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Abstract
Future spacecraft will require high authority control because of higher performance
requirements. This control will be active structural control because of higher payload
mass fractions and overlap of the control with spacecraft bus and solar array dynam-
ics. Prior to flight, no on-orbit experimental data is available, and consequently all
models of the zero-gravity (0-g) behavior of the spacecraft must be derived from ana-
lytical methods. However, these analytical models tend to be inaccurate unless they
have been correlated with experimental data. Ground tests of the spacecraft will be
corrupted by the suspension system and gravity effects, making direct correlation of
ground data with the analytical O-g model difficult. Thus, a modeling approach must
be developed for acquiring an accurate O-g model, along with its error, prior to flight.

This thesis describes a modeling approach for deriving O-g structural dynamic
models, useful for control design, from a combination of analysis and ground experi-
mentation. This approach relies on the Finite Element Method to derive a model of
the one-gravity (1-g) behavior of a spacecraft. This finite element model is improved
through comparison with ground data in a process called open- and closed-loop up-
dating. Then, the suspension and gravity effects are removed to yield an updated
prediction of the O-g behavior. Since this model will still be in error when compared
with flight data, estimates of these errors must be determined.

This approach is applied to the Middeck Active Control Experiment (MACE), an
MIT and NASA space shuttle flight experiment intended to demonstrate high au-
thority structural control in zero-gravity conditions. An input-output model, derived
from the 1-g finite element model, is developed. It is found that parameters external
to the finite element method contribute significantly to the error in the model. An
update parameter selection criterion is presented which determines the uniqueness of
the parameter sensitivity directions and their influence on the cost. It is found that
the frequency-domain, logarithmic cost is best suited to the MACE problem. Auto-
mated updating results in a 28% reduction in this cost, with the remaining frequency
errors being less than 3% in lightly damped modes. Closed-loop experiments using
this model have achieved a performance improvement of 24 dB.

Thesis Supervisor: Dr. David W. Miller
Principal Research Scientist, Department of Aeronautics and Astronautics
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Chapter 1

Introduction

Future spacecraft, in order to meet stringent performance specifications, will require

active structural control. In order to design controllers for these spacecraft, a good

understanding of the structural dynamics is required. Prior to flight, however, these

controllers may only be analyzed and tested on the ground. Ground testing neces-

sitates suspending the spacecraft in order to approximate the conditions of flight.

However, this suspension system, along with other gravity effects, will couple with

the dynamics of the structure. This coupling will corrupt the ground tests making

verification of the flight controllers difficult at best. In order for the designers of

these spacecraft to have confidence that the controllers will work satisfactorily once

the spacecraft in orbit, a good prediction of the eventual zero-gravity (0-g) behavior of

the structure is needed prior to launch. The objective of this thesis is to develop and

demonstrate an approach for developing a predictive model of 0-g behavior, and an

estimate of its uncertainty, which has been updated through analysis and correlation

with one-gravity (1-g) open- and closed-loop test results.

Obtaining this predictive model of the on-orbit behavior of a structure requires a

modeling approach that combines both analytical modeling techniques with ground

based experimentation. Such a modeling approach, proposed in Chapter 2, combines

the analytical power of the Finite Element Method [1, 2, 3] with advanced struc-

tural dynamic testing and model update methods. In this modeling approach, the

Finite Element Method is used to create a 1-g finite element model of the suspended



structure. This 1-g finite element model consists of the free-free structure, to which

a model of the suspension system and gravity effects are added. Since the finite

element method does not match the input-output behavior of the test article (i.e.,

the behavior as seen by the controlling computer), the finite element model must

be augmented. This necessitates the detailed modeling of the actuators and sensors,

both mechanically and electronically, as well as any signal conditioning electronics

included in the control hardware. Since many spacecraft with pointing payloads have

local servo loops implemented on these payloads, any servo loops included on the

structure must also be captured in this 1-g finite element input-output model.

Once the 1-g input-output model has been developed, it is compared with exper-

imental data. Inevitably, some errors will exist. Thus, the correlation of the finite

element model with the data must be improved through a process called updating.

The first phase of the updating process is to examine the model for errors in the

model parameters and inconsistencies in the modeling assumptions. This examina-

tion is called engineering insight, because the engineer relies on experience to make

the judgments necessary to improve the model. Also included in engineering insight

is the measurement of all possible model parameters: including lengths; masses; and

rotary inertias.

The next phase in the process is called automated updating, because the model/data

correlation relies on optimization techniques to update the physical parameters. Phys-

ical parameters represent the physical attributes of the structure, such as mass, stiff-

ness, length, etc. The optimized parameters must be physical in order to stay within

the framework of the finite element method. This allows the suspension and gravity

effects to eventually be removed from the updated model. If the modal parameters of

the model were updated, this would jump outside of the finite element method and

there would be no way to extract the O-g behavior of the structure.

Thus far in the approach, the model has been updated based upon some open-

loop criterion. However, the finite element model will eventually be used to design

control for the spacecraft in O-g. Some large open-loop errors may have little impact

on the stability and performance of the closed-loop system, while others might have



serious implications. Therefore, it would be beneficial to rescale the importance of

the various errors from a closed-loop perspective. This can be achieved by evaluating

the performance of controllers designed using the 1-g finite element model and im-

plemented on the suspended hardware. Assuming that bandwidths and performance

levels are comparable to those expected on orbit, 1-g model errors that require the

design of robust control will most likely pose robustness problems on orbit. Such

errors would warrant further update. In this manner, the finite element model can

be closed-loop verified prior to flight.

Once the 1-g finite element model has passed through the open- and closed-loop

updating phases, it should match the open-loop experimental data quite closely. Con-

trollers designed using the updated model should achieve performance comparable to

that achievable using a measurement model [4]. To arrive at predictions of the 0-g

behavior of the structure, the suspension and gravity effects are analytically removed

from the updated 1-g finite element model. The resulting finite element model is sim-

ply a model of the free-free structure. This 0-g model differs from the initial free-free

model in that it has been updated to better match the ground experimental data.

Assuming that the suspension and gravity effects were accurately captured in the

1-g model, this resulting 0-g model should provide accurate predictions of the orbital

behavior of the structure.

Regardless of how accurate the 1-g model is, the resulting 0-g model will still be

in error. All that the 1-g updating has done is to reduce the size of these remaining

errors. High authority control will drive the closed-loop system unstable if these

modeling errors are not taken into account in the design. If, however, an estimate

of the errors can be determined, robust control techniques can derive controllers

that will be stable even in the face of the anticipated modeling errors. Thus, a

very important part of the proposed modeling approach is the determination of this

uncertainty model. Since no on-orbit experimental data exists prior to flight, the

uncertainty estimate must be made using knowledge of the residual errors in the 1-g

finite element model and knowledge of how the dynamics of the structure change from

1-g to 0-g.



Thus, the result of the proposed modeling approach is a 0-g model that is suitable

for control design and implementation on the structure in flight. This 0-g model

consists of a nominal model and estimates of the remaining uncertainties in the model.

The nominal 0-g model is a finite element input-output model that has been updated

using ground experimental data and verified through closed-loop experimentation on

the structure suspended in 1-g. The uncertainty estimates for this nominal model are

derived from an extrapolation of the 1-g uncertainty estimates into 0-g.

In order to demonstrate the details of the proposed modeling approach, it will

be applied to the Middeck Active Control Experiment (MACE) test article [5, 6].

MACE is a NASA In-Step/Control-Structure Interaction Office funded MIT space

shuttle flight experiment. The goal of MACE is to develop a set of Controlled Struc-

tures Technologies (CST) that give designers of future spacecraft, which cannot be

adequately tested on the ground, confidence in the eventual on-orbit performance.

The methodology used in MACE is to design a flexible structure that can be closed-

loop tested both on the ground and in orbit in the middeck of the space shuttle. The

test article is designed to couple strongly with the suspension system during ground

testing. This coupling, along with the performance specifications, make testing of

flight controllers on the suspended test article impossible and also represents a real

challenge for the proposed modeling approach. To test the end result of the proposed

modeling approach, one phase of the flight testing is to implement controllers de-

signed from models of the predicted 0-g behavior of the test article before any flight

experimental data is available.

This thesis builds on previous work done at MIT's Space Engineering Research

Center (SERC) on the modeling of controlled structures. Rey's work on the identifica-

tion of suspension and gravity effects on controlled structures [7] forms the theoretical

basis for the inclusion of these effects into a 1-g finite element model. In his work,

Rey identified five primary categories of suspension and gravity effects: suspension

effects; geometric stiffening effects on the structure; initial deformation effects on

the structure; gravity effects on sensors and actuators; and nonlinear suspension and

gravity effects. The first three of these effects are included in the MACE 1-g finite



element model. Due to the nature of the sensors and actuators used on the MACE

test article, the gravity effects on sensors and actuators are not needed. Nonlinear

gravity effects are not treated due to their complexity and the difficulty of including

them in a linear model.

Barlow's work on the modeling of the structural test article of MIT SERC's previ-

ous flight experiment, the Middeck 0-gravity Dynamics Experiment (MODE), serves

as a guideline for the development of a 1-g finite element model and predicting 0-g

behavior of a structure based on that finite element model. This work differs from

Barlow's in several aspects. For MODE, the structural dynamics of interest were only

the first few structural modes. For the MACE test article, the bandwidth of interest

consists of the structural modes up to 250 Hz, encompassing nearly 35 modes in 0-g,

including the rigid body modes. A second difference is in the complexity of the mod-

els required for the two experiments. For MODE, only a simple input-output model

was required. For MACE, the input-output model becomes quite complex due to the

diversity of actuators and sensors present on the test article, the addition of various

signal conditioning electronic filters on the sensor outputs, and the local servo loops

closed on the structure to provide low bandwidth pointing control of the multiple

payloads. Although Barlow formed a 1-g finite element model for MODE, he made

no attempts to adjust this model to better match the ground experimental data. The

goal of the MACE program, on the other hand, requires this adjustment based on

ground experimental data in order to improve the predictions of the 0-g behavior of

the test article.

The final set of work, that forms the basis for this thesis, is that done in the area

of finite element model updating. Updating finite element models has been around

nearly as long as the finite element method, and is a widely practiced skill in industry.

Various commercial updating codes are available [8, 9]. At SERC, the most recent

work was performed by Balmes [10] who worked with hybrid measurement/finite

element modeling techniques. Although not used directly in this thesis, his work

provided inspiration for finite element model updating.

Chapter 2 outlines a general modeling approach that can be used to develop a



high-precision 0-g model that is useful for control design. This modeling approach

relies on the finite element method to analytically capture the suspension and gravity

effects in a 1-g model. Once the 1-g model is formed, it is improved using open- and

closed-loop ground tests to arrive at an 'updated' 1-g model. The suspension and

gravity effects that are present in the ground tests are then turned off analytically

using the finite element method to form a model of the 0-g behavior of the structure.

Chapter 3 traces the development of the initial 1-g model for MACE. Since this

model will be improved using experimental results, the frequencies and modeshapes

that result from the finite element method must be augmented to match the input-

output behavior of the test article. The frequencies and modeshapes are augmented

with with experimentally determined damping. Other parts of this augmentation

include adding mechanical and electronic models of the actuators and sensors such

that their inputs and outputs are in the proper units: volts. Any additional signal

conditioning filters, as well as any local servo controllers present on the test article,

are also included in this model.

Chapter 4 discusses the model updating effort directed at improving the corre-

lation of the 1-g finite element input-output model with ground experimental data.

Generally, the model is updated using engineering insight and automated updating

techniques. Engineering insight refers to the changing of model parameters and as-

sumptions based on engineering judgment rather than some optimization scheme.

Automated updating, on the other hand, uses optimization techniques to make im-

provements in the model. Since the 0-g models developed using the proposed modeling

approach will be used for control design, it would be highly desirable to verify the 1-g

model through closed-loop ground tests. Problems that arise during this closed-loop

experimentation can be used to indicate further improvements in the finite element

model that may be necessary.

Chapter 5 is the culmination of the proposed modeling approach, the derivation

of the 0-g model from the updated 1-g model. This derivation consists of analyti-

cally turning off the suspension and gravity effects in the finite element model and

adding the input-output aspects of the structure. This 0-g finite element input-output



model will be in error when compared to flight experimental data, and consequently

controllers designed using the O-g model are likely to be unstable. Robust control

techniques can compensate for these model errors if a model of the uncertainty is

known. For this reason, a model of the uncertainty present in the O-g input-output

model must be derived along with a nominal O-g model.
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Chapter 2

Modeling Approach

The objective of the modeling effort for MACE is to provide a model with sufficient

accuracy to design high authority control of the test article for implementation in zero-

gravity. Two methods are used to generate dynamic models for structures, models

based exclusively on experimental data, measurement models [4], or through the use

of an analytical procedure such as the Finite Element Method [1, 2, 3]. Generally,

measurement models are more accurate than finite element models because they are

fit to the same experimental data that is used to assess accuracy. The finite element

model, on the other hand, is derived from the material and geometric properties, the

so-called physical properties.

While this would seem to suggest that there is no point in modeling structural

dynamics via the Finite Element Method (FEM), measurement based models do

have their limitations. The FEM is useful for creating a model before hardware ex-

ists, investigating sensor/actuator placement, investigating the impact of component

modifications, and modeling something in an environment which is different from that

in which it is tested. The last of these is particularly important for spacecraft, where

all preliminary testing must be conducted on the ground, necessitating a suspension

system which introduces gravity coupling. Since spacecraft will eventually be used in

the zero-gravity environment, where ground based measurement models are invalid,

a finite element model must be constructed in order to predict the on-orbit behavior

of the structure. This model is necessary for developing a priori confidence that the
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Figure 2.1: Modeling Approach for the Middeck Active Control Experiment

controlled structure will meet performance specifications in its operational environ-

ment. Once on orbit, a measurement model can be constructed for further open-loop

analysis.

The proposed modeling approach for MACE [11] is summarized in Figure 2.1. As

indicated in the figure, this approach consists of both open- and closed-loop testing on

the ground using models derived from both the finite element method and measure-

ment based techniques. The first step in this approach is the creation of a 1-g model

which allows updating using ground test results. Since the model is to be used for

control design, this approach updates the model using not only open-loop ground test

results but also closed-loop results. If modal parameters were used in the updates,

there would be no way to remove the suspension and gravity effects to form a 0-g

model. For this reason, physical parameters of the finite element model are used in

the updates. The following sections describe each step of this approach in detail.

2.1 Initial 1-g model

The first step in the modeling process, detailed for MACE in Chapter 3, is to obtain

an initial 1-g model of the input-output behavior of the structure. This model consists

of the structure as it would behave in 0-g, the so-called free-free model, along with a

model of the suspension system and gravity effects. To form the input-output model,

B

A

C D



the mechanical and electronic attributes of the actuators and sensors are added,

including signal conditioning filters. Since typical spacecraft may have local pointing

control on the attached payloads and instruments, the local control aspects of the

structure, including digital implementation of the controls, must also be included in

the model.

The initial free-free finite element model is based upon engineering drawings for

dimensions, material handbooks for elasticity and density properties, and measure-

ments of the actual hardware components, if they exist. The nodal points used in

the finite element model are taken from engineering drawings. Most of these nodal

points are distributed along the flexible parts of the structure to provide resolution

of the flexible modeshapes. Other nodal points are located at the centers of mass of

components that are complicated or have large mass. The last type of nodal points

are located at the sensor and actuator locations, to provide modeshape components

for the model input and output matrices. Once the nodal points have been defined,

the interconnecting mass and stiffness properties must be defined.

Stiffness is given to the structural model by connecting the nodal points with elas-

tic finite elements. Depending on the configuration of the component, the element

may be a truss, beam, plate, shell, etc. While requiring different specific parame-

ters, all elements require material and cross-sectional properties. Typical material

properties are the Young's modulus, shear modulus, and Poisson ratio. The cross-

sectional properties allow the calculation of areas and area moments of inertia. These

material and cross-sectional properties are initially taken from handbooks and en-

gineering drawings, respectively, but are eventually updated by measurement of the

actual hardware.

Two types of mass may be used in the finite element method: distributed and

concentrated. For distributed masses, the finite element code computes the mass

matrix for an element from a given material density, initially taken from handbooks

and eventually updated with component measurements, and cross-sectional shape.

Distributed mass is typically used for very simple components where the cross-section

and material density are easily described, such as truss members, beams, and plates.



Concentrated mass is generally reserved for more complicated components, where

the cross-section changes radically along the element. For concentrated masses, the

total mass and rotary inertias of the component are lumped at the center of mass.

Since the model may be constructed prior to hardware fabrication, the masses, rotary

inertias, and centers of mass must initially be computed analytically. For simple

components, these computations may be carried out by hand. But for more complex

components, a solid body modeling program, such as I-DEAS [12], may be used to

compute the mass, rotary inertias, and center of mass, using the component geometry

and material properties. Once hardware exists, the concentrated mass properties can

be verified by component measurement. Concentrated masses are also used for small,

rigid components where the dimensions are small when compared with the nodal

spacing.

Once the initial free-free finite element model has been constructed, a model of

the suspension system and gravity effects must be added to arrive at the initial 1-g

finite element model. The model of the suspension system can be simple or complex

depending on the level of fidelity desired in the model. If only the bounce and

pendular behaviors of the suspension system are desired, the suspension model might

simply consist of springs and rigid suspension cables. For higher order suspension

dynamics, such as suspension violin and compression modes, the suspension model

would consist of springs, hinges, and beam element suspension cables with the proper

mass and stiffness properties.

Once the suspension system has been modeled, the direct effects of gravity on

the structure need to be included in the model. The structural gravity effects in-

clude pre-deformation, pre-loading of the members, stiffening of rigid body behavior,

and pendular effects on articulating payloads [13]. The structural gravity effects are

captured through a nonlinear stress-stiffening procedure in the finite element code.

In this procedure, the gravity load is incrementally applied to the structure and the

resulting stresses are used to modify the stiffness matrix using the geometric stiffness

matrix. The resulting modified stiffness matrix is used, along with the unchanged

mass matrix, to generate the 1-g modal frequencies and modeshapes. These 1-g



modal frequencies are combined with arbitrary damping ratios, initially taken to be

1%, to form the finite element system matrix. Gravity also affects the behavior of

proof-mass actuators and accelerometers and can be captured in the model input and

output matrices.

The final step is to add the actuation and sensing capacities of the structure.

These are added through the input and output matrices, which are formed by select-

ing the proper combination of modeshape components. For a point force or moment

input, or displacement, rate, or acceleration output, the value of the proper mode-

shape component at the actuator or sensor nodal point is used. For a relative force or

moment input, or relative displacement or rate output, the values of the proper mode-

shape components at two collocated actuator or sensor nodal points are differenced

to provide the relative input or output. The resulting matrices make up a state-space

model of the structure in which the actuator inputs are in their physical units, such

as Newtons and Newton-meters, and the outputs are in their physical units, such as

meters, radians, and strain (i.e., meters/meter) and their temporal derivatives. Since

the input and output units are in physical units, this model is called the physical

state-space model of the system.

Although this model does provide the correct input-output structure of the system,

the model is to be used for control design, and must therefore match the input-output

behavior of the hardware as seen by the controller. Thus this physical model must be

transformed into a so-called volts-volts model, in which the inputs and outputs are

both in volts.

Actuators and sensors rely on some physical mechanism to convert the electrical

signal to a physical force, or vice versa. In the case of relative moment actuators,

such as a gimbal or reaction wheel, a motor and power amplifier are used to convert

the applied voltage to an applied torque. For an active strut, a piezo-electric material

is used to convert the applied voltage to an applied strain that induces bending in

the strut. The sensors behave oppositely in the sense that the proper structural

displacement, rate, acceleration, or strain is converted to a voltage.

Relationships can be written between the physical unit sensed or actuated and the



voltage measured or applied. Often, the electrical signals of the actuators or sensors

are amplified to provide ease of measurement or actuation. The hardware gains of

the actuators or sensors are combined with any amplification factors to make up the

total gains, which are applied to the physical input and output matrices to convert

them to volts.

Since the actuators and sensors rely on physical mechanisms to provide the con-

version between the physical and electrical domains, these actuators and sensors may

exhibit resonances and other dynamic effects. The input and output signals may

also be passed through electronic filters to provide better signal conditioning (noise

filtering). These filters may be high or low-pass filters, anti-aliasing filters, such as

a Bessel filter, or notch filters to reduce the effects of sensor dynamics. Since the

control computer sees the structure through these filters, they must be included in

the model. These filters may be accounted for in either a coarse or detailed fashion.

If the filter dynamics are sufficiently high in frequency, the effects of the filter may

be approximated by including the DC-gain of the filter and an equivalent time delay

to account for the phase lag. If the sensor, actuator, or filter dynamics are within the

frequency range of interest, detailed state-space descriptions must be included in the

model.

If any initial controllers, such as pointing servos, are implemented on the structure,

they must be included in the model as well. If these controllers are implemented using

analog circuitry, the loop is closed between the proper sensors and actuators using

the control gains. Some of these controllers may be implemented using a digital

computer. In order to stay in the continuous time domain, the model must account

for the sampling and computational delays of the computer. The most convenient

way of including these time delays is through the use of a Pade approximation [14],

which is appended to all controlled actuators. The servo loop is then closed around

the model containing these time delays.

The resulting finite element model includes the free-free structure, a model of

the suspension system, and gravity effects. The input-output behavior of the struc-

ture is captured through models of the sensors and actuators, including sensor and



actuator dynamics, electronic gains, and electronic filters. Once the general input-

output behavior has been captured, any preliminary control, either analog or digital,

is captured, including any computational and sampling time delays appropriate for

the application of control. This results in an initial prediction of the 1-g behavior of

the structure.

2.2 Model Updating

Once the initial 1-g finite element input-output model has been created, the rest

of the modeling approach is geared toward improving the model and deriving a 0-g

model from the improved 1-g model. This process of improving the model is called

updating. In the proposed modeling approach, model updating occurs using both

open- and closed-loop testing in 1-g, detailed for MACE in Chapter 4.

2.2.1 Open-loop updating

The first step in the update process is to verify the model (Step A in Figure 2.1)

by measuring modeled properties on the hardware and verifying modeling assump-

tions. Experimental data may also be used to provide insights into errors contained

in the model. As an example, comparison of analytical predictions of the transfer

functions with experimental transfer functions is used to identify errors in the model

and suggest improvements. This updating, called engineering insight, comes from

the experience the engineer brings to the process. Once the model has been verified

through engineering insight, it can be further refined using optimization techniques,

called automated updating.

Engineering insight, often little more than an educated guess, covers all aspects

of the modeling and updating process and is used to make coarse adjustments to the

model. The first step is to carefully examine the finite element input deck and post

processing code for any typographical errors. The second step is to obtain as much

information as possible about the components of the structure without getting into

the input-output behavior. This step includes measuring component masses, centers



of mass, rotary inertias, lengths, and cross-sections of assembled components. It also

includes measuring the stiffness properties of components, if possible, and measuring

electronic and control properties, such as hardware gains, filter transfer functions,

and computer time delays. Once this step is complete, the finite element mass matrix

should be correct and all electronic and control aspects of the structure should be

known.

All remaining errors in the model should be due to erroneous modeling assump-

tions, errors in the stiffness parameters of the model, and nonlinearities in the struc-

ture. The predictions of the 1-g finite element input-output model are compared to

the ground experimental data. Regions of large error are examined to see if erroneous

modeling assumptions could be causing the error. An example of this type of insight

is the examination of the beam element formulation in the model. Perhaps there are

large frequency errors in the higher frequency modes. Their analytical modeshapes

can be examined for large amounts of shear. If shear is seen, the beam element

formulation should be changed from Bernoulli-Euler to Timoshenko.

In automated updating, the computer is allowed to make changes in model pa-

rameters, such as the stiffnesses of the beam elements, to minimize some cost based

either on measured modal parameters or the raw experimental data. Engineering

insight is used to select the update parameters, define the cost, and place bounds on

the extent to which the parameters will be allowed to vary. The result of automated

updating is a model that is more closely correlated to the experimental 1-g data.

Closely associated with model updating is the development of an input-output

model based exclusively on the ground experimental data, called a measurement

model. The measurement model is useful because it represents the best approximation

to the data that is possible using a finite order, linear model because all parameters

in the state-space model are used to fit the data. Using the measurement model,

estimates of the modal frequencies and damping ratios can be obtained, which can

be used to update the finite element model (Step B in Figure 2.1) [9].

It is interesting to note that the finite element model can also be used to im-

prove the measurement model by indicating the minimum order of the model, as



measurement models are prone to retain multiple modes to represent a single mode

that has slightly different frequencies depending on which input/output channel is

measured. The finite element model can also be used to determine whether lightly

damped transfer function zeros are minimum or nonminimum phase. This is a prob-

lem because these zeros have low magnitude and are often below the noise floor of

the sensor causing the data to possibly indicate a nonminimum phase zero where the

finite element model indicates a minimum phase zero.

The raw experimental data can also be used to update the model. In this case,

the model predictions are compared using some cost function. This type of updating

is desirable because of difficulties encountered in matching the modal parameters of

a measurement model. These problems are closely spaced and repeated modes. In

these cases, the wrong finite element modes may be paired with the measured modes

causing a poor update. Using the raw data eliminates these problems because the

modes will naturally sort themselves out to pair with the proper experimental modes.

In theory, it would seem that a progression from initial engineering insight, through

matching the frequencies and damping of a measurement model, to automated up-

dating based solely on the experimental data would give good results. In practice,

though, this is hardly the case. Often, coarse engineering insight adjustments come

about because of difficulties encountered during automated updating, the model error

simply will not budge using the chosen parameters. In this case, engineering insight

must be used to verify that some erroneous modeling assumption is not dominating

the errors or that the chosen parameters are sufficient to allow a good update.

2.2.2 Closed-loop updating

The eventual goal of this modeling approach is to derive a 0-g input-output model of

the structure useful for control design. Because of this, it is advantageous to verify

the model in closed-loop before flight. Thus, the second half of the update process is

based on closed-loop results. Two avenues for updating are exploited in closed-loop

updating: implementation of controllers based on the 1-g finite element model and

comparison of these closed-loop results with measurement based control results.



In comparing the finite element model to open-loop experimental data, all the

errors in the model are shown in detail. To examine which of these errors are most

important for closed-loop experiments, controllers are designed based on the 1-g fi-

nite element model. These errors will cause the actual performance to differ from

predictions, possibly leading to instability, when the controller is implemented on the

hardware (Step C in Figure 2.1). The closed-loop results cannot, as yet, be used to

explicitly update the model. Rather, the closed-loop results indicate which modes

went unstable first, and thus, which modes should be emphasized in further updates.

The closed-loop updating step could continue ad infinitum, as long as a controller

of high enough authority leads to instability. At some point, though, it is desirable

to end the update process and test the structure on orbit. Thus, some test of the

quality of the finite element model is needed. As stated previously, the measure-

ment model is the best finite order, linear approximation to the data, and as such,

controllers designed using this model should give the best closed-loop performance.

Consequently, a good test of the quality of the finite element model would be to

compare the closed-loop finite element results with those of the measurement model

(Step D in Figure 2.1). This comparison could be done in two ways: direct compar-

ison of the measurement and finite element based control results and comparison of

the finite element based control results with a standardized design curve.

The first method of comparison would simply be to compare the performance

improvement achieved by controllers designed using the two models. In order to pro-

vide a fair comparison, though, both measurement and finite element results should

be derived from controllers with the same control authorities, topologies, and design

techniques. Differences in any of these areas would cause the comparison to be unfair

and not provide the proper insight. The way around this leads to the second method

of comparison.

This method eliminates these problems by standardizing the comparison in the

form of a design curve. To form this curve, the closed-loop cost, computed based

on the nominal model, is plotted against the amount of control used for some set of

'standard' weightings, topology, and control design technique. This design curve is



derived using the measurement model in order to minimize the number of times the

curve must be recomputed and to make the measurement model results the basis for

comparison with the finite element results. With the design curve in hand, both the

measurement and finite element based experimental control results are compared with

the design curve. The measurement based results are plotted to give an indication of

what is actually possible, as even the measurement model is in error and will lead to

instability at some level of control authority. The finite element based control results

are compared to the design curve to determine how far away the finite element model

is from the theoretical best, and compared to the measurement results to determine

how far away the finite element model is from the achievable best.

These comparisons of the finite element-based closed-loop results with the mea-

surement model-based closed-loop results, although not directly used in updating the

finite element model, provide an indication of when the finite element model is 'good

enough' and updating can be terminated. This final 1-g model very closely matches

the 1-g open-loop experimental data and has been closed-loop verified such that it

achieves good performance when compared with measurement based controllers. The

next step is to form the O-g model.

2.3 O-g Prediction

To form the O-g model, detailed for MACE in Chapter 5, the final 1-g model is

used as a starting point. Since the transformation from 1-g to O-g is not known

for the measurement model, because the gravity effects are buried within the modal

parameters, the finite element method must be used to generate the O-g model. In

the 1-g finite element model, the suspension system is removed and the gravity effects

are analytically turned off, leaving simply the updated free-free model.

From this point, the development of the O-g model closely parallels the develop-

ment of the initial 1-g model. The O-g system matrix is formed by taking the O-g

frequencies and the damping ratios for the corresponding modes from the 1-g model.

The O-g input and output matrices are formed in the same fashion as in the 1-g model,



except using the O-g modeshapes. If the ground test electronics are the same as the

flight hardware, the same electronic gains and filters are used in the O-g volts-volts

model. If different electronics are used on the ground and for flight, the appropri-

ate gains and filters for the flight electronics are used to form the volts-volts model.

The appropriate flight controllers are also included in the input-output model. The

resulting model is a nominal model of the structure as it will behave in O-g.

Controllers designed using modern control theory do not tolerate model errors

very well, leading to instability at low control authority. If model errors are known,

however, robust control theory allows the control designer to take these errors into

account, allowing controllers of much higher control authority to be stable. For this

reason, it is desired to have some knowledge of what errors are likely to be present

in the model when compared with flight experimental data. Since flight data does

not exist, this O-g error model must come from a combination of the remaining errors

present in the 1-g model and possible errors in the transformation of the model from

1-g to O-g. Probably the most important piece of information in the O-g prediction is

the generation of this measure of uncertainty. Thus, the final result of this modeling

approach is a nominal model of the on-orbit behavior of the structure and a measure

of how the model is likely to be in error when compared with flight experimental

data.



Chapter 3

1-g MACE Model Development

The modeling approach described in the previous chapter will be applied to the

Middeck Active Control Experiment (MACE) test article. The MACE program calls

for three generations of hardware: the Development Model (DM) to test preliminary

hardware designs, the Engineering Model (EM) to finalize flight hardware designs,

and the Flight Model (FM) which will actually fly on the shuttle. In order to be most

representative of the Flight Model, the modeling approach will be applied to the EM

hardware, which has undergone extensive testing and analysis.

The first step in the modeling approach is the development of an initial 1-g input-

output model of the MACE structure. This chapter details the development of the

initial 1-g model for the Engineering Model version of the MACE hardware (Fig-

ure 2.1).

3.1 Hardware Description

The MACE EM test article, illustrated in Figure 3.1, consists of a segmented straight

tubular LexanTM bus with a two-axis pointing/scanning payload at the right end.

A second two-axis gimbal, considered the disturbance source, is mounted on the left

end. Each two-axis gimbal allows actuation of rotation about the X- and Z-axes via

two DC torque motors. A reaction wheel assembly is attached at the center node

to provide attitude control torques. The reaction wheel assembly is comprised of
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Figure 3.1: Middeck Active Control Experiment (MACE) Engineer-
ing Model test article suspended in 1-g

three orthogonally mounted DC servo motors with an inertia wheel mounted on each.

Speed-control of the reaction wheel assembly is performed to attenuate the effects of

friction and to avoid wheel runaway. One segment of the structural bus consists of

an active member, which allows the actuation of bending strain through the use of

piezoelectric materials. The hardware is suspended using three pneumatic/electric

low frequency suspension devices [15].

The test article is outfitted with a variety of sensors used for control and iden-

tification. Each gimbal axis has a laser rotary encoder to measure relative angular

rate of the gimbal. A two-axis rate gyro platform is mounted in the payload of the

primary gimbal, providing measures of inertial X- and Z-axis angular rates. A three-

axis rate gyro platform is mounted beneath the reaction wheel assembly, providing

measures of inertial X-, Y-, and Z-axis angular rates. A tachometer is mounted on

each reaction wheel motor to provide a measurement of relative wheel speed used in

the speed-control servos. Eight strain gage pairs (2 per strut) are used to provide a

.



measurement bending strains about the Y- and Z-axes . Anti-aliasing Bessel filters

are included on all analog sensor channels.

Since many spacecraft use low frequency servo control systems to point attached

payloads, such a servo control is also used on the MACE hardware. All four gimbal

motors have proportional-integral servo loops closed around them, using the encoder

rate and integrated rate signals for feedback. The result is that below a frequency of

3 Hz, the input signal to each gimbal commands the relative angular position of the

payload with respect to the bus. These servos and the structural control algorithms

are implemented on a real-time computer operating at a 500 Hz sampling rate. The

computational delay, zero-order hold, and Bessel filters introduce a substantial net

time delay into the transfer functions necessitating their incorporation into the 1-g

model.

The first step in deriving the initial input-output model is development of a 1-g

finite element model, consisting of the free-free model to which a suspension model

and gravity effects are added. The resulting 1-g frequencies and modeshapes are

used to form a physical input-output model by including models of the actuators

and sensors. This model is physical because the inputs and outputs are in physical

units. Since the control computer inputs and outputs are in volts, the electronic

aspects of the structure, such as hardware gains, amplifiers, and signal conditioning

filters, are added to the physical input-output model to transform it into a volts-volts

model. The reaction wheel speed control and gimbal pointing servos are added to the

volts-volts model to complete the formation of the initial 1-g input-output model.

