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in partial fulfillment of the requirements for the Master of Science in
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Abstract

This thesis presents applications of a particular perturbation method, known as the
Generalized Multiple Scales (GMS) theory, to the study of high speed aircraft dynamics.

The GMS theory is first used to approximate the solutions of the fourth order
longitudinal and lateral dynamics of a generic hypersonic vehicle flown along a Space Shuttle
reentry trajectory. Sensitivity of the vehicle dynamics to first and second order stability
derivative variations is assessed through an analytical approach made possible by the simple
form of the asymptotic approximations derived through the GMS method. Using state
augmentation, optimal control methods are then applied to reduce sensitivity of the vehicle's
longitudinal dynamics to first order variations of a particular stability derivative during the
reentry.

The dynamics of the SR-71 and the stability of the aircraft along a prescribed
trajectory are also investigated. A stability parameter derived through GMS theory is used to
predict the stability of the aircraft when it flies from supersonic to subsonic speeds along the
trajectory.

Finally, GMS asymptotic approximations are used to define extended handling quality
criteria for vehicles with very large flight envelopes. Unlike typical handling quality
specifications, these are defined in terms of variable system response and are believed to give a
better evaluation of the vehicle's true performance level.
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CHAPTER 1

Introduction

1.1 HIGH SPEED VEHICLES

Over the last few years, there has been an increasing interest in the field of hypersonic

vehicles. These are defined as the class of flight vehicles to fly at speeds in excess of Mach 6.

After the technological efforts of the eighties to achieve a Space Shuttle, the present interest

has shifted to reusable hypersonic vehicles that would takeoff horizontally from conventional

runways and accelerate to orbital velocity as air-breathing aircraft to reach low-Earth-orbit

(LEO). After completing their mission, these vehicles would reenter the Earth's atmosphere

and fly to a horizontal landing. There are currently several military and commercial

hypersonic vehicles being developed world wide among which the National Aerospace Plane

(NASP) designed by NASA.

One particular issue regarding very high speed aircraft, such as supersonic or

hypersonic vehicles, is the need for a good understanding of their dynamics along atmospheric

trajectories. Continuous variations in speed and density (due to altitude changes for example)

renders the dynamics of these aircraft highly time varying. Unlike the dynamics of

conventional aircraft which can be efficiently described using linear time invariant (LTI)

models, the dynamics of very high speed aircraft can only be accurately described using linear



time varying (LTV) models. However, with the exception of first order systems, there are no

known exact solutions to LTV differential

equations. The current approach in dealing with LTV systems is to " freeze " the coefficients

over various intervals of time and treat the systems as time invariant over each interval. This

method usually yields very inaccurate descriptions of the real system and it appears that

substantial improvement would result from treating the system as truly time varying.

1.2 THE GENERALIZED MULTIPLE SCALES THEORY

In order to get an accurate description of high speed aircraft dynamics, time varying

systems need to be solved in some manner. One approach is to use perturbation methods to obtain

asymptotic approximate solutions. Among these, the Generalized Multiple Scales (GMS)

theory developed by Ramnath [6] has proved to be very successful in providing asymptotic

approximations to solutions of slowly varying systems. In particular, the longitudinal dynamics

of the Space Shuttle [7] as well as the dynamics of a VTOL during transition from hover to

cruise [81 were predicted by Ramnath using the GMS theory.

Unlike most approximation methods, which produce solutions in terms of non

elementary functions such as Bessel or Mathieu functions, the GMS theory generates

approximate solutions in terms of simple mathematical functions. This allows numerous

applications along with the study high speed vehicle dynamics. Stability and control issues of

vehicles flying through variable flight conditions can be assessed. Sensitivity of vehicle

dynamics to parameter variations can be studied. Extended aircraft handling quality criteria

for high speed aircraft can be defined through the insight gained by GMS asymptotic

approximations.



13 THESIS STRUCTURE

Chapter 2 presents the geometric characteristics of the Generic Hypersonic

Aerodynamic Model Example (GHAME) vehicle and the optimal shuttle reentry trajectory

along which the dynamics of the vehicle are studied.

Fundamental results of the Generalized Multiple Scales (GMS) theory are presented in

chapter 3. In particular, the analytical approximations to fourth order linear time varying

differential equations obtained using GMS theory are given and compared to exact solutions.

Finally, the extension of GMS theory to sensitivity analysis is described.

Chapter 4 and 5 are complete first and second order sensitivity analyses of the lateral

and longitudinal dynamics of the GHAME vehicle. The equations of motion are presented and

approximate solutions are derived using GMS theory. Sensitivity of the dynamics to first and

second order variations in the stability derivatives are assessed through the evaluation of two

"sensitivity criteria". These criteria, together, give a good description of the relative

sensitivity of the dynamics to stability derivative variations along the reentry trajectory.

An approach to incorporating sensitivity considerations in the design of control systems

is described in chapter 6. By augmenting the system, it is shown that classical optimal control

techniques can be used to both control the system and reduce its sensitivity to parameter

variations. Ultimately, this approach is applied to the longitudinal dynamics of the GHAME

vehicle with the objective of reducing their sensitivity to first order variations in one

particular stability derivative during a portion of the reentry.

Chapter 7 is a study of the dynamics of the SR-71 along a prescribed trajectory. The

GMS theory is used to analyze the stability of the vehicle when it flies from supersonic to

subsonic speeds.



Chapter 8 investigates the problem of predicting accurate handling qualities for

vehicles with very large flight envelopes such as the GHAME vehicle or the SR-71. By using

results from the GMS theory, new aircraft handling quality criteria are defined in terms of

variable system response. The criteria are then applied to a generic aircraft flying through

variable flight conditions. Finally, the possible display of handling quality information in the

cockpit is briefly studied.

The summary of the findings as well as suggestions for future development of the

various concepts introduced in this thesis are presented in chapter 9.



CHAPTER 2

GHAME Vehicle and Reentry Trajectory

2.1 GHAME VEHICLE

The recent interest in the development of hypersonic vehicles has led to a need for

accurate aerodynamic data in hypersonic flight regime. Much of the existing data is not

available to general users. A Generic Hypersonic Aerodynamic Model Example (GHAME) was

developed at Dryden Flight Research Facility [1] to provide a simulation model for research

and development analysis in the fields of design of control and guidance systems as well as

trajectory optimization.

The GHAME data was developed for a flight regime typical of a single stage-to-orbit

mission (SSTO) such as the ones that would be encountered by the National Aerospace Plane

(NASP). Such missions typically consist of taking off horizontally from a conventional runway

and accelerating to orbital velocity as an air-breathing aircraft to reach a low-Earth-orbit

(LEO). After completing its mission, the vehicle would reenter the Earth's atmosphere and

glide to a horizontal landing.

The model is based upon a combination of flight test data from the Space Shuttle and

the X-24C and theoretical data from a swept double delta configuration using modified

Newtonian Impact Flow method. The geometric properties of the GHAME vehicle were

estimated using simple geometric shapes. The geometry of the simplified vehicle is shown in

figure 2.1.



Figure 2.1: GHAME Vehicle

The fuselage was modeled as a cylinder 20 feet in diameter and 120 feet long allowing

internal volume requirements for storage of the liquid hydrogen fuel to be met. A pair of 10

degree half cones were attached to this cylinder to complete the fuselage assembly. Both the

wings and vertical tail were modeled as thin triangular plates. The engine module is attached

around the lower surface of the fuselage.



The geometric properties of the vehicle are summarized in table 2.1:

Length, 1 233.4 ft.

Ref. Area, S 6000 ft.2

Ref. Chord, c 75 ft.

Ref. Span, b 80 ft.

Mass, m 120,000 lbs.

Ixx 0.87106 slugs ft.2

Iyy 14.2 106 slugs ft.2

Izz 14.9 106 slugs ft.2

Ixz 0.28 106 slugs ft.2

Table 2.1: Geometric Properties of the GHAME Vehicle

2.2 REENTRY TRAJECTORY

In this study, the dynamics of the GHAME vehicle are studied as it reenters the

Earth's atmosphere along a prescribed trajectory. The simulated trajectory is based on the

actual trajectory of the Space Shuttle Orbiter 049 which was designed to minimize the

thermal-protection-system-weight of the vehicle. The entry starts at the fringe of the

atmosphere (-120 km) at approximately Mach 27 and is assumed to end at about 30 km and

Mach 3 after which the vehicle initiates a short deceleration to subsonic speeds before

beginning approach procedures.

This optimal Shuttle trajectory was studied by Ramnath [7] and is shown on figure 2.2

where angle of attack, velocity altitude and flight path angle are plotted as functions of the

non-dimensional variable 4. This non-dimensional variable defined by Ramnath [7] is the



number of vehicle lengths traversed along the trajectory. The total time of the reentry is

approximately 1900 seconds.
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Figure 2.2: Reentry Trajectory



CHAPTER 3

Generalized Multiple

Scales Theory

3.1 GENERAL THEORY

The Generalized Multiple Scales (GMS) method formulated by Ramnath [6] is a

technique for approximating the solutions for a class of ordinary differential equations with

variable coefficients involving a small parameter e.

While first order linear equations can be solved explicitly in terms of simple analytical

functions, higher order equations cannot be handled in the same way. For very particular types

of higher order equations, solutions can be expressed in terms of complex mathematical functions

such as Bessel or Mathieu functions. However, even these are only available in tabulated

tables. The GMS method provides asymptotic approximate solutions to high order linear and

nonlinear differential equations with time varying coefficients in closed analytical form in

terms of simple mathematical functions such as exponential, sine and cosine functions.

In essence, the GMS method involves extension of the independent variable, t, to a set of

independent scales, z0, rl, .. replacing the ordinary differential equation by a set of partial

differential equations. In this way, the transient response of a dynamical system can be

separated into different components, each varying on a different time scale. For a more detailed



description of the Generalized Multiple Scales method and applications, the reader can refer

to the work done by Ramnath [6] [7] [8].

3.2 FOURTH ORDER GMS SOLUTION

Following Ramnath [6], a two time scale GMS approximation to the solutions of a

fourth order differential equation with time varying coefficients is presented in this section.

The general form of a fourth order differential equation with time varying coefficients

can be written as:

d4y d3y d2y dy+ 3(t0>) + 2(t) + 01(t) + 0(t) = 0 (3.1)
dt4 dt3 dt2 dt

As shown by Ramnath [7], the GMS solution to this equation is obtained by

approximating the motion associated with each of the modes of motion. With the use of two

time scales (fast and slow), the GMS method provides an approximation to the amplitude and

phase of each of the independent solutions of (3.1).

The modes of motion of (3.1) are characterized by the nature of the roots of the

characteristic equation. The characteristic equation of (3.1) has four roots which define four

independent modes. Depending on the nature of the modes, the GMS approximation will have

different forms.

