
Parallel Orbit Propagation
and The Analysis

of Satellite Constellations

by

Scott Thomas Wallace

B.S. Engineering Science,
United States Air Force Academy

(1993)

SUBMITTED TO THE DEPARTMENT OF AERONAUTICS AND
ASTRONAUTICS IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE
at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
June 1995

© Scott Thomas Wallace

Signature of Author ,
Department of Aeronautics and Astronautics

June 1995

Certified by. , ... .
Dr. Ronald J. Proulx

Thesis Supervisor, CSDL

Certified by
Dr. Paul J. Cefola

Thesis Supervisor, CSDL
Lecturer, Department of Aeronautics and Astronautics

Accepted by V

MASSACHJSETTS ST.UTE Professor Harold Y. Wachman
.'"' airman Departmental Graduate Committee

JUL 0 7 1995

ARCHIVES.





Parallel Orbit Propagation And The Analysis
of Satellite Constellations

by

Scott Thomas Wallace

Submitted to the Department of Aeronautics and
Astronautics on May 18, 1995 in partial fulfillment of the

requirements for the Degree of Master of Science

ABSTRACT

This thesis describes the development of a scalable, portable parallel orbit
propagator, with application to the analysis of satellite constellations. The
Draper Semianalytic Satellite Theory (DSST) is coupled with the Parallel Virtual
Machine (PVM) software package to demonstrate the power of the networked
computing paradigm. The PVM/DSST is employed to analyze the stability of
the 840 satellite Teledesic constellation, as described in the 1994 FCC filing, under
real-world perturbations. Combined with genetic algorithm optimization
software, the frozen orbit of a satellite in the presence of arbitrary perturbations
is easily determined. This concept is extended to automate constellation design
for optimal performance.

Thesis Supervisor: Dr. Ronald J. Proulx
Title: Technical Staff Engineer, The Charles Stark Draper Laboratory, Inc.

Thesis Supervisor: Dr. Paul J. Cefola
Title: Lecturer, Department of Aeronautics and Astronautics

Program Manager, The Charles Stark Draper Laboratory, Inc.





Acknowledgments

This project represents the effort of many who gave a great deal of time and effort. Many thanks
to my advisor, Paul Cefola, for the opportunity to work here and the providing the focus to keep
me on schedule. Equal thanks to Ron Proulx for keeping my math straight and continually
offering new ideas. Thanks also go to the numerous projects that supported this work at Draper.
My experience with the RADARSAT development, under Rick Metzinger, provided the
opportunity to be involved in a customer oriented software engineering project. Technical advice
from Mr. Herman Rufenacht (SPAR) also contributed to the Draper experience. Dave Carter at
Draper Labs offered helpful insight throughout the project. Thanks to Phillips Laboratory for
getting all parties involved interested in parallel computing and MIT's Laboratory for Computer
Science for parallel computing instruction in addition to CM-5 access. The work of Jason Schott
and Andrei Schor in genetic algorithms provided an excellent application for this investigation.
The SPI effort offered insight into the software configuration management problem and ideas into
doing things better. Thanks especially to Draper Laboratory's DFY95 IR&D Task 615, Parallel
Processing and Astrodynamics, that provided direct support for this work.

A special thanks to the ACME Lab and all those who supported it. Stuart Roseman and Kyle
McDonald provided extensive technical support in all areas of first rate software development.
Thanks to James Beaupre for insight into computer science and parallel computing, as well as
providing excellent coffee. To my comrades in arms: those of 13 Bigelow (Kent, Scott, Anthony,
Jason) who will all make the world a safer place. Scott Carter must receive a double mention for
all the minutes I borrowed. To Matt Lobner for waking me up and keeping me strong. To my
comrades not of arms (Chris Stoll, Chris Sabol, Carmen, Kazumi Masuda) many thanks for
technical help, cultural enrichment, and many good times. Thanks to wonderful Nimi, my
parents, and Clint, who always had faith and overwhelming support and encouragement.
Finally, to the Lord, who was always there.

This thesis was prepared at the Charles Stark Draper Laboratory, Inc., with support from Draper
Laboratory's DFY95 IR&D Task 615.

Publication of this thesis does not constitute approval by The Charles Stark Draper Laboratory or
the Massachusetts Institute of Technology of the finding or conclusions contained herein. It is
published for the exchange and stimulation of ideas.

I hereby assign copyright of this thesis to the Charles Stark Draper Laboratory, Inc., Cambridge,
Massachusetts.

Scott T Wallace, Lt. USAF

Permission is hereby granted by the Charles Stark Draper Laboratory, Inc., to the Massachusetts
Institute of Technology to reproduce any or all of this thesis.





Contents

1.0 Introduction .................................................................................... 17

1.1 Satellite Constellations .......................................................................... 17

1.1.1 Multiple Satellite Constellations ..................................... . 17

1.1.2 Global Personal Communication Systems ............................. 18

1.2 Orbit Propagation .......................................... ............... 22

1.2.1 Influence of Computing Capability on Propagation

M ethods ........................................ ...................... 22

1.2.2 M ethods of Orbit Propagation ................................................. 23
1.2.2.1 The Equations of Motion ........................................ 23
1.2.2.2 The VOP Equations ...................................... .... . 25
1.2.2.3 Lagrange Planetary Equations ....................................... 27
1.2.2.4 General and Special Perturbation Theories ................ 28
1.2.2.5 Sem ianalytic Techniques ..................................... 32

1.2.3 Draper Semianalytic Satellite Theory ................................... 33
1.2.3.1 O verall O utline ........................................................ ....... 33
1.2.3.2 Equations of Averaging ........................................ . 34
1.2.3.3 A veraging ................................... . ................... 4 1
1.2.3.4 The Averaged Equations of Motion ............................... 42
1.2.3.5 Short Periodic Functions ................................................ 44
1.2.3.6 Interpolation ..................................... .. ........... 46

1.2.4 Orbital Perturbations ........................................ ...... ... 49
1.2.4.1 Secular, Long Periodic and Short Periodic Effects........ 49
1.2.4.2 Effects Considered ...................................................... 51
1.2.4.3 Effects of Orbit Perturbations on Satellites................. 52
1.2.4.4 Decomposition of J2 into its Average Contribution ...... 53

1.3 Parallel Computing ........................................ 57

1.3.1 Previous availability ...................................... ......... .... 58

1.3.2 Current Status ..................................... ................... 59

1.3.3 Current use of Parallel Computing ..................................... 60

1.4 Thesis Overview ....................................................... 60

2.0 Parallel Computing .................................. .................... 63

2.1 Parallel Computing Concepts ............................................ 63

2.1.1 Definitions ................................... 63

2.1.2 Measuring Performance of Parallel Algorithms ................... 64

2.1.3 Granularity and Communication Costs............................. 65

2.1.4 Levels of A bstraction .............................................................. 68



2.2 Parallel Hardware ...................................................... 70

2.2.1 Computer Memory/ Basic Computer Architecture ............ 70

2.2.2 Parallel Computing on the Chip ...................................... . 71

2.2.3 Multiprocessor Memory Use ................................... .... 73
2.2.3.1 Shared Memory ............................. 73
2.2.3.2 Distributed Memory ................................ ............ 74

2.2.4 N etw ork D esign ........................................ .............................. 76

2.2.5 Flynn's Taxonom y ............................................ ....................... 79
2.2.5.1 SIM D ........................................................ . ................... 80
2.2.5.2 MIMD ...................... ................................. 81

2.3 Programming in a Parallel Environment ..................... ........................ 82

2.3.1 Levels of Program m er Control ................................................. 82

2.3.2 Data Parallel M odel ................................................................ 83

2.3.3 Multi-Threading Models ................................................ 84

2.3.4 M essage Passing .............................................................. 85

2.4 Specific Approaches Considered for IPC ..................................... . 87

2.4.1 Availability ................................................... 87

2.4.2 FO RTRAN 90 / H PF ................................................................ 90

2.4.3 C M M D ......................................... .......................................... 90

2.4.4 PV M ........................................................................................... 91

2 .4 .5 M P I ............................................................................................... 94

2.4.6 SOLARIS Threads ..................................... .... ........... 94

2.4.7 LIN D A ................................................................... 95

3.0 A Parallel Semi-Analytic Satellite................ ....... 97

3.1 Software Development Goals ...................................................... 97

3.1.1 Longevity .................................................................................. 97

3.1.2 Portability ...................................................... 99

3.1.3 Simple Design and Interface.................................... 99

3.1.4 Low Startup Costs.............................. 99

3.1.5 Perform ance Increase.............................................................. 100

3.2 Software Design Process .................................................. 100

3.2.1 Target Environment Selection ............................. ........ 100

3.2.2 Chosen Design ........................................ 101
3.2.2.1 Paradigm Choice .............................................. 01
3.2.2.2 M essage Passing System .......................... ........ ......... 103

3.2.3 PVM and the DSST .............................. 104



3.2.4 Software Implementations of the DSST .............................. 104

3.2.5 Software Design Considerations ................... ..................... 105
3.2.6 Load Balancing Methods for Parallel Computing .................. 107
3.2.7 Programming Language Choice .................... .................... 109

3.3 Software Description ..................................... 109
3.3.1 Top Level Software Design ....................................... ............ 109

3.3.2 Process Distribution Manager: const_prop ......................... 114

3.3.3 Propagator Shell: sat_prop........................ 116

3.3.4 Modifications to the DSST ..................................... 119

3.3.5 Support Software ............................... 121

3.4 Validation of the PVM/DSST ................................................................ 122

3.4.1 Comparison to previous tests ..................................... 123
3.4.2 Comparison to GTDS................................ 124

3.5 PVM/DSST Performance Analysis ...................................................... 126

3.5.1 Test Environment Description ..................................... 126

3.5.2 Serial Test C ase ........................................................................ 134

3.5.3 Overhead ..................................... 135

3.5.4 Speed-Up and Efficiency ........................................................... 139

3.5.5 Performance Conclusions ..................................... 143

4.0 Satellite Constellation Design ..................................... 145

4.1 Design of Homogeneous Satellite Constellations.............. 145

4.1.1 Satellite Communication Systems .................................... 146
4. 1.1.1 Requirements of Communication Satellites ....... . 147
4.1.1.2 Elevation Angles ..................................... 148

4.2 Orbit Optimization Design Tool ..................................... 151
4.2.1 Genetic Algorithm Optimization Method ........................... 152

4.2.2 Software Description ..................................... 153
4.2.2.1 Interface to Genetic Algorithm Software ................. 153
4.2.2.2 Modification of Propagator ........................................ 156

4.3 Frozen Orbit Design ................................. 156

4.3.1 Use of the Optimization Tool ........................................ 156

4.3.2 The Frozen O rbit ..................................................................... 157

4.3.3 Frozen Orbit Design using the Orbit Optimization

T o o l ......................................................................................................... 15 8



4.4 Application of the PVM/DSST and the Optimization Tool:
The Teledesic System ............................................................................. 166

4.4.1 Overview of Satellite System Design ................................... 167

4.4.2 Assumptions .................................... 168

4.4.3 Error Sources in Elevation Angles ..................................... 169
4.4.3.1 Spherical Earth Assumption......................... 171
4.4.3.2 Error in satellite position ........................................... 174
4.4.3.3 Length of time between each angle evaluation .............. 175
4.4.3.4 Grid spacing .................................................. 178

4.4.4 Impact of Pert'urbations on Nominal System ......................... 179
4.4.4.1 Error in Minimum Elevation Angle Metric ................... 179
4.4.4.2 Minimum Elevation Angles ................................... .182

4.4.5 Constellation Modifications.......... ........................... 186
4.4.5.1 Initial Cost Function Design ..................................... 188

4.4.6 Conclusions .................................... 194

5.0 Conclusions and Future Work ...................................... ..... 197

5.1 Conclusions .......................................................................... ...................... 197

5.1.1 PVM/DSST ..................................... 197

5.1.2 Orbit Optimization Tool ..................................... 199

5.1.3 Teledesic ..................................... 200

5.2 Future Work ...................................... 202

5.2.1 PVM/DSST ........................................ 202

5.2.2 Orbit Optimization Tool................................ 203

5.2.3 Teledesic ..................................... 204

Appendix A: Keplerian and Equinoctial Elements ...................... 205

Appendix B: Software Listings ......... .................................... 209

B.1 Message Passing Listings ...................................... 210

B.1.1 Program const_prop ..................................... 210

B.1.2 Program constopt....................... 214

B.1.3 Program rdconst ..................................... 218

B.2 DSST Shell Listings ........................................ ............................... 220

B.2.1 Subroutine sat_prop.F............................................................... 220

B.2.2 Subroutine satopt.F.............................. .............................. 22,

B.2.3 Subroutine set_satopt.F ........................ 232

B.2.4 Subroutine crrequest tim es.F ........................ ................... 233



B.2.5 Subroutine sort_times.F ..................................... 235

B.3 Example PVM/DSST Input File ..................................... 237

Appendix C: Data Files ......................... .............. 245

C.1 Software Validation Tests ..................................... 245
C.1.1 Comparison to Orbit_Propagator_Services (OPS) ............... 245
C.1.2 Comparison to GTDS............................................................. 245

C.2 Performance Analysis ..................................... 246

C.3 Teledesic Analysis ..................................... 246

Appendix D: Using the PVM/DSST ..................................... 247

D.1 Executable Description ..................................... 247

D .2 Input File D escription .............................................................................. 248

D.2.1 constprop Input Files ...................................................... 248

D.2.2 Genetic Algorithm (GA) Input Files .................................... 249

D.3 Executing the PVM/DSST ..................................... 250

D.3.1 Environment Setup ........................................................... 251

D.3.2 Building PVM ..................................... 251
D.3.3 Starting the Configuration Management Tool ...................... 252

D.3.4 Executing the Software .......................................................... 253
D .3.4.1 Serial Test Case ............................................................. 254
D.3.4.2 GA Test Case ..................................... 255
D.3.4.3 constprop Test Case ..................................... 257

References ..................................... 259

11



Figure 1-1:

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1-2:

1-3:

1-4:

1-5:

2-1:

2-2:

2-3:

2-4:

2-5:

Figure 2-6:

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

2-7:
2-8:

2-9:
2-10

2-11

2-12

2-13

3-1:
3-2:
3-3:
3-4:

3-5:
3-6:

3-7:
3-8:

3-9:

3-10
3-11

3-12

3-13

List of Figures

Number of Satellites for Each of the Proposed

G PC S [47, 48, 66] ................................................................................... 19

Delay Time Vs Orbital Period ...................................... 20

The Relationship of the Disturbed and Two-Body Orbits .......... 26

Flow of the DSST .................................................................................. 48

Short Periodic, Long Periodic, and Secular Variations ................... 50

Fine and Coarse Grained Parallelism ........................................ 66

Speedup Vs Number of Processors [15] ...................................... 68
Hierarchy of the Levels of Abstraction ....................................... 69

Computer Memory Hierarchy [42, 52] ......................... ............... 70

Conceptual Illustration of a Shared Memory Parallel

Computer..........................................................74

Conceptual Illustration of a Distributed Memory Parallel

Computer..........................................................75

Network Capacities [13] ......................................... ....... 76

A Six Node Linear Array and Complete Graph .............................. 77

A 3-d Hypercube ..................................................... 78

: Continuum of User Control in Parallel Programming Models ...... 83

: D ata Parallel Exam ple................................. ................................. ... 84

: Message Passing Example............................. .... .............. 86

: Levels of Interfaces to Communication Systems ........................... 89

Sample GTDS card deck [35] ........................................ ......... 10

The pool of tasks algorithm. ....................................... ....... 101
Program Flow for the Hostless Programming Model.................. 11(
Program Flow for the Host-Node Programming Model ................... 11
PVM/DSST Structure with the Hostless Programming Model ....... 11
Flow of the parallel orbit propagator ................................................ 11

External Interface to O PS. .................................................................. 11
Extern al interface to sat_prop ....................................................... ......... 1
Preprocessor m odifications ................................................................ 12(