3.2 Initial Free-Free Model

The initial free-free EM finite element model is generated using a combination of

engineering drawings, material properties from handbooks, and experience gained

from previous versions of the hardware. Nodal points are distributed across the

flexible portion of the structural bus to provide spatial resolution of the bending

modeshapes. (In order to distinguish between the structural nodes and the finite
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Figure 3.2: Passive strut dimensions

element nodes, the structural nodes will be referred to simply as 'nodes' and the finite

element nodes as 'nodal points'.) Some of these nodal points are located at component

connections, such as the node-collar and the collar-strut interfaces, see Figures 3.2

and 3.3. Other nodal points are located at the centers of mass of components with

large mass, such as the nodes, gimbal stages (Figure 3.4), reaction wheel assembly

stages (Figure 3.5), and rate gyro packages (Figure 3.6). The centers of mass for

these components, in their relative coordinate frames from Figures 3.4, 3.5, and 3.6

are given in Table 3.1. All centers of mass are referenced from the node interface

(i.e., where the component attaches to the structural node). The table shows both

the payload rate gyro package ("Gimbal Payload") and the dummy rate gyro package

("Dummy Payload"). For the primary gimbal, attached to the right end of the test

article in Figure 3.1, the payload rate gyro package is used, while for the secondary

gimbal, rotated 1800 from the primary gimbal and attached at the opposite end of

the test article, the dummy rate gyro package is used. The center of mass of the

node, which is a 6.35 centimeter cube (see Figure 3.2) is assumed to be located at

the center of the cube.

The last set of nodal points are located at the actuators (i.e., the gimbals and

reaction wheels) and sensors (i.e., the rate gyros, encoders, tachometers, and strain

gages). For actuators and sensors whose action is a relative torque or rotation about

a single point (i.e., everything but the rate gyros, active strut, and strain gages)

two nodal points are superimposed. The free rotation is defined using constraint

equations. The encoder-gimbal and tachometer-reaction wheel sensor-actuator pairs
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are collocated and consequently, use the same nodal points. The location of the

gimbal axes, in the coordinate frame of Figure 3.4, is given in Table 3.1. The rotation

axes of the reaction wheel motors are assumed to be located at the center of mass of

the wheels as given in Table 3.1. In the case of the rate gyros, the location of the rate

gyros contained in the package is assumed to be coincident with the center of mass of

the rate gyro package. For the strain gages, see Figures 3.2 and 3.3, two nodal points

are used, located at the two ends of the strain gage. For the free-free model of the

center
Lexan

end
Lexan Collar Node

end
Node Collar Lexan



Figure 3.5: Reaction wheel assembly
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Figure 3.6: Rate gyro package
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Table 3.1: Component centers of mass and actuator locations

Component x y z
Stage (cm) (cm) (cm)

Gimbal Base -0.281 -7.257 -0.116
Gimbal Inner (X-Axis) Stage 6.661 -7.824 -0.437
Gimbal Outer (Z-Axis) Stage 10.593 -11.401 -0.005

Gimbal Payload 10.508 -26.307 0.000
Dummy Payload 10.508 -24.498 0.000

Gimbal Axes 10.508 -7.988 0.000
RWA Base 0.000 6.279 0.000

RWA Wheel 1 0.000 8.067 10.629
RWA Wheel 2 9.205 8.067 -5.314
RWA Wheel 3 -9.205 8.067 -5.314

Rate Gyro Package 0.000 -4.350 0.000

Table 3.2: Material parameters

Material Young's Modulus Poisson's Ratio Density

(N/m) (kg/m 3 )

Lexanend 2.794 x 109  0.37 2021.77
Lexancene, 2.626 x 109  0.37 2021.77

Stainless Steel 1.305 x 1011 0.30
Aluminum 6.890 x 1010 0.30

Active Strutend 2.794 x10 9  0.37 1838.18
Active Strut,,,,o 3.986 x10 9  0.37 1968.12
Active Strutcente 2.626 x 109 0.37 1838.18

MACE EM, 78 nodal points are used to model the test article, resulting in a total of

433 degrees of freedom, after the constrained degrees of freedom had been removed.

These nodal points are connected using 32 Timoshenko and 38 Bernoulli-Euler

beam elements with 7 different sets of material and cross-section properties, summa-

rized in Tables 3.2 and 3.3. The LexanTM materials are used for the passive struts,

stainless steel for the collars, LexanTM and piezo-electric materials for the active strut,

and aluminum is used as a rigid material for the nodes, gimbals, reaction wheels, and

rate gyros. In some cases, such as the passive and active struts, multiple materials

are used to describe a single component.

Due to the varying cross-section properties at the ends of the exposed portion of

the passive strut and the complexity of the strut-collar connection, the strut is broken



Table 3.3: Element sections
Material Outer Diameter Inner Diameter Shear Factor

(cm) (cm)
Lexanend 2.883 2.248 0.5492

Lexancenter 2.883 2.248 0.5492
Stainless Steel 4.445 0.000

Aluminum 7.282 4.026
Active Strutend 2.883 2.248 0.5492

Active Strut 'ezo 3.410 2.353 0.5646
Active Strutcene,, 3.410 2.353 0.5646

35
4 7 -49 41 -39 - '
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Figure 3.7: MACE finite element model

into two parts (see Figure 3.2). The portion near the strut-collar connection is called

Lexanend and the center of the strut is called Lexancenter.

Since the active strut (see Figure 3.3) is similar to the passive strut, with the

exceptions being the cross section of the center part of the strut and the piezo-electric

material covering portions of the center part of the active strut, it is broken into three

parts. Two of these parts are the same as the passive strut, namely the end and center

portions. The additional material is a LexanTM and piezo-electric composite, where

the material stiffness properties are computed to match the effective bending stiffness

of the actual strut determined from the true cross-section and material properties.

Figure 3.7 shows the finite element nodal point locations and connectivities for

the MACE free-free model. For reference, the finite element mesh is oriented with the

primary gimbal on the right and the secondary gimbal on the left, as in Figure 3.1.



Each number in the drawing is a nodal point and each line is an element. The

representations of the gimbals and reaction wheels can be clearly seen connected to

the long, straight structural bus.

With all the stiffness properties of the structure defined, the only thing left to

complete the free-free finite element model is to define the mass properties of the

structure. Two types of mass are used in the finite element model, distributed and

concentrated mass. For distributed mass, the finite element code simply uses the

material density of the element, along with the previously defined element length and

cross-section dimensions, to compute the mass properties. This type of mass is used

for the elastic components of the structure, such as the passive and active struts. The

MACE structure has electrical wires running through the hollow interior of the struts

and nodes, the mass of which are included in the model. To capture this mass, the

passive and active struts with wires and plugs in place are weighed, with effective

densities computed by dividing the mass of the strut by the modeled volume.

Concentrated masses are used for more complex components, where the modeled

cross-section may not adequately capture the true geometry of the component, or

for components that are assumed rigid. This is the case for the nodes, rate gyro

packages, gimbals, and reaction wheel assembly. For lumped mass, the component

mass, obtained from weighing the component, and rotary inertias are lumped at a

single nodal point, usually the center of mass. Several methods can be used to find the

component rotary inertias. For simple components, a material density can be assumed

and the rotary inertia computed analytically using standard integral formulas.

The second method, which can be used for more complex components, is exper-

imental in nature. The rotary inertia, J, can be computed from the frequency of a

rotary pendulum, Figure 3.8, using the well-defined relationship [16]

mgd2
2J (3.1)

4f 2 1

where m is the component mass, g is the gravitational constant, d is the cable sepa-

ration, f is the pendulum frequency in radians/second, and I is the pendulum length.

This equation also assumes that the component center of mass is directly centered
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Figure 3.8: Rotary pendulum

Table 3.4: Component mass properties

Component mass JXX JYY Jz
(kg) (kgm 2 ) (kgm2 ) (kgm 2)

Node 1 0.8300 .00099 .00122 .00130
Node 2 0.7692 .00097 .00112 .00060
Node 3 0.7328 .00095 .00077 .00087
Node 4 0.7167 .00067 .00082 .00059
Node 5 0.8300 .00099 .00122 .00130

Bus Rate Gyro 1.3243 .00198 .00186 .00182
Payload Rate Gyro 1.1973 .00195 .00185 .00135
Dummy Rate Gyro 1.2729 .00226 .00241 .00068

between the ends of the two cables. The rotary pendulum can only be used for single

stage components, such as the nodes and rate gyro packages. Table 3.4 summarizes

the lumped mass properties of these components obtained from the rotary pendulum

tests. Since the dummy rate gyro package consists of two aluminum bars, its rotary

inertias were computed analytically.

The third method is reserved for very complex or multi-stage components, which

cannot be tested using the rotary pendulum. In this method, a solid model of the

component is generated using a solid modeling program such as I-DEAS [12]. Exam-



Table 3.5: Reaction wheel mass properties

RWA mass JX, Jyy Jzz
Component (kg) (kgm 2) (kgm 2) (kgm 2 )

Base 6.0618 .03555 .05497 .03555
Wheel (principal) 3.4168 .00456 .00456 .00569

Table 3.6: Inertia wheel Euler angles

Wheel 0 02 03
Number (deg) (deg) (deg)

1 -35.258 0.000 0.000
2 -15.792 108.438 -41.804
3 164.208 108.438 138.196

ples of very complex components which cannot be tested using the rotary pendulum,

due to their multi-stage nature, are the reaction wheel assembly and gimbals. The

mass properties of the reaction wheels are given in Table 3.5 for the base stage and

the inertia wheels. The inertias of the inertia wheels are about the wheel principal

axes, which are coincident with the rotation axes. The Euler angles used to define

these skew coordinate systems, whose z-axes are aligned with the rotation axes, are

given in Table 3.6. The Euler angles are defined in a 1-2-1 sequence, such that 01 is

about the x-axis, 02 is about the rotated y-axis, and 03 is about the doubly-rotated

x-axis. The gimbal mass properties are given in Table 3.7 [17]. The listed gimbal mass

properties are about the individual stage centers of gravity. The secondary gimbal

rotary inertias differ from those of the primary gimbal only in the signs of some of

the off-diagonal terms, due to the 1800 rotation between the primary and secondary

gimbals. The rotary inertias, except the inertia wheels, of these two tables are in the

global coordinate frame defined in Figure 3.1. Inertias of the inertia wheel are given

in a local coordinate system. With the description of the lumped mass properties of

the structure, the free-free finite element model is complete.



Table 3.7: Gimbal mass properties

Gimbal mass JX, JY Jzz JXY JY JXz
Stage (kg) (kgm 2) (kgm2 ) (kgm 2 ) (kgm2 ) (kgm2 ) (kgm 2)

Base 1.3370 .00258 .00304 .00354 -.00002 .00005 -.00002
Inner Stage 2.0757 .00295 .00703 .00678 .00011 -. 00032 -. 00006
Outer Stage 1.2309 .00505 .00165 .00424 -. 00009 .00000 .00006

3.3 Suspension and Gravity Effects

Once the free-free model is completed, the final step in generating the 1-g finite ele-

ment model is to include the gravity effects, which come in five primary categories:

suspension effects, geometric stiffening effects, initial static deformation effects, grav-

ity effects on sensors and actuators, and nonlinear gravity and suspension effects. This

section discusses these gravity effects to the extent that they manifest themselves in

the finite element modeling process. For a more extensive treatment of suspension

and gravity effects see Rey's work in References [7, 13, 18].

Three of these gravity effects are of importance in MACE: suspension effects; ge-

ometric stiffening effects; and initial static deformation effects. The gravity effects

on sensors and actuators are not important because the only sensors and actuators

found to be susceptible to gravity are accelerometers and proof-mass actuators, both

of which are not found on the MACE test article. The nonlinear gravity and suspen-

sion effects are not treated because there is no easy way to incorporate them into a

linear model and are most often negligible due to small angles.

In order to conduct ground testing, the structure must be suspended. To mini-

mize the interaction of the suspension with the structure's dynamics, the bounce and

pendular frequencies of this suspension system are desired to be at least one decade

below the fundamental mode of the structure. Because of these requirements, the

suspension system must have very low stiffness to minimize the bounce frequency

and be very long to minimize the pendular frequencies. If simple springs were used

for the suspension system, their lengths would be many meters long, which is imprac-

tical. For this reason, alternate mechanical suspension devices have been developed

which have low stiffness but are small enough to allow ground testing without the



requirement of extremely high ceilings.

The MACE EM test article is supported by three pneumatic-electric suspension

devices, shown in schematic in Figure 3.9, and three 4.7 meter long graphite-epoxy

composite cables attached to the test article end nodes and center node with small

universal joints. The pneumatic-electric devices behave like low stiffness springs in

the vertical (gravity) direction with a bounce frequency of approximately 0.25 Hz.

The upper end of each suspension cable is connected to a suspension carriage which

is constrained to only move in the vertical direction by low friction air bearing shafts.

Each suspension carriage is attached to a piston which travels in one end of an air

filled chamber that is connected to a large volume air tank. Each tank is pressur-

ized to provide the correct force on the piston to offload the weight of the structure.

The combination of tank pressures for the three devices is used to level the structure

for ground testing. The electric portion of the suspension devices consist of a dis-

placement sensor and motor to actively control piston position. Most of the vertical

stiffness of the device is provided by the large air tank, with an additional smaller

stiffness and damping provided by the electric portion of the device [15].

The pneumatic-electric suspension devices are modeled in the finite element model

as a simple mass and spring, as shown in Figure 3.9. The mass used in the finite

element model, implemented as a lumped mass located at the top nodal point of the

suspension cable, is simply the mass of the suspension carriage, given in Table 3.8.

The bounce stiffness of the suspension devices is the sum of the pneumatic stiffness, kp,

and the electro-mechanical stiffness, kem, which are represented in the finite element

model by a single stiffness, ksuspension. Since computing kp and kem analytically is

very difficult, an approximation to this sum is found using the finite element model.

In this approximation, a static solution is performed in which the reaction forces, FR,

at each suspension device are calculated. Then the stiffness of each suspension device

is computed assuming a bounce frequency, fb, of 0.25 Hz, according to the following

equation

ksuspension 4 kp + kem (3.2)

where fb is in Hertz and g is the gravitational constant. Table 3.8 gives the spring
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Figure 3.9: Suspension schematic

stiffnesses for the MACE EM finite element model, where suspension device num-

ber 1 is connected to the primary payload end of the test article, device number 2

is connected to the center node, and device number 3 is connected to the secondary

payload end of the test article (Figure 3.1).

Several representations of the suspension cables can be used in the finite element

model, depending on the level of fidelity desired and the degree of coupling exhibited

between higher order suspension dynamics and the structure's dynamics. If only the

pendulum effect of the suspension cables is desired in the model, each cable need only

pressure
sensor



Table 3.8: Suspension device parameters

Suspension Carriage
Device Mass ksuspensio

Number (kg) (N/m)

1 1.3132 16.988
2 1.3132 56.282
3 1.3132 17.038

Table 3.9: Suspension cable parameters

Cable Young's Poisson's Cable Cable
Number Density Modulus Ratio Diameter Length

(kg/m 3 ) (N/m') (mm) (m)
1 1991.37 1.655 x10 11  0.30 3.175 4.7
2 1991.37 1.655 x1011 0.30 3.175 4.7
3 1991.37 1.655 x1011 0.30 3.175 4.7

be represented by two nodal points, one at the top and one at the bottom, connected

using a single rigid element. If, on the other hand, higher order suspension dynamics,

such as compression and transverse violin modes become significant (i.e., they have

frequencies in the bandwidth of interest for the structure), the full mass and stiffness

properties of the cables, summarized in Table 3.9, should be included in the finite

element model. To determine if the compression and violin effects do need to be

modeled, the fundamental frequencies of these modes are examined.

The compression mode fundamental frequency in Hertz, f,, is given by [16]

f 1 (3.3)

where 1 is the cable length, E is the cable's Young's modulus, and p is the cable

density. For the MACE suspension cable properties, this equation gives a fundamen-

tal compression frequency of 970 Hz, several times higher than the 250 Hz Nyquist

frequency set by the control computer, indicating that the compression effects do not

need to be included.

The fundamental violin frequency in Hertz, f,, is given by [16]

1 = FR
= -p (3.4)

21 =A2



where FR is the cable tension and A is the cable cross-sectional area. Using the MACE

suspension properties, the fundamental violin frequencies are: 7.0 Hz, 12.7 Hz, and

7.0 Hz for cables 1, 2, and 3, respectively. Since the fundamental violin frequencies

lie well below the 250 Hz Nyquist frequency, the mass and stiffness properties of the

suspension cables must be included in the model. A concern in modeling the violin

modes is that their frequency depends on the cable tension. No easy method for

capturing this tensioning effect exists in the finite element method. Fortunately, as

will be seen shortly, capturing this tensioning effect is one of the fundamental aspects

of capturing the gravity effects on the structure, and as such, the suspension violin

modes are simply a by-product of the structural gravity effects modeling.

Once it is known that the higher order suspension dynamics must be included in

the model, a decision must be made regarding the number of nodal points to use to

represent the cables. Care must be taken in making this decision because, on the one

hand, the more nodal points used, the higher the violin mode that can be captured.

On the other hand, the more nodal points used, the more degrees of freedom in the

model, greatly increasing computation time in the finite element solution. Keeping

these factors in mind, 9 nodal points are used to model each of the suspension cables,

enabling the 4th violin mode in each of the cables to be captured without significantly

increasing the size of the model.

One last aspect of the suspension system must be addressed, namely the universal

joints at the bottom of the suspension cables (Figure 3.10). These universal joints

connect the suspension cable to a steel rod which is itself attached to the structure

at one of the nodes. The universal joints are modeled similar to the gimbals or

reaction wheels, namely through the use of coincident nodal points and constraint

equations, except in this case only 4 constraint equations are needed because of the

two free rotations. Since the steel connecting rod has mass, this mass must be included

somewhere in the model. One convenient location is at the node to which the rod is

connected. If the mass and rotary inertias are lumped at the structural node, care

must be taken to remove them when the suspension system is removed to form the

0-g model.
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Figure 3.10: Universal joint and connecting rod

With the addition of the universal joint, the finite element representation of the

1-g structure is complete. This model consists of a total of 108 nodal points, resulting

in a total of 586 degrees of freedom with the constraint equations and fixed degrees of

freedom removed. These 108 nodal points are connected with a total of 32 Timoshenko

and 65 Bernoulli-Euler beam elements, and 3 linear spring elements for the suspension

devices. The only thing left to complete the 1-g finite element model is to incorporate

the structural gravity effects.

The structural gravity effects are: geometric stiffening effects and initial static

deformation effects. Geometric stiffening effects arise from initial internal stresses due

to the gravity loading. These effects manifest themselves by changing the stiffness

characteristics of the system. An analogy to this would be the change in bending

frequency of a beam due to an axial loading. Initial static deformation effects arise

when the initially undeformed structure undergoes deformation due to the gravity

loading. These effects manifest themselves by changing the spatial distribution of the

mass and stiffness of the system. An analogy to this would be the change in bending

frequency of a beam due to some initial curvature [7, 13]. These effects change the



mass and stiffness characteristics of the structure and are the result of structural sag,

pendular effects on articulating appendages, stiffening of rigid body behavior (such

as the suspension pendulum behavior), and suspension violin behavior.

The structural gravity effects are captured through a nonlinear large-displacement,

stress-stiffening finite element procedure. In this procedure, the gravity load is applied

incrementally to the structure and the resulting deformations and stresses at each

increment are used to modify the stiffness matrix. Although the initial deformation

effects cause changes in the mass matrix due to changes in the spatial distribution

of the mass, at present, no procedure exists in any commercial finite element code

that takes these changes into account. Due to the small initial deformations seen in

the MACE structure, these mass perturbations are negligible. Once the full gravity

load has been applied, the final modified stiffness matrix is used along with the

unmodified mass matrix in an eigensolution to generate the 1-g modal frequencies

and modeshapes.

The 1-g finite element model developed up to this point is analyzed using the

ADINA finite element code [19]. Where the free-free model requires only 35 modes to

cover the frequency range from 0 to 250 Hz, the 1-g model requires more than twice

that number, 80 modes, to cover the same frequency range. Table 3.10 compares

the frequencies for the 0-g and 1-g models up to 27 Hz. From the table, the effects

of gravity and the suspension system are seen. First, it is seen that the number

of zero frequency modes goes from 13 (6 rigid body and 7 articulation modes) to

3 (articulation modes) because all the rigid body modes have been constrained by the

suspension system and the gimbal mechanisms have become gravity stiffened pendula.

The only remaining zero frequency modes are the reaction wheel articulation modes

(motion of reaction wheel and motor armature relative to the motor housing) which

are unaffected by gravity. Another effect is seen in the change in frequency of the

flexible modes where the frequencies change due to the additional mass and stiffness

of the suspension system and the additional stiffness of the geometric stiffening and

initial deformation effects. Notice in the table that most of the modes decrease in

frequency from 0-g to 1-g, indicating that the mass effects of the suspension system



Table 3.10: Natural frequencies for initial 0-g and 1-g finite element models

Description 0-g 1-g
(Hz) (Hz)

reaction wheel 1 0.00 0.00
reaction wheel 2 0.00 0.00
reaction wheel 3 0.00 0.00
X suspension pendulum (X translation) 0.00 0.23
Z suspension pendulum (Z translation) 0.00 0.23
Y suspension twist (Y rotation) 0.00 0.23
bounce (Y translation) 0.00 0.23
Z tilt (Z rotation) 0.00 0.44
X gimbal pendulum 0.00 1.09
X gimbal pendulum 0.00 1.16
Z gimbal pendulum 0.00 1.18
Z gimbal pendulum 0.00 1.27
X twist (X rotation) 0.00 1.67
1st Z bending 2.32 2.11
1st Y bending 3.42 3.72
1st out-of-plane violin, cables 1 and 3 6.76
1st in-plane violin, cables 1 and 3 6.82
1st out-of-plane violin, cables 1 and 3 6.84
1st in-plane violin, cables 1 and 3 6.84
2nd Z bending 9.56 8.96
2nd Y bending 9.77 9.12
torsion, secondary end 11.51 10.78
3rd Z bending 11.32 11.22
torsion, primary end 14.24 12.24
1st in-plane violin, cable 2 13.17
1st out-of-plane violin, cable 2 13.21
2nd in-plane violin, cable 1 13.75
2nd in-plane violin, cable 3 13.81
2nd out-of-plane violin, cable 3 13.94
2nd out-of-plane violin, cable 1 14.03
4th Z bending 16.71 14.30
3rd Y bending 18.85 18.95
3rd in-plane violin, cable 1 20.73
3rd in-plane violin, cable 3 20.77
3rd out-of-plane violin, cable 1 20.77
3rd out-of-plane violin, cable 3 20.81
4th Y bending 27.64 23.22
2nd out-of-plane violin, cable 2 26.31
2nd in-plane violin, cable 2 26.31



dominate over the suspension stiffness and structural gravity effects. A third effect is

seen in the suspension cable violin modes, which significantly increase the number of

modes in the bandwidth of interest. These violin modes also couple with the structural

modes, changing their frequencies. With the 1-g frequencies and modeshapes in hand,

the next step is to generate a state-space model of the test article.

3.4 Physical Input-Output Model

Since modern control techniques operate on state-space models, the 1-g finite element

frequencies and modeshapes must be converted to a modal state-space model of the

form

= Ax + Bu
(3.5)

y = Cx+ Du

where x = [i ]jT, i are the modal displacements, u are the actuator inputs, and y

are the sensor outputs. The A, B, C, and D matrices are formed according to the

following equations

0 1
A =

-2 -2(Q

B=
[sb

(3.6)

C = ca 0

D[ 0o]

where Q2 is a diagonal matrix with the square of the modal frequencies, w?, on the

diagonal. C( is a diagonal matrix with the product of the damping ratio and modal

frequency, ijwi, on the diagonal. 4 is the matrix of modeshapes and b and c describe

the behavior of the actuators and sensors in the finite element coordinate system.



The D matrix is zero because no feedthrough is present in any of the sensors of the

MACE test article. If the sensor suite included accelerometers, a non-zero D term

would be required. Some feedthrough is seen in the active strut to strain gage transfer

functions, whose D matrix can be determined empirically.

Forming the structure's A, or system matrix requires only the modal frequencies

and damping ratios. The damping ratios, (, used in the system matrix are obtained

from experimental data of an earlier version of the hardware. While it was not

expected that these would be the correct damping ratios, it was expected that using

these damping ratios would be closer than simply using 1% for all the modes. In

forming the system matrix, a choice can be made regarding which modes to retain in

the model. Some modes may be unobservable in all the transfer functions, so carrying

around those modes would only increase the order of the model and not provide any

better accuracy. Another case is the construction of a model of only the vertical or

horizontal dynamics of the structure, in which case only the modes with large vertical

or horizontal deformations should be retained, respectively. While the system matrix

relies solely on the frequencies and damping ratios, the input and output matrices, B

and C, rely solely on the modeshapes.

As indicated in Equation 3.6, with the modeshape matrix 4 known, forming the

input and output matrices is simply a matter of determining the input relations, b, and

output relations, c. Since the sensors on MACE are either generalized displacement or

generalized rate sensors, the sensor relations, c, are broken into two parts: Cd for the

displacement sensors and c, for the rate sensors. The MACE test article has a total

of 9 actuators, consisting of 4 gimbals, 3 reaction wheels, and an active strut which

actuates vertical and horizontal bending strain. The test article is instrumented with

a total of 20 sensors, consisting of 8 strain gage pairs, 4 angular rate encoders, 5 rate

gyros, and 3 tachometers. The rest of this section will describe how the actuators

and sensors work and how they are modeled in the B and C matrices.

The finite element method assumes that inertial forces and moments can be ap-

plied at each nodal point. When defining the input (B) matrix for the system, the

subset of inertial forces and moments, which combine to define the actual actuator
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Figure 3.11: Gimbal schematic

behaviors, must be defined. This involves defining a pointing matrix, b, which de-

scribes the inertial forces and moments at every nodal point, f, as a function of the

actual inputs

U1

f = bu = b b2 ... bm U 2  (3.7)

Um

The row dimension of b equals the number of modeled degrees of freedom. The

column dimension corresponds to the number of inputs, 9 in this case. The following

describes how each of the bi's are selected.

Figure 3.11 shows a schematic of the gimbal. Each of the two DC motors in each

gimbal provides a relative moment between the two stages of the gimbal to which

it is attached. In the finite element model, this motor is modeled by superimposing

two nodal points and constraining all the degrees of freedom of one nodal point to be

equal to those of the second nodal point except for the desired rotation. This creates a

mechanism in the finite element model. Since the center of mass of the second gimbal

stage is not collocated with the hinge point of the motor, this causes the gimbals to be

susceptible to gravity, where in 1-g they will behave as pendula. Since the moment

applied by the motor is internal, a moment, M, is placed on one nodal point and

an equal and opposite moment, M, is placed on the other nodal point, making the

net external moment equal to zero. The magnitude of this moment for each mode is

found by differencing the values of the eigenvector for the proper degrees of freedom

as in

M = 92 - 1 (3.8)
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where M is the resulting modal moment. In this

bgimbal =

0

0

-1

0

0

1

0

case, the bgimbal matrix has the form,

(3.9)

where the -1 and 1 entries are in the proper locations for 01 and 02, respectively.

Thus, the product 4fTb forms the forcing matrix for each gimbal and all the retained

modes.

The DC motor in each reaction wheel provides a relative moment between the

inertia wheel and the reaction wheel base by changing the speed of the spinning

inertia wheel. Since the axis of rotation of each of the reaction wheels is not aligned

with the global coordinate system, skew coordinate systems, with one axis aligned

with the motor axis, are used for each reaction wheel. Since the center of mass of the

wheel is located on the motor axis, the reaction wheels are not susceptible to gravity

and therefore have a zero frequency mechanism mode even in 1-g. As for the gimbal,

the moment of each reaction wheel is internal, resulting in the same equation as for

N2

N1

M
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Figure 3.13: Active strut schematic

the gimbal, where in this case the O's correspond to the local skew coordinate system.

M = 02 - 0 (3.10)

Due to the similarity of the reaction wheels and gimbals, the breacton wheel matrix is

formed in a similar manner as bgimbal, except the reaction wheel degrees of freedom

are used.

Since it is desirable to have the net reaction wheel moments aligned with the

global coordinate system, a transformation must be made to take the moment of

each reaction wheel and convert it into its global X, Y, and Z components. This geo-

metric transformation for the MACE reaction wheel assembly is given in the following

equation:

M, O0 0.7071 -0.7071 M,

M, = 0.5773 0.5773 0.5773 M2  (3.11)

Mz -0.8165 0.4083 0.4083 M3

The active strut, shown in Figure 3.13, actuates a bending strain through the

use of piezo-electric materials. In the schematic, the voltage applied to the active

strut causes the upper surface to expand and the bottom surface to contract. This

results in a net bending strain, shown in the first part of Equation 3.12. In the finite

element model, each piezo-electric patch is modeled using two nodal points connected

by a beam element. The bending strain caused by the piezo-electric elements is

equivalent to the bending strain caused by equal and opposite moments, M, applied

at each end of the beam element [20]. Since bending strain is the second derivative

of displacement, or the first derivative of rotation, the modal magnitude of these
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Figure 3.14: Strain gage schematic

moments can be related to the nodal rotations by a central difference approximation,

resulting in the second part of Equation 3.12

M = Al(er Alowe _ (02 - 01) (3.12)

where 2r is equal to 2.96 centimeters and I is equal to 8.89 centimeters. This equation

is then applied to both piezo-electric patches. Since the active strut equation is similar

to the gimbal equation, the resulting bactive stt matrix is also similar to the bgimbal

matrix, except bactive strut is scaled by l and uses the active strut degrees of freedom.

With the description of the active strut, the complete B matrix can be assembled,

with the resulting actuator inputs in units of Newton-meters. To complete the state-

space model of the structure, descriptions of the displacement sensors (i.e., strain

gages), and rate sensors (i.e., angular rate encoders, rate gyros, and tachometers)

need to be found. These sensor descriptions are made easier by the fact that many

of the sensors use the same degrees of freedom as the actuators.

The strain gages (Figure 3.14) are connected in pairs with each gage mounted on

opposite sides of the strut, such that they sense bending strain. In the strain gages,

this strain, given by the first part of Equation 3.13, can be related through a central

difference approximation to give the second part of Equation 3.13.

Al - AlAo 2r
S- A 2r (01 - 02) (3.13)

1 1

The gage length of all the strain gages is 3.2 millimeters. For the strain gages lo-

cated on the passive struts, 2r is 2.88 centimeters and for the active strut, 2r is

2.96 centimeters.
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Figure 3.15: Encoder schematic

The encoder, Figure 3.15, is collocated with the gimbal and senses the relative

angular rate between the two gimbal stages. Since the encoder is collocated with the

gimbal motor, the nodal points used for the motor are again used for the encoder.

The modal magnitude of the encoder output is found by taking the difference between

the angular rates at each nodal point, shown in Equation 3.14.

y = 02 - 81 (3.14)

A problem arises here because the finite element code generates displacement

modeshapes, not rate modeshapes. Two solutions to this problem exist which rely

on the fact that for the modal decomposition, the displacement modeshapes, Dd, and

the rate modeshapes, 4 ,, are related by:

, = j dQ (3.15)

where j is V-I and Q is a diagonal matrix with the modal frequencies along the

diagonal. The first solution is simply to select the proper rotation degree of freedom

for each mode, multiply it by jwi, and place it in the displacement part of the C

matrix, but this leads to a complex C matrix. The second solution relies on the fact

that the state vector already includes the rj degree of freedom which is related to the

rqi degree of freedom by rij = jwiri. This equation also contains the jwi term needed

to form the rate modeshapes. Thus the best solution is to select the proper degrees

of freedom from 4d and place them in the rate part of the C matrix, keeping the C

matrix real.

The rate gyro, Figure 3.16, differs from all the other sensors in that it is an inertial

sensor, rather than a relative sensor, and that it is not collocated with an actuator. As
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Figure 3.17: Tachometer schematic

such, only one nodal point is required to model a rate gyro. The rate gyro measures

the inertial angular rate at the point at which it is attached, shown by the following

equation

y=O (3.16)

The tachometer, Figure 3.17, is collocated with the reaction wheel motor and

measures the relative angular rate between the reaction wheel motor and the inertia

wheel. The tachometer is not a sensor to be used in control design, but still must

be modeled because they are used in reaction wheel speed control servos. Since the

motor and tachometer are collocated, the tachometer uses the same nodal points and

degrees of freedom as the reaction wheels. The modal magnitude of this sensor is

found by taking the difference of the angular rates of the two nodal points for each

mode, shown by the following equation:

y = 02 - 01 (3.17)

Since the reaction wheel inputs have already been aligned with the global coordi-

nate system, the tachometer outputs must also be aligned with the global coordinate

system using the same transformation as for the reaction wheels.

Incorporating the sensors into the C matrix follows a path similar to incorporating

the actuators into the B matrix. Equation 3.13 is used to form the Cd matrix and

59



Equations 3.14, 3.16, and 3.17 are used to form the c, matrix, which are combined

with the modeshapes, b, as in Equation 3.6, to form the complete C matrix.

With a description of the input and output relations complete, any actuator or

sensor dynamics must be considered. These dynamics arise from the physical phe-

nomena that allow the actuators and sensors to convert electrical energy to physical

energy and vice versa. Other effects are caused by interactions with gravity, and

would be included here. The only identified dynamics are a resonance in the rate

gyros. This resonance is near 275 Hz, at the extreme upper end of the the bandwidth

of interest, and consequently is not captured in the finite element model. Although

in some cases actuator and sensor dynamics are important, for the case of the MACE

EM, they can be neglected.

Since the actuator and sensor dynamics do not need to be included in the model,

the generation of a physical input-output state-space model of the structure is com-

plete. This physical model has inputs with units of Newton-meters and outputs with

units of radians, strain, and radians/second. The inputs and outputs of the structure

as seen by the control computer, though, are in volts. Thus, the next step in the

generation of the input-output model used for control design is to find the electronic

gains, which turn the physical model into a volts-volts model, and model any filters

which might be included on any of the input or output channels.