If a particular mode, m, is represented by a single real root, k(t), then the GMS

approximation to the characteristic motion is given by:



(t

ym(t) = exp k(t) dt (3.2)

If a mode is represented by a pair of complex conjugate roots, k(t) = kr(t) ± iki(t), the

transient response of the dynamical system associated with the mode can be split into separate

components each varying on one of the two time scales. The GMS approximation is then given

by:

ym(t) = ys(t) yf(t) (3.3)

where ys(t) and yf(t) are referred to as the slow and the fast part of the GMS solution

respectively.

The slow part of the solution is then defined as:

ys(t) = exp dt (3.4)ys(t) = exp k 2iki(t)

and the fast part of the solution is given by:

yf(t) = exp fkr(t) dt C1 sin ki(t) dt + C2 cos ki(t) dt (3.5)
toto to



where C1 and C2 are two arbitrary constants, associated with the mode, that are both

determined by initial conditions.

The full GMS solution to the fourth order differential equation (3.1) is then obtained by

a linear combination of the approximations of the motions of each mode. For example, in a case

where the characteristic equation of (3.1) has 2 real roots and one complex conjugate pair,

defining three modes, the full solution would be written:

y(t) = ClYm1 (t) + C 2 Ym2 (t) + C 3 Ym3 (t) + C 4 Ym4 (t) (3.6)

where ymi (t), Ym2 (t), ym3 (t) and Ym, (t) are determined as shown previously, depending on

the nature of the associated root (in (3.6), ym, (t) and ym2 (t) represent the sine and cosine

parts of the GMS approximation to the mode associated with the pair of complex conjugate

roots).

The previous analysis contains no mention of the small parameter e. In fact it has been

subtly introduced via the slowly varying assertion which allows the dynamics to be split into

fast and slow components and then removed from the final result on restriction of the time

domain.

In order to simplify the math associated with deriving full GMS solutions, a possible

additional approximation consists of considering only the fast part of the solutions. The fast

part of the solutions contains all of the frequency and phase information. The slow part acts as

a modulation of the amplitude and will be neglected throughout this study.



Figure 3.1 illustrates the accuracy of the full GMS solution when compared to a

numerical solution obtained using a fourth order Runge-Kutta integration in the case of a second

order differential equation.

System Response

0.8-

+0 frozen solution
0.6 -

+ + + + GMS solution (fast part)0.4-+ ++
+

0-+

-0.2- + +
+ +

+full GMS solution

-0.6 - + +I + +

-0 .8..... .. .....

-1
0 1 2 3 4 5 6 7 8

Time (seconds)
-1

Time (seconds)

Figure 3.1: GMS vs. Exact Solution

The fast part of the GMS solution is also plotted. The plot shows how the slow part of

the solution corrects the amplitude of the fast part which contains all of the frequency and

phase information. The widely used "frozen" approximation is also plotted. The results show

how the frozen approximation becomes completely invalid after about half a period and the

large improvements in accuracy obtained when using a GMS approach.



One big advantage of the GMS method is that it actually provides a complete

analytical solution to the fourth order differential equation. Although very tedious, the roots

of a fourth order equation can be written in analytical form as follows:

Let p = -02 (3.7)

q = (03(01 - 4coo (3.8)

r = 40200 - 000 - 012 (3.9)

a = i-(3q - p2) (3.10)
3

b = -- (2p3 - 9pq + 27r) (3.11)
27

- 1/3

A = (3.12)

S1/3
B =- 1/+  + (3.13)

Y =A + B -R (3.14)
3

R = - 02 + Y (3.15)

1/2

D= R2 2o2 + 4(0302- 8co1 - (3.16)
= - R4R

1/2

0
E = -3 R2 - 202 403(2- 8col (3.17)

34R



The roots of the characteristic equation can then be expressed in terms of these new

variables. If the characteristic equation has two complex conjugate roots, for example, they

would then be given by the expressions:

kl = klr + i kli (3.18)

k2 = k2r i k2i (3.19)

where kir 0 3 R (3.20)
4 2

kli = E (3.21)
2

k2r - 03 +R (3.22)
4 2

k2i = D (3.23)
2

Although the full analytical form of the GMS solution is complex, it does provide much

more insight into the dynamics of the system than a numerical approach which would

typically be adopted for this kind of a problem. The type of information contained in an

analytical expression can be very useful, for example, for analyzing the relative influences of

different parameters on the dynamics of the system. It would also provide valuable guidelines

in designing an adequate control the system.

33 GMS SENSITIVITY THEORY

In the study of flight vehicle dynamics, it is often useful to study how certain physical

parameters of the aircraft can affect its motion. This problem can be studied in a relatively

simple way for conventional aircraft where flight conditions are usually considered to be

constant. In that case the equations of motion are time invarying and can be solved explicitly.

The sensitivity of the dynamics to variations in certain physical parameters is then simply

established by performing partial differentiations with respect to the parameters of interest.



This problem becomes much more complex in the case of a hypersonic vehicle for which

flight conditions vary extensively along the reentry trajectory. The equations of motion are

time varying and, in addition to the difficulties mentioned earlier in finding exact solutions to

these equations, variational principles must be used to establish sensitivity of the dynamics to

variations in physical parameters that also vary along the trajectory.

However, Ramnath has shown [8] that, under certain conditions, partial

differentiation of solutions of linear time varying systems obtained using the GMS method is a

suitable approximation to variational methods. Under those conditions, mainly slowly varying

coefficients, vehicle sensitivity to variations of physical parameters can be approximated by

treating those parameters as constant.

Consider the general form of a linear time varying system:

Y(t) = A(t)Y(t) + B(t)U(t) (3.24)

As described in the previous sections, if the system is slowly varying, asymptotic

solutions Y(t) to equation (3.24) can be derived using the GMS theory. Using the conventional

notation, the notion of asymptotic approximations to exact solutions is expressed as:

Y(t) ~ Y(t) e -> 0 (3.25)

where Y(t) is the exact solution of (3.24).

As defined by Ramnath [8], first order sensitivity of Y(t) to changes in a certain

parameter, p, is defined by:

S (t) (3.26)
p ap



Then under certain conditions, mainly a slowly varying system:

S(t) ~ Sp(t) ->0 (3.27)

where Sp(t) is the exact sensitivity derived using variational methods. This means that Sp(t)

is in fact an asymptotic approximation of the real sensitivity of the system which is a very

powerful and non-trivial result.

In the same way, second order sensitivity to changes in p is obtained by second order

partial differentiation of the solutions produced by the GMS method:

(t) A (t) (3.28)
p ap2

Therefore, the result proven by Ramnath [8] shows that, under certain circumstances,

vehicle sensitivity to variations in physical parameters can be simply approximated by

partial differentiation of the asymptotic solutions derived using the GMS method. This result

will be used throughout this study to analyze first and second order sensitivity of the dynamics

of the GHAME vehicle to variations in the different stability derivatives during its reentry

into the Earth's atmosphere.



CHAPTER 4

Sensitivity Analysis of the Lateral Dynamics

of the GHAME Vehicle

4.1 EQUATIONS OF MOTION

The general lateral equations of motion of a vehicle in flight are non-linear and time

varying. The lateral dynamics of the GHAME vehicle, however, are studied by developing

approximate solutions to the equations of motion linearized about a steady flight condition.

This approach is justified because of the fact that, in general, solutions to non-linear systems

exhibit the same local behavior as the solutions of the linearized systems in the vicinity of the

equilibrium.

With the usual notation [5], the linearized equations of motion describing the lateral

dynamics of a flight vehicle about a nominal steady flight condition are written in a state

space form as:

s -Y, V -g Av 0
-L v  -Lr s2 Lp s Ar= 0 (4.1)

-Nv s-Nr -Np S LAJ L

or AX=O (4.2)



where the parameters Lv, Lr, Lp, Nv, Nr, Np and Yv appearing in (4.1) are the lateral-

directional stability derivatives of the flight vehicle. The velocity perpendicular to the

flight path, v, the yaw rate, r, and the roll angle, 9, of the vehicle are the flight parameters

and are represented as perturbations about some steady state flight value:

v = vo + Av (4.3)

r = ro + Ar (4.4)

S= 00 + AO (4.5)

The modes of motion of the lateral dynamics of the flight vehicle are determined from

the roots of the characteristic equation, which are also the eigenvalues of the A matrix. The

characteristic equation of the system describing the lateral dynamics of the GHAME vehicle is

a fourth order equation which can be written as:

s4 +c3 s3 +2 s2 cl s + c = 0 (4.6)

The coefficients appearing in (4.6) are functions of the stability derivatives and are

defined as:

c3 = -Lp - Nr - Yv (4.7)

c2 = VNv - LrNp + YvLp + Nr (Lp + Yv) (4.8)

cl = Yv (LrNp - NrLp) - gLv + VNpLv - VLpNv (4.9)

co = g (LvNr - NvLr) (4.10)



Typically, the lateral dynamics of a flight vehicle has three modes:

1. A relatively lightly damped oscillatory mode, called the "dutch roll".

2. A first order divergent mode of relatively long time constant, called the

"spiral" mode.

3. A first order convergent mode of relatively short time constant, called the

"roll subsidence" mode.

The typical root locations in the complex plane for the roots representing lateral

dynamics are shown in figure 4.1:

s -plane

dutch roll

roll convergence mode x
spiral mode

Figure 4.1: Conventional Lateral Directional Root Location

In the case of the GHAME vehicle, flight parameters such as air density and flight

velocity change continuously along the reentry trajectory. As a result, the stability derivatives

of the vehicle vary with time as the vehicle enters the Earth's atmosphere. Therefore the

Real

imaginary



roots representing the lateral modes of motion will move in the complex plane as the vehicle

flies along the trajectory.

The roots associated with the lateral-directional modes of motions of the GHAME

vehicle and their movement with time are shown in figure 4.2. The roots are plotted for up to

1900 seconds into the trajectory. It appears that over that particular phase of the reentry, the

GHAME vehicle possesses the three modes of motion that are typical of lateral-directional

behavior of a conventional aircraft.

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005

Real Axis

0 0.005

Figure 4.2: Lateral Directional Roots Along the Trajectory



The dutch roll is represented by a pair of complex conjugate roots that remain in the left

half plane while the roll convergence and spiral modes are each represented by a real roots

that remain in the left and right half plane respectively. As the GHAME vehicle travels

further into the atmosphere, the dutch roll mode increases both in frequency and in damping.

The roll convergence mode increases significantly in frequency while the spiral mode remains in

the same area near the origin. At 1657 seconds into the reentry, were the vehicle is in the lower

parts of the atmosphere and flying at low supersonic speeds, the root locations of the lateral

directional modes of motion of the GHAME vehicle are similar to the typical root locations of

conventional aircraft presented in figure 4.1.

