infile
$goto bigloop
Sfinished:
$close outfile
$close taskfile
$type filenames.dat
$!purge
$exit

121

Appendix D
FINISH.C

*include "header.h"

/* This is the controlling "main" for finish.exe */

main()
{
void matchup();
void processlist();
void check.overrun();
void write-file();
struct matchJinfo task[40];
struct vginfo vg[40];
struct constant.list delay-data;
int i,n;
int num.tasks;
FILE *error-file;

errorfile = fopen("errors.dat","w");
if(error-file == NULL)
(
printf("Cannot open errors.dat for output\n");
exit(2);

)

match.up(task,&num-tasks,error-file);

/* The following info tells the user which version of the task suite is */
/* being analyzed. Note it's recorded in the error log rather than the */
/* results file.
fprintf(errorfile,"The matching between tasks and filenames is...\n");
for (I = O; i < numtasks; ++i)
fprintf(errorfile,"%d %s %s\n",i,task[il.name,task[i].filename);

process.list(ug,task,num-tasks,&delaydataerror-file);

check-ouerrun(ug,&delay-data,error-file);

write file(vg);

fclose(error-file);
)

123

Appendix D

/*--
CALLAME: MATCH-UP
AUTHOR: S. Treadwell
CREATED: 27 MAY 92
UPDATED: 25 JUN 92

Takes the output file from the DCL task body search and performs a matchup
between task names and the files in which they reside. If the task was not
found, it is matched with a "none." If the task name was found in multiple
files, the user is given notice and the choice of which file he wants to
have processed for that task. This gives the user the choice of which
version of a task he wants to have analyzed since it is assumed that several
versions of the same task may be present in the target directory.

--

void match.up(task,num.tasks,error-file)
struct match-info task[];
int *num.tasks;
FILE *error-file;
{

struct string file[10];
int i = 0;
int j - 0;
int num = 0;
int choice = 0;
int signal = 0;
int k,n,c;
char dummy[80];
FILE *infile;

infile - fopen("filenames.dat","r"); /* File produced by the DCL search */
if (infile == NULL)
{
fprintf(errorfile,"Cannot open filenames.dat for input\n");
exit(2);

)

/* Data format: task name followed by corresponding filename(s) with each */
/* name listed on a separate line. The first task name is grabbed and */
/* converted to typical string format. */
fscanf(infile,"%s\n",task[i].name); strcat(task[i++].name,"\O");

/* Now, corresponding filename(s) and additional task names are grabbed */
/* from the file and converted to string format. Whenever a new task name */
/* is found, the filename(s) for the previous task get(s) processed. Note */
/* that 0,1, or multiple filenames (up to 10) can be handled for each task */
do
{

signal = fscanf(infile,"%s\n",dummy); strcat(dummy,"\O"); /* grab name */
num = strlen(dummy);
if((((c = dummy[num-11) == 't') && ((c = dummy[num-23) == '.')) II

(signal == EOF)) /* Is it a task name? or the end of the file? */
{

switch(j) /* Process filename(s) for last task name */
{
case 0: strcpy(task[i-l].filename,"none"); break;
case 1: strcpy(task[i-1].filename,file[Ol.name); break;
default: /* Let the user choose which version of the task to analyze */

124

Appendix D

printf("Multiple files found for the task called
for (n = 0; n < j; ++n)
printf("%d : Is \n",n,file[n].name);

printf("Your Choice: "); scanf("%d",&choice);
if(choice < j)
strcpy(task[i-1].filename,file[choice].name);

)
if (signal != EOF)
{
strcpy(task[i].name,dummy); /* If it was a task
++i; j=O;

else
strcpy(file[j++.name,dummy); /* If not, store it

%s\n",task[i].name);

name, store it */

as a filename */

while(signal != EOF);

*num-tasks = I;

/* Procedure ends with an array of paired names stored in task[]. Each
/* task name has a single filename associated with it (or "none") and
/* num-tasks reveals how many tasks are included in the analysis

125

Appendix D

/*--
CALLNAME: PROCESSLIST
AUTHOR: S. Treadwell
CREATED: 09 JUN 92
UPDATED: 14 OCT 92

Takes the output file from start.exe and gleans from it all the necessary
information about the task suite that is contained in the task specification
file. The information is then grouped and stored according to the ugs in
which the tasks reside. Note that task parsing and analysis is initiated
here, and the results stored in vg[] are later submitted to check-overrun
for an integrated hardware and software configuration analysis.
--

void processl ist(ug,task,numtasks,delay.data,error-file)
struct vg-info vg[];
struct match-info task[];
int num-tasks;
struct constant-list *delaydata;
FILE *errorfile;
{

void read-list();
struct counter-list taskparse();
struct message-limits messages;
struct list-info searchlist;
int i,j,k;
int num;
int numloaded;
int marker;
int vgnum;
int rgnum;
int signal;
char dummy[80];
char task.name[80];
FILE *infile;

infile = fopen("list-of.tasks.dat","r"); /* File produced by start.exe */
if(infile == NULL)
{
fprintf(error-file,"Cannot open list-of-tasks.dat for input\n");
exit(2);

)

/* Establish the array of key words that will be used in the software */
/* modeling and analysis phase. Also process the system specific delay */
/* values and store them in delaydata. */
search-list.length = 0;
read list(&search.list,delay-data);

while(1)

/* Grab information relating to a single instantiation of a single task */
/* Each task instantiation is given a single line in the input file */
/* The format should be readily apparent from the fscanf statement below */
signal = fscanf(infile,"%s %d %d %d %d %d %d\n",task-name,&ugnum,&rgnum,

Lmessages.xmit-size,&messages.xmit.num,
&messages.rcve-size,&messages.rcvenum);

126

Appendix D

if (signal == EOF) break; /* End of file terminates the procedure */

/* Find the filename for the task that is to be analyzed and mark it */
for(j = 0; j < num-tasks; ++j)

if((k = strcmp(task-name,task[j].name)) == 0) marker = j;

/* Update appropriate vg record according to the task instantiation */
/* Mote that each task instantiation is processed individually so that */
/* different message passing limitations can be analyzed for a single */
/* task. */
num = vgvlgnuml.numtasks;
vg[vgnum].present = YES; /* Yes, this vgs exists in this configuration */

vg[vlgnum].num-tasks += 1;
strcpy(vg[vgnum].task[num].name,task-name);
vg[vgnum].task[num].rate.group = rgnum;

/* Now kick off the analysis of the specified task with the call to */
/* task.parse. The analysis culminates in the establishment of a single */
/* counter-set that will represent the specified task instantiation */
/* during the integrated hardware and software analysis in check-overrun */
fprintf(error-file,"\fSOFTUARE ANALYSIS FOR %s\n\n",task[marker].name);
vg[vgnum].task[num.counter-set =

task-parse(&search list,delay.data,task[marker].name,
task[marker].filename,messages,errorfile);

fclose(infile);

/* This procedure completes with vg[l holding all config information as */
/* well as all worst case execution delay analysis results for each */
/* Instantiation of every task in the suite. */

127

Appendix D

/*--
CALLMAME: TASK-PARSE
AUTHOR: S. Treadwell
CREATED: 10 AUG 92
UPDATED: 14 OCT 92

This procedure has responsibility for modeling and analyzing a single task
to find a parameterized expression for the worst case execution path through
the task for a single execution cycle. The parameterization is returned to
the parent procedure.

struct counter-list task.parse(searchlist,delay-data,taskname,filename,
messages,errorfile)

struct list-info *search-list;
struct constant-list *delay-data;
char task.name[];
char filename[];
struct message-limits messages;
FILE *error-file;
(

void find-packages();
void parse();
void print.procedures();
struct counterlist find-worst-path();
struct list-info pkg.list;
struct model-info skeleton;
struct counter-list finalcounter;
struct procllst-info procedures;
struct counterlist counter-set;
struct flag-list flags;
char pkgfilename[80];
char pkg.name[80];
int i,k;

/* Set a flag in the error log to help establish the chronology of the */
/* analysis and any errors.
fprintf(error-file,"Working on %s\n",taskname);

/* Initialize the worst case parameterization for the task */
final-counter.num-queued = 0;
final.counter.num.retrieved = 0;
final.counter.num-sent = 0;
final.counter.num-read = 0;

if ((k = strcmp(filename,"none")) == 0)
{

fprintf(errorfile,"No file was found for task Xs\n",taskname);
goto doneparsing;

}

/* Prepare for bottom-up modeling */
pkg-list.length = 0;
procedures.length = 0; procedures.marker = 0; procedures.pkg-marker = 0;
skeleton.length = 0; skeleton.num-counters = 0;

/* Establish the task's procedure/package hierarchy */
find-packages(filename,&pkg-list,error.file);

128

Appendix D

/* Starting at the bottom of the package list, each package is processed */
/* individually to collect procedure models in preparation for modeling */
/* the actual task body. */
for (i = pkgJlist.length - 1; i >= 0; --i)
{
strcpy(pkg-filename,pkg.list.entry[i].name);
strcat(pkgfilename,".ada"); /* Filename is derived from package name */
parse(search-list,delay-data,pkg-filename,pkg list.entry[il.name,taskname,

messages,&procedures,&skeleton,&flags,errorfile);

/* Now parse model the task body since all supporting procedures */
/* have already been examined */
strcpy(pkgname,"none");
parse(searchlist,delaydata,filename,pkgname,taskname,messages,

&procedures,&skeleton,&flags,error-file);

/* Record info in the error log to help with any debugging needed */
print-procedures(&procedures,error-file);

/* Now analyze the resulting task model to find the worst case exec path */
/* assuming that the task body was found in the specified filename */
if(flags.task-found)

finalcounter = find-worst-path(&skeleton,delay-data,error-file);
/* Record results in output file */
fprintf(errorfile,"The worst path is characterized by...\n");
fprintf(errorfile,"Queued: %3d Retrieved: %3d Sent: %3d Read: %3d \n",

final.counter.num-queued,final-counter.num-retrieved,
final.counter.numsent,final.counter.numread);

}
else

fprintf(error-file,"The task %s was not found in %s\n",taskname,filename);

doneparsing: return(finalcounter);

/* final.counter holds the worst case path parameterization and is stored */
/* by the parent procedure (process-list) in the appropriate vg record as */
/* the definitive representation of the given task instantiation */

129

Appendix D

/* --
CALLNAME: FINDPACKAGES
AUTHOR: S. Treadwell
CREATED: 12 JUL 92
UPDATED: 15 OCT 92

This procedure builds the structural hierarchy for a given task by examining
its context clause for package names upon which the task depends. It also
examines context clauses for all supporting packages to find packages upon
which they depend. The result is a one-dimensional array of package names
with the most fundamental packages at the bottom of the list -- in other
words, the packages toward the top of the list depend upon the ones at the
bottom of the list.
--

void find-packages(filename,pkg-list,errorfile)
char filename[];
struct list-info *pkg-list;
FILE *error file;

void update-pkg-list();
int i,j;
char pkg-filename[80];

/* Look at the context clause in the package containing the task body */
update-pkg list(filename,pkglist,error-file);

/* Look at the context clause in all packages contained in package list */
/* Any new packages found are appended to the list, and the search */
/* continues in a recursive manner until reaching the end of the package */
/* list. */
for(i - 0; i < pkglist->length; ++i)

strcpy(pkg-filename,pkg_1ist->entry[i].name);
strcat(pkgfilename,".ada");
update pkg.list(pkg-filename,pkg.list,error file);

/* Record results in error file purely for debugging purposes */
fprintf(error-file,"The packages found are...");
if(pkg-list->length == 0) fprintf(error-file,"none");
fprintf(error-file,"\n");
for(i - 0; i < pkg.list->length; ++i)

fprintf(error-file,"%s\n",pkg-list->entry[i].name);

130

Appendix D

/*---
CALLMNAE: UPDATEPKGLIST
AUTHOR: S. Treadwell
CREATED: 15 JUL 92
UPDATED: 18 NOU 92

This procedure examines the context clause of a given package in order to
find names of packages upon which the given package depends. This is a
method of exploring the subprogram hierarchy for a given task, and all new
package names found in the context clause are appended to the package list
to be later examined by this procedure.

--

void update-pkg.list(filename,pkg-list,error-file)
char filename[];
struct list-info *pkg-list;
FILE *error-file;
{
void with-found();
struct list info this line;
struct listInfo comment-line;
struct commentinfo info-buffer;
int i,j,k;
int signal = 1; /* Serves to signal the end of the file */
FILE *infile;

infile = fopen(filename,"r");

if(Infile != HULL)
while (signal != 0)
(
/* Search the file looking for a program statement of the form ... */
/* "with [PKG.NAME];" When such a statement is found, the package */
/* name is extracted and checked against the package list to */
/* determine if it should be appended to the current list */
signal=get-line(&this-line,& comment line,&info.buffer,infile,error-file);
if((k = strcmp(this-line.entry[O].name,"with")) == 0)
(
thisline.marker = 1;
with.found(&this l ine,pkg-list,infile);

)

fclose(infile);

131

Appendix D

/*--
CALLHAME: PARSE
AUTHOR: S. Treadwell
CREATED: 10 JUL 92
UPDATED: 18 HOU 92

A generic code processing procedure that accepts code from all types of
program units -- packages, subprograms, and tasks. For subprograms, it
constructs code models and adds the model info to the procedures data
structure. When dealing with a task body, the task model is developed and
returned to task-parse in the skeleton data structure.

--

void parse(searchlist,delaydata,filename,pkg-name,taskname,messages,
procedures,skeleton,flags,errorfile)

struct list-info *search list;
struct constant-list *delay-data;
char filename[];
char pkg.name[]; /* Passed as "none" when parsing the task body file */
char task.name[];
struct message-limits messages;
struct procl.ist.info *procedures; /* Holds all subprogram models */
struct model-info *skeleton; /* Always holds the current model */
struct flag list *flags; /* Provides important status information */
FILE *error-file;
(

int get.line();
void search();
struct list.info this-line; /* Holds the current program statement */
struct list-info commentline; /* Used to grab vital programmer input */
struct list-info end-list; /* Heeded for status info */
struct comment-info info.buffer; /* Holds current summary of prog. input */
int signal = 1; /* Signals when the end of the given file is reached */
int i,k;
FILE *infile; /* Ada source file that is currently being parsed */
FILE *outfile; /* Error log */

/* Set-up */
end-list.length = 0;
comment.line.length = 0;
thisline.length = 0;

flags->ctractive = NO;
flags->pkg-found = NO;
flags->task-found = NO;
flags->finished = NO;
flags->fatal.error - NO;
flags->enable-when = NO;
flags->procdepth = 0;

info.buffer.basic-loopjlimit = INFINITE;
info-buffer.for-loop-limit = UNDEFINED;
info.buffer.while-loop-limit = UNDEFINED;
info.buffer.messagesize = DEFAULT;

/* Note that it is assumed that all packages and files upon which a task */
/* depends are included in the same directory as the task body file. */
infile - fopen(filename,"r");

132

Appendix D

if(infile == HULL)
{

fprintf(errorfile,"File Is could not be found\n",filename);
goto done-parsing;

/* Help specify the chronology of the error log by listing the file that */

/* is currently being processed */
if((k = strcmp(pkgname,"none")) == 0) /* Is this the actual task file? */
fprintf(errorfile,"Now processing task %s\n",task-name);

else
fprintf(errorfile,"Now processing package %s\n",pkgname);

do
(
/* Grab program statements one by one and examine them on an individual */
/* and chronological basis. */
signal = get-line(&this-line,&comment-line,&infobuffer,infile,error-file);
search(searchlist,delaydata,skeleton,&thisJ ine,flags,&endlist,

Linfobuffer,pkg-name,taskname,messages,procedures,filename,
error-file);

while((signal != O)&L(flags->finished == NO)&&L(flags->fatal-error == NO));

doneparsing:;

/* The critical data structures updated in this procedure are skeleton and */
/* procedures because these hold the growing collection of subprogram and */
/* task models. When task.parse calls parse for the final time to examine */
/* the actual task body, "skeleton" is left with the final task model and */
/* is later passed on to the model analysis procedures */

133

Appendix D

/*--
CALLNMAE: CHECKOUERRUN
AUTHOR: S. Treadwell
CREATED: 09 JUH 92
UPDATED: 20 OCT 92

At this point in the analysis, a worst case path parameterization has been
established for each task instantiation in the suite. These path
parameterizations have been used to establish the critical data values for
each ug, and it is the vg records that are used for the performance failure
predictions or "overrun checks." This procedure performs the overrun check
for all 40 vgs (or at least the ones that exist) and leaves the overrun
info in an array that is part of the vg record. The writefile procedure
is responsible for later extracting and ciphering the overrun info.
--*

void checkoverrun(vg,delay-data,error-file)
struct vg-info ug[];
struct constant-list *delay data;
FILE *errorfile;
{

int calculate-time();
int vg.num;
int rate-group;
int rg-total;
int num-tasks[5];
int num-tasks.completed[9];
int num.msg.queued[8;
int num.packets.queued[8];
int num-rate.groups due[8];
int overhead[8];
int i,j;

/* For each possible virtual group in the system... */
for(vgnum = 0; vg.num < 40; ++vgnum)
{

if (ug[ug.num].present == YES) /* If the ug has any tasks resident in it */
(

for(i - 0; i < 5; ++i) /* Initialize intermediate tally variables */
(
num-tasks[i] = 0;
ug[ugnum].rg-total[i] = 0;
ug[vg-num.msg-total[i].num-msg.queued = 0;
vg[vg-numl.msg-total[i].num-packets = 0;

for(i = O; i < vg[vgnum].num-tasks; ++i) /* For each task in the vg...*/
{
rategroup = vg[vg-num].task[i].rate-group; /* Simplify notation */
++numtasks[rategroup]; /* Establish how many tasks are in each rg */
/* For each rg, establish a tally of delay time for all tasks */
vg[ug-num].rg-total[rate-group] +=

ug[vg-num].task[i].counterset.total-time;
/* For each rg, establish a tally of queued packets for all tasks */
ug[vgnum].msg-total[rate.group].num.packets +=

vg[vgnum].task[i].counter-set.num.queued;
/* For each rg, establish a tally of queued messages for all tasks */
vg[uvgnum].msgtotal[rate.group].num-msg.queued +=

134

Appendix D

ug[vg-num].task[i].counter-set.num.msg.queued;

for(i = 0; i < 8; ++i)
overhead[i] = 0;

/* For each minor frame, establish how many tasks should have
/* completed execution
numtasks.completed[O]
num-tasks.completed[1]
num-tasks.completed[2]
num.tasks.completed[31
num.tasks.completed[4]
numtaskscompleted[5]
num-tasks.completed[6]
num.tasks.completed[7]
numtasks completed[81

cycles during the previous minor frame *
= vg[vgnum].numtasks;
= num.tasks[4];
= numtasks[4] + num-tasks[3];
= num.tasks[4];
= num.tasks[4] + numtasks[3] + num.tasks[2];
= num.tasks[4];
= num-tasks[4] + num.tasks[3];
= num-tasks[4];
= num-tasks.completed[0];