: Four day coast input file................................ ..... ............. 12

: PVM/DSST Input File for Validation of Software ........................ 12

: H ardw are Configuration .................................................................... 12

: Structure of tim ing ................................................... 13

35

2

3
6
7
0

3
5

7

0



Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

3-14:

3-15:

3-16:

3-17:

3-18:

3-19:

3-20:
3-21:

3-22:
3-23:
3-24:

PVM/DSST Input File for Performance Testing ........................... 131
Structure of time_sat_opt .................................... 132

Example script to perform timing tests .................... .................... 133

Example crontab File ..................................... 134

Overhead Comparison: System 1 and System 4 ........................... 137

Overhead Comparison: System 2 and System 5 .......................... 137

Overhead Comparison: System 3 and System 6. .......................... 138
Execution times vs. number of satellites for systems 7-10 ........... 140

Execution times vs. number of satellites for systems 11-14 ............ 141

A ctual Speed-up ....................................................... .... .................. 142

Efficiency ....................................... 143

Figure 4-1: "Checklist " for Orbit / Constellation Design [55] .......................... 146

Figure 4-2: Elevation Angle Calculation ..................................... 149

Figure 4-3: Elevation Angle Calculation using the Spherical Earth

A ssum p tion ....................................................................................... .... 150

Figure 4-4 : Interface Between GA and PVM/DSST ........................................ 154

Figure 4-5: Slave Executable .............................................................................. 155

Figure 4-6 Input file for Generating Element Histories from the Nominal

Satellite State ....................................... 159

Figure 4-7: Element Histories of Nominal Satellite ..................................... 160

Figure 4-8: Argument of Perigee Vs eccentricity ..................................... 160

Figure 4-9: Example GA input file ..................................... 161
Figure 4-10: DO Output Report .................................. 162

Figure 4-11A: Nominal and Optimized Element Histories........................... 164

Figure 4-11B: Nominal and Optimized Argument of Perigee Vs

Figure 4-12:

Figure 4-13:

Figure 4-14:

Figure 4-15:

Figure 4-16:

Figure 4-17:

Figure 4-18:

Eccentricity ....................................... 164

Maximum Variations ..................................... 165

Argument of Perigee Vs Eccentricity with Perturbations ...... ..... 166

The Teledesic Satellite ................................................ ........ ............. 167

Error Generated by Ignoring the Difference Between

Geodetic and Geocentric Latitude . .................................... 172

Difference in Elevation Angle Due to Site Position

D ifferen ce. ......................................................................................... 173

Geometry of Elevation Angle Rate Calculation ............................ 177

Elevation Angle Rate Vs Elevation Angle .................................... 180



Figure 4-19:

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

4-20:

4-21:

4-22:

4-23:

4-24:

4-25:

4-26:

4-27:

4-28:

4-29:

4-30:

4-31:

4-32:

A-i:

D-1:

D-2:

Figure D-3:

Initial Minimum Elevation Angles Vs Latitude for the

Nominal Constellation ..................................... 183

Nominal Constellation Element Histories ..................................... 184

Nominal Constellation Element Histories ........................................ 184

Minimum Elevation Angles of Nominal Constellation Five

Years after Epoch.................................................................... 185

Element Histories Without Solar Radiation Pressure ...................... 186

Element Histories Without Solar Radiation Pressure ............... ...... 187

Element Histories Without Solar Radiation Pressure ................... 187

dome.in for Constellation Optimization ............................................ 189

'Optimized' Elements at Epoch .................................... 190

'Optimized' Constellation Element Histories ............................... 191
'Optimized' Constellation Element Histories .................................... 191

'Optimized' Minimum Elevation Angles ........................................ 192

Maximum Deviation from Sun Synchronous Node for

Nominal and 'Optimized' Constellations.................. 193

Minimum Elevation for Nominal and Optimized System ........... 194

Geometry of Keplerian Elements [38] ................................... 206

'dome.in' Input File .................................. 249

Nominal vs. Optimized Eccentricity and Argument of

Perigee.................................. 258
Argument of Perigee vs. Eccentricity .................................... 258



List of Tables

Table 1-1:
Table 1-2:

Table 1-3:

Table 1-4:

Table 1-5:

Table 2-1:

Table 2-2:
Table 2-3:

Table 2-4:

Table 2-5:
Table 2-6:
Table 2-7:

Table 2-8:
Table 3-1:

Table 3-2:

Table 3-3:
Table 3-4:

Table 3-5:

Table 3-6:
Table 3-7:
Table 3-8:
Table 3-9:
Table 3-10

Table 3-11

Table

Table

Table

Table

3-12

3-13

3-14
3-15

Table 3-16

Orbit types of five GPCS systems ..................................... ....... 21
Lifetimes per satellite for the proposed communication

system s [37] ........................................................ 51

Force per Unit Mass (meters/sec2)[19].......................... ........... 52

Effect of Perturbations [19, 20] ....................................... ........ 53
Workstation cost comparison [59] .................................... .... 59

Description of Computer Components ...................................... 71

Example Stages of an Instruction ....................................... 72
Performance Metric Definitions for Network Topologies [18] ....... 76

Network Topologies [17, 18, 71] ...................................... ....... 79

Flynn's Taxonomy .................................................... 80
Parallel Software Models Considered ....................................... 88

Sample CMMD Functions [31] ..................................... ......... 91

Platforms For Which PVM 3.3.7 is Available [30] ........................... 93
Development Options ..................................... 101

Impact of Paradigm Choice on Project Goals .................................. 102

Advantages and Disadvantages of Approaches Considered ............ 106
Constellation Global Data ....................................................... .......... 114

Satellite Local Data ..................................................... 115

Argument Description for Subroutine satprop ............................. 118
D ata Files................................... 118

Hardwired Propagator Options .................................... 119

List of Additional Software Developed .................... .................... 122
: Comparison of const_prop against Landsat 6 test cases

after Four Day Coast ..................................... 124
: Comparison of const_prop against Landsat 6 Test Case.

Impulsive Burn 1000 Seconds After Epoch and Compare

10,000 Seconds After Epoch .................................... 124

: Comparison of Results between GTDS and the PVM/DSST .......... 126

: Computer Description ..................................... 127

: Description of Systems Timed .................................... 128
: Serial Test Case Execution Times and Normalized Processor

V a lu es .......................................................................................... ........ 13 5

: Overhead Values per Machine .................................... 138



Table 3-17: Efficiencies of the PVM/DSST on One Machine ............................... 139

Table 3-18: Speed-up and efficiency of the PVM/DSST ................................... 142

Table 4-1: Satellite Keplerian Elements used for ...................................... 158

Table 4-2: Dz Output File ...................................... 163

Table 4-3: Optimization Results for Iterations 2,3 and 4 ................................... 163

Table 4-4: Teledesic Orbital Parameters [66] ...................................... 168

Table 4-5: Error and Assumption Summary ............................................. 181

Table 4-6: Error Bounds for Comparing Constellations ..................................... 181

Table 4-7: Summary of Perturbations and Metric Evaluation Conditions........ 182

Table A-i: Description of Keplerian Elements [38] ..................................... 205

Table A -2: Equinoctial Elem ents [49] .............................................. .................. 207

Table B-1: Data Files used for OPS to PVM/DSST Comparison ........................ 245

Table B-2: Data Files used for GTDS to PVM/DSST Comparison ................. 245

Table B-3: Data Files used for Performance Analysis ........................................ 246

Table B-4: Data Files used in the Teledesic Analysis ................................. ...... 246

Table D-l: Executable Description ...... .......................... 248

Table D-2: Data Files Description .......................................................................... 249

Table D-3: 'dome.in' Description ................................. 250

Table D -4: Project D escriptions........................................................ ............. 253



1.0 Introduction

1.1 Satellite Constellations

1.1.1 Multiple Satellite Constellations

Satellite constellations, groupings of more than one satellite, require
extensive computing facilities and personnel to track, maintain, and control.
Some constellations consist of many functionally similar satellites in similar
orbits, while other constellations include a wide variety of satellites in
various orbits.

Many different requirements mandate that satellites be grouped into
constellations. Some of the reasons for grouping satellites into constellations
are discussed below.

* Satellite Functionality

* Collision Avoidance / Prediction

* Military Security

Satellite Functionality : Multiple satellites can be used as a single system. The
GPS (Global Positioning System) constellation provides position
determination over the entire planet and to other satellites in space. The Air
Force, in charge of GPS, must carefully maintain the orbits of all these
satellites because of their vital role for a number of critical navigation
systems. Communication satellites can work together to provide whole Earth
coverage. Functionally grouped satellite constellations will increase in
number as technology develops and demand for worldwide services grows.

Collision Avoidance / Prediction: All objects in orbit are considered a
constellation for the collision prediction and avoidance problem. As the
number of satellites in space grows, the possibility of collision greatly
increases. According to K6nig-Lopez, over 3,600 launches since 1957 have
placed approximately 23,000 objects into Earth orbit. Only 500 of those objects



are currently operational satellites [6]. Non-operational objects consist of dead
payloads, rocket stages, and other debris. If objects less than 10 cm in diameter
are included, the number of objects rises to 400,000 [6]. Because these small
objects are traveling at high velocity, they can cause serious damage to other
space objects. Manned missions must be especially aware of orbital debris.

Military Security: Since 1959, the military has kept track of the satellites in
space for a variety of reasons [1]. Satellite orbits are used to predict the
function of foreign satellites, for example. Cataloging all space objects
requires the military to view all objects in space as a heterogeneous
constellation. Additionally, many critical military systems depend on

satellites. Military communication, surface imaging, and missile launch
detection are all critical functions performed by military satellites. As a result,
the military must track, maintain and control many heterogeneous
homogeneous constellations.

All the constellations described above require flight dynamics processes to
manage their satellites. Orbit propagation, defined in section 1.2, is critical to
predict the future location of satellites. Orbit determination from raw
observations keeps the satellite information current so the accuracy of future
predictions does not degrade beyond requirements. Maneuver planning
keeps a satellite in the correct orbit. Telemetry uplink and downlink requires
satellite positions be accurately predicted into the future so that data transfer
can be planned effectively. It is desirable to not reproduce all the work
performed for a single satellite when maintaining an entire constellation of
satellites. However, the process of scaling-up a system from one satellite to
multiple satellites is not a simple challenge.

1.1.2 Global Personal Communication Siystems

The recent explosion of interest in developing global personal
communications systems (GPCS) presents the newest challenge facing
designers of ground based satellite maintenance systems. A system of
satellites that allows mobile users on the ground to obtain voice and data
communication anywhere, anytime promises to fill the skies in the near



future. Many existing systems were designed to support only one satellite and
are not capable of handling a multiple satellite constellation. The Radarsat

Flight Dynamics System, for example, provides a variety of functions for the

Canadian synthetic aperture radar satellite, RADARSAT. Observation pre-

processing, orbit determination, ephemeris generation, ground track

generation, burn planning, eclipse entry and exit were among the required

capabilities of this system [46]. The system was designed to support one

satellite. Because the architecture of the system separated processes into

communicating services, it could be redesigned to support multiple satellites

on multiple computers. However, it would not make sense to duplicate the

single satellite system for each satellite supported.

Figure 1-1 illustrates the size in terms of the number of satellites for several of

the currently proposed communication networks.

840

66

0 48
C 16

, 12

Figure 1-1: Number of Satellites for Each of the Proposed GPCS [47, 48, 66]

These constellations contain more than twice the current number of

operating satellites. Each system will require tracking, control and

maintenance of each of their satellites.

Satellites provide capability for long distance communication which far

exceeds wire and microwave systems in range and coverage [21. Many

previous satellite based communication systems have used a



Geosynchronous orbit [37]. Although the high altitude of a geosynchronous

orbit provides a large coverage area and eliminates the atmospheric drag

perturbation, geosynchronous orbits also create many problems for

communication system design. The high altitude increases the delay time in

signal transmission [371. Figure 1-2 compares the minimum delay times

introduced by a signal traveling to and from a geosynchronous satellite. Note

this does not include the additional time required for transmission through a

ground network.

Delay Time vs Orbital Period

GEO

025 Satellites

02

E 015
GEO Geosynchronoub Earth orbit

MEO 1hEO Medum Earth Orba
01 MEO

SSatellites LEO Low Earth Orbit
LEO

0 05 Satellites0.05

C\, C) V n O r C Oa 0 4 -U n I I cD o, M 0 , M V

---- - - CU Cj C

Orbital Period (hrs)

Figure 1-2: Delay Time Vs Orbital Period

For some applications, more than one 'hop' is necessary. A hop represents a

signal traveling from the Earth to the satellite and back again [2]. The delay

time at geosynchronous altitudes, almost a quarter of one second per hop,

degrades voice communication if multiple hops are used [2]. The high

altitude of geosynchronous satellites also requires more power and gain in

the communications link, both on board the satellite and at the Earth

transmitting and receiving station. Because of these disadvantages, most of

the proposed personal communication systems are planning on using LEO or

MEO orbits for their constellations. However, the lower altitudes have forced

designers to use many satellites to achieve world wide availability.



1.1.3 Design and Analysis of Satellite Constellations

The orbit design for satellite-based communications systems can be viewed as
a constrained optimization problem. Each system described in Figure 1-1 has
a different orbit design. Each designer optimized the constellation within the

constraints of the communications system. Some of the systems have similar
orbits and vary the number of satellites used. Other systems have chosen

different orbits. The weight given to each of the performance parameters

along with the system constraints determined the optimal constellation
design. A few factors that influence the design of constellation orbits can be
seen below.

* System cost

* Area covered

* Launch costs

* Number of satellites in view from the ground

* Percent of coverage above a necessary elevation angle

* System lifetime

* Minimum separation between satellites

* System availability

The large number of parameters that are involved in the GPCS constellation

design make the problem very complicated. Table 1-1 groups the five

constellations listed in Figure 1-1 according to similarities in their orbit
design.

Table 1-1: Orbit types of five GPCS systems

System Type

Teledesic LEO

Iridium LEO

Globalstar LEO

Ellipso MEO

Odyssey MEO



LEO systems choose to minimize power requirements in the

communications link but are forced to use many more satellites than their

higher altitude competitors. MEO systems favor fewer but more complex

satellites. Ellipso proposed a unique solution using high eccentricity orbits to

concentrate their coverage in the Northe' n hemisphere [48).

1.2 Orbit Propagation

Orbit propagation is the technology of 'computing, from prescribed initial

conditions, the value at a specified time of the vehicle state and, optionally,

the state partial derivatives' [49]. In many ways, the orbit propagation method

used in a ground system is the cornerstone function from which other

capabilities are derived. Orbit propagation is required to perform every

satellite maintenance function. Orbit determination, for example, depends

heavily on the propagation method. Orbit determination uses raw satellite

observations to 'estimate the satellite orbit and associated parameters' [49].

The best state is chosen by minimizing the difference between observations

and their predicted value; the predicted value is generated by the orbit

propagation method.

1.2.1 Influence of Computing Capability oi Propagation Methods

In 1975 Wackernagel listed five factors that 'influence the performance of an

orbit determination system' [36].

* The completeness of the mathematical theory.

* The models used to approximate the physical world and the

statistical nature of the data used for data processing.

* The quality of the data.

* The available computing hardware.

* The number of objects supported.

Because of the heavy use of computers involved with orbit propagation-and

determination, methods must fit the computation facilities available. When

many objects are to be propagated and their states determined, the balance has



been achieved by trading accuracy for computational speed. Historically,
computer time was precious and, in some cases, thousands of objects had to

be tracked. Propagation methods were reduced in accuracy to meet the

minimum required levels while using the limited computer time.

Computing availability, the physical models and mathematical theory can be

interchanged to provide a propagation system for a multi-satellite

constellation. When maximizing accuracy without concern for

computational speed, orbit propagation is done using purely numerical

techniques, or direct numerical integration of the equations of motion with

very high precision physical models. Accuracy of these techniques depends

on the force model, integration method, and the time step used. Some

situations may be better served by mean elements, however. Unfortunately,
computing limitations restrict the way orbit propagation is done, especially

when large numbers of satellites are involved.