4.2 GMS SOLUTION TO LATERAL DYNAMICS

The lateral-directional dynamical response of the GHAME vehicle is described by a

fourth order differential equation:

d4y d3y d2y dy
+ C(t)- + c2(t) + (t) - + c(t) = 0 (4.11)

dt4 dt3 dt2 dt

where y can represent any one of the three flight parameters, v, r or 0, since they all exhibit

the same basic response. Since the stability derivatives vary along the reentry trajectory, it is

clear that this differential equation is time varying. As mentioned in chapter 3, linear time

varying (LTV) differential equations can generally not be solved analytically using traditional

methods. The GMS method will therefore be used to derive asymptotic approximations to the

solutions of (4.11).

In this chapter, we will be studying the lateral dynamics of the GHAME vehicle over a

phase of the reentry trajectory. The portion that is considered here corresponds to the first 670



second into the trajectory. In that interval, the vehicle possesses the three typical modes of a

conventional aircraft: roll convergence, spiral divergence and dutch roll.

Since the roll convergence and spiral divergence modes are each represented by a single

real root, the GMS asymptotic approximations for the respective characteristic motions are

given, as shown in chapter 3, by the expressions:

yrc(t) = exp f krc(t) dt (4.12)

ysp(t) = exp f ksp(t) dt (4.13)

where krc and ksp are the two real roots of the characteristic equation corresponding to the roll

convergence and spiral divergence modes. The dutch roll mode is represented by a pair of

complex conjugate roots, therefore the dutch roll response (separated here into a sin-like, drl,

and a cosine-like, dr2 , dutch roll) is given by:

Ydrl(t) = exp (fi dt exp kdn(t) dt ) sin kdri(t) dt (4.14)

ydr2(t) = exp dt exp kd(t) dt cos kdri(t) dt (4.15)



where kdr = kdrr ± ikdri is the complex conjugate root associated with the dutch roll.

We will make the additional simplification in this study of only considering the fast

part of the approximate solutions associated with the dutch roll. By neglecting the slow part,

we are losing accuracy in describing the amplitude of the response as illustrated in chapter 3.

This approximation, however, considerably simplifies the calculations associated with the

sensitivity analysis and was not considered penalizing since the goal of this study consists

mainly of validating our approach. The simplified approximation to the dutch roll response

will therefore be:

ydrl(t) = exp

Ydr2(t) = exp

kdn(t) dt sin kdri(t) dt

J oto

The full GMS asymptotic approximation to the solutions of the fourth order linear time

varying differential equation describing the lateral-directional dynamics of the GHAME

vehicle during reentry into the Earth's atmosphere is given by the linear combination of the

approximations of the motions of each mode:

y(t) = Clyrc(t) + C2ysp(t) + C3Ydr1(t)+C4Ydr2(t) (4.18)

where C1, C2, C3 and C4 are constants that depend on initial conditions.

(4.16)

(4.17)



43 FIRST ORDER SENSITIVITY ANALYSIS

4.3.1 Introduction

In this section, we will consider the sensitivity of the lateral-directional dynamics of

the GHAME vehicle to variations, along the reentry trajectory, of its lateral stability

derivatives. In order to get better insight, the sensitivity of the lateral dynamics to variations

in the stability derivatives will be developed by considering the motions associated with each

of the modes separately.

The effect of changes in these stability derivatives will be determined by using the

GMS sensitivity theory described in chapter 3. True sensitivity will be approximated by

partial differentiation of the GMS approximations with respect to the stability derivatives.

The validity of this approach for slowly varying systems was demonstrated by Ramnath in the

study of the dynamics of a VTOL [8].

First order sensitivity of a particular modal response is therefore simply approximated

by partial differentiation of the GMS response associated with that mode with respect to the

stability derivatives. As an example, first order sensitivity of the roll convergence mode to

variations in the dihedral term, Lv, is simply given by:

Sr (t) a ) = exp kre(t) dt t akrc(t)

Once again the GMS solution, defined in chapter 3, provides us with a complete

analytical expression for sensitivity. The algebra associated with the different derivations is

very tedious and will not be detailed in this study. A good descriptions of the details of these

derivations however can be found in [15].



4.3.2 Definition of First Order Sensitivity Criteria

The motivations for a sensitivity analysis are essentially to determine:

1. Which stability derivative variations have the most effect on the dynamics

of the GHAME vehicle during the reentry phase.

2. At which point along the reentry trajectory is the vehicle most sensitive to

variations in its stability derivatives.

Based on these motivations, two criteria are defined in order to analyze first order

sensitivity of the dynamics of the GHAME vehicle to stability derivative variations. These

criteria are defined to facilitate comparisons of the magnitudes and time histories of the

different sensitivities along the reentry trajectory.

First Order Sensitivity Average Criteria for Lateral Dynamics

The first criterion is defined as the average amplitude of the sensitivity of a particular

mode m (dutch roll, spiral or roll convergence) to variations in a particular stability

derivatives p (Lv, Lr, Lp, Nv , Nr, Np or Yv ), over a prescribed phase of the reentry trajectory

[0, T] ( [0, 670] in this case):

Sav -1 I S(t) I dt (4.20)- T

where Sm(t) is the first order sensitivity of mode m to variations of the stability derivative p:

m  A aym(t)S (t) = (4.21)Spt a



This first criterion measures the magnitude of sensitivity to variations in the different

stability derivatives over the entire phase of the reentry that is studied.

First Order Sensitivity Norm Criteria for Lateral Dynamics

The second criterion can be interpreted

sensitivity of a particular mode to all of the

particular mode m, as:

as a norm since it combines the effects of the

stability derivatives. It is defined, for each

(4.22)
1S (t) A jSm(t)MP

where p are all of the lateral stability derivatives.

This second criterion characterizes the evolution over time of the global sensitivity for

each of the vehicle's modes.

4.3.3 Sensitivity of First Order Stability Derivative Variations for Lateral Modes

First order sensitivity of the lateral modes of the GHAME vehicle for variations in the

seven lateral stability derivatives (Lv, Nv, Yv, Lp, Np, Lr, Nr) was derived using the GMS

sensitivity theory. The following presents the results obtained in this first order sensitivity

analysis.

Sensitivity Averages

The sensitivity averages of the three lateral-directional modes for the different

lateral stability derivatives are summarized in the three charts presented on page 36.



These charts show that the lateral modes of the GHAME vehicle are more sensitive to

variations in the directional derivative Nv than to any other stability derivative. Although

Nv has a strong influence on all three modes, it mostly affects the dutch roll and spiral modes.

In that sense the vehicle behaves in the same way as a conventional aircraft. The directional

stability term is very much dependent on vertical tail size. The vertical tail size of the

GHAME vehicle will therefore have great implications on the lateral dynamics

characteristics during reentry.

Variations of the dihedral term, Lv, also have a significant effect on the lateral modes

of the vehicle. Its influence on roll convergence and spiral modes is nearly as important as that

of the directional stability term. Lv also has a significant effect on dutch roll, several orders of

magnitude smaller however than that of Nv. There again, the strong sensitivity of the lateral

dynamics to changes in the dihedral term is similar to the behavior of a conventional aircraft

for which Lv plays an important role in lateral stability and control.

Variations of the yaw damping term, Nr, and adverse yaw term, Np, have similar

affects on lateral dynamics of the GHAME vehicle. These effects are several orders of

magnitude smaller than the ones of the directional and dihedral terms and can be considered of

secondary importance. They still contribute, however, especially to the characterization of the

roll convergence and spiral modes.

Variations in Lr and in the roll damping term, Lp, have similar effects on lateral

dynamics of the GHAME vehicle. Changes in Lr and Lp mainly affect the roll convergence and

spiral modes but are, however, of secondary importance compared to the influence of Nv and Lv.

On the other hand, they have nearly have no influence on dutch roll. This behavior is also

consistent with that of a conventional aircraft.

The charts also show that changes in the cross-wind-force term, Yv, do not have a

significant effect on the lateral dynamics of the GHAME vehicle during its reentry.
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Sensitivity Norm

The plots on page 38 present the evolution over time of what was defined as the

sensitivity norm of each of the lateral modes. The sensitivity norm characterizes the evolution

over time of the combined sensitivities for a particular mode. Compared to sensitivity

averages, this criterion gives insight on the amplitude of the global sensitivity of the vehicle

to stability variations at different times along the reentry trajectory.

The first thing to be noticed is that the sensitivity norm of the roll convergence and

dutch roll modes reach a maximum at some point of the phase of reentry trajectory we are

concerned with. The sensitivity norm of the spiral mode on the other hand grows unbounded.

This first observation is consistent with the fact that the spiral mode of the GHAME vehicle is

unstable where as both dutch roll and roll convergence modes are stable.

Dutch roll is the mode which is globally most sensitive to stability derivative

variations. Furthermore, the oscillatory nature of the dutch roll remains present in the time

history of sensitivity. This defines a band in which the global sensitivity varies along the

trajectory. This band is bounded at all times and reaches a maximum at about 400 seconds into

the trajectory. Because the influence of variations in the directional stability derivative, Nv,

is several orders of magnitude larger than that of any other one of the stability derivatives,

the sensitivity norm is mostly influenced by the time history of sensitivity of the dutch roll to

changes in Nv.

The sensitivity norm of the roll convergence mode remains the smallest of the three

modes in amplitude. It grows nearly linearly until about 600 seconds into the trajectory were it

reaches its maximum.

The sensitivity norm of the spiral mode has a large value and grows unbounded over the

trajectory. Its magnitude would become predominant if the dynamics of the vehicle were to be

studied over a larger period of time.



ROLL CONVERGENCE

0o
0 100 200 300 400 500 600 700

TIME (s)

x105 SPIRAL

0 100 200 300 400 500 600 700

TIME (s)

x 106 DUTCH ROLL

0 100 200 300 400 500 600 700

TIME (s)

1 r ' I I - I I T

O

x10
4

' I I



4.4 SECOND ORDER SENSITIVITY ANALYSIS

4.4.1 Introduction

In this section, we will consider the second order sensitivity of the lateral-directional

dynamics of the GHAME vehicle to variations in the lateral-directional stability derivatives.

As for first order , the second order sensitivity analysis is performed on each modal response

individually in order to get more insight about the way in which the dynamics of the vehicle

are affected by stability derivative variations during the reentry.

Again, true second order sensitivity is approximated by second order partial

differentiation of the GMS asymptotic approximations with respect to the stability

derivatives. This approach was justified in chapter 3 as a result of the GMS sensitivity theory

developed by Ramnath [8]. As an example, second order sensitivity of the roll convergence mode

to variations in the directional derivative, Nv, is given by:

2I / t \2
rc A () t a k (t) ak (t)

SNv(t) re -exp krc(t) dt dt + r dt (4.16)
aN 2 t aN aN d (1

4.4.2 Definition of Second Order Sensitivity Criteria

As for the first order sensitivity analysis, two equivalent criteria are used to analyze

second order sensitivity.