/* For each minor frame, establish how many messages are queued by */
/* tasks that should have completed cycles during the previous frame */
num-msg.queued[O] =

num.msg.queued[1l] =
num.msg-queued[2] =

num.masgqueued[31 =
num-msg-queued[4] =

num.msgqueued[5 =
num.msg-queued[6] =
num.msg.queued[71 =

vg[vgnum].msg-total[4].num-msg-queued +
vg[uvgnum].msg-total[3].nu.msg.queued +
vg[uvgnum].msg.total[2].num-msgqueued +

vg[vg-num.msg.totall].num.msgqueued;
vg[vg-num].msg-total[4].nummsgqueued;
vg[vg-num].masgtotal[4].num-msg.queued +
vg[vgnumJ.msg.total[3].numm sg.queued;
num.msg-queued[1];
vg[vgnum].masgtotal[4].num.msg-queued +
vg[vgnum].msg-total[3].nummsgqueued +
vg[vg.num].msg-total[2].num-msg.queued;
num.msgqueued[1];
num-msg.queued[2];
num.msg-queued[l];

/* For each minor frame, establish how many packets are queued by
/* tasks that should have completed cycles during the previous frame
num.packets-queued[O0 = vg[ug-num].msg-total[4].num.packets +

vg[vgnum].msg.total[3].num.packets +
ug[vugnum].msg-total[2.num-packets +
vg[vg-num].msg-total[l].num-packets;

num-packets.queued[1] = vg[vg-num].msg-total[4.num.packets;
num-packet3squeued[2] = vg[vg-num].msg total[4.num-packets +

ug[vgnum].msg-total[3].num.packets;
num-packets.queued[3] = num-packetsqueued[l];
num..packets.queued[4] = vg[vgnum.msg-total[4.numpackets +

ug[vugnum].masgtotal[3.num-packets +
vg[vgnum].msg.total[2].num-packets;

num-packets.queued[53 = num-packets.queued[l];
num-packets.queued[61 = num-packets.queued[2];
num.packets.queued[7] = num-packets queued[l];

/* For each minor frame, establish how many rate groups should have */
/* encountered frame boundaries at the beginning of the given minor */
/* frame (where the given minor frame # is the index number */
num-rate.groups-due[0] = 4;
num-rate.groups due[1] = 1;
num-rategroups.due[21 = 2;
num-rate.groups due[3] = 1;

135

Appendix D

num-rate-groups-due[4] = 3;
num-rate-groups-due[5] = 1;
num-rate-groups-due[61 = 2;
num-rate-groups-due[7] = 1;

/* how, for each minor frame, establish the delay due to system */
/* overhead as a function of the intermediate tally values calculated */
/* above */
for(i = 0; i < 8; ++i)

/* Delay due to context switches for tasks completing in given frame */
overhead[i]+= num-tasks.completed[i+1] * delaydata->contextswitch;

/* Delay due to scheduling of tasks completing in the previous frame */
overhead[i]+= num-tasks.completed[i] * delaydata->RGDtskcoeff;
overhead[i]+ = num-rate.groups-due[i] * delaydata->RGD-tskconst;

/* Delay due to messages queued by tasks completed in previous frame */
overhead[i]+= nummsgqueued[i] * delaydata->RGD-msgconst;
overhead[i]+= num.packets.queued[i] *

(delay.data->IHcoeff + delaydata->RGDmsgcoeff);

overhead[i += delaydata->local FDIR;
overhead[i+= delay-data->IH-const;

/* Due to the nature of the delay data for the RGD, the following */
/* distinction is made to account for situations where there are */
/* no messages queued by the tasks completed in the previous frame */
if(num-packets-queued[i]>O) overhead[i]+=delaydata->RGDoverallconst;
else overhead[i] += delaydata->RGD-emptyqueueconst;

}

/* Check the deadlines for the RG4 tasks */
for(i = 0; i < 8; ++i)
if ((overhead[i] + vg[vg-num].rg-total[4]) > MINORFRAME)
vg[vg-num].overrun[i] = YES;

/* Check the deadlines for the RG3 tasks */
rg-total = (2*vg[vg.num].rg-total[4]) + vg[vg-num].rg-total[3];
if((overhead[01+overhead[1]+rg-total) > (2*MINORFRAME))
vg[vgnum].overrun[8] = YES;
if((overhead[2]+overhead[3]+rg-total) > (2*MINORFRAME))
vg[uvgnum].overrun[9] = YES;
if((overhead[4]+overhead[5]+rg-total) > (2*MINORFRAME))
vg[vg-num].overrun[10] = YES;
if((overhead[6]+overhead[7]+rgtotal) > (2*MINORFRAME))
vg[uvgnum].overrun[1I] = YES;

/* Check the deadlines for the RG2 tasks */
rg-total = (4*vg[vgnum].rg-total[41) + (2*vg[vgnum],rg-total[3]) +

vg[vgnum].rgtotal[2];
if((overhead[0]+overhead[1]+overhead[2]+overhead[31+rg-total) >
(4*MINORFRAME))

vg[vg-num].overrun[12] = YES;
if((overhead[4]+overhead[5+overhead[61+overhead[7+rg total) >
(4*MINORFRAME))

vg[uvgnum].overrun[13] = YES;

/* Check the single deadline for the RGI tasks */

136

Appendix D

rg-total = (8*ug[vg-num].rg.total[4]) + (4*ug[vgnum].rg-total[3]) +

(2*ug[ugnum].rg-total[21) + ug[vg.num].rg-total[1];
if((overhead[O]+overhead[1]+overhead[2]+overhead[3]+overhead[4]+

overhead[5]+overhead[6]+overhead[7]+rg-total)>(8*MIMORFRAME))
ug[vg.num].overrun[14] = YES;

/* Record the overhead data in the vg record */
for(i = 0; i < 8; ++i)
ug[vg.num.overhead[i] = overhead[i];

/* At the close of this procedure, all results are stored in the ug */
/* records and sent back to the "main" for interpretation by writefile */

)

137

Appendix D

/*--
CALLNAME: READLIST
AUTHOR: S. Treadwell
CREATED: 13 APR 92
UPDATED: 15 JUN 92

This procedure incorporates info held in external files into the run-time
data base for the analysis tool. "key-words.dat" holds the critical
constructs that are the key to parsing the Ada code. "constants.dat" holds
the system specific delay data that is needed for doing overrun calculations
and path parameterization comparisons.

--

void read l1ist(search-list,delay-data)
struct list-info *search list;
struct constant.list *delay-data;

int signal = 0;
int value = 0;
int num = 0;
int k;
int dummy-int;
char dummy string[100];
FILE *list file;

list.file = fopen("key-words.dat","r");
if (list-file == MULL)
{
printf("Cannot open key-words.dat for input\n");
exit(2);

/* Note that file format has each critical construct on its own line */
while(signal i= EOF)

signal = fscanf(list.file,"%s\n",search-list->entry[num++].name);
search list->Iength = num - 1;
fclose(list-file);

list-file = fopen("constants.dat","r");
if (list-file == MULL)

printf("Cannot open constants.dat for input\n");
exit(2);

}

/* File format has a label followed by the related integer value. Each */
/* label/value pair occupies its own line */
fscanf(list-file,"%s %d\n",dummy string,&dummy-int);
delay.data->queue-coeff = dummy-int;
fscanf(listfile,"%s %d\n",dummystring,dummyint);
delay-data->queue-const = dummyint;
fscanf(list-file,"%s %d\n",dummy-string,&dummy-int);
delay-data->retrieve-coeff = dummy-int;
fscanf(listfile,"%s %d\n",dummystring,&dummy-int);
delay-data->retrieve.const = dummyJint;
fscanf(list.file,"%s Xd\n",dummy-string,&dummy-int);
delay-data->IHcoeff = dummy-int;
fscanf(listfile,"%s Xd\n",dummy.string,&dummy-int);

138

Appendix D

delay-data->IH-const = dummy-int;
fscanf(llst-flle,"%s Xd\n",dummy-string,&dummy-int);
delay-data->RGD-m'sg-coeff = dummy-Int;
fsccnf(ll9t-flle,"%s Xd\n",dummy-string,&dummy-int);
delay-data->RGD-mag-const = dummy-Int;
faconf(list-file,"Xs Xd\n",dummy-string,&dummy-int);
delay-data->RGD-tak-coeff = dummy-int;
fsccnf(H3t-file,"%s Xd\n",dummy-string,&dummy-int);
delay-data->RGD-tsk-const = dummy-int;
fscanf(li3t-flle,"%s Xd\n",dummy-string,&dummy-int);
delay-data->RGD-overall-const = dummy-int;
fscanf(ll9t-flle,"%s Xd\n",dummy-string,&dummy-int);
delay-data->RGD-empty-queue-const = dummy-int;
fscanf(li3t-flle,"%3 Xd\n",dummy-sti-ing,&dummy-int);
delay-data->context-switch = dummy-int;
f3canf(ll3t-flle,"%3 Xd\n",dummy-3tring,&dummy-int);
delay-data->Iocal-FDIR = dummy-int;
fscanf(1!3t-file,"Xs Xd\n",dummy-string,&dummy-int);
delay-data->3y3-FDIR = dummy-int;

fc1o3e0i3t-file);

139

Appendix D

/*--
CALLNAME: GETLINE
AUTHOR: S. Treadwell
CREATED: 10 JUN 92
UPDATED: 18 NOU 92

Will use the stream of characters provided by the specified file to assemble
a buffer of single word items all of which belong to a single line of code.
The key here is to look for a semicolon as the line terminator, not a
carriage return. The semicolon is not included in the program statement and
all capital letters are transformed to lower case letters. All white space
is deleted and comment lines are recorded in a separate buffer using the same
format as the program statement. The program statement stored in this-line
is passed back to parse to be examined during model construction. The
comment held in comment-line is passed to parse-comment to extract any
programmer input included.
-- /

int get-line(this-line,comment-line,info-buffer,infile,error-file)
struct list-info *this line;
struct llstinfo *comment line;
struct comment-info *info buffer;
FILE *infile;
FILE *error file;

void parse.comment();
int k;
int c = 0;
int num.word - 0;
int num.comment - 0;
int count = O;
int signal = 1;
char temp[80];
enum boolean comment = NO;
enum boolean done = NO;

thisline->length = 0;
comment-line->length = 0;

do

count = 0;
do

if ((c == '\n')&&(comment == YES)) /* for "\n" after a comment... */
{
comment - NO; /* the comment is terminated by the carriage return */
comment-line->marker = 0;
/* Check the completed comment for programmer input */
parse.comment(comment line,info-buffer,error-file);
comment-line->length = 0; /* Once checked,the comment is not needed */

}
while(isspace(c = fgetc(infile))); /* kill the white space */
if (c == EOF) break; /* terminate procedure upon end of file */

do
(

if((c > 64)&&(c < 91)) c += 32; /* transform UPPER case to lower case */
if((c == ';')&&(comment == NO)) done = YES; /* prog statement complete */

140

Appendix D

if(!done) temp(count++] = c; /* add character to word */

)
while(lisspace(c = fgetc(infile)));
if (c == EOF) break;

temp[count] = '\0';
/* add word to line*/
strcpy(this l ine->entry[this line->Iength].name,temp);
strcpy(comment.line->entry[comment.line->length].name,temp);

if ((k = strncmp(temp,"--",2)) == 0) comment = YES;
if (comment) ++commentline->length;
else ++thisline->length;

}
while (!done);

if (c == EOF) signal = 0;
this-line->marker = 0;

/* Uhen signal is returned as a "0," it signifies that the end of the file */
/* has been reached. */
return(signal);

141

Appendix D

/*......--
CALLHAME: SEARCH
AUTHOR: S. Treadwell
CREATED: 11 APR 92
UPDATED: 18 NOU 92

Will do the primary parsing for the "finish" stage. Once a line of code is
available for analysis, 'search' will inspect it for a given list of ada
constructs and system calls and will branch to other parsing and analysis
functions as dictated by what is found. This procedure looks for call names
and ada constructs exactly as given by the user in auxiliary files. When
searching for matches, names that are similar but not exactly the same as
the names sought will not be sufficient to warrant a match.

-- *

void search(searchlist,delaydata,skeleton,thisline,flags,endlist,
info.buffer,pkgname,taskname,messages,procedures,filename,
error-file)

struct list-info *search list;
struct constant-list *delay-data;
struct model-info *skeleton;
struct list.info *this line;
struct flagJlist *flags;
struct list.info *end list;
struct comment-info *info-buffer;
char pkg.name[];
char task-name[];
struct messagelimits messages;
struct proc-list-info *procedures;
char filename[];
FILE *errorfile;

/* list of constructs
/* list of system specific delay data
/* holds the current model
/* current program statement
/* parsing status info
/* nesting status info
/* programmer provided info

/* message passing limits
/* holds all subprogram models

/* error log

void processloop();
void end-found();
void task-found();
void pkg-found();
void proc.found();
int find.parameter();
enum boolean valid-call();
int i,j,k;
int oldnumcounters;
int old-length;
int value;
int previous;

for(i = O; i < this-line->length; ++i) /* check each word in the statement
{
/* establish the index for the word that precedes the word currently
/* being examined
if(i > 0) previous = i - 1;
else previous = 0;

for(j = 0; j < search-list->length; ++j) /* check against critical const

if((k= strcmp(this.line->entry[i].name,search.list->entry[j].name)) ==
switch(j)

case WFS: /* append to current model */

142

Appendix D

skeleton->entry[skeleton->Iength].type = WFS;
skeleton->entry[skeleton->Iength].value = UNDEFINED;
if (flags->ctractive) ++skeleton->length; /* model must be active */
break;

case LOOP:
/* ignore "end loop" statements here */
if ((k = strcmp(this-line->entry[previous].name,"end")) != 0)
{
this-line->marker = i;
/* extract extra info and add an entry to the model */
process loop(skeleton,end-list,this line, infobuffer,error-file);
if (flags->ctr-active) ++skeleton->Iength;

break;
case IF: /* append to current model */

if ((k = strcmp(thisline->entry[previous].name,"end")) != 0)
{
skeleton->entry[skeleton->length].type = IF;
skeleton->entry[skeleton->length].value = UNDEFINED;
if (flags->ctr-active) ++skeleton->length;
/* update the end-list */
strcpy(endl ist->entry[end.list->length++].name,"if");

break;
case ELSE:

skeleton->entry[skeleton->Iength].type = ELSE;
skeleton->entry[skeleton->length].value = UNDEFINED;
if (flags->ctr-active) ++skeleton->length;
break;

case ELSIF:
skeleton->entry[skeleton->length].type = ELSIF;
skeleton->entry[skeleton->Iength].value = UNDEFINED;
if (flags->ctr-active) ++skeleton->length;
break;

case CASE: /* ignore "end case" statements here */
if((k = strcmp(this-line->entry[previous].name,"end")) = 0)
{

flags->enable-when = YES; /* guards against "exception" handling */
/* code being included in the model */

skeleton->entry[skeleton->Iength].type = CASE;
skeleton->entry[skeleton->Iength].uolue = UNDEFINED;
if (flags->ctr-active) ++skeleton->length;
/* update the endl ist */
strcpy(end-list->entry[end-list->Iength++].name,"case");

break;
case UHEN:
/* add entry to model only if it belongs to a case statement */
skeleton->entry[skeleton->length].type = UHEN;
skeleton->entry[skeleton->length].ualue = UNDEFINED;
if ((flags->ctractive == YES) && (flags->enable-when == YES))
++skeleton->Iength;

break;
case END:

thisIline->marker = i + 1;
end-found(delay-data,thisJline,end-list,procedures,flags,skeleton,

pkgname,taskname,errorfile);
break;

case TASK:

143

Appendix D

this-line->marker = i + 1;
task.found(this-line,end_list,taskname,flags,error -file);
break;

case PACKAGE:
this-line->marker = i + 1;
pkgfound(thisline,end list,pkg-name,flags,error-file);
break;

case PROC:
this line->marker = i;
proc-found(this-line,end-list,procedures,flags,filename,error file);
break;

case BEGIN:
if ((flags->proc-depth > O)ll(flags->taskfound == YES))
flags->ctr-active = YES;

break;
case SELECT:

if((k = strcmp(this-line->entry[previous].name,"end")) != 0)
strcpy(end-list->entry[endlist->length++].name,"select")

break;
case RECORD:

if((k = strcmp(this-line->entry[previous].name,"end")) != 0)
strcpy(end-list->entry[end-list->length++].name,"record");

break;
case ACCEPT:

strcpy(endlist->entry[end-list->length++].name,"start");
break;

default: break;

/* Need a separate comparison statement to deal specifically with the *
/* message passing functions because there could be a (and parameter *
/* names attached to the function call which would cause an inexact *
/* match with the key word in searchlist *
if((k = strncmp(thisline->entry[i].name,search-list->entry[j].name,

strlen(search-list->entry[j].name))) == 0)
{
this-line->marker = I;
searchlist->marker =j;
switch(j)
(
case QUEUE:

/* check to make sure it really is a subprogram call */
if(valid-call(thissline->entry[i].name,

searchl ist->entry[j].name)==YES)
{
skeleton->entry[skeleton->length].type = QUEUE;
/* If programmer input specifies message size, use that value */
/* over any other possible size values */
value = infobuffer->message-size;
info-buffer->message-size = DEFAULT;
if(value == DEFAULT)
/* If programmer input does not specify size, find the value */
value = find-parameter(search-list,thisline,error-file);

/* If no viable value can be established, assume the default */
if((value == LOST)ll(value > messages.xmit-size))
(

fprintf(error.file,"Assuming default size for queue-message\n");
skeleton->entry[skeleton->length].value =
packetize(messages.xmitsize);

144

Appendix D

}
else

skeleton->entry[skeleton->length].value =
packetize(value); /* transform size from bytes to packets */

if (flags->ctractive) ++skeleton->length;
}
break;

case RETRIEUE:
if(valid-call(this line->entry[il.name,

searchlist->entry[j].name)==YES)
(
skeleton->entry[skeleton->length].type = RETRIEUE;
value = info.buffer->message-size;
infobuffer->message.size = DEFAULT;
if(value == DEFAULT)
value = find.parameter(search list,this line,error-file);

if((value == LOST)ll(value > messages.xmit.size))
(

fprintf(error file,
"Assuming default size for retrieve-message\n");

skeleton->entry[skeleton->length].value =
packetize(messages.xmit.size);

}
else

skeleton->entry[skeleton->length].value =
packetize(value);

if (flags->ctractive) ++skeleton->length;
}
break;

case SEND:
if(valid-call(this-line->entry[i].name,

searchlist->entry[lj].name)==YES)
(
skeleton->entry[skeleton->length].type = SEND;
value - infobuffer->message.size;
info-buffer->message-size = DEFAULT;
if(value == DEFAULT)
value = find-parameter(search-list,this lineerror-file);

if((value == LOST)ll(value > messages.xmitsize))
(
fprintf(errorfile,"Assuming default size for sendmessage\n");
skeleton->entry[skeleton->length].value =
packetize(messages.xmit.size);

else
skeleton->entry[skeleton->length].value =
packetize(value);

if (flags->ctractive) ++skeleton->length;
}
break;

case READ:
if(valid-call(this line->entry[il.name,

searchlist->entry[j].name)==YES)
{
skeleton->entry[skeleton->length].type = READ;
value = infobuffer->messagesize;
infobuffer->messagesize = DEFAULT;
if(value == DEFAULT)
value = find-parameter(search list,thisJline,error-file);