3.5 Electronics

Since the actuator inputs and sensor outputs as seen by the control computer are

not really moments and angles, but are instead in volts, the units of the inputs and

outputs in the finite element model must be converted to volts. To attenuate noise

and other effects, these voltage inputs and outputs may be passed through electronic

filters. The dynamics of these filters are likely to affect the measured input-output

behavior of the structure in the laboratory, and as such, models of these filters must

be included in the finite element model.

Converting the inputs and outputs to volts is simply a matter of finding the



Table 3.11: Actuator gains

Gimbals Reaction Wheels Active Strut

0.2625 Nm/V 0.1031 Nm/V 0.1223 Nm/V

Table 3.12: Sensor gains

Encoders Strain Gages Rate Gyros Tachometers

1 V/(rad/sec) 0.5 mV/Astrain 12.319 V/(rad/sec) 0.0934 V/(rad/sec)
8.213 V/(rad/sec)

electronic gains, which are a combination of the hardware sensitivities and a net

amplifier gain. The hardware sensitivities are the gains of the hardware without

any amplification, such as the motor constants of the gimbals and reaction wheels.

The sensitivities are generally taken from supplier specification and testing sheets.

The signals that come from the sensors or go to the actuators generally must be

amplified to provide the proper voltage and current levels. This amplification comes

from two sources, amplifiers hard wired into the signal path and software selectable

amplification. The net amplification is the product of the hardware amplifier gains

and the software selectable amplifier gains. Tables 3.11 and 3.12 summarize the

actuator and sensor electronic gains for the MACE EM actuators and sensors.

It should be pointed out that the gain listed for the active strut is empirically

determined by matching the magnitude of the finite element model transfer functions

with those obtained from experiment. Note, also, that two gains are listed for the rate

gyros. The first of these gains is the gain determined solely from the known hardware

sensitivity and amplifier gains. When the model transfer functions using this gain

were compared with experimental transfer functions, it was found that the model

transfer functions were larger in magnitude by a factor of 1.5 than the experimental

transfer functions, for which no explanation can be found. The smaller value, which

reflects the extra gain, is used in the subsequent volts-volts model.

With the electronic gains determined, the model inputs and outputs are scaled

by these gains resulting in a volts-volts model. This model captures the essential

structural and input-output behavior of the test article. Other factors, such as signal
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Figure 3.18: Transfer functions of a Bessel filter and 3rd order Pade
approximation to a 2.44 millisecond time delay

conditioning filters and local servo controls, may also affect the input-output behavior

of the test article. These other factors also need to be considered and their effects

included in the model. The signal conditioning filters will be treated in the remainder

of this section and the servo controllers in the next section.

The only signal conditioning filters used on the MACE test article are anti-aliasing

Bessel filters on all analog outputs, and notch filters on the rate gyro channels to

reduce the effect of rate gyro sensor dynamics. Both these filters serve to reduce the

effects of high frequency factors which can cause problems in the frequency response

of the test article.

The Bessel filters used on the MACE test article are of the 8 pole variety, with

the -3 dB point at 200 Hz. Figure 3.18 shows the transfer function of one of these

Bessel filters. Since the Bessel filter is a well-known filter, state-space descriptions

of these filters are easy to obtain. In looking at the Bessel filter transfer function, it

is seen that the magnitude effects are very small up to about 100 Hz, but the phase



effects are quite significant even at low frequency. Since the effects of the Bessel

filter are significant in the bandwidth of interest, a representation of the filter must

be included in the model. Upon closer inspection of the phase transfer function, it

is seen that the phase portion of the transfer function looks like a time delay. This

indicates that two methods of incorporating the Bessel filter into the finite element

model are possible: including the state-space description of the filter and replacing the

filter with a Pade approximation of the equivalent time delay [14], 2.44 milliseconds,

shown in Figure 3.18 for a third order approximation. As can be seen from the

phase transfer function, the Pade approximation provides a very good approximation

to the Bessel filter phase, deviating only at very high frequencies. The magnitude

transfer functions show that the Pade approximation has unity gain for all frequencies,

indicating that capturing the magnitude effect of the Bessel filter is impossible with

the Pade approximation.

Two issues need to be addressed when considering which model of the filter to

incorporate into the finite element model. The first of these is the magnitude effects

of the Bessel filter. If, in the frequency range of interest, the magnitude effects of

the filter become important, then the full state-space description of the Bessel filter

should be used. The second issue is the number of states each model uses to describe

the filter. This issue is important because the larger the final input-output model,

the more unwieldy it becomes for control design, where most techniques generate

controllers of the same order as the model from which they are designed. The full

state-space description of the Bessel filter requires 8 states per filter. With 13 analog

output channels, that means 104 extra states in the model just for the filters. The

third order Pade approximation requires only 3 states per filter, adding just 39 states

to the model. Thus, if the magnitude effects of the Bessel filter are not important,

it is best to model the filter as a time delay. An alternate solution to the magnitude

problem might be to fit a reduced order state-space system to the filter so that the

magnitude effects can be captured with very little penalty in terms of the number of

states added to the model. Regardless of which model of the filter is used, the filter

is cascaded through the model using a series connection between the full model and



Table 3.13: Notch filter DC gains for the listed rate gyros

Payload X Payload Z Bus X Bus Y Bus Z

2.30 2.70 2.59 2.32 2.39

the filter model for each analog output channel.

The second type of signal conditioning filter used on the MACE test article are

notch filters on the rate gyro channels, which are used to attenuate the effects of

the rate gyro resonance. As for the resonances they are designed to counteract,

the dynamics of the notch filters are located near 275 Hz, at the upper end of the

frequency range of interest, and can be neglected. The only complication of the

notch filters is that their DC gain is not unity. These non-unity DC gains, given in

Table 3.13, cause magnitude errors in the rate gyro transfer functions. These gains

are incorporated into the finite element model by multiplying the rate gyro electronic

gain from Table 3.12 by the additional notch filter gain for each channel.

More phase delay was seen in the experimental data for the rate gyros than was

expected in the finite element model. This extra phase delay is likely an effect of the

resonance mentioned above. As for the Bessel filter, this extra delay is also modeled

as a third order Pade approximation. If the Pade approximation to the Bessel filter is

used, this extra delay is added to the filter delay and the net delay is used to compute

the Pade approximation. Otherwise, the third order Pade approximation is added to

the model along with the full state-space approximation of the Bessel filter.

With these signal conditioning filters included in the model, the model now

matches the hardware up to the connection with the control computer. The next

step in the generation of the 1-g finite element input-output model is to capture any

factors inside the control computer which might affect the input-output behavior of

the structure. These factors are any initial local control loops implemented on the

structure.
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Figure 3.19: Reaction wheel speed control servo block diagram

3.6 Servo Controls

This section discusses the implementation of the reaction wheel speed control and

gimbal pointing servos. Although, the speed control servos are implemented in an

analog fashion, they are included here because of their similarity to the gimbal servos.

Since the gimbal servos are implemented using a digital computer, this introduces a

time delay due to the computational and sampling delays of the computer. As for

previous time delays, these computational time delays are incorporated into the model

using a Pade approximation.

The reaction wheel speed control servos are used to overcome the effects of friction

in the bearings of the reaction wheels and avoid runaway in the reaction wheels. A

block diagram of the speed control servos is shown in Figure 3.19. The speed control

uses the tachometer output to compute an input to the reaction wheel motor such that

the motor speed tracks a commanded motor speed. In the hardware, a speed control

loop is implemented on each reaction wheel individually. In the finite element model,

though, the reaction wheel inputs and tachometer outputs have been transformed to

the global coordinate system, and the individual wheel servo loops become equivalent



to loops around each of the coordinate axes. This is satisfactory as long as the

reaction wheel motor constants and tachometer sensitivities are the same for each

reaction wheel. If they are different, the proper method is to close the servo loop

around each wheel individually and then to transform the wheel inputs, now speeds

instead of moments, to the global coordinate system.

In the hardware, the forward path contains a first and a second order filter along

with a gain, G1 , while the backward path contains only a gain, G2 . These first

and second order filters have their dynamics at very high frequency, - 250 Hz, and

consequently only their DC gains are of importance. The DC gains of these filters,

along with the gain G1, combine to give a forward loop gain, K1 , equal to 4.3. The

gain G2 becomes the backward loop gain, Kb, and is equal to 1.0. With these gains

defined, the closed-loop system and input matrices, Acl and Bl, are obtained from

the volts-volts state-space model by:

B = Brectcon wheel Kf

Ac = A - BKb tachometer (3.18)

Breaction wheel cl = B

where the reaction wheel subscript refers to the reaction wheel columns of the B

matrix and the tachometer subscript refers to the tachometer rows of the C matrix.

The main effect of the speed control servo is to move the zero frequency reaction

wheel rate pole to the left in the complex plane. Also note that since the reaction

wheel angle pole is unobservable, it remains at the origin and should be truncated from

the model. Note that the columns of the closed-loop input matrix, Bct, corresponding

to the reaction wheels have been scaled by the forward loop gain, Kf, changing the

magnitude of the reaction wheel input-output relationships.

The gimbal servos are used to provide initial pointing control of the two payloads

relative to the bus, as would be present on a typical spacecraft with pointing payloads.

A side benefit of the gimbal servos is that they are used to overcome friction and

stiction effects in the gimbal motors. The gimbal servos use the encoder outputs to

generate measures of encoder angles and rates, from which a gimbal torque input

is computed. The gimbal servos are implemented on the digital control computer,



which introduces other effects which must be modeled before servo loop closure can

occur in the finite element model. Since the computer requires sensor measurements at

discrete time points, the computer samples the output channels at a certain frequency,
introducing an effective time delay equal to one-half of the sample period. Once the

computer has the measurements, it uses them to compute the actuator commands,
introducing a further time delay equal to an integral number of sample periods. For

most cases the computational delay is equal to a single sample period, making the

net time delay due to the digital computer equal to one and one-half sample periods.

For some unknown reason, the model implementation of the MACE servos that best

matches the experimental data requires a time delay of two and one-half sample

periods, 5 milliseconds (for a 500 Hz sample frequency). This computer time delay

is again approximated using a third order Pade approximation and incorporated into

the model using the following equations:

S= I A BgimbatCtd

Btd (3.19)

C [C Dgimbal td]

D = DgimbalDtd

where Atd, Btd, Ctd, and Dtd are the state-space description of the Pade approxima-

tion. This inclusion of the time delay into the servos is very important, as the model

implementation of the servos will not work properly without the time delay in the

loop.

A block diagram of the gimbal servo loops is shown in Figure 3.20. In the com-

puter, the encoder signals are passed through a digital integrator to provide measures

of the encoder angles in addition to the encoder angular rates. This digital integrator

is nothing more than a counter, and as such, does not introduce any dynamics into the
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Figure 3.20: Gimbal servo block diagram

encoder signal. Consequently, in the finite element model, the encoder is assumed to

provide both angle and angular rate. Obtaining the encoder angle is simply a matter

of taking the rate part of the C matrix for the encoder rate and placing it in the

displacement part of a new row of the C matrix. The digital part of the integrator is

included in the finite element model as the computer time delay. With measurements

of the encoder angles and rates, forming the closed-loop system and input matrices,

A,i and Bci, is simply a matter of applying the angle gain, Ka, and the rate gain, K,,

according to the following equations

A = A - Bgimbal(KaCencoder angle + KrCencoder rate)
(3.20)

Bgimbal cl = BgimbalKa

where Ka is equal to -2.0, K, is equal to -0.1, and the -'d matrices are from the

volts-volts model and include the time delays. These gains cause the servo to have a

bandwidth of approximately 3 Hz. With the closure of the gimbal servo, the input

changes from being a motor torque to a commanded gimbal angle relative to the

bus. The principal effect of the servo is to significantly increase the damping of the

lower frequency modes. Note that the columns of the closed-loop input matrix, Bct,



corresponding to the gimbals have been scaled by the angle gain, Ka, changing the

magnitude of the gimbal input-output relationships.

3.7 Initial 1-g Model

With the closure of the servo loops, the generation of the initial 1-g finite element

volts-volts, input-output model is complete. This model includes 80 modes from the

finite element model. The input-output model includes all actuators and sensors, re-

sulting in a 160 state system (2 states for every mode) with 9 inputs and 20 outputs.

The full state-space descriptions of the Bessel filters are included, adding 104 states

to the model. The gimbal and speed control servos are included in the model, adding

36 additional states for time delays. The total size of this model is 300 states, which

can be significantly reduced by reducing the number of modes retained and not in-

cluding the full models of the Bessel filters.

Table 3.14 shows a comparison of the modal frequencies and damping ratios for

the ground test results and the initial 1-g finite element input-output model. The

experimental modal values were obtained from a measurement model that was fit to

the transfer function data. This table shows that this initial finite element model

is pretty good with many frequency errors less than 10%. But there are still some

large frequency errors in the model, most notably the 3rd and 4th Y-axis bending

modes. As expected, since the damping ratios used in the finite element model were

for a previous set of hardware, the predicted closed-loop damping ratios of the finite

element model are significantly in error for many modes. Fortunately, the damping

ratios are very easy to update and will improve dramatically. The comparison of the

finite element model modal frequencies and damping ratios with the experimental

values gives only part of the story.

What is most important for control design is the quality of the prediction of the

input-output behavior of the structure. To examine this, the finite element predic-

tions of the transfer functions are compared with experimental transfer functions.

Figures 3.21 and 3.22 show predictions of the disturbance to performance transfer



Table 3.14: Comparison of frequencies and damping ratios for ground
experimental data and initial 1-g input-output model

Measurement Finite Element
Model Model Errors

Description Frequency Damping Frequency Damping Frequency Damping
(Hz) ratio (Hz) ratio (%) (%)

Y twist 0.24 0.100 0.23 0.081 -4.2 -19.0
Z tilt 0.44 0.038 0.45 0.037 2.3 -2.6
X rotation 1.39 0.036 1.40 0.034 0.7 -5.6
1st Z bending 1.96 0.022 2.00 0.028 2.0 27.3
1st Y bending 3.38 0.038 3.38 0.039 0.0 2.6
gimbal pend. 4.57 0.220 4.26 0.257 -6.8 16.8
gimbal pend. 4.79 0.179 5.37 0.458 12.1 155.9
gimbal pend. 5.93 0.414 6.17 0.427 4.0 3.1
gimbal pend. 6.75 0.271 6.50 0.279 -3.7 3.0
1st Violin 6.76 0.033 6.84 0.021 1.2 -36.4
1st Violin 7.14 0.024 6.84 0.015 -4.2 -37.5
1st Violin 7.19 0.022 6.85 0.015 -4.7 -31.8
1st Violin 7.21 0.024 6.87 0.013 -4.7 -45.8
2nd Y bending 9.29 0.011 9.57 0.022 3.0 100.0
2nd Z bending 11.34 0.105 11.45 0.379 1.0 261.0
3rd Z bending 12.11 0.103 12.77 0.204 5.5 98.1
2nd Violin 12.71 0.010 13.21 0.012 3.9 20.0
2nd Violin 14.29 0.017 13.77 0.017 -3.6 0.0
2nd Violin 14.47 0.010 13.79 0.010 -4.7 0.0
2nd Violin 16.88 0.014 13.80 0.014 -18.2 0.0
3rd Y bending 17.06 0.009 18.95 0.010 11.1 11.1
3rd Violin 21.54 0.017 20.73 0.012 -3.8 -29.4
3rd Violin 21.71 0.026 20.74 0.017 -4.5 -34.6
4th Y bending 22.63 0.070 27.56 0.011 21.8 -85.7
time delay 29.88 0.458 30.83 0.486 3.2 6.1
time delay 32.24 0.538 32.57 0.482 1.0 -10.4
4th Z bending 39.05 0.021 40.47 0.016 3.6 -23.8
5th Z bending 45.41 0.015 45.75 0.012 0.7 -20.0
5th Y bending 48.55 0.016 51.77 0.022 6.6 37.5
6th Y bending 53.98 0.022 55.88 0.035 3.5 59.1
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Table 3.15: Free-Free test article properties

mass length J Jvy JZZ wf
(kg) (m) (kgm2 ) (kgm 2 ) (kgm 2 ) (Hz)

36.64 1.710 0.664 9.104 9.557 2.10

functions using this initial 1-g model. These transfer functions show that although

the general characteristics of the transfer functions are good (i.e., all the modes seen

in the data also appear in the model), the frequencies and damping ratios of some

of the modes are significantly in error. These transfer functions also show that, in

general, the in-plane predictions, where in-plane refers to the plane of the suspension

cables, of the finite element model are better than the predictions of the out-of-plane

behavior of the test article. This is because the effects of gravity are smaller in the

in-plane behavior than in the out-of plane. In order to reduce the errors in the pre-

dicted transfer functions, the model must be updated, which will be discussed in the

next chapter.

Table 3.15 summarizes some of the most frequently used properties of the free-

free test article. These properties are the mass, length, and rotary inertias, which are

referenced about the center node. The free-free test article fundamental frequency,

wf, is also included.



Chapter 4

Finite Element Model Updating

Since the initial finite element model of a structure is often formed without the benefit

of hardware, many aspects of the finite element model are idealizations of the struc-

ture based on engineering drawings and material handbooks. Once hardware exists,

experimental data can be taken and compared to the finite element predictions. Sel-

dom, if ever, do the initial finite element predictions overlay the experimental data

to a degree that high authority structural control may be performed using the finite

element model as a design model. For this reason, the finite element predictions of

the structure must be improved, in relation to the data, through a process called

updating.

Finite element model updating, detailed in this chapter, comes in several cate-

gories: engineering insight, automated updating, and closed-loop updating. The first

of these is the updating of the model using the engineer's previous modeling experi-

ence. This experience, called engineering insight, leads the engineer to make changes

in the model that are based on the structure, the data, and assumptions made in

the initial model, often making changes that are little more than an educated guess.

This insight often accounts for ~90% of the total improvement in the model in the

updating process.

Once the model has been verified using insight, it becomes time to turn the rest

of the updating over to computer optimization techniques. In this type of updating,

called automated updating, parameters that still remain uncertain are chosen and



optimized to fit the finite element model to the experimental data. Previous work in

the area of automated updating has been centered around modal analysis. In modal

analysis [21], numerous accelerometers are distributed across the structure and the

resulting frequency responses to several different shaker inputs are recorded. Here

two distinct groups emerge in the field of automated updating. In the first of these,

the experimental data is used to determine experimental modal parameters, which

are then used to update the finite element model [22, 23, 24]. Most of the techniques

have used only the modal frequencies in the update, but recent work [24] has been

done in using the modeshapes in the update as well. The second group operates

directly on the frequency response functions [25, 26, 27]. In the majority of both

groups, the sensitivities of the predicted modal parameters to the model parame-

ters are captured through finite difference approximations, which have limitations for

structures with repeated modes and high modal densities. Because of these limita-

tions, recent work [28] has been done in using reanalysis techniques to capture the

model sensitivities.

The automated updating work performed on MACE differs from previous work

primarily due to the complexity of the model that is updated. Although complicated

structures which include gravity and suspension effects have been updated before [29],

the previous work was done using modal analysis, which requires instrumenting the

test article with numerous sensors (essentially one sensor per finite element nodal

point). This method is impractical for MACE, due to the large cost and time re-

quired to implement. Consequently, an alternate approach has been adopted, namely

to use only the sensors and actuators already present on the structure in a system-

identification type approach [4]. Because of this approach, all the input-output as-

pects of the structure must be added to the finite element model, which includes filters

and local servos. Prior to the work on MACE, all updating has been performed on

the bare finite element model without the added burden of the input-output behavior

of the test article.

The parameters used in automated updating are the so-called physical parameters,

such as masses, stiffnesses, lengths, time delays, etc. Another choice would be to



update the modal parameters of the input-output model. The problem with this

latter choice is that there would be no way to predict the O-g behavior because the

suspension and gravity effects would be buried in the modal parameters. Updating the

physical parameters avoids this problem by staying within the framework of the finite

element method. Once the physical parameters have been updated, the suspension

and gravity effects can be removed from the finite element model to arrive at the O-g

predictions.

Because the automated updating step is performed on an input-output model

which will eventually be used for control design, a closed-loop update step is now

possible, which in all previous work was impossible. In this step, the finite element

model is used for control design and the resulting controllers implemented on the test

article. Remaining problem areas in the finite element model will cause instabilities

in the closed-loop experiments. These problem areas are evaluated to see how they

can be improved in the finite element model. Once satisfactory closed-loop results

have been achieved, the model updating process is complete and the result is a finite

element model that is closely correlated with experimental data and has been verified

through closed-loop experimentation.

4.1 Engineering Insight

Engineering insight enters in the modeling and updating process at every phase. It is

most important in the model verification phase (Step A in Figure 2.1). In the initial

modeling process, the engineer must make numerous assumptions about the struc-

tural parameters and the structure's behavior, all of which come from the engineer's

experience and insight. In updating, engineering insight leads to the inspection of

the model input file for typographical and computational errors. Once this stage has

been passed, and the hardware exists, the next stage in the update is to verify the

mass, stiffness, and dimensional properties used in the model by measuring them on

the structure. After these properties have been verified, the remaining errors in the

model are due to erroneous modeling assumptions and mismodeled parameters. Thus,



the next phase of the update process is to verify the modeling assumptions in light of

the modeling errors. Once these modeling errors have been removed, the entire model

can be verified by repeating the model in a different finite element code. If the two

models compare favorably, either code may be used. The remaining errors are due to

mismodeled parameters which can be updated in an automated fashion. Otherwise,

the better of the two models should be used for further updating and modeling.

First, the model input file should be scrutinized carefully for typographical errors

and all parameters that are computed should be checked for computational errors.

These errors may be found in the nodal point locations, element connectivity, material

properties, masses, and coordinate systems. Significant improvements can often be

made through this careful examination.

The structural components are initially modeled according to engineering drawings

and material handbooks. The mass and rotary inertia properties for these components

are found from idealizations of the components, which may be significantly in error.

When there is hardware, there is no excuse not to have the mass properties of the

components, and consequently the mass matrix, essentially correct. This is because

the assumed mass properties can be verified by measuring their actual values. For

lumped mass components, the component can be weighed and the rotary inertia

measured using a rotary pendulum. For distributed mass components, the component

can be weighed and the assumed density adjusted to match the component mass, given

the volume of the component. With these measurements, the mass properties used

in the model have been verified and corrected.

Initially, the stiffness properties of the structure are the least well known of the

model parameters. Some of the component stiffness properties can be verified by

measuring them on the hardware. The most likely components for this verification

are the elastic components. The stiffness properties can be determined from extension,

bending, and torsion tests. Due to the complex geometries of some of the components,

these tests may only give effective stiffness properties for the entire component, not

for specific parts. The boundary conditions of these tests may not be the same

as the assembled structure, affecting the measured stiffness properties. Because of



Figure 4.1: Strut-collar joint

these reasons, the stiffness properties are the most difficult properties to verify by

measurement.

As for the mass and stiffness properties, dimensional properties of the structure

can also be verified by measurement. For example, the dimensions used to compute

the section properties for the elements, such as diameters, can be measured. Another

example is the length of components, initially taken from drawings, which can also be

verified through measurement. Other examples are components that are not found

on engineering drawings. An example of this is the suspension attachment fixtures

of MACE, long threaded rods with a universal joint on one end and connected to

a node at the other end, Figure 3.10. The length of these components would not

be known without measurement. Verification of the dimensional properties of the

structure completes the component measurement phase of engineering insight.

Comparison of the initial model with experimental data might show that certain

frequency regions are significantly in error. These frequency regions, and the mod-

eling assumptions which could cause such errors, can be analyzed to improve the

model. The proper assumptions to analyze come from experience gained in modeling

structures. Some of the modeling assumptions that were examined for MACE were

the effective bending length of the Lexan struts and the type of beam formulation

used for the struts.

In previous versions of the hardware, the detail of the strut-collar joint, Figure 4.1,

was examined to see exactly where the collar clamps down on the strut, determining

the effective bending length of the strut. In the previous versions of the hardware, it
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Figure 4.2: Modeshape showing large shear

was determined that the effective bending length of the strut was 6% longer than the

exposed length of the strut [30]. Since the strut-collar joint did not change substan-

tially in the different versions of the hardware, this 6% extension was carried over to

the EM model. This was implemented by shifting the strut-collar joint nodal points

to make the exposed strut length equal to the effective bending length, conserving the

total test article length. Alternatively, this strut collar combination could be modeled

in detail (3-D) and an equivalent element could be derived from this model.

Another assumption that was examined was the type of beam element formula-

tion used for the struts. Several bending modes, one of which is shown in Figure 4.2,

were found to have frequencies significantly higher than in the experimental data.

An examination of these modeshapes showed a large amount of apparent shear in the

struts. Note the large relative translation of the nodes without large node rotations

(Figure 4.2). Initially, the struts were modeled using the Bernoulli-Euler beam for-

mulation, which does not account for shear effects. With the indication of a large

amount of shear in the struts, the strut beam element formulation was changed to

a Timoshenko formulation which does account for local shear effects. To implement

the Timoshenko formulation in the finite element code, all that was required was

j



the computation of a nondimensional shear factor, K, which when multiplied by the

cross-sectional area gives the effective shear area for the cross-section. These shear

factors were computed using the following equation [16]:

6(1 + v)(1 + m2) 2

-=(4.1)
(7 + 6v) (1 + m2)2 + (20 + 12v) m 2

where v is Poisson's ratio and m is the ratio of the inner and outer diameters for a

circular cross-section. When the Timoshenko beam formulation was used, the problem

modes were significantly reduced in frequency.

These are not the only assumptions that were evaluated for validity, they are

simply the ones that had a significant impact on the model results. Often this type

of evaluation comes about in response to automated updating. For example, the

automated updating routine will update to a certain point, beyond which it will not

budge. It is at these points that evaluation of the modeling assumptions can have a

significant impact on the modeling results. This is shown dramatically in the choice

of finite element codes.

The initial model was generated using the ADINA [19] finite element code. During

the course of automated updating, it was found that a couple of the modes that were

significantly in error would simply not move. The modeling assumptions used in

ADINA were examined again, but no invalid assumptions could be found. It was

decided to verify the ADINA model by constructing an identical model in a different

finite element code, NASTRAN [31]. When the NASTRAN model was constructed,

a dramatic shift in the problem modes was seen, such that the frequencies of the

model were nearly identical to those of the experimental data. It is unclear why

this difference between finite element codes happened, as both codes use the same

nonlinear, stress-stiffening procedure implemented in slightly different manners. Since

the NASTRAN model is a better model than the ADINA model, it was decided to

continue using NASTRAN.

Table 4.1 shows the frequencies of the model after engineering insight type updates

have been implemented and before any automated updating has taken place. Note

that the largest errors are in the suspension or gravity affected modes, such as the



Table 4.1: Comparison of frequencies for ground experimental data
and NASTRAN 1-g input-output model after verifica-
tion.

Measurement Finite Element
Model Model

Description Frequency Frequency Frequency
(Hz) (Hz) errors (%)

Y twist 0.24 0.23 -4.2
Z tilt 0.44 0.45 2.3
X rotation 1.39 1.40 0.7
1st Z bending 1.96 1.98 1.0
1st Y bending 3.38 3.35 -0.9
gimbal pend. 4.57 4.42 -3.3
gimbal pend. 4.79 5.31 17.1
gimbal pend. 5.93 6.06 2.2
gimbal pend. 6.75 6.56 -2.8
1st Violin 6.76 7.11 5.2
1st Violin 7.14 7.11 -0.4
1st Violin 7.19 7.15 -0.6
1st Violin 7.21 7.17 -0.6
2nd Y bending 9.29 9.23 -0.6
2nd Z bending 11.34 11.14 -1.8
3rd Z bending 12.11 12.84 0.6
2nd Violin 12.71 12.94 1.8
2nd Violin 14.29 14.31 0.1
2nd Violin 14.47 14.32 -1.0
2nd Violin 16.88 14.34 -15.0
3rd Y bending 17.06 17.23 1.0
3rd Violin 21.54 21.55 0.0
3rd Violin 21.71 21.55 -0.7
4th Y bending 22.63 21.99 -2.8
time delay 29.88 31.69 6.1
time delay 32.24 33.23 3.1
4th Z bending 39.05 39.26 0.5
5th Z bending 45.41 45.58 0.4
5th Y bending 48.55 48.66 0.2
6th Y bending 53.98 54.09 0.2



violin modes, with the largest error in a structural mode being less than 3%. The

errors in the suspension modes are less significant because they will not be present in

the 0-g model. These good results, before any automated update has been performed,

show that further improvements using automated updating should result in excellent

agreement with the experimental data.

At this point, the mass, dimensional properties, and major modeling assumptions

of the finite element model have been verified. Engineering insight has not been

exhausted though, as engineering insight is also used in the automated update tech-

niques. Engineering insight is used to determine which parameters are uncertain and

which optimization cost is most appropriate. Further engineering insight must be

exercised to determine what size parameter changes are reasonable, as automated

techniques might change parameters to unreasonable values.

4.2 Automated Updating

All automated update techniques consist of two parts: a cost statement and the sen-

sitivity of the cost with respect to the parameters to be updated. The cost statement

generates a scalar quantity which reflects the degree to which the model, formulated

from a particular set of parameters, matches some desired behavior, such as the mea-

sured input-output response of the hardware. The sensitivities describe how each

parameter influences the magnitude of the cost. Therefore, the sensitivities provide

cost gradient information which is used in the update procedure to find the set of

parameters which minimizes the cost, thereby creating the best match of the model

to the desired behavior.

The eligible update parameters include all the parameters that make up the input-

output model such as structural parameters, gains, time delays, etc. Engineering

insight is used to determine which of these parameters are most uncertain and there-

fore should be included in the update procedure. Often, due to computational and

storage constraints, many more possible parameters are identified than can actually

be used. Therefore a method of reducing the number of update parameters, by ex-



amining the influence of the parameters on the cost and their orthogonality to each

other, is desired.

4.2.1 Update Techniques

Automated updating can be performed using several different costs. These costs are

differentiated by what sort of experimental data the finite element model is com-

pared to: measurement model modal parameters [9], time responses, or frequency

responses [32] (Step B in Figure 2.1). Each cost defines a different technique used

in automated updating because the cost dictates what form of finite element model

predictions will be updated: modal parameters; time histories; or frequency responses.

The first of these techniques is based on matching the finite element model modal

parameters to those of a measurement model. Matching the modal parameters is

useful because the frequencies and damping ratios are discrete parameters used to

describe a dynamic model. The cost for modal frequencies is given in the following

equation:

Widentifiedi - Wmodeli (4.2)
Widentifiedi

In this technique, a measurement model is fit to the experimental time or frequency

response and the resulting modal parameters, usually frequencies and damping ratios

but also possibly residues, are compared to the corresponding finite element modal

parameters. The advantage of this technique is that it eliminates the need for compu-

tationally expensive time or frequency response calculations using the finite element

model. One of the drawbacks is that the finite element modal parameters must be

compared with the proper measurement model parameters, which may be difficult to

determine for closely spaced modes that have different directions, such as suspension

violin modes. A second drawback is that there is no guarantee that matching only the

frequencies and damping ratios of a measurement model will cause the finite element

model to better predict time or frequency responses.

The other two update techniques eliminate the need for a measurement model

by operating on the raw time or frequency domain experimental data. The second



technique uses the time response of the system to a known input command. In this

technique, the known command is used as an input to a time simulation using the

finite element model. The resulting simulated time response is compared with the

experimental time response to compute a cost given in the following equation:

J = (data(ti) - Ymodel(ti))' (4.3)
i=1

The advantage of this technique is that it operates directly on the experimental

data, eliminating errors that might be present in a measurement model. Another

advantage is that the problem with closely spaced modes in different directions has

been eliminated, because the correct modes will appear in the proper time trace.

One drawback of the time domain technique is that, in order to capture low frequency

dynamics, long duration time responses may be required which take up large amounts

of memory and require large computational effort to simulate. Another drawback is

that measurement noise will be in the data traces.

The final technique is based on the frequency response of a system. In this tech-

nique the finite element predicted frequency response is compared to the experimental

frequency response. A cost can be computed based simply on the difference in mag-

nitude between the experimental and predicted frequency responses:

n

J = Gdata(jWi) - Gmodel(jWi) j2  (4.4)
i=1

The problem with this cost, though, is that it weights the large magnitude portions of

the frequency response (poles) very heavily and weights the low magnitude portions

(zeros) hardly at all.

Since zeros are important for control design, they should be weighted as heavily

as the poles. This is effected in a second cost based on the complex logarithm:

o E g (4.5)
i=1 Gmodel (jwi)

This second cost has a side benefit, namely that due to the nature of the complex

logarithm, the phase of the transfer functions is also included in the cost.

The advantages of the frequency domain technique are the same as for the time

domain technique. An additional advantage is that the amount of data required in the



frequency domain is much less than the time domain. This happens because to obtain

the frequency domain data, the full length of time domain data from above is broken

down into segments. An FFT is performed on each segment. These segments are then

averaged, resulting in a reduction of the amount of data. A side effect of the averaging

process is that the effects of noise present in the time response have been reduced.

The drawback to this, though, is that the experimental frequency response functions

are distorted by the windowing and averaging. This distortion usually manifests itself

as an apparent increase in the damping of the poles and zeros [33].

Once the cost has been defined, the influence of the update parameters on the cost

must be determined, which can be related to how the update parameters affect the

input-output model. The influence on the cost can be determined by computing the

updated model and then computing the updated cost. In the case of the structural

parameters, they are included in the updated model by using some measure of how

the update parameters affect the modal frequencies and modeshapes. The modal

parameters are recomputed based on the updated parameters and then substituted

into the input-output model. The non-structural parameters, such as damping ratios,

are included directly into the input-output model. Two methods determining the

effects of the structural parameters on the finite element modal parameters have

been found: recomputation using an eigensolution and recomputation using linear

sensitivities.