Second Order Sensitivity Average Criteria for Lateral Dynamics

The first criterion is very similar to the one defined for first order sensitivity. It

characterizes the average amplitude of second order sensitivity of a particular mode m with

respect to one of the stability derivatives p, over a prescribed phase of the reentry trajectory

[0,T]:

mI m

Pai 1 P (t) Idt (4.17)

where tm(t) is the second order sensitivity of the mode m to variations of the stability

derivative p obtained through the GMS sensitivity theory:

p (t) A 2ym(t) (4.19)
Pp2

Second Order Sensitivity Norm Criteria for Lateral Dynamics

The second criterion can, as for the first order criteria, be considered as a norm and

characterizes the evolution over time of a global second order sensitivity for a particular mode

m:

m(t) = p(t) (4.20)
P

where p are all of the stability derivatives.



4.4.3 Second Order Sensitivity to Stability Derivative Variations for Lateral Modes

As for the first order sensitivity analysis, second order sensitivity of each lateral mode

of the GHAME vehicle during the initial 670 seconds into the trajectory are derived using the

GMS sensitivity theory. The following presents the results obtained through the numerical

simulations.

Sensitivity Averages

Sensitivity averages of the three modes to second order variations of the lateral

stability derivatives are summarized in the three charts presented on page 42.

These charts show that the lateral modes of the GHAME vehicle are most sensitive to

second order variations in the directional stability term Nv. The dutch roll and at a lesser

degree the spiral mode are both orders of magnitude more sensitive to second order variations in

Nv than in any other stability derivative. This, in conjunction with the very high sensitivity

of the lateral modes to first order variations in Nv, emphasizes the critical importance of

vertical tail size on the lateral dynamics of the GHAME vehicle during the reentry phase and

more particularly on the dutch roll and spiral modes.

Second order variations in the dihedral term, Lv, also has a very important influence

on the lateral dynamics. Except for its significant influence on roll convergence, its effects are

however offset by the much larger sensitivity of the vehicle to second order variations in Nv.

Second order variations in all of the other lateral stability derivatives have effects

that are several orders of magnitude smaller than that of the directional and dihedral terms.

Sensitivity Norm

The set of plots presented on page 43 present the evolution over time of the second order

sensitivity norm of each mode.
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Over this particular phase of the reentry, the dutch roll mode is globally far more

sensitive to second order variations in lateral stability derivatives than the spiral or roll

convergence modes.

As for first order, the sensitivity norm of the roll convergence and dutch roll modes

reach a maximum at some point of the reentry trajectory we are considering. The sensitivity

norm of the spiral mode here again grows unbounded. It is interesting however to notice that,

unlike in the first order case, the global second order sensitivity of all three modes reaches a

maximum at approximately the same point corresponding to approximately 650 seconds into the

trajectory. This could have severe consequences on the design of good control laws at that point

of the reentry.



CHAPTER 5

Sensitivity Analysis of the Longitudinal

Dynamics of the GHAME Vehicle

5.1 EQUATIONS OF MOTION

The linearized equations of motion describing the longitudinal dynamics of a flight

vehicle about a nominal steady flight condition are written in a state space form [51 as:

s s+D,

L / Vo

-M,

or

Da -g

s+La /Vo

-M a

g Av 0
-S At = 0

s(s - Mq) AO 0

(5.1)

(5.2)AX=O

where the parameters Dv, Da, Lv, La, Mv, Ma and Mq appearing in the equations above are the

longitudinal stability derivatives of the vehicle. The velocity perpendicular to the flight

path, v, the angle of attack, a, and the pitch angle, q, of the vehicle are the flight parameters

and are represented as perturbations about some steady state flight value:

V = vo + AV

a = ao+ Aa

q = qo + q



The longitudinal modes of the flight vehicle are determined by the nature of the

eigenvalues of the A matrix in equation (5.2). The characteristic equation of the system

representing the longitudinal dynamics of the aircraft is a fourth order equation that can be

written as:

s4 +c33 +c2 s2+cl s+CO =0 (5.3)

where the coefficients in (5.3) are defined in terms of the longitudinal stability derivatives as:

c3 = LcX/VO - Mq + Dv

c2 = (Dv - Mq) (La/VO) - DvMq - Mx + (g - Do) (Lv/VO)

cl= MvD, - MCDv - DvMq (La/VO) + (DcMq - g) (Lv/VO)

co = g (Mvy (La/V) - Ma (Lv/VO))

Typically, the longitudinal dynamics of a flight vehicle has two distinct modes:

1. A relatively well damped, high frequency oscillatory mode, called the

"short period".

2. A lightly damped relatively low frequency oscillatory mode, called the

"phugoid".

The typical locations in the complex plane of the roots representing flight vehicle

longitudinal dynamics are shown on figure 5.1.



Figure 5.1: Typical Longitudinal Root Location

As for the lateral-directional dynamics, the continuous changes in flight parameters

such as air density and flight velocity along the reentry trajectory results in stability

derivative variations as the GHAME vehicle enters the Earth's atmosphere. The roots

representing the longitudinal modes of motion will therefore move in the complex plane as the

vehicle flies along the trajectory.

The roots associated with the longitudinal modes of motions of the GHAME vehicle

and their movement with time are shown in figure 5.2. The roots are plotted for up to 1657

seconds into the trajectory. Figure 5.2 clearly shows the complex conjugate pair of roots

representing the short period mode and their movement as the vehicle travels into the Earth's

atmosphere. As the GHAME vehicle progresses further into the atmosphere, both the

frequency and damping of the short period mode increase. However, due to the differences in

frequency scales on which the phugoid and short period occur, the root locations and movement

of the roots representing the phugoid mode are not visible on figure 5.2.
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Figure 5.2: Longitudinal Roots Along the Trajectory

The movement of the phugoid roots along the trajectory are detailed on the magnified

view presented on figure 5.3. It appears clearly that the phugoid mode does not behave in a

conventional manner along during the reentry. At the beginning of the reentry, the phugoid

mode is represented by a pair of complex conjugate roots in the right half plane defining a slow

and lightly damped unstable mode. As the vehicle progresses into the atmosphere, the

phugoid roots move into the left half plane and then back into the right half plane. At about

390 seconds into the trajectory, the complex conjugate pair separates into two real roots that

both move towards the origin, one of which remains in the left half plane the other in the

right half plane. During that particular phase of the reentry, the GHAME vehicle does not

behave in a conventional way and possesses a degenerated phugoid mode. At approximately

600 seconds into the trajectory, the two rdal roots join to form, once again, a pair of complex
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conjugate roots that remain in the left half plane until the end of that portion of the reentry at

1657 seconds. Over that last phase, the vehicle is flying at lower Mach numbers and in the

lower portion of the atmosphere and has a behavior that is typical of a conventional aircraft.
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Figure 5.3: Phugoid Roots Along the Trajectory

5.2 GMS SOLUTION TO LONGITUDINAL DYNAMICS

The longitudinal response of the GHAME vehicle is characterized by a fourth order

differential equation:

d4y d3y d2y dy
+ C3(t) + C2(t) + Cl(t) + CO(t) = 0

dt4 dt3 dt2 dt
(5.4)

t=670s
t=O
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L=386s t=569s
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St=302s.....

t=0t=670s

SI I

t=569s t=386s..... . ."X * K I



where y can represent any one of the three flight parameters, velocity perpendicular to the

flight path, v, angle of attack, a, or pitch angle, q, as they all exhibit the same response. Since

the stability derivatives vary along the reentry trajectory, it is clear that this differential

equation is time varying. As for the lateral-directional dynamics, the GMS method described

in chapter 3 is used to derive asymptotic approximate solutions to (5.4).

The peculiar behavior of the phugoid mode roots require great rigor and a careful use of

the Generalized Multiple Scales method to study the GHAME vehicle's longitudinal

dynamics. The points at which the phugoid roots change from real roots to a pair of complex

conjugate roots and vice versa is known as a " turning point " and represents a change in the

nature of the dynamic response, associated with the mode, from an non-oscillatory to an

oscillatory behavior. With regards to the GMS approximations, these turning points present

additional mathematical difficulties that can be dealt with in a number of different ways.

However, for simplification purposes, these problems will be avoided in this study by

restricting the study of the GHAME vehicle's longitudinal dynamics to the first 300 seconds

along the trajectory where the phugoid is represented by a pair of complex conjugate roots.

Since both the phugoid and short period modes are represented by a pair of complex

conjugate roots, kp = kpr + ikpi and ksp = kspr ± i ksp i respectively, the fast part of the GMS

approximation for the characteristic motions are given, as shown in chapter 3, by the

expressions:

t t t(ft kpiIt) S; )'Ssi ~ (1
yp(t) = exp kpr(t) dt Clsin kpi(t) dt + C2 cos kpi(t) dt (5.5)

Sto toat

ysp(t) = exp f kspr(t) dt C3 sin f kspi(t) dt + C4 cos to kspi(t) dt (5.6)
11 to t



where C1, C2, C3 and C4 are constants that depend on initial conditions.

The full GMS asymptotic approximation to the solutions of the fourth order linear time

varying differential equation (5.4) describing the longitudinal dynamics of the GHAME

vehicle during its reentry is given by:

y(t) = ClYpl(t) + C2Yp2 (t) + C3 Yspl (t)+C 4 Ysp 2 (t) (5.7)

where ypl and yspl are the sin and Yp2, Ysp2 the cosine parts of the solutions presented in (5.5)

and (5.6).

5.3 FIRST ORDER SENSITIVITY ANALYSIS

5.3.1 Introduction

As for the study of first order sensitivity of the lateral modes, the average sensitivity

and sensitivity norm criteria will be used to analyze first order sensitivity of the longitudinal

modes of the GHAME vehicle.

As a reminder these criteria are:

First Order Sensitivity Average Criteria for Longitudinal Dynamics

The sensitivity average of a particular mode m (phugoid or short period) to variations

in one of the longitudinal stability derivatives p, over a prescribed phase of the reentry

trajectory [0,T] ([0, 300] in this case):



S m  A Sm(t) dt (5.9)
Pav T P

m A am(t)
where S (t) (5.10)

First Order Sensitivity Norm Criteria for Longitudinal Dynamics

The sensitivity norm of mode m, characterizing the evolution over time of the global

sensitivity of the dynamics to first order variations in vehicle stability derivatives:

IISm(t)l Sp(t) (5.11)

where p are the different longitudinal stability derivatives.

5.3.2 Sensitivity to First Order Stability Derivative Variations for Longitudinal Modes

First order sensitivity of the longitudinal modes of the GHAME vehicle for variations

in the seven longitudinal stability derivatives (Dv, Lv/VO, Mv, Da, La/V0, Ma, Mq) over the

first 300 seconds of the reentry was derived using the GMS sensitivity theory. Over that

particular portion of the trajectory, the GHAME vehicle exhibits the two modes of motion that

typically characterize the longitudinal dynamics of flight vehicles.

The following presents the results obtained in the first order sensitivity analysis of the

longitudinal dynamics of the GHAME vehicle.



Sensitivity Averages

The sensitivity averages of the phugoid and short period modes with respect to

longitudinal stability derivatives are summarized in the charts presented on page 54.