145

Appendix D

if((value == LOST)ll(value > messages.xmit size))
{
fprintf(error-file,"Assuming default size for read.message\n");
skeleton->entry[skeleton->Iength].ualue =
packetize(messages.xmitsize);

}
else
skeleton->entry[skeleton->Iength].value =
packetize(value);

if (flags->ctractive) ++skeleton->length;
)
break;

default: break;
}

}

/* Now look for subprogram calls and insert models as appropriate */
if (flags->ctractive)
for(j = 0; j < procedures->length; ++j)
if((k = strncmp(this-line->entry[il.name,procedures->entry[j].name,

strlen(procedures->entry[j].name))) == 0)
{
old.num.counters = skeleton->num.counters;
old-length = skeleton->length;
for(k = 0; k < procedures->entry[j].skeleton, length; ++k)
skeleton->entry[skeleton->Iength++] =
procedures->entry[j].skeleton.entry[k];

for(k = 0; k < procedures->entry[j].skeleton.num-counters; ++k)
skeleton->counter-set[skeleton->numcounters++] =
procedures->entry[j].skeleton.counter-set[k];

/* adjust counter-set index values to accomodate the new entries */
for(k = old-length; k < skeleton->length; ++k)

if(skeleton->entry[k].type == COUNTERSET)
skeleton->entry[k].value += old-numcounters;

}

}

146

Appendix D

/* --
CALLNANE: PARSECOMMENT
AUTHOR: S. Treadwell
CREATED: 12 MAR 93
UPDATED: 14 MAR 93

This procedure takes a single complete comment as input and extracts from
it any programmer input specifications included. The specs must conform to
the established conventions, and any information found is used to update the
info.buffer, which is a running list of default values to use as loop
iteration maximums and message sizes,
--

void parse.comment(comment-line,info.buffer,error-file)
struct list.info *comment-line;
struct commentinfo *info-buffer;
FILE *error file;
{

int evaluate();
int eval-simplenum();
struct string keyword[5];
int i,j,k;
int value = UNDEFINED;
strcpy(key-word[O].name,"basic");
strcpy(key-word[l].name,"for");
strcpy(key-word[2].name,"while");
strcpy(key.uord[3].name,"message");
/* Check if comment line conforms to programmer input conventions */
if((k = strcmp(comment.line->entry[1].name,"*")) == 0)
{
/* if an integer value is given in the comment, evaluate it */
if(evaluate(comment-line->entry[comment-line->length-1].name)==SIMPLENUM)
value=evalsimplenum(comment-line->entry[comment-line->length-1].name);

for(i = O; i < 4; ++i)
if((k = strncmp(comment-line->entry[2].name,key-word(iJ.name,

strlen(key-word[i].name)-1)) == 0)
/* update the appropriate info buffer value */
/* if value is not a positive integer, the default value is assumed */
switch(i)
{
case 0:
if (value < 0) value = INFINITE;
info-buffer->basic-loopJlimit = value;
break;

case 1:
if (value < 0) value = UNDEFINED;
info.buffer->for-loopJlimit = value;
break;

case 2:
If (value < 0) value = UNDEFINED;
infobuffer->while-loop-limit = value;
break;

case 3:
if (value < 0) value = DEFAULT;
info.buffer->message-size = value;
break;

default: break;

147

Appendix D

/* --
CALLHAME: URITEJFILE
AUTHOR: S. Treadwell
CREATED: 05 APR 93
UPDATED: 28 APR 93

This procedure sends the analysis results to an external file called
"results.dat." All information is passed in through the vg data structure.
The output format is self-explanatory.
--

void writefile(vg)
struct vg.info vg[];

int i,j,k;
int left-over;
int RG3_left-over;
int RG2_left.over;
int RG1lleft-over;
FILE *outfile;

outfile - fopen("results.dat","w");
if(outfile == MULL)
{
printf("Cannot open results.dat for output\n");
exit(2);

fprintf(outfile,"All results are given in terms of microseconds.\n");
fprintf(outfile,"The allotted minor frame time is Xd.\n\n",MlNORFRAME);

for(i = O; i < 40; ++i)

if(ug[il].present == YES)

fprintf(outfile,"RESULTS for UG#%d\n",i);
/* List individual results for tasks */
for(j = 0; j < vg(i].numtasks; ++j)
(
fprintf(outfile,"\nTASK: %s RATE GROUP: %d\n",vg[i].task[j].name,

vg[i].task[j].rate.group);
fprintf(outfile,"WORST CASE PATH: number of packets queued: %d\n",

ug[i].task[j].counter-set.num.queued);
fprintf(outfile," number of messages queued: %d\n",

vg[i].task[j].counter-set.num-msg.queued);
fprintf(outfile," number of packets retrieved: %d\n",

vg[i].task[j].counter-set.num.retrieved);
fprintf(outfile," number of messages retrieved: %d\n",

vg[i].task[j].counterset .msgretrieved);
fprintf(outfile," number of packets sent: %d\n",

vg[i].task[j].counter-set.num-sent);
fprintf(outfile," number of packets read: %d\n",

vg[i].task[j].counterset.num.read);
fprintf(outfile," minimal delay: %d\n",

vg[i].task[j].counterset.total-time);

/* Now categorize results according to rate groups and frame # */
fprintf(outfile,"\nRATE GROUP TOTALS FOR APPLICATION TASKS\n");

148

Appendix D

for(j = 1; j < 5; ++j)
fprintf(outfile,"rate group %d: %d\n",j,vg[i].rg-total[j]);
fprintf(outfile,"\nOUERHEAD TOTALS\n");

/* Create a matrix of results to show the contribution from overhead */
/* and each rate group for each minor frame. */
for(j -= ; J < 8; ++j)
fprintf(outfile,"minor frame %d: %d\n",j,vg(i].overhead[j]);
fprintf(outfile,

"\nINHOR FRAME OUERHEAD RG4 RG3 RG2 RG1\n");
RG3_left-over = ug[i].rg-total[3];
RG2_left-over = vg[i].rg-total[2];
RGlleft-over = vg[i].rg.total[l];
for(j = 0; j < 8; ++j)
{
/* Determine whether a new frame begins for RG3 and RG2 tasks */
if((j == 2)11(j == 4)ll(j == 6))
RG3_left.over = ug[il.rg.total[3];

if(J == 4)
RG2_left-over = ug[i].rg.total[2];

fprlntf(outfile, " d ",j);
/* overhead contribution */
if(MIHORFRAME >= ug[i].overhead[j])

fprintf(outfile," %5d",vg[i].overhead[j]);
left-over = MINORFRAME - vg[il.overhead[j];

else
(

fprintf(outfile," %5d",MlHORFRAME);
left-over = 0;

/* RG4 contribution */
if(left-over >= vg[il.rg.total[41)
(

fprintf(outfile," %5d",vg[i].rg-total[4]);
left-over -= ug[i].rg.total[4];

else
{

fprintf(outfile," %5d",left-over);
left-over = 0;

/* RG3 contribution */
If(left-over >= RG3_left-over)
{

fprintf(outfile," %5d",RG3_leftover);
left-over -= RG3_left-over;
RG3_left-over = 0;

else

fprintf(outfile," %5d",left-over);

RG3_left-over -= left-over;
left-over - 0;

/* RG2 contribution */
if(left-over >= RG2_left-over)
{

149

Appendix D

fprintf(outfile," %5d",RG2_left-over);
left-over -= RG2_left-over;
RG2_left-over = 0;

)
else
(

fprintf(outfile, " %5d",leftover);
RG2_left-over -= left-over;
left-over = 0;

}
/* RGI contribution */
if(left.over >= RG1_left-over)

fprintf(outfile," %5d\n",RGIleft-over);
left-over -= RG1_left-over;
RG1_left-over = 0;

else

fprintf(outfile," %5d\n",Ieft-over);
RGLleft-over -= left-over;
left-over = 0;

/* State predicted overrun conditions */
fprintf(outfile,"\n");
if(vg[i].overrun[0] == YES)
fprintf(outfile,"RG4 did not
if(vg[i].overrun[l] == YES)
fprintf(outfile,"RG4 did not
if(vg[i].overrun[2] == YES)
fprintf(outfile,"RG4 did not
if(vg[il.overrun[3] == YES)
fprintf(outfile,"RG4 did not
if(vg[i].overrun[4] == YES)
fprintf(outfile,"RG4 did not
if(vg[il.overrun[51 == YES)
fprintf(outfile,"RG4 did not
if(vg[i.overrun[6] == YES)
fprintf(outfile,"RG4 did not
if(ug[il.overrun[7] == YES)
fprintf(outfile,"RG4 did not
if(ug[i].overrun[81 == YES)
fprintf(outfile,"RG3 did not
if(ug[i].overrun[9] == YES)
fprintf(outfile,"RG3 did not
if(vg[i].overrun[10] == YES)
fprintf(outfile,"RG3 did not
if(vg[i].overrun[ll] == YES)
fprintf(outfile,"RG3 did not
if(vgl[i.overrun[123 == YES)
fprintf(outfile,"RG2 did not
if(ug[i].overrun[13] == YES)
fprintf(outfile,"RG2 did not
if(vg[i].overrun[14] == YES)
fprintf(outfile,"RG1 did not
fprintf(outfile,"\f");

satisfy

satisfy

satisfy

satisfy

satisfy

satisfy

satisfy

satisfy

satisfy

satisfy

sat isfy

satisfy

satisfy

satisfy

its

its

its

its

its

its

its

its

its

its

its

its

its

its

boundary

boundary

boundary

boundary

boundary

boundary

boundary

boundary

boundary

boundary

boundary

boundary

boundary

frame

frame

frame

frame

frame

frame

frame

frame

frame

frame

frame

frame

frame

0. \n")

1.\n");

2. \n")

3.\n")

4.\n")

5. \n")

6.\n")

7.\n")

1.\n")

3.\n")

5.\n")

7.\n")

3.\n")

boundary in frame 7.\n");

satisfy its only boundary.\n");

150

Appendix D

/*---
CALLNMAE: WITHFOUND
AUTHOR: S. Treadwell
CREATED: 12 JUL 92
UPDATED: 08 OCT 92

This procedure is used to help establish the software hierarchy for a given
task. Whenever a "with" statement is found in a context clause, it is sent
to this procedure so that the package name can be extracted and added to
pkgl ist.
--

void with-found(thisline,pkglist)
struct list-info *this line;
struct listlnfo *pkgjlist;
{

int i,c;
int j - 0;
int k - 0;
int num - 0;
enum boolean repeat = NO;
char templ[80];
char temp2[80];
struct string package[lO];

/* Most of the complexity of this procedure is due to an attempt to handle */
/* different format styles for the "with" statement -- i.e. single vs. */
/* multiple names on each line, with or without white space separating the */
/* names. */
for(i - this.line->marker; i < thisline->length; ++i)

(
strcpy(templ,thisline->entry[i.name);
while((c - templ[j++]) != '\0')
(
if(c == ",")
{
temp2[k] = '\0';
if ((c = templ[j]) != '\0')
(
k = 0;
if (strlen(temp2) >= 1) strcpy(package[num++].name,temp2);

else
temp2[k++] = c;

temp2[k] = '\0';
if (strlen(temp2) >= 1) strcpy(package[num++].name,temp2);
j = 0;
k = 0;

}

/* Ensure that package names are not repeated within pkg.list */
for(l = 0; i < num; ++i)

repeat - NO;
for(j = O; j < pkgJlist->length; ++j)

If((k - strcmp(package[i].name,pkg-list->entry[j].name)) == 0)

151

Appendix D

repeat = YES;
if(repeat == NO)
strcpy(pkglist->entry[pkglist->length++].name,package[i].name);

/* --
CALLNAME: PKGFOUND
AUTHOR: S. Treadwell
CREATED: 06 OCT 92
UPDATED: 06 NOU 92

In the case where a package statement is found, this procedure will decide
whether it is a valid package body and ensure that the name matches
the name expected. If these conditions pass, the proper flag will be set.
--

void pkg found(this line,end-list,pkg.name,flags,errorfile)
struct list-info *thisline;
struct list-info *end list;
char pkgname[];
struct flag-list *flags;
FILE *error file;
(

int k;

if ((k = strcmp(thisline->entry[thisline->marker++].name,"body")) == 0)

/* In the case where the task body file is being processed the package */
/* name is not known prior to processing and is defined as "none" */
/* When the package name is found it is appropriately recorded */
if ((k = strcmp(pkg.name,"none")) == 0)
strcpy(pkg-name,thisline->entry[thisline->marker].name);

if ((k = strcmp(pkg.name,thisline->entry[thisline->marker].name)) == 0)

flags->pkg-found = YES;
strcpy(end-list->entry[endlist->Iength++].name,pkgname);

else
fprintf(error file,"Unexpected package name or instance found\n");

152

Appendix D

/*---
CALLNAME: TASK.FOUND
AUTHOR: S. Treadwell
CREATED: 06 OCT 92
UPDATED: 12 NOU 92

In the case where a task statement is found, this procedure will decide
whether it is a task body and ensure that the name matches
the name expected. If these conditions pass, the proper flag will be set.

-- *

void taskfound(this.line,endlist,taskname,flags,error file)
struct list.info *this-line;
struct list-Info *end list;
char task.name[l;
struct flag-list *flags;
FILE *error-file;
{

int k;

if ((k = strcmp(this-line->entry[thisline->marker++].name,"body")) == 0)
{
strcpy(end-list->entry[end-list->length++].name,

this.line->entry[this.line->marker].name);
if ((k - strcmp(this.line->entry[this-line->marker].name,taskname)) == 0)
if (flags->pkgfound == YES) flags->taskfound = YES;
else fprintf(error-file,"Task found but package not yet found\n");

else
fprintf(errorfile,"Unexpected task name -- found: %s expected: %s\n",

this-line->entry[this-line->marker].name,taskname);

/* --
CALLNAME: PACKETIZE
AUTHOR: S. Treadwell
CREATED: 20 APR 93
UPDATED: 20 APR 93

A simple function to transform a message size in bytes to a message size in
64-byte packets. Note that four bytes of overhead are added to the message
size to account for message header information.
--

int packetize(numbytes)
int numbytes;
{

int numpackets;

num.bytes += 4;
num.packets = ceil(num.bytes/64.0);

return(numpackets);
}

153

Appendix D

/*--
CALLHAME: PROC.FOUND
AUTHOR: S. Treadwell
CREATED: 15 JUL 92
UPDATED: 10 NOU 92

Grabs the name of a procedure and increments both the length of the procedure
list and the internal procedure marker.

void proc.found(this-line ,end.list,procedures,flags,filenameerror-file)
struct list.info *this line;
struct list-info *end list;
struct proc-list-info *procedures;
struct flag-list *flags;
char filename[];
FILE *error-file;
{

int i = 0;
int c,k;
char temp[80];
char name[40];

/* The proc.depth flag is needed to help identify valid subprogram body */
/* code so that extraneous code is not included in the model. Basically */
/* when proc.depth is greater than zero, we are dealing with code inside */
/* a subprogram body and can add model entries appropriately */
if(flags->pkg-found == YES) ++flags->proc.depth;

/* Extract the name of the procedure and strip away the parameter list */
strcpy(temp,thisline->entry[thisline->marker + 11.name);
c = temp[O];
while((c !- '\0') && (c != '('))
{
name[i++] = c;
c = temp[i];

name[i] = '\0';

/* Set up the procedures data structure to accept model info */
strcpy(end list->entry[end-list->length++].name,name);
strcpy(procedures->entry[procedures->length].name,name);
strcpy(procedures->entry[procedures->length].filename,filename);
procedures->entry[procedures->length].done == NO;
procedures->marker = procedures->length;
++procedures->length;

)

154

Appendix D

/* --
CALLHAME: FINDPARAMETER
AUTHOR: S. Treadwell
CREATED: 4 MAY 92
UPDATED: 30 OCT 92

Once a system call is found, it may be necessary to calculate the delay it
incurs based upon the value of one of the parameters included in the call.
This procedure will identify all of the parameters for a given call, and
the critical parameter can be isolated and evaluated with reference to all
preceding code. The object is to attach a specific value to the critical
parameter so that this value can be used in calculating the expected time
delay for a given system call. For now, this procedure is only utilized
when trying to determine the size of a message for a message passing fcn.

--

Int find-parameter(searchlit,thisthisline,errorfile)
struct listInfo *search list;
struct listinfo *this line;
FILE *error.file;
{

int evaluate();
Int eval-simplenum();
int eval.complex-num();
int eval.natural.num();
int c;
int i = 0;
int j = 0;
int k - 0;
int num = 0;
Int value = LOST;
enum boolean foundfirst = NO;
enum boolean foundsecond = NO;
enum boolean innerset = NO;
char templ[40];
char temp2[40];
char critical[40];
struct string parameter[lO];

/* Most of the complexity of this procedure is due to an attempt to handle */
/* any possible parameter list format -- to include white space and even */
/* carriage returns between parameters. */
for(i = this line->marker; i < thisline->length; ++i)
(
strcpy(templ,thisline->entry[i].name);
while((c = templ[j++]) != '\0')
{
switch(c)
(
case '(': /* Looking for the (that begins the parameter list */
if (foundfirst == YES) /* in case of parameter like "natural(i)" */
{

innerset = YES;
temp2[k++] = c;

)
else foundfirst = YES;
break;

case ',: /* commas separate the parameter items */

155

Appendix D

temp2[k] = '\0';
strcpy(parameter[num].name,temp2);
k = 0;
++num;

break;
case ')': /* Looking for the closing) */

if (innerset == YES)

temp2[k++] = c;
innerset = NO;

else

foundsecond = YES;

temp2[k] = '\0';
strcpy(parameter[num].name,temp2);

break;
default:

if (foundfirst == YES)
if (!isspace(c))
temp2[k++] = c;

break;

j = 0;

/* Note that the fourth parameter is targeted because it is the fourth */
/* parameter that specifies message size for message passing functions */
/* In the future, we can pass in the number of the critical parameter */
/* rather than having it hardwired to = 4 */
if (num >= 3)

strcpy(critical,parameter[3].name);
else

fprintf(errorfile,"Found too few parameters for an instance of %s\n",
searchlist->entry[searchlist->marker].name);

/* Determine the format of the critical parameter and evaluate if possible */
switch(evaluate(critical))

case SIMPLENUf: value = evalimple.num(critical); break;
case COSIMPLEXNUM: value = evalcomplexnum(critical); break;
case HATURALNUM: value = eval-natural-num(critical); break;
case UARNAME: value = LOST; break;
case UNKNOUN: value = LOST; break;

if (value < 0) value = LOST;

return(value);

156

Appendix D

/*---
CALLAME: PROCESS.LOOP
AUTHOR: S. Treadwell
CREATED: 23 JUL 92
UPDATED: 18 HOU 92

Will take a "loop" occurrence and further define it into the type of loop or
classify it as an "end loop." If the program statement defines the beginning
of a loop, the value of the loop iterations maximum must be defined and
included in the appropriate model entry.
--

void process.loop(skeleton,end-list,this.line,info-buffer,error-file)
struct model-info *skeleton;
struct list info *this line;
struct list-info *end list;
struct comment-info *info buffer;
FILE *errorfile;
{

int for-loop-found();
enum boolean target.found();
int k;

/* Update end-list according to the loop construct */
strcpy(end.list->entry[end-list->length++].name,"loop");
skeleton->entry[skeleton->length].value = UNDEFINED;

/* Is it a for..loop? */
if (targetfound(this.line,"for","loop") == YES)
{
skeleton->entry[skeleton->length].type = FOR-LOOP;
skeleton->entry[skeleton->length].value =

for-loop.found(this-line,info-buffer,error-file);

else /* Is it a while..loop? */
{
if (target-found(this-line,"while","loop") == YES)
(
skeleton->entry[skeleton->length].type = UHILE..LOOP;
skeleton->entry(skeleton->length].value = infobuffer->while-loop-limit;
info-buffer->whileJloop-limit = UNDEFINED;

else /* we know it is a basic loop at this point */
(
skeleton->entry[skeleton->length].type = LOOP;
skeleton->entry[skeleton->length].ualue = info.buffer->basic-loop-limit;
info.buffer->basicloop-limit = INFINITE;

157

Appendix D

/* --
CALLNAME: FOR.LOOPFOUND
AUTHOR: S. Treadwell
CREATED: 4 MAY 92
UPDATED: 29 JUL 92

If a for..loop construct is found, the loop's max iterations must be defined
and stored in the value element of the model. This procedure checks the
programmer input buffer, and if no limit is given there, it finds the loop
argument and attempts to evaluate it.