The first method is to perform a complete modal solution at each iteration, with

the recomputed frequencies and modeshapes being combined with damping ratios to

form the updated model. This method works well for small problems, but is inefficient

when only a few modes are retained in the model and hence, need to be recomputed.

The size of the eigensolution can be reduced by using a reanalysis approach to compute

the updated frequencies and modeshapes [28].

In reanalysis, the full mass and stiffness matrices are updated using first order

mass and stiffness matrix sensitivities:

M = Mo + ZAaAM, (4.6)
i



K = Ko + AaAKt (4.7)

where M and K are the updated mass and stiffness matrices, Mo and Ko are the

nominal mass and stiffness matrices, and AMi and AKi are the mass and stiffness

matrix sensitivities due to parameter ai. The AM, and AKi matrices are obtained

from a finite difference technique by varying the a. parameter in the finite element

model, forming the new mass and stiffness matrices, and differencing them with the

nominal mass and stiffness matrices.

M and K are used to compute estimates of the updated modal frequencies:

(-_ TM o 40+ K4o)4 - 0 (4.8)

4 )0(6 (4.9)

where f2 is the matrix of updated eigenvalues, w2 , 4)0 is the matrix of retained nom-

inal modeshapes, 4 R is the matrix of Ritz vectors, and 4 is the matrix of updated

modeshapes. The resulting eigensolution has been reduced in size to the number

of retained modes. The accuracy of this approximation increases as the number of

retained modes increases.

The second method is to recompute the frequencies and modeshapes using first

order sensitivities computed from finite differences, as in the following equation:

w = W0 + Aa

0= o + 8 Aa (4.10)

where D and q are the updated frequencies and modeshapes, wo and 0o are the fre-

quencies and modeshapes of the initial model, and - and -o are the finite difference

approximations to the frequency and modeshape sensitivities for update parameter

a2 . These sensitivities are computed from the finite element model by changing the

ai parameter in the model and recomputing the modal frequencies and modeshapes.

These are differenced with the nominal frequencies and modeshapes and divided by

Aa. to obtain the sensitivities. One problem with the modeshape sensitivities is that

due to the closely spaced nature of the modes, the ordering of the modes may change,



giving erroneous sensitivities. This can be solved by keeping the parameter changes

in the model small. Another problem is that the perturbed modeshape may have

changed sign, giving a sensitivity approximately equal to twice the original mode-

shape, which is clearly wrong. This is because the sign of the modeshape is arbitrary.

A final problem is found in repeated modes, where any combination of a set of mode-

shapes is also a valid modeshape, making sensitivities for these modes meaningless.

These difficulties are troublesome, but not insurmountable.

Both reanalysis and modal sensitivities have good and bad points. While reanal-

ysis does tend to be more accurate than modal sensitivities, the need for the full

order nominal and sensitivity mass and stiffness matrices requires them to be stored,

taking up large amounts of active memory on the computer which may or may not

be available. Another problem with reanalysis is simply obtaining the mass and stiff-

ness matrices, which are often difficult to obtain from the finite element code. While

the use of modal sensitivities eliminates the need to obtain and store the mass and

stiffness matrices, the modal sensitivities often must be recomputed several times

during the course of the update process before arriving at a final solution. Thus, the

computational expense of recomputing the modal sensitivities must be weighed with

the expense of a modal solution and storage of large matrices in order to determine

which method to use.

In both the reanalysis and modal sensitivity methods, all the time and frequency

responses of the finite element model must be recomputed each time the optimization

makes a change in the parameters. This becomes very expensive when many iterations

are required for convergence. A way around this expense leads to a method for

including the updated parameters directly in the time or frequency domain costs: the

cost sensitivity method. The chosen cost is written in vector form:

J1

w -- (4.11)

where J is the cost evaluated at each time or frequency point. This vector cost can



be expanded to include multiple actuators and sensors by stacking the vectors for

each actuator and sensor pair. With this definition of the cost, the scalar cost can be

written as jwj.

This method uses the perturbed finite element models, used to find AM and

AKi in reanalysis and compute the modal sensitivities. Once these perturbed finite

element models have been run, input-output models using the perturbed frequencies

and modeshapes are generated. The cost vector in Equation 4.11 is evaluated for the

nominal model, jo, and each perturbed model, ji, with the corresponding sensitivity

computed according to:

- M(4.12)
Aai Aat

The resulting vector cost is updated by:

J = jo + Aa 1  (4.13)

Thus, the cost sensitivity method reduces the number of time or frequency re-

sponse computations to be equal to just the number of update parameters plus one for

the nominal model. Although the initial computation of the cost sensitivity method

is much larger than for reanalysis and modal sensitivities, it is computationally more

efficient in the long run. One of the added benefits of this method is that obtain-

ing and storing the mass and stiffness matrices in the reanalysis method have been

eliminated. In addition, all problems with the modeshape sensitivities have been

eliminated. The drawback of this method, though, is that several recomputations of

the cost sensitivities may be necessary during the course of the update.

From examining the costs, it is unclear which cost (measurement model, time

domain, or logarithmic frequency domain) should be used. In order to make this

determination, they should be tested on a sample problem to see which works best.

In deciding which method of including the update parameters in the finite element

model to use, either reanalysis or modal sensitivities can be used for small systems

that do not have a lot of modal overlap. For larger systems that have repeated

modes, the cost sensitivity method should be used to avoid problems with storage

and modeshape sensitivities in the reanalysis or modal sensitivity methods.



4.2.2 Parameter Selection

Some care must be exercised when choosing which parameters to use in the update.

First, some parameters have similar effects on the predictions of the model making the

solution non-unique. Second, it is likely that only a subset of the available parameters

will affect the cost in a significant manner. Third, the computational expense increases

with the number of parameters. Therefore, it is desirable to reduce the number of

update parameters by examining how each of them affects the cost.

The first step is to determine which model parameters have significant uncertainty.

Following that, the cost sensitivities computed above can also be used to reduce the

number of candidate parameters. These sensitivities describe how a change in a par-

ticular parameter changes the cost. Since these sensitivities are vectors, standard

vector manipulation, such as dot products, can be used to indicate the proper pa-

rameters to use in the automated update. The sensitivities can be used to show

the orthogonality of the sensitivity vectors between parameters. This orthogonality

shows if the parameters have similar influences on the cost. If several parameters

have sensitivities in the same direction, the updating procedure will not work very

well as there is not a unique set of parameters that minimizes the cost, and some of

the parameters should be discarded. The alignment of the sensitivity vectors with

the initial cost vector, jo, is used to show the magnitude of the parameter's influence

on the cost. If a parameter's sensitivity is orthogonal to the initial cost or the param-

eter is aligned with the initial cost but has only a small influence on the cost, this

parameter should be discarded.

To see these properties, begin by forming the matrix of sensitivities, A J:

AJ = ... A] (4.14)

To see the orthogonality between the sensitivities of the update parameters, the ma-

trix of sensitivities needs to be normalized so that the sensitivities have the same

length:

[ y/iI5y / / H .i . / ]h (4.15)

Now examine the matrix AJ ATJ. This matrix represents the dot products of each



parameter sensitivity with every other parameter sensitivity. The diagonal of this

matrix will be unity, since the sensitivity vectors have been normalized, and the

magnitude of the off-diagonals will lie between zero and unity. Off-diagonal values

near zero indicate that the sensitivities of the two parameters are nearly orthogonal.

The ideal situation would be that this matrix is the identity matrix, indicating that

the parameters are perfectly orthogonal to each other. If some of the off-diagonal

values are near unity, this indicates that the sensitivities of the two corresponding

parameters are aligned in the same direction. If this turns out to be the case, the

best course of action is to choose the parameter that has the most influence on the

initial cost, to choose the more uncertain parameter, or combine them into a single

update parameter if they are connected.

The second test of the update parameters is to compare them with the initial cost,

jo, to see whether they will influence this cost in the update procedure. To do this,

take the dot product of the initial cost vector with each sensitivity vector:

1lAJo1I = JA J (4.16)

This test includes both orthogonality and parameter strengths. If a parameter is

orthogonal to the initial cost, the value of the dot product will be small and the

parameter should be discarded. If the parameter is aligned with the initial cost

but has a very weak effect on the cost, the value of the dot product will again be

small and the parameter should be discarded. Thus large values of IIAJoll indicate

the parameters that should be retained. However, it may be useful to normalize the

parameter sensitivities by their maximum allowable perturbations in order to properly

scale this test.

Engineering insight provides a list of candidate update parameters based on which

parameters are most suspect in the input-output model. Using the above tests, the

candidate parameters can be ranked based on their ability to influence the cost and

their orthogonality. The best of these parameters should be retained for the auto-

mated update and the rest should be discarded.



Figure 4.3: Collocated mass-spring-damper system

4.3 Automated Updating Sample Problem

Before attempting automated updating on the full MACE model, some thought must

be put into which update technique to use. For this reason, the automated update

techniques from the previous section are implemented on a low order problem in

order to find out which update techniques give the best results. The system shown

in Figure 4.3 is used with uncertain spring stiffnesses. These spring stiffnesses, with

'actual' values of ki=0.75 and k2=1.20, are initially modeled incorrectly with initial

values of kl=k2=1. This system is the lowest order system with all the essential

features of a typical structural transfer function, namely interlaced poles and zeros.

Thus, this system allows the effects of transfer function zeros on the update process

to be examined.

Five cases were considered:
1. Measurement model cost with modal sensitivities
2. Time domain cost with

a. reanalysis, identify C
b. modal sensitivities, identify C

3. Frequency domain cost with
a. reanalysis, identify C
b. modal sensitivities, identify C

In case 1, experimental values for the modal frequencies and damping ratios (C) are

determined by fitting a measurement model to an 'experimental' transfer function.

This 'experimental' transfer function is determined from the input (u) and output (y)

time response of the exact system (Figure 4.3) with additive white noise. The ex-

perimental modal frequencies are used to update the analytical modal frequencies.

Once updated, they are combined with the experimental damping ratios to form the



updated input-output model.

In case 2, a white noise input (u) is put into the model of the exact system and

the resulting output time response (y) is computed. To this time response, a white

measurement noise is added, simulating an experimental time response. To update

the model, the same white noise signal is put into the current analytical model and

the predicted time response is computed. The error between the two time responses

is used to update the model.

In case 3, the experimental transfer function of case 1 is used again. In this

case, though, the raw 'experimental' transfer function is used to update the model by

minimizing the difference from the analytical transfer functions as calculated using

the logarithmic cost in Equation 4.5.

In these cases, two methods are used to include the updated parameters in the

analytical model. The first method is a different form of reanalysis from that given

in Equation 4.8. This form differs from normal reanalysis [28] in that, due to the low

order nature of the problem, the mass and stiffness matrix sensitivities are not used

to update the mass and stiffness matrices. The resulting frequencies and modeshapes

are combined with damping ratios from a measurement model fit to form the updated

model. The second method is to recompute the frequencies and modeshapes using

modal sensitivities approximated using a finite difference method. Typically, the

sensitivities are computed, then an update is performed. Once the update is complete,

the finite differences are recomputed about the updated parameters and the system

is updated again. This process is repeated until the change in updated parameters is

small. Again, the damping ratios are taken from a measurement model. Because of

the small size and low modal overlap of this problem, the sensitivities of the costs to

the update parameters were not considered.

The results of these cases will be discussed from two viewpoints: comparison of

cost statements and comparison of the methods for including the updated parameters.

Table 4.2 lists the actual and updated parameters, including the spring stiffnesses,

kl and k2, resulting modal frequencies, w1 and w2 , identified damping ratios, (1 and

(2, and zero frequency and damping ratio, w, and (,. The table shows that all the



Table 4.2: Converged parameters

Case Actual 1 2a 2b 3a 3b

ki (N/m) 0.7500 0.7487 0.7483 0.7483 0.7535 0.7535

k 2 (N/m) 1.2000 1.2000 1.1998 1.1988 1.1894 1.1894
w, (rad/sec) 0.5637 0.5633 0.5632 0.5632 0.5644 0.5644
w2 (rad/sec) 1.6829 1.6827 1.6825 1.6825 1.6774 1.6774

(1 0.0035 0.0101 0.0034 0.0034 0.0106 0.0106

(2 0.0077 0.0086 0.0077 0.0077 0.0090 0.0090
wz (rad/sec) 1.0954 1.0955 1.0954 1.0954 1.0906 1.0906

Cz 0.0046 0.0080 0.0053 0.0053 0.0084 0.0084
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Figure 4.4: Updated transfer function for case 1

updates worked well. Figures 4.4 through 4.6 show the results for cases 1, 2b, and 3b.

These cases cover each of the costs with updated model parameters included using

modal sensitivities. As expected, the transfer functions all show excellent agreement

with the experimental data.

In comparing the three cost statements, the table shows that all three give very

good results for the springs. The measurement model (1) and time domain cases (2)

tend to underestimate ki, while the frequency domain cases (3) tend to overestimate
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kl. All cases tend to underestimate k 2, with the frequency domain case underestimat-

ing k2 more than the other two cases. These same trends are also seen in the analytical

predictions of the modal frequencies, wl and w2. The big difference between the cases

is seen in the identified damping ratios. The table shows that the time domain cases

all identified (1 and 2 nearly exactly, while the measurement model and frequency

domain cases identify too much damping.

It is interesting to note that in both of these costs, the damping ratios are identified

from experimental transfer functions. Windowing and averaging effects often cause

an apparent increase in the damping of experimental transfer functions [33]. Another

effect that can increase the apparent damping in the poles and zeros is the density

of data points at the poles and zeros. Unless a data point lies exactly at the pole

or zero frequency, the damping will always appear too large and may also cause an

apparent shift in the pole or zero frequency [33]. Since the identified damping of both

the poles and the zero are consistently too high, this indicates that these effects are

indeed being seen in the measurement model and frequency domain cases.

These results indicate that it does not really matter which cost is used, as they

all achieve very good results. The results seem to indicate that the time domain case

is best suited for identifying the damping ratios. The time domain case has some

drawbacks, though, the first of which is that the time cost does not necessarily place

equal emphasis on the poles and zeros, as does the frequency domain case. Another

factor is that most control design techniques are frequency domain techniques, and

as such, closed-loop stability will be predicted from experimental transfer functions,

not experimental time responses. Thus, it is best to match the experimental trans-

fer functions. Since the measurement model is based on the experimental transfer

function, the measurement model and frequency domain cases are recommended for

further consideration.

In order to determine which method works best for including the updated param-

eters into the model, Cases 3a and 3b are considered. The table shows that both of

these methods give excellent results, with reanalysis and modal sensitivities giving

identical results. This indicates that reanalysis and modal sensitivities are equivalent



methods.

One final issue in automated updating that needs to be addressed is whether the

stiffness and damping must be updated together or whether they may be updated

separately. To examine this, cases 3a and 3b are repeated with the stiffnesses and

damping ratios updated separately (Table 4.3). As can be seen in the table, the

resulting values are nearly identical to the previous cases. These results indicate

that updating the stiffness and damping separately is a satisfactory method. This

is good because the most significant errors in the model are frequency errors which

can be handled separately from damping errors, since the latter are normally taken

directly from the measurement model. The only complication to this situation comes

when the system to be updated is actually a closed-loop system and the open-loop

damping ratios are to be identified, as is the case for the MACE model. In this

case, errors in the open-loop damping can cause errors in the closed-loop frequencies

and vice versa. Normally, though, stiffness dominates the closed-loop frequencies

and open-loop damping along with the control dominate the closed-loop damping.

This can be verified by computing the sensitivities of the closed-loop frequencies and

damping ratios to the open-loop damping ratios and stiffnesses, respectively. If these

sensitivities are small, the stiffness and damping can be updated separately. If not,

they need to be updated together.

The implication of this sample problem for MACE is to conduct the update by

either matching a measurement model and/or matching experimental frequency re-

II

Table 4.3: Converged parameters with separate stiff-
ness and damping updating

Case Actual 3a 3b

ki (N/m) 0.7500 0.7535 0.7536
k 2 (N/m) 1.2000 1.1893 1.1893
wi (rad/sec) 0.5637 0.5644 0.5644

w 2 (rad/sec) 1.6829 1.6774 1.6774

(1 0.0035 0.0106 0.0106

(2 0.0077 0.0090 0.0090
wz (rad/sec) 1.0954 1.0906 1.0906
(z 0.0046 0.0084 0.0084



sponses. Since both reanalysis and modal sensitivities give the same answer, either

method is suitable for MACE, subject to storage and computational expense con-

siderations. It is unclear which method is computationally more efficient, as this

depends on the size of the model, the number of retained modes, and the number of

parameters. In fact, neither method may actually be used because the cost sensitiv-

ity method avoids problems that are inherent in both methods. Finally, the stiffness

and damping should be updated separately in order to speed up the stiffness update

by reducing the total number of parameters. The easiest method for updating the

damping ratios is to take them directly from the measurement model. This is most

efficient as it eliminates all the transfer function computations.

4.4 Nonlinearity

A nonlinearity has been discovered in the MACE test article which affects the auto-

mated updating effort. This nonlinearity is centered on the actuators and the gimbal

servos. The actuators are classified according to their ability to excite the test article.

These groups are, in order of decreasing strength: the gimbals, the reaction wheels,

and the active strut.

The nonlinearity was first noticed in the active strut transfer functions, Figure 4.7.

When the experimental transfer functions were compared with the input-output

model containing the gimbal servos (solid line), much more damping was seen in

the modeled transfer functions than was evident in the experimental transfer func-

tions, especially in the 9 to 20 Hz range. Since the damping of these heavily damped

modes was dominated by the gimbal servos, it was thought that the experimental

transfer functions looked like they were unservoed, which was not the case. This

suggested that the mechanism for the nonlinearity was friction in the gimbals. The

active strut, since it is so weak, is incapable of exciting the gimbals enough to over-

come friction, effectively locking the gimbals. Since the gimbals are not moving, the

servos do nothing and the resulting transfer functions appear lightly damped. To

verify this theory, the 1-g finite element results were recomputed with the gimbals



" " -4.. / ''

10-5

10-5
- model, free gimbals
- - model, locked gimbals
S l-g data

10 2

10°  101 10
Frequency (Hz)

Figure 4.7: Active strut transfer function

locked and an input-output model generated. This resulting model is also plotted in

Figure 4.7 as the dashed line. The figure shows that the model with locked gimbals

has the same damping attributes as the data, confirming the theory about the effect

of the nonlinearity.

Since this nonlinearity is due to friction in the gimbals, it should also be evident in

the reaction wheel transfer functions. Since the reaction wheels are capable of much

more structural excitation than the active strut, they should be able to overcome the

gimbal friction. Thus, to investigate the effect of the nonlinearity in the reaction wheel

transfer functions, the reaction wheels were excited at several input levels. One of

these sets of transfer functions is shown in Figure 4.8 for the X-axis reaction wheel to

payload X-axis rate gyro. In these transfer functions, heavily damped behavior is seen

in the 6 to 9 Hz range, indicating that the servos are, indeed, having an effect. The

transfer functions for the three excitation levels show that the lowest excitation level

has the lightest damping behavior and the highest excitation level has the heaviest

damping behavior. Since lower excitation levels are expected to produce less motion in

Vertical Active Strut to Collocated Strain
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Figure 4.8: Reaction wheel transfer functions

the gimbals, allowing friction to have more effect, the nonlinearity should cause these

excitation levels to exhibit lighter damping behavior, which is indeed the case. This

gives further credence to the explanation that the nonlinearity is caused by gimbal

friction. Another effect of the nonlinearity is seen in the lighter damped modes at 1.5

and 3.3 Hz, where a decrease in frequency is seen along with the increase in damping.

This nonlinearity governs which set of experimental data to use in the automated

update. Stated more explicitly, care must be exercised when choosing which actuators

and excitation levels to include in the update. The nonlinearity might cause the data

to indicate several frequencies and damping ratios. This was seen in the measurement

model, where several modes were used to capture the nonlinearity. These conflicting

modes might confuse the update procedure, possibly leading to no update at all. To

lessen the effects of the nonlinearity on the update procedure, the structural responses

to the gimbals should be emphasized. The gimbals should be used because they

actuate directly on the friction and hence the nonlinearity should not be as strong.



4.5 Automated Updating of MACE

With the model assumptions and parameters verified by engineering insight, all fur-

ther open-loop updates to the model are made using automated techniques. Using

the results of the previous sections, the automated updating cost used for the MACE

model is the logarithmic cost:

J = E E 1 log Gdata(jW)) (4.17)

w actuators sensors Gmodeli

With the cost defined, all that is left to complete the setup of the update is to choose

how the update parameters should be included in the model and which parameters to

use in the update. In order to save computational time and since the cost sensitivities

must be computed for parameter selection, the update parameters will be included

into the cost using the cost sensitivity method, Equation 4.13. The eligible update

parameters in the finite element model include all the parameters that make up the

finite element model such as element lengths, masses, and stiffnesses, and parameters

of the input-output model, such as damping and time delays.

Since the length and mass properties of the structure have been verified through

engineering insight, the physical update parameters are restricted to the stiffness

parameters. Some care must be exercised when choosing which parameters to use in

the update, as some parameters have identical effects on the stiffness of an element,

such as the material and section properties. In order to simplify the choice, the

update parameters are further restricted to only the Young's modulus (E) of the

element materials and the stiffnesses of the suspension system, giving a total of 13

possible update parameters: Elexan end, Etexan center, Estainess steel, Et,,minum, Ecable i,

Ecable 2, Ecable 3, Eactive strut end, Eactive strut piezo, Eactive strut center, and the suspension

spring stiffnesses, kdevice i, kdevice 2, and kdevice 3. These parameters are judged using

the criteria presented in Section 4.3.2.

In order to use the tests of Section 4.3.2, the cost sensitivities must be determined.

To find these sensitivities, the cost of Equation 4.17 is rewritten in vector form ac-

cording to Equation 4.11. This vector cost can be plotted to show the frequency

spectrum of the logarithmic cost. Figure 4.9 shows this plot for the primary X-axis
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Figure 4.9: Typical cost spectrum

gimbal to payload X-axis rate gyro transfer function. This plot shows explicitly the

regions of large cost in the frequency range of interest. These regions may not be

very evident in the comparison of the predicted and experimental transfer functions,

Figure 4.10. The large spike in the frequency spectrum is due to the frequency error

in the zero at 10 Hz. The cost sensitivities can then be found from Equation 4.12.

The first test, the orthogonality test, is shown in Figure 4.11. This test shows

that most of the parameters are orthogonal to each other with several exceptions,

parameters 1 and 2, parameters 3 and 4, and parameters 8, 9, and 10. These excep-

tions make sense, as parameters 1 and 2 are the passive strut LexanTM elasticities

at the center and end, which should have similar directions. Parameters 3 and 4 are

the aluminum and stainless steel moduli of elasticity, which are much stiffer than the

rest of the structure and should also have similar directions. Parameters 8, 9, and 10

are the active strut LexanTM end, center, and piezo elasticities and again should have

similar directions. No parameters are discarded here, until their influence of the on

the initial cost has also been determined.
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Figure 4.10: Typical cost spectrum

Figure 4.11: Orthogonality test
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Figure 4.12: Strength test

The second test is the more important test as it relates how the candidate param-

eters affect the initial error. From Figure 4.12, it is clearly seen that the last three

parameters, the suspension stiffnesses, have virtually no effect on the initial error and

should definitely be discarded. It is also seen in the figure that parameters 3 and 4 are

slightly smaller than parameter 10. These two parameters, aluminum and stainless

steel, should also be discarded. Parameter 10 should be retained because it is one

of the active strut parameters, which should all be retained or all discarded. As a

result of this test, the moduli of aluminum and stainless steel, along with the three

suspension device stiffnesses, have been discarded, thereby reducing the number of

parameters from 13 to 8.

In examining the retained parameters, it is seen from an engineering insight stand-

point that they contribute the most to bus flexibility (lexan and active strut stiff-

nesses) and suspension flexibility (cable stiffnesses). Since most of the errors are in

the flexible behavior of the structure, such parameters would be expected to have the

most influence and hence be retained.
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The automated updating uses an iterative nonlinear least squares routine found

in MATLAB [34, 35]. The transfer functions used for the stiffness update are the

principal gimbal to rate gyro transfer functions, meaning the X-axis primary and

secondary gimbal inputs to all of the X- and Y-axis rate gyros and the two Z-axis

gimbal axes to the Z-axis rate gyros. These transfer functions are used because they

are the strongest in magnitude and hence cleanest in noise. The reaction wheel inputs

are not used because of the nonlinearity in the test article. This nonlinearity results

from friction in the gimbals and the weakness of the reaction wheels as actuators,

manifesting itself as a shift upwards in the frequencies and lessening of the damping

(relative to the gimbal transfer functions) in some of the modes. Since the gimbals are

used to do much of the control, the gimbal transfer functions are used in the update.

The frequency range used in the update is from 0.5 Hz to 60 Hz because it is above

the scatter in the data at low frequency, but is low enough to capture some of the

suspension modes. In addition, the bandwidth is below the effects of the roll-off of

the rate gyros, Bessel filters, etc. at higher frequency.

One final concern that must be addressed regarding the update is how much a

parameter is allowed to vary. If some limits are not placed on the parameters, the

optimization will possibly make unrealistic changes, e.g. > ±100% changes, which

could cause negative stiffness values. A simple solution to this problem is to augment

the cost vector with the update parameters:

3 = (4.18)
WAa

where Aa is a vector of the changes in the update parameters and W is a weighting

matrix. This forces the optimization to consider the changes it makes to the model.

This weighting makes a 1% decrease in the cost worth a -y% parameter change. Al-

though this eliminates the need for closely monitoring the updated parameters, care

must still be paid to the choice of weightings.

With the augmentation of the cost vector, all concerns regarding the automated

update have been addressed and the physical parameters can be updated. The phys-

ical parameter update was run once resulting in a 6% decrease in the cost. The



Table 4.4: Updated material properties

Parameter Young's Modulus change
(N/m2)

Elexan end 2.628 x 109  -1.3
Elexan center 2.335 x 10 9  -4.9

Eactive Strut end 2.767 x109  4.0
EActive Strut piezo 3.783 x10 9  -1.0

EActive Strut center 2.662 x 109 4.7
ECable 1 1.982 x10"1 8.9
ECable 2 1.712 x1011 -5.9
ECable 3 1.842 x 10 1.2

updated parameters were substituted back into the finite element model and the sen-

sitivities were recomputed about these new parameters. The physical parameters

were updated once more, resulting in a further 5% decrease in the cost. The updated

physical parameters along with their net changes are summarized in Table 4.4.

In examining these changes, it is seen that the largest change in the bus parameters

is in the Young's modulus of lexancnter. This makes sense as the bus is composed

predominantly of this material and changes in this material should have a large effect

on the cost. The active strutend and the active strut,ente, parameters also underwent

rather large changes. The active strut parameters are important because they control

the stiffness of the active strut. The suspension cable parameters also underwent fairly

large changes. These parameters are important because they control the suspension

violin behavior, which is difficult to accurately capture in the model.

Although the physical parameters have been presented separately, in the actual

update process, they are updated in sequence with time delays and damping ratios.

First the physical parameters are updated, followed by the time delays, and then the

damping ratios. Then the process is repeated. The time delays used in the update

are the time delays used in the servo loop and the time delays associated with the

Bessel filters and the rate gyro dynamics. Due to uncertainties in how the servo loop

is closed on the model, it was deemed appropriate to update the servo time delays.

The sensor time delays are updated just to match the phase characteristics of the

updated transfer functions. Once the gimbal time delays are updated, the servo and
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Table 4.5: Updated actuator time delays in milliseconds

Prim. X Prim. Z Sec. X Sec. Z Reaction Reaction Reaction
Gimbal Gimbal Gimbal Gimbal Wheel X Wheel Y Wheel Z

(msec) (msec) (msec) (msec) (msec) (msec) (msec)

4.56 3.97 4.76 4.11 6.74 6.99 5.64

Table 4.6: Updated rate gyro time delays in milliseconds

Payload X Payload Z Bus X Bus Y Bus Z

6.38 6.12 5.41 5.25 6.43

rate gyro time delays are fixed and the phase of the reaction wheel transfer functions

was matched by updating the reaction wheel time delays. Tables 4.5 and 4.6 give the

updated time delays for the actuators and the rate gyros, respectively. While these

updated time delays do not necessarily represent the correct allocation of the time

delays, they do represent the proper net time delay in each transfer function and are

the best fit of the actual servo loop using only the servo time delays as the update

parameters, other errors such as improper gains notwithstanding. The damping ratios

are updated because they can only be obtained from experimental data.

The automated updating steps described in this section have reduced the logarith-

mic cost from 552.91, for the NASTRAN model resulting from engineering insight, to

399.08, for the updated model. This resulted in a 27.8% reduction. It is likely that

further updating could reduce the cost a few more percent, but the majority of the

updating has already been accomplished with engineering insight and the automated

update.

Two typical updated transfer functions are shown in Figures 4.13 and 4.14, show-

ing the changes in the transfer functions caused by the update. These transfer func-

tions show small changes in the frequencies and damping of some of the poles. The

most notable changes are seen in some of the zeros, where they have changed from

minimum phase to nonminimum phase and vice versa. These changes occur near

60 Hz in Figure 4.13 and near 0.8 and 15 Hz in Figure 4.14. These changes are likely

due to the updating of the servo time delays which have a significant effect on the

damping and zeros.
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Figure 4.13: Typical updated in-plane transfer function
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Figure 4.14: Typical updated out-of-plane transfer function
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The automated updating described in this section completes the open-loop portion

of the model updating procedure. Next, the finite element input-output model must

be closed-loop verified by designing controllers based on the 1-g finite element model

and implementing them on the test article.

4.6 Closed-Loop Updating

Ideally, all closed-loop experimentation using the finite element model should be done

after all automated updating has been completed, as this model represents the best

finite element model achievable in an open-loop sense. On the MACE program,

though, closed-loop experimentation could not wait for the final updated model to

be completed. Instead, control design and implementation was initiated using very

early versions of the finite element model. These versions of the finite element model

were essentially the finite element input-output models presented at the end of the

previous chapter and hence were significantly in error.

Controllers were designed using a variety of robust control techniques and topolo-

gies [36, 37]. The different robust control techniques used in the closed-loop exper-

imentation were the Linear Quadratic Gaussian (LQG), Sensitivity Weighted LQG,

Maximum Entropy (ME), and the Multiple Model techniques. These techniques (ex-

cept LQG) are capable of robustifying the control to uncertainties in the design model

by including weightings on the uncertain modes. Controllers were designed for the

XY- and Z-axis subproblems, as well as the full XYZ-axis problem. These control

designs pointed out problem areas in the model (Step C in Figure 2.1).

Most of the problem areas pointed out by the control designs were errors in the

frequencies and damping ratios of some of the modes. Typically, the controllers

would be designed and implemented on experimental data. One mode would cause

instability and thus require more weighting in the control design. Once this instability

was prevented, the controllers would be redesigned with higher control authority until

another mode (or modes) became unstable. Weightings would be included on those

modes as well. In this manner, a list of the more troublesome modes could be compiled
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as a function of control authority. For the XY-axis controllers, the order of the modes

that caused the problems was one of the 1st violin modes, the 3rd Y-axis bending

mode, the 1st Y-axis bending mode, one of the 2nd violin modes, the 4th Y-axis

bending mode, the 6th Y-axis bending mode, and the 2nd Y-axis bending mode. For

the Z-axis controllers, the order was the 1st Z-axis bending mode, another of the

1st violin modes, another of the 2nd violin modes, the 4th Z-axis bending mode,

and several modes above 50 Hz. The modes that the finite element based controllers

indicated were going unstable were already known to be in error. These errors were

obvious when the predicted transfer functions were compared with the experimental

data. Since these modes were already known to be in error, they were already being

updated in the open-loop update.

Another aspect that the finite element based control designs pointed out was that

the achievable performance of the full XYZ-axis problem was limited mainly by

the model predictions of the so-called cross channels. The cross channels are lower

magnitude transfer functions that come about because the structure's dynamics do

not completely couple into XY- and Z-axis dynamics. The 'cross channel' term

describes the crossing of the output along one axis resulting from an input along the

other axis. The problem with the finite element model was that the model predicted

a different coupling than was seen in the data. These errors were known before the

control designs were attempted, but the extent of their effect on the closed-loop results

was not known.

Using these robust control techniques, performance improvements approaching

20 dB were achieved using controllers designed using a finite element model that was

significantly in error. The performance achieved using the finite element model is

close to that achieved using a measurement model (Step D in Figure 2.1). Since

controllers designed using the finite element and measurement model achieve similar

performances when implemented on the test article, this indicates that the update

process can stop and the 1-g model is in its final form.
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The modal frequencies of the final 1-g model, and their errors when compared with

a measurement model, are presented in Table 4.7. This table shows that the largest

frequency errors occur in modes with damping ratios greater than 10%. Since these

modes are so heavily damped, they tend not to cause serious problems during control

design. The rest of the flexible modes exhibit frequency errors less than 5%, with most

of the structural modes (i.e., non suspension modes) having errors less than 2%. It

is important to note that although the suspension modes will not be present in the

0-g model, it is still necessary to capture these modes accurately in order to capture

the correct suspension coupling with the structural modes.

The damping ratios are also very accurate, with most of the larger errors also

occurring in the heavily damped modes. Since the only source of this much damping

is the gimbal servo loops, these errors bring up the possibility of errors in the modeling

of these servo loops. Comparison of the modal frequencies is only one method used in

evaluating the quality of the model. Another is an examination of the input-output

predictions of the model, the most important aspect for control design.