These charts show that changes in the lift velocity derivative, Lv/VO, and speed

stability derivative, Mv, have the most influence on the longitudinal modes of the GHAME

vehicle. For the short period, and to a even larger extent the phugoid, variations in these two

stability derivatives have effects that are several orders of magnitude larger than that of any

other stability derivative.

Variations in the lift velocity derivative, Lv/V 0 , are the ones that have the most

effect on the phugoid mode. Lv/VO also significantly affects the short period. Its contribution to

the short period however is offset by the influence of Mv. This is consistent with the fact that,

for a conventional aircraft, the lift velocity derivative will mainly affect the phugoid mode.

Furthermore the important effect of changes in this parameter are also consistent with the fact

that the GHAME vehicle flies at very high Mach numbers along the reentry trajectory and

that Lv/VO is generally very sensitive to Mach number effects.

Variations in the speed stability term, Mv, are those that have the largest effect on

the short period mode. In fact the speed stability term affects both modes about equally.

However its influence is predominant in the short period mode but several orders of magnitude

smaller than that of Lv/VO in the phugoid mode. The important effect of changes in the speed

stability term are consistent with the high Mach numbers at which is flown the GHAME

vehicle and the typical sensitivity of this parameter to Mach number effects. The predominant

influence of Mv on the short period is also consistent with the behavior of a conventional

aircraft.

Variations in the drag damping, Dv, the vertical damping, La/VO, the static stability,

Ma, and the pitch damping, Mq, terms have only secondary effects on the longitudinal modes of
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the GHAME vehicle. Changes in these terms do however influence the longitudinal dynamics

of the GHAME in the same way as they would a conventional aircraft: Mq and Ma mainly

affect the short period mode and Mv mostly influences the phugoid mode.

As for a conventional aircraft, variations in Da have a minor effect on the longitudinal

dynamics of the GHAME vehicle during its reentry.

Sensitivity Norm

The sensitivity norm plots of the two longitudinal modes are presented on the plots

page 55.

The oscillatory and stable nature of the short period translate into a bounded and

oscillating sensitivity norm. The global sensitivity of the short period of the GHAME vehicle

reaches a maximum at about 100 seconds into the trajectory after what it tends to decrease until

the end of the observation at 300 seconds into the reentry trajectory.

On that portion of the reentry trajectory, the phugoid mode is globally more sensitive

to stability derivative variations than the short period mode. The oscillatory nature of the

phugoid should also translate into an oscillating sensitivity norm. However, because of the

large time constant and very light damping of the phugoid in the initial phase of the reentry,

these observations are not possible on a time history of only 300 seconds.

5.4 SECOND ORDER SENSITIVITY ANALYSIS

5.4.1 Introduction

As for the study of second order sensitivity of the lateral modes of the GHAME vehicle,

the average sensitivity and sensitivity norm criteria will be used to analyze second order

sensitivity of the longitudinal modes. These criteria are defined as:



Second Order Sensitivity Average Criteria for Longitudinal Dynamics

Second order sensitivity average of mode m (phugoid or short period) for variations in

one of the longitudinal stability derivatives over [0,T]:

ml f m

Pav T P (t) dt (5.14)

where m(t) is the second order sensitivity of the mode m to variations of the stability

derivative p:

2(t) A ym(t)
P p2

Second Order Sensitivity Norm Criteria for Longitudinal Dynamics

The sensitivity norm characterizes the evolution over time of a combined second order

sensitivity for a particular mode m:

m(t) P m(t)
P

(5.16)

where p are all of the stability derivatives.

5.4.2 Second Order Stability Derivative Variations for Longitudinal Modes

As for the first order, second order sensitivity of the longitudinal modes to variations in

the different longitudinal stability derivatives was derived using the GMS sensitivity theory

(5.15)



and plotted for up to 300 seconds into the trajectory. The results of this analysis are presented in

the following.

Sensitivity Averages

Sensitivity averages of the phugoid and short period to second order variations of the

longitudinal stability derivatives are summarized on the plots presented on page 59.

These charts show that the longitudinal modes of the GHAME vehicle are, by far, most

sensitive to second order variations in the lift derivative, Lv/V 0, and speed stability, Mv,

terms. The phugoid is predominantly affected by second order variations in Lv/VO whereas the

short period is most influenced by variations in My. This also illustrates the critical

importance of Mach number effects on the longitudinal dynamics of the vehicle since they have

a big influence on both of these stability derivatives.

For both modes, the effects of second order variations of the other longitudinal

stability derivatives are several orders of magnitude smaller and can be considered of

secondary importance.

These results, with the ones obtained for first order sensitivity, illustrate the

important influence of variations of the lift derivative and speed stability terms during the

reentry of the GHAME vehicle into the Earth's atmosphere. Large sensitivity of the dynamics

to parameter variations such as the ones observed for these two parameters can create severe

problems in accurately modeling the longitudinal dynamics and in designing efficient control

systems for the vehicle.

Sensitivity Norm

The set of plots on page 60 present the evolution over time of the second order

sensitivity norm of the phugoid and short period modes.
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Over the first 300 seconds of the reentry, the phugoid is globally far more sensitive

than the short period to second order variations in the longitudinal stability derivatives.

As for first order, second order sensitivity of the phugoid grows unbounded over the first

300 seconds of the reentry whereas second order sensitivity of the short period reaches a

maximum at approximately 125 seconds into the trajectory after which it decreases until the

end of the observation. Therefore the phugoid mode becomes increasingly more sensitive to

second order variations of the stability derivatives than the short period.

These results, in conjunction with the first order results, show that the critical phase of

the trajectory for the short period corresponds to the time frame between 50 and 150 seconds into

the trajectory were both first and second order sensitivity are at there peak. For the phugoid,

both the first and second order sensitivity norms grow with time making that mode increasingly

more sensitive to stability derivative variations as the vehicle flies along the trajectory



CHAPTER 6

Optimal Control with Sensitivity

Considerations

6.1 INTRODUCTION

As mentioned in the previous chapters, large sensitivity of a system to parameter

variations is usually undesirable and can create severe problems in the design of reliable control

systems. In this section, a continuous time linear quadratic regulator is derived using optimal

control theory to illustrate how sensitivity considerations can be included in the design of a

control system in order to reduce the effects of system sensitivity.

At the end of this chapter, these principles are applied to the longitudinal dynamics of

the GHAME vehicle in an attempt to reduce their naturally large sensitivity to first order

variations in the lift velocity derivative Lv/V0 along the reentry trajectory.

6.2 CLASSICAL OPTIMAL CONTROL PROBLEM

In the classical optimal control problem, we consider a linear time varying system:

X = A(t)X + B(t)u (6.1)



and an associated quadratic performance index:

J= -X(T) S(T) X(T)+ [X(t) T Q X(t) + u(t)T R u(t)] dt

where S(T), Q and R are symmetric weighting matrices such that:

S(T) 2 0

Q20

R>0

The necessary conditions yield

as the two point boundary problem:

the following equations for the state and costate known

(6.3)
I- A -BR-BT X

--Q -A

with X(0) = XO

X(T) = S(T) X(T)

In this study, we are considering a fixed final time and free final state optimal control

problem. The optimal control law can be derived using the sweep method. We assume that X(t)

and X(t) satisfy a linear relation for all t e [0, T] :

X(t) = S(t)X(t)

(6.2)

(6.4)



where S(t) is an unknown function solution of the matrix Riccati equation:

-S= ATS + SA - SBR-'BT S + Q (6.5)

with final condition S(T).

S(t) is derived by solving the Riccati equation backward in time. The continuous time

linear quadratic regulator is then given by:

u(t) = -R-'BTS(t) (6.6)
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We define X a
We define X - the sensitivity of the state vector X with

p p
respect to a parameter

p. If X satisfies equation (6.1), and if the A matrix also depends on p, then Xp satisfies the

differential equation:

ax
Xp = AXp + ApX + Bup (6.7)

ap

aA
Ap -Wwhere (6.8)

(6.9)

Next, we define w such that:

up =w W

up =

(6.10)



We then define the augmented state vector:

X

X = XP
Up

(6.11)

By combining (6.1), (6.7) and (6.10) in a matrix form, we can see that the augmented

vector satisfies the following first order matrix differential equation:

X A

up -0

SX B 0O
BIX + 0 0
OJup J 0 1 i[l

(6.12)

(6.13)or X=FX+Gu

From the formulation in (6.13), we can define a new optimal control problem in the

classical form, having added however the possibility of placing a penalty on the sensitivity of

the different states to first order variations in p.

The quadratic performance index associated with the augmented system (6.13) is:

S X (T) (T)X(T)

where

[X (t)T Q X (t) + U(t)T R u (t)] dt

are the new penalty matrices.

(6.14)

S(T) 2 0

Q20

R>0



We are again considering a fixed final time problem with no constraints on the final

states. The solution is therefore derived using the sweep method presented in the previous

section. We first define the function S(t) for all t E [0, T]:

X(t) = S(t)X(t) (6.15)

S(t) is solution of the matrix Riccati equation:

-S = FT S + SF - SGR - GT S + Q (6.16)

with final condition S(T).

The optimal control law is then given by:

u(t) = -R-1 GT S(t) (6.17)

The expression in (6.17) can then be used to yield the closed loop dynamics of the system

for the optimal control problem defined in (6.13) and (6.14). The closed loop response is

dependent on the choice of the values in S(T), Q and R which are all three design parameters

that need to de selected in order to solve this linear quadratic regulator problem.

6.4 APPLICATION TO THE LONGITUDINAL DYNAMICS OF THE GHAME VEHICLE

6.4.1 The Optimal Regulator Problem

As described in chapter 5, the longitudinal equations of motion of the GHAME vehicle

are linearized about a nominal reentry trajectory. The state vector chosen to define the

dynamics of the vehicle during the reentry phase is:



X = Aq (6.18)

LA0J

where Av = velocity perpendicular to flight path perturbation

Ao = angle of attack perturbation

Aq = pitch rate perturbation

Ae = pitch angle perturbation

We also define:

ASe = elevator deflection around trim point

The linearized longitudinal equations of motion around the nominal trajectory are then

given by:

-Dv -(Da -g) 0 -g 0
Lv La 11 0

X = Vo Vo X + A& (6.19)
My Ma Mq 0 M
0 0 1 0 0

where the parameters appearing in the 4 x4 matrix are the longitudinal stability derivatives

defined in chapter 5 and MS is the control effectiveness of the vehicle's elevator.

The stability derivatives appearing in the equations of motion (6.19) vary with time as

a result of variations in air density and flight velocity along the trajectory. As shown in the

previous chapter, the longitudinal dynamics of the GHAME vehicle can be very sensitive to

these variations. This can create serious problems in controlling the vehicle during its reentry

into the Earth's atmosphere.