--

int forIoopfound(this-line,info-buffer,errorfile)
struct list.info *this line;
struct comment-info *info buffer;
{

int evaluate();
int eval.range.num();
struct range-info temprange;
char argument[20];
int loopJlimit = UNDEFINED;

/* Identify the loop argument */
strcpy(argument,thisline->entry[this.line->marker + 31.name);

/* If there is no programmer input for the loop maximum evaluate the */
/* argument if possible */
if (info-buffer->forlooplimit == UNDEFINED)
if (evaluate(argument)== RANGENUM)

loop-limit = eual-range-num(argument,error file);

if(loop-limit < 0) /* If no positive integer is established for limit */
{

loop-limit - info-buffer->for loop limit;
info.buffer->for-loopJlimit = UNDEFINED;

}

return(loop limit);
}

158

Appendix D

/* --
CALLNAfE: END-FOUND
AUTHOR: S. Treadwell
CREATED: 15 JUL 92
UPDATED: 18 HOU 92

This procedure is used for any "end" statement found and it is essential to
maintaining the end.Iist, which holds code nesting status info. For "end"
statements applying to program units, this procedure initiates the model
wrap-up and processing.
--*

void end.found(delay.data,this-line,endlist,procedures,flags,skeleton,
pkgname,taskname,errorfile)

struct constant list *delay-data;
struct list-info *this line;
struct list-info *end list;
struct proclistinfo *procedures;
struct flag-list *flags;
struct model-info *skeleton;
char pkg.name[];
char task.name[l;
FILE *error-file;
(

void reduce-model();
int i,j,k;
char dummyname[80];
char object[80];
char expected[80];

I = procedures->marker;

strcpy(expected,end-list->entry[end-list->length - 1].name);

/* If "end" is the last word in the program statement...*/
if(thisJline->marker < this-line->length)
strcpy(object,this-line->entrythis-line->marker].name); /**

else
strcpy(object,"none");

/* Compare what endlist expects with what is found in the code. If there */
/* is a mismatch, declare a fatal error. */
if((k - strcmp(object,endlist->entry[endlist->length - 11.name)) != 0)

if((k - strcmp(object,"none")) != 0)/* don't compare something to nothing*/
(
flags->fatal-error = YES;
fprintf(eorror-file,"Fatal error occurred in package %s with 'end %s'",

pkgname,object);
fprintf(error-file,"...expecting end %s\n",

end.list->entry[endlist->length - 1].name);
)

/* If the end of a subprogram body is found...
if((k = strcmp(expected,procedures->entry[i].name)) == 0)
(

if(flags->proc.depth > 0) --flags->procdepth;
else fprintf(error-file,"Error with procedure depth\n");
flags->ctractive = NO; /* deactivate the model */

159

Appendix D

reduce.model(skeleton,delay.data,error-file); /* wrap-up the model */
procedures->entry[i].skeleton = *skeleton; /* store the model */
procedures->entry[i].done = YES;
skeleton->length = 0; skeleton->numcounters = 0;
procedures->marker = procedures->length;
/* Must account for nested procedure bodies */
for (j = procedures->marker - 1; j >=O; --j)
{

if(procedures->entry[j].done == NO)

procedures->marker = j;
break;

/* If the end of a package is found... */
if((k = strcmp(object,pkgname)) == 0)
{

flags->ctr-active = NO; /* deactivate model */
flags->finished = YES; /* code processing is complete */
for(j = 0; j < procedures->length; ++j)
procedures->entry[j].done = YES;

/* adjust subprogram names to include package name */
for(j = procedures->pkgmarker; j < procedures->length; ++j)
{
strcpy(dummyname,pkgname);
strcat(dummyname,".");
strcat(dummy.name,procedures->entry[j].name);
strcpy(procedures->entry[j],name,dummyname);

}
procedures->pkgmarker = procedures->Ilength;

/* If the end of a task body is found... */
if((k = strcmp(object,taskname)) == 0)
(
flags->ctractive = NO;
flags->finished = YES;
for(j = 0; j < procedures->length; ++j)

procedures->entry[j].done = YES;

/* Add an end.loop entry to the model */
if((k = strcmp(expected,"loop")) == 0)
{

if((k = strcmp(object,"none")) == 0)
fprintf(errorfile,"Fatal error -- expecting an end loop\n");

skeleton->entry[skeleton->length].type = END-LOOP;
skeleton->entry[skeleton->length].value = UNDEFINED;
if (flags->ctractive) ++skeleton->length;

/* Add an endif entry to the model */
if((k = strcmp(expected,"if")) == 0)
{

if((k = strcmp(object,"none")) == 0)
fprintf(errorfile,"Fatal error -- expecting an end if\n");

skeleton->entry[skeleton->length].type = ENDIF;

160

Appendix D

skeleton->entry[skeleton->Iength].ualue - UNDEFINED;
if (flags->ctractive) ++skeleton->length;

/* Add an end-case entry to the model */
if((k = strcmp(expected,"case")) == 0)

if((k = strcmp(object,"none")) == 0)
fprintf(error-file,"Fatal error -- expecting an end case\n");

skeleton->entry[skeleton->length].type = END.CASE;
skeleton->entry[skeleton->length].value = UNDEFINED;
if (flags->ctractive) ++skeleton->length;
flags->enable-when = NO;

if((k = strcmp(expected,"start")) == 0)
if((k = strcmp(object,"none")) == 0)
fprintf(error-file,"Fatal error -- expecting an end start\n");

if((k = strcmp(expected,"select")) == 0)
if((k = strcmp(object,"none")) == 0)
fprintf(error-file,"Fatal error -- expecting

if((k = strcmp(expected,"record")) == 0)
if((k - strcmp(object,"none")) == 0)
fprintf(errorfile,"Fatal error -- expecting

if(end list->length > 0) --end list->Iength;

an end select\n");

an end record\n");

161

Appendix D

/* --
CALLNAME: UALIDCALL
AUTHOR: S. Treadwell
CREATED: 22 JUN 92
UPDATED: 22 JUN 92

A quick check to see if a procedure call instance is really a valid one.
Basically this traps for cases where there is a larger word that contains
the name of a procedure but is not a call for that procedure.

enum boolean validcall(argument,match)
char argument[];
char match[];

int k;
enum boolean flag = NO;

if(strlen(argument) == strlen(match)) flag = YES;
if((k - argument[strlen(match)]) == '(') flag = YES;

return(flag);

/* --
CALLNAME: PRINT.LINE
AUTHOR: S. Treadwell
CREATED: 13 APR 92
UPDATED: 28 OCT 92

Used for debugging purposes. Will print out whatever line of code has been
most recently stored in the this.line buffer.

void print.llne(this Jline,outfile)
struct listinfo *this line;
FILE *outfile;
{

int i;

for (i = O; i < this.line->length; ++i)
fprintf(outfile,"%s ",this-line->entry[i].name);

if(thisline->length > 0) fprintf(outfile,"\n");

162

Appendix D

/*--
CALLNAfIE: TARGET.FOUHD
AUTHOR: S. Treadwell
CREATED: 29 JUL 92
UPDATED: 29 JUL 92

Used in parsing loop statements. Helpful in distinguishing between a for-
loop and a while-loop since loops are keyed on the word "loop" and not on
"for" or "while." The boundary string is used to bound the search for the
beginning of the loop. We don't want to search infinitely and possibly find
a loop beginning that does not apply to the given loop. Consider the
following example:

for i in 1..10 loop
loop

end loop;
end loop;

When parsing the inner loop construct, we don't want to find the beginning
of the outer loop and mistakenly identify a basic loop as a for..loop.

--

enum boolean targetfound(thisline,target,boundary)
struct list.info *this line;
char target[];
char boundary[];
{

int 1,k;
enum boolean success = NO;

/* Start at the word "loop" and search backwards for the target without */
/* going further back than allowed by the boundary set. */
for(i - this.line->marker - 1; i >= 0; --i)
{

if((k - strcmp(this-line->entry[il.name,target)) == 0)
{
success = YES;
this.line->marker = i;
break;

)
if((k - strcmp(this-line->entry[i.name,boundary)) == 0)
break;

/* The success integer indicates whether the target was found */
return(success);

}

163

Appendix D

/* --
CALLHAME: EUALRANGENUM
AUTHOR: S. Treadwell
CREATED: 5 MAY 92
UPDATED: 15 JUN 92

Will take a string expression for a range like '0..60' and parse it into a
first, last, and span values. These values are then stored in the data
structure called range, and the span value is also returned as the output of
the function.
--

int eval-range-num(word,errorfile)
char word[];
{

int evaluate();
int eval-simple num();
int eval.natural.num();
int evalcomplex-num();
int c;
int i = 0;
int j = 0;
char min[20];
char max[20];
struct range-info temprange;

strcpy(temprange.description,word);

/* find the first value in the range */
while(isalnum(c = word[i]))

min[i++] = c;
min[i++] = '\0';

++i;

/* find the last value in the range */
while(isalnum(c = word[i++]))

max[j++] = c;
max[j] = '\0';

/* evaluate the first value in the range */
switch(evaluate(min))
{
case SIMPLENUM: temprange.first = eval.simple-num(min); break;
case HATURALNUM: temprange.first = evalnatural-num(min); break;
case COMPLEXNUM: temprange.first = eval-complexnum(min); break;
case UARNAME: temprange.first = LOST; break;
case UNKNOWN: temprange.first = LOST; break;
default: temprange.first = LOST; break;

/* evaluate the last value in the range */
switch(evaluate(max))

case SIMPLENUM: temprange.last = eval-simplenum(max); break;
case NATURALNUM: temprange.last = evalnatural.num(max); break;
case COMPLEXNUM: temprange,last = eval.complex-num(max); break;
case UARNAME: temprange.last = LOST; break;

164

Appendix D

case UNKNOWN: temprange,last = LOST; break;
default: temprange,last = LOST; break;
}

/* calculate the range */
if((temprange.first != LOST) && (temprange.last != LOST))
temprange.span = temprange.last - temprange.first +1;

else
temprange.span = LOST;

return(temprange.span);

/*--
CALLNAME: EUALNATURALNUM
AUTHOR: S. Treadwell
CREATED: 4 MAY 92
UPDATED: 15 JUN 92

Will take an expression like 'natural(number)' and evaluate its value based
upon the number within the parentheses, This value is then returned as the
value of the expression.
--

int eval.natural-num(word)
char word[40];
{

int evaluate();
int evalsimplenum();
int evalcomplex.num();
int c;
int i = 0;
int j = 0;
int value = LOST;
char argument[40];

if (word[7] == '(')

i= 8;

while((c = word[i++]) != ')')
argument[j++] = c;

argument[j] = '\0';
switch(evaluate(argument))
(
case SICOPLENUM: value = evalcosimple. num(argument); break;
case COMPLEXNUM: value = evalOST complexnum(argument); break;
case UARNAKNOME: value = LOST; break;
case UNKNOWN: value = LOST; break;
default: value = LOST; break;
}

return(value);

)

165

Appendix D

/*--
CALLHNAE: EURLCOMPLEXNUM
AUTHOR: S. Treadwell
CREATED: 4 MAY 92
UPDATED: 15 JUN 92

Will take a string expression like '16fffff' and parse it into a single
integer value and return that value as the output of the function.
The string must be in a form almost exactly like that given. Any base or
internal value can be used, provided that it is not too large to be held
in an integer.
--*

int eval.complex.num(word)
char word[];

int i = 0;
int j - 0;
int c;
int basevalue;
int numvalue = LOST;
char base[20];
char num[20];

while(isdigit(c = word[i]))
base[i++] = c;

base[l++] = '\0';

while(isxdigit(c = word[i++]))
num[j++] = c;

num(j] = '\0';

basevalue = strtol(base,(char **)HULL,10);
numvalue = strtol(num,(char **)HULL,basevalue);

return(numvalue);

/*--
CALLHAME: EUALSIMPLENUM
AUTHOR: S. Treadwell
CREATED: 4 MAY 92
UPDATED: 5 MAY 92

Will take a pure number in string form and convert it to integer form and
return that integer as the output of the function.
Cannot deal with floating point numbers; only integers are allowed.
Assumes that everything expressed as a pure number is in base 10.
--

int eval.simple.num(word)
char word[];
(

int value = LOST;

value = strtol(word,(char **)NULL,10);
return(value);

}

166

Appendix D

/* --
CALLHANE: EUALUATE
AUTHOR: S. Treadwell
CREATED: 4 MAY 92
UPDATED: 5 MAY 92

Uill take a string as an input argument, evaluate the contents of that string
and put It in a class according to its configuration. The class is returned
as an integer value and the classes are defined in "header.h"
Works for all tested cases, but may not be foolproof. A safety net is
provided through the UNKNOWN class of string, which is triggered when the
string does not fit any of the allowed patterns.
--*

int evaluate(word)
char word[];
{

Int class = UNKNOUN;
int i - 0;
int k = 0;
int c;
int dots = 0;
int pound = 0;
int other = 0;

if (isdigit(word[0]))
{
while((c = word[i++]) != '\O')
{

if(c == '.') ++dots;
if(c == 's') ++pound;
if(!isdigit(c)) ++other;

if ((dots == 2) & (pound == 0) & (other == 2)) class = RANGENUi;
if ((dots == 0) & (pound == 2) & (other >= 2)) class = COMPLEXHUM;
if ((dots == 0) & (pound == 0) & (other == 0)) class = SIMPLENUM;

if (isalpha(word[O]))
{
class = UARNAME;
if((k = strncmp(word,"natural",7)) == 0) class = HATURALNUM;
while((c = word[i++]) != '\0')

if(c == '.')
if((c - word[i++]) == '.') class - RANGENUM;

return(class);

167

Appendix D

/*--
CALLNAME: PRINT-PROCEDURES
AUTHOR: S. Treadwell
CREATED: 19 OCT 92
UPDATED: 19 OCT 92

Will print out the models for each of the procedures found for a given task
This procedure is provided for filling the error log with valuable info for
tracking down analysis and/or run-time errors.

void printprocedures(procedures,error.file)
struct proclist.info *procedures;
FILE *error file;

int i,j,k;

for(i = 0; i < procedures->length; ++i)

fprintf(errorfile,"Procedure %s found in %s\n",procedures->entry[i].name,
procedures->entry[i].filename);

for(j = 0; j < procedures->entry[i].skeleton.length; ++j)
fprintf(errorfile,"Type:%3d Ualue:%4d Depth:%3d Pointer:%3d\n",

procedures->entry[i].skeleton.entry[j].type,
procedures->entry[i].skeleton.entry[j].value,
procedures->entry[i].skeleton.entry[j].depth,
procedures->entry[i].skeleton.entry[j].pointer);

for(j = 0; j < procedures->entry[i].skeleton.num.counters; ++j)
fprintf(errorfile,"Ctr %2d: Queued %3d Rtrvd %3d Sent %3d Read %3d\n",j,

procedures->entry[i].skeleton.counterset[j].numqueued,
procedures->entry[i].skeleton.counter.set[j].num.retrieved,
procedures->entry[i].skeleton.counterset[j].num-sent,
procedures->entry[i].skeleton.counter.set[j].num.read);

void clear.screen()

printf("\033[%dJ",2);
printf("\n");}

168

Appendix D

/* --
CALLHAME: FINDWOURSTPATH
AUTHOR: S. Treadwell
CREATED: 01 SEP 92
UPDATED: 20 OCT 92

For a given model, this procedure controls model preparation, reduction, and
path generation. The execution path generation leads to identification of
the worst case path and the parameterization of that path is returned to the
parent procedure, processlist.
--

struct counter-list find-worstpath(skeleton,delay-data,errorfile)
struct model.info *skeleton;
struct constant-list *delay data;
FILE *error-file;
{

void reducemodel();
int calculate-time();
enum boolean model.ok();
struct counterlist generate-paths();
struct counter-list big-counter, new-counter;
int i;

/* Initialize path parameterization */
big-counter.numqueued = 0;
big.counter.num-retrieued = 0;
big.counter.num-sent = 0;
bigcounter.num.read = 0;
big-counter.total-time = 0;
big-counter.nummsgqueued = 0;

/* prepare and reduce the model */
reduce-model(skeleton,delaydata,error-file);

/* include the final task model in the error log */
fprintf(errorfile,"Task Model...\n");
for(i - O; i < skeleton->length; ++i)

fprintf(error-file,"%3d Type:%3d Ualue:%4d Depth:%3d Pointer:%3d\n",i,
skeleton->entry[i].type,skeleton->entry[i].value,
skeleton->entry[i].depth,skeleton->entry(i].pointer);

for(i = 0; i < skeleton->numcounters; ++i)
fprintf(error-file,"Ctr %2d: Queued %3d Retvd %3d Sent %3d Read %3d\n",

i,skeleton->counterset[i].num.queued,
skeleton->counterset[i].num.retrieved,
skeleton->counter-set[i].numsent,
skeleton->counter-set[i].num-read);

if(model.ok(skeleton,error-file)) /* trap for model errors */
{
/* generate all possible paths that start at the top of the model */
big.counter - generate-paths(skeleton,delaydata,0,2,errorfile);

/* generate paths beginning with each WFS entry in the model */
for(i - O; i < skeleton->length; ++i)

if(skeleton->entry[i].type == WFS)

new.counter = generate-paths(skeleton,delaydata, i+1,2,errorfile);

169

Appendix D

if (calculate-time(delay-data,&new-counter) >
calculate-time(delaydata,&big-counter))

bigcounter = new-counter;

else fprintf(error-file,"The model could not be processed due to faults\n");

return(bigcounter);
)