Figure 4.15 shows the comparison between model and data for the Z-axis sec-

ondary gimbal command (i.e., the disturbance source) to the inertial angular rate of

the Z-axis rate gyro on the primary gimbal (i.e., the performance sensor). The solid

line indicates the 1-g model and the dashed line indicates the data. The figure shows

that the overall shape of the analytical magnitude transfer function is excellent. The

most noticeable error is in the 6-20 Hz range where there appears to be a problem

with the general shape of the transfer function. From experience, this shape is due

mostly to the gimbal servo loops, giving further indication that there might be a

problem with the servo loop closure on the model. Another region with large error

is the 80-200 Hz range. This region shows poor correlation with the data because

it was not included in the automated update. The only other noticeable error is in

the damping ratio of the 45 Hz mode where the model appears to have a damping

ratio larger than that indicated by the data. Note that the phase also shows excel-
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Table 4.7: Comparison of frequencies and damping ratios for ground
experimental data and final 1-g input-output model

Measurement Finite Element
Model Model Errors

Description Frequency Damping Frequency Damping Frequency Damping
(Hz) ratio (Hz) ratio (%) (%)

Y twist 0.24 0.100 0.23 0.100 -4.2 0.0
Z tilt 0.44 0.038 0.45 0.038 2.3 0.0
X rotation 1.39 0.036 1.39 0.035 0.0 -2.8
1st Z bending 1.96 0.022 1.96 0.022 0.0 0.0
1st Y bending 3.38 0.038 3.31 0.036 -2.1 -5.3
gimbal pend. 4.57 0.220 4.39 0.236 -3.9 7.3
gimbal pend. 4.79 0.179 5.27 0.431 10.0 140.8
gimbal pend. 5.93 0.414 6.09 0.409 2.7 -1.2
gimbal pend. 6.75 0.271 6.49 0.255 -3.9 -5.9
1st Violin 6.76 0.033 7.11 0.033 5.2 0.0
1st Violin 7.14 0.024 7.12 0.024 -0.3 0.0
1st Violin 7.19 0.022 7.16 0.021 -0.4 -4.5
1st Violin 7.21 0.024 7.18 0.024 -0.4 0.0
2nd Y bending 9.29 0.011 9.12 0.011 -1.8 0.0
2nd Z bending 11.34 0.105 9.85 0.445 -13.1 323.8
3rd Z bending 12.11 0.103 13.00 0.159 7.3 54.4
2nd Violin 12.71 0.010 12.93 0.010 1.7 0.0
2nd Violin 14.29 0.017 14.34 0.015 0.3 -11.8
2nd Violin 14.47 0.010 14.34 0.009 -0.9 -10.0
3rd Y bending 16.88 0.014 16.89 0.009 0.1 -35.7
3rd Violin 21.54 0.017 21.58 0.017 0.2 0.0
3rd Violin 21.71 0.026 21.58 0.026 -0.6 0.0
4th Y bending 22.63 0.070 21.84 0.032 -3.5 -54.3
time delay 29.88 0.458 32.92 0.566 10.2 23.6
time delay 32.24 0.538 34.17 0.506 6.0 -5.9
4th Z bending 39.05 0.021 38.50 0.021 -1.4 0.0
5th Z bending 45.41 0.015 45.19 0.016 -0.5 6.7
5th Y bending 48.55 0.016 47.83 0.016 -1.5 0.0
6th Y bending 53.98 0.022 53.77 0.022 -0.4 0.0
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Figure 4.15: Typical in-plane transfer function for final 1-g input-
output model

lent agreement with the data. An important point to note is that the finite element

model also captures the zeros extremely well. This is important because improperly

modeled zeros can cause serious problems in high authority control.

Figure 4.16 shows the comparison between model and data for the X-axis sec-

ondary gimbal command to the inertial angular rate of the X-axis rate gyro on the

primary gimbal. Again, excellent agreement is seen between modeled and measured

transfer functions. One of the most noticeable errors is in the 4-30 Hz range where

there again appears to be a problem with the shape of the transfer function, again

possibly attributable to an error in the servo loops. Another large error is seen in

the modes at 17 Hz and 22 Hz where there appear to be problems with the modal

residues. The explanation for these errors is found in the switch to NASTRAN. In

order to get the 1-g NASTRAN model to converge, all the gimbals had to be locked

during the nonlinear static part of the solution. This caused those modeshapes to

not have as much gimbal motion in them as would ordinarily have been present.
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Figure 4.16: Typical out-of-plane transfer function for final 1-g input-
output model

Currently, there is no solution to this problem, but this problem should not occur in

the O-g model because the nonlinear static solution is not needed. Again excellent

agreement is seen in the phase part of the transfer function. Also note that the zeros

are again captured extremely well. (A more complete set of overlays of the final 1-g

model with the experimental data is given in Appendix D.)

To illustrate the improvements that the update process has made in the model, Ta-

ble 4.8 shows a comparison of the frequency errors when compared to a measurement

model for the initial model, the model after engineering insight, and the final model

after automated updating. For most modes, this table shows a steady improvement

in the frequencies. For some modes, engineering insight worsened the error, but auto-

mated updating improved it. For other modes, most notably the 1st Y-axis bending

mode, the error got progressively worse during the course of the update process, but

is still small.

With the completion of the update of the 1-g finite element input model, the next
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step in the modeling approach of the MACE program is to remove the suspension

system and gravity effects to arrive at a prediction of the O-g behavior of the MACE

test article.
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Table 4.8: Comparison of frequency errors for initial, engineering
insight updated, and automated updated models

Measurement Initial Engineering Automated
Description Model Model Insight Updating

(Hz) (%) (%) (%)
Y twist 0.24 -4.2 -4.2 -4.2
Z tilt 0.44 2.3 2.3 2.3
X rotation 1.39 0.7 0.7 0.0
1st Z bending 1.96 2.0 1.0 0.0
1st Y bending 3.38 0.0 -0.9 -2.1
gimbal pend. 4.57 -6.8 -3.3 -3.9
gimbal pend. 4.79 12.1 17.1 10.0
gimbal pend. 5.93 4.0 2.2 2.7
gimbal pend. 6.75 -3.7 -2.8 -3.9
1st Violin 6.76 1.2 5.2 5.2
1st Violin 7.14 -4.2 -0.4 -0.3
1st Violin 7.19 -4.7 -0.6 -0.4
1st Violin 7.21 -4.7 -0.6 -0.4
2nd Y bending 9.29 3.0 -0.6 -1.8
2nd Z bending 11.34 1.0 -1.8 -13.1
3rd Z bending 12.11 5.5 0.6 7.3
2nd Violin 12.71 3.9 1.8 1.7
2nd Violin 14.29 -3.6 0.1 0.3
2nd Violin 14.47 -4.7 -1.0 -0.9
3rd Y bending 17.06 11.1 1.0 0.1
3rd Violin 21.54 -3.8 0.0 0.2
3rd Violin 21.71 -4.5 -0.7 -0.6
4th Y bending 22.63 21.8 -2.8 -3.5
time delay 29.88 3.2 6.1 10.2
time delay 32.24 1.0 3.1 6.0
4th Z bending 39.05 3.6 0.5 -1.4
5th Z bending 45.41 0.7 0.4 -0.5
5th Y bending 48.55 6.6 0.2 -1.5
6th Y bending 53.98 3.5 0.2 -0.4
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Chapter 5

0-g MACE Model Development

Now that the 1-g finite element input-output model has been updated, the last and

most important step is the formation of a model of the 0-g behavior. This step also

represents a leap of faith in the modeling process. It is the faith in the finite element

method to accurately capture the suspension and gravity effects that brings us to this

step.

The modeling process up to this point has been to update, with ground experi-

mental data, a finite element model that captures the suspension and gravity effects

on the test article. The suspension and gravity effects can then be analytically re-

moved from the finite element model to arrive at a prediction of the 0-g behavior.

The removal of the suspension and gravity effects from the finite element model and

the derivation of a nominal 0-g input-output model will be discussed in this chapter.

Since the 0-g model derived in this chapter is to be used for control design, some

measure of how the model will be in error, when compared with flight experimental

data, is needed. Since no experimental data exists before flight, this uncertainty

model must be derived based on ground testing and the modeling process. Since

the uncertainty model must use ground testing and the analytical power of the finite

element method, this uncertainty model must take into account the residual errors

in the 1-g model and any errors likely to occur during the transition from the 1-g

model to the 0-g model. One such method is to modify the 0-g results based on the

1-g errors and place bounds on remaining errors about this modified model. The



derivation of this uncertainty model will also be discussed in this chapter.

5.1 Removal of suspension and gravity effects

Once the final updated 1-g finite element model has been formed, the 0-g input-

output model of the test article can be derived (Figure 2.1) by analytically removing

the suspension and gravity effects from the 1-g finite element model. The result of

their removal is a prediction of the 0-g natural frequencies and modeshapes of the

test article. These frequencies and modeshapes are combined with damping ratios and

post-processed to form a 0-g input-output model by adding models of the actuators

and sensors, hardware gains, electronic filters and time delays, and servo loops, similar

to the 1-g model.

To remove the the suspension system and gravity effects from the finite element

model, the 1-g model containing the final updated physical parameters is used as a

starting point. The suspension system is removed from this model by eliminating the

nodal points, masses, and elements that make up the suspension devices and cables.

In addition, any mass due to connections between the suspension system and the

test article that may have been placed at nodal points of the base structure must be

removed from these locations. For the MACE test article, masses for the connectors

were lumped at the end and center nodes, and consequently must be removed.

With the suspension system removed, the resulting finite element model is now

a model of the free-free structure that has been refined using ground experimental

data. Since the test article in orbit is essentially free-free, there are no initial stresses

in the structure due to gravity loading. Consequently, the nonlinear static procedure

used in the 1-g finite element model is no longer needed. With the elimination of

this procedure, the gravity effects have been removed from the finite element model.

Thus, the 0-g natural frequencies and modeshapes are obtained simply by performing

an eigensolution on the linear mass and stiffness matrices.

When the 0-g finite element solution is performed, the resulting natural modes will

fall into two categories: rigid body modes and flexible modes. Rigid body modes are
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characterized by zero natural frequencies and modeshapes that are rigid translations

and rotations of the multiple bodies that make up the test article. For the MACE test

article, there are 13 rigid body modes: 3 translational modes of the bus; 3 rotational

modes of the bus; 1 rotational mode for each gimbal axis (4 total); and 1 rotational

mode for each reaction wheel (3 total). The flexible modes are modes that have

finite, nonzero frequency and modeshapes which exhibit flexible deformation of the

test article.

The 0-g behavior of the test article is much simpler than the 1-g behavior, which

is seen in the number of modes necessary to capture the dynamics in the same fre-

quency band. In the 1-g model, nearly 70 modes are necessary to capture the test

article behavior in the 0-60 Hz range, while in the 0-g model only 27 modes (which

includes the 13 rigid body modes) are necessary to cover the same frequency range.

A comparison of the unservoed 0-g flexible modes in this frequency range with the

appropriate unservoed 1-g modes, along with the relative frequency change from 1-g

to 0-g is presented in Table 5.1. The 1-g and 0-g modes that show similar bus de-

formations in their modeshapes are paired. This table shows that, except for the

1st Y-axis bending, the 2nd Y-axis bending, and the 4th Z-axis bending modes, all

the modes increase in frequency in the transition from 1-g to 0-g. At first glance, this

may seem unexpected as the suspension system is supposed to stiffen the structural

frequencies. Although this is true, the suspension system also introduces significant

mass into the system as well. It is the combination of the extra mass and stiffness

that determines whether the mode will increase or decrease in frequency during this

transition. For the majority of the structural modes, the mass of the suspension

system couples more strongly with the test article than the stiffness of the suspen-

sion system, causing the modes to increase in frequency. For the 1st and 2nd Y-axis

bending modes, on the other hand, the stiffness of the suspension system couples

more strongly than the mass of the suspension system causing the modes to decrease

in frequency as expected. The 4th Z-axis bending mode illustrates the case when

the coupling of the mass and the stiffness of the suspension system are about equal,

causing the mode to change very little in frequency.
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Table 5.1: Natural frequencies for 0-g and 1-g finite element models

1-g 0-g change
Description (Hz) (Hz) (%)
1st Z bending 2.06 2.10 1.9
1st Y bending 3.60 3.07 -14.7
2nd Y bending 8.77 8.64 -1.5
2nd Z bending 8.59 8.67 0.9
torsion, secondary end 10.23 10.33 1.0
3rd Z bending 10.64 10.68 0.4
torsion, primary end 11.87 12.42 4.6
4th Z bending 14.03 14.03 0.0
3rd Y bending 16.89 16.93 0.2
4th Y bending 22.00 22.11 0.5
5th Z bending 38.05 38.18 0.3
6th Z bending 44.69 44.95 0.6
5th Y bending 47.14 48.16 2.2
6th Y bending 53.03 54.27 2.3

In order to complete the 0-g open-loop modal model, damping ratios for the 0-g

flexible modes need to be determined. Damping is very difficult to model analyt-

ically, and as such, the damping ratios used in the 1-g finite element model have

been determined from experimental data. Since experimental data does not exist to

determine the 0-g damping ratios, these damping ratios must be determined by some

other means. One option is to use the 1-g damping ratios and possibly modify them

to account for changes that might occur in the transition from 1-g to 0-g. The diffi-

culty here is in determining how to modify the 1-g damping ratios for 0-g, as there is

very little experience in doing this for a MACE type of structure.

In the MODE experiment [38], damping was higher in 0-g than in 1-g. It is believed

that this was caused by the joints in the truss structure, which have a deadband. In

0-g, the static shape of the MODE truss places most of these joints in the middle of

these bands. Dynamic motion causes one joint surface to collide with the opposing

surface resulting in impact damping. In 1-g, the gravity sag causes these surfaces to

remain in contact thereby eliminating this damping source.

On the other hand, the MACE suspension system in 1-g provides some electronic

damping in the bounce direction (Y direction). It also provides structural transmis-
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sion paths which allow energy to escape into the suspension mounting structure. One

might surmise that the lack of the suspension system during 0-g tests might cause a

decrease in damping. Because of these conflicting effects, it was decided to simply use

the unmodified 1-g damping ratios in the 0-g model. This is because, although the

directions of the changes are known in the two effects, the magnitudes of these effects

are not well known. Thus, it is better to use known quantities for such an important

parameter as damping, than to make blind modifications.

Once the 0-g natural frequencies, modeshapes, and damping ratios have been

selected, the next step is to form the 0-g input-output model, following the same

process as required for the 1-g model. Since the actuators and sensors are identical

on the ground and in orbit, their behavior and hardware gains are included in the 0-g

model in the same manner as for the 1-g model. It is also assumed that the signal

conditioning filters used on the ground are identical to those used in orbit. If this is

not the case, the differences between the ground and flight filters need to be known to

very high precision so that the effects of these filters can be removed from the update

process. Thus, the next step in forming the input-output model is the inclusion of

these filters into the model.

The last step in the formation of the input-output model is to include the servos

into the model. This is probably the most delicate part of the post-processing step,

as some of the parameters that affect the servo have been updated based on ground

experimental data. Thus, if the servos used on the ground are not the same as the

servos used on orbit, or the hardware used to implement the servos is not the same

from ground to flight, the parameters used in the update should be measured and not

included in the update. If the flight and ground servos are the same and the flight

and ground control computers are the same, the 1-g parameters updated based on

ground data can be used for the 0-g model, as there should not be any gravity effects

on the computational time delays. With the closure of the servo loops, the formation

of the nominal 0-g input-output model is complete.
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5.2 Nominal Predictions

The resulting closed-loop modal frequencies of the 1-g and 0-g models, frequency

changes from 1-g to 0-g, and frequency errors between the 1-g model and the modal

parameters from the 1-g measurement model are given in Table 5.2. From the table,

it is also seen that most of the changes in modal frequency are rather small (< 1%).

The exceptions are the 1st Y-axis bending mode, the gimbal pendular modes, the

2nd and 3rd Z-axis bending modes, and the 5th and 6th Y-axis bending modes.

As indicated in the table, most of the modes that have undergone large changes in

frequency are also the very heavily damped modes that were the most in error in

the final 1-g model, the lightly damped exceptions being the 1st Y-axis bending and

5th and 6th Y-axis bending modes.

The large changes in the heavily damped modes are caused by pendular stiffening

which is absent in 0-g. The gimbal pendular modes are expected to undergo large

changes because they are changed to servoed rigid body articulation modes in 0-g.

The fact that they show up as close in 1-g and in 0-g as they do is attributable to the

gimbal servo controllers, which dominate over gravity effects. The 2nd and 3rd Z-axis

bending modes exhibit large gimbal motions in their modeshapes and, as such, are

heavily influenced by the gimbal servos. Since the pendular stiffening effects of gravity

are not present on orbit, the gimbal motions in these modes would be expected to be

larger, which, in turn, causes the servos to have a larger effect on these modes causing

them to undergo large frequency changes from 1-g to 0-g.

The large changes seen in the lightly damped modes, on the other hand, are caused

by the coupling of the structural modes with the suspension system. In examining

the 1-g modeshape for the 1st Y-axis bending mode, it is seen that this mode couples

very strongly with the suspension system. The suspension cables restrict the range

of the structural motion, causing a stiffening of this mode. On orbit, the suspension

cables are not present to limit the range of motion of this mode, and the stiffening

effect is absent causing the frequency of this mode to drop dramatically. The 5th and

6th Y-axis bending modes, on the other hand, do not couple very strongly with the
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Table 5.2: Modal frequencies for 1-g and 0-g input-output models

1-g 0-g Frequency Frequency

Description (Hz) (Hz) changes (%) errors (%)
Y twist 0.23
Z tilt 0.45
X rotation 1.39
1st Z bending 1.96 1.94 -1.0 0.0
1st Y bending 3.31 2.96 -10.6 -2.1
gimbal pend.* 4.39 4.00 -8.9 -3.9
gimbal pend.* 5.27 5.09 -3.4 10.0
gimbal pend.* 6.09 5.90 -3.1 2.7
gimbal pend.* 6.49 6.24 -3.9 -3.9
1st Violin 7.11
1st Violin 7.12
1st Violin 7.16
1st Violin 7.18
2nd Y bending 9.12 9.14 0.2 -1.8
2nd Z bending* 9.85 10.49 6.5 -13.1
3rd Z bending* 13.00 12.69 -2.4 7.3
2nd Violin 12.93
2nd Violin 14.34
2nd Violin 14.34
3rd Y bending 16.89 16.91 0.1 0.1
3rd Violin 21.58
3rd Violin 21.58
4th Y bending 21.84 21.78 -0.3 -3.5
4th Z bending 38.50 38.65 0.4 -1.4
5th Z bending 45.19 45.56 0.8 -0.5
5th Y bending 47.83 49.91 4.3 -1.5
6th Y bending 53.77 56.02 4.2 -0.4

* indicates C > 10%

stiffness of the suspension cables. The only coupling that these modes have with the

suspension system is through the steel connecting rods at the ends of the test article,

which undergo large rotation in these modes. However, these connecting rods are

not present on the flight version of the test article, so the masses and rotary inertias

decrease, causing the frequencies of the modes to increase. In one mode, one end of

the test article is undergoing the large rotation and in the other mode, the opposite

end of the test article undergoes large rotation. Thus, since the steel connecting rods

at either end of the test article have nearly identical masses and inertias, it would be



expected that the increase in frequency of these modes would also be approximately

the same, which is confirmed by both Table 5.1 and Table 5.2.

As was found with the 1-g model, a comparison of modal frequencies is not enough

to determine model accuracy. The most important aspect of a model used for control

design is the predicted input-output behavior of the model. The same disturbance

to performance transfer functions that have been used to illustrate the 1-g input-

output model comparisons with experimental data will be used here to illustrate the

changes in the input-output behavior that occur from 1-g to O-g. To examine the

changes in the in-plane input-output behavior of the structure, Figure 5.1 shows the

comparison between the 1-g and O-g models for the Z-axis secondary gimbal relative

angle command to the inertial angular rate of the Z-axis rate gyro on the primary

gimbal. In this transfer function, it is seen that above 8 Hz, the general shape of the

transfer function does not change significantly from 1-g to O-g. Below this frequency,

though, the O-g model exhibits some significant differences. The troublesome 7 Hz

suspension mode has disappeared and the 1st Z-axis bending mode has become more

pronounced in the O-g model. The reason that the 1st Z-axis bending mode has

become more pronounced is similar to the reason for the large frequency shift in the

1st Y-axis bending mode. The suspension cables limit the range of motion of the test

article in 1-g. But since the motion of the test article is in the plane of the suspension

system, the amount of coupling with the stiffness of the suspension system is about

equal to the coupling with the mass of the suspension system, the frequency of this

mode undergoes only small changes. Also note in the transfer function that all the

dynamics below the 1st Z-axis bending mode have disappeared in the O-g model,

because all of these dynamics in the 1-g model are caused by the suspension system

which is no longer present.

Figure 5.2 can be examined for the differences in the out-of-plane behavior between

1-g and O-g for the X-axis secondary gimbal relative angle command to the inertial

angular rate of the X-axis rate gyro on the primary gimbal. In this transfer function,

the same general trends are seen. The general shape of the transfer function does

not change significantly above 5 Hz. In this region, though, it is noted that the O-g
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Figure 5.1: Typical in-plane transfer function for nominal O-g model

Secondary Gimbal X-Axis to Payload X-Axis Rate Gyro
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Figure 5.2: Typical out-of-plane transfer function for nominal O-g model
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transfer function is missing the zeros at 7 and 11 Hz that appear in the 1-g transfer

function, which is caused by the absence of the violin modes in the O-g model. In

this region, also note that the 17 and 22 Hz modes have become more pronounced in

the O-g model. This confirms the suspicion that their diminished behavior in the 1-g

model is caused by the changes made to get the nonlinear static procedure to converge

(Chapter 4). The significant drop in the frequency of the 1st Y-axis bending mode

is also clearly seen in this transfer function. Below the 1st Y-axis bending mode and

its preceding zero, no dynamics are seen in the O-g model, again due to the absence

of the suspension system.

5.3 Uncertainties

Generating a nominal model is only half the problem in deriving a model useful for

robust control design. The other half of the problem is determining a model of the

uncertainty that can be used in robust control designs. The uncertainty model is

important because modern control design techniques, depending on the weighting

parameters used in the design, will derive very high authority controllers that try to

invert the model and substitute some desired set of dynamics. This is satisfactory

when there are no differences between the model and the actual structure. This

becomes unsatisfactory when there are errors in the model, because these model errors

will cause instability when the controllers are implemented on the actual structure.

At some level, model errors exist in the models of all real systems. In the case of

the finite element model, these errors may be easily seen. In the case of a measurement

model, the errors may be very difficult to discern. At very high authority, though, even

these minute errors will cause instability to result when the controller is implemented

on the structure. When model errors are known, robust control techniques such as

Sensitivity Weighted LQG, Maximum Entropy, Multiple Model, etc. [37], can take

these errors into account uncertainty and derive controllers that are stable when

implemented on the structure.

Since the model is known to be in error, some measure of this error is necessary.
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This is where the uncertainty model comes into play, because it represents how the

model is in error when compared to experimental data from the test article in its

operating environment. This uncertainty model includes both errors, which have

directions, and bounds, which define symmetric regions of uncertainty around the

nominal values. The most useful form of the uncertainty model for robust control

design is to provide regions of uncertainty for the relevant parameters that make up

the model, namely the modal frequencies and damping ratios. When experimental

data exists, these regions can simply be found by comparing the model predictions

and the experimental data. The difficult part for the MACE program comes about

because it is desired to derive controllers based on the 0-g finite element model before

any experimental data exists. Thus, the 0-g uncertainty model must be derived

without the benefit of on-orbit experimental data. Since ground experimental data

and a method of predicting the 0-g behavior of the test article both exist, the best

method of determining the 0-g uncertainty model is to extrapolate the residual errors

in the 1-g finite element model into bounds on the 0-g modal frequencies, since errors

in frequency cause the most severe problems [37].

Two distinct cases need to be considered in determining the 0-g uncertainty model,

namely the heavily damped modes and the lightly damped modes, where heavily

damped is defined as C > 10%. The residual errors in the heavily damped modes of

the 1-g model are much larger than the residual errors in the lightly damped modes.

This would seem to suggest that the bounds on the heavily damped modes should be

much larger than those for the lightly damped modes, but heavily damped modes have

a built-in robustness due to the fact that large amounts of damping tend to spread

the mode out in frequency and are less likely to lead to instability. It should also be

pointed out that all the modes that caused problems in the closed-loop control results

presented in the previous chapter were lightly damped modes. Thus, since heavily

damped modes do not tend to cause severe problems, the frequency bounds on the

heavily damped modes are not really needed. If, during the course of control design,

it is discovered that these modes are causing problems, the bounds can be set at some

arbitrary value, + 2.5% for example.
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In the case of the lightly damped modes, one uncertainty model can include both

errors and bounds, providing a nonsymmetric uncertainty model. Another uncer-

tainty model can be used for a revised nominal model in which the errors have been

removed by adjusting the O-g open-loop frequencies of the nominal model such that

they differ from the unaltered nominal closed-loop model by the residual 1-g errors.

The bounds are then are determined about this updated nominal model. This results

in symmetric bounds about the nominal value. Changing the open-loop frequencies of

the 1-g model was strictly forbidden, because if they were changed, no method would

have existed to project the changed frequencies into O-g. It was for this reason that

updating of the 1-g input-output model was performed by updating physical param-

eters of the finite element model, which could be projected into O-g. The damping

of this new nominal O-g model can also be adjusted to correct the residual damping

errors present in the 1-g model. Since damping is an external parameter to the finite

element model, adjusting the damping is a reasonable thing to do in order to correct

for the deficiencies of the 1-g model.

With the nominal model having been redefined, the problem still remains to de-

termine the frequency bounds on the lightly damped modes. In determining these

bounds, both the residual 1-g error and possible modeling errors in the transition

from 1-g to O-g need to be considered. The residual 1-g error comes mainly from re-

maining parameter errors. However, it also includes nonlinearities and measurement

noise, which may place additional bounds on the uncertainty. The possible 1-g to O-g

modeling errors result from the update process where there is uncertainty in what

effects were inadvertently attributed to the suspension and vice versa. These sorts

of errors cause the nominal O-g predictions to be uncertain.

Regardless of the rationale used, the bounds that are chosen will always be some-

what arbitrary. In light of this, the bounds that have been chosen for the lightly

damped modes are the larger of 1% and one-half of the residual absolute 1-g errors.

The 1% bound was chosen as a hedge against modeling errors in the finite element

method. For example, certain parameters in the finite element model may have been

changed to incorrect values to account for errors in the 1-g model, and to try to ac-
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Table 5.3: Updated nominal 0-g model and bounds

Nominal Nominal Frequency
Frequency Damping Bounds

Description (Hz) Ratio (%)
1st Z bending 1.94 0.022 i 1.0
1st Y bending 3.02 0.024 ± 1.1
gimbal pend. 4.02 0.224 + 2.5
gimbal pend. 5.09 0.422 ± 2.5
gimbal pend. 5.90 0.417 ± 2.5
gimbal pend. 6.24 0.264 ± 2.5
2nd Y bending 9.30 0.013 ± 1.0
2nd Z bending 10.51 0.503 ± 2.5
3rd Z bending 12.69 0.149 ± 2.5
3rd Y bending 16.89 0.013 ± 1.0
4th Y bending 22.54 0.055 ± 1.8
4th Z bending 39.19 0.022 ± 1.0
5th Z bending 45.79 0.016 ± 1.0
5th Y bending 50.65 0.014 ± 1.0
6th Y bending 56.24 0.017 ± 1.0

count for some possible nonlinearities that might be different in 1-g and 0-g. One-half

of the residual 1-g error was used to account for some of the larger errors in the 1-g

model. Since these bounds are rather arbitrary, they may be revised based on the

predicted control results. The modal frequencies and damping ratios of the updated

nominal model, along with the frequency bounds, are summarized in Table 5.3.

One final aspect that must be considered in how the 0-g model will be in error is

the fact that the structure will be assembled and disassembled several times while in

orbit. Similar assembly/disassembly tests performed on the ground have shown shifts

in the frequencies of some of the modes. Thus, the controllers designed based on the

finite element model must not only be robust to the expected modeling errors, but

also to these shifts in frequency based on assembly and disassembly. These shifts are

usually less than the bounds given in Table 5.3, and as such, no additional uncertainty

will be added to the bounds given in the table. If during the course of ground testing,

shifts larger than the bounds in the table are seen, the bounds should be adjusted to

account for these shifts.

The 0-g model that is used for control design consists of the updated nominal 0-g
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input-output model along with the uncertainty bounds. With the definition of this

O-g model, the modeling process presented in Chapter 2 is now complete. This O-g

model is handed over to the control designer, who will design controllers, based on

this model, that will be implemented on orbit.
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Chapter 6

Conclusions

A modeling approach to obtain models suitable for the design of high authority con-

trol of a structure in O-g has been proposed. This approach combines analytical

techniques, in the form of the finite element method, with ground experiments. Since

the eventual use of the derived model is control design, the ground experiments also

include open- and closed-loop ground testing.

As part of this modeling approach, an input-output model of the behavior of the

suspended MACE test article has been created. This model uses as a basis a finite

element model which combines a model of the free-free structure with models of the

suspension and gravity effects that affect the structure during ground testing. Since

the model must match the behavior of the structure as seen by the control computer,

the model has been augmented with mechanical and electronic models of the actuators

and sensors, as well as noise attenuating filters on the output channels. Since MACE

has initial pointing servo loops closed on the gimbals, which are implemented using

a digital computer, the associated time delays of the computer and servo loops have

been included in the 1-g model as well.

This initial 1-g input-output model was significantly in error when it was compared

with experimental data, and was consequently improved through a process called up-

dating. Coarse improvements were made using the engineer's modeling experience,

called engineering insight, while finer adjustments were made using automated updat-

ing techniques. During the course of the automated updating, a method for judging
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the quality of the selected update parameters was presented. In this method, the

sensitivity of the cost to the update parameters was used to show the orthogonality

between the sensitivities and the magnitude of the influence of the sensitivities on the

initial cost. The check on orthogonality between the sensitivities shows if any of the

sensitivities have similar directions, which would lead to non-unique solutions in the

automated update, possibly invalidating the update. The influence of the sensitivities

on the cost is checked in order to tell which parameters have a large influence on the

cost. This will eliminate parameters that have little effect on the cost and reduce the

size of the update. It was found that the best method for automated updating was

to use a frequency domain technique in which the finite element model was compared

to the raw complex transfer function data in a logarithmic cost. The best method for

incorporating the update parameters into the update process was to use a cost sensi-

tivity method in which the sensitivity of the vectorized cost to the update parameters

is used to compute the new cost. Automated updating using a logarithmic cost and

the cost sensitivity method resulted in a 28% improvement in the MACE model. As

a third step in the update process, the 1-g model was closed-loop verified by design-

ing controllers based on the 1-g finite element input-output model and implementing

them on the suspended test article.

Once the update process was complete, the final 1-g model was used to generate a

model of the 0-g behavior of the test article by analytically removing the suspension

and gravity effects. Because robust control theory requires a measure of the uncer-

tainty present in the model, an uncertainty estimate, which places bounds on the

modal parameters of the nominal model, has been derived. Since no flight experi-

mental data exists, this uncertainty model must be derived from the residual errors

in the 1-g finite element model and the possible modeling errors in the transition

from 1-g to 0-g. This uncertainty model includes errors, which have directions, and

bounds, which define symmetric regions of uncertainty around the nominal values.

The errors in the 0-g model are reduced by updating the 0-g model derived from the

updated 1-g model so that the resulting closed-loop frequencies are shifted by the

residual 1-g frequency errors. Bounds may be determined in the 0-g model by con-
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sidering the effects of parameter errors, nonlinearities, measurement noise, and errors

due to parameter misalignment, which comes about when suspension parameters are

inadvertently updated to account for structural effects and vice versa.

The modeling approach presented in this thesis will be repeated for the Flight

Model of the MACE hardware. Due to the nature of the remaining errors in the

EM MACE model, all of which seem to be concentrated in the modes with large

damping ratio, the likely culprit for these errors seems to be mismodeling of the

gimbal servos. A detailed examination of the implementation of the servos in the

FM will hopefully reduce these remaining errors. Other general MACE modeling

concerns are the boundary conditions of the suspension cables, and the observability

problems of the 17 and 22 Hz modes caused by the convergence of the nonlinear

static routine. Finally, the effects of nonlinearity and assembly/repeatability on the

observed behavior of the structure, and their impact on the model updating, need to

be investigated.

Since 1-g closed-loop results for the full control problem are limited by the pre-

diction of the cross-channels, in the future, these transfer functions will be included

in the update algorithm for the finite element model. Future work on parameter

selection for automated updating is also recommended.

Much work remains to be done in the area of closed-loop updating. The closed-loop

updating presented in this thesis was of an ad hoc nature. Future work on closed-loop

updating should include means of using the results of high authority control in the

update process in a more automated fashion. Also, it is unclear that the proper model

to use in control design is the model of the exact system, perhaps a different model

would give better results. Thus, future work in the issues associated with modeling

for control is recommended.

The usefulness of the proposed modeling approach is driven by how well the 0-g

behavior of the structure is predicted. Once MACE flies, the predictions of the

modeling approach for the FM MACE hardware can be evaluated. Comparison of the

0-g model with the flight experimental data will either validate the modeling approach

or show areas of the approach that need to be revised, the most likely of which is the
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modeling of the suspension and gravity effects. The eventual goal of the modeling

approach is to be able to derive flight controllers that meet the specifications based

on the finite element model and that do not need to be redesigned once in orbit. This

would eliminate the need to do expensive and time consuming on-orbit identification

and controller redesign.
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Appendix A

Modeling For Control

Since modern control design relies on an accurate model of the system, this model

must be derived by either analytical or measurement approaches. These models,

no matter how accurate, will have errors. These modeling errors will be of two

varieties, namely mismodeled and unmodeled dynamics. Mismodeled dynamics arise

when dynamics present in the structure are captured incorrectly in the model. This

mismodeling error results in shifts in the frequencies of poles and zeros, as well as

shifts in the modal residues. Unmodeled dynamics, on the other hand, result when

dynamics appear in the structure, but are not captured in the model, possibly because

they are too low or too high in frequency to appear in the experimental data. Often,

these modeling errors result in a reduction of achieved performance in the closed-loop

system, or in the extreme case, instability. The Linear Quadratic Gaussian (LQG)

[39] control technique will be used to investigate the sensitivity of the closed-loop

system to mismodeled dynamics, in the form of parameter errors, and unmodeled

dynamics.