Parallel computing changes the way designers look at computing availability.

Using good parallel software design, more computing capability is available by

simply adding additional processors to the computer system, without any

changes in the software. The concept of infinite computing power becomes

more accessible, bringing with it new and better ways of solving problems.

1.2.2 Methods of Orbit Propagation

1.2.2.1 The Equations of Motion

Central to understanding orbit propagation techniques is understanding the

equations that describe satellite motion. Work with these equations has been

ongoing since 1666, when Newton first discovered the law of gravitation [38].
Starting with the law of gravitation, the equations of relative motion are

easily derived after making the two-body assumptions [38]. A full description

of this derivation is available in many texts, such as Bate, Mueller and White

[38).

I Mean elements describe the average, or mean, satellite position. Maneuver planning is an
example where mean elements can be used more successfully than osculating elements, which
describe the true state of the satellite (33).



Adding the perturbative effects to the two-body motion results in equations

-P1-1.

where r is a three element vector describing the position of a
satellite in Cartesian space.

r is the second derivative of the position with respect to
time

r is the two body force on the satellite
r3

p is the gravitational constant Gm, with gravitational
constant G and the mass of the central body nm.

q describes the sum all the perturbative forces on a satellite.

The solution of equation 1-1, without the perturbative force q , is a conic

section [38]. This discussion can be simplified to include only satellites that

remain in a finite space about their central body. The escape trajectories, the

parabolic and hyperbolic solutions to equation 1-1, will not be considered.

Considering only ellipses (circles can be considered special forms of ellipses),

the position of a satellite can be described at any instant in time using five

constants that describe the shape and orientation of the ellipse, and one

variable that describes the position of the satellite in the ellipse. There are

many sets of parameters, often referred to as element sets, that will describe

the orbit and the position of the satellite at any point in time. The Keplerian

orbital elements are the most familiar since they describe the position of the

satellite in geometric terms. An additional element set of interest in this

thesis is the equinoctial elements. Both sets are described in Appendix A.



1.2.2.2 The VOP Equations

The variation of parameters (VOP) method of formulating orbital motion

can be very helpful, especially when effect of the perturbations is small

compared to the unperturbed motion [38]. The VOP equations describe the

perturbed motion of a satellite in terms of one of the element sets. Therefore,
the physical effects of perturbations on a satellite's orbit are more easily seen
than in equation 1-1. The following derivation presents the basic

formulation of the VOP equations of motion, as presented by Battin [5, 39].

Separating equation 1-1 into two first order equations gives equations 1-2.

dr d' p [dR 1RS -+--r = a(t+ (1-2
dr dt r' " dr

where:
r = r(t,) is the position vector

S= v(t, a) is the velocity vector

a is a vector containing the six orbital elements

(a,e,i,R2, r) . The quantity - is the time of

pericenter passage.

[dR 1
da]TJ is the gradient of the disturbing potential. The

disturbing potential contains the conservative
perturbations to the two-body motion.

ad is the sum of the non-conservative disturbing
accelerations.

By the chain rule of differentiation, the ordinary derivatives of the position

and velocity can be transformed into partial derivatives [5].

dr dr dr da

di dr da dt
-1-3,

dv dv dv da

di dr da di



At any instant in time, the disturbed positions and velocities are che same as

the two-body position and velocity. The orbital elements of the disturbed and

two body satellites are different from the two body orbital elements, however

[391. This is illustrated in Figure 1-3.

Disturbed Orbit

Position of Satellite Two Body Orbits
at time to

At any time t, there is a two-body orbit
with the same r and v but different
orbital elements.

Satellite

Figure 1-3: The Relationship of the Disturbed and Two-Body Orbits

If the two-body orbit is used in equations 1-3, the second term on the right

hand side of both equations will go to zero; the vector g does not change

with time for two-body motion. Thus, the partial derivative of the two-body

position and velocity vector is equal to the ordinary derivative.

As shown in Figure 1-3, at any point in time, velocity vector of the perturbed

orbit is the same as the velocity vector of the two body orbit. Therefore, the

partial and ordinary derivatives of the position vector are equal for both the

disturbed motion as well as the two-body motion. This is shown in equation

1-4a.

dr =dr
di tdi

(1-4a)

The partial derivative of the velocity vector with respect to time represents

the two-body acceleration of the satellite [5]. This is shown is equation 1-4b.

at time t1



- = -r (l-4b)
dr r'

Rearranging equation 1-3 and applying equations 1-4a and 1-4b results in
equations 1-5.

dr dr dr da
dt dt da dt

dv dv dv dax dRy (1-5)

di dr da dt dr 1

Equations 1-5 are the "required six scalar differential equations to be satisfied

by the vector of orbital elements [5]." This fact can be seen more clearly in

equations 1-6 and 1-7.

dr da
-- =-0

dcx dt (1-6)

d, a +[dR]
da dt [d (1-7)

1.2.2.3 Lagrange Planetary Equations

The Lagrange Planetary Equations are a form of the VOP equations which
include only the conservative perturbations on a satellite. Setting a = 0 in

equation 1-7 gives equations 1-8.

dr d =0
da dt (l-8a)

di da [dRT

da dt L dr (I-8b



Equations 1-8 can be put into a more familiar form by first multiplying

dr Tv d T
equation 1-8a by and equation 1-8b by - ,and then subtracting the

first from the second. The result is shown in equation 1-9 [5].

dca dRY
dt LdaJ (1-9)

dr Tv d] dr
where: L= - -

The matrix L is known as the Lagrange matrix [5]. The Lagrange matrix is a

six by six matrix which is skew symmetric matrix and not an explicit function

of time [5]. To solve directly for the rate of change of the orbital elements, the

inverse of the Lagrange matrix must be determined. This matrix is known as

the Poisson matrix, shown in equation 1-10 [39].

dc = PTdR
dt =[da (1-10)

where:
P = -L' or pT = L' as P and L are skew symmetric.

P is known as the Poisson matrix.

Battin describes the derivation of the Keplerian VOP equations from equation

1-9, known as Lagrange's Planetary Equations [5]. More important to this

study, however are the VOP equations in equinoctial elements. These

equations can be found in Cefola and Broucke [74].

1.2.2.4 General and Special Perturbation Theories

Historically, orbit propagation could account for perturbations using two

distinct methods, general and special perturbations [4, 5]. General

perturbation methods allow for the prediction of a satellite state to be attained

directly, without using numerical integration methods. Satellite states are



represented as a function of time. Special perturbations, on the other hand,

calculate the satellite state rates and then step forward in time using a

numerical integration method. Both methods have advantages.

General methods use the relatively small difference between Keplerian and

non-Keplerian potentials on a satellite. The potential on a satellite can be

expressed in Equation 1-11 [4].

U = U,, + R

(1-11)

where: U is the total potential on a satellite

U,, is the potential from the spherical central body

R is the potential due to the perturbations.

The Keplerian solution for the motion of a satellite only includes the two-
body potential U,,. General theories represent the solution to the perturbed

motion (the potential U) of a satellite as slowly changing orbital elements.
This can be done because of the large difference between U,, and R [4]. This

view of orbital perturbations expresses only the conservative forces on a

satellite. Non-conservative forces, drag and solar radiation pressure are

included in several of the general perturbation theories but many

assumptions must be made to include non-conservative forces [75].

When using general perturbation methods the amount of processing

required for the calculation of a future state of a satellite is independent of the

amount of time between the initial state and the request time. This can be a

valuable tool and is the largest single advantage of general perturbation

theories. However, because most theories in use truncate at relatively low

powers of a small parameter, the accuracy of these techniques is limited. This

is especially apparent when compared to purely numerical methods for long

time spans. Additionally, developing a general perturbation method requires

significant effort to create analytic formulations for each perturbation that is

included in the theory.



Special perturbations require less mathematical development in the theory

although the accurate determination of the perturbative accelerations can be

very complex. The simplicity of the theory, once the perturbative forces are

calculated, can be seen more easily in Equation 1-1, the general form of the

equation of motion of a satellite in Cartesian space.

A Cowell technique uses the numerical propagation scheme to integrate

equation 1-1 forward in time. This method can result in very accurate
predictions if the quantity q is thoroughly developed. As the time difference

between the initial state and the requested value increases, more computer

processing is required since each integration-step requires one or more re-

calculations of the rates at that point of time. The re-calculation of the rates

are very expensive in terms of computer time.

Step sizes in a numerical integration scheme are determined by the frequency

content in the rates, the desired accuracy and the method of integration used

[7]. This can be easily seen in the mathematics of a numerical integration

method. Given the initial condition x,, ,describing the state of a satellite at

time 't , the differential equation

x' = f(x,t)

with the initial conditions x = x,, at time t = tot (1-12)

where: x' is the rate of change of x at time t

can be solved for a future time, t,, + At. Note the i'th rate is dependent on the

entire state x. After taking n steps of size At , the solution to the equation at

time 1,, + nAt will be found. Of course, using a numerical integration method

to solve Equation 1-12 introduces error. The error in each state is described in

Equation 1-13 [7].



x, t, + nAt)- x, = T + R+ 09 (1-13)

where: x, (t, +nAt) is the true solution at time t,, + nAt

x,, is the numerically integrated state at time t, + nAt

T is the truncation error in the i'th element

R is the round off error in the i'th element

9 is the error in the i'th element due to
evaluating f, at (x,,t) rather than (x(t,. +nAt),t).

Truncation error is described as the difference between the numerical method

used and the infinite series Taylor expansion [7]. A numerical method

solution is normally described as a 'nth order method', as the truncation

error differs from the numerical solution by the time step to the power of

n+1. For example, Runge Kutta Four matches the Taylor series expansion

through fourth order.

The round off error is dependent on the number of decimal places used in

performing the calculations. It limits the total number of steps that can be

taken so that the solution can still be trusted [7]. Modern computers now

have very good precision, but this limit still prevents step sizes from

becoming ,ceedingly small.

Finally, the error 0 describes the error introduced by evaluating f, using the

incorrect value of x. This error and the truncation error control the upper

bound on the step size that can be used, while the lower boundary is

controlled by the number steps required to get to a desired time as well as

round off error [7]. In order to reduce computation time, the largest time step

that can be used without introducing excessive error should be used. By
using a higher order method, the upper limit on the step size due to
truncation error can be extended, if necessary. A harder look at the error 0

will show how to lengthen the step size limit imposed by d.

From Kreyszig [7], the error 0, in the i'th element of x at the n+1 time step

to first order in At is described in Equation 1-14.



), =x(f,(x(r)+nAr),t)- f,(x-,t))At = d( ,

where: 4, is the partial derivative of the i'th state rate with respect to
dx
the state vector, the result being a row vector.

x, lies between x(t,, + nAt) and x, in accordance with the mean
value theorem.

S= x(r, + nAt) - x, or the column vector of errors in x,

Equation 1-14 shows that the error contributed by 6 to each state is

approximately the difference between the true and numerically propagated

rates multiplied by the time step. In order to lengthen the time step one must

df,
try to minimize =, as this error is directly dependent on the time step. Indx
terms of Equation 1-1, this value describes the rate at which the state rates

change with respect to the states or the frequency content of the right hand

side.

1.2.2.5 Semianalytic Techniques

Semianalytic techniques of orbit propagation attempt to take advantage of

both the numerical techniques of special perturbation theories and analytic
development of general theories. The goal of these methods is to attain the
accuracy of numerical techniques and the speed advantages of general
methods. Additionally, semianalytic theories also provide mean elements,

which are discussed in section 1.2.3.1.

The motivation for developing semianalytic methods is derived from the

previous analysis of numerical integration. If the frequency content, can

be reduced, a larger step size can be used in the integration process. This not

only increases the speed of the integration process by reducing the number of



steps taken but also reduces the effect of round off error. In a semianalytic

theory, the frequency content of the right hand sides are kept to a minimum

using the variation of parameters (VOP) equations discussed in section 1.2.2.2

and the generalized method of averaging. Applying averaging to the VOP

equations removes the high frequency terms whose secular perturbative

effect on a orbit average to zero. This significantly reduces the rate of change

of the satellite rates, resulting in smaller &'s and larger step sizes.
dx

1.2.3 Draper Semianalytic Satellite Theory

1.2.3.1 Overall Outline

The software implementing the Draper Semianalytic Satellite Theory (DSST)

was developed in the late 1970's and early 1980's. Engineers began to work on

it at the Computer Sciences Corporation and continued at Draper Laboratory

in Cambridge, MA, where graduate students also contributed to the

development [8]. Refinement of the theory and associated software has

continued since that time to the present day. The mathematics of the theory

is discussed in several reports. The single most complete document has been

published by the Naval Postgraduate School [8]. The accuracy of the DSST has

been well tested through numerous studies and work with the software [33,
40). Because the theory is accurate and computationally efficient for long

term, high precision predictions, a version of the DSST was used for parallel

orbit propagation. The DSST will therefore be discussed in full detail. It is

especially important to highlight the difference between mean and osculating

elements. The basic flow of the derivation comes from the work of McClain

[9]. This derivation will only examine the simplest form of the DSST, where

the averaging interval is the period of the satellite. This constraint prevents

the inclusion of resonance, which requires more complex averaging

intervals.

A generalized form of the Variation of Parameters (VOP) equations is used to

start the derivation. As shown in section 1.2.2.2, the VOP equations describe

the rate of change of a satellite's in orbital elements. The DSST uses the non-



singular equinoctial element set, thus avoiding problems when propagating

near circular, equatorial, or polar orbits. A description of the Keplerian

elements, the equinoctial elements, and the relationship between the two can

be found in Appendix A.

The VOP equations are expressed in terms of the equinoctial elements. The

left hand side of this first equation is then transformed using the near identity
transformation and a Taylor's expansion about the mean element rates. The
near identity transformation is used to relate the osculating, or actual value of

the elements, to the averaged elements through a power series expansion in a
small parameter. The mean element rates are then represented as a power

series expansion of the same small parameter and functions of the five slowly

varying mean elements.

The right hand side of the first equation, the generalized VOP equation, is

transformed using a Taylor series expansion. These functions are expanded
about the six mean elements. The near identity transformation is used again

to express the Taylor series expansion as a power series in the small

parameter.

With both sides of the first VOP equation expanded in the small parameter,
terms of like powers in the small parameter are equated. These equations are
then averaged over the fast variable or one orbital period of the satellite. The

equations for the mean element rates are finally determined as functions of
the average contributions of the perturbing functions. These rates are of very
low frequency; they do not change rapidly with time. This reduces the size of

the parameter so longer step sizes can be used when numericallydX
integrating the mean element rates.

1.2.3.2 Equations of Averaging

The derivation of the simplest form of the DSST begins with a generalization

of the VOP equations [9].



da
-- = eF,(a,X) i =[1,2,...,5]
dt

dA.
d = n(a,) + EF6(a, A)
dt (1-15)

where: a is the vector of the five slowly varying orbital elements

A is the fast variable

n is the mean motion

E is the small parameter

F, is the function describing the time rate of change of the i'th
element caused by perturbative forces.

All elements in this first expression of the VOP Equations of Motion are
osculating elements, representing the true state of the satellite. The quantity

E is called the small parameter because of its relative size. There is always a
small constant associated with perturbative forces because their effects are
small relative to the motion caused by the two-body forces. The unperturbed
equations can be seen if e is set to zero; the equations become exactly the
two-body equations of motion represented in equinoctial elements.

da, dA-=0 i=[l,2 ...,5] -= n(a,)
dt dt (1-16)

The near identity transformation, equation 1-17, relates mean and osculating

elements through the small parameter e. Equation 1-17 is an important

concept for the Generalized Method of Averaging [9]:

a.= a.+ E,, + ET 7,~ +... i= [1,2,...,5]

A = . + E1,6. + E 76,2+... (1-17)



where: a, represents the i'th mean equinoctial element (a mean
element designated by the overbar).