/*--

CALLNAME: REDUCE-MODEL
AUTHOR: S. Treadwell
CREATED: 06 OCT 92
UPDATED: 19 OCT 92

This procedure takes a given model and completes it's development. It then
reduces it by squeezing out loops, if's, and case statements that have no
UFS inside. These constructs are replaced by counter-set entries.
--

void reduce-model(skeleton,delay-data,errorfile)
struct model-info *skeleton;
struct constantlist *delaydata;
FILE *error-file;
{
void crunch();
void check.ctrs();
void nest-level();
void match-loops();
int i;

/* model preparation */
nest-level(skeleton);
match.loops(skeleton);

/* for(i = O; i < skeleton->length; ++i)
fprintf(error-file,"%3d Type:%3d Ualue:%4d Depth:%3d Pointer:%3d\n",i,

skeleton->entry[i].type,skeleton->entry[il.value,
skeleton->entry[il.depth,skeleton->entry[il.pointer);/**/

/* model reduction */
crunch(skeletondelay-data,LOOP,error.file);
crunch(skeletondelay-data,UHILELOOP,error-file);
crunch(skeleton,delay-data,FORLOOP,error-file);
crunch(skeleton,delay-data,IF,error-file);
crunch(skeleton,delay-data,CASE,errorfile);

/* eliminate any empty counter-set entries */
check.ctrs(skeleton,errorfile);

)

170

Appendix D

/*--
CALLNAME: NEST.LEUEL
AUTHOR: S. Treadwell
CREATED: 07 AUG 92
UPDATED: 04 MAR 93

Takes the abstracted model and determines the level of nesting for each item
in the model. This is necessary for the process of matching loops and other
control flow items. Each type of model entry has a particular effect on the
nesting value for entries that follow.

void nest-level(skeleton)
struct model-info *skeleton;
(

int i;
int nest = 0;

for (i = 0; i < skeleton->length; ++i)
swltch(skeleton->entry[i].type)

case LOOP:
skeleton->entry[i].depth = nest;
++nest;
break;

case FOR.LOOP:
skeleton->entry[il.depth = nest;
++nest;
break;

case UHILELOOP:
skeleton->entry[il.depth = nest;
++nest;
break;

case IF:
skeleton->entry[i].depth = nest;
++nest;
break;

case ELSIF:
--nest;
skeleton->entry(i].depth = nest;
++nest;
break;

case CASE:
skeleton->entry[i].depth = nest;
++nest;
break;

case WHEN:
--nest;
skeleton->entry[i].depth = nest;
++nest;
break;

case ELSE:
--nest;
skeleton->entry[i].depth = nest;
++nest;
break;

case ENDLOOP:
--nest;

171

Appendix D

skeleton->entry[i],depth = nest;
break;

case END-IF:
--nest;
skeleton->entry
break;

case END-CASE:
--nest;
skeleton->entry
break;

default:
skeleton->entry

}

[i],.depth = nest;

[i],depth = nest;

[il.depth = nest;

172

Appendix D

/* --
CALLNAME: MATCH-LOOPS
AUTHOR: S. Treadwell
CREATED: 07 AUG 92
UPDATED: 04 MAR 93

This procedure will look through the model and match loop statements with
the proper end-loop statements. Likewise for the if end-if and case
end-case pairs. Other matchings are necessary as well. Note that empty
loops are eliminated in the beginning. It may be necessary to do the same
with empty if's and empty case statements. The matching is accomplished
through the establishment of the pointer elements in model entries,

void match-loops(skeleton)
struct model.info *skeleton;
(

int loop-starts[20;
int num-loops = 0;
int i,j;

for (i = O; i < skeleton->length; ++i)
skeleton->entry[il.pointer = UNDEFINED;

/* Eliminate empty loops */
for (i = 0; i < skeleton->length; ++i)
switch(skeleton->entry[i].type)
{
case FOR.LOOP:

if(skeleton->entry[i+1].type == END-LOOP)

for(j = i; j < skeleton->length - 2; ++j)
skeleton->entry[j] = skeleton->entry[j+2];
skeleton->length -= 2;

}
break;

case WHILELOOP:
if(skeleton->entry[i+11.type == END-LOOP)
{
for(j = i; j < skeleton->length - 2; ++j)
skeleton->entry[j] = skeleton->entry[j+2];
skeleton->length -= 2;

break;
default: break;
)

/* loop-starts is an array of index values for entries that represent */
/* the beginning of a loop construct. It simplifies the matching of */
/* loop starts and end.loop entries. */
for (i = O; i < skeleton->length; ++i)
switch(skeleton->entry[i].type)

case LOOP: loop-starts[num-loops++] = i; break;
case FOR-OOP: loop.starts[num-loops++] = i; break;
case UHILELOOP: loop-starts[num-loops++] = i; break;
case END.LOOP:

skeleton->entry[i].pointer = loop-starts[--num-loops];

173

Appendix D

skeleton->entry[skeleton->entry[il.poi .pointer = i;
break;

case ENDIF: /* match with the corresponding IF statement */
for(j = i-1; j >= 0; --j)
if((skeleton->entry[j].type == IF)&&

(skeleton->entry[j].depth == skeleton->entry[i).depth))

{
skeleton->entry[j].pointer = i;
keleton->entryi].pointer = j

break;

break;
case END.CASE: /* match with the corresponding CASE entry */

for(j = i-1; j >= 0; --j)
if((skeleton->entry[j].type == CASE)&&

(skeleton->entry[j].depth == skeleton->entry[i].depth))
(
skeleton->entry[j].pointer = i;
skeleton->entry[i].pointer = j;
break;

break;
case WHEN: /* point to next UHEN or ENDCASE entry */

for(j = i+1; j < skeleton->length; ++j)
if(((skeleton->entry[j].type == UHEN)II

(skeleton->entry[j].type == ENDCASE)) &&
(skeleton->entry[j].depth == skeleton->entry[il.depth))

(
skeleton->entry[il.pointer = j;
break;

break;
case IF: /* point to next branch in the "if" construct */

for(j = i+1; j < skeleton->length; ++j)
if(((skeleton->entry[j].type == ELSE)II

(skeleton->entry[j].type == ELSIF)II
(skeleton->entry[j].type == ENDIF)) &&
(skeleton->entry[j].depth == skeleton->entry[il.depth))

{
skeleton->entry(i].pointer = j;
break;

break;
case ELSIF: /* point to next branch in the "if" construct */

for(j - i+1; j < skeleton->length; ++j)
if(((skeleton->entry[j].type == ELSE)If

(skeleton->entry[j].type == ELSIF)II
(skeleton->entry[j].type == ENDIF)) &&
(skeleton->entry[j].depth == skeleton->entry[il.depth))

(
skeleton->entry[i],.pointer = j;
break;

break;
case ELSE: /* point to the end of the "if" construct */

for(j = i+1; j < skeleton->Iength; ++j)
if((skeleton->entry[j].type == ENDIF) &&

(skeleton->entry[j].depth == skeleton->entry[i].depth))
{

174

Appendix D

skeleton->entry[i].pointer = j;
break;

}
break;

default: break;

}

/*--
CALLNAME: CRUNCH
AUTHOR: S. Treadwell
CREATED: 01 SEP 92
UPDATED: 19 OCT 92

This procedure identifies constructs that do not contain WFS calls and
crunches them into a set of counters to replace the construct. This is
necessary simplification because it allows loops that contain critical
constructs to be counted for their total iterations, not just a single
pass through.

void crunch(skeleton,delay-data,starttype,errorfile)
int start-type;
struct model-info *skeleton;
struct constant-list *delay.data;
FILE *error file;
{

struct counter-list generate.paths();
struct model.info temp;
int i,j;
int k = 0;
int begin;
int end;
enum boolean present = NO;
enum boolean qualified = NO;

for(i = 0; i < skeleton->length; ++i)
(
/* Guard against crunching loops with undefined iteration maximums */
qualified = NO;
if(skeleton->entry[il.type == start-type)
switch(start-type)
{
case IF: qualified = YES; break;
case CASE: qualified = YES; break;
default: if(skeleton->entry[il.value > O0) qualified = YES; break;
)

/* Find the bounds on the targeted construct */
if (qualified == YES)
(
begin = i;
for(j = i+1; j < skeleton->length; ++j)
{
if(skeleton->entry[j].type == WFS) present = YES;
if(skeleton->entry[j].pointer == begin)
(

175

Appendix D

end = j;
break;

)
}
if(lpresent) /* if no WFS entry within the construct */
{
/* set up the temporary model for the targeted construct */
for(j = begin; j <= end; ++j)
{
temp.entry[k] = skeleton->entry[j];
temp.entry[k].pointer -= begin;
++k;

temp.length = k;

skeleton->entry[begin].type = COUNTERSET;
skeleton->entry[begin].pointer = UNDEFINED;
skeleton->entry[begin].value = skeleton->numcounters;

/* establish the worst path parameterization for the temporary model */
/* and use it as a counter-set entry in the model to replace the */
/* targeted construct */
skeleton->counterset[skeleton->numcounters++] =

generate-paths(&temp,delay-data,O,1,errorfile);

/* Adjust the original model to compensate for eliminated entries */
for(j = begin + 1; j < skeleton->length - (k-1); ++j)
skeleton->entry[j] = skeleton->entry[j+(k-1)];

for(j = 0; j < skeleton->length - (k-1); ++j)
if (skeleton->entry[j].pointer >= begin)
skeleton->entry[j].pointer -= (k-1);

skeleton->length -= (k-1);
k - 0;

else present = NO;

}

176

Appendix D

/*--
CALLNAME: CHECKCTRS
AUTHOR: S. Treadwell
CREATED: 16 NOU 92
UPDATED: 16 NOU 92

Will examine the skeleton sent in and check for COUNTER-SET entries
containing only zeros. These will be removed from the model.
--

void check-ctrs(skeleton,errorfile)
struct modelinfo *skeleton;
FILE *error file;
(

int i,j,k;
int sum;

for(i = skeleton->num-counters - 1; i >= O; --i)
{

sum = 0;
sum = skeleton->counter-set[i].num.queued +

skeleton->counter-set[i].num.retrieved +
skeleton->counterset[i].numsent +
skeleton->counterset(i].num-read;

if(sum == 0) /* eliminate the entry and adjust the model accordingly */

--skeleton->numcounters;
for(j = i; j < skeleton->numcounters; ++j)
skeleton->counterset[j] = skeleton->counterset[j+1];
for(j = 0; j < skeleton->length; ++j)
if((skeleton->entry[j].type == COUNTERSET)&&

(skeleton->entry[j].value == i))
{

--skeleton->length;
for(k = j; k < skeleton->length; ++k)
skeleton->entry[k] = skeleton->entry[k+1];

}
for(j = 0; j < skeleton->length; ++j)
if((skeleton->entry[j].type == COUNTERSET)&&

(skeleton->entry[j].value > i))
skeleton->entry[j].value -= 1;

)

177

Appendix D

/ --
CALLHAME: GENERATEPATHS
AUTHOR: S. Treadwell
CREATED: 15 AUG 92
UPDATED: 19 OCT 92

This procedure generates all possible execution paths through a given model.
It begins at the designated starting entry and exhausts all paths from that
point using the decision integer as the path determinator. Once a path is
defined, it is parameterized, quantified, and compared to previous paths.

--

struct counterlist generate._paths(skeleton,delaydata,start,mode,errorfile)
struct model-info *skeleton;
struct constantlist *delay-data;
int start;
int mode;
FILE *error-file;
{

int calculate-time();
int decide();
struct counter-list parameterize();
struct counter-list bigcounter,newcounter;
int path[30];
int j = 0;
int i,k;
int done;
int next;
int shift-num;
unsigned long temp;
unsigned long decision = OxOOOOOOOO;

big-counter.num-queued = 0;
bigcounter.num.retrieved = 0;
bigcounter.numsent = 0;
big.counter.num.read = 0;
big.counter.num.msgqueued = 0;
big.counter.total-time = 0;

while(decision < Ox80000000) /*decision=80000000 means all paths exhausted*/
{

for(i - O; i < skeleton->length; ++i)
skeleton->entry[i.flow = BLANK;

i = start; shiftnum = 30; done = NO;
do
{

if ((mode == 1) && (i == skeleton->length - 1)) done = YES;
switch(skeleton->entry[i.flow)

case EXEC: next = i + 1; path[j++] = i; break;
case NO.EXEC: next = i + 1; break;
default:
path[j] = i; /* printf("i is %d\n",i);/**/
switch(skeleton->entry[i].type)
(
case WHILE.LOOP:

next = decide(skeleton,i,&j,decision,&shiftnum);
break;

178

Appendix D

case ENDLOOP:
if(mode == 1) next = i + 1;
else

if(skeleton->entry[skeleton->entry(i].pointer],value == INFINITE)
{

next = skeleton->entry[i.],pointer;
++j;

else next = decide(skeleton,i,&j,decision,&shift-num);

break;
case IF:

next = decide(skeleton,i,&j,decision,&shift-num);
break;

case ELSE:
next = i + 1;

++j;
break;

case ELSIF:
next = decide(skeleton,i,&j,decision,&shift-num);
break;

case WHEN:
next = decide(skeleton,i,&j,decision,&shift-num);
break;

case UFS:
++j;
done = YES;
break;

default:
++j;
next = i + 1;
break;

)
break;
}
i = next;

while(!done);

if(mode == 2) /* mode 2 is for full task model analysis */
(
fprintf(error-file,"PATH:");
for(i = O; i < j; ++i)
fprintf(error file,"%3d",path[il);
fprintf(error-file,"\n");

)

/* parameterize the path just completed and compare to previous paths */
new-counter = parameterize(skeleton,path,j,mode);
if(calculate-time(delay-data,&new-counter) >

calculate-time(delay.data,&big-counter))
big-counter = new.counter;

j = 0;
++shift.num; /* a necessary adjustment */
/* now update the decision integer to determine the next path */
/* the math here effectively reverses the last decision made */
/* in the last execution path */
decision &= (Oxffffffff << shift.num);

179

Appendix D

decision += (OxOl << shiftnum);

/* big-counter is the parameterization of the worst case path through */
/* the given model for the given starting point */
return(big.counter);

/*--

CALLNAME: DECIDE
AUTHOR: S. Treadwell
CREATED: 16 AUG 92
UPDATED: 15 SEP 92

This procedure makes the decision of where to go next according to the
decision integer. The next point in the path is returned as an integer.
The shift number is updated if a decision is made but the decision
integer is not changed until the path is complete.

int decide(skeleton,i,j,decision,shiftnum)
struct model-info *skeleton;
int i;
int *j;
long int decision;
int *shiftnum;

int next,k,l;
int iterations;
int first no-exec;
unsigned choice;

choice = (decision >> *shift num) & Ox01;
if(choice) choice = EXEC;
else choice = NO-EXEC;
*shift-num -= 1;

switch(choice)

case EXEC:
next = i + 1;
++*j;
/* must block off the unchosen branch of the construct */
k = skeleton->entry[il.pointer;
firstno-exec = k;
switch(skeleton->entry[i].type)
(
case IF:

while(skeleton->entry[k].type != END-IF)
k = skeleton->entry[k].pointer;
for(l = firstnoexec; I < k; ++I)
skeleton->entry[l].flow = NOEXEC;
break;

case ELSIF:
while(skeleton->entry[k].type != END-IF)
k = skeleton->entry[k].pointer;
for(l = first.no-exec; I < k; ++I)
skeleton->entry[l].flow = NO EXEC;

180

Appendix D

break;
case UHEN:
while(skeleton->entry[k.type != END-CASE)
k = skeleton->entry[k].pointer;
for(l = first-no-exec; I < k; ++I)
skeleton->entry[l].flow = NO-EXEC;
break;

default: break;
}
break;

case NO.EXEC:
/* jump to the next branch using the pointer element */
next = skeleton->entry[i].pointer;
switch(skeleton->entry[i].type)

case UHILE-LOOP:
++next;
break;

case END.JOOP:
skeleton->entry[i].flow++;
++*j;
/* need to guard against troublesome constructs and ensure that a */
/* loop containing a conditional WFS entry does not become an */
/* infinite loop when generating paths */
iterations = skeleton->entry[skeleton->entry[i].pointer].value;
if(iterations > 0)
if(skeleton->entry[i],flow == iterations - 1)
skeleton->entry[i.],flow = EXEC;

if(skeleton->entry[i],.flow == 5) /* 5 is a stringent limit */
skeleton->entry[i],flow = EXEC;
break;

default: break;
)
break;

return(next);

181

Appendix D

/*--
CALLHAME: PARARMETERI2E
AUTHOR: S. Treadwell
CREATED: 7 SEP 92
UPDATED: 9 SEP 92

Will take a given path through the model and add up all the critical system
calls along the path. This info is stored as a set of counters and
returned to the parent procedure.

--

struct counter-list parameterize(skeleton,path,path-length,mode)
struct modelilnfo *skeleton;
int path[];
int path-length;
int mode;

int i,k;
int j = 0;
int loop[1O];
int Iterations;
int counternum;
struct counterlist counterset;

counter-set.numqueued = 0;
counter-set.numretrieved = 0;
counter-set.num-sent = 0;
counter-set.numread = 0;
counter-set.numsg-queued = 0;
counter-set.msg-retrieved = 0;

for(i = 0; i < path.length; ++i)
{

iterations = 1;

if(mode == 1)
for(k = O; k < j; ++k)
iterations *= loop[k];

slitch(skeleton->entry[path[ill.type)
{
case LOOP: loop[j++] = skeleton->entry[path[i]].ualue; break;
case FOR.LOOP: looplj++] = skeleton->entry[pathli]].ualue; break;
case UHILELOOP: loop[j++] = skeleton->entry[path[i]].ualue; break;
case ENDLOOP: if(j >0) j--; break; /* for mode 2--will explain later */
case COUNTERSET:
counter.num = skeleton->entry(path[i]].value;
counter-set.num.queued += skeleton->counterset[counter-num].num-queued;
counter.set.num.retrieved+=
skeleton->counterset(counternum].num-retrieved;

counter..set.num.sent += skeleton->counter-set[counter-num].numsent;
counter.set.num.read+=skeleton->counter-set[counter.num].numread;
counter.set.num.msg.queued +=
skeleton->counter-set[counter-num.num.msgqueued;

counterset.msgretrieved +=
skeleton->counter-set[counternum].msg-retrieved;

break;
case QUEUE:

182

Appendix D

if (iterations > 0)
(
counter-set.numqueued +=(skeleton->entry[path[i]].value * iterations);
counter-set.num.masgqueued += iterations;

}
else
(
counter-set.numqueued += (skeleton->entry[path[i]].ualue * 10);
counter-set.num-msgqueued += 10;

}
break;

case RETRIEUE:
if(iterations > 0)
{
counter-set.num.retrieved+=(skeleton->entry[path[i]].value*iterations);
counter-set.msg.retrieved+=iterations;

else
{
counter-set.num-retrieved +- (skeleton->entry(path(i]].value * 10);
counter-set.msg-retrieved+=10;

break;
case SEND:

if (iterations > 0)
counterset.numsent += (skeleton->entry[path[i]].ualue * iterations);

else
counter-set.numsent += (skeleton->entry[path[i]].ualue * 10);
break;

case READ:
if (iterations > 0)
counter-set.num.read+=(skeleton->entry[path[ill.value*iterations);
else
counter-set.num-read += (skeleton->entry[path[i]].value * 10);
break;

default: break;

}

return(counterset);

183

Appendix D

/* --
CALLHAME: MODEL.OK
AUTHOR: S. Treadwell
CREATED: 20 OCT 92
UPDATED: 12 NOU 92

Will verify the structure of the model to ensure that it is prepared for
analysis.