A.1 Sensitivity to Mismodeled Dynamics

In this section, the LQG cost is used to examine the sensitivity of LQG to parameter

errors. The sensitivity is investigated by designing a compensator using a design

model containing the uncertain parameters, implementing it on an evaluation model
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Figure A.1: Mass-Spring System

containing the actual parameters, and computing the closed-loop cost. The system

used in this investigation is shown in Figure A.1. This system has known masses

ml=m2=1 and dampers c1=c 2=.01, but has uncertain stiffnesses kl and k2 and actual

stiffnesses k 1=.75, and k2=1.2. The system has a force input on the first mass and

a displacement output on the second mass. The model for this system is put into

state-space form:

S= A(k)z + B(k)(w + u)

y = C(k)x + v (A.1)

J= (xTQx + UTRu)dt (A.2)

where A(k), B(k), and C(k) are functions of the uncertain parameters and w and

v are Gaussian white noise processes with intensities of 1 and 0, respectively. The

compensator was designed to minimize the cost in Equation A.2 with state weighting

Q = C(k)TC(k) control weighting R = p. In order to calculate the closed-loop cost as

a function of design model stiffnesses, compensators were designed and the closed-loop

costs computed for design models in a grid of uncertain stiffnesses kl and k2. Three

levels of control authority (p) were examined. These correspond to cases when the

bandwidth of the compensator is below the system dynamics (low), in the middle of

the system dynamics (moderate), and above the system dynamics (high). The closed-

loop costs were normalized by the cost associated with the controller designed using

the evaluation model. The normalized costs for the three levels of control authority

are shown in contour plots in Figures A.2 through A.4, where the X- and Y-axes

represent changes in k2 and kl away from the nominal stiffness values of 1.
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Normalized Cost for Low Control Authority

-0.5 0 0.5 1
A k2

Figure A.2: Sensitivity of LQG to Parameter Errors for Low Authority

A.1.1 Low Authority

For the low authority case, in which the control has rolled off at a frequency below the

system dynamics, the contour is relatively flat over most of the considered region. The

lower left portion of the contour is a region of instability where the spring stiffnesses

have been reduced to the point that the modeled system has dynamics at a low enough

frequency that the control unstably interacts with the evaluation system and the low

bandwidth assumption has been violated. The region in which the closed-loop cost

is within 10% of the minimal cost (boundary marked 1.1) is rather large indicating

that the LQG controller is insensitive to the model, so long as the dynamics are

above some threshold frequency dependent on the level of control authority and the

evaluation model.

139



Normalized Cost for Moderate Control Authority

-0.5 0 0.5 1
A k2

Figure A.3: Sensitivity of LQG to Parameter Errors for Moderate Authority

A.1.2 Moderate Authority

For the moderate control authority case, in which the control is rolling off in the

middle of the system dynamics, the contour is bowl-shaped with a relatively small

region of closed-loop stability. This contour plot indicates that in order to get tolerable

performance (i.e.,< 110% of optimal performance) the region of allowable stiffnesses

is rather small, ranging from 1.0 to 1.4 for k 2 , indicating that LQG is not tolerant of

mismodeling dynamics in the vicinity of the bandwidth. This region also indicates

that getting k2 correct is more important than getting kl correct. It is important to

note that k 2 is the dominant parameter for the higher frequency mode of the system,

indicating that it is important to accurately capture the modes above the bandwidth

that could poke above 1 and result in instability. The case of dynamics within the

bandwidth of the compensator is typical of controlled structures.
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A.1.3 High Authority

For the high authority case, in which the control rolls off beyond all the system

dynamics, the contour is valley-shaped. This again indicates that it is more important

to model k2 correctly. It is important to note that k2 is between the actuator and

sensor, which implies that it is most important to model the stiffness between the

actuator and sensor correctly. At a closer contour interval, hints of a second, local,

minimum are seen, which is indeed found when the search region on ki is extended

to cover values from 2 to 3. This second minimum, which has a closed-loop cost

60% higher than the global minimum, results from the combination of stiffnesses

that combine to give the same frequencies but different mode shapes. This second

minimum is also found in the same place for the other control authorities. This second

minimum indicates that although it is very important to correctly model the systems

modal frequencies, it is also important to model the system mode shapes correctly.

This conclusion would be even more apparent in a system with zeros, because the

zero locations are not only influenced by the modal spacing, but also by the modal

residues, which are due entirely to the mode shapes. The relevance of this control

authority to controlled structures is almost nil, as it is impossible to be above all the

dynamics of an infinite order system. This aspect of modeling an infinite order plant

with a finite order model will be treated in the next section.

A.2 Sensitivity to Unmodeled Dynamics

Since structures are infinite order systems, all structural models are by definition

reduced order models. For this reason, it is desirable to examine the implications of

this reduced order modeling. To do this, the cantilever beam shown in Figure A.5 was

examined. This is an aluminum beam having a rectangular cross-section with a one

inch width and 1/8 inch thickness resulting in a fundamental frequency of 27.8 Hz.

This model has been truncated to 5 modes to make it more manageable. The damping

has been assumed to be 1% in all modes. The input is a tip force and the output is

a tip displacement. A compensator was designed on the full order model such that
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Normalized Cost for High Control Authority
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Figure A.4: Sensitivity of LQG to Parameter Errors for High Authority

it had crossover of the dereverberated loop transfer function at approximately the

third mode. This is similar to what would happen in a typical controlled structure

application. Then this model is reduced to 4 modes, or 8 states, using a balanced

reduction [40], which is typically what is done by control designers when designing

compensators based on reduced order models. Then, this reduced order model is used

to design an LQG compensator using the same weighting as above. This reduced order

compensator is implemented on the full order model and the resulting closed-loop cost

is computed. The closed-loop LQG cost is used in an optimization routine with the

constraint that the closed-loop system be stable to update the pole frequencies and

damping ratios, and the B and C matrices in Equation A.1. This optimized model is

then examined to determine which dynamics in a reduced order model give the best

LQG performance.

The closed-loop costs for the balanced and updated models are shown in Table A.1,

along with the closed-loop cost for the full-order model, to show the performance loss

associated with reduced order modeling. Figure A.6 shows the open-loop transfer
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EI = 11.31 lb-ft2

pA = 0.147 lb-s2 /ft2  Y

u

1 ft

Figure A.5: Cantilever Beam

Table A.1: Closed-Loop Costs

Jfull-order Jbalanced Jupdated

7.58x10-6 8.53x10-6 8.27x10-6

functions for the full-order model and balanced and updated models. This plot shows

that the updated model has the final two lightly damped complex zeros damped

slightly more than the initial guess. In addition, the final pole in the updated model is

slightly more damped than in the balanced model. The pole frequencies do not change

noticeably between the balanced and updated models, but note that the frequency of

the final zero has decreased slightly. The most surprising change is the addition of a

real nonminimum phase zero about a decade above the final pole, so that the open-

loop transfer function rolls off with a slope of -1 rather than -2. To examine the reason

for this nonminimum phase zero, look at the loop transfer function G(jw)K(jw),

where G(jw) is the open-loop transfer function and K(jw) is the compensator transfer

function, shown in Figure A.7. Notice that the extra damping on the poles and zeros

has pushed the magnitude of the loop transfer function down in those locations,

pushing the magnitude away from 1 and increasing the gain margin there. But, there

is still no clear reason for the additional open-loop nonminimum phase zero.

Now examine the two compensators. Figure A.8 shows the compensators designed

using the balanced and updated models. It can be seen that the two compensators

look very similar, with only the shifts in damping resulting from the increase in

damping on the open-loop poles and zeros as discussed above. The compensator

based on the updated model does nothing different in the region of the additional

nonminimum phase zero than does the compensator based on the balanced model.
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Open Loop Transfer Function--8 states
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Figure A.6: Open-Loop Transfer Functions

This suggests that the high frequency real nonminimum phase zero is a by-product

of the optimization process and probably results from allowing each entry in the B

and C matrices to be free, giving the optimization the freedom to add an extra zero.

The implications of this reduced order model updating are to capture the pole

frequencies nearly right, but to model the damping as higher than is actually present.

The additional real nonminimum phase zero suggests that it is always best to have

exactly one more pole than zero, even if this results in an extra zero in the right

half plane. This would manifest itself in modeling the system with only resonant

poles and zeros and adding a high frequency real zero about a decade above the last

dynamics of interest. More investigation is needed to determine where the extra zero

should be placed. Also note that the results from the previous section indicate that

these conclusions are dependent on the level of control authority used. It is expected

that the lower the control authority, the lower in frequency these results become
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Loop Transfer Function--8 states
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applicable. Investigation of the influence of the level of control authority is needed to

verify this assertion. Since the level of control authority needed is seldom precisely

known beforehand, the best course of action is to try to correlate the model to the

experimental data as exactly as possible and once the control authority is known,

iterate between control design and model updating.

Once the level of control authority is known, this procedure could be used to

update the models of real systems. This update would result in a model that is

optimized for a given set of LQG control weightings. The drawbacks to this would be

a different model for each control weighting and control design algorithm. Another

drawback is the need to have an exact model upon which the designed compensator

can be implemented, which might be circumvented by obtaining the closed-loop cost

and stability from the implementation of the compensator on experimental data.

This update technique could be enhanced by reducing the number of optimization
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Compensator--8 states
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Figure A.8: Compensator Transfer Functions

parameters to only physical parameters and damping.
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Appendix B

NASTRAN Input Deck

$ Need DATABASE solutions to obtain xdb file and SOL >100 must be used.

DBSETDEL USROBJ,USRSOU

ASSIGN DBC='runup.xdb'

SOL 106

TIME 2000

DIAG 8

$ Use custom DMAP for solution 106

INCLUDE '/home/roger/Mace/Model/Nastran/sol106.dmap'

CEND

$
TITLE = MACE Model

SUBTITLE = Gravity preloaded modes

PARAM,NMLOOP,24

PARAM,NSUBCASE,2
METHOD=1

SUBCASE 1

SPC = 51

MPC = 5

LOAD = 100

NLPARM = 10

DISP=ALL

$ SELECT MODAL STIFFNESS MATRIX

$ SUBCASE WITH MODAL B.C.'S

SUBCASE 2

LABEL = Free offload springs for dynamics
PARAM,EIGEN,I $ JUMP OUT OF STATIC LOOP AND PERFORM EIGEN-ANALYSIS
SPC=53

MPC = 6

NLPARM=1 $ DUMMY NLPARM CARD (NOT USED)
DISP=ALL

147



BEGIN BULK

PARAM,POST,O $ TURNS ON DBC

PARAM,DBCCONV,XL $ INSTRUCTS DBC TO GENERATE MSC/XL STYLE DATABASE

$*** SOLUTION CONTROL

$ GENERATE MASS PROPERTY INFO

PARAM GRDPNT 16

$ AUTOMATIC CONSTRAINTS
PARAM AUTOSPC NO

$ PRINT OUT INTERNAL & EXTERNAL DOF MAP (O=ROW LIST, -1=NONE)

PARAM USETPRT -1

$ EXTRACT VIBRATION MODES

EIGRL 1 -1.0 250. 200 3

$ Nonlinear solution parameters

NLPARM 1 1

NLPARM 10 20 ITER 1 25 W
1.5e-4

PARAM LGDISP 1

$ Static loading

GRAV 9999 0 9.807 0.0 -1.0 0.0

LOAD 100 1.0 1.0 9999

$ Skew coordinate systems aligned with axes of torque wheels

CORD2R 1 0 0.0 0.0 0.0 0.0 0.57729 0.81654

0.0 1.0 0.0

CORD2R 2 0 0.0 0.0 0.0 0.70715 0.57729-0.40827

0.0 1.0 0.0

CORD2R 3 0 0.0 0.0 0.0-0.70715 0.57729-0.40827

0.0 1.0 0.0

$ 3456781234567812345678123456781234567812345678123456781234567812345678

GRID 1 0 0.0 0.0 0.0 0 0 0

GRID 2 0 0.03175 0.0 0.0 0 0 0

GRID 3 0 0.06350 0.0 0.0 0 0 0

GRID 4 0 0.10542 0.0 0.0 0 0 0

GRID 5 0 0.23438 0.0 0.0 0 0 0

GRID 6 0 0.23755 0.0 0.0 0 0 0

GRID 7 0 0.36968 0.0 0.0 0 0 0

GRID 8 0 0.41161 0.0 0.0 0 0 0

GRID 9 0 0.44336 0.0 0.0 0 0 0

GRID 10 0 0.47507 0.0 0.0 0 0 0

GRID 11 0 0.51703 0.0 0.0 0 0 0

GRID 12 0 0.64599 0.0 0.0 0 0 0

GRID 13 0 0.64916 0.0 0.0 0 0 0

GRID 14 0 0.78129 0.0 0.0 0 0 0

GRID 15 0 0.82321 0.0 0.0 0 0 0

GRID 16 0 0.85496 0.0 0.0 0 0 0

GRID 17 0 0.88671 0.0 0.0 0 0 0

GRID 18 0 0.92864 0.0 0.0 0 0 0

GRID 19 0 1.05759 0.0 0.0 0 0 0

GRID 20 0 1.06077 0.0 0.0 0 0 0

GRID 21 0 1.19290 0.0 0.0 0 0 0

GRID 22 0 1.23482 0.0 0.0 0 0 0
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23 0 1.26657
24 0 1.29832

25 0 1.34025

26 0 1.47237

27 0 1.47555

28 0 1.60450

29 0 1.64643
30 0 1.67818

31 0 1.70993

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

GRID
GRID

GRID

GRID

GRID

GRID

GRID
GRID

GRID

$GRID
GRID

GRID

GRID

$GRID
GRID

$GRID
GRID

GRID

GRID

GRID

GRID

GRID
GRID

GRID

$GRID
GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

$GRID
GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID

GRID
GRID

$GRID
GRID
$
$
GRID
GRID
GRID

GRID

GRID
GRID

Bus Rate Gyro

35 0 0.85496-0.07525

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
0.0
0.0

0.0 0 0 0

Primary Gimbal points
36 0 0.02894-0.10432-0.00116

37 0 0.13683-0.11163 0.0

38 0 0.13683-0.11163 0.0

39 0 0.09836-0.10999-0.00437

40 0 0.13683-0.11163 0.0

41 0 0.13683-0.11163 0.0
42 0 0.13768-0.14576-0.00005

43 0 0.13683-0.29483

Secondary Gimbal points
44 0 1.68099-0.10432

45 0 1.57310-0.11163

46 0 1.57310-0.11163

47 0 1.61156-0.10999

48 0 1.57310-0.11163

49 0 1.57310-0.11163

50 0 1.57226-0.14576
51 0 1.57310-0.27673

Reaction Wheel As

52

53

54

55
56

57

58
59

60

61
Reference Node

62

Suspension Cables

Cable 1

sembly points

0 0.85496 0.09454

0 0.85496 0.11242

0 0.85496 0.11242

0 0.84226 0.11255

0.0

0.00116

0.0

0.0

0.00437

0.0

0.0

0.00005

0.0

0.0

0.10629

0.10629

0.10647

0 0.94701 0.11242-0.05314

0 0.94701 0.11242-0.05314

0 0.94082 0.11255-0.06423

0 0.76292 0.11242-0.05314

0 0.76292 0.11242-0.05314
0 0.76911 0.11255-0.06423

0 1.0 1.0 0.0

63 0 0.03175 4.91580

64 0 0.03175 4.32379

65 0 0.03175 3.73179

66 0 0.03175 3.13978

67 0 0.03175 2.54778

68 0 0.03175 1.95577

0 0 0

0.0

0.0

0.0
0.0

0.0

0.0
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Suspension Attach Points (bottom set)

32 0 0.03175 0.17975
33 0 0.85496 0.17975

34 0 1.67818 0.17975



0 0.03175 1.36376

0 0.03175 0.77176

Cable 2

GRID
GRID

$GRID
GRID

GRID

GRID

GRID

GRID

GRID

GRID
GRID

$GRID
GRID
GRID

GRID

GRID

GRID
GRID
GRID

GRID

$GRID
GRID
GRID
GRID

$GRID
GRID

GRID

GRID

$GRID
GRID

GRID
GRID
GRID
GRID

GRID

GRID

GRID
GRID
GRID

GRID
GRID
GRID

GRID
GRID
GRID
GRID

GRID
GRID

GRID

0.85496

0.85496

0.85496

0.85496

0.85496

0.85496

0.85496

0.85496

1.67818

1.67818

1.67818

1.67818

1.67818

1.67818

1.67818

1.67818

Ceiling Pneumatic
87

88

89

Suspension Attach

4.91580

4.32379

3.73179
3.13978

2.54778

1.95577

1.36376

0.77176

4.91580

4.32379

3.73179

3.13978

2.54778

1.95577
1.36376

0.77176

"Spring" Attach Points

0 0.03175 9.49180

0 0.85496 9.49180

0 1.67818 9.49180

Points (top set)

90 0 0.03175 0.17975

91 0 0.85496 0.17975

92 0 1.67818 0.17975

Additional strut
93

94

95

96
97

98

99

100

101
102

103

104

105

106

107

108

109

110
111

112

nodes

0 0.12855

0 0.18305

0 0.29206

0 0.34656

0 0.53564

0 0.54756

0 0.59201

0 0.63646

0 0.66186

0 0.70631

0 0.75076

0 0.76269

0 0.95176

0 1.00627

0 1.11527

0 1.16977

0 1.36337

0 1.41787

0 1.52688

0 1.58138

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0

0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

$ 3456781234567812345678123456781234567812345678123456781234567812345678

$ Elements with Nodal Mass Descriptions

$ Nodal Mass Representation of Collar Assemblies

CONM2 1 3 0.17033 0.0 0.0 0.0
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4.21E-5 4.60E-5

CONM2 2 4 0.17033

4.21E-5 4.60E-5

CONM2 3 7 0.17033

4.21E-5 4.60E-5
CONM2 4 8 0.17033

4.21E-5 4.60E-5
CONM2 5 10 0.17033

4.21E-5 4.60E-5
CONM2 6 11 0.17033

4.21E-5 4.60E-5
CONM2 7 14 0.17033

4.21E-5 4.60E-5

CONM2 8 15 0.17033

4.21E-5 4.60E-5
CONM2 9 17 0.17033

4.21E-5 4.60E-5

CONM2 10 18 0.17033
4.21E-5 4.60E-5

CONM2 11 21 0.17033

4.21E-5 4.60E-5

CONM2 12 22 0.17033
4.21E-5 4.60E-5

CONM2 13 24 0.17033
4.21E-5 4.60E-5

CONM2 14 25 0.17033

4.21E-5 4.60E-5
CONM2 15 28 0.17033

4.21E-5 4.60E-5

CONM2 16 29 0.17033

4.21E-5 4.60E-5

$ Nodal Mass Represenation of Nodes

CONM2 17 2 0.82997

9.90E-4 1.22E-3

CONM2 18 9 0.76916

9.67E-4 1.12E-3

CONM2 19 16 0.73279

9.45E-4 7.73E-4

CONM2 20 23 0.71672

6.68E-4 8.20E-4

CONM2 21 30 0.82977

9.90E-4 1.22E-3

$ Suspension Attach Points
CONM2 22 32 0.07117

1.31E-4 1.43E-6

CONM2 23 33 0.07117

1.31E-4 1.43E-6

CONM2 24 34 0.07117
1.31E-4 1.43E-6

$ Bus Rate Gyro
CONM2 25 35 1.32426

1.98E-3 1.86E-3

4.60E-5
0.0 0.0

4.60E-5

0.0 0.0

4.60E-5

0.0 0.0

4.60E-5
0.0 0.0

4.60E-5
0.0 0.0

4.60E-5
0.0 0.0

4.60E-5
0.0 0.0

4.60E-5
0.0 0.0

4.60E-5

0.0 0.0
4.60E-5

0.0 0.0

4.60E-5
0.0 0.0

4.60E-5
0.0 0.0

4.60E-5
0.0 0.0

4.60E-5

0.0 0.0

4.60E-5

0.0 0.0

4.60E-5

0.0 0.0

1.30E-3

0.0 0.0

5.98E-4
0.0 0.0

8.67E-4
0.0 0.0

5.92E-4

0.0 0.0

1.30E-3

0.0 0.0

1.31E-4
0.0 0.0

1.31E-4
0.0 0.0

1.31E-4

0.0 0.0

1.82E-3

$ Mass and Inertia Tensor-Primary Gimbal Stage (Base,Inner,Outer)
CONM2 26 36 1.33696 0.0 0.0 0.0
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0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0



2.58E-3-1.75E-5 3.04E-3 4.84E-5-2.47E-5 3.54E-3

CONM2 27 39 2.07568 0.0 0.0 0.0

2.95E-3 1.06E-4 7.03E-3-3.21E-4-6.40E-5 6.78E-3

CONM2 28 42 1.23085 0.0 0.0 0.0
5.05E-3-9.13E-5 1.65E-3 1.40E-7-5.80E-5 4.24E-3

$ Payload Rate Gyro

CONM2 29 43 1.19731 0.0 0.0 0.0

1.95E-3 1.85E-3 1.35E-3

$ Mass and Inertia Tensor-Secondary Gimbal Stage (Base,Inner,Outer)
CONM2 30 44 1.33696 0.0 0.0 0.0

2.58E-3 1.75E-5 3.04E-3 4.84E-5

CONM2 31 47 2.07568

2.95E-3-1.06E-4 7.03E-3-3.21E-4

CONM2 32 50 1.23085

5.05E-3 9.13E-5 1.65E-3 1.40E-7

$ Secondary Gimbal Dummy Mass

CONM2 33 51 1.27286

2.26E-3 2.41E-3

$ Reaction Wheel Assembly Base
CONM2 34 52 6.06178

0.03555 0.05497

$ Reaction Wheel 1
CONM2 35 54 3.41683

4.56E-3

$ Reaction Wheel 2

CONM2 36 57

4.56E-3

$ Reaction Wheel 3

CONM2 37 60

4.56E-3

$ Carriage Masses
CONM2 38 63

0.0

CONM2 39 71
0.0

CONM2 40 79

0.0

4.56E-3

4.56E-3

4.56E-3

0.0

0.0

0.0

2.47E-5
0.0

6.40E-5

0.0

5.80E-5

3.54E-3
0.0

6.78E-3

0.0

4.24E-3

0.0 0.0
6.79E-4

0.0 0.0

0.03555

0.0 0.0

5.69E-3

3.41683 0.0 0.0

5.69E-3

3.41683 0.0 0.0

5.69E-3

1.31320 0.0 0.0

0.0

1.31320 0.0 0.0

0.0

1.31320 0.0 0.0

0.0

$ 3456781234567812345678123456781234567812345678123456781234567812345678
$ Element Construction of the Struts--end (Lexan)

CBAR 41 1 4 93 0.0 0.0 1.0

CBAR 42 1 96 7 0.0 0.0 1.0

CBAR 43 1 18 105 0.0 0.0 1.0

CBAR 44 1 108 21 0.0 0.0 1.0

CBAR 45 1 25 109 0.0 0.0 1.0
CBAR 46 1 112 28 0.0 0.0 1.0

$ Element Construction of the Struts--center (Lexan)

49 11 5

50 2 6

51 2 95

52 2 105

53 2 106

94 0.0 0.0
5 0.0 0.0

6 0.0 0.0

95 0.0 0.0

96 0.0 0.0

106 0.0 0.0

19 0.0 0.0
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0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

CBAR

CBAR
CBAR

CBAR
CBAR
CBAR

CBAR

1.0

1.0
1.0

1.0

1.0
1.0

1.0
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CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

$ Element

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

$ Element

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

$ Element

CBAR

CBAR

CBAR

$CBAR
CBAR

$CBAR
CBAR

CBAR

CBAR

CBAR

CBAR

$CBAR
CBAR

$CBAR
CBAR

CBAR

CBAR

CBAR

CBAR

$
CBAR

$
CBAR

CBAR

CBAR

F

54 11 19 20 0.0

55 2 20 107 0.0

56 2 107 108 0.0

57 2 109 110 0.0

58 2 110 26 0.0

59 11 26 27 0.0

60 2 27 111 0.0

61 2 111 112 0.0

:onstruction of the Collar Assemblies
62 3 3 4 0.0

63 3 7 8 0.0

64 3 10 11 0.0

65 3 14 15 0.0

66 3 17 18 0.0

67 3 21 22 0.0

68 3 24 25 0.0

69 3 28 29 0.0

Lepresentation of Nodes (Aluminum)

70 4 1 2 0.0

71 4 2 3 0.0

72 4 8 9 0.0
73 4 9 10 0.0
74 4 15 16 0.0

75 4 16 17 0.0

76 4 22 23 0.0

77 4 23 24 0.0
78 4 29 30 0.0

79 4 30 31 0.0

lepresentation of Attachment Plates (

80 4 2 32 0.0
81 4 16 33 0.0

82 4 30 34 0.0

R

0.0 1.0

0.0 1.0
0.0 1.0

0.0 1.0

0.0 1.0

0.0 1.0
0.0 1.0

0.0 1.0

(Stainless Steel)
0.0 1.0

0.0 1.0
0.0 1.0
0.0 1.0

0.0 1.0

0.0 1.0

0.0 1.0

0.0 1.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Aluminum)
0.0
0.0
0.0

Bus Rate Gyro (Aluminum)
83 4 16 35 0.0 0.0

Element Representation of Primary Gimbal (Aluminum)
84 4 2 36 0.0 0.0

85 4 36 38 0.0 0.0
86 4 37 39 0.0 0.0
87 4 39 41 0.0 0.0
88 4 40 42 0.0 0.0

Payload Rate Gyro (Aluminum)

89 4 42 43 0.0 0.0
Element Representation of Secondary Gimbal (Aluminum)

90 4 30 44 0.0 0.0

91 4 44 46 0.0 0.0
92 4 45 47 0.0 0.0

93 4 47 49 0.0 0.0
94 4 48 50 0.0 0.0

Secondary Gimbal Dummy Mass (Aluminum)

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0

95 4 50 51 0.0 0.0 1.0
Element Representation of Reaction Wheel Assembly (Aluminum)

96 4 16 52 0.0 0.0 1.0
97 4 52 53 0.0 0.0 1.0
98 4 52 56 0.0 0.0 1.0
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CBAR

CBAR

CBAR

CBAR
$

1
1

1

Suspensio

$ Cable 1
CBAR

CBAR

CBAR

CBAR

CBAR
CBAR

CBAR

CBAR

$ Cable 2
CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

$ Cable 3
CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

CBAR

$ Element
CBAR

CBAR

$ Element
CBAR
CBAR

CBAR

CBAR

$ Element
CBAR

CBAR
CBAR

CBAR
CBAR

$ Tuned susp
CELAS2

CELAS2
CELAS2

99 4 52 59

00 4 54 55

01 4 57 58

02 4 60 61

n Cables: Carriage to Test

103

104

105

106

107
108

109

110

111

112

113
114

115

116

117

118

119 7

120 7

121 7
122 7

123 7

124 7

125 7

126 7

Construction of

127 8

128 8

Construction of

129 9

130 9

131 9

132 9

Construction of

133 10

134 10

135 12

136 10
137 10

ension pneumatic

138 16.9878

139 56.2820
140 17.0381

0.0
0.0

0.0

0.0

Article

0.0

0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
0.0

0.0

0.0

0.0
0.0

0.0

(GR/EP)

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0
0.0

0.0

0.0
0.0

0.0

92 86 0.0 0.0

86 85 0.0 0.0

85 84 0.0 0.0
84 83 0.0 0.0

83 82 0.0 0.0

82 81 0.0 0.0

81 80 0.0 0.0

80 79 0.0 0.0

the Base Active Strut (Lexan)
11 97 0.0 0.0

104 14 0.0 0.0

the Active Strut (Piezo)

98 99 0.0 0.0

99

101

102

the

97

100 0.0

102 0.0
103 0.0

Center Active Strut

98 0.0

12
13

101
104

0.0
0.0

0.0
0.0

100
12

13
103

springs
63

71

79 2

0.0

0.0

0.0

(Lexan)
0.0

0.0
0.0

0.0
0.0

1.0
1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0
1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0

1.0
1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0
1.0

$ 3456781234567812345678123456781234567812345678123456781234567812345678
$ The Beam Properties are Provided in the following Cards

$ Card Number,ID,A,Iy,Iz,J
PBAR 1 1 2.56E-4 2.14E-8 2.14E-8 4.27E-8
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0.54921 0.54921

2 2 2.56E-4 2.14E-8 2.14E-8 4.27E-8

0.54921 0.54921
3 3 1.55E-3 1.92E-7 1.92E-7

4 4 2.89E-3 1.25E-6 1.25E-6

5 5 7.92E-6 4.99-12 4.99-12

6 6 7.92E-6 4.99-12 4.99-12

7 7 7.92E-6 4.99-12 4.99-12

8 8 2.56E-4 2.14E-8 2.14E-8

3.83E-7

2.50E-6
9.98-12

9.98-12
9.98-12
4.27E-8

PBAR

PBAR

PBAR

PBAR

PBAR

PBAR

PBAR

PBAR

PBAR

ID,Young's Modulus, Poisson's

1 2.628E9

2 2.335E9
3 127.1E9

4 68.90E9

5 198.2E9

6 171.2E9

7 184.2E9

8 2.767E9
9 3.783E9

10 2.662E9

$ Inner Primary Gimbal
MPC 5 37

Outer Prime

Inner Secor

5 37

5 37
5 37

5 37

5 37

ary Gimbal
5 40

5 40

5 40

5 40

5 40
5 40

idary Gimba
5 45
5 45

5 45
5 45

5 45

Ratio, Density

0.37 2021.77

0.37 2021.77

0.30 0.0

0.30 0.0
0.30 1991.37

0.30 1991.37

0.30 1991.37

0.37 1838.18

0.37 1968.12

0.37 1838.18

(mechanism = 4)
1 1.0

2 1.0

3 1.0

4 1.0

5 1.0

6 1.0

(mechanism = 6)
1 1.0
2 1.0

3 1.0

4 1.0

5 1.0
6 1.0

1 (mechanism = 4)
1 1.0

2 1.0

3 1.0

4 1.0
5 1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0
-1.0

-1.0

-1.0

-1.0
-1.0

-1.0

-1.0
-1.0

-1.0

-1.0
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0.54921 0.54921

9 9 4.79E-4 5.14E-8 5.14E-8 1.03E-7

0.56459 0.56459

10 10 4.79E-4 5.14E-8 5.14E-8 1.03E-7

0.56459 0.56459
11 2 2.56E-4 2.14E-8 2.14E-8 4.27E-8

12 10 4.79E-4 5.14E-8 5.14E-8 1.03E-7

cards provide the Material Properties;e

PBAR

PBAR

$ Thes
$MAT
MAT1

MAT1

MAT1

MAT1

MAT1

MAT1

MAT1

MAT1

MAT1
MAT1

MPC
MPC
MPC
MPC
MPC
$MPC
MPC
MPC
MPC
MPC
MPC
MPC
$
MPC
MPC
MPC
MPC
MPC



5 45 6 1.0

Outer Secondary Gimbal (mechanism = 6)
5 48 1 1.0

5 48 2 1.0
5 48 3 1.0

5 48 4 1.0
5 48 5 1.0

5 48 6 1.0

MPC

$MPC
MPC
MPC
MPC
MPC
MPC
MPC
$MPC
MPC
MPC
MPC
MPC
MPC
MPC
$MPC
MPC
MPC
MPC
MPC
MPC
MPC
$MPC
MPC
MPC
MPC
MPC
MPC
MPC
$MPC
MPC
MPC
MPC
MPC
MPC
MPC

MPG

MPG

MPG

MPGMPC
MPC

MPC
MPC
MPCMPCMPCMPC

$

MPC
MPC

(mechanism = 6)
5 54 1 1.0

5 54 2 1.0
5 54 3 1.0

5 54 4 1.0

5 54 5 1.0

5 54 6 1.0

Reaction Wh

Reaction Wh

Suspension

ieel 2 (mechanism = 6)

5 57 1
5 57 2

5 57 3

5 57 4

5 57 5

5 57 6
Leel 3

1.0
1.0

1.0

1.0

1.0

1.0

(mechanism = 6)

5 60 1 1.0
5 60 2 1.0

5 60 3 1.0

5 60 4 1.0
5 60 5 1.0

5 60 6 1.0

Attach Point 1 (mechanisms
5 90 1 1.0

5 90 2 1.0

5 90 3 1.0
5 90 4 1.0

5 90 5 1.0

5 90

Suspension Attach Point 2

5 91

5 91
5 91

5 91

5 91
5 91

Suspension Attach Point 3

5 92

5 92

5 92
5 92

5 92
5 92

6 1.0

(mechanisms
1 1.0

2 1.0
3 1.0

4 1.0

5 1.0
6 1.0

(mechanisms
1 1.0

2 1.0

3 1.0
4 1.0

5 1.0
6 1.0

46 6 -1.0

Reaction Wheel 1

49

49

49

49

49

49

53

53

53

53

53

53

56
56

56

56

56

56

59

59

59

59

59

59

= 4,6)

32

32

32
32

32

32

= 4,6)

33

33

33

33

33

33

= 4,6)

34
34

34
34

34
34

Inner Primary Gimbal (mechanism = 4)

6 37

6 37

1.0
1.0
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-1.0

-1.0

-1.0

-1.0
-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0
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MPC 6 37 3 1.0
MPC 6 37 5 1.0
MPC 6 37 6 1.0

$ Outer Primary Gimbal (mechanism = 6)

MPC 6 40 1 1.0

MPC 6 40 2 1.0

MPC 6 40 3 1.0
MPC 6 40 4 1.0

MPC 6 40 5 1.0

$ Inner Secondary Gimbal (mechanism =
MPC 6 45 1 1.0

MPC 6 45 2 1.0

MPC 6 45 3 1.0
MPC 6 45 5 1.0

MPC 6 45 6 1.0

$ Outer Secondary Gimbal

6

6

6

MPC 6

MPC 6

$ Reaction Wheel 1
MPC 6

MPC 6

MPC 6
MPC 6

MPC 6

$ Reaction Wheel 2
MPC 6

MPC 6

MPC 6

MPC 6
MPC 6

$ Reaction Wheel 3

MPC
MPC
MPC
MPC
MPC
$ Suspension
MPC
MPC
MPC
MPC
$ Suspension
MPC
MPC
MPC
MPC
$ Suspension
MPC
MPC
MPC
MPC

(mechanism =
48 1

48 2

48 3
48 4

48 5

(mechanism = 6)
54 1

4)

6)

1.0

1.0
1.0

1.0

1.0

1.0

54 2 1.0

54 3 1.0
54 4 1.0

54 5

(mechanism = 6)
57 1

57 2

57 3

57 4
57 5

(mechanism = 6)

1.0

1.0

1.0

1.0

1.0

1.0

6 60 1 1.0

6 60 2 1.0

6 60 3 1.0

6 60 4 1.0

6 60 5 1.0

Attach Point 1 (mechanisms =
6 90 1 1.0

6 90 2 1.0

6 90 3 1.0

6 90 5 1.0

Attach Point 2 (mechanisms =
6 91 1 1.0
6 91 2 1.0

6 91 3 1.0

6 91 5 1.0
Attach Point 3 (mechanisms =
6 92 1 1.0

6 92 2 1.0
6 92 3 1.0

6 92 5 1.0

59
59

59

59

59

4,6)
32

32

32

32

4,6)

33
33

33

33
4,6)

34

34

34

34
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MPC

MPC

MPC

-1.0
-1.0

-1.0

-1.0

-1.0
-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0
-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0
-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0

-1.0
-1.0

-1.0

1
2
3
5

I



$ 3456781234567812345678123456781234567812345678123456781234567812345678

$ Fix all dofs at top of rods

SPC1 51 123456 63 71 79

SPC1 51 123456 62 87 88 89

$ Fix all dofs at top of rods, except allow vertical spring to move

SPC1 53 13456 63 71 79

SPC1 53 123456 62 87 88 89

ENDDATA
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Appendix C

MATLAB Code to Generate
Input-Output Model

function [A,B,C,D]=...
abcdmace(evalfem,config,NM,nO,indd,indr,inda,ict,volts,integ,igm,...

isensd,idelay,ibess,NP,dls,cfb,dlk)

% This function evaluates the MIMO MACE model from the FEM model

The inputs are: 'evalfem'(String variable to load FEM-file)

config (==1-DM,==2-DM/EM,==3-EM (w/DM))

NM (Numbers of modes to include in model)

nO (number of rigid body modes)
For list of DM sensors and actuators see fdml.m

For list of DM/EM sensors and actuators see fdm2.m
For list of EM sensors and actuators see fdm3.m

volts (==1 - Volts; ==0 - Physical units)

integ (==O - Stabilized integrators are off

==1 - stabilized integrators are on,
but dynamics are not accounted for

==2 - stabilized integrators are on,
dynamics are included in A,B,C and D)

igm (==1 - all servos on, ==0 - servos off)

isensd (==1 - sensor dynamics, ==O - no sensor dynamics)
idelay (==1 - time delays, ==O - no time delays)

ibess (==1 - Bessel Filters, ==0 - no Bessel Filters)

NP (Order of Pade approximation)
dls (Vector of time delays)

cfb (Vector of Bessel Filter corner frequencies)
dlk (Servo loop time delay in gimbals)

% The outputs are: A,B,C and D matrices for MIMO MACE model

% Call: [A,B,C,D]=...