1r represents 2n periodic functions, dependent on the six mean
equinoctial elements.

The near identity transformation states that the osculating elements are

dependent on the mean elements plus an infinite series in the small

parameter. The small parameter is multiplied by the periodic functions,

hereafter referred to as the short periodic functions. It is important to point

out the osculating elements represented in equation 1-17 are dependent on

the mean elements, including the mean fast variable, and the short periodic

functions. The purpose of applying the averaging operator is to remove the

fast variable dependence and the short periodic functions from the equations

of motion. This alternate set of equations of motion will be called the mean

equations of motion.

The next step involves assuming a form for the mean equations of motion.

The mean element rates are expressed as an expansion in the small parameter

and functions of the slowly varying mean elements.

dada, = EA,,(a)+ e2A (a)+... i= [1,2,...,5]
dt

= n(a,) + E(a) + 2A6.2(a)+...
dt (1-18)

Equations 1-17 and 1-18 are assumed forms for the osculating and mean
elements, respectively. The rest of this derivation will demonstrate how to
calculate the short periodic functions rL,, and mean functions, A,,

By differentiating the near-identity transformation with respect to time we
achieve an equation relating the mean and osculating element rates.



d = - + Eda 6 d da-- 6 -dji+,. da .
dr d i , 9 dA k= da, dt

diA d'i, da
-- + E
dr tk= da dr

6t E da,2 da,
+ Z da, dt

i = [1, 2.....5]

where: ao takes the place of A in the summation.

Substituting equation 1-18 into equation 1-19 gives

da
+E

(a)+ e 2A1,,(a)+...

n(a )+ E -[eA.,(a) + E-A 6 (a)+]...
6 =,l da,

+ -E 6 n + " 1 SA,.I(a)+ EA ,(a)+...]+...
da kdt=

+Ed n(al )
da

+ ---& AL (a)k+ e'Ak,(a)+...1
=I da

+ -6 da, +

+E 1l(ak1 )+ - EA,.,()+£) +da, -=, da (1-20)

Even though all equations have only been expanded out to second order in e,

terms of up to fourth order are present. The semianalytic theory takes

advantage of the fact e is small. Only in a few cases is it necessary to expand

out E beyond first order [41]. Equations 1-20 can be reduced by combining like

powers of E and ignoring terms of third and higher order.

dA

(1-19)



da- d ,.d = e[A, (a)+ n(a)]
dt da6

(_+ 6 drl dr
+E2[A,.(a)+ I. 1A, ,(a)+ n(a,)1

k=- da, 3da

i = [1,2,...,5]

= n(a, )+ e[A,. (a)+ n( )]
dr da6

66 dr6.1+E 2[,(a) + (a) + Aa ~ (a)]
da6  da (1-21)

The osculating element rates are now represented as functions of the mean

elements and short periodic functions. These expansions for the osculating

element rates will later be substituted into the left hand side of equations

1-15. The right hand side of the functions in equations 1-15 will now be

expanded using a Taylor series expansion about the mean elements. With

both sides of equation 1-15 expanded into a power series in the small

parameter, like terms can be equated generating equations for the mean

functions A, ,.

6 dF I 6  d
F,(a,A)= F, (a,)+ _Aa + ?Aa F, i=[1,2...6

.da. 2. d [a

(1-22)

where: Aa, is the difference between the k'th osculating and mean
element.

The last term of equation 1-22 can be re-written to make the number of terms

more apparent:

3 dF 1 6 d d
F (a,A)= F(a,1)+ Aa, - AAaA, - (F,)+... i = l,,...,6

=.i 2 da d.a..

(1-23)



This expansion can be reduced using the near-identity transformation,
equation 1-17. Subtracting the mean elements from both sides of equation 1-
17 and ignoring terms of third order and higher in e gives:

a. -a. =Aa, = eq,. + e 1,. i = [1,2,...,5]
A - & = I, = £16.1 + E2l,2 (1-24)

Replacing Aa, in equation 1-23 with equation 1-24 gives:

F,(a, A ) = F,(a,A)
6 aF,

1 + eC='r.2ItI + E',. (F, -)2 ,:, ,,a a, aa,

i=[1,2,...,61

(1-25)

Again, the equation 1-25 is simplified by combining like terms through

second power in E .

F,(a,A) = F,(a,A)
6 dF

6 F, 6 6
_ da, , da, d(,,

i= [1,2,...,6]

(1-26)

The mean motion, n(a, , is the only osculating variable left in equations 1-15
This can also be expanded about a~ in a Taylor series expansion.



- n 1 -12 2
n(a) =n +(a - a )-+-(a, -a?) -+...

da, 2 da,
(1-27)

Applying the modified form of the near identity transfornmation, equation 1-
24 where k=1, to equation 1-27 gives:

dn
n(a,)= n + [ef,. + e-,.2, ] -

da,

I
9

2 d]2 +n

&a,
(1-28)

Again getting rid of the third and higher order terms in the small parameter
leaves equation 1-29.

+ E [, -2
1 dI2 , n
2 da,

Substituting 1-29, 1-26, and 1-21 into equations 1-15 and then combining like
orders of the small parameter results in equations relating the functions of

the mean element rates to the 2n periodic functions.

Setting the terms of the first order coefficients equal gives:

A, +n = F,(a,) i = [1,2,...,5]
Sa6

, (a) + n = , + F6(a,A)
a 6  da

while the second order terms create equations

A,2 +n1 -
da6

6

+ XAVI
k=1

dqr,.

da,

6

k=1

(1-30)

dF,(a, A)

dak

6.2 + n
da6,

6

k=I da+ A ---

6

L=I

£F,(a,A)
da +da,

n(a,) = n + er, - -
da,

(1-29)

dn 1
da 2

(1-31)

i= [1,2,.... 5]



The next step is to solve for the A,, functions. The equations 1-30 and 1-31

provide the expressions to determine the A, functions, as everything in the

above equations is known, except for the Y7 functions. In the original

definitions of the functions 1r, the only constraint imposed upon them were

that they be 2n periodic in the fast variable, A. Application of the averaging

operator to equations 1-30 and 1-31 will develop the averaged equations of

motion by removing the 2n periodic functions from those expressions.

1.2.3.3 Averaging

The Generalized Method of Averaging is used to remove the high frequency

terms from the equations of motion. The Generalized Method of Averaging

removes the variable of interest from the equation through integration. The

averaging operator is defined as

(g(x)) = g(x) dx (1-32)
0

where g(x) is the function to be averaged

x is the variable to be averaged over

0-2x is the interval over which the average value is determined

Application of the averaging operator to equation 1-32 removes the variable x

from the resulting equation. Similarly, averaging the equations of motion

over the fast variable, A, will remove from the fast variable dependence from

the equations of motion. This will result in a set of first order, slowly varying

differential equations. The averaged equations of motion can then be

numerically integrated with a much larger time step than those that

depended on the fast variable.

The averaging operator has many properties which will be useful in the

following sections. These properties come from (9j.



+(Y(a,),

Superposition Principle

(cX(a,X)) = c(X(aA)).

X(a,j)) =
(X(a

k =l, 2,...,61 (1-33)

Properties of Linear Operators

1.2.3.4 The Averaged Equations of Motion

Applying the averaging operator to the equations 1-30 and 1-31 and using the

properties in equations 1-33 gives:

(A,1)+ n d6)=(F,(a i= [,2,...,6]d aA./

(A6.1(a)) + nd 7, .(
da!

6 dF, (a. 1))k-, ,, da,k= dA,,)

+ ( A.,
k=I

176.1)

dak

dF-(a,A)
774., 1  +da, ) S71.2

(1-34)

i= [1,2,...,6]

dn
da,

/1
'2De- - (1-35)

d a,"

where the averaging in equations 1-34 and 1-35 is done with respect to the fast
variable A.

The original definition of the short periodic function, r7, ,, requires it to be 2n

periodic in A. When averaged these functions are identically zero.

(i._) + n da 6.

(x(a,X1)+ Y(a,,X),= (x(a,n),

A dr, ,



da6 /

(1-36)

Combining equation 1-36 with equations 1-34 and 1-35 and solving for the

functions A leaves equations 1-37.

A., = F,((a,A)) i= [1,2,...,5]

A 6 1(a) = 71,1

A, =( ..
k=!

dF6 (a, A)
d;

da,

dF,a, X)
da/

+ (r1.2 da;
da,

(1-37)

i= [1,2,...5]

+( oU.,2Ii (1-38)

Equations 1-37 and 1-38 can be further reduced by noting that the A,,

functions are not dependent on the fast variable, A. Applying the properties

described by equations 1-33 gives:

Ak. d6 /

k=1 da I 1

A1 \ da /

S771,1

A,.I = 0dao,
i= [1,2,...,6]

n 0
dak 1,1k

dak
da I

Note that the short periodic functions in equations 1-39 and 1-40 are not

multiplied by another function of the fast variable. The properties of

equations 1-33 apply only if the function removed from the operator is

considered a constant by the averaging operator.

The simplifications described in equations 1-39 and 1-40 allows equations 1-37
and 1-38 to completely specify the A,, functions in terms of the averaged force

contribution and an expansion of the mean motion.

(1-39)

(1-40)

6 A dr, i
I d.

41.5-~~

6(A
- A ,



A,, =(F,(a,;)) i = [1,2,...6] (1-41)

A,  , da i= [1,2,...,5] (1-42)

A =4 =dF 1l+ d , a,--1 (1-43)

Replacing equation 1-18 by the functions described by equations 1-41 through

1-43 completes the development of the averaged equations.

= E (F, E dF,(a) i= [1,2...,5 (1-44)
dr 6 d a,(2144

S n(a,)+ (F,(a,)) + - \ ,= <. i + r. - o7a.-
dI da ) da, (1-45)

One more thing is interesting to note about the averaged equations of

motion. The second and higher order terms are not independent of the short
periodic functions. The second order contributions A,., depend on the first

order short periodic functions.

1.2.3.5 Short Periodic Functions

With the averaged equations of motion explained, the next step is to develop

equations for the short periodic functions. While the DSST numerically

integrates the averaged equations of motion, analytical expressions are

developed for the short periodic variations. These expressions are expanded

in a Fourier Series and then integrating analytically. Like the previous

derivation, this development follows the work cited in reference [9].

Subtracting equations 1-37 and 1-38 from equations 1-30 and 1-31 leaves
equations 1-46 and 1-47.



dtd = F,(aj)-(F,(a,;[

da,
J+

da/

)) i(=1,2,...,5

F6(a,) - (F6(a,A))

aqi,l 6 ar7i,l'Ak,l - -1  Ak,
da \k=1 da

dF6(a,A)
+ 77.2 -

da I

1 , a'n
+- '71.1- -

2 da- 2

Now, the equations 1-46 and 1-47 can be used to solve for the functions r7,,.

fn- -
da6b

- 7,. 2
n

da6
k
k=1

dF,(a, A)

da,

(1-46)

6
k=1

k Fi(a,) 
1 k,l da

i =11,2,..., 5]

6
k=

[k=l

d76.2
5T6

6

k=1

dF (a, A)
da, 2da

da, )

6 L

da, da .1
(1-47)Al. I



0,,, = = [F,(a,') - F,(a,1) ]di i=[1,2....,5]n

f dn ~n +
+., 11  , - ,. = + F(a, .) -(F(a,)) di (1-48)

Jn da, da , da

l 6 dF,(a, 6

S da k=1 da d

i= [1,2,...,5]

I 7k dF,(a,l) 6 dF,(a,;[) dn d
71,2 1 774.1 1,2 f1,4 111

n ,, da ,k= da a da,
(1-49)

1 , 'n / , n [ d ., /6,1
-2 ida ) IX a ( A

2 da,2  2 da,-k= da, \, dak

With the short periodic equations of motion determined, they can be

integrated to solve for the osculating elements at any time.

1.2.3.6 Interpolation

Before calculating the short periodic contributions to the equations of motion,
it is valuable to mention how the implemented versions of the DSST actually
calculate the mean elements at each request time. Because the short periodic
functions are removed from the mean elements, long integrator step sizes
can be used to calculate the mean elements. Typical step sizes used are a day
or more [32]. Rather than numerically integrating to each request time an
interpolator is used whenever possible. Long step sizes are used to propagate
ahead of the next request time. The interpolator then generates a polynomial

which describes the elements over the request interval. The mean elements
can then be calculated for any time within the propagated time span by a
simple polynomial evaluation.



An interpolator is also used in evaluating the short periodic functions. Once
the mean elements are evaluated at the request time, a check is done to see if
the request time is within the short periodic coefficient interpolators. If the
interpolators do not exist, an interval containing the request time is divided
up into equal size steps. The short periodic coefficients are evaluated at each
step and a coefficient interpolator is set up for the interval.

In the current software, the mean element and short periodic interpolators
are aligned to the same times. This is not a requirement, however.

The flow of calculations in the DSST is depicted in figure 1-4.



sthe Evaluate the mean
request time within No elements two time
the mean element steps ahead.

interpolators?

Yes
Generate interpolators
for the mean elements

Compute the mean
elements at the
request time.

Is the request
time within
the short
periodic No

interpolators?

Yes

Sum the
Fourier series

expansions to calculate
short periodic variations.

Add the short periodic
variations to the mean
elements to generate the

osculating elements.

1-4: Flow of the DSST

current time and two time
steps ahead.

Generate an interval
containing the request

time. Divide the interval
into equal length

steps.

Compute the short periodic
coefficients at the interpolator

points. Set up a coefficient
interpolator for the Interval.

Figure



1.2.4 Orbital Perturbations

For artificial satellites placed in orbit about the Earth, the acceleration of
perturbations in comparison to that of the spherical body is relatively small.
However, because the goal is to analyze satellite orbits over a significant
period of time, perturbations will be important as they can cause large

changes in the location of a satellite over a long time span. A sun
synchronous orbit, for example, uses the Earth's equatorial bulge to rotate the
satellites longitude of ascending node through 3600 per year, thus keeping the

orientation of the satellites orbital plane constant with respect to the Sun 13].
For communication systems composed of a constellation of satellites, the
effects of perturbations impact the constellation design as well as the satellite
design. The orbits in a constellation must be designed to maintain the
required orbital parameters within mission constraints.

The mathematics of the various perturbations is discussed in a variety of
places, therefore a full development will not be done here. Some references
that can be used for more information on orbital perturbations include Battin
[5] , Fonte [11], Jablonski [33], and Sabol [50]. This short discussion on orbital
perturbations will examine how the perturbations effect the orbital elements.

1.2.4.1 Secular, Long Periodic and Short Periodic Effects

Orbital perturbations are classified with respect to how they change each of
thte elements over time. A secular change appears as a monotonically
decreasing or increasing change on the orbital element. A short periodic
eftect appears as a periodic variation in the orbital element. A long periodic
effect is similar to a short periodic effect, but has a much longer period.



e-

SShort Periodic Variation

Time of Interest

Figure 1-5: Short Periodic, Long Periodic, and Secular Variations

As can be easily seen in Figure 1-5, the time of interest controls the difference

between the short periodic variations and long periodic variations. If a much

shorter time interval was used, a short periodic variation would look like a

long periodic variation. For this analysis, the important length of time to be

considered will be the lifetime of the satellite system. Generally,

communication system satellites have a lifetime on the order of five to ten
years. There are exceptions to this rule, however. Orbcomm is a satellite
system composed of 24 satellites that will target the US for low data rate
communication. This satellite only plans on a two year lifetime for each
spacecraft [12]. Table 1-2 lists the expected lifetimes of each of the satellite
systems mentioned in Figure 1-1 [48].