Among the different stability derivatives, the longitudinal dynamics appeared to be

most sensitive to first order variations in the lift velocity term Lv/V 0 . Therefore, it would be of

great interest to define a control law which reduces the sensitivity of the dynamics to

variations in that specific stability derivative along the trajectory. This can be done by

following the steps described in section 6.2.

The perturbed longitudinal dynamics of the GHAME vehicle in (6.19) are in the

classical time varying form presented at the beginning of this chapter:

X = A(t)X + B(t)u (6.20)

Since we are interested in designing a control law that reduces the sensitivity of the

states to first order variations in the lift velocity derivative Lv/V 0 , we will define:

0 000

aA -1 0 0 0
A (6.21)

a(Lv /Vo) 0 0 0 0

0 0 00

as in (6.8).

The optimal control law incorporating sensitivity considerations is then determined by

selecting values for the different weighting matrices and going through the different steps

presented in section 6.3.

6.4.2 Results of the Optimal Control Problem

The following section illustrates the effectiveness of a linear quadratic regulator in

reducing the GHAME vehicle's sensitivity to first order variations in Lv/V0. As in chapter 5,



the model of the longitudinal dynamics of the aircraft, shown in (6.19), is studied over the first

300 seconds of the reentry into the Earth's atmosphere. Therefore, for this particular

application, T that appears in (6.14) is defined by T = 300.

The control laws will be designed to regulate the states associated with the

longitudinal dynamics of the GHAME vehicle when the system is placed at an initial position

defined by:

150]

Xo= 0 (6.22)

Furthermore, there exists certain constraints imposed on elevator deflection. These are

summarized in (6.23).

-30 deg Se 5 30 deg (6.23)

The weighting matrices that appear in (6.14) can be broken into submatrices that

correspond to the penalties on the states themselves and submatrices that correspond to the

penalties placed on state sensitivity.

S(T)= (T)Q = R = R (6.24)
0 S(T)2Q 0 Q2 0 R2

where the different submatrices are defined by:

S(T)1 = 4 x 4 matrix representing penalties associated with the states final conditions.

S(T)2 = 4 x 4 matrix representing penalties associated with states sensitivity final conditions.



Q1 = 4 x 4 matrix representing penalties associated with the states.

Q2 = 4 x 4 matrix representing penalties associated with states sensitivity.

R1 = 1 xl matrix representing penalties associated with the control u.

R2 = 1 x 1 matrix representing penalties associated with w.

Next, the time histories of the control, the states and sensitivities of these states for

different values of the weighting matrices are presented.

In the first case, the weighting matrices are selected such that there is no penalty

imposed on state sensitivity. Therefore optimal control theory is simply used to design a

continuous time linear quadratic regulator for the states without sensitivity considerations. The

numerical coefficients appearing in the different matrices are defined in table (6.1).

Table 6.1: Weighting Matrices for Quadratic Regulator Without Sensitivity Considerations



Solving the linear quadratic regulator problem with these matrices produces the

control law presented in figure 6.1.
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Figure 6.1: Optimal Regulator Without Sensitivity Considerations

The regulator requires large controls for the first few seconds of the response. After

approximately 7 seconds, however, elevator deflection has stabilized and remains at its trim

value.

The time histories of the states and state sensitivities are presented on page 72. It

appears from the top four plots that the different states are driven to zero in less than 10

seconds.
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The bottom four plots clearly show that the different states are very sensitive to first order

variations in Lv/V 0 . Furthermore, the longitudinal dynamics of the GHAME vehicle tend to

become more sensitive to Lv/VO as the vehicle travels further into the reentry trajectory.

Case 2:

In the second case, the weighting matrices are selected to incorporate slight penalties

on state sensitivities. These penalties, however, are limited because of the constraint imposed

on elevator deflection in (6.23). The matrices that were selected in this application are defined

in table (6.2).

1 10-

1 10 - 5

1 10-5

10-5

1 (T = 10- 5
S(T) = 1 1S(T)2 10-5

1 10 - 5

R1 =100 R2 =1

Table 6.2: Weighting Matrices for Quadratic Regulator With Sensitivity Considerations

Solving the optimal regulator problem with the matrices of table 6.2 yields the control

law shown on figure 6.2.
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Figure 6.2: Optimal Regulator With Sensitivity Considerations

Once again, very large controls are required during the first few seconds of the time

response of the system. In the second case, it takes a little longer (about 9 seconds) before the

elevator stabilizes at its trim position. Over all, this regulator requires slightly larger controls

than the first one.

The time histories of the states and state sensitivities are presented on page 75. It

appears from the top four plots that it takes approximately 20 seconds for the different states

to be driven to zero. Therefore the performance of the second regulator in driving the states to

zero is not as good as that of the previous regulator.
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However, the bottom four plots show the significant improvements achieved in

reducing the sensitivity of the different states to first order variations in Lv/VO. Over the

initial part of the trajectory, the sensitivity of the states is roughly reduced by half. As the

vehicle flies further into the trajectory, sensitivities of all states decrease and approach zero.

6.4.3 Numerical Implementation of the Solutions

In going through the theoretical steps for solving this optimal control problem, there

was no mention of how the different equations are solved in practice. This section describes the

algorithm used throughout this study.

In the process of solving the optimal control problem, the matrix Riccati equations (6.5)

or (6.16) need to be solved backward in time. Such equations are highly nonlinear differential

equation for which there exists no closed form solutions. Deriving the solutions to this type of

problem therefore requires the use of a computer.

The algorithm used for solving the continuous time linear quadratic problem presented

in this study is the following:

1. Select values for S(T), Q and R.

2. Transform the Riccati equation (6.16) to be solved backward in time into an equation

that can be solved forward in time by making the change of variables t --> (T - t).

3. Solve the new equation forward in time using a fourth order Runge-Kutta method.

4. Determine the optimal control law from (6.17).

5. Solve the system describing the closed loop dynamics of the vehicle from (6.12) for

the optimal control using a fourth order Runge Kutta method.



CHAPTER

Study of the Dynamics of the SR-71

7.1. DESCRIPTION OF THE SR-71

The airplane is illustrated in the drawing on figure 7.1.
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Figure 7.1: The SR-71
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The basic dimensions and surface areas that appear in the longitudinal dynamics of the

SR-71 are shown in table 7.1.

Weight W

Wing Area S

Length 1

MAC c

Span b

Moment of Inertia Iy

80, 000 lbs.

1605 ft 2 .

105 ft.

37.7 ft.

56.7 ft.

1.02 106 Slug.ft 2.

Table 7.1: Geometric Characteristics of the SR-71

The geometric and aerodynamic data in this study was made available through a

Lockheed report on the handling qualities of the SR-71 [14]. The report includes flight

simulator data, wind tunnel tests and actual flight test results.

7.2. FLIGHT TRAJECTORY

The dynamics of the SR-71 are examined as it flies along a prescribed trajectory. The

trajectory is chosen to analyze the behavior of the aircraft when flight conditions are varying

with time.

In this study, the SR-71 is flying from an altitude of 90,000 feet to an altitude of 10,000

feet along a straight line. Along the flight path, the speed of the vehicle decreases linearly



from Mach 3.5 to Mach 0.6. Due to the variations in air density and flight speed, the

coefficients of the equations describing the dynamics of the aircraft vary along the trajectory.

As for the GHAME vehicle, the dynamics of the aircraft can only be accurately modeled by a

linear time varying (LTV) system.

A sketch of the trajectory is presented in figure 7.2.

Figure 7.2: SR-71 Flight Trajectory

The Mach number and altitude of the aircraft decrease linearly along the trajectory as:

M(t) = -1.933 10-3t + 3.5

H(t) = -5.333 101 t + 90000

(in seconds)

(in feet)

(7.1)

(7.2)



7.3 LONGITUDINAL DYNAMICS OF THE SR-71

73.1 Equations of Motion

The longitudinal dynamics of the SR-71 are approximated by the typical linearized

longitudinal equations of motion of an aircraft [2].

The longitudinal equations of motion are linearized about the nominal trajectory

presented in section 7.2. The state vector chosen to define the dynamics of the vehicle is:

Av

Aa
X = (7.3)

Aq

AO

where Av = velocity perpendicular to flight path perturbation

Aa = angle of attack perturbation

Aq = pitch rate perturbation

AO = pitch angle perturbation

The linearized longitudinal equations of motion around the nominal trajectory are then

given by:

or X=AX+Bu (7.5)-Dv -(D -g) 0 -g -0

= Vo Vo X + & (7.4)
My Ma Mq 0 Ms

0 0 1 0 0

or X = AX + Bu (7.5)



7.3.2 Longitudinal Stability Derivatives

The stability derivatives that appear in the equations of motion of the aircraft are

defined in table 7.2:

pSV [, MCD D, = CD M CDmpc 2 M I

SV c M ChMV - PSC C + M c
I 2 aM

La

V0

pSV

2m CL 1

L" =  CL + M CL1

Vo m 2 aM

SpSV
Da = 2m CD

pSV2
a 21 CM

2y

pSVc 2

M = 41CMq
4I

Table 7.2: Longitudinal Stability Derivatives

The longitudinal stability derivatives of the SR-71 are approximated by substituting

vehicle aerodynamic and geometric data into the equations of table 7.2. The stability

derivatives that appear in the equations of motion will vary with time as a result of

variations in air density, p, and flight velocity, V, along the trajectory. The plots on page 82

present the time histories of the Mach number and stability derivatives when the vehicle flies

from high supersonic to subsonic speeds along the prescribed trajectory.

The angle of attack stability parameter, Ma, is an important parameter which

determines the static stability of the vehicle. This parameter is negative in the supersonic and

transonic region, therefore the aircraft will be statically stable in those regions. At very high
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Mach numbers, however, the airplane only has a low level of positive static stability. In the

subsonic region, Ma becomes positive. These result are consistent with the characteristics of the

SR-71 described in the report [14] which states that the SR-71 does not possess static stability

with respect to angle of attack at subsonic Mach numbers and only low static stability at Mach

3.2. This requires an artificial stability augmentation system to be incorporated in the

automatic flight control system of the SR-71 to improve the dynamic response in all flight

conditions.

The speed stability derivative, Mv, is another important parameter with regards to

the dynamics. If Mv is positive, it has a dynamically destabilizing effect on the aircraft while

if it is negative, it has a tendency to statically de stabilize the vehicle. Therefore it is usually

desirable to maintain Mv as close to zero as possible. For the SR-71, the speed stability

derivative is extremely small in the subsonic and supersonic regions. As the aircraft flies at

transonic speeds, however, Mv reaches a significantly smaller negative value.

The third important stability derivative in longitudinal dynamics is the pitch

damping parameter, Mq, because it contributes a large portion of the damping of the short

period for conventional aircraft. The combination of the simplified model chosen to describe

the dynamics of the aircraft with aerodynamic data from multiple sources, required the need

for a correcting factor (which was chosen to be 57) on Mq to improve the damping of the short

period. This factor is introduced to compensate for other sources of short period damping that

might have been neglected in the simplified model of the longitudinal dynamics and enables

this model to produce results that are compatible with the flight test results that are presented

in the handling qualities report [14]. The plot of the variation of Mq along the trajectory show

that the pitch damping is small at high Mach number and reaches a maximum in the transonic

region.