% abcdmace(evalfem,config,NM,nO,indd,indr,inda,ict,volts,integ,igm,...

% isensd,idelay,ibess,NP,dls,cfb,dlk)
% _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
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if config==1;
disp('This is for the 1 Payload Case (DM)');
[w,z,bd,br,ba,bct]=fdml(evalfem,NM,indd,indr,inda,ict);

elseif config==2;
disp('This is for the 2 Payload Case (DM/EM)');

[w,z,bd,br,ba,bctl=fdm2(evalfem,NM,indd,indr,inda,ict);
elseif config==3;

disp('This is for the 2 Payload Case (EM)');

[w,z,bd,br,ba,bct]=fdm3(evalfem,NM,indd,indr,inda,ict);

end
disp(' ')
if volts==O;
disp('Matrices A,B,C and D are in Physical Units');

elseif volts==1;
disp('Matrices A,B,C and D are in Volts');

end
disp(' ')
if integ==O;
disp('Stabilized integrators are turned OFF');

elseif integ==l;
disp('Stabilized integrators are ON');
disp('Their dynamics are NOT included');

elseif integ==2;
disp('Stabilized integrators are ON');
disp('Their dynamics ARE included');

end
disp(' ')
if isensd==O;
disp('NO sensor dynamics');

else
disp('Sensor dynamics are included');

end
disp(' ')
if idelay==O;
disp('NO time delays included');

else
disp('Time DELAYS included');

end
disp(' ')
if ibess==O;
disp('Bessel Filters are turned OFF');

else
disp('Bessel Filters are turned ON');

end
disp(' ')
if igm==0;

disp('SERVO loop NOT closed');
else
disp('SERVO loop closed');

end
disp(' ')
end
Nm=length(NM)-nO;
w=w(nO+1:Nm+nO);
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z=z(nO+1:Nm+nO);
[Md,Mr,Ma,Mct]=nums(indd,indr,inda,ict);

[Cdx,Crv,Cax,Cav,Ba]=cml(length(NM),Md,Mr,Ma,Mct,w,z,bd,br,ba,bct);

% Form system with block diagonal rigid and flexible systems
Ar=[zeros(nO,nO) eye(nO);zeros(nO,2*nO)];
Br=[zeros(nO,Mct);Ba(1:nO,:)];

Af=[zeros(Nm,Nm) eye(Nm);-diag(w.^2) -2*diag(w.*z)];
Bf=[zeros(Nm,Mct); Ba(nO+1:Nm+nO,:)];
A=[Ar zeros(2*nO,2*Nm);zeros(2*Nm,2*nO) Af];
B=[Br;Bf];

if Md>O;
Cdr=[Cdx(:,1:nO) zeros(Md,nO)];
Cdf=[Cdx(:,nO+1:nO+Nm) zeros(Md,Nm)];
Cd=[Cdr Cdf];
Dd=zeros(Md,Mct);

end

if Mr>O
if integ==OIinteg==2;

Crr=[zeros(Mr,nO) Crv(:,l:nO)];
Crf=[zeros(Mr,Nm) Crv(:,nO+l:nO+Nm)];
Cr=[Crr Crf];

end

if integ==1;

Crr=[Crv(:,1:nO) zeros(Mr,nO)];
Crf=[Crv(:,nO+l:nO+Nm) zeros(Mr,Nm)];
Cr=[Crr Crf];

end

Dr=zeros(Mr,Mct);

end

if Ma>O;
Car=[Cax(:,l:nO) Cav(:,l:nO)];
Caf=[Cax(:,nO+l:nO+Nm) Cav(:,nO+l:nO+Nm)];
Ca=[Car Caf];
Da=reshape(ba,Nm,Ma)'*reshape(bct,Nm,Mct);

end

C=assemy(Md,Mr,Ma,Mct,Cd',Cr',Ca') ';
D=assemy(Md,Mr,Ma,Mct,Dd',Dr',Da')';

if volts==1;

[B,C,D]=resabcd(indd,indr,inda,ict,B,C,D,config,2*length(NM));
end

[A,B,C,D]=modext(isensd,idelay,integ,ibess,A,B,C,D,indd,indr,NP,dls,cfb,config);
if igm==1;

if (config==2)
[A,B,C,D]=gimcon(A,B,C,D,NM,nO,indd,ict,dlk,NP,evalfem,volts,config);

elseif (config==3)

A,B,C,D]=gimcon3(A,B,C,D,NM,nO,indd,indr,ict,dlk,NP,evalfem,volts,config);
end

end

function y=assemy(Md,Mr,Ma,Mct,yd,yr,ya)

SThis unction is u--------------------------------------d to assemble matrices C, gains G and K

% This function is used to assemble matrices C, gains G and K
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% The inputs are: Md (Number of displacement sensors)

%Mr (Number of rate sensors)

%Ma (Number of acceleration sensors)

%Mct (Number of actuators)

%yd (Displacement output)

%yr (Rate output)

%ya (Acceleration output)

% The outputs are: y (assembled vector)

% Call: y=assemy(Md,Mr,Ma,Mct,yd,yr,ya)

% -----------------------------------------------------------------

if Md>O;

y=yd;

end

if Mr>O;

if Md==O;
y=yr;

else;

y=[y yr];

end;
end

if Ma>O;

if Md==O & Mr==O;

y=ya;
else;

y=[y ya] ;

end;

end;

function [ab,bb,cb,db,in]=besfid(iii,cf)

%------------------------------------------------------------------------------

% This function provides state space representations of the Bessel Filters

% The inputs are: iii (Numbers of sensors)

% cf (Vector of corner frequencies in Hz)

% in (Numbers of system inputs with nonzero corners)

% The outputs are: ad,bd,cd,dd (Matrices in linear system)

% Call: [ab,bb,cb,db]=besfid(iii,cf)

%------------------------------------------------------

N=length(iii);

if N>=1;

j=1;

for i=l:N

cfi=cf(i);

if (cfi-=O.)

[abi,bbi,cbi,dbi]=bess(8,cfi*2*pi);
Nab=length(ab);

ab=[ab zeros(Nab,8);zeros(8,Nab) abil;
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Ndt=8*(j-1);

bb=[bb zeros(Ndt,l); zeros(8,j-1) bbi];
cb=[cb zeros(j-1,8); zeros(1,Ndt) cbi];
d(j)=dbi;

db=diag(d);

in=[in iii(i)];

j=j+1;
end

end

end

function Eab,bb,cb,dbl=bess(n,cf);

------------------------------------------------------------------------

% This function computes the Bessel Filter

% The inputs are: n (Numbers of poles)

% cf (corner frequencies)

% The outputs are: ad,bd,cd,dd (Matrices in linear system)

% Call: [ab,bb,cb,db]=bess(n,cf)

% -----------------------------------------------------

for k=O:n,

d(k+l)=fact(2*n-k)/(2^(n-k)*fact(k)*fact(n-k));

end;

den=fliplr(flipud(d));

[ab,bb,cb,db]=tf2ss(d(1),den);

cfl=d(1)^(1/n);
scale=cfl/(cf*2);

ab(l:n,:)=ab(l:n,:)/scale;

bb=bb/scale;

function [Cdx,Crv,Cax,Cav,Ba=cml(Nm,Md,Mr,Ma,Mct,w,z,bd,br,ba,bct)

-----------------------------------------------------

% The inputs are: Nm (Number of modes)

Md (Number of displacement sensors)

Mr (Number of rate sensors)

Ma (Number of acceleration sensors)

Mct (Number of actuators)

w (Vector of frequencies)

z (Vector of damping ratios)

bd (Vector of mode shapes in displacement sensors)
br (Vector of mode shapes in rate sensors)

%ba (Vector of mode shapes in acceleration sensors)
bct (Vector of mode shapes in actuators)

% The outputs are: Non-zero blocks in matrix B & C

Y Call: [Cdx,Crv,Cax,Cav,Ba]=cml(Nm,Mdr,M a,Mct,w,z,bd,br,ba,bct)

-----------------------------------------------------
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if Md>O;
Cdx=reshape(bd,Nm,Md)';

end

if Mr>O;

Crv=reshape(br,Nm,Mr)';

end

if Ma>O

ea=ones(Ma, );

w2=-w. 2;

zw=-2*z.*w;

C=reshape(ba,Nm,Ma)';

Cax=C.*(ea*w2');

Cav=C.*(ea*zw');
end

if Mct>O

Ba=reshape(bct, Nm,Mct);

end

function [ad,bd,cd,dd,in=delfid(iii,NP,dl)

% ------------------------------------------------------------------------------

% This function provides Pade approximation for N sensors

% The inputs are: iii (Numbers of sensors)

% NP (Order of Pade approximation)

% dl (Vector of time delays in each device)

% in (Numbers of system inputs with nonzero time delays)

% The outputs are: ad,bd,cd,dd (Matrices in linear system)

% Call: [ad,bd,cd,ddl=delfid(iii,NP,dl)

%----------------------------------------------------

N=length(iii);

if N>=1;

j=1;
for i=l:N

dli=dl(i);

if (dli~=O.)

[adi,bdi,cdi,ddil=pade(dli,NP);

Nad=length(ad);

ad=[ad zeros(Nad,NP);zeros(NP,Nad) adi];

Ndt=NP*(j-i);

bd=[bd zeros(Ndt,l); zeros(NP,j-1) bdi];

cd=[cd zeros(j-1,NP); zeros(1,Ndt) cdil;

d(j)=ddi;

dd=diag(d);

in=[in iii(i)] ;
j=j+1;

end

end

end

function [w,z,bd,br,ba,bct]=fdml(evalfem,NM,indd,indr,inda,ict)
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% This function selects the proper degrees of freedom for the sensors
% and actuators from the FEM modeshapes for the 1 payload case (DM)

The inputs are:

The outputs are:

% Call:

'evalfem'(String variable to load FEM-file)
NM (Number of modes, any modes from given ones)
indd (Numbers of displacement sensors)

1 - Inner encoder on PL (DM) (x)
2 - Outer encoder on PL (DM) (z)
3-10 - Strain Gauges (vertical and horizontal)

in struts 1-4
indr (Numbers of rate sensors)

1-3 - Rate gyros on PL (DM) (x, y, z axis)
4-6 - Rate gyros on TWA (x, y, z axis)

inda (Numbers of acceleration sensors)

1-3 - Accelerometer in the node 2 (x, y, z axis)
4-6 - Accelerometer in the node 4 (x, y, z axis)

ict (Numbers of actuators)

1 - Inner gimbal on PL (DM) (x)
2 - Outer gimbal on PL (DM) (z)
3-5 - TWA (x, y, z axis)

w
z
bd

br

ba

bct

(Vector of frequencies)

(Vector of damping ratios)
(Vector of mode shapes in displacement sensors)
(Vector of mode shapes in rate sensors)
(Vector of mode shapes in acceration sensors)
(Vector of mode shapes in actuators)

[w,z,bd,br,ba,bct]=fdml(evalfem,NM,indd,indr,inda,ict)

eval(evalfem)

if NM==O

Nm=length(freq);

NM=I1:Nm;
end

[Md,Mr,Ma,Mct]=nums(indd,indr,inda,ict);
Nm=length(NM);

Mdm=Md*Nm;
Mrm=Mr*Nm;

Mam=Ma*Nm;

Mctm=Mct*Nm;

rad=.0127;
glength=.00635;

strg=2*rad/glength;
RM=rotmat; % Rotation matrix in TWA

w=freq(NM);

z=zeta(NM);
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% Displacement mode shapes
bbd(1,:)=modes(238,NM)-modes(316,NM);

bbd(2,:)=-modes(258,NM)+modes(324,NM);

bbd(3,:)=modes(114,NM)-modes(348,NM);

bbd(4,:)=modes(113,NM)-modes(347,NM);

bbd(5,:)=modes(84,NM)-modes(342,NM);

bbd(6,:)=modes(83,NM)-modes(341,NM);

bbd(7,:)=modes(336,NM)-modes(54,NM);

bbd(8,:)=modes(53,NM)-modes(335,NM);

bbd(9,:)=modes(24,NM)-modes(330,NM);

bbd(10,:)=modes(23,NM)-modes(329,NM);
bbd(3:10,:)=strg*bbd(3:10,:);

% Rate mode shapes

bbr(1,:)=-modes(274,NM);

bbr(2,:)=modes(275,NM);

bbr(3,:)=-modes(276,NM);

bbr(4,:)=modes(280,NM);

bbr(5,:)=modes(281,NM);

bbr(6,:)=-modes(282,NM);

% Acceleration mode shapes

bba(1,:)=modes(289,NM);

bba(2,:)=modes(290,NM);

bba(3,:)=modes(291,NM);

bba(4,:)=modes(283,NM);

bba(5,:)=modes(284,NM);

bba(6,:)=modes(285,NM);

% Actuator mode shapes

bbct(1,:)=-modes(238,NM)+modes(316,NM);

bbct(2,:)=-modes(258,NM)+modes(324,NM);

bbctl(3,:)=-modes(209,NM)+modes(299,NM);

bbctl(4,:)=-modes(216,NM)+modes(306,NM);

bbctl(5,:)=-modes(222,NM)+modes(312,NM);

bbct(3:5,:)=RM'*bbctl(3:5,:);

if Md>O;
bd=zeros(Nm,1);

for i=l:Md;

id=indd(i);

bd=[bd; bbd(id,:)'];

end

bd=bd(Nm+l:Mdm+Nm);
end

if Mr>O;

br=zeros(Nm,l);
for i=l:Mr;

ir=indr(i);

br=[br; bbr(ir,:)'];
end

br=br(Nm+1:Mrm+Nm);
end

if Ma>O;
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ba=zeros(Nm,1);

for i=l:Ma;
ia=inda(i);

ba=[ba; bba(ia,:)'];

end

ba=ba(Nm+l:Mam+Nm);

end

bct=zeros(Nm,1);

for i=l:Mct;

ic=ict(i);

bct=[bct; bbct(ic,:)'];

end;

bct=bct(Nm+1:Mctm+Nm);

function [w,z,bd,br,ba,bct]=fdm2(evalfem,NM,indd,indr,inda,ict)

% This function selects the proper degrees of freedom for the sensors

% and actuators from the FEM modeshapes for the 2 payload case (DM/EM)

% The inputs are: 'evalfem'(String variable to load FEM-file)

%NM (Number of modes, any modes from given ones)

% indd (Numbers of displacement sensors)

% 1 - Inner encoder on PL 2 (DM) (x)

%2 - Outer encoder on PL 2 (DM) (z)
% 3-10 - Strain Gauges (vertical and horizontal)

%in struts 1-4

% 11 - Inner encoder on PL 1 (EM) (x)

%12 - Outer encoder on PL 1 (EM) (z)

%indr (Numbers of rate sensors)

% 1-3 - Rate gyros on PL 1 (EM) (x, y, z axis)

% 4-6 - Rate gyros on TWA (x, y, z axis)
% inda (Numbers of acceleration sensors)
%1-3 - Accelerometer in the node 2 (x, y, z axis)
%4-6 - Accelerometer in the node 4 (x, y, z axis)
% ict (Numbers of actuators)

% 1 - Inner gimbal on PL 2 (DM) (x)

% 2 - Outer gimbal on PL 2 (DM) (z)

% 3-5 - TWA (x, y, z axis)
% 6 - Inner gimbal on PL 1 (EM) (x)

%7 - Outer gimbal on PL 1 (EM) (z)

%8 - Active strut vertical

%9 - Active strut horizontal

The outputs are: w

z
bd

br

ba
bct

(Vector of
(Vector of
(Vector of
(Vector of
(Vector of
(Vector of

frequencies)

damping ratios)

mode shapes in displacement sensors)
mode shapes in rate sensors)
mode shapes in acceleration sensors)
mode shapes in actuators)

% Call: [w,z,bd,br,ba,bct]=fdm2(evalfem,NM,indd,indr,inda,ict)
%_----------------------------------------

167



eval(evalfem)

if NM==O

Nm=length(freq);

NM=I1:Nm;
end

[Md,Mr,Ma,Mct]=nums(indd,indr,inda,ict);

Nm=length(NM);

Mdm=Md*Nm;

Mrm=Mr*Nm;

Mam=Ma*Nm;

Mctm=Mct*Nm;

rad=.0127;

glength=.00635;

strg=2*rad/glength;

RM=rotmat; % Rotation matrix in TWA

w=freq(NM);

z=zeta(NM);

% Displacement mode shapes
bbd(1,:)=modes(238,NM)-modes(316,NM);

bbd(2,:)=-modes(258,NM)+modes(324,NM);

bbd(3,:)=modes(114,NM)-modes(348,NM);

bbd(4,:)=modes(113,NM)-modes(347,NM);

bbd(5,:)=modes(84,NM)-modes(342,NM);

bbd(6,:)=modes(83,NM)-modes(341,NM);

bbd(7,:)=modes(336,NM)-modes(54,NM);

bbd(8,:)=modes(53,NM)-modes(335,NM);

bbd(9,:)=modes(24,NM)-modes(330,NM);

bbd(10,:)=modes(23,NM)-modes(329,NM);
bbd(11,:)=modes(388,NM)-modes(382,NM);

bbd(12,:)=modes(408,NM)-modes(402,NM);

bbd(3:10,:)=strg*bbd(3:10,:);

% Rate mode shapes

bbr(1,:)=-modes(418,NM);
bbr(2,:)=modes(419,NM);

bbr(3,:)=-modes(420,NM);

bbr(4,:)=modes(280,NM);

bbr(5,:)=modes(281,NM);

bbr(6,:)=-modes(282,NM);

% Acceleration mode shapes

bba(1,:)=modes(289,NM);

bba(2,:)=modes(290,NM);
bba(3,:)=modes(291,NM);

bba(4,:)=modes(283,NM);
bba(5,:)=modes(284,NM);
bba(6,:)=modes(285,NM);

% Actuator mode shapes
bbct(1,:)=-modes(238,NM)+modes(316,NM);
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bbct(2,:)=-modes(258,NM)+modes(324,NM);
bbctl(3,:)=-modes(209,NM)+modes(299,NM);

bbctl(4,:)=-modes(216,NM)+modes(306,NM);
bbctl(5,:)=-modes(222,NM)+modes(312,NM);

bbct(6,:)=modes(382,NM)-modes(388,NM);

bbct(7,:)=modes(402,NM)-modes(408,NM);
bbct(8,:)=8.988*(modes(48,NM)-modes(60,NM))+148.492*(modes(54,NM)-modes(336,NM));

bbct(9,:)=8.988*(modes(59,NM)-modes(47,NM))+148.492*(modes(335,NM)-modes(53,NM));

bbct(3:5,:)=RM'*bbctl(3:5,:);

if Md>O;

bd=zeros(Nm,l);

for i=l:Md;

id=indd(i);

bd=[bd; bbd(id,:)'];

end

bd=bd(Nm+l:Mdm+Nm);
end

if Mr>O;

br=zeros(Nm,l);

for i=l:Mr;

ir=indr(i);

br=[br; bbr(ir,:)'];

end

br=br(Nm+l:Mrm+Nm);

end

if Ma>O;

ba=zeros(Nm,1);

for i=l:Ma;

ia=inda(i);

ba=[ba; bba(ia,:)'];

end

ba=ba(Nm+l:Mam+Nm);

end

bct=zeros(Nm,1);

for i=l:Mct;

ic=ict(i);

bct=[bct; bbct(ic,:)'];

end;

bct=bct(Nm+1:Mctm+Nm);

function [w,z,bd,br,ba,bct]=fdm3(evalfem,NM,indd,indr,inda,ict)

Y This function selects the proper degrees of freedom for the sensors

% and actuators from the FEM modeshapes for the 2 payload case (EM)

% The inputs are: 'evalfem'(String variable to load FEM-file)

NM (Number of modes, any modes from given ones)

indd (Numbers of displacement sensors)

1 - Inner Primary encoder (x)
2 - Outer Primary encoder (z)

3 - Inner Secondary encoder (x)
4 - Outer Secondary encoder (z)
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%5 - Strain Gage strut 1 (y)

% 6 - Strain Gage strut 1 (z)

%7 - Strain Gage strut 2 (y)

%8 - Strain Gage strut 2 (z)

%9 - Strain Gage strut 3 (y)

%10 - Strain Gage strut 3 (z)

% 11 - Strain Gage strut 4 (y)

%12 - Strain Gage strut 4 (z)

% indr (Numbers of rate sensors)

% - Inner Primary encoder (x)

% 2 - Outer Primary encoder (z)

%3 - Inner Secondary encoder (x)

%4 - Outer Secondary encoder (z)

%5,6 - Payload Rate gyros (x, z axis)

% 7-9 - Bus Rate gyros (x, y, z axis)

% 10-12 - RWA Tachometers (x, y, z axis)

% 13-14 - Secondary Rate gyros (x,z axis)

% inda (There are NO accelerometers)

% ict (Numbers of actuators)

% - Inner Primary gimbal (x)

%2 - Outer Primary gimbal (z)

% 3 - Inner Secondary gimbal (x)

% 4 - Outer Secondary gimbal (z)

% 5-7 - RWA (x, y, z)

%8 - Active strut (y)

% 9 - Active strut (z)

% The outputs are: w (Vector of frequencies)

% z (Vector of damping ratios)

% bd (Vector of mode shapes in displacement sensors)

% br (Vector of mode shapes in rate sensors)

% ba (Vector of mode shapes in acceleration sensors)

% bct (Vector of mode shapes in actuators)

% Call: [w,z,bd,br,ba,bct]=fdm3(evalfem,NM,indd,indr,inda,ict)

--------------------------------------------------------------

eval(evalfem)

if NM==O

Nm=length(freq);

NM=1:Nm;
end

[Md,Mr,Ma,Mct]=nums(indd,indr,inda,ict);
Nm=length(NM);

Mdm=Md*Nm;

Mrm=Mr*Nm;

Mam=Ma*Nm;
Mctm=Mct*Nm;

radl=.0144145;

rad2=.0147955;
glength=.003175;

strgl=2*radl/glength; % passive strut strain gage gain
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strg2=2*rad2/glength; % active strut strain gage gain
las=.0889;

as=2*rad2/las; % active strut gain
RM=rotmat2; % Rotation matrix in RWA

w=freq(NM);
z=zeta(NM);

% Displacement mode shapes
bbd(1,:)= modes(220,NM)-modes(226,NM);
bbd(2,:)= modes(240,NM)-modes(246,NM);

bbd(3,:)=-modes(268,NM)+modes(274,NM);

bbd(4,:)=-modes(288,NM)+modes(294,NM);

bbd(5,:)=strgl*(modes(35,NM) -modes(29,NM));
bbd(6,:)=strgl*(-modes(36,NM) +modes(30,NM));
bbd(7,:)=strg2*(-modes(77,NM) +modes(71,NM));
bbd(8,:)=strg2*( modes(78,NM) -modes(72,NM));
bbd(9,:)=strgl*( modes(119,NM)-modes(113,NM));

bbd(10,:)=strgl*( modes(120,NM)-modes(114,NM));
bbd(11,:)=strgl*(-modes(161,NM)+modes(155,NM));

bbd(12,:)=strgl*(-modes(162,NM)+modes(156,NM));

% Rate mode shapes

bbr(1,:)= modes(220,NM)-modes(226,NM);
bbr(2,:)= modes(240,NM)-modes(246,NM);

bbr(3,:)=-modes(268,NM)+modes(274,NM);

bbr(4,:)=-modes(288,NM)+modes(294,NM);
bbr(5,:)= modes(256,NM);

bbr(6,:)=-modes(258,NM);

bbr(7,:)= modes(208,NM);
bbr(8,:)=-modes(209,NM);

bbr(9,:)=-modes(210,NM);

bbr(10,:)=modes(324,NM)-modes(318,NM);
bbr(11,:)=modes(342,NM)-modes(336,NM);

bbr(12,:)=modes(360,NM)-modes(354,NM);

bbr(1O:12,:)=RM'*bbr(10:12,:);

bbr(13,:)=modes(304,NM);

bbr(14,:)=modes(306,NM);

% Actuator mode shapes
bbct(1,:)=-modes(220,NM)+modes(226,NM);

bbct(2,:)=-modes(240,NM)+modes(246,NM);

bbct(3,:)= modes(268,NM)-modes(274,NM);
bbct(4,:)=-modes(288,NM)+modes(294,NM);

bbct(5,:)=modes(324,NM)-modes(318,NM);

bbct(6,:)=modes(342,NM)-modes(336,NM);

bbct(7,:)=modes(360,NM)-modes(354,NM);

bbct(8,:)=as*((modes(599,NM)-modes(587,NM))+(modes(617,NM)-modes(605,NM)));

bbct(9,:)=as*((modes(600,NM)-modes(588,NM))+(modes(618,NM)-modes(606,NM)));

bbct(5:7,:)=RM'*bbct(5:7,:);

if Md>O;

bd=zeros(Nm,1);
for i=l:Md;
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id=indd(i);
bd=[bd; bbd(id,:)'];

end

bd=bd(Nm+l:Mdm+Nm);

end

if Mr>O;

br=zeros(Nm,l);

for i=l:Mr;

ir=indr(i);

br=[br; bbr(ir,:)'];

end

br=br(Nm+1:Mrm+Nm);

end

bct=zeros(Nm,1);

for i=l:Mct;

ic=ict(i);

bct=[bct; bbct(ic,:)'];

end;

bct=bct(Nm+l:Mctm+Nm);

bd=zeros(Nm,1);

for i=1:Md;

id=indd(i);

bd=[bd; bbd(id,:)'];

end

bd=bd(Nm+l:Mdm+Nm);

end

if Mr>O;

br=zeros(Nm,l);

for i=1:Mr;

ir=indr(i);

br=[br; bbr(ir,:)'];

end

br=br(Nm+1:Mrm+Nm);

end

bct=zeros(Nm,1);

for i=l:Mct;

ic=ict(i);

bct=[bct; bbct(ic,:)'];

end;

bct=bct(Nm+1:Mctm+Nm);

function [Gd,Gr,Ga,Gct]=gainsl(volts,ipur)

% ------------------------------------------------------------------------------

% This function stores gains G for outputs (and inputs):

% [AMPLIFIED OUTPUT] = G * [OUTPUT IN REAL VOLTS]

% This is for the 1 payload case

% The inputs are: volts (==1 - Volts; ==O - Physical units)

% ipur (Reflects the purpose: ==O - for y; ==1 - for B,C,D)

% The outputs are: Gains G for sensors and actuators
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% Call: [Gd,Gr,Ga,Gct]=gainsl(volts,ipur)

% - --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

if ((volts==O & ipur==O) I (volts==1 & ipur==l))
% Encoder gains

Gd(1)=l; % Inner on PL (DM) (x)

Gd(2)=1; % Outer on PL (DM) (z)
% Strain gauge gains

Gd(3)=1;

Gd(4)=1;

Gd(5)=1;

Gd(6)=1;

Gd(7)=1;

Gd(8)=1;

Gd(9)=1;

Gd(10)=1;

% Rate gyro gains
Gr(1)=1;

Gr(2)=1;

Gr(3)=1;

Gr(4)=1;
Gr(5)=1;

Gr(6)=1;

(Vertical and horizontal in struts 1-4 )

% V (1)

% H (1)

% V (2)

% H (2)

% V (3)

% H (3)

% V (4)

% H (4)

PL (DM)
PL (DM)
PL (DM)
TWA (x)
TWA (y)

TWA (z)

(x)
(y)
(z)

% Accelerometer gains
Ga(1)=1;

Ga(2)=1;
Ga(3)=1;

Ga(4)=1;

Ga(5)=1;

Ga(6)=1;

Actuator gains

Gct(1)=1;

Gct(2)=l;

Gct(3)=1;

Gct(4)=1;

Gct(5)=l;
end

In node 2 (x)
In node 2 (y)
In node 2 (z)
In node 4 (x)

In node 4 (y)

In node 4 (z)

Inner gimbal on
Outer gimbal on

TWA (x)

TWA (y)

TWA (z)

PL 2 (DM) (x)
PL 2 (DM) (z)

function [Gd,Gr,Ga,Gct]=gains2(volts,ipur)

% This function stores gains G for outputs (and inputs):
% [AMPLIFIED OUTPUT] = G * [OUTPUT IN REAL VOLTS]

% This is for the 2 payload case

% The inputs are: volts (==1 - Volts; ==O - Physical units)

% ipur (Reflects the purpose: ==O - for y; ==1 - for B,C,D)

% The outputs are: Gains G for sensors and actuators

% Call: [Gd,Gr,Ga,Gct] =gains2(volts,ipur)

% ----------------------------------------
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if ((volts==O & ipur==O) I (volts==1 & ipur==l))

% Encoder gains

Gd(1)=l; % Inner on PL 2 (DM) (

Gd(2)=1; % Outer on PL 2 (DM) (

Gd(11)=1; % Inner on PL 1 (EM) (

Gd(12)=i; % Outer on PL 1 (EM) (

% Strain gauge gains (Vertical and horizontal in

Gd(3)=l; % V (1)

Gd(4)=l; % H (1)

Gd(5)=I; % V (2)

Gd(6)=l; % H (2)

Gd(7)=l; % V (3)

Gd(8)=I; % H (3)

Gd(9)=l; % V (4)

Gd(10)=l; % H (4)

% Rate gyro gains

Gr(1)=1; % On PL 1 (EM) (x)

Gr(2)=l; % On PL 1 (EM) (y)

Gr(3)=I; % On PL 1 (EM) (z)

Gr(4)=l;

Gr(5)=1;

Gr(6)=1;

% Accelerometer gains

Ga(1)=1;

Ga(2)=1;

Ga(3)=1;

Ga(4)=1;

Ga(5)=1;

Ga(6)=1;

% Actuator gains

Gct(1)=1;

Gct(2)=1;

Gct(3)=1;

Gct(4)=1;

Gct(5)=1;

Gct(6)=1;

Gct(7)=1;
Gct(8)=1;

Gct(9)=l;
end

x)
z)
x)
z)
struts 1-4 )

TWA (x)

TWA (y)
TWA (z)

node 2 (x)

node 2 (y)

node 2 (z)

node 4 (x)

node 4 (y)

node 4 (z)

Inner gimbal

Outer gimbal

TWA (x)

TWA (y)

TWA (z)

Inner gimbal

Outer gimbal
Active strut

on PL 2 (DM) (x)

on PL 2 (DM) (z)

on PL 1 (EM) (x)

on PL 1 (EM) (z)

vertical
Active strut horizontal

function [Gd,Gr,Ga,Gct]=gains3(volts,ipur)

% This function stores gains G for outputs (and inputs):

% [AMPLIFIED OUTPUT] = G * [OUTPUT IN REAL VOLTS]

% This is for the 2 payload case

% The inputs are: volts (==1 - Volts; ==O - Physical units)

% ipur (Reflects the purpose: ==0 - for y; ==1 - for B,C,D)

% The outputs are: Gains G for sensors and actuators
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% Call: [Gd,Gr,Ga,Gct]=gains3(volts,ipur)

% . . . . . . . . . . . . .

if ((volts==O & ipur==O) I (volts==1 & ipur==l))
Encoder gains

Gd(1)=l; % Inner Primary (x)
Gd(2)=l; % Outer Primary (z)
Gd(3)=l; % Inner Secondary (x)
Gd(4)=l; % Outer Secondary (z)

% Strain gauge gains (Vertical and horizontal in struts 1-4 )
Gd(5)= 1; % H (1)
Gd(6)= 1; X V (1)
Gd(7)= 1; % H (2)
Gd(8)= 1; % V (2)
Gd(9)= 1; % H (3)
Gd(10)=l; % V (3)
Gd(11)=1; s H (4)

Gd(12)=1; % V (4)
Rate gains

Gr(1)=1; % Inner Primary (x)
Gr(2)=l; % Outer Primary (z)
Gr(3)=l; % Inner Secondary (x)
Gr(4)=l; % Outer Secondary (z)
Gr(5)=1; % On Payload (x)
Gr(6)=l; % On Payload (z)
Gr(7)=1; % On Bus (x)
Gr(8)=l; % On Bus (y)
Gr(9)=l; % On Bus (z)
Gr(10)=l; % On RWA Tach x
Gr(11)=1; % On RWA Tach y
Gr(12)=1; % On RWA Tach z

% Accelerometer gains

% Actuator gains
Gct(1)=1;

Gct(2)=1;

Gct(3)=1;

Gct(4)=1;

Gct(5)=1;

Gct(6)=1;

Gct(7)=1;

Gct(8)=1;

Gct(9)=1;
end

Inner Primary gimbal (x)
Outer Primary gimbal (z)
Inner Secondary gimbal (x)
Outer Secondary gimbal (z)
RWA (x)
RWA (y)

RWA (z)

Active strut (y)
Active strut (z)

function [Acl,Bcl,Ccl,Dcl]=...

gimcon(A,B,C,D,NM,nO,indd,ict,dlk,NP,evalfem,volts,config)

% This function closes the servo loops around the gimbals

The inputs are: A (A matrix containing sensor dynamics & time delays)
% B (B matrix containing sensor dynamics & time delays)
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% C (C matrix containing sensor dynamics & time delays)

% D (D matrix containing sensor dynamics & time delays)

% NM (Numbers of modes)

% nO (number of rigid body modes)

% indd (Numbers of displacement sensors)

% ict (Numbers of actuators)

% dlk (Vector of servo loop time delays in gimbals)

% NP (Order of Pade approximation)

% evalfem (String variable to load FEM-file)

% volts (==1 - Volts, ==0 - Physical units)

% config (==2 - DM/EM)

% The outputs are: Acl,Bcl,Ccl,Dcl (Closed loop system matrices)

% Call: [Acl,Bcl,Ccl,Dcl]=...