Table 1-2: Lifetimes per satellite for the proposed communication systems [37j

System Lifetime In Years
Teledesic 10
Iridium 5

Globalstar 7.5
Ellipso 5

Odyssey 12

It is helpful to distinguish between secular, short periodic and long periodic

effects as these categories help the orbit designer understand the impact

perturbations will have on each of the elements. Some secular effects and

long periodic effects must be compensated for by thrusting maneuvers or may

require changes in the nominal orbit that remove the undesirable

perturbative effects. Other effects are essential to the orbit design, as in the

sun-synchronous orbit. Short periodic variations can also cause variations

greater than the tolerance allowed in an orbit design.

1.2.4.2 Effects Considered

In general, there are four major perturbations considered in performing orbit

analysis for artificial satellites about the earth. These perturbations are:

* Geopotential

* Drag

* Third Body

* Solar Radiation Pressure

Of the above perturbations, drag and solar radiation pressure are non-
conservative. Non-conservative perturbations change the energy of a

satellite. The geopotential perturbations are divided into the zonal, sectoral,
and tesseral harmonics. Each type of geopotential perturbation effects a

satellite differently. As previously mentioned, there is always a small

parameter associated with each of these orbital perturbations. This parameter

helps describe the relative magnitude of each of the perturbations. Table 1-3
lists the force per unit mass of several of the perturbations [19].



Table 1-3: Force per Unit Mass (meters/sec2 )[19]

ALTITUDE (KM)
PERTURBATION 150 750 1500 36164

Geopotential

Zonals
J2 30e-3 20e-3 14e-3 160e-7
J3 .09e-3 .06e-3 .04e-3 .08e-7
J4 .07e-3 .04e-3 .02e-3 .01e-7

Tesserals
J2,2 .09e-3 .07e-3 .04e-3 .5e-7

Drag 3e-3 le-7 NA NA
Area/Mass=

0.0212 (m sq/ kg)

Third Body le-6 le-6 le-6 7e-6
(Lunar Solar
Attraction)2

Solar Radiation le-7 le-7 le-7 le-7
Pressure3

1.2.4.3 Effects of Orbit Perturbations on Satellites

It is difficult to generalize the effects of most orbital perturbations on all

satellites because of their sensitivity to the satellites orbit. However, it is

possible to generate a table of the type of effects orbital perturbations will have

on the classical orbit elements. Table 1-4 describes the effects of perturbations

on the orbital elements.

2 Based on the Vanguard I Satellite. Reference Blitzer 1191
3 Based on the Vanguard I Satellite. This is not the direct attraction but the effective
disturbing force. Reference Blitzer 1191



Table 1-4: Effect of Perturbations [19, 201

Semi- Eccentricity Inclination Longitude Argument Mean
Major Axis of Node of. Perigee Anomaly

Geopotential
Even Zonals Periodic Periodic Periodic Secular Secular Periodic
All Zonals Periodic Periodic Periodic Periodic Periodic Periodic
Tesserals Periodic Periodic Periodic Periodic Periodic Periodic

Drag Sec Sec Periodic Periodic Periodic Periodic
Decrease Decrease

Solar / Lunar Periodic Periodic Periodic Sec / Sec / Periodic
Periodic Periodic

Solar Sec . Sec / Sec / Sec / Sec / Sec.
Radiation Periodic Periodic Periodic Periodic Periodic Periodic
Pressure

Because the semi-analytic theory is important to this project, the next section

gives an example of including a perturbation in the semianalytic theory. This

example includes just the J2 perturbation effect on the mean elements. A

further expansion of this mathematical development would demonstrate

that a recursive method to include arbitrary degree and order of spherical

harmonics can be developed.

1.2.4.4 Decomposition of J2 into its Average Contribution

One of the largest perturbations on any artificial satellite is caused by the

oblate Earth. This effect is apparent when examining the zonal harmonic

contributions to a satellite's orbit. The second harmonic, which describes the

magnitude of the bulge around the Earth's equator, is the largest zonal effect

on LEO satellite motion, two orders of magnitude larger than any other

harmonic. This perturbation is extremely important when examining the

orbit of satellite.

From [10] the central body potential U acting at some distance r from the

center of mass of the attracting body can be described as:



U (r=. 0,= -+ I- P,,, (sing )(C,,,. cosm N + S.,,, sin imn) (1-50)
r r ,.= = r

where r is the radial distance from the center of mass of the central
body to the satellite

0 is the geocentric latitude

y is the geographic longitude

p is the central body gravitational constant

R is the central body mean equatorial radius

P,, is the associated Legendre function of order m and degree n

C,,, S., are the geopotential coefficients

M is the maximum order of geopotential field (M < NJ

N is the maximum degree of geopotential field

The first term is the attraction caused by the Earth if it were perfectly

spherical. This force is the largest single force acting on a satellite's motion.

The rest of the potential will be referred to as the Disturbing Potential, as it

disturbs the motion of the satellite from its Keplerian orbit.

This analysis will only consider the Disturbing Potential of an axially

symmetric Earth expanded to second degree (N=2, M=0). The Disturbing

Potential then becomes:

U(r,) = - C20P 0 (sin 0) (1--51)

Equation 1-51 can be put into a more familiar form by specifying J2=-C2,0.

Equation 1-51 then becomes:

U(r,9) = -1 - P,(sin ) (1-52)

The next step involves applying the averaging operator to equation 1-52. In

order to do this some other definitions and expansions must be made. From



[10] the function sine can be put into equinoctial elements by the

transformation:

sin o = a cosL +f sin L

- 2 p
1+ p2 + q

2q

1+ p2 + q (1-53)

where p and q are the equinoctial elements describing the orientation
of an elliptical orbit

L is the true longitude

Inserting Equation 1-53 into equation 1-52 gives:

The Modified

U(r,L) = -J -J( P, (acos L + pfsin L)
Addition Formula [10] can then be usedr

Addition Formula [10] can then be used

(1-54)

to expand

associated Legendre Polynomial.

3(a2 - 2) cos2L+ 3apsin2L

P,.o (acosL +f sin L)= - 3

+-(a + 92)-

(1-55)

Substituting equation 1-55 into 1-54 elaborates the J2 potential function in

terms of the equinoctial elements.

1(a) - )cos 2L + 3ap -iin L

U(r,L)= J, ( R
2r r 3+--(a" -')- 12)

(1-56)

With the potential function expressed completely in terms of the equinoctial
elements, the averaging operator can then be applied. The averaged form of
equation 1-56 results in equation 1-57:

the



S (a - ) I J cos2LdA+ - - sin 2L dA

27r o r o 2 '

The next step involves evaluating the integrals in equation 1-57. These
integrals are elaborated in great detail in Cefola and Broucke, 1975 110]. A

special function, known as the Hansen coefficient, is the critical factor in the
solution of the above integrals. For the zonal harmonics, the critical integrals
are seen in equation 1-58.

I n1 I 2 C (k , h )
2j r cos(mL)dA x RC, (k,h)

0 ((1-58)

2-r sin(mL)dA = x "'B'S,(k,h)

where: x=(l-h 2 -k 2) 2 where k and h are equinoctial elements.
S n! P' (x)

(n + m)!x"e"

P"(x) is the associated Legendre Polynomial.

C,,(k,h) = Re(k + jh)" Note that these are different from the

S,(k,h) = Im(k + jh)" Cnm,Snm defined in equation 1-45.

After using the Hansen coefficients to solve the integrals in equation 1-57 and
further manipulation and simplification, the averaged potential for J2 can be
evaluated in terms of equinoctial elements.



3 (a2 - )x3B;C,(k,h)+(3aP)x3B Sj(k,h)

R- -R 2 (1-59)
2 a3  3 2 3+-(a + x

Because we are interested in mean elements, the mean equinoctial VOP

equations must be derived. These are listed in Danielson [8]. The mean VOP

equations require the partial derivatives of the mean potential function with

respect to the equinoctial elements. Lagrange's form of the VOP equations

can be used because the zonal harmonics are a conservative perturbation.

Finally, the J2 contribution to the averaged equations of motion is derived.

This has been done analytically for the J2 disturbing potential and can be

found in Danielson, Neta and Early, 1994 [8]. This completes the

development of the averaged contribution of the J2 disturbing potential. It is

obvious here that calculating the perturbative contribution to the potential

functions in the VOP format is not a trivial process.

1.3 Parallel Computing

Livingston and Stout listed several motivations for parallel computing in the

Supercomputing 92 conference [51].

* Many problems are inherently parallel, so parallel models fit these

problems well.

- Physical processes: fluid flow, planetary orbit, nuclear reactions and

plant growth

- Social processes: wolf packs, assembly lines, ant colonies

- Sensing / Learning / Intelligence: vision, artificial reality

* Parallel computers are the only way achieve specific computational goals

within a given amount of time.

* Parallel computers can be the cheapest way to provide the necessary

computational ability.



* Parallel computers can provide fault tolerance.

1.3.1 Previous availability

The concept of parallel problem solving is not new to engineering. Many

people often work together to solve the same problem. However, in order
that more than one person can work on one problem together, it takes

someone in charge directing the work. The same is true for computers. For

more than one computer to work together on a problem, an additional

process is required to hand out the work to the available processors. Of course

this also means computers must be able to accept messages and communicate

results with another processes. The extra work involved in setting up a
distribution process and communicating with other processors has previously

been very difficult and computationally expensive.

In 1980 Jeffrey Shaver investigated the application of parallel algorithms to

the orbit determination process [14]. This thesis references Shaver's

document as a way to compare how the past fifteen years of development

have changed an engineers perspective on parallel computing. Of special

interest is the change in the availability of parallel hardware and software in a

typical engineering facility.

The target architecture for the study completed by Shaver was a SIMD 4

machine. He was not, however, able to implement his algorithms on a SIMD
machine due to many reasons. Computer time on such a machine was very
expensive and software was not standard, so his target platform could not use
the same software as his development platform. At that time, parallel
computing was only accessible to those with a great deal of knowledge in
computer science and parallel computing, working to solve enormous
computation problems that were not possible on a serial machine.

4SIMD parallel computers will be discussed in the next chapter.



1.3.2 Current Status

More currently, a report on high performance computing by Horst Simon in

December 1993 notes that all manufacturers of High Performance Computers

have abandoned the SIMD architecture except for Masspar. He also points out

that SIMD machines are very good in raw performance but can be very slow if

the algorithms used are not 'completely parallel' [15]. SIMD use required

implementation of algorithms of the complexity of that developed by Shaver.

Such algorithms and machines would produce very fast execution times.

However, by developing software for very specific hardware, such

developments would not be cost effective for commercial or government

applications interested in COTS (Commercial Off The Shelf) hardware and

software.

Many manufacturers continue to make very specialized machines,

supercomputers, capable of enormous computing power. Almost all have

gone to multi-processor systems. Some of the current manufacturers include

Thinking Machines, Cray, IBM, Kendall Square Research, and Paragon.

Although these machines far surpass the machines of just fifteen years ago,

they are still very expensive and used for scientific and computing research.

Parallel computing, however, has not been contained to such a small

community. Workstations, computers typically found in most laboratories

and universities making extensive use of computers, are now being offered

with multi processing capability. These machines are not expensive; they are

actually being purchased because the capability they provide is cheaper than

comparable processing power available on separate machines. SUN

corporation offers the following workstations at the prices shown in Table 1-5.

Table 1-5: Workstation cost comparison5 [59]

Workstation Description Cost
SPARC 20/50 (Single Processor) $12,695
SPARC 20/502 (Two Processors) $14,195

5The computers come with a standard set of peripherals Both computers listed here came with
the same options except for the additional processor.

59



The availability of parallel computing does not stop there, however.
Software, like the system used for this thesis, can turn several, single
processor machines into a virtual multi-processor platform. These machines
are readily available to most engineers developing computationally intensive
applications. The software to allow the communication can be purchased at a
reasonable price or even found as public domain, available at no charge.
Additional software, however, must still be designed to take advantage of a
multiprocessing system.

1.3.3 Current use of Parallel Computing

With low cost parallel computing available to a wide variety of users without
requiring special training, parallel computing is quickly gaining popularity.
At Draper Laboratory, much work is now being done in developing
applications to run in a parallel environment [16]. Because the cost of an

entirely new software development effort is so high, many older applications
are being upgraded to work on newer systems rather than starting from the
beginning. Flight dynamics systems, such as the type developed for
RADARSAT, are adding functionality to their systems by using legacy
software [46, 60]. Rather than adding more functionality to a single piece of
software, old software is used 'as is'. New software must only be developed to
interface between the applications [60]. In addition to making use of tested
legacy software, such a system lends itself to a parallel computing
environment; different processes can execute independently on different
processors.

1.4 Thesis Overview

This document describes the development of a parallel version of the DSST,
using the Parallel Virtual Machine (PVM) software package to support
message handling between computers and processors. The parallel DSST
(PVM/DSST) is then integrated with an optimization algorithm to help
automate the orbit design process. Finally, both the propagator and the
optimization tool are applied to the analysis and modification of a proposed
840 satellite constellation.



Chapter two is an overview of parallel processing, presenting enough
information to show how the design of the parallel orbit propagator was
chosen, and what other options were available at this time. Chapter three
goes on to describe the design of this orbit propagator based on the
requirements for this software development and what methods were
employed to ensure the software met the goals of project. Also presented are
the speedup gains achieved using the parallel propagator and what could be
expected with more machines. Chapter four discusses an application of the
propagator to a proposed satellite constellation as well as its integration with
an optimization algorithm. Chapter five discusses the conclusions and
opportunities for future work in this area.

The appendices supplement the thesis in a few specific areas. Appendix A
describes the Keplerian and equinoctial element sets. Appendix B lists the
important software developed in conjunction with this work. Appendix C
describes the input data files used with the PVM/DSST. Finally, Appendix D
describes how to execute the software from within Draper Laboratory.





2.0 Parallel Computing

Effective software design requires an understanding of the target computing

environment. Therefore, a study of parallel computing was necessary before

designing and implementing the parallel orbit propagator. This chapter

presents parallel computing concepts and the approaches that were available

to the author at the time this project was initiated. One the most helpful

sources for current information were the news groups available on the

Internet. The two groups most often examined were cornp.parallel.pvmi and
com p.parallel. mnpi.

2.1 Parallel Computing Concepts

Parallel computing introduces new concepts that software designers must be

aware of when developing applications. Without understanding these

concepts and how they effect performance, applications may not achieve the

desired speed-up.

2.1.1 Definitions

The terminology in this technical area is evolving over time so it is

important to define several terms before continuing on in this chapter.

basic block

bandwidth

cache

coherency

"A sequence of consecutive statements in which the flow of

control enters at the beginning and leaves at the end without

halt or possibility of branching except at the end [16]. "

Maximum rate of communication between processors.

Normally expressed in MB/sec [51].

Information in a cache is correct and consistent.



computer

processor

process

thread

net work

At least one processor, memory, and the hardware needed to
operate the processor. A computer can have many processors.

The terms computer and host are synonymous.

A specific chip that has a defined instruction set. This term is

currently well defined, although the single chip is now

performing more than one instruction at a time with
techniques such as pipelining and very long instruction words

[17]. The distinction between multi-processors and single

processors will become more vague as single processors

continue to perform more operations simultaneously.

For most programmers, a process is best understood as an

executing program. A process, or job, is well defined in a

UNIX1 operating system. A process can have more than one

thread operating at the same time on more than one processor,

using multi-threading techniques.

An set of instructions that are executed in sequential order. A
thread is also known as a lightweight process as threads do not

have the overhead associated with a processes.

A system of connections and routers that allow computers to
communicate.

target

environment

Network, processors, routers, operating
programming language that make up
environment where a program is executed.

system, and

the parallel

2.1.2 Measuring Performance of Parallel Algorithms

Measuring performance of a parallel algorithm is critical to demonstrate the

usefulness of working in a parallel environment. Without demonstrating
performance, it is impossible to quantify the gain achieved in moving from a

1 UNIX is a trademark of Bell Laboratories.



serial to a parallel environment. Additionally it is important to demonstrate

effective use of the resources so that speed increases do not require excessive

amounts of additional hardware. Finally, it is important to indicate how

parallel algorithms scale to more processors. Algorithms may be designed for

a limited number of machines so that additional speed increases can not be

achieved by adding more processors.