- ---

enum boolean model.ok(skeleton,errorfile)
struct model-info *skeleton;
FILE *error file;
{

int i,j;
int loops = 0;
int ifs = 0;
int cases = 0;
int waits = 0;
enum boolean valid - YES;

/* Make sure the model begins and ends with depths = 0 */
if(skeleton->entry[skeleton->length - 1l.depth != 0)
{
valid - NO;
fprintf(error.file,"The final model entry is at the wrong depth\n");

)
if(skeleton->entry[O].depth != 0)
{
valid = NO;
fprintf(error-file,"The initial model entry is at the wrong depth\n");

)

/* Ensure that for every loop there is an end-loop and the same with */
/* case statements and if constructs */
for(i = O; i < skeleton->length; ++i)
switch(skeleton->entry[i].type)

case LOOP: ++loops; break;
case FORLOOP: ++loops; break;
case FHILOR LOOP: ++loops; break;
case END..LOOP: --loops; break;
case IF: ++ifs; break;
case EHNDIF: --ifs; break;
case CASE: ++cases; break;
case END.CASE: --cases; break;
case WFS: ++waits; break;
case COUNTERSET:

/* make sure the model does not reference a non-existent counter set */
if(skeleton->entry[il.value >= skeleton->num.counters)
(
valid = NO;
fprintf(error-file,

"Excessive counter-set number at model entry %d\n",i);
}
break;

default: break;
)

184

Appendix D

if(loops != 0)
(
valid = NO;
fprintf(error-file,"There is improper loop matching in the model\n");

if(cases != 0)
(
valid = NO;
fprintf(error.file,"There is improper case matching in the model\n");

if(ifs != 0)
(
valid = NO;
fprintf(error-file,"There is improper if/endif matching in the model\n");

if(waits == 0) /* ensure that the task model includes a UFS call */
(
valid = NO;
fprintf(error-file,"There is no UFS in this model\n");

/* Make sure there are no infinite loops containing no UFS calls */
for(i = O; i < skeleton->length; ++i)

if((skeleton->entry[i].type == LOOP)&&(skeleton->entry[il.ualue<O))
(
malts = 0;
for(j = i+1; j < skeleton->length; ++j)
(
If(skeleton->entry[j].type == WFS) ++waits;
if((skeleton->entry[j].type == EHNDLOOP)&&

(skeleton->entry[j].pointer == i))
break;

if (waits == 0)
(
valid = NO;
fprintf(error-file,"Infinite loop containing no UFS\n");

/* If the model passes all tests, valid = YES; otherwise, valid = NO */
return(valid);

185

Appendix D

/*---------- ------------------------------

CALLHAME: CALCULATETIME
AUTHOR: S. Treadwell
CREATED: 09 SEP 92
UPDATED: 30 OCT 92

This procedure takes a path parameterization and calculates a lower bound
on delay for that path using system specific delay data.
--

int calculatetime(delaydata,counterset)
struct constantlist *delay-data;
struct counterlist *counterset;
{

int sum - 0;
int extra = 0;

If(counter-.set->num.queued>O) sum +=
(delay.data->queue-coeff*counter._set->num-queued)+
(delay.data->queueconst*counter-set->num.msg.queued);

if(counter-set->numsent>0) sum +=
delay.data->queuecoeff*counter-set->num-sent+delaydata->queue-const;

if(counter.set->numretrieved>O) sum +=
(delay-data->retrievecoeff*counter-set->num-retrieved)+
(delay.data->retrieve-const*counter-set->msg-retrieved);

if(counter-set->numread>O) sum +=
delaydata->retrieve-coeff*counter-set->num-read+
delay.data->retrieve.const;

counter-set->total-time = sum;

/* Certain critical constructs add delay to the frame overhead as well as */
/* incurring task execution delay. It is critical to account for this */
/* additional delay when comparing various paths. This extra delay is */
/* not added into the "total-time" parameter but it is part of the "sum" */
/* that is returned to the parent procedure */

extra += delay-data->IHcoeff * counterset->num-queued;
if(counter..set->num.queued > 0)
extra += delay-data->RGD..msgcoeff * counterset->numqueued +
delay.data->RGD.msg.coeff * counter-set->nummsg.queued;

else extra += 21;

sum += extra;

return(sum);
}

186

Appendix E
External Files

key_words.dat

scheduler. waitforschedule
loop
if
else
elsif
case
when
rg.communication.queuemessage
rg.communication.retrievemessage
rg.communication.sendmessage
rg.communication.readmessage
task

range
package
procedure
begin
end
gtid
vg
rg
max.xmit.size
max.xmit.num
maxrcvesize
max...rcuenum
select
record
accept

constants.dat

queuecoefficient 45
queue-constant 43
retrieve-coefficient 61
retrieve.constant 67
interrupthandler-coefficient 110
interrupthandlerconstant 103
RGDmessage.coefficient 123
RGD.msssage-constant -12
RGD-task.coefficient 26
RGD-task-constant 15
RGODoveral Lconstant 49
RGD-empty-queue-constant 70
context-switch 19
localFDIR 84
systemFDIR 1316

187

Appendix F
An Illustrative Example

1. The files included in this section are taken directly from a full-scale test of the AFTA

timing analysis tool.

2. The task specification file is t ask . I i st . ada.

3. The source code for the application tasks is found in the following files:

app.test.ada

sysfdi .ada

testcode . ada

4. Note that the task called t e s t _t is not intended to represent actual application task

code. It is used merely for testing purposes and is designed to highlight some of the

features of the timing analysis tool that are not fully exercised by the legitimate tasks:

app il lt, app I 2-t, and sysfd it.

5. The following files are intermediate files passed from the preliminary processing

stage to the software and hardware analysis stages:

tasknames.dat

I istoftasks.dat

fi Ilenames,dat

6. The output of the analysis is found in errors .dat and resu I t s. dat.

189

Appendix F

task list.ada

with config;
with ne.interface; use ne.interface;
with gtids;
with gcids;

-- System task specfication.

package taskJlist is

-- specification of rg tasks in system; does not include rg and io dispatchers;
-- they are special rg4 tasks and are specified within config.initcidconfig

-- NOTE:
-- There is no ordering requirement in list, but an ordering convention makes
-- the list easier to read. The implemented convention is to order the task
-- based on vg,rg, and precedence.
task-list : constant config.tasklistr := (
num.tasks => 10,
tasks => (

-- tasks only on ug 0
1 => (

gcid => gcids.appll,
gtid => gtids.appll,
location => config.one ug,
ug => 0,
rg -> config.rg4,
precedence => 0,
max.xmit-size => 400,
max.xmit-num => 5,
maxrcvesize => 400,
max.rcvenum => 20,
numiors => 0,
iors => (
others => (

num.chains => 0,
chains => (

others => (E=>false,D=>false,C=>false,B=>false,A=>false)))))));

2 => (
gcid => gcids.appl2_1,
gtid => gtids.appl2,
location => config.oneug,
vg => 0,
rg => config.rg4,
precedence -> 4,
max.xmit size => 200,
max.xmit.num => 10,
max.rcue-size => 200,
maxrcue.num => 20,

numiors => 0,
iors => (
others => (
numchains => 0,

190

Appendix F

chains => (
others => (E=>false,D=>false,C=>false,B=>false,A=>false)))),

3 => (
gcid => gcids.system fdi,
gtid => gtids.system-fdi,
location => config.one-ug,
ug => 0,
rg -> config.rg4,
precedence => 14,
maxxmit-size => 200,
maxxmit.num => 10,
maxrcve-size => 200,
max.rce-num => 20,
num.iors => 0,
iors => (
others => (

num.chains => 0,
chains => (
others => (E=>false,D=>false,C=>fa>falseB=>false,A=>false)))))

4 => (
gcid => gcids.appll2,
gtid => gtids.appll,
location => config.one.ug,
vg => 0,
rg => config.rg3,
precedence => 3,
maxxmitslize -> 200,
max-xmit-num => 10,
max.rcve-size => 200,
maxrcue.num => 20,

num.iors => 0,
iors => (
others => (
num.chains => 0,
chains => (

others -> (E=>false,D=>false,C=>false,B=>false,A=>false)))))
5 => (

gcid => gcids.appl22,
gtid => gtids.appl2,
location => config.one-ug,
ug => 0,
rg -> config.rg3,
precedence => 4,
maxxmit-size => 200,
max.xmit.num -> 10,
maxrcue.size => 200,
max.rcvenum => 20,

num-iors => 0,
iors -> (
others => (
num.chains => 0,
chains => (

others => (E=>false,D=>false,C=>false,B=>false,A=>false))))),
6 -> (

gcid => gcids.appll3,
gtid => gtids.appll,
location => config.oneuvg,
ug => 0,
rg => config.rg2,

191

Appendix F

precedence => 0,
maxxmit-size = > 400,
maxxmit.num => 5,
max.rcve-size => 200,
max.rcuvenum => 20,
numliors => 0,
iors => (
others => (
numchains => 0,
chains => (

others => (E=>false,D=>false,C=>false,B=>false,A=>false))))),
7 => (

gcid => gcids.appl2_3,
gtid => gtids.appl2,
location => config.one vg,
ug => 0,
rg => config.rg2,
precedence => 4,
max-xmit.size = > 200,
maxxmit.num = > 10,
max.rcve.s i ze = > 200,
max-rcue.num = > 20,
numiors => 0,

iors => (
others => (
num.chains => 0,
chains => (

others => (E=>false,D=>false,C=>false,B=>false,A=>false))))),
8 => (

gcid -> gcids.appllA4,
gtid => gtids.appll,
location => config.one ug,
ug => 0,
rg => config.rgl,
precedence => 4,
max.xmit-size => 200,
maxxmit.num => 10,
max.rcue-size => 200,
max.rcvenum = > 20,
numJors => 0,
iors => (

others => (
num.chains => 0,
chains => (
others => (E=>false,D=>false,C=>false,B=>false,A=>false))))),

9 => (
gcid => gcids.appl2_4,
gtid => gtids.appl2,
location -> config.one-vg,
ug => 0,

rg -> config.rgl,
precedence => 0,
maxxmitsize => 200,
max.xm i tnum => 10,
max.rcve.size => 200,
max.rcue.num => 20,

num.iors => 0,
iors => (
others => (

192

Appendix F

num.chains => 0,
chains => (

others => (E=>false,D=>false,C=>false,B=>false,A=>false))))),

10 => (
gcld => gcids.test1,
gtid => gtids.test,
location => config.onevg,
ug => 0,
rg => config.rgl,
precedence -> 1,
maxxmit.size => 200,
maxxmit.num => 10,
max.rcve-size => 200,
max.rcve.num => 20,
num.iors => 0,
lors => (
others => (

num.chains => 0,
chains => (
others => (E=>false,D=>false,C=>false,B=>false,A=>false))))),

end taskJlist;
-- DEC/CMS REPLACEMENT HISTORY, Element TASKLIST_.ADA
-- *5 17-FEB-1992 10:11:41 FTPP "added iors spec"
-- *4 12-FEB-1992 12:18:19 SAF2234 "moved dispatcher specs within initcid"
-- *3 8-FEB-1992 09:52:49 FTPP "added io task assignment"
-- *2 27-DEC-1991 09:46:35 SAF2234 "changed precedence, added appl tasks"
-- *1 13-DEC-1991 10:19:11 SAF2234 "specification for task list in mass
memory"
-- DEC/CMS REPLACEMENT HISTORY, Element TRSKLIST.RDA

193

Appendix F

app test.ada

-- with textio;
-- with scheduler;
-- with ne-interface;
-- with mem-utils;
-- with config;
-- with rg.communication;
-- with system;
-- with io.utils;
-- with taskpriority;
-- with gcids;
-- with rg.dispatcher;
-- with rg.log;
-- with exception-log;
-- with debugtrace;
-- with unchecked-conversion;

package body appl.test is

--<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

task body appllt is
my.gcid : config.gcid t;
myrg : config.rgt;
-- generics for printing message
function fetch-long is new system.fetchfromaddress(

system.unsigned-longword);
function fetch-word is new system.fetchfromaddress(

system.unsignedword);
function fetch-byte is new system.fetch-fromaddress(

system.unsigned.byte);
function byte-tolong is new uncheckedconversion(system.unsignedbyte,

system.unsignedlongword);

xmessage : array (system.unsignedbyte range 0..60) of system.unsigned-byte;
xerror : rg.communication.transmit-message-status.t;

rmessage : array (system.unsigned-byte range 0..60) of system.unsignedbyte;
rerror : rg.communication.receive.message.status.t;
fromcid : config.gcidt;
fromuvg : ne-interface.vgid t;
size : natural;
class : ne-Interface.class r;

begin
text-io.put-line("Elaboration of APPL1");
for i in xmessage'range loop
xmessage(i) := i;

end loop;
accept start(gcid : config.gcid-t) do

my-gcid :- gcid;
end start;
my.rg := config.gcid.config(mygcid).rg;

-- for i in rg.dispatcher.framet loop
-- if config.">="(myrg,rgdispatcher.slowestrg(i)) then
-- rg-dispatcher.io-interval(i) :=

194

Appendix F

-- scheduler."+"(rg-dispatcher.io-interval(i),1.O);
-- end If;
-- end loop;

rgJlog.rg-logentry(my-gcid,"APPL1",
-- text.lo.put-line("At wfs of APPLI" &

config.gcid-t'image(mygcid) & " " &
config.rg-t'image(my.rg));

loop
-- * for loop: max - 61

for i in xmessage'ronge loop
debugtrace.debug-log(16#f7f7#,byte-tolong(i));
scheduler.wait-for.schedule;
debugtrace.debuglog(16#flfl#,byte.to long(i));

-- text-io.put-line("After wfs of APPLI" &
rg-log.rg-log-entry(my-gcid,"APPL1",

"After wfs " &
system.unsignedbyte'image(i) & " " &

config.gcidt'image(mygcid) & " " &
config.rg-t'image(my rg));

debugtrace.debug-log(16#f2f2#,byte.to-long(i));
rg.communication.queue-message(

my-gcid,
my-gcid,
xmessage'address,
natural(i),
xerror,
config.my-ug);

-- if rg.communication."/="(xerror,rgcommunication.success) then
-- text-io.put-line(
-- rg.communication.transmit-message.status-t'image(xerror));
-- end If;

debugtrace.debug-log(16#f3f3#,byte-to-long(i));
for j in rmessage'range loop
rmessage(J) := 16#FF#;

end loop;
size := natural(rmessage'last);
debugtrace.debug-log(16#f4f4#,bytetolong(i));

-- * message: max - 128
rg.communication.retrieve-message(

from-cid,
my-gcid,
rmessage'address,
size,
rerror,
fromvug,

class);
If rg-communication."/="(rerror,rgcommunication.success) then

-- textilo.put-line(
-- rg.communication.receivemessage-statust'image(rerror));

null;
else
debug-trace.debug.log(16#f5f5#,byteto-long(i));

rg-log.rg-log-entry(my-gcid,"APPL1",
-- text-io.put.line("retrieve: from " &

"retrieve: from " &
config.gcid-t'image(from.cid) & " to " &
config.gcid-t'image(mygcid) & " " &

195

Appendix F

io.utils.hex(rmessage'address) & " " &
natural'image(size) & " to " &
ne-interface.ugid.t'image(fromug) & " " &
boolean'image(class.broadcast) & " " &
ne-interface.packetclasst'image(class.packet) & " " &
ne-interface.exchangeclass-t'image(class.exchange))

debug-trace.debug-log(16#f6f6#,byte-to-long(i));
rg-log.rglogentry(mygcid,"APPL1",

text-io.put-line(
io.utils.hex(fetchlong(rmessage'address)) & " " &
io.utils.hex(fetchlong(system."+"(rmessage'address,4))) & "
io.utils.hex(fetch-long(system."+"(rmessage'address,

system.addressint(size-8)))) & " " &
io.utils.hex(fetch.long(system."+"(rmessage'address,

system.addressint(size-4)))));
end if;

-- add test of overrun
if system."="(i,10) and config."*"(my-gcid,gcids.applL3) then
loop

null;
end loop;

end if;

end loop;
end loop;
exception

when NUMERICERROR =>
exceptionlog.exception.logentry("APPL1","

config.gcid-t'image(my-gcid));
when CONSTRAINT-ERROR =>
exception.log.exceptionlog-entry("APPL1","

config.gcid.t'image(my-gcid));
when PROGRAM-ERROR =>
exceptionJog.exception.log-entry("APPL1","

config.gcid-t'image(my.gcid));
when STORAGEERROR =>
exception.log.exception-log-entry("APPL1","

config.gcid-t'image(mygcid));
when TASKINGERROR =>
exception.log.exception-logentry("APPL1","

config.gcid t'image(my-gcid));
when others =>

exception.log.exception-logentry("APPL1","
config.gcid-t'image(my-gcid));

NUMERIC-ERROR gcid=" &

CONSTRAINTERROR gcid=" &

PROGRAM-ERROR

STORAGE-ERROR

TASKING ERROR

OTHERS ERROR

gcid=" &

gcid = " &

gcid = " &

gcid=" &

end appll-t;

--<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

task body appl2t is
my-gcid : config.gcid-t;
my-rg : config.rgt;
-- generics for printing message
function fetch-long is new system.fetchfrom.address(

196

Appendix F

system.unsigned-longword);
function fetchword is new system.fetchfrom-address(

system.unsigned.word);
function fetchbyte is new system.fetchfrom-address(

system.unsignedbyte);

xmessage : array (system.unsigned-byte range 0..60) of system.unsigned-byte;

xerror : rg.communication.transmit-messagestatus-t;

rmessage : array (system.unsigned-byte range 0..60) of system.unsigned-byte;

rerror : rg.communication.receive-messagestatus-t;
from-cid : config.gcidt;
from.ug : ne-interface.vgid-t;
size : natural;
class : ne-interface.classr;

begin
text.io.put-line("Elaboration of APPL2");

for i in xmessage'range loop
xmessage(i) := i;

end loop;
accept start(gcid : config.gcid-t) do

my-gcid := gcid;
end start;
my.rg := config.gcid-config(mygcid).rg;
rg-log.rg-log-entry(mygcid,"APPL2",

-- textio.put.line("At wfs of APPL2" &

config.gcidt'image(mygcid) & " " &
config.rg-t'image(my-rg));

loop
-- * for loop: max = 61

for i in xmessage'range loop
scheduler.waitfor-schedule;

-- textio.put.line("After wfs of APPL2" &

-- config.gcidt'image(my-gcid) & " " &

-- config.rgt'image(my rg));

rg-communication.sendmessage(
my.gcid,
my-gcid,
xmessage'address,
natural(i),
xerror,
config.my-vg);

-- if rg-communication."/="(xerror,rg-communication.
succe s s) then

-- text-io.put-line(
-- rg.communicationtransmitmessage-status-t'image(xerror));
-- end if;

for j in rmessage'range loop

rmessage(j) := 16#FF#;
end loop;
size := natural(rmessage'last);
rg.communication.readmessage(

fromcid,
my-gcid,
rmessage'address,

197

861

!Icol-lddD PUD

!I-ZiddD PUD

le'..ZlddU.,)RAlUD-601-UOIldooxv-601-uoildoaxe
<= 8JO410 U24M

!((P!0B-fiW)06DWIj-P!0B'B!jUO3

,,',,ZlddU,,)RJIUQ-501-uOlldooxo'Bol-uoildeoxe
UOUU3-ONIASUI U04M

.ZlddU,.)RJIUQ-601-UO!Idooxo-Bol-uoildaoxe
<- UOUU3-399UOIS U04M

!((Pj36-fiW)2BDWIj-P!*6'6.jJUO*

..ZlddU.,)RJIUG-601-uOlldooxa'Bol-uolldooxo
<- HOM-UMOUd U94M

,ZlddU,,)RJIUG-601-UOlldooxo-Bol-uoildooxo
<= 1:101:11:13-INNUISNO3 U94M

.,ZlddU.,)RJIUO-501-UOlldooxo-601-uolldooxo
<= 8081:13-311:13unN uo4m

uoilclaoxe

!dool pua
!dool pue

fjl pus

.3 ..=P!06 8OH83 S83HIO

-8 "=P!36 U0883-ONIASUI

's ..=P!06 U0883-39UUOIS

-8 ,=P!06 80883-WUH908d

'3 .,=P!05 HOU83-INIUMISHOO

I ,=P!06 U0883-0183wnw

's 's (ggo-'ppt),oBDCvQWj)l3uo I-qoloj)xQ4 -6 11 In-o i
)ouil-jnd-oi-jxoj

'..ZlddU..'P!OB-Rw)RJlug-601-B .Bo,-B,
f((06uDqoxa-CCDIO)DBDWIl-Gcolo-oBuoqoxa-OODJJQIU.I-Qu

jolood, sco I o)oBt)w i. , I-GCD lo-jolood - oot)j.Aolu i-ou

'S .. ., I (jrt)OpDo-jq-68010)QBDWIuoolooq

'S 'S (BA-WO.Aj) QBDW I , J-P I BA - ODDI Jo ju I-Qu
'S , 01 , 'S (OZIG)OBDWI , It)-AnjDu

I I (G9Q-JppD.QBt)G8QwJ)xQ4 :cl!ln-oi

.3 .. 's (P! OB-6w) GBOW I , I-P! OB -B I j U03

Is 01 Is (P!3-WO-Aj)GBDwij-p!3B-BIJUO3

's " WO-Al :PD J.