% gimcon(A,B,C,D,NM,nO,indd,ict,dlk,NP,evalfem,volts,config)

------------------------------------------------------------------

[n,na]=size(B);
[ny,n]=size(C);

Nm=length(NM)-nO;

flagd=O;

if (all(indd-=1))

inddl=[inddl 1];

flagd=flagd+1;

dmie=ny+flagd;
else

dmie=find(indd==1);
end

if (all(indd-=2))

inddl=[inddl 2];

flagd=flagd+1;

dmoe=ny+flagd;

else

dmoe=find(indd==2);
end

if (all(indd-=11))

inddl=[inddl 11];

flagd=flagd+1;
emie=ny+flagd;

else

emie=find(indd==11);
end

if (all(indd"=12))
inddl=[inddl 12];

flagd=flagd+1;
emoe=ny+flagd;

else

emoe=find(indd==12);
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end

f laga=O;

if (all(ict-=1))

ictl=[ictl 1] ;
flaga=flaga+1;

dmig=na+flaga;

else
dmig=find(ict==1);

end

if (all(ict-=2))

ictl=[ictl 2] ;
flaga=flaga+1;

dmogna+flaga;

else

dmog=find(ict==2);

end

if (all(ict-=6))

ictl=Eictl 6] ;
flaga=flaga+l;

emigna+flaga;

else

emig=find(ict==6);

end

if (all(ict-=7))

ictl=[ictl 7];

flaga=flaga+1;

emog=na+flaga;

else

emogfind(ict==7);

end

if (flagd>O I flaga>O)
[w,z,bd,br,ba,bct]=fdm2(evalfem,NH,inddl, [J, [])iCtl);
[Md,Mr,Ma,Mct]=nums(indd1, [] , [,ictl);
[Cdx,Crv,Cax,Cav,Ba]=cml(length(NM),Md,Mr,Ma,Hct,Wz,bd,br,ba,bct);

Br=Ezeros(nO,Mct) ;Ba(1:no,:)];
Bf=Ezeros(Nm)Mct); Ba(nO+1:Nm+nO,:)J;

B1=[Br;Bf];
if Md>O;

Cdr=[Cdx(: ,1:nO) zeros(Md,no)];
Cdf=[Cdx(: ,nO+1:nO+Nm) zeros(Md,Nm)];
Cd=[Cdr Cdf];
Dd=zeros(Md,Hct);

end
C1=assemy(Hd,Q,Q,Mct,Cd', [] , 1)';
D1=assemy(Md,O,O,Mct,Dd , [1. [])';
if volts==1;

end
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Bi=[B [Bl;zeros(n-2*(Nm+nO),flaga)]];

Cl=[C;Cl zeros(flagd,n-2*(Nm+nO))];

DI=[D zeros(ny,flaga);zeros(flagd,na) Di];

else

BI=B;

C1=C;

DI=D;

end

Cr=Cl([dmie dmoe emie emoe],1:nO)

Cf=Cl([dmie dmoe emie emoe],nO+1:Nm+nO)

Cl(ny+l+flagd:ny+4+flagd,:)=[zeros(4,nO) Cf zeros(4,Nm) Cf zeros(4,n-2*Nm)];

D1(ny+l+flagd:ny+4+flagd,:)=zeros(4,na+flaga);

[K,sig,gain]=gpd(volts,config);

F=zeros(4,8);

F(3,3)=K(1,1);
F(4,4)=K(2,1);
F(1,1)=K(3,1);

F(2,2)=K(4,1);

F(3,7)=K(1,2);

F(4,8)=K(2,2);

F(1 ,5)=K(3,2);

F(2,6)=K(4,2);

F=F*gain;

[Atd,Btd,Ctd,Dtd,in,out]=delfid([1 2 3 4],NP,dlk);

inp=sig*[dmig dmog emig emog];

out=[dmie dmoe emie emoe (ny+flagd)+[1 2 3 4]];

[Acl,Bcl,Ccl,Dcl]=feedback(A,B1,C1,D1,Atd,Btd*F,Ctd,Dtd*F,inp,out);

Bcl(:,[emig emog dmig dmogl)=sig.*Bcl(:,[emig emog dmig dmog])*diag(K(:,1));

Bcl(: , dmig emig emog])=-Bcl(: , [dmig emig emog]);

Ccl([dmie dmoe emie emoe],:)=Ccl(Edmie dmoe emie emoe],:)*gain;

Bcl=Bcl(:,1:na);

Ccl=Ccl(l:ny,:);

Dcl=Dcl(1:ny, :na);

function [Acl,Bcl,Ccl,Dcl=...

gimcon3(A,B,C,D,NM,nO,indd,indr,ict,dlk,NP,evalfem,volts,config)

%-----------------------------------------------------------------------------

% This function closes the servo loops around the gimbals and reaction wheels

% The inputs are: A (A matrix containing time delays)

% B (B matrix containing time delays)

% C (C matrix containing time delays)

Y D (D matrix containing time delays)

% NM (Numbers of modes)

% nO (number of rigid body modes)

% indd (Numbers of displacement sensors)

% indr (Numbers of rate sensors)

% ict (Numbers of actuators)
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% dlk (vector of computer time delays for gimbal servos)

% NP (Order of Pade approximation)

% evalfem (String variable to load FEM-file)

% volts (==1 - Volts, ==0 - Physical units)

% config (==3 - EM)

% The outputs are: Acl,Bcl,Ccl,Dcl (Closed loop system matrices)

% Call: [Acl,Bcl,Ccl,Dcl]=...

% gimcon3(A,B,C,D,NM,nO,indd,indr,ict,dlk,NP,evalfem,volts,config)

[n,na]=size(B);

[ny,n]=size(C);

Nm=length(NM)-nO;

% Find all the required displacement sensors

flagd=O;

if (all(indd-=1))

inddl=[inddl 1];

flagd=flagd+1;

pied=ny+flagd;

else

pied=find(indd==1);

end

if (all(indd-=2))

inddl=[inddl 2];

flagd=flagd+i;

poed=ny+flagd;

else

poed=find(indd==2);

end

if (all(indd'=3))

inddl=[inddl 3];

flagd=flagd+1;

sied=ny+flagd;

else

sied=find(indd==3);

end

if (all(indd-=4))

inddl=[inddl 4];

flagd=flagd+i;

soed=ny+flagd;

else

soed=find(indd==4);
end

% Find all the required rate sensors
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flagr=0;

if (all(indr-=l))

indrl=[indrl 1];

flagr=flagr+1;

pier=ny+flagr+flagd;

else

pier=find(indr==l)+length(indd);

end

if (all(indr-=2))
indrl=[indrl 2];

flagr=flagr+l;

poer=ny+flagr+flagd;
else

poer=find(indr==2)+length(indd);

end

if (all(indr-=3))

indrl=[indrl 3];

flagr=flagr+1;

sier=ny+flagr+flagd;
else

sier=find(indr==3)+length(indd);
end

if (all(indr~=4))

indrl=[indrl 4];

flagr=flagr+l;

soer=ny+flagr+flagd;
else

soer=find(indr==4)+length(indd);
end

if (all(indr~=10))

indrl=[indrl 10];

flagr=flagr+1;

tachx=ny+flagr+flagd;
else

tachx=find(indr==10)+length(indd);

end

if (all(indr =11))

indrl=[indrl 11ii];

flagr=flagr+1;
tachy=ny+flagr+flagd;

else

tachy=find(indr==11)+length(indd);
end

if (all(indr-=12))

indrl=[indrl 12];

flagr=flagr+1;

tachz=ny+flagr+flagd;
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else
tachz=find(indr==12)+length(indd);

end

%. Find all the required actuators

flaga=O;

if (all(ict"=1))

ictl=[ictl 1];

flaga=flaga+1;

pig=na+flaga;
else

pig=find(ict==1);
end

if (all(ict-=2))

ictl=[ictl 2];

flaga=flaga+1;

pog=na+flaga;
else

pog=find(ict==2);
end

if (all(ict'=3))

ictl=[ictl 3];

flaga=flaga+1;
sig=na+flaga;

else

sig=find(ict==3);
end

if (all(ict-=4))

ictl=[ictl 4];

flaga=flaga+1;

sog=na+flaga;

else

sog=find(ict==4);
end

if (all(ict'=5))

ictl=[ictl 5];

flaga=flaga+1;
rwax=na+flaga;

else

rwax=find(ict==5);
end

if (all(ict-=6))
ictl=[ictl 6];

flaga=flaga+1;
rway=na+flaga;

else

rway=find(ict==6);
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end

if (all(ict-=7))

ictl=[ictl 7] ;
flaga=flaga+1;

rwaz=na+flaga;
else

rwaz=find(ict==7);
end

Y Form the augmented system

if (flagd>O I flaga>O I flagr>O)
if config==3

[w,z,bd,br,ba,bct]=fdm3(evalfem,NM, inddl, indrl, [], ictl);

end

[Md,Mr,Ma,Mct]=nums(inddl,indrl, [],ictl);

[Cdx,Crv,Cax,Cav,Ba=cml(length(NM),Md,Mr,Ma,Mct,w,z,bd,br,ba,bct);
if flaga>O

Br=[zeros(nO,Mct);Ba(l:nO,1:Mct)];

Bf=[zeros(Nm,Mct); Ba(nO+1:Nm+nO,:)];

B1=[Br;Bf] ;
elseif (flagd>O I flagr>O);

if Md>O;

Cdr=[Cdx(:,1:nO) zeros(Md,nO)];

Cdf=[Cdx(:,nO+l:nO+Nm) zeros(Md,Nm)];

Cd=[Cdr Cdf] ;
Dd=zeros(Md,Mct);

end

if Mr>O

Crr=[zeros(Mr,nO) Crv(:,1:nO)];
Crf=[zeros(Mr,Nm) Crv(:,nO+l:nO+Nm)];

Cr=[Crr Crf];

Dr=zeros(Mr,Mct);

end

C1=assemy(Md,Mr,O,Mct,Cd' ,Cr', [])';

D1=assemy(Md,Mr,O,Mct,Dd' ,Dr',[])';
end

if volts==1;

[B1,C1,Di]=resabcd(inddl,indrl, [],ictl,B1,C1,D, config,2*length(NM));

end

Bi=[B [B1;zeros(n-2*length(NM),flaga)]];

CI=[C;C1 zeros(flagd+flagr,n-2*length(NM))];
DI=[D zeros(ny,flaga);zeros(flagd+flagr,na) Di];

else

BI=B;
C1=C;

DI=D;

end

% Remove Uncontrollable Rigid Body Modes and Reaction Wheel angle states

[n,nall=size(B1);
[nyl,n]=size(Cl);
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if (nO==O) Y Do it interactively (Put this in later if necessary)

elseif (nO==3)

A=A(4:n,4:n);

B1=BI(4:n,:);

C1=C1(:,4:n);

elseif (nO==13)

Ar=[zeros(10,10) eye(1O);zeros(10,20)];
Af=A(27:n,27:n);

A=[Ar zeros(20,length(Af));zeros(length(Af),20) Af];

if config==3

[w,z,bd,br,ba,bctl=fdm3(evalfem, [1:131, [], [1:141, [], 1) ;
end

[Cdx,Crv,Cax,Cav,Bal=cml(13,0,14,0,0,zeros(13,1) ,zeros(13,1), [1 ,br, [1, [1);
[u,s,v]=svd(Crv');
br=inv(u)*B1(14:26,:);crd=C1(:,1:13)*inv(u');crr=Cl(:,14:26)*inv(u');

B1=[zeros(10O,nal);br(1:10,:);B(27:n, :)];
C1=[crd(:,1:10) crr(:,1:10) CI(:,27:n)];
[n,nal]=size(Bi);

[nyl,n=size(C1);
% A=A(4:n,4:n);

% BI=BI(4:n,:);

% C1=C1(:,4:n);
end

n=length(B1);

gimb=[pig pog sig sog];

rwa=[rwax rway rwazl;
encd=[pied poed sied soed];

encr=[pier poer sier soer];
tach=[tachx tachy tachz];

% Put encoders in degrees

C1([encd encrl , :)=180/pi*C1([encd encrl],:);

% Get gains

[K,sig,gainl=gpd(volts,config);

% Close Reaction Wheel speed control servos

Bi(:,rwa)=Bl(:,rwa)*K(5,1);
for i=1:3

A=A-K(5,2)*(Bi(:,rwa(i))*Cl(tach(i),:));
end

B1(:,rwa(3))=B1(:,rwa(3))/1.5;

% Put computational delay (+ zero-order hold) in gimbals
for i=1:4

[At,Bt,Ct,Dtl=delfid(1,NP,dlk(i));
A=[A Bl(:,gimb(i))*Ct;zeros(NP,n) At];
Bl=[Bl;zeros(NP,na+flaga)];
B1(:,gimb(i))=[B1(1:n,gimb(i))*Dt;Bt];

C1=[C1 Di(:,gimb(i))*Ct];
D1i(:,gimb(i))=D1(:,gimb(i))*Dt;
n=n+NP;

end
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% Put computational delay + zero-order hold in RWA

for i=1:3

[At,Bt,Ct,Dt]=delfid(1,NP,dlk(i+4));

A=[A Bl(:,rwa(i))*Ct;zeros(NP,n) At];

Bi=[B1;zeros(NP,na+flaga)] ;

Bi(:,rwa(i))=[B1(1:n,rwa(i))*Dt;Bt];

C1=[C1 Dl(:,rwa(i))*Ct];

D1(:,rwa(i))=D1(:,rwa(i))*Dt;

n=n+NP;

end

% Close gimbal servo loops

gi=K(1:4,1)*gain;

g2=K(1:4,2)*gain;

for i=1:4

A=A-Bl(:,gimb(i))*(gl(i)*Cl(encd(i),:)+g2(i)*C1(encr(i),:));

Bl(:,gimb(i))=Bl(:,gimb(i))*gl(i)/1.5;

end

Acl=A;

Bcl=B1(:,1:na);

Ccl=Cl(1:ny,:);

Dcl=D1(1:ny,1:na);

function [KPD,sig,gain]=gpd(volts,config)

% This function stores gains K for PD-controller:

% (First column - angles, Second column - rates)

The inputs are:

The outputs are:

volts (==1 - Volts,==O - Physical units)

config(==2 - DM/EM,==3 - EM)

KPD (Gains in PD-controller)

sig (sign to use in feedback)

gain (gain to convert encoders to proper units)

% Call:

KPD= [-10 -

-18 -I

-2.5 -

2.5

gain=7.1667;

sig=-1;
if (config==3)

KPD=[-2.0
-2.0

-2.0

2.0

4.3

4.3

[KPD,sig,gain]=gpd(volts,config)

0.2

0.5

0.1

0.1];

EM inner

EM outer

DM inner
DM outer

-0.1
-0.1
-0. 1

0.1

1.0

1.0

Primary inner
Primary outer
Secondary inner

Secondary outer
RW speed control (forward backward)
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4.3 1.0];
gain=1.0;

sig=-1;
end
if volts==0

if (config==2)
[Kd,Kr,Ka,Kctl=units2(0,0);

Kct=Kct([6 7 1 2]);

elseif (config==3)

[Kd,Kr,Ka,Kct=units3(0,0);

Kct=Kct([1 2 3 4 5 6 7])
end

Kct=[Kct Kct];
KPD=KPD.*Kct;

end

function [Gs,Gct,Ks,Kct]=guv(volts,ipur,indd,indr,inda,ict,config)

% ---- _,,,,_ ___-------------- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

% This function provides vector of gains (G) and convertion factors (K)

% for chosen configuration of sensor and actuators

% The inputs are: volts (==1 - Volts; ==0 - Physical units)

% ipur (Reflects the purpose: ==0 - for y; ==1 - for B,C,D)

% indd (Numbers of displacement sensors)

% indr (Numbers of rate sensors)

% inda (Numbers of acceleration sensors)

% ict (Numbers of actuators)

% config(==1 - DM,==2 - DM/EM,==3 - EM)

% The outputs are: G and K for sensors and actuators

% Call: [Gs,Gct,Ks,Kct]=guv(volts,ipur,indd,indr,inda,ict)

[Md,Mr,Ma,Mct]=nums(indd,indr,inda,ict);

if config==1
[Gd,Gr,Ga,Gct]=gainsl(volts,ipur);

[Kd,Kr,Ka,Kct]=unitsl(volts,ipur);

elseif (config==2)

[Gd,Gr,Ga,Gct]=gains2(volts,ipur);

[Kd,Kr,Ka,Kct]=units2(volts,ipur);

elseif (config==3)

[Gd,Gr,Ga,Gct]=gains3(volts,ipur);

[Kd,Kr,Ka,Kct]=units3(volts,ipur);
end

if Md>O;

Gdd=Gd(indd);

Kdd=Kd(indd);

end;
if Mr>O;
Grr=Gr(indr);
Krr=Kr(indr);
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end

if Ma>O;

Gaa=Ga(inda);

Kaa=Ka(inda);
end

Gs=assemy(Md,Mr,Ma,Mct,Gdd,Grr,Gaa)';

Ks=assemy(Md,Mr,Ma,Mct,Kdd',Krr',Kaa')';

Gct=Gct(ict);

Kct=Kct(ict);

function [ain,bin,cin,din]=intfid(indr)

% This function provides a model of the stabilized integrator

% for all RG involved

% The inputs are: indr (Numbers of rate sensors (RS))

% The outputs are: ain,bin,cin,din (Matrices in linear system)

% Call: [ain,bin,cin,din]=intfid(indr)

Mr=length(indr);

Mr2=2*Mr;

[a,b,c,d]=stabint;

ain=zeros(Mr2,Mr2);
bin=zeros(Mr2,Mr);

cin=zeros(Mr,Mr2);

din=zeros(Mr,Mr);
for i=1:Mr

is=(i-1)*2+1;

it=is+1;

II=is:it;

ain(II,II)=a;

bin(II,i)=b;

cin(i,II)=c;

din(i,i)=d;
end

function [A,B,C,D]=...

modext(isensd,idelay,integ,ibess,A,B,C,D,indd,indr,NP,dls,cfb,config)

% This function expands the linear model if sensor dynamics, time

% delays, integrators, or Bessel filters are appended

% The inputs are: isensd (==1 - sensor dynamics, ==0 - no sensor dynamics)

% idlsen (==1 - time delays, ==0 - no time delays)

% integ (==0 - Stabilized integrators are off

% ==1 - stabilized integrators are on,

% but dynamics are not accounted for

% ==2 - stabilized integrators are on,

% dynamics are included in A,B,C and D)
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% ibess (==1 - Bessel Filters, ==0 - no Bessel Filters)
% A,B,C,D (linear model of structural dynamics)

% indd (Numbers of displacement sensors)

% indr (Numbers of rate sensors)

% NP (Order of Pade approximation)

% dls (Vector of time delays in each sensor)

% cfb (Vector of Bessel Filter corner frequencies)

% config (==I-DM,==2-DM/EM,==3-EM)

% The outputs are: A,B,C,D (Expanded linear model)

% Call: function [A,B,C,D]=...

% modext(isensd,idelayl,integ,ibess,A,B,C,D,indd,indr,NP,dls,config)

[Md,Mr]=nums(indd,indr,[],[]1);
if (config==3)

k=find(indd>4);sens=k;dis=k;

k=find(indr>4 & indr<10);sens=[sens k+Md];rate=k;

else

dis=find(indd>4);Ne=Md-length(dis);

sens=[sens indr+Md];Ner=Mr-length(indr);rate=indr;
end

if (isensdlidelaylinteglibess)
if isensd==1

[as,bs,cs,ds,in]=sdfid(dis,rate,config,Md);

[A,B,C,D]=seriesm(A,B,C,D,as,bs,cs,ds,in);
end

if idelay==1

[ads,bds,cds,dds,in]=delfid(sens,NP,dls);

[A,B,C,D]=seriesm(A,B,C,D,ads,bds,cds,dds,in);
end

if integ==2

[ain,bin,cin,din]=intfid(rate);

[A,B,C,D]=seriesm(A,B,C,D,ain,bin,cin,din,rate+Md);
end

if ibess==1

[ab,bb,cb,db,in]=besfid(sens,cfb);

[A,B,C,D]=seriesm(A,B,C,D,ab,bb,cb,db,in);

end
end

function [Md,Mr,Ma,Mct]=nums(indd,indr,inda,ict)

% This function provides the number of sensors and actuators

% The inputs are: indd (Numbers of displacement sensors)

% indr (Numbers of rate sensors)
% inda (Numbers of acceleration sensors)
% ict (Numbers of actuators)

% The outputs are: Md (Number of displacement sensors)

% Mr (Number of rate sensors)
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% Ma (Number of acceleration sensors)

% Mct (Number of actuators)

% Call: [Md,Mr,Ma,Mctl=nums(indd,indr,inda,ict)

% -- -- -- - -- -- -- -- - -- -- -- -- - -- -- -- ---------------------------

Md=length(indd);

Mr=length(indr);

Ma=length(inda);

Mct=length(ict);

function [B,C,D]=resabcd(indd,indr,inda,ict,B,C,D,config,N)

% The function rescales matrices A,B,C,D for current units

% The inputs are: indd (Numbers of displacement sensors)

% indr (Numbers of rate sensors)

% inda (Numbers of acceleration sensors)

% ict (Numbers of actuators)

% B,C,D (Matrices in linear model)

% config (==1 - DM,==2 - DM/EM,==3 - EM)

% N (Number of states in model)

% The outputs are: B,C,D (Rescaled matrices in linear model)

% Call: [B,C,D]=resabcd(indd,indr,inda,ict,B,C,D,config,N)

- -----------------------------------------------------------------

[Gs,Gct,Ks,Kct]=guv(1,1,indd,indr,inda,ict,config);

C=((Gs.*Ks)*ones(1,N)).*C;

B=(ones(N,1)*(Gct.*Kct')).*B;
D=(Gs.*Ks)*(Gct.*Kct').*D;

function Ef,z,bb] =rg6dyn

------------------------------------------------------------------

% This function stores parameters of second order internal dynamics

% for all 6 rate gyros

% EM or DM Payload: gyro c, gyro a, gyro b is the order

% Bus: gyro b, gyro a, gyro c is the order

% The outputs are: f (frequencies)

% z (damping ratios)

% bb (gains)

Call: Ef z bb]=rg6dyn
- -----------------------------------------------------------------

fm=[294.0531 304.106 297.823 296.5663 294.0531 296.5663];

zm=[.3 .35 .34 .32 .32 .31];
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bbm=[447.566 458.169 454.982 457.49 453.613 453.062];

OD=[3 1 2 5 4 6]; % The order of RG

f(OD)=fm; % Put in the proper order (PL-B / a-b-c)

z(OD)=zm;

bb(OD)=bbm;

function RM=rotmat

% This function stores the rotation matrix for DM TWA

% Call: RM=rotmat

RM = [ 0 0.577286 -0.816539
0.707146 0.577286 0.408271

-0.707146 0.577286 0.408271 ];

function RM=rotmat2

% This function stores the rotation matrix for EM RWA

% Call: RM=rotmat2

RM = [ 0 0.577286 0.816539

0.707146 0.577286 -0.408271

-0.707146 0.577286 -0.408271 ];

function [as,bs,cs,ds,in]=sdfid(dis,rate,config,Md)

% This function creates a state space representation of any sensor dynamics

% The inputs are: dis (Numbers of displacement sensors)

% rate (Numbers of rate sensors)

% config(==1-DM,==2-DM/EM,==3-EM)

% Md (Total number of displacement sensors)

% in (Numbers of system inputs with sensor dynamics)

% The outputs are: as,bs,cs,ds (Matrices in linear system)

% Call: [as,bs,cs,ds,in]=sdfid(dis,rate,config)

if (config==3)
return

else

[f6,z6,bb6]=rg6dyn;
f=f6(rate);
z=z6(rate);
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kmat=diag(f.^2);
cmat=diag(2*f.*z);

Nrs=length(f);

as=[zeros(Nrs,Nrs) eye(Nrs); -kmat, -cmat];

b=diag(f);

c=diag(f);
bs=[zeros(Nrs,Nrs); b] ;
cs=[c zeros(Nrs,Nrs)];
ds=zeros(Nrs,Nrs);

in=rate+Md;
end

function [A,B,C,D]=seriesm(A1,B1,C1,D1,A2,B2,C2,D2,outputsl)

% This function is a modification of MATLAB's series.m

% The inputs are: Matrices A,B,C and D of 1st and 2nd systems

% Numbers of selected outputs of the 1st system

% The outputs are: Matrices A,B,C and D of the extended system

% Call: [A,B,C,D]=seriesm(A1,B1,C1,D1,A2,B2,C2,D2,outputsl)

[Ny,Nx]=size(C1);

inputs2=1 : length(outputsl);

[A,B,Cr,Dr]=series(A1,B1,C1,DI,A2,B2,C2,D2,outputsl,inputs2);
Nxe=length(A);

C=zeros(Ny,Nxe);

C(:,1:Nx)=C1;

D=D1;
C(outputs1,:)=Cr;

D(outputsl,:)=Dr;

function [Ar,Br,Cr,Dr]=stabint

% This function stores A,B,C,D matrices of stabilized integrator

% Call: [Ar Br Cr Dr]=stabint

Ar=[O 1; -0.03553 -0.2666];

Br= O; 1] ;
Cr= O 1];
Dr=O;

function [Kd,Kr,Ka,Kct]=unitsl(volts,ipur)

h This function stores coefficients K for the 1 payload case:

% [VOLTS] = K * [PHYSICAL UNITS] (sensors)

Y [PHYSICAL UNITS] = K * [VOLTS] (actuators)
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% The inputs are: volts (==1 - Volts; ==0 - Physical units)

% ipur (Reflects the purpose: ==0 - for y; ==1 - for B,C,D)

% The outputs are: Coefficients K for sensors and actuators

% Call: [Kd,Kr,Ka,Kctl=unitsl(volts,ipur)

[f,z,bb]=rg6dyn; % Internal dynamics of 6 RG

Uen=l.; % Encoders
Ustgn=2241.75; % Strain gauges [V/strain]

Urg=(bb./f).^2; % 6 Rate gyros [V/(rad/s)]

Uacc=1.3762; % Accelerometers [V/(m/s^2)]

Ugimbdm=.9867*.6581; % Gimbal (DM) [Nm/V]

Ubus=3*.03; % TWA [Nm/V]

Kd=[Uen*ones(2,1); Ustgn*ones(8,1)];

Kr=Urg';

Ka=Uacc*ones(6,1);

Kct=[Ugimbdm*ones(2,1); Ubus*ones(3,1)];

function [Kd,Kr,Ka,Kct]=units2(volts,ipur)

% This function stores coefficients K for the 2 payload case:
% [VOLTS] = K * [PHYSICAL UNITS] (sensors)

% [PHYSICAL UNITS] = K * [VOLTS] (actuators)

% The inputs are: volts (==1 - Volts; ==0 - Physical units)

% ipur (Reflects the purpose: ==0 - for y; ==1 - for B,C,D)

% The outputs are: Coefficients K for sensors and actuators

% Call: [Kd,Kr,Ka,Kct]=units2(volts,ipur)

[f,z,bb]=rg6dyn; % Internal dynamics of 6 RG

Uen=l.; % Encoders

Ustgn=2241.75; % Strain gauges [V/strain]
Urg=(bb./f).^2; % 6 Rate gyros [V/(rad/s)]
Uacc=1.3762; % Accelerometers [V/(m/s^2)]
Ugimbdm=.9867*.6581; % Gimbal (DM) [Nm/V]
Ugimbem=.2647*.4675*5; % Gimbal (EM) [Nm/V]
Ubus=3*.03; % TWA [Nm/V]
Uactstr=0.004993; % Active strut [Nm/V]

Kd=[Uen*ones(2,1); Ustgn*ones(8,1); Uen*ones(2,1)];
Kr=Urg';

Ka=Uacc*ones(6,1);

Kct=[Ugimbdm*ones(2,1); Ubus*ones(3,1); Ugimbem*ones(2,1); Uactstr*ones(2,1)];
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function [Kd,Kr,Ka,Kctl=units3(volts,ipur)

% This function stores coefficients K for the EM:

% [VOLTS] = K * [PHYSICAL UNITS] (sensors)

% [PHYSICAL UNITS] = K * [VOLTS] (actuators)

% The inputs are: volts (==1 - Volts; ==0 - Physical units)

% ipur (Reflects the purpose: ==0 - for y; ==1 - for B,C,D)

% The outputs are: Coefficients K for sensors and actuators

% Call: [Kd,Kr,Ka,Kct]=units3(volts,ipur)

% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Uen=1.;
Ustgn=500;

Urg=[12.319*2.30
12.319*2.70

12.319*2.59

12.319*2.32

12.319*2.39];

Utach=0.093424;

Ugimb=0.2625;

Ubus=O.10306;

Uactstr=0.12233;

Kd=[Uen*ones(4,1);

Kr=[Uen*ones(4,1);

Kct=[Ugimb*ones(4,

Encoders

Strain gauges

5 Rate gyros
[V/strain]

[V/(rad/s)]

Tachometers [V/(rad/s)]

Gimbals [Nm/V]

RWA [Nm/V]

Active strut [Nm/V]

Ustgn*ones(8,1)];

Urg; Utach*ones(3,1)];

1); Ubus*ones(3,1); Uactstr*ones(2,1)];
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Appendix D

Catalog of Transfer Functions

This is a catalog of the MACE Engineering Model transfer functions. In all plots, the updated 1-g
finite element model is the solid line and the experimental data is the dotted line. The first group of
transfer functions is from the gimbals (primary then secondary) and reaction wheels to the payload
and bus rate gyros for both XY- and Z-axis behavior (a total of 35 transfer functions). The second
group is the Z-axis actuators to the Z-axis strain gages (12 transfer functions).
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Primary Z-Axis Gimbal to Payload X-Axis Rate Gyro
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Primary Z-Axis Gimbal to Bus X-Axis Rate Gyro
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Primary Z-Axis Gimbal to Bus Z-Axis Rate Gyro
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Secondary X-Axis Gimbal to Bus Y-Axis Rate Gyro
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Secondary Z-Axis Gimbal to Bus Z-Axis Rate Gyro
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X-Axis Reaction Wheel to Payload Z-Axis Rate Gyro
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X-Axis Reaction Wheel to Bus Y-Axis Rate Gyro
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Y-Axis Reaction Wheel to Payload X-Axis Rate Gyro
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Y-Axis Reaction Wheel to Bus X-Axis Rate Gyro
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Y-Axis Reaction Wheel to Bus Z-Axis Rate Gyro
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Z-Axis Reaction Wheel to Payload Z-Axis Rate Gyro
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Z-Axis Reaction Wheel to Bus Y-Axis Rate Gyro
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Primary Z-Axis Gimbal to Z-Axis Strain Gage Strut 1
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Primary Z-Axis Gimbal to Z-Axis Strain Gage Strut 3
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