Two measures describing the effectiveness of a parallel algorithm are speedup

and efficiency [18]. Speedup of an algorithm is described as [18]:

T'(n)
T,,(n) (2-1)

where: p is the number of processors

n describes the problem size

T, is the execution time of the parallel algorithm on p processors

T' is the time of execution of the best serial algorithm

S, is the speedup of the algorithm

Efficiency of an algorithm is defined in [18]. It is used to describe how

effectively all processors are being used.

S,(n) T'(n)
E,(n)= -

p pT,(n) (2-2)

where: E, is the efficiency of the algorithm on p processors

2.1.3 Granularity and Communication Costs

Granularity describes the amount of computation in a program segment that

executes serially [72]. A very small grain size has more potential for

parallelism but requires more communication and scheduling overhead (72].



Therefore, when decomposing a problem for parallel applications, it is

essential to ensure the granularity of the decomposition matches the target

environment. If a fine-grain decomposition of a problem is performed so

that the program is divided into many small pieces for execution,

communication between many processors will be more frequent. If the

problem exhibits coarse-grained parallelism, more computation will be

performed on each processor before communication occurs. Parallel

computing environments exist to solve both types of problems. NMlany

designers of parallel computers have designed sophisticated networks and

used relatively inexpensive, comparatively slow processors. Others have

used simple networks with very capable individual processors. The tradeoff

between fine grain problem decomposition and communication is depicted

in Figure 2-1.

Coarse Grain Multiple Processor
Decomposition Communication System

Unused -
Processors

Fine Grain Multiple Processor
Decomposition Communication System

Higher Bandwidth and More Complex
Communication

Figure 2-1: Fine and Coarse Grained Parallelism

Applying equations 2-1 and 2-2 to the previous discussion on problem

decomposition quantifies the advantages and disadvantages of coarse and

finely grained parallelism. A coarsely grained parallel algorithm limits



speedup. This is demonstrated more clearly in Amdahl's Law, equation 2-3
[18].

1 1
S, (n)< <-

f +( - f )/ f (2-3)

where: f is the fraction of the problem that is inherently sequential

1-f is the fraction of the problem that is fully parallelizable

A division of the problem in half, so that f = -, limits the theoretical

speedup to two. If communication and setup costs are added, even if they are

minimal, the speedup will be reduced to below that amount. The efficiency

of a coarse grained algorithm is relatively high, however, as a low ratio of

communication and setup time to work means that the processors will be

busy most of the time, so that efficiency will approach one.

A fine grained decomposition allows speedup to be increased until all

available processors are being used at the same time. However, many, small

jobs will also increase the amount of communication required, as seen in
Figure 2-1. If the network does not efficiently handle the communication, TP
will contain larger communication overhead, increasing pT,, and decreasing

efficiency. Therefore, a decomposition that does not match the target
environment, will increase speedup but will reduce efficiency. Far too much
decomposition on a slow network could even translate into longer execution

times, or reduced speedup. The tradeoffs between fine grain parallelism and

coarse grained parallelism makes it difficult to efficiently match a single

parallel model to a wide variety of target environments.

In a real world situation, p is limited. However, it is always desirable for a
parallel program to be 'scalable'. A scalable algorithm remains efficient as the

number of processors available increases. A coarse grained decomposition
could limit the maximum number of processors used. A poorly designed fine
grained decomposition can reduce efficiency with a large number of
processors. It is very difficult to predict how many processors will be available



to a user in the future, so the software will be useful for a longer time if it is
scalable to an infinite number of processors. Figure 2-2 depicts how a typical
parallel algorithm scales to more processors. The concept of linear speedup,
or an efficiency equal to one, is also displayed on Figure 2-2.

Linear Speedup
(Theoretical)

Speed-up Degraded Speedup
(Actual)

Number of Processors

Figure 2-2: Speedup Vs Number of Processors [15]

2.1.4 Levels of Abstraction

Computers can be viewed from many different levels of abstraction. The

highest level is seen by the programmer through high level programming
languages. The programmer may have varying degrees of control based on
the programming model (Sec 2.3.1). Below the high-level software is the
compiler. The compiler interfaces the programming language to the
operating system, changing high level commands into machine specific
instructions. The operating system is responsible for directing the computers
work, accessing data from a disk, and managing memory resources. The
hardware, the actual pieces that make up the computer and how they are
interconnected, make up the last level. Because parallel computers can be
very complicated, describing the environment from these perspectives makes
the entire system easier to understand. Figure 2-3 depicts the computing
levels.



Figure 2-3: Hierarchy of the Levels of Abstraction

Viewing computers from the four levels also emphasizes the importance of

the interfaces. High performance can only be attained if there is efficient

communication between each of the levels of abstraction. This concept

reemphasizes the necessity for a software designer to understand the target
environment.

Sections 2.2 and 2.3 describe parallel computers from the bottom up, omitting

the operating system and compiler levels. These sections provide the

understanding which will be necessary and required for developing effective

parallel applications.

Programmer / High Level Programming Language

Compiler

Operating System

Computer Hardware
CPU, Memory,

Interconnections



2.2 Parallel Hardware

Parallel hardware, at the lowest level, starts on the computer's CPU. At the

highest level, parallel computing involves multiple computers working

together. This section will describe parallelism in computers starting with

parallelism on the CPU. Much of this discussion references High

Performance Computing by Kevin Dowd [17]. This text provides an excellent

overview of parallel computing concepts and ideas.

2.2.1 Computer Memory/ Basic Computer Architecture

Memory is not one homogeneous area of a computer. Memory is divided

into many layers, so that instructions and data can move as fast as possible

from a storage area into the processing area. Access time to the memory

closest to the processor is the fastest; the access time to the memory farthest

from the processor is the slowest. Figure 2-4 depicts the memory structure of

a basic computer. Not all computers fit this model exactly, especially as

manufacturers continue to tune their computers to achieve the best

performance.

CPU
Disk

Clock

S_ - Cache Main Memory

ALU M

Network Resources

Figure 2-4: Computer Memory Hierarchy [42, 52]

Each of the units shown above is described in Table 2-1.



Description of Computer Components

As described earlier, each memory unit is increasing in capacity but decreasing

in speed from left to right in Figure 2-4. This is important as main memory

access speeds are slower than the clock rate. If main memory was connected

directly to the CPU, calculations would be limited by memory access speed

[52]. Using a hierarchical structure allows a small amount of very high speed

memory to keep the CPU busy. Instructions and data can then be loaded from

memory into the cache, the cache into the local cache, the local cache into the

registers, and the registers into the ALU.

2.2.2 Parallel Computing on the Chip

At the lowest level, parallel computing can take place on the CPU.

Parallelism at this level can be achieved in many different ways. Multiple

functional units can be added to the CPU to perform more than one

instruction at the same time [52]. Functional units can be designed to perform

specialized tasks, such as floating point operators. Multiple floating point

units can be used at the same time, if more than one operation can be

performed at the same time while insuring all calculations maintain

coherency. This requires work by the compiler, to identify computer

instructions that can be executed in parallel without corrupting other data

[171. An aware programmer can help the compiler by writing code wvhich
supports parallel instruction execution. A programmer supporting

Unit Description
Main Memory The area most commonly referred to as memory. All

executing programs must reside here unless the computer
is swapping to disk. Normally made up of dynamic RAM
(DRAM) for cost reasons.

Cache A smaller, fast memory unit that is normally off the CPU.
Often made of static RAM (SRAM).

Local Cache An intermediate memory unit generally located on the
CPU.

Registers Memor! that loads information directly into the ALU.
Clock The device that controls the rate at which all operations

happen.
Arithmetic Logical Unit Unit that actually performs operations on the data.
(ALU)

Table 2-1:



parallelism on the CPU in the code design is an example of the relationship
between levels described in Figure 2-3.

Pipelining of instructions is a form of CPU level parallelism. Pipelining

involves decomposing instructions into the stages that are involved in

executing an instruction [17]. Stages can be executed one right after another,
so that more than one instruction is being executed at the same time. An
example pipeline from Dowd [17] assumes all commands are decomposed

into five stages, as shown in Table 2-2. The number of stages is actually

dependent on the computer type.

Table 2-2: Example Stages of an Instruction

Stage of Instruction Stage Description
1 Instruction Fetch Fetching an instruction from

memory
2 Instruction Decode Decode or recognize the

instruction
3 Operand Fetch Fetch the necessary

operands
4 Execute Perform the instruction
5 Writeback Place the results back into

memory

In a pipeline, instruction 1 is fetched into the beginning of the pipeline at

time 0. At time 1, instruction 1 is decoded in the next stage of the pipeline
while instruction 2 is fetched into the first stage. This is repeated until five
instructions fill the five stage pipeline. All instructions move through the
pipeline in lockstep [17]. If one of the stages of an instruction takes longer
than just one step to complete, the rest of the pipeline is stalled. The
processor must be very careful how it feeds the pipeline in order to achieve
optimal performance [17].

There are more ways of exploiting parallelism on the CPU, especially as
computer designers seek to make faster computers. The ones presented here
are some of the most common and are used in the majority of modern day
computers. The next section moves away from the CPU to exploiting
parallelism among multiple CPUs.



2.2.3 Multiprocessor Memory Use

The use of memory by multiple CPU computers (multiprocessors) defines
their structure and is a common way to categorize multiprocessor
environments. As shown in Figure 2-4, the term memory is most accurately

portrayed as a series of layers. Multiprocessors can be categorized by the layer
of memory the CPUs share for communication. In theory, multiprocessing
machines could be placed into a continuum, from those that communicate at
the cache level to those that communicate across the network or through the
disk. In practice, two types of systems are commonly defined to describe
different types of multiprocessors: those that share main memory (shared
memory) and those that have their own main memory (distributed memory).
As the technology continues to develop, machines are communicating
through multiple layers, trying to reduce communication time.

2.2.3.1 Shared Memory

A shared memory system contains one large memory bank for the processors
that intend to work together [17]. Shared memory systems have tremendous
advantages in terms of speed of communication. By keeping all processors
connected to the same system of memory, processes can quickly communicate
by placing information in an area where another process knows to look.
Figure 2-5 demonstrates how a shared memory system exchanges
information.



Memory

Figure 2-5: Conceptual Illustration of a Shared Memory Parallel Computer

A shared memory system must be careful in reading and writing to memory.

If the first processor updates a specific memory location in shared memory,

followed by a read by the second processor, the second processor will retrieve

the new value, even if it was expecting the old one. Therefore, if a processor

writes to a data location it knows the other processors might look at, it must

indicate to the others that it has written there. There are different protocols
for maintaining data coherency. Additionally, a shared memory system
cannot be easily expanded. One cannot just simply add another CPU to a
shared memory environment, due to the complexity involved with more
than one processor using the same physical memory.

2.2.3.2 Distributed Memory

Distributed memory multiprocessors allow each computer to have its own,

private memory resources. Of course, the computer must communicate with
the other computers in the group in order to exchange information between

processors. This is done by sending messages over a network. Such systems



allow for tremendous flexibility in the design of an application. There is no
chance that any computer will infringe on another's memory. Distributed

memory systems do particularly well for applications requiring a large

amount of computation for each basic block, or coarse grained parallelism.

Figure 2-6 conceptually illustrates a distributed memory system.

Memory Memory

Processor Network Connection Processor

Processor Processor

Memory Memory

Figure 2-6: Conceptual Illustration of a Distributed Memory Parallel

Computer

Because computers may be physically separated and connected by a low

bandwidth data connection, messages can require excessive time to transfer

between processors. This problem is becoming less significant as
communication links increase in bandwidth. As bandwidth increases,

parallel computing becomes more feasible over a network of distributed
machines.

At Draper Laboratory, most machines are connected by ethernet connections.

Some higher bandwidth connections, such as a Fiber Distributed Data

Interconnect (FDDI) ring, are also used in less frequent cases. Figure 2-7

illustrates the relative capacities of various communication networks and

when these technologies became available [13].



Bandwidth
MBits/Sec

1000

100

10

Gigabit

Networks

FDDI

Token Ring

Ethernet

1980 1985 1990 1995
Year

Figure 2-7: Network Capacities [13]

2-7 demonstrates the future will continue to promise higher

bandwidth connections between computers.

2.2.4 Network Design

A network allows multiple processors to communicate. Network design is a

very complex subject and greatly influences performance of multiprocessors.

Bertsekas lists several factors which are important to network performance

[18].
Table 2-3: Performance Metric Definitions for Network Topologies [18]

Figure

METRIC DESCRIPTION
Diameter The maximum distance between processors. Distance is

the minimum number of links that must be traversed. A
link is a connection between two processors.

Connectivity The number of independent paths between nodes.

Flexibility The ability to emulate other topologies.

Communication Delay in The number of steps it takes to send the required
Standard Tasks information through the topology of interest.



The diameter is one of the most common metrics for classifying networks. A

small diameter means fast communication as messages will not be relayed

through many other nodes before reaching their destination node. The ideal

network, in terms of diameter, would directly connect each processor to every

other processor [181. This concept does not scale well, however. To connect
N * (N- 1)

each processor to every other requires 2 connections or a very

complex bus [17). For four processors this networking scheme works well,

requiring six total connections. For 512 processors the total number of

connections increases to 130,816 connections, which is too many connections

for cost and complexity reasons. This type of network is known as a complete

graph [18]. The network with the worst diameter is a linear array [18]. All the

processors in this array are connected in a line so that each processor can only

communicate with its nearest neighbors. The same 512 processor machine

would require only 511 connections on a linear array. However, the diameter

increases to 511. A six node linear array and complete graph are depicted in

Figure 2-8.

Figure 2-8: A Six Node Linear Array and Complete Graph

A common topology for networking multiple processors is a hypercube.

Bertsekas describes the hypercube as "the set of points in d-dimensional

spaces with each coordinate equal to zero or one [18]." Additionally, a

hypercube is connected between "every two points differing in a single

coordinate [18]." It easier to picture a hypercube if a bit address is assigned to

each node or processor. The nodes that differ in exactly one bit are connected.

A 3-d hypercube is shown in Figure 2-9.



110 111

010

011

101

001 001

Figure 2-9: A 3-d Hypercube

There are many more topologies for connecting a network of processors.

Table 2-4 lists several networks with P processors. The diameters, number of
connections, and general advantages and disadvantages are also listed.



Table 2-4: Network Topologies [17, 18, 71]

Topology Diameter Number of Advantages Disadvantages Example
Connections Machine

Linear Array p-1 p-I Simple to Long latency N/A
construct. associated

with large
diameters.

Ring (p)/2 p Up to twice Diameter KSR- I
as fast than increasing
the linear linearly with
array for the number of
some processors
operations. reduces

scalability.
Binary 2 * k where k is p-1 Low number Low CM-5
Balanced the number of of connectivity. (Actually
Tree levels and connections. uses a

2 - 2Faster than variant
< p < 2 - 1 linear array known as

for some the 'Fat
operations Tree'

[711)
d Depends on Works well Can expand to CM-2
dimension, (n - 1) dimension. for problems a large number Illiac IV
mesh, edges i=I tied to of
not wrapped where ' is the physical connections.

number of geometry.
processors along

the i' h dimension

Hypercube d or log, p Scales well Can expand to CM-2
of dimension , to a large a large number nCUBE
d and - number of of

P = processors. connections.
P Very flexible

topology.
Complete p * (p - 1) Minimum Many N/A
Graph 2 diameter connections

I topology, required. I

2.2.5 Flynn's Taxonomy

In addition to network topologies, parallel computers can be categorized by

their ability to use instruction and data parallelism 1511. Flynn's taxonomy

assigns a four character designator to every parallel computer based on the

computers capabilities. Table 2-5 describes Flynn's taxonomy [51].



Table 2-5: Flynn's Taxonomy

MSS

~MJM

where:

SI Single Instruction All processors are working in 'lockstep,' sharing
one global clock and executing the same instruction
at the same time.