-a , woij -.pDaj,,)outl-jnd*ol-jxoj

ogle
Illnu

f((jo.jjaj)aBDwil-cnlDlc-oBDecow-aAiaooj-uoilooiunwwoo-Bj
)QU!l-jnd-oi-jxoj

uaqj (scooone-uoilooiunwwoo-Bilaoijea),,./,,-uoilooiunwwoo-Bj 1!

!(CCDID

,BA-wOjj

'Joijoa

j xi uoddV.P

Appendix F

sysfdi.ada

-- ABSTRACT package body systemfdi
-- systemfdi defines the functions which must be performed by the
-- system fdi for the analysis of fault data from all vgs. Currently,
-- only the inter vg presence test message reception and the analysis
-- of Its timeliness is implemented. In the event of failure of this test
-- a message is displayed in the RG4 log.

-- KEYUORDS package body system.fdi

-- CONTENTS package body system.fdi

-- History:
-- 16-Jun-92 Carol Babikyan
-- Created skeleton structures f
-- local fdi on each UG

-- External Units:
-- ne-interface is with'ed. Prov

-- Exceptions:
-- Hone declared. Predefined exc

-- 1/0:
-- message primitives used

-- UME Specific:
-- Hone

-- M147 Specific:
-- Hone

-- XDADA Compiler Specific:
-- Refer to Portability summary o

or systemfdi to retrieve messages from

ides ne

ept ions

mapping.

may be raised.

f listing

ne interface definitions
with ne-interface;
enable printing directly to screen
with text io;
enable wait-for-schedule call
with scheduler;
enable access to clock and time parameters
with clockextension; use clockextension;
with calendar; use calendar;

configuration information
with config; use config;
with gcids;
message interfaces
with rg.communication;
need for addresses
with system; use system;

199

Appendix F

-- with uncheckedconversion;
-- enable logging of information in different logs
-- with rg-log;
-- with fdi-log;
-- with exception-log;
-- with fdiLmsg;
-- with fdi.globals;

package body systemfdi is

type vgid-statusr is record
inter-vg-to : calendar.time;
last-intervg-time : clockextension.system-tick-t;
curinter.vg-time : clockextension.systemtickt;

end record;
vgid-status : array (ne-interface.vgidt) of vgid-statusr;

initial-time : clock.extension.system-tick-t := 0;

-- <<<(<<<<<< <<<<<<<<<<<<<<<<<<<<<<<<<<<<

task body systemfdi-t is
my-gcid : config.gcid-t;
my-rg : config.rg-t;

xmessage : fdi-msg.message-r;
xstatus rg.communication.transmit-message-status-t;

rmessage : fdimsg.message-r;
rstatus rg.communication.receive-messagestatust;

from gcid : config.gcid-t;
from.vg : ne-interface.ugid-t;
size : natural;
class : ne-interface.class-r;
syndrome : fdi.globals.syndromer;

-- presence test buffer (syndrome info is saved for syndrome analysis)
type pt.buffer.r is record

fromvug : ne-interface.vgid-t;
syndrome : fdi-globals.syndrome-r;
class : ne-interface.class-r;

end record;

max-pt-entries : constant := 80;
type pt-entryt is range O..max-pt-entries;
numapt-entries : pt-entry.t;
ptbuffer : array (ptentry-t range 1..max.pt-entries) of pt.bufferr;

function ticks.tooint is new unchecked.conversion
(clock-extension.systemtick-t,ystem.unsigned.longword);

function int-to.ticks is new uncheckedconversion
(system.unsignedlongword,clock-extension.system-tick.t);

-- ComputeUG--------------------------------------Timeout computes the maximum time between receipt of inter-G-
-- Compute-UG-,Timeout computes the maximum time between receipt of inter-UG-

200

Appendix F

-- presence test messages for each virtual group in the configuration.
-- The timeout period is computed as 3 times the frame time of the FDIR task

-- on the tested virtual group. Since FDI task executes as a rate group 4
-- task this is essentially 3 * the minor frame duration.

-- When using the NE simulator this time must be exaggerated because the

-- system timestamps are accurate and, of course, the ne sim is not!

Procedure ComputeUGTimeout is

frame-time-int : system.unsignedlongword;
to-int : system.unsigned longword;
to-scale-factor : system.unsigned-longword := 3;
to-tick : clock-extensionsystem-tickt;

begin

for i in ne-interface.ugid t loop
if config.vgid.config(i).redundancy /= config.redundancylevelt(O) then

frame time-int := ticks-to-int(clockextension.rep-totick
(config.vgidconfig(i).frame));

to-int := to.scale.factor * frame-time-int;
to-tick := intto ticks(to-int);

vgid-status(i).intervg-to := clockextension.systicktotime(to-tick);

vgid-status(i).lastinteruvg-time := initial time;
vgid-status(i).curinter uvg-time := initial-time;

end if;
end loop;

end;

-- Readall.messages reads all messages and updates the information relevant
-- to the specific type of message.
-- Interuvg.presence-test messages are used for 2 purposes:
-- 1) the syndrome associated with the message is used in syndrome
-- analysis
-- 2) The time of receipt is used to determine the next expected
-- arrival of an interuvg-presencetest message. Failure to
-- receive this message within the allotted time implies the
-- UG is faulty.

-- Syndrome-exchange message contains the syndrome data for a single
-- member of the system FDI UG. The receipt of source congruent messages
-- from each member of the system fdi UG is necessary to perform
-- syndrome analysis. Should one member of the system fdi UG be faulty
-- its data may be corrupted. Consequently, if a source congruent
-- message is received from the system fdi UG, it will be assumed that
-- that message is a syndrome exchange message.

Procedure Read-all messages is

procedure extractinteruvgpt.info(i : in out pt-entry-t) is
begin

i := + 1;

201

Appendix F

pt.buffer(i).fromvg := fromvug;
pt-buffer(i).syndrome := syndrome;
pt.buffer(i).class := class;

-- Update time of receipt of current intervug-presencetest
-- message
vgid-status(fromug).cur-inter-ugtime := syndrome.stamp;

end;

procedure extract-syndromeexch.info is
begin

null;
end;

procedure checkformissing syndrome-exch is
begin

null;
-- if fromvg = my.vg then
-- case class is

-- when A =>
-- when B =>
-- when C =>
-- when D =>
-- when E =>
-- when others => software error!!!!
-- end;
-- end if;

end;

begin
num.pt-entries := 0;

-- * basic loop: max = 12
readJloop:

loop
-- Receive the inter-UG presence test message from local FDI
size := rmessage'size/8;
rg.communication.retrieve-message(

from-gcid,
my-gcid,
rmessage'address,
size,
rstatus,

from-vg,
class,

syndrome);
case rstatus is
when rg.communication.success =>

case rmessage.message-type is
when fdi-msg.INTER.UGPT =>

extract-interuvg.ptJinfo(num.pt-entries);
when fdimsg.SYNDROMEEXCH =>

extract.syndrome-exch-info;
when others => check-for-missing-syndrome-exch;

end case;

when rg.communication.no-message =>
exit read-loop;

202

Appendix F

when others =>
-- text.io.put-line(
-- rg-communication.receive-message-statust'image(rstatus));

exit read-loop;
end case;

end loop read-loop;

end;
-- ----------"" " " " " " "
-- This procedure checks the timeouts of all active UGs. If the time has
-- elapsed beyond the time expected for receipt of a message, the UG will
-- be diagnosed as faulty.

Procedure Check-inter-vgtimeouts is

deltasysticks : clock-extension.system-tick-t;
begin

for i in ne-interface.vgid-t loop
if config.vgidconfig(i).redundancy /= config.redundancylevelt(O) then

rg-log.rg-logentry(my-gcid,"SYSTEMFDI",
ne-interface.vgidt'image(i) &
clockextension.system.tickt'image

(vgid-status(i).last-interuvg-time) & " " &
clockextension.systemtick-t'image

(vgidstatus(i).cur-inter uvg-time));

-- Check the nextintervgtime to determine if it has expired
deltasysticks :=
clockextension.diffsysticks(vgidstatus(i).cur-interuvgtime,

vgidstatus(i).last-interuvgtime);
if clock.extension.systicktotime(deltasysticks) >

vgidstatus(i).interuvgto then
if vgid-status(i).last-inter vgtime /= initial-time then

fdi.log.fdiJlogentry("SYSTEMLFDI",
"UG " & ne-interface.vgid-t'image(i) &
" failed Inter-UG timeout: " &

clock-extension.systemtick-t'image
(vgid-status(i).last-intervgtime) & " " &

clock-extension.system.tick-t'image
(ugid-status(i).cur-intervgtime));

end if;
end if;
ugid-status(i).last-interuvg-time := ugid.status(i).cur-interuvgtime;

end if;
end loop;

end;

Procedure Analyze-syndrome is

-- This procedure analyzes the syndrome matrix received as a result of last
-- frame's syndrome exchange. The syndrome matrix contains the syndrome
-- patterns perceived by each member of the system fdi UG for each UG from
-- whom it received an inter-vg-presence-test message.

203

Appendix F

begin
null;

end Analyze-syndrome;

Procedure Exchangesyndrome is

-- This procedure performs a series of source congruent exchanges to
-- distribute the syndrome data for those inter UG presence test messages
-- received this iteration. Upon completion each member of the system FDI UG
-- will have congruent copies of the syndrome bytes.

begin
null;

end exchange-syndrome;

begin
text.io.putline("Elaboration of SYSTEMFDI");
accept start(gcid : config.gcidt) do

my-gcid := gcid;
end start;

my-rg := config.gcid-config(my.gcid).rg;
rg-log.rg-log-entry(my-gcid,"SYSTEMFDI",

config.gcidt'image(mygcid) & " " &
config.rgt'image(myrg));

-- Compute timeout times for each virtual group in the configuration
computevgtimeout;

loop

scheduler.wait-for.schedule;

-- Read any messages sent to System FDI
Readall-messages;
rg-log.rglog-entry(my.gcid,"SYSTEMFDI",

pt-entry-t'image(numptentries) & " messages read ");

-- Examine inter-vg presence test for timeouts
Check-inter-vgtimeouts;

-- Analyze syndrome received this frame
Analyze-syndrome;

-- Exchange syndrome for next frame
Exchange-syndrome;

end loop;
exception

when NUMERIC-ERROR =>
exception-log.exceptionJog-entry("SYSTEMF"," NUMERIC-ERROR ");

when CONSTRAINT-ERROR =>

204

!!PFWS1Gfic pug

flpliuaisfis pug

!(.,8oH3 SH3HIO .).. IauW31SAS,,)JI~UD-601uO, ldgoxg-601uolldooxe
<= roJs41o u24

! (,,IOU3O9NISUi .',,IGfJ3iSAS.,)RiJIU-601-u0! -dox-601uol idsoxg
<= UOUH3-DIASUI usQa

f(A.OMU39UOIS ..'.,Gl-~U31SAS.)Ju*-OIUol ld2DX2-ol-uoi ldsoxx
<= U0UU3-39UH01S U04*

(A.OHHuruEuood .'..lGA-U31SAS.,)fi,4ug-61-oiU!dsox2-Bol-uofideoxe
<- UOUU3-UUOOUd Us4a

f(A.OMU1WISHOO '.. liarW31SAS..)f.JU2601-uO! ldsox26ol-uo!idooxe

,q xipuoddV

Appendix F

testcode.ada

with first-package;
with secondpackage;
package body test.code is
task body testt is
begin

loop
firstpackage.second;
second.package.first;

end loop;
end test.t;
end test.code;

firstpackage.ada

package body first-package is
procedure first is
i : natural;
size : natural;
condition : natural;
a : natural;
b : natural;
c : natural;
d : natural;
e : natural;
begin

for I in 1..2 loop
rg.communication.retrieve-message(a,b,c,190,d,e);

end loop;
-- * while loop: max = 2
while condition < 10 loop

rg.communication.queuemessage (a,b,c,50,d,e);
scheduler.wait for-schedule;

end loop;
if condition > 20

-- * message: max = 50
rgcommunication.queue-message (a,b,c,size,d,e);

else
-- * message: max = 100
rg.communication.queue-message (a,b,c,size,d,e);

end if;
end first;
procedure second is
i : natural;
temperature : natural;
begin

-- * for loop: max = 11
for i in 1..natural loop

first;
scheduler.wait-for-schedule;
if i > 6 first;
end if;

end loop;
end second;
end first-package;

206

Appendix F

second_package.ada

package body second-package is
procedure first is
a : natural;
b : natural;
c : natural;
d : natural;
e : natural;
begin

rg-communication.send message(a,b,c,200,d,e);
end first;
end second-package;

207

Appendix F

task names.dat

app lt
app 12-t
system-fd it
test t
done

list of tasks.dat
appll-t 0 4 400 5 400 20
appl2t 0 4 200 10 200 20
systemfdi-t 0 4 200 10 200 20
appll t 0 3 200 10 200 20
appl2.t 0 3 200 10 200 20
app 1_t 0 2 400 5 200 20
appl2.t 0 2 200 10 200 20
app lt 0 1 200 10 200 20
appl2_t 0 1 200 10 200 20
testt 0 1 200 10 200 20

filenames.dat

app I lt
USER: [TREADWELL. AFTR]APPTEST. ADA; 3
appl 2.t
USER: [TREADWELL. AFTA]APPTEST. ADA; 3
system.fd it
USER:[TREADWELL.AFTA]SYSFDI .ADA; 12
t estt
USER: [TREADUELL. AFTA]TESTCODE. ADA; 6

208

Appendix F

results.dat
All results are given in terms of microseconds.
The allotted minor frame time is 10000.

RESULTS for UG#O

TASK: appll-t RATE GROUP: 4
WORST CASE PATH: number of packets queued: 7

number of messages queued: 1
number of packets retrieved: 3
number of messages retrieved: 1
number of packets sent: 0
number of packets read: 0
minimal delay: 608

TASK: appl2t RATE GROUP: 4
WORST CASE PATH: number of packets queued: 0

number of messages queued: 0
number of packets retrieved: 0
number of messages retrieved: 0
number of packets sent: 4
number of packets read: 4
minimal delay: 534

TASK: systemfdi-t RATE GROUP: 4
WORST CASE PATH: number of packets queued: 0

number of messages queued: 0
number of packets retrieved: 48
number of messages retrieved: 12
number of packets sent: 0
number of packets read: 0
minimal delay: 3732

TASK: appllt RATE GROUP: 3
WORST CASE PATH: number of packets queued: 4

number of messages queued: I
number of packets retrieved: 3
number of messages retrieved: 1
number of packets sent: 0
number of packets read: 0
minimal delay: 473

TASK: appl2t RATE GROUP: 3
WORST CASE PATH: number of packets queued: 0

number of messages queued: 0
number of packets retrieved: 0
number of messages retrieved: 0
number of packets sent: 4
number of packets read: 4
minimal delay: 534

TASK: appll-t RATE GROUP: 2
WORST CASE PATH: number of packets queued: 7

number of messages queued: 1
number of packets retrieved: 3
number of messages retrieved: 1
number of packets sent: 0
number of packets read: 0
minimal delay: 608

TASK: appl2_t RATE GROUP: 2
WORST CASE PATH: number of packets queued: 0

number of messages queued: 0
number of packets retrieved: 0

209

Appendix F

number of messages retrieved: 0
number of packets sent: 4
number of packets read: 4
minimal delay: 534

TASK: applLt RATE GROUP: 1
WORST CASE PATH: number of packets queued: 4

number of messages queued: 1
number of packets retrieved: 3
number of messages retrieved: 1
number of packets sent: 0
number of packets read: 0
minimal delay: 473

TASK: appl2_t RATE GROUP: 1
WORST CASE PATH: number of packets queued: 0

number of messages queued: 0
number of packets retrieved: 0
number of messages retrieved: 0
number of packets sent: 4
number of packets read: 4
minimal delay: 534

TASK: testt RATE GROUP: 1
WORST CASE PATH: number of packets queued: 6

number of messages queued: 4
number of packets retrieved: 16
number of messages retrieved: 4
number of packets sent: 4
number of packets read: 0
minimal delay: 1909

RATE GROUP TOTALS FOR APPLICATION TASKS
rate group 1: 2916
rate group 2: 1142
rate group 3: 1007
rate group 4: 4874

OUERHEAD TOTALS
minor frame 0: 7041
minor frame 1: 2043
minor frame 2: 2992
minor frame 3: 2081
minor frame 4: 4678
minor frame 5: 2043
minor frame 6: 2992
minor frame 7: 2138

MINOR FRAME OUERHEAD RG4 RG3 RG2 RG1
0 7041 2959 0 0 0
1 2043 4874 1007 1142 934
2 2992 4874 1007 0 1127
3 2081 4874 0 0 855
4 4678 4874 448 0 0
5 2043 4874 559 1142 0
6 2992 4874 1007 0 0
7 2138 4874 0 0 0

RG4 did not satisfy its boundary in frame 0.