The other plots on page 82 show the variations of the remaining stability derivatives

along the trajectory which usually have secondary effects on longitudinal dynamics. It is



interesting to notice, however, that in the transonic region, where aircraft dynamics are always

unclear, several coefficients reach an extremum. This could lead to an unusual behavior of the

aircraft in that region.

7.4 LONGITUDINAL STABILITY OF THE SR-71

7.4.1 Root Locus

The speed and path of the eigenvalues of the A matrix defined in (7.5) determine the

nature of the modes of the system. The next two figures present the evolution of the

characteristic roots along the trajectory . Figure 7.3 presents the scaled root locus whereas figure

7.4 is a simplified and blown up sketch which gives a better understanding of how the roots are

moving in the complex plane.
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Figure 7.4: Simplified Root Locus

For supersonic speeds, the SR-71 exhibits the two modes, each defined by a pair of

complex conjugate roots, of a conventional aircraft:

- A slow and poorly damped mode representing the phugoid.

- A fast and well damped mode representing the short period.

In the supersonic region, the roots of the short period mode remain in the left half

plane. The roots of the phugoid, on the other hand, go back and forth about the real axis. The



period of the phugoid mode is so large at those speeds, however, that the pilot can easily

compensate for slight instabilities should they occur.

In the transonic region, the dynamics of the aircraft do not exhibit a conventional

behavior. The characteristic equation has four real roots, one of which has a positive real

parts.

In the subsonic region, the phugoid mode is well defined by a pair of complex conjugate

roots that remain in the left half plane, defining a slow and lightly damped mode. The short

period mode exists but as two real roots, one of which is in the left half plane while the other

is in the right half plane. If the aircraft were to fly in this configuration at constant flight

conditions, it would have unacceptable handling qualities. That is why an artificial

augmentation system was incorporated to the automatic flight control system.

7.4.2 Stability

Since the system describing the longitudinal dynamics of the SR-71 is a linear time

varying system, the stability of the system cannot be simply predicted by examining the

location of the characteristic roots as for time invariant systems. In fact, the stability of

variable systems is, in general, very difficult to predict.

One simple approach to getting a good indication of the stability of the second order

dynamics of the system was developed by Ramnath using the Generalized Multiple Scales

method. This approach is used in this section to predict the longitudinal stability of the SR-71

as it flies along the trajectory.

The GMS criterion developed by Ramnath for longitudinal stability of aircraft flying

through variable flight conditions is defined by:

P = CL - CD, - GCm (7.6)



where CD = Trim Drag.

W12

Iy

If the stability parameter P is greater than zero, the vehicle's second order

longitudinal dynamics are stable. If P is negative, the aircraft is longitudinally unstable.

Figure 7.5 shows the evolution over time of the stability parameter P along the

trajectory when the SR-71 data is substituted into (7.6).
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It can be seen from figure 7.5 that the stability parameter is closest to zero at the

beginning of the trajectory, when the aircraft is flying at high supersonic speeds, and at the end

of the trajectory, when the aircraft is in the transonic and subsonic region. In fact, the

parameter becomes negative at about 1460 seconds into the trajectory which means that the

second order longitudinal dynamics of the SR-71 are unstable after that point. P grows from the

initial point until around 1150 seconds into the trajectory where it reaches its maximum. At

that point, the aircraft is flying at low supersonic speeds. From there, the aircraft enters the

transonic region and the stability of the aircraft decreases dramatically and becomes unstable.

These results, although approximate, are consistent with the actual flight test results of the

aircraft that showed that the longitudinal dynamics of the SR-71 are unstable at transonic and

subsonic speeds and only lightly stable at high supersonic speeds.



CHAPTER 8

Handling Qualities Through Variable

Flight Conditions

8.1 INTRODUCTION

To date, aircraft handling qualities are based on analysis of the dynamic equations of

motion at constant flight conditions and parameters used to define the acceptable handling

qualities (natural frequency, damping, bandwidth etc.) are derived through classical methods

of linear constant coefficient differential equations. These handling quality specifications may

or may not suffice for vehicles with very large flight envelopes such as the NASP or the SR-71.

It is therefore worthwhile pursuing an analytical treatment of the variable dynamics of the

aircraft and to specify handling qualities in terms of variable system response.

It has been recognized for the past few decades that the ability of a pilot to perform

precise flight path tasks is a function of the inherent short period dynamic characteristics (cosp

and tsp) of the aircraft. Numerous flight and simulator investigations have, therefore, been

conducted to determine the short period dynamic characteristics which identify iso-opinion

lines of desirable, acceptable and unacceptable longitudinal handling qualities. This study

discusses a possible extension of one of these handling quality criterion which would

incorporate the time varying nature of the dynamics of high speed aircraft.



8.2 HANDLING QUALITIES

8.2.1 Description of the Levels of Handling Qualities

Flying qualities may be defined as those qualities that govern the ease and precision

with which the pilot-vehicle system performs the requirements of the mission. The military

Specification levels of flying qualities are defined as follows:

LEVEL 1: Clearly adequate for mission phase.

LEVEL 2: Adequate to accomplish flight phase, but some increase in pilot

workload or degraded mission effectiveness exists.

LEVEL 3: Aircraft can be controlled safely, but pilot workload is excessive or

mission effectiveness is inadequate.

These levels can be related to the well known Cooper - Harper pilot rating scale as

shown in table 8.1.

LEVEL PILOT RATING

1 Satisfactory

1 - 3.5

2 Unsatisfactory

3.5-6.5

3 Unacceptable

6.5- 9+

Table 8.1: Military Specification Definition of Levels of Handling Qualities



8.2.2 Handling Quality Criteria for Steady State Flight Conditions

The general form of the second order differential equation describing the dynamics of

the short period mode of an aircraft in steady state flight conditions is:

9 + 2Csposp , + 0sp 2 y = 0 (8.1)

Since the coefficients are time invariant, the behavior of the system can easily be

predicted by the location of the two roots of the characteristic equation:

s2 + 2spwsp S + Csp2 = 0 (8.2)

The general form of the time response can be written as:

y(t) = Ae-coi(t Z0) sin[(o 1-p2)(t - to)+ (8.3)

From (8.3) , it appears that the time response of a second order linear time invariant

(LTI) system is characterized by the two terms Cspo)sp and sp1- sp2 . It is therefore

justified to assume that the handling qualities of the aircraft can be related to these two

quantities.

For the purpose of this study, we will suppose that the different levels of handling

qualities can be related to the two quantities defined previously, which together characterize

the dynamic response of the short period, in a very simple way. The simplified criterion is

described in table 8.2.



AI, mi n5spOsp ! AI,

A 2 m. :spOsp - A 2 ,

Any other situation

and B1  ,sp -sp2 _ B1

and B2 ,sp- sp2 < B2

Table 8.2: Steady State Simplified Handling Quality Criterion

The different bounds (Al, Alma, etc.) are constant coefficients that need to be

determined.

This constitutes quite a large assumption compared to regions of handling qualities that

have been defined through simulations or flight tests. Although the levels of handling

qualities have, in the past, been related to these quantities, these boundaries have usually not

been as simple or clearly defined. However, since the goal of this study is to define possible

extensions of handling quality criteria to time varying systems, these simplifying assumptions

should not invalidate the present approach.

Figure 8.1 graphically summarizes the regions of level 1 and level 2 handling qualities

defined in table 8.2.

LEVEL 1:

LEVEL 2:
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Figure 8.1: Levels of Handling Qualities

8.2.3 Handling Qualities for Aircraft Flying Through Variable Flight Conditions

The general form of the second order time varying differential equation describing the

dynamics of the short period mode of an aircraft flying through variable flight conditions is:

S+ 2sp (t)sp (t) y + osp (t)2 y = 0 (8.4)

Since Csp(t) and osp(t) vary with time, the characteristic roots do not remain

stationary and there path and speed in the complex plane will determine the nature of the



response of the system. Conversely to the LTI case, however, simply determining the location of

the roots does not enable straight forward conclusions about the behavior or even the stability

of the system.

An interesting example to illustrate this last point is given by Ramnath in [5] by

considering the second order time varying differential equation:

S- 0.1 + e0.2ty = 0

This equation has a pair of complex conjugate roots with positive real part. Although

the characteristic roots remain in the right half plane, the system is in fact stable.

Linear time varying (LTV) systems, such as the one presented in (8.4), cannot usually be

solved analytically. Furthermore, the time response of an LTV system is dependent on the

initial time tO at which it is excited. This makes it particularly difficult to relate the nature of

the time response to characteristics of the system such as frequency or damping. Any extension

of handling quality criteria to an LTV system will, therefore, have to incorporated in some

way, the time varying nature of the system's response and its dependency on initial time.

The Generalized Multiple Scales method, presented in chapter 3, gives approximate

solutions to second order linear time varying differential equations. The characteristic equation

associated with (8.4) is:

s2 +2sp(t)sp(t)s+ sp(t)2 = 0 (8.5)



The fast part of the complete GMS solution gives the following asymptotic

approximation of the system's time response at any time t of the time frame [to, tf] we are

interested in:

y(t)= Ae (P)dt sl Op) 1-sp(t) 2dt J+ (8.6)

It is interesting to notice that, if the coefficients are time invariant, this

approximation does in fact yield the exact solutions to the second order differential equation

which was given in (8.3). Furthermore, the simple analytical form of the asymptotic

approximate solution gives good insight of how handling qualities for steady state flight

conditions could be extended to variable flight conditions. The fast part of the GMS solution

looks a lot like that of the LTI system but involves integrals rather than simple products. Since

the use of integrals would capture the time varying nature of the coefficients and include a

dependency on initial time, they seems to be good candidates for defining time dependent

handling quality criteria.

It is also important to be aware of the fact that for high speed vehicles the handling

qualities, as most of the other quantities, are dependent on time. Therefore the idea of aircraft

handling qualities has to be extended to handling qualities at a specific time t. A possible

extension of the criterion defined in table 8.2 is to determine the handling quality levels of the

aircraft at time t E [to , tf] from the following criterion.



t+T t t+T
A T 1 0(t) (() dr 5 A and B <ii f

TminT f sp 1 Tj

2

O p() V1-CP(r) dr 5 B1 m

LEVEL 2 (at t e [t o , tf ]):

A2 <1 spdr 5 A2 and B< 1
Amin TJ (Pt) s( 2mi T sip(p) V 1-),p(r) d __ B2 .

LEVEL 3 (at t E [to , t] ):

Any other situation

Table 8.3: Extended Handling Quality Criterion

This new criterion basically says that the average over the interval of time [t, t+T] of

each one of the two parameters should satisfy the conditions set, in table 8.2, for the LTI case. It

is interesting to notice that if the terms that appear in the integrals are constant, this criterion

is in fact the classical handling quality criterion defined in table 8.2. Clearly, the choice of T

will influence this criterion.