MI Multiple Instruction Processors are processing independently, with their
own clock.

SD Single Data All processors have the same data available at the
same time.

MD Multiple Data Processors may be using different data sets at the
same time.

Two different types of parallel computers, according to Flynn's chart, will be

examined in the next two sections, SIMD and MIMD. The other two schemes,

SISD and MISD, are rarely used for parallel computing designed to increase

performance [51].

2.2.5.1 SIMD

SIMD computers are composed of many distributed memory processors. The

processors execute commands in 'lockstep', all sharing the same clock [17].
This type of processing is known as synchronous execution [18]. A SIMD
computer uses distributed memory. A simple loop is an example where such

a machine would be very useful. Consider the following section of
FORTRAN:

DO I=1.N
Y(I) Z( )'*2

EIIDDO

If N was very large, this simple loop could require a significant amount of

time. If a SIMD machine had N processors, the entire the loop calculation

would be performed in one iteration on N machines, rather than N iterations



on one machine. One could imagine each computer doing the same

calculation according to a global, shared clock [18]. At time rl, each processor

would multiply Z(I) times two. A, time 2, Y(I) would be raised to the fourth

power. (Of course, each instruction is broken down into man), smaller

instructions by the compiler. These smaller instructions are actually the ones

that are synchronized). Here I is not only the index of each array but also the

processor number. If the computer had only N/2 processors, it would take

the computer two times through the loop, plus the overhead. Obviously,

these type of calculations would run very fast on a SIMD machine.

2.2.5.2 MIMD

MIMD systems differ from SIMD machines as each processor has its own

clock. Each processor in a MIMD computer operates independently. There is

no requirement of synchronization between processors; however, such

synchronization can be imposed on the system if desired. MIMD computers

can use either shared memory, distributed memory, or a combination of the

two.

Each processor in a MIMD machine is generally more powerful than that of a

SIMD machine. With a MIMD computer, a programmer can send an entire

section of work to be performed to an awaiting processor, which can then

perform the work at its own pace. Even the work performed on each

processor can be completely different. However, the same loop described

above can also be implemented with a lesser degree of synchronization. Both

loop steps can be performed on each of the processors and the results sent

back to a central location, for example. Some processors may finish the two

calculations earlier than others, so the)y will just be waiting until the last

processor gets done before they begin the next job. Obviously, it is not

desirable to have processors waiting for one another, so optimal

implementation on a MIMD machine may require asynchronous algorithms.

A distributed network of processors is a type of MIMD parallel processing

computer. It would make little sense to impose an entirely synchronous

process on such a system because of the difference in machine speeds, the



differing workload on each of the machines, and the high price of

communication (in terms of time).

2.3 Programming in a Parallel Environment

Section 2.2 discussed the hardware inside a parallel computer. This section

describes how the programmer interfaces with the hardware through the

programming environment. The compiler and operating system levels of a

parallel computer, mentioned in section 2.1.4, will not be discussed. The

programmer should assume the operating system and compiler have been

designed to achieve some performance out of the parallel computer. If the

programmer gives all control of the parallelism to the compiler and the

operating system, optimal performance cannot be guaranteed.

2.3.1 Levels of Programmer Control

Different programming models allow different degrees of execution control.

More programmer control allows the engineer to specify which processors

execute which pieces of software, how communication will take place, and

when, in the course of program execution, each machine executes an

instruction. This can be advantageous, especially when tuning software for

minimum communication time and maximum performance. This type of

model also requires much more detail out of the programmer.

On the other hand, some models let the compiler divide up the work among

the available processors. Programming within these models requires much

less work. The algorithms used by the computer are not specified by the

programmer. At the same time, the programmer loses the ability to tune

algorithms for a particular application. The models that remove flexibility

from the programmer limit the performance that can be attained from a

parallel computing environment for a particular application.

The next three sections discuss three different programming models. Figure

2-10 displays these models as a continuum from minimum to maximum

control. Sections 2.3.2 through 2.3.4 will also be addressed in this order.



Little Complete
Programmer Programmer
Control Control

Figure 2-10: Continuum of User Control in Parallel Programming Models

2.3.2 Data Parallel Model

The data parallel programming model requires a data parallel language and

data parallel compiler, as it is the compiler that distributes the work among

the available processors. One of the most popular data parallel languages is

FORTRAN 90 or HPF FORTRAN. These versions of FORTRAN are just

now being used on a variety of machines. Compilers for these languages are

still fairly expensive, as they are just being released. CM-FORTRAN is the

data parallel language available on the Thinking Machines supercomputers

and is very similar to FORTRAN 90.

An example CM-FORTRAN statement that takes advantage of multiple

processors can be seen below.



A=c*B+D

where: A is a matrix size nxn

B is a matrix size nxn

c is a scalar

D is a matrix size nxn

Figure 2-11: Data Parallel Example

This statement is executed using an algorithm for parallel matrix

multiplication and matrix addition. The programmer did not know what

algorithm was being used, specify how many processors to use, or which

processors would do certain calculations. Obviously , this method of parallel

computing makes programming simpler. Some new functionality is also

added to a data parallel language to take advantage of the multi-processor

environment. Use of these features may require rework of serial algorithms.

Although simpler to use, data parallel languages also have disadvantages at

the current time. These disadvantages include:

* Compilers must be purchased for each class of multiprocessing

environment

* Software must be modified for each compiler (non-portable)

* Inability to effectively use old (legacy) software without significant

modifications

* Lack of user control

2.3.3 Mult.- TFhreading Models

Multi-threading requires programmers to develop their own algorithms for

parallel execution. Programmers must create and destroy threads to perform

specific calculations. However, the programmer cannot specify which

processor will execute a specific thread.

Multi-threading has gained popularity, especially on symmetric multi-

processing, shared memory platforms [21]. The term multi-threading



indicates multiple threads of control in one process. It is easiest to

understand multi-threading using the UNIX notion of process to describe

what most programmers are used to as a single application occurring

sequentially, or a single thread of control in every process. Multi-threading

allows asynchronous process control within the same UNIX process (22].

Using multiple threads of control, a process can be doing more than one thing
at the same time. The main advantage of multi-threading over message
passing is that threads require less overhead than a UNIX process, thus

switching between threads is requires less time than between UNIX processes.

An example operation that can make effective use of multi-threaded process

control is disk I/O [22]. If just one thread of control is allowed, a request for

information from a disk will require a program to wait until the operating

system can access the data. If multiple threads are used, several I/O accesses

can be performed at the same time. If multiple processors are present,

different threads can execute on different processors, although all threads are

only seen by one process. A process could have many requests for I/O, each

having a separate thread of control [22]

Multi-threading is very similar to message passing in that a separate thread

performs its work and returns its result so another thread can use it.

However, the information that needs to be passed between threads is global to

all the threads. Synchronization is slightly more difficult when developing a

multi-threaded application as compared to message passing.

2.3.4 Message Passing

Most message passing environments allow complete programmer control as

to which processor is performing which calculations. At the same time, this

requires that the programmer specify all the control information, which can

often be a complicated and cumbersome task.

A message passing program which performs the program fragment described

in Figure 2-11 is shown in Figure 2-12. The part titled master would be the

controlling program. This program has all the data, sends the data out to the



'slaves' numbered 1 through N, and then puts together their return. This is
definitely not the best way to accomplish this task, especially as it assumes

N=nxn processors are available and must send as much extra information as

the information that is actually being used. Note that each slave must receive

the indices as well as the numbers to be multiplied. The slaves will finish

their work in a random order, thus returning the values to the master in a

random order. To make sure the values get placed in the correct location, the

slaves must receive their indices just to send them back with the answer.

Master Slave Number (n*(i-1)+j)
multicas(ici receiveci
do i=l.n

do j=1,r.
send((n'(i-1)*j),B(i.jn) receivetb)
send((n'(i-1)ji,D(i,j)) receive(d)
send(n'*(i-1)-jj.(nI(i-,Ijj receivetindexl:
sendi(n(i-1)jji,ji receive(index2)

end do

end do

a=boctd

do i=l,n
do j=1,n

receive(indexl) send(master.indexl)
receive(index2) send(master.index2)
receivela(indexl.lndex2)) send(master,a)

end do
end do

Figure 2-12: Message Passing Example

As can be seen, this program is written in standard FORTRAN 77 that must
be linked with a message passing library. The commands from the message
passing library are:

* multicast(value)

* send(slave,value)

* receive(value)

Send value to all slaves

Send value to slave

Receive value from another process

These commands are described here in a very generic way, but almost every

message passing library contains these simple commands (some may not
have a multicast command).

86



A comparison between Figure 2-11 and 2-12 shows the disadvantages of a

message passing environment. As all parameters in a message passing

environment must be specified, the problem becomes much more complex.

However, there are some advantages of working in a message passing

environment.

* The algorithm used for dividing up the work can be specified by

the programmer

* A more standard language, such as FORTRAN or C, can be used

* Legacy code can be more easily incorporated

In the construction of the flight dynamics system for RADARSAT, Draper

Laboratory chose a message passing approach to combine the functionality of

legacy software [60]. Although the software was designed for one computer,

using the message passing approach allowed legacy software to remain

essentially unchanged. The new system was developed with much less effort

than if the legacy software was combined into one program that incorporated

the capability of the individual functions.

2.4 Specific Approaches Considered for IPC

(Interprocess Communication)

Sections 2.2 and 2.3 described parallel programming hardware and

programming environments. This background will be used to examine the

(options that were available for developing the parallel orbit propagator.

2.4.1 Availability

The previous section on parallel hardware, section 2.1, described how

hardware is built to support communication between processors. The

software paradigms describe different methods of developing software to

perform the interprocess communication. With this level of understanding,
several different methods of communication that were readily available to

the author can be compared.



Table 2-6 lists all the different software packages considered together with a
short description of the software. This list represents the software available to
the author when development decisions were made. A more thorough list,
containing descriptions of 70+ parallel software environments has been
compiled by Louis Turcotte [24].

Table 2-6: Parallel Software Models Considered

METHOD DESCRIPTION
Data Parallel

CM-FORTRAN Data parallel language available on the CM-
5. Programming style very similar to
FORTRAN 90.

FORTRAN 90 Latest release of FORTRAN with data
parallel constructs. Would need a new
compiler for each machine to be developed
on.

Message Passing
CMMD Message passing library on the CM-5.
PVM Creates a virtual machine of several UNIX

platforms. Portable to a variety of
platforms. Available via anonymous ftp.

MPI Message passing standard. Requires
inaividual vendors to develop MPI libraries
for their systems.

Multi-Threading
SOLARIS 2.3 Available at Draper Laboratory on a

SPARCstation 20-514. Libraries are
written to be included in C programs.

POSIX Threads Attempt at a standard for multi-threading
applications.

Shared Memory
Network Linda Similar to PVM but uses a virtual shared

memory concept for communication. Users
must purchase software.

It should not be assumed the above are all options to solving the same
problem. Two of the above items, MPI and POSIX Threads, are standards
rather than specific systems. Because every vendor making a multi-
processing system provides a different method for interprocess
communication it is very difficult to design applications that will run on
more than one platform. For each multi-processing platform a developer
would have to change their application to interface with a particular system.



Standards describe interfaces for developing message passing and multi-

threaded programs and leave it up to parallel environment developers to

implement the interfaces between the standards and the underlying

communication system. This concept can be seen more clearly in Figure 2-13.

Programmer Application

Standard Interface

Hardware Specific
Communication

System

Figure 2-13: Levels of Interfaces to Communication Systems

In Figure 2-13, the programmer's application is not affected by the hardware

specific communication system. The standard interface will have the same

shape on the outside, despite the shape of the hardware system, so the

application will 'fit' onto a variety of hardware systems. The hope is that by

making standards, users will be more likely to develop parallel applications as

they will be able to run them on a variety of platforms.

Except for the standards, each implementation described above was developed

by different people, requires different hardware, and does different jobs. The

developer creating parallel applications will be provided with a different set

of functionality and develop different software depending on the choice

made.

The above systems will be explained in further detail. As mentioned earlier,
two attempts at this standardization include POSIX Threads and MPI, the

Message Passing Interface. Information on MPI can be found in the book

Using MPI [22] or in the MPI newsgroup comp.parallel.mpi. The POSIX

Threads standard is a part of the IEEE standard for portable computing [23].



2.4.2 FORTRAN 90 / HPF

FORTRAN 90 is the latest release of the FORTRAN programming language.

It is a super-set of the widely used FORTRAN 77 standard and also contains

many functions that have been added in vendor specific versions of

FORTRAN 77. High Performance FORTRAN is similar to FORTRAN 90 but

is geared specifically toward parallel computing. Both languages contain

constructs for using parallel processing as shown in the program fragment,

figure 2-11. A FORTRAN 90 compiler must be purchased for each

development platform a programmer wishes to use. Parallel applications

developed in these languages, if compiled and run on a multi-processor

system, could be made to take advantage of that system. CM FORTRAN is an

example of such a system. It takes advantage of the processing power

available on the CM-5 by separating the work onto the available processors. If

a section of the code cannot be broken down to run on all available

processors, it runs serially on one computer.

2.4.3 CMMD

CMMD is the message passing library on the CM-5, a parallel supercomputer

at MIT's Laboratory for Computer Science (LCS). Although recently Thinking

Nlachines filed for bankruptcy, Thinking Machines corporation was formerly

one of the developers of leading edge, high performance, parallel computers.

A Connection Machine 5E (CM-5) with 128 SuperSPARC processors was

available to the author over the course of the research project as a part of

project SCOUT, a nationally funded super-computing project. The CM-5 has

many models available for parallel computing, including their own versions

of the data parallel languages, CM-FORTRAN and C*. The message passing

library on the Connection Machine is known as CMMD. This library allowed

for communication between processes as described in Figure 2-6. Table 2-7

describes some of the commands available within the CMMD message

passing library, highlighting some of the atypical functionality present that

can be useful to a programmer.



Table 2-7: Sample CMMD Functions [31]

FUNCTION DESCRIPTION
CMMDsend_block Send information to a

specific processor.
CMMDswap Swap information between

two processors.
CMMD syncwith_nodes Global synchronization

between all processors.
CMMD scandouble Perform a scan on specified

information i.e. add up all
the values on each of the
nodes.

CMMDopensend_channel Open a virtual channel
between two nodes. Future
sends of the same size to the
same processor can be done
with less overhead.

CMMDwrite_channel Write the information to an
open virtual channel.

CMMD provides many 'standard' message passing capabilities but also has

many extras, especially those dealing with global operations and reducing

communication overhead.

2.4.4 PVM

PVM (Parallel Virtual Machine) is a package of library routines and two

executable programs that make a network of UNIX workstations into a single

parallel virtual machine [13]. The two executable programs pvmd and pvm
are described below:

pvm The console program used to configure the virtual machine,
show the status of the virtual machine and tasks, and aide with

debugging.

pvmd The daemon that controls the communication between hosts.

Only one daemon runs on a host even if the host has multiple

processors, in which case PVM uses the native message passing

scheme developed for that particular multi-processor.



PVM allows users to develop applications in FORTRAN 77 or C and link

with libraries that provide message passing capabilities similar to those

available on the CM-5 using the CMMD libraries. One of the main

advantages of PVM is that it is available via anonymous ftp, thus free of

charge. Portability is also a strength of PVM, because the 'virtual machine'

can be made up of a group of heterogeneous computers. Table 2-8 lists the

platforms on which the current version of PVM, 3.3.7, can be used 130].