210

Appendix F

errors.dat

The matching between tasks and filenames is...
0 appllt USER:[TRERDWELL.AFTA]APPTEST.ADA;3
1 appl2t USER:[TREADWELL.AFTA]APPTEST.ADA;3
2 systemfdlt USER:[TREADUELL.AFTA]SYSFDI.ADA;12
3 test.t USER:[TREADUELL.AFTA]TEST.CODE.ADA;6

SOFTWARE ANALYSIS FOR appllt

The packages found are...none
Now processing task appllt
Assuming default size
Task Model...

0 Type: 1 Ualue:
1 Type: 55 Ualue:
2 Type: 0 Ualue:
3 Type: 7 Ualue:
4 Type: 8 Ualue:
5 Type: 51 Ualue:
6 Type: 51 Ualue:

PATH: 0 1 2
PATH: 3 4 5 1 2
PATH: 3 4 5 6 0

for queue-message

Depth:
Depth:
Depth:
Depth:
Depth:
Depth:
Depth:

1 2

Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:

The worst path is characterized by...
Queued: 7 Retrieved: 3 Sent: 0 Read:

SOFTUARE AHALYSIS FOR appl2_t

The packages found are...none
Now processing task appl2_t
Unexpected task name -- found: appil-t
Assuming default size
Assuming default size
Assuming default size
Task Model...

O Type: 1 Ualue:
1 Type: 55 Ualue:
2 Type: 0 Ualue:
3 Type: 9 Ualue:
4 Type: 10 Ualue:
5 Type: 51 Ualue:
6 Type: 51 Ualue:

PATH: 0 1 2
PATH: 3 4 5 1 2
PATH: 3 4 5 6 0

for queue-message
for send-message
for read-message

Depth:
Depth:
Depth:
Depth:
Depth:
Depth:
Depth:

1 2

expected: appl2.t

Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:

The worst path is characterized by...
Queued: 0 Retrieved: 0 Sent: 4 Read:

211

Appendix F

SOFTUARE ANALYSIS FOR systemfdit

The packages found are...none
Now processing task systemfdit
Assuming default size for retrieve-message
Procedure computeuvg.timeout found in USER:[TREADWELL.AFTA]SYSFDI.ADA;12
Type: 55 Ualue: -2 Depth: 0 Pointer: 2
Type: 51 Ualue: -2 Depth: 0 Pointer: 0
Procedure readall.messages found in USER:[TREADWELL.AFTA]SYSFDI.ADA;12
Type: 54 Ualue: 0 Depth: 0 Pointer: -2
Ctr 0: Queued 0 Rtrud 48 Sent 0 Read 0
Procedure extractinteruvgptinfo found in USER:[TREADWELL.AFTA]SYSFDI.ADA;12
Procedure extract-syndrome.exch-info found in USER:[TREADWELL.AFTA]SYSFDIADA;12
Procedure check-formissingsyndromeeexch found in
USER:[TREADWELL.AFTA]SYSFDI .ADA;12
Procedure checkintervug.timeouts found in USER:[TREADWELL.AFTA]SYSFDI.ADA;12
Type: 55 Ualue: -2 Depth: 0 Pointer: 2
Type: 51 Ualue: -2 Depth: 0 Pointer: 0
Procedure analyze-syndrome found in USER:[TREADWELL.AFTA]SYSFDI.ADA;12
Procedure exchange-syndrome found in USER:[TREADUELL.RFTA]SYSFDI.ADA;12
Task Model...
O Type: 1 Ualue: -3 Depth: 0 Pointer: 3
1 Type: 0 Ualue: -2 Depth: 1 Pointer: -2
2 Type: 54 Ualue: 0 Depth: 1 Pointer: -2
3 Type: 51 Ualue: -2 Depth: 0 Pointer: 0

Ctr 0: Queued 0 Retud 48 Sent 0 Read 0
PATH: 0 1
PATH: 2 3 0 1
The worst path is characterized by...
Queued: 0 Retrieved: 48 Sent: 0 Read: 0

SOFTWARE ANALYSIS FOR appllt

The packages found are...none
Now processing task appllt
Assuming default size for queue-message
Task Model...
O Type: 1 Ualue: -3 Depth: 0 Pointer: 7
1 Type: 55 Ualue: 61 Depth: 1 Pointer: 6
2 Type: 0 Ualue: -2 Depth: 2 Pointer: -2
3 Type: 7 Ualue: 4 Depth: 2 Pointer: -2
4 Type: 8 Ualue: 3 Depth: 2 Pointer: -2
5 Type: 51 Ualue: -2 Depth: 1 Pointer: 1
6 Type: 51 Ualue: -2 Depth: 0 Pointer: 0

PATH: 0 1 2
PATH: 3 4 5 1 2
PATH: 3 4 5 6 0 1 2
The worst path is characterized by...
Queued: 4 Retrieved: 3 Sent: 0 Read: 0

212

Appendix F

SOFTWARE ANALYSIS FOR appl2.t

The packages found are...none
How processing task appl2_t
Unexpected task name -- found: appil-t expected: appl2_t
Assuming default size for queue-message
Assuming default size for sendmessage
Assuming default size for read-message
Task Model...

0 Type: 1 Ualue: -3 Depth: 0 Pointer: 7
1 Type: 55 Ualue: 61 Depth: I Pointer: 6
2 Type: 0 Ualue: -2 Depth: 2 Pointer: -2
3 Type: 9 Ualue: 4 Depth: 2 Pointer: -2
4 Type: 10 Ualue: 4 Depth: 2 Pointer: -2
5 Type: 51 Ualue: -2 Depth: 1 Pointer: 1
6 Type: 51 Ualue: -2 Depth: 0 Pointer: 0

PATH: 0 1 2
PATH: 3 4 5 1 2
PATH: 3 4 5 6 0 1 2
The worst path is characterized by...
Queued: 0 Retrieved: 0 Sent: 4 Read: 4

SOFTWARE ANALYSIS FOR appilt

The packages found are...none
Now processing task appll-t
Assuming default size for queue-message
Task Model...
0 Type: 1 Ualue: -3 Depth: 0 Pointer: 7
1 Type: 55 Ualue: 61 Depth: 1 Pointer: 6
2 Type: 0 Ualue: -2 Depth: 2 Pointer: -2
3 Type: 7 Ualue: 7 Depth: 2 Pointer: -2
4 Type: 8 Ualue: 3 Depth: 2 Pointer: -2
5 Type: 51 Ualue: -2 Depth: I Pointer: 1
6 Type: 51 Ualue: -2 Depth: 0 Pointer: 0

PATH: 0 1 2
PATH: 3 4 5 1 2
PATH: 3 4 5 6 0 1 2
The worst path is characterized by...
Queued: 7 Retrieved: 3 Sent: 0 Read: 0

213

Appendix F

SOFTWARE ANALYSIS FOR appl2_t

The packages found are..none
Now processing task appl2_t
Unexpected task name -- found: appllt expected: appl2_t
Assuming def
Assuming def
Assuming def
Task Model..

0 Type: 1
1 Type: 55
2 Type: 0
3 Type: 9
4 Type: 10
5 Type: 51
6 Type: 51

PATH: 0 1
PATH: 3 4
PATH: 3 4

aul
aul
aul

size
size
size

for
for
for

Ua ue:
Ua ue:
Ua ue:
Ua ue:
Ua ue:
Ua ue:
Ua ue:

1 2
6 0 1 2

queue-message
send-message
read-message

Depth:
Depth:
Depth:
Depth:
Depth:
Depth:
Depth:

Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:

The worst path is characterized by...
Queued: 0 Retrieved: 0 Sent: 4 Read:

7
6

-2
-2
-2

1
0

4

SOFTWARE ANALYSIS FOR appllt

The packages found are,..none
Now processing task appllt
Assuming default size
Task Model...

O Type: 1 Ualue:
1 Type: 55 Ualue:
2 Type: 0 Ualue:
3 Type: 7 Ualue:
4 Type: 8 Ualue:
5 Type: 51 Ualue:
6 Type: 51 Ualue:

PATH: 0 1 2
PATH: 3 4 5 1 2
PATH: 3 4 5 6 0

for queuemessage

Depth:
Depth:
Depth:
Depth:
Depth:
Depth:
Depth:

1 2

Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:

The worst path is characterized by...
Queued: 4 Retrieved: 3 Sent: 0 Read:

214

Appendix F

SOFTUARE ANALYSIS FOR appl2.t

The packages found are...none
Now processing task appl2_t
Unexpected task name -- found: appll-t
Assuming default size
Assuming default size
Assuming default size
Task Model...
0 Type: 1 Ualue:
1 Type: 55 Ualue:
2 Type: 0 Ualue:
3 Type: 9 Ualue:
4 Type: 10 Ualue:
5 Type: 51 Ualue:
6 Type: 51 Ualue:

PATH: 0 1 2
PATH: 3 4 5 1 2
PATH: 3 4 5 6 0

expected: appl2.t
for queue-message
for send-message
for read-message

Depth:
Depth:
Depth:
Depth:
Depth:
Depth:
Depth:

1 2

Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:
Pointer:

The worst path is characterized by...
Queued: 0 Retrieved: 0 Sent: 4 Read: 4

SOFTUARE ANALYSIS FOR test-t

The packages found are...
firstpackage
secondpackage
Now processing package second-package
Now processing package first.package
Now processing task test-t
Procedure second.package.first found in secondpackage.ada
Type: 9 Ualue: 4 Depth: 0 Pointer: -2
Procedure first-package.first found in firstpackage.ada
Type: 54 Ualue: 0 Depth: 0 Pointer: -2
Type: 56 Ualue: 2 Depth: 0 Pointer: 4
Type: 7 Ualue: 1 Depth: 1 Pointer: -2
Type: 0 Ualue: -2 Depth: 1 Pointer: -2
Type: 51 Ualue: -2 Depth: 0 Pointer: 1
Type: 54 Ualue: 1 Depth: 0 Pointer: -2
Ctr 0: Queued 0 Rtrvd 8 Sent 0 Read 0
Ctr 1: Queued 3 Rtrvd 0 Sent 0 Read 0
Procedure first-package.second found in firstpackage.ada
Type: 55 Ualue: 11 Depth: 0 Pointer: 16
Type: 54 Ualue: 0 Depth: 1 Pointer: -2
Type: 56 Ualue: 2 Depth: 1 Pointer: 5
Type: 7 Ualue: 1 Depth: 2 Pointer: -2
Type: 0 Ualue: -2 Depth: 2 Pointer: -2
Type: 51 Ualue: -2 Depth: 1 Pointer: 2
Type: 54 Ualue: I Depth: 1 Pointer: -2
Type: 0 Ualue: -2 Depth: I Pointer: -2
Type: 2 Ualue: -2 Depth: 1 Pointer: 15
Type: 54 Ualue: 2 Depth: 2 Pointer: -2
Type: 56 Ualue: 2 Depth: 2 Pointer: 13
Type: 7 Ualue: 1 Depth: 3 Pointer: -2
Type: 0 Ualue: -2 Depth: 3 Pointer: -2
Type: 51 Ualue: -2 Depth: 2 Pointer: 10
Type: 54 Ualue: 3 Depth: 2 Pointer: -2
Type: 52 Ualue: -2 Depth: 1 Pointer: 8

215

Appendix F

Type: 51 Ualue: -2 Depth: 0 Pointer: 0
Ctr 0: Queued 0 Rtrvd 8 Sent 0 Read 0
Ctr 1: Queued 3 Rtrvd 0 Sent 0 Read 0
Ctr 2: Queued 0 Rtrvd 8 Sent 0 Read 0
Ctr 3: Queued 3 Rtrvd 0 Sent 0 Read 0
Task Model...

0 Type: 1 Ualue: -3 Depth: 0 Pointer: 19
1 Type: 55 Ualue: 11 Depth: 1 Pointer: 17
2 Type: 54 Ualue: 0 Depth: 2 Pointer: -2
3 Type: 56 Ualue: 2 Depth: 2 Pointer: 6
4 Type: 7 Ualue: 1 Depth: 3 Pointer: -2
5 Type: 0 Ualue: -2 Depth: 3 Pointer: -2
6 Type: 51 Ualue: -2 Depth: 2 Pointer: 3
7 Type: 54 Ualue: 1 Depth: 2 Pointer: -2
8 Type: 0 Ualue: -2 Depth: 2 Pointer: -2
9 Type: 2 Ualue: -2 Depth: 2 Pointer: 16

10 Type: 54 Ualue: 2 Depth: 3 Pointer: -2
11 Type: 56 Ualue: 2 Depth: 3 Pointer: 14
12 Type: 7 Ualue: 1 Depth: 4 Pointer: -2
13 Type: 0 Ualue: -2 Depth: 4 Pointer: -2
14 Type: 51 Ualue: -2 Depth: 3 Pointer: 11
15 Type: 54 Ualue: 3 Depth: 3 Pointer: -2
16 Type: 52 Ualue: -2 Depth: 2 Pointer: 9
17 Type: 51 Ualue: -2 Depth: 1 Pointer: 1
18 Type: 9 Ualue: 4 Depth: 1 Pointer: -2
19 Type: 51 Ualue: -2 Depth: 0 Pointer: 0

Ctr 0: Queued 0 Retvd 8 Sent 0 Read 0
Ctr 1: Queued 3 Retvd 0 Sent 0 Read 0
Ctr 2: Queued 0 Retvd 8 Sent 0 Read 0
Ctr 3: Queued 3 Retvd 0 Sent 0 Read 0
PATH: 0 1 2 7 8
PATH: 0 1 2 3 4 5
PATH: 6 7 8
PATH: 6 3 4 5
PATH: 6 7 8
PATH: 16 17 1 2 7 8
PATH: 16 17 1 2 3 4 5
PATH: 16 17 18 19 0 1 2 7 8
PATH: 16 17 18 19 0 1 2 3 4 5
PATH: 9 10 15 16 17 1 2 7 8
PATH: 9 10 15 16 17 1 2 3 4 5
PATH: 9 10 15 16 17 18 19 0 1 2 7 8
PATH: 9 10 15 16 17 18 19 0 1 2 3 4 5
PATH: 9 10 11 12 13
PATH: 14 15 16 17 1 2 7 8
PATH: 14 15 16 17 1 2 3 4 5
PATH: 14 15 16 17 18 19 0 1 2 7 8
PATH: 14 15 16 17 18 19 0 1 2 3 4 5
PATH: 14 11 12 13
PATH: 14 15 16 17 1 2 7 8
PATH: 14 15 16 17 1 2 3 4 5
PATH: 14 15 16 17 18 19 0 1 2 7 8
PATH: 14 15 16 17 18 19 0 1 2 3 4 5
The worst path is characterized by...
Queued: 6 Retrieved: 16 Sent: 4 Read: 0

216

Appendix G
A Checklist for Adding Critical Constructs

1. Designate a constant name that is to be used to refer to the new construct and add the

constant definition to the list in HEADER.H

EX: define NEWUCONSTRUCT 28

2. Add a new integer parameter to the c o u n t e rs e t structure definition in

HEADER.H.

EX: int new.construct;

3. Add the new delay parameter to the const ant_ I i st structure definition listed in

HEADER.H.

EX: int new.constructconst;

4. Add the new construct to the end of the list in "key_words.dat."

5. Add the delay constant corresponding to the new construct to "constants.dat."

EX: newconstructdelay 33

6. Add the new delay parameter to the r e a d_ I is t procedure for reading in delay

constants.

EX: fscanf(I ist fi le,"%s Xd\n",dummy-str ing,&dummy int);
delaydata->newconstructconst = dummyint;

7. Add the new parameter to the initialization lists found in t a s kp a r s e,

generat e-paths, and f i nd-worst-pat h.

EX: final-counter.newconstruct = 0;

8. Add the new construct to the switch statement in the s e a r c h procedure. If it is a

subprogram call, group it with the message passing calls and use the v a I i d_c a I I

procedure to verify any occurrence of the new construct. The code should look

something like this...

EX: case NEW.CONSTRUCT:

if(valid-cal l(this l ine->entry[i].name,
search l.ist->entry[j].name) == YES)

(
skeleton->entry[skeleton->length].type = NEW-CONSTRUCT;
skeleton->entry[skeleton->length].ualue = UNDEFINED;
if (flags->ctractive) ++skeleton->length;

break;

9. Add the new construct to the summation in chec kct rs.

10. Add the new construct to the switch statement in paramet er i z e.
EX: case NEW-CONSTRUCT:

++counter set.new.construct;
break;

217

Appendix G

11. Add the new construct to the calculations in ca I cu I at e-t i me.

EX:sum += delaydata->newconstruct.const*counterset .newconstruct;

12. Add the new construct to the parameter listing in wr i t ef i I e.

EX: fprintf(outfile, " new construct instances: %d\n",
vg[i].task[j].counter-set.new.construct);

218

Appendix H
References

[AFTA91] Harper R. et. al. The Army Fault Tolerant Architecture Conceptual Study,
prepared for US Army AVRADA, Ft. Monmouth N.J., Aug. 1991.

[BOO87] Booch, Grady. Software Engineering With Ada. Menlo Park CA: The
Benjamin Cummings Publishing Company, Inc., 1987.

[CLAS92] Clasen, R. et. al. "Empirical Performance of a Fault-Tolerant Hard-Real-
Time Parallel Processor," Oct. 1992.

[CLAS93] Clasen, R. Performance Modeling and Analysis of a Fault-Tolerant, Real-
Time Parallel Processor, Master of Science Thesis, Northeastern University,
June 1993.

[DOL82] Dolev, D. "The Byzantine Generals Strike Again," Journal of Algorithms,
vol. 3, 1982, pp. 14-30.

[DOL84] Dolev, D. et. al. "Fault Tolerant Clock Synchronization," Communications
of ACM, 1984, pp. 89-101.

[HAR91] Harper, R. E. and J. H. Lala. "Fault-Tolerant Parallel Processor," Journal of
Guidance, Control, and Dynamics, vol 14, no. 3, May 1991, pp. 554-563.

[LAM82] Lamport, L. et. al. "The Byzantine Generals Problem," ACM Transactions
on Programming Languages and Systems, vol. 4, no. 3, Jul 1982, pp. 383-
401.

[PARK90] Park, ChangYun and Alan C. Shaw. "Experiments With a Program Timing
Tool Based on Source-Level Timing Schema," Proc. 11th IEEE Real-Time
Systems Symposium, Dec. 1990, pp. 72-81.

[PUS89] Puschner P. and Ch. Koza. "Calculating the Maximum Execution Time of
Real-Time Programs," The Journal of Real-Time Systems, Sep 1989,
1(2):159-176.

219