Choice of the Parameter T

If T is infinitely small, the criterion in table 8.3 is equivalent to:

LEVEL 1 (at t E [t o , tf] ):



A, < sp(t)sp(t)5 A, and B1 6 _ osp(t) 1-Csp(t)2 ! B1

LEVEL 2 (at t r [to, tf ] ):

A2 m ! sp ) sp(t) 5 A2  and B2min o,(t)1- -Sp(t) 2  B2 M

In order to get level 1 handling qualities over the entire flight period [to , tf] , the

conditions defined in table 8.2 for the LTI system would have to hold at every single point in

time. This certainly yields a very constraining criterion that will very probably poorly rate

certain aircraft responses that are in fact adequate. The consequences of choosing very small

values of T are therefore the definition of a very conservative criterion in the sense that it will

tend to under rate the handling qualities of the aircraft.

On the other hand, if T is very large, the criterion will carry along a very long time

history and will not give a good description of the handling qualities at a the time of interest t.

A good choice of T is probably a value of the order of the time period of the short period

mode. For a level 2 rating, the largest acceptable period for the short period mode is typically

around 3 seconds. Furthermore, with the typical damping requirements associated with level 2

handling qualities, the short period mode should be properly damped after about 2 full

periods. This leads a the choice of T of T = 6 s.

The Extended Handling Quality Criterion

We can now define a time dependent handling quality criterion which is a direct

extension of the handling quality criterion defined for constant flight conditions. Over a flight

LEVEL 1 (at t E [to , tf ] ):



period [tO, tf], the aircraft will have handling quality ratings at time t e [tO, tf] determined by

the criterion presented in table 8.4:

A 6 I t+ 6

Al= :5--

1 2 d B

(SP) _1-(, () dT :5 B I==
o (C) C ,() dr 5 A. and BI< 1 6SP" SPIUMI 6

LEVEL 2 (at t e [to , tf] ):

dc 5 A2m and B2  5 1t
2,= 2.j 6

P 2

p (;) 1-,() d _ Bm
*> rp L.IBU

LEVEL 3 (at t [to, t] ):

Any other situation

Table 8.4: Handling Qualities for Aircraft Flying Through Variable Flight Conditions

As for the steady state handling quality criterion, this criterion can be represented

graphically as shown on figure 8.2.

A2 It+6
A 2m i 6

LEVEL 1 (at t e [t o , t,] ):
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Figure 8.2: Time Dependent Handling Quality Criterion

8.3 TIME - DEPENDENT HANDLING QUALITY CRITERION: APPLICATION

83.1 Numerical Values for the Time Dependent Handling Quality Criterion

Typical values of acceptable damping and natural frequencies of short period dynamics

for level 1 and level 2 ratings are:

0.4 <sp 5 0.9

0.25 < sp - 1.0

and 2.4 5 cosp 3.8

and 2.0 (osp , 5.0

LEVEL 1:

LEVEL 2:



These values yield the extended handling quality criterion presented in table 8.5.

LEVEL 1 (at t E [t o , tf] ):

0.96 1 CO( ((t) ()dr 5 3.42 and 1.05 5 1 t6
6 f

+6 t+ 6

0.50 < 1 p(r) ,p(t) dr 5.00 and 0 5 j

6 fI

() 1 ( 
32

( ) 1- (t) dt _ 3.48

2
o('r) 1-~() dt 4.90

LEVEL 3 (at t E [to , t,])

Any other situation

Table 8.5: Application of the Extended Handling Quality Criterion

8.3.2 Application to an Aircraft Flying Through Variable Flight Conditions

As mentioned in section 8.2.3, the time responses of LTV systems cannot be simply

predicted by the location of the characteristic roots in the complex plane since they also

depend on their path and speed over the time period of interest.

In this section, the effects on the handling quality levels of simple variations in the

path and speed of the characteristic roots of the second order system representing the short
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period dynamics of a generic aircraft are examined. To accomplish this, we consider systems

having same root locations at initial and final time. The path and speed of the roots from the

initial point to the final point in the complex plane are varied and the time responses of the

systems described by these roots as well as the handling quality levels are compared. Figure 8.3

shows different paths for a typical pair of complex conjugate roots representing the short period

mode.

Figure 8.3: Evolution of the Roots in the Complex Plane

Case Study

In the following case study, the aircraft can fly, as shown in figure 8.3, along three

different prescribed flight trajectories. To analyze the time history of the handling qualities

along these trajectories, the aircraft is flown from a level 1 flight condition to a level 2 flight
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condition. The roots of the short period move along three different paths, corresponding to the

different trajectories, from the initial point to the final point in a time of 130 seconds. The

characteristics of the initial and final points are summarized in table 8.6.

INITIAL POINT: t = 0 Level 1 0sp, = 3.5 spl = 0.8

FINAL POINT: t= 130 s Level 2 .Sp2 = 2.0 CSP2 = 0.3

Table 8.6: Initial and Final Point Characteristics of System Short Period Dynamics

For each one of the three flight trajectory, computer simulations generate plots

corresponding to the path of the characteristic roots in the complex plane, the evolution of the

levels of handling qualities along the trajectory, the evolution with time of the real and

imaginary part of the short period roots and the time response of the system at four different

preset points in time.

Trajectory 1: (see plots on page 103)

The first case corresponds to the roots of the short period going from the initial point to

the final point along a straight line, as shown on the root locus plot of figure 8.3.The time

dependent handling quality criteria is used to determine, at each point in time, the level of

handling qualities along the corresponding flight trajectory. As shown on page 103, the aircraft

has level 1 handling qualities from the initial time to about 105 seconds into the trajectory and

level 2 handling qualities from that point on. The four bottom plots show the time response of

the system at four different points along the trajectory. At t = 0 s, 40 s and 80 s, where the

aircraft has level 1 handling qualities, the responses are fast and well damped. At t = 120 s,

however, the response is a little slow (first period > 3s) which explains the level 2 rating.
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Trajectory 2: (see plots on page 104)

The second case corresponds to a curved path of the roots as shown on the root locus plot

of figure 8.3. The plot corresponding to the time history of the handling qualities shows that

this particular trajectory yields worst handling qualities than the previous one. The aircraft

only has level 1 rating for the first 45 seconds. After that it has level 2 and even level 3 ratings

(between 75 seconds and 115 seconds). The time response at t = 80 s exhibits the very low

damping of the system responsible for the level 3 rating at that point. Although the time

responses at t = 0 s, 40 s and 120 s yield the same rating as in case 1, the handling qualities are

clearly not as good as in the first case because of the poor damping of the system along this

trajectory.

Trajectory 3: (see plots on page 105)

The third case corresponds to a different curved path of the short period roots which is

shown on the roots locus plot of figure 8.3. The time history of the handling qualities shows

that the aircraft has level 1 rating for nearly the entire flight. It only gets a level 2 rating

after 125 seconds into the trajectory. At the four different points in time, the responses of the

system are fast and well damped justifying the level 1 handling qualities of the aircraft along

most of this trajectory. Of the three, this is certainly the trajectory that exhibits the best

handling qualities from the desired initial point to the final point.

8.4 HANDLING QUALITY INFORMATION DISPLAY

In order to inform the pilot of the evolution of the handling qualities of the aircraft

and alert him of critical sections in the trajectory, it may be desirable to present stability and

handling quality information in the form of a display in the cockpit. It is assumed that all of

the trajectory and vehicle information is known, or can be determined, prior to the flight phase.
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The flight crew could, therefore, be presented with the immediate past, present and future

handling quality levels of the aircraft.

A possible display is one that would be in the form of a moving window. This display

would use bar graphs to present stability and handling quality information in the

neighborhood of a particular time along the trajectory. The height of the bar reflects the level

of handling qualities. If the bar has no height, the aircraft is unstable. Handling quality

information is displayed every 5 seconds for up to 30 seconds into the immediate future and 10

seconds of the immediate past. The display is updated continuously as the vehicle flies along

the trajectory.

This display is presented on page 108 at four different points in time for the second case

of variable flight conditions described in the previous section.
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CHAPTER 9

Conclusions and Recommendations

9.1 CONCLUSIONS

The objectives of this work were to use results of the Generalized Multiple Scales

(GMS) theory to study several issues related to the dynamics of high speed aircraft along

prescribed atmospheric trajectories .

The reentry dynamics of the Generic Hypersonic Aerodynamic Model Example

(GHAME) vehicle were examined along a Space Shuttle optimal trajectory. Asymptotic

approximate solutions to fourth order models of the longitudinal and lateral directional

dynamics of the aircraft were derived using the GMS method. The simple form of these

solutions allowed a complete analytical sensitivity analysis to first and second order

variations in vehicle stability derivatives over portions of the reentry. It appeared that the

lateral directional dynamics were by far most sensitive to first and second order variations in

the directional derivative Nv and dihedral term Lv along the trajectory. The longitudinal

dynamics proved to be most sensitive to the lift velocity derivative Lv/V0 and the speed

stability term Mv. Having identified large sensitivity to parameter variations as a source of

potential problems in controlling flight vehicles, an optimal control, incorporating sensitivity

considerations through state augmentation, was designed and applied to the longitudinal

dynamics of the GHAME vehicle. This approach proved to be very effective in reducing the

systems sensitivity to first order variations in the lift velocity term Lv/VO.
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The dynamics of the SR-71 along a prescribed trajectory were also studied using results

from the GMS theory. Stability issues were raised and applied to the aircraft when flown from

supersonic to subsonic speeds.

Extended handling quality criteria, for vehicles with large flight envelopes, were

defined based on the analytical forms of GMS asymptotic approximations to the solutions of

linear time varying systems. Unlike classical criteria, based on the analysis of the dynamic

equation of motion at constant flight conditions, these extended criteria specify handling

qualities in terms of variable system response. For vehicles flying through continuously varying

flight conditions, these extended handling quality criteria are believed to give a more accurate

description of the actual performance of the aircraft. Applications to a generic aircraft flying

form a level 1 to a level 2 flight condition were presented to illustrate how the path and speed

of the characteristic roots can influence the handling qualities. Finally, an approach to

presenting stability and handling quality information to the pilot in the cockpit was discussed.

9.2 RECOMMENDATIONS FOR FUTURE WORK

The following is suggested as guidelines for future work in the field of dynamics and

control of high speed aircraft using the Generalized Multiple Scales theory:

* Refinement of the previous work by including the "slow" part of the GMS asymptotic

approximations.

* Study of vehicle dynamics near turning points using GMS theory.

* Generalization of the optimal control approach for reducing aircraft sensitivity to

parameter variations. This could consist of designing control laws that would

simultaneously reduce sensitivity to variations in all of the stability derivatives.

The control law could also be defined to include second order considerations.
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* Definition of extended handling quality criteria that would be closer to existing

criteria and validation on real flight test data.
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