Platforms For Which PVM 3.3.7 is Available [30]

AFX8
ALPHA
ALPHAMP
BAL
BFLY
BSD386

CM2
CM5
CNVX
CNVXN
CRAY
CRAY2
CRAYSMP
CSPP
DGAV
E88K
HP300
HPPA
1860
IPSC2
KSRI
LINUX
MASPAR
MIPS
NEXT
PGON
PMAX
POWER4
RS6K
RT
SCO
SGI
SGI5
SGIMP

SGI64
SGIMP64

SUN3
SUN4
SUN4SOL2
SUNMP
SX3
SYMM
TITN
UVAX
UXPM
VCM2

Alliant FX/8
DEC Alpha/OSF- I

DEC Alpha multiprocessor/OSF >= 3.0
Sequent Balance
BBN Butterfly TC2000
80[34]86 running BSDI, 386BSD, NetBSD,
FreeBSD
Thinking Machines CM-2 Sun front
Thinking Machines CM-5
Convex using IEEE floating-point
Convex using native f.p.
Cray
Cray-2
Cray S-MP
Convex Exemplar SPP
Data General Aviion
Encore 88000
HP 9000 68000 cpu
HP 9000 PA-Risc
Intel RX Hypercube
Intel IPSC/2
Kendall Square
80[34]86 running Linux
Maspar/Dec Mips front-end
Mips
NeXT
Intel Paragon
DEC/Mips arch (3100, 5000, etc.)
IBM Power-4
IBM/RS6000
IBM/RT
80[34]86 running SCO Unix
Silicon Graphics IRIS
Silicon Graphics IRIS OS >= 5.0
Silicon Graphics IRIS multiprocessor with O
5.0
Silicon Graphics IRIS OS >= 6.0
Silicon Graphics IRIS multiprocessor with O
6.0
Sun 3
Sun 4, 4c, sparc, etc.
Sun 4 running Solaris
Sun 4 multiprocessor
NEC SX-3
Sequent Symmetry
Stardent Titan
DEC/Microvax
Fujitsu running UXP/M
Thinking Machines CM-2 Vax front

S >=

S >=

Table 2-8:



Because it has gained such widespread use, help and discussion about PVM

can found in the newsgroup comp.parallel.pvm. A full description of PVM,

where to get it and how to develop PVM applications can be found in the

book PVM [13].

2.4.5 MPI

MPI, the Message Passing Interface, is a library of message passing routines.

This library defines the programming environment. The implementations

of the MPI library are left up to the vendors of multi-processing machines and

the designers of software for parallel computing over a network of

workstations. MPI promotes the development of complex parallel software

by standardizing the interface to the programmer [21].

The MPI library was designed with the implementor as well as the

programmer in mind [21]. The MPI standard includes many complex

functions useful to the programmer. The library has also attempted to allow

specialized parallel environments to achieve the highest level of

performance. The goal of MPI was to achieve efficiency without sacrificing

portability or functionality. [21].

Developing ,parallel software for an MPI environment has potential to be

portable to a variety of platforms well into the future. There is no guarantee

that this standard will become widely used, however.

2.4.6 SOLARIS Threads

A SPARC multiprocessor platform was recently purchased during the

author's time at Draper Laboratory. The workstation purchased was a SPARC

20-514, having four processors using shared memory [26]. A threads library
for multi-threaded application development was provided with the operating

system, SOLARIS 2.3 [22]. To the author's knowledge, no other method for
parallel program development came with the multi-processing platform.
Although a multi-threaded application differs from a message passing system,



as described in the previous section, some of the same functionality is
available within both systems.

The threads library available could only be used with the C programming

language. No FORTRAN 77 library was readily available. POSIX threads

were not available for this machine when the research was initiated.

2.4.7 LINDA

Network Linda creates a virtual bulletin board, known as tuple space 117].

Processors that have work to do post it on the bulletin board while processes

that are ready to do work pull a tuple off the bulletin board and work on the

tuple. The processor then posts the results back on the board.

Linda runs on a network of workstations. It's primary advantage is its ease of

use. There are only six commands associated with Linda and the specifics of

the sending the messages are removed from the application developer [25].

A full examination of Linda was not performed as a part of this review, as

Network Linda is a proprietary product. However, much information was

available on Network Linda in references [17], [24], and [25].

Each of the specific approaches to interprocess communication has inherent

advantages and disadvantages. The impact of the approach used on the

project goals is examined in Chapter 3.





3.0 A Parallel Semi-Analytic Satellite
Propagator

Chapter 3 describes the development of a parallel semianalytic orbit

propagator. The parallel semianalytic orbit propagator combines an

application architecture based on the PVM networking software with the

Draper Semianalytic Satellite Theory (DSST). The resulting capability will be

referred to as the PVM/DSST.

3.1 Software Development Goals

Developing the PVM/DSST first required identification of clear goals to guide

the software development decisions. These goals originated from project

requirements and years of experience in flight dynamics software

development at Draper Laboratory. The goals are:

* Longevity
* Portability
* Simple Design and Interface
* Low startup costs
* Performance

Each goal is detailed in Sections 3.1.1 through 3.1.4.

3.1.1 Longevity

Many complex software systems used for satellite flight dynamics have

experienced a long lifetime [27]. Examples include:

* DELTA NORAD space surveillance system operational from the
mid 60's to approximately 1980.

* AEOS A system used by the Air Force Space Control Facility
(AFSCF) in Sunnyvale, CA. Developed in the late 1960s.
Software was in use until the late 1980s.

* GTDS Developed by the mid 1970s. Still used at the present
time.

97



* 427M NORAD space surveillance system operational from
approximately 1979 until the present time.

* TRACE Developed by the Aerospace Corporation in the late 1970s.
Still used at the present time.

These applications involve significant investments of time and money. Due

to the cost and complexity of such flight dynamics systems, their useful

lifetime has often been in excess of twenty years.

Draper Laboratory has been developing Flight Dynamics systems since the late

1970s under the direction of Dr. Paul Cefola [27]. The Goddard Trajectory and

Determination System (GTDS) has been in use for the past twenty years [28].

Draper's version of GTDS is known as the Research and Development GTDS

(R&D GTDS).

Development of GTDS began at Goddard Space Flight Center in 1970 [28].

GTDS contains a versatile set of tools and algorithms to perform flight

dynamics functions for space systems [28]. Although originally developed to

run on an IBM mainframe, this system has also been successfully ported to a

VAX/VMS workstation, UNIX workstations including SUN and SGI, and an

IBM PC [29]1 . The software has outlived the computers for which it was

originally designed. As with GTDS, future software will continue to outlive

the hardware; therefore new software developments should incorporate

longevity into an application design. Longevity can be achieved in a number

of ways including:

Maintain software to the most current versions of hardware and
operating systems available so that updates to hardware and operating
systems versions will require fewer software changes.

Develop a software system in a hardware environment predicted to
have a long lifetime.

1 The porting of GTDS to a VAX/VMS, SUN/UNIX, and SGI/UNIX took place at Draper
Laboratory. The IBM PC version was done by Phillips Laboratory with support from Draper
Laboratory.



Develop software to a programming language standard predicted to
have a long lifetime.

In reality, a combination of the above three methods for incorporating

longevity into an application will have to be used. Designers should consider

longevity when making software decisions, however.

Another important step to ensure a long lifetime is developing software

under configuration management [78, 79, 80]. This allows future users to

understand the updates that have taken place and encourage new

development without fear of damaging the current system.

3.1.2 Portability

To be effective, software must be portable to variety of platforms. This

requirement is closely tied with longevity. Software that is dependent on one

platform will be ineffective once that platform is outdated. Portable software

can also experience wider use, as more people can use the software without

obtaining new resources. Finally, this requirement is necessary in developing

a parallel application to execute on a network of heterogeneous workstations.

3.1.3 Simple Design and Interface

A new software application will not experience wide use if the interface is

\'ery complicated. The program flow and its capabilities must be

understandable, flexible, and modifiable. Previous experience shows that a

software system will be modified and expanded as requirements change. As

computers go out of date, the software will have to be adapted to new

architectures, which can be a tedious task if the software architecture is not

easy to understand.

3.1.4 Low Startup Costs

Due to time limitations the PVM/DSST must not require excessive time to

develop and test. To ensure this requirement is met, it will be very important

to use as much legacy software as possible. This will also ensure that a

valuable product is developed without re-inventing "the wheel".



3.1.5 Performance Increase

The primary goal of the PVM/DSST is to increase the capability to analyze

multiple satellites. Creating a parallel application allows the necessary

computational requirements to be met without software changes, if the

software takes advantage of the multiprocessor environment. More

important than the actual performance in this analysis is the performance

that can be attained by a theoretical system. Future users will undoubtedly

have more and faster processors than were available during the time of

development. By demonstrating what can be expected of the parallel

propagator on the computers currently available, the type of computers

required in the future can be scaled to meet the computational requirements.

3.2 Software Design Process

The propagation method was chosen from the beginning to be the DSST. The

effectiveness of this method was thoroughly explained in Chapter 1. In

addition, the algorithms and software were developed at Draper Laboratory

and many experts who participated in the development were available to

answer questions. Software had already been written to implement this orbit

propagation theory, thus there was a significant amount of legacy software

that could be used.

3.2.1 Target Environment Selection

The first decision made before designing a parallel version of the propagator

was the selection of the target environment. The options considered were:

* Using the CM-5 at LCS exclusively

* Using the four-processor SPARC 20-514 at Draper Laboratory.

* Using a network of UNIX workstations at Draper Laboratory.

Development on the CM-5 is advantageous due to the existence of a tested
system of parallel programming libraries; therefore both data parallel and

message passing approaches (Chapter 2) could be considered. The four-

100



processor SPARC is equipped with a threads library, making it possible to

develop a multi-threaded application. POSIX threads were not available to

the author for this platform. In addition, a FORTRAN 90/HPF compiler

could have been purchased for this platform, which could have been used in

a data parallel approach.

Developing on a network of workstations limited software to the message

passing approach. One of the software packages described in Chapter 2 would

be used to make a parallel computer from a heterogeneous collection of

workstations. Several packages were readily available to promote this

development, although the maturity of these packages was inferior to that of

the CM-5. Only PVM was truly considered, as it was readily available (at no

cost), it had already been successfully used at Draper Laboratory, and it was

supported on the available workstations. Table 3-1 delineates the

development options.

Table 3-1: Development Options

Hardware Parallel Associated
Programming Paradigm
Environment

CM-5 CMMD Message Passing
CM-FORTRAN Data Parallel
PVM Message Passing

SPARC 10-514 SOLARIS Multi-Threading
Threads Data Parallel
FORTRAN-90 Message Passing
PVM

UNIX Cluster PVM Message Passing

3.2.2 Chosen Design

3.2.2.1 Paradigm Choice

The first decision to be made was the paradigm to be used. Table 3-2 oulilles

the impact of each paradigm on the development goals.

101



Table 3-2: Impact of Paradigm Choice on Project Goals

Goals Data Parallel Message Multi-
Passing Threading

Longevity Would expect Would expect Would expect
wide use into wide use into wide use into
the future. the future. the future.

Portability Currently All platforms Limited to
limited to available, multi-
machines processor
with special SPARC.
compilers.

Ease of Use Easy to Difficult to Difficult to
program. program. program.
Algorithms Can use old Algorithms
would have algorithms would have
to be depending on to be re-
redesigned. algorithm written.

choice.
Low Startup Forced to All legacy Some legacy
Cost redesign software can software can

existing code be used. be used.
parallelism. Some

sections must
be rewritten.

Performance Expected to be Depends on Expected to be
very good. match very good.

between
granularity
and
hardware.

.- s table 3-2 highlights, longevity is predicted to be sound for all three types of

parallel programming, as they all experience wide usage and should continue

to be supported well into the future.

Because of the systems available, message passing is the most portable

paradigm. PVM programs can be used on all three hardware systems. Thus

PVM brought the portability to the message passing paradigm. Of course, if

the CMMD Library was used for message passing, it would only work on the

CM-5.

1()



As Tables 2-11 and 2-12 pointed out, the data parallel model is the easiest to

program. However, it would require rethinking many serial algorithms to

create parallel operations.

Message passing would have the lowest startup costs, as serial code can be

used as is. Both multi-threading and data parallel paradigms require a change

in existing code.

Performance is the most difficult goal to compare against the paradigms.

Performance is much more dependent on how the paradigm is implemented

than on the paradigm itself.

Because portability and low startup costs were key issues in the decision,

message passing was the paradigm chosen. This choice allowed the quickest

development of a usable product as the legacy software could be easily

incorporated into the new system.

3.2.2.2 Message Passing System

PVM and CMMD were the options available for a message passing system.

Although CMMD provided more functionality, PVM was chosen because of

its portability. The target platform would be a network of loosely connected

workstations within Draper Laboratory. As pointed out in Table 2-8,

however, a PVM application would also work on the CM-5. Additionally,

PVM provided the benefit of developing applications within Draper

Laboratory, thereby allowing the author more access to the computers.

Although CMMD provided more reliability and specialized functionality, the

portability and accessibility of PVM made it the better choice for this

application.

MPI was not fully examined as it was fairly new at the time the decision was

made and PVM provided the necessary portability. MPI would enhance

longevity, however, as new message passing systems conform to the MPI

standard. This application can easily be updated to an MPI application by

103



changing the PVM function calls. A section of the MPI manual describes how

to move PVM applications to MPI [21].

3.2.3 PVM and the DSST

The target environment for this software was a loosely connected set of

workstations, which complements a coarse grain decomposition of the

problem. Although this limits speed-up, as demonstrated by Amdahl's Law

(eq. 2-3) the communication costs across a network of workstations could be

very expensive. Communication would be particularly expensive if there is a

significant amount of other network traffic while the application is executing.

3.2.4 Software Implementations of the DSST

Before describing the new software designed, it is important to examine the

legacy DSST code available for integration into the PVM/DSST.

At Draper Laboratory, two implementations of the DSST already existed in

tested software prior to this project's inception. One version was contained

within GTDS; the other was a separate utility that consisted of only the

propagator [32, 61].

GTDS is controlled by files known as card deck inputs. A procedure that links

the card deck, data files, and output files to the appropriate files sets up the

environment for a GTDS run. The commands in the card deck are then

executed by GTDS. A sample card deck that would propagate a satellite ahead

five years is seen in Figure 3-1 [35].

104



CONTROL EPHEM TOPEXXX XXXXXX
EPOCH 950401.0 000000.000000
ELEMENT1 3 6 1 7300.000000000000DO 4.83000000000000E-4 65.9000000000000D0
ELEMENT2 330.4000000000000D0 271.3000000000000D0 73.2000000000000DO
OUTPUT 2 2 1 1000401.0 000000.0 31570560.0
ORBTYPE 5 1 2 43200.0 1.0
OGOPT
SPSHPER 1
SCPARAM 0.0001 1000
ATMOSDEN 1
DRAG 1 1.0
MAXDEGEQ 1 21.
MAXORDEQ 1 21.
POTFIELD 1 4
END

Figure 3-1: Sample GTDS card deck [35]

The other software implementation of the DSST existed autonomously in
FORTRAN 77 code. This software, known as the stand-alone propagator, is
described in the document by Early [32], as well as a study performed by
Jablonski (Boelitz) [33]. This software was written to be portable, allowing the
DSST to be implemented on a variety of platforms with various driver
programs. Interface into the DSST was through four subroutine calls. Setup
information and options are passed in through the argument list to the
propagator, although many options are hard coded throughout the software.
Because the stand-alone was completed much later than GTDS and written to
be FORTRAN 77 compliant, the software is much easier to work with.

The GTDS version of the DSST contained more functionality than the stand-
alone, implying that a parallel GTDS could potentially accomplish more than
satellite propagation. For this project, the GTDS benefits were outweighed by
the ease of use of the stand-alone propagator. The GTDS system would
require re-creation of the card decks to start the run. Also the output files did
not easily lend themselves to multiple satellite data analysis.

3.2.5 Software Design Considerations

With the stand-alone propagator chosen as the basis for the orbit propagator
and the PVM utility chosen for message passing, the top level software
requirements were established. Table 3-3 describes the various software
design approaches considered, ranked in order of respective granularity, from
the finest grain algorithm considered to the coarsest.

105



Table 3-3: Advantages and Disadvantages of Approaches Considered

General Concept Advantages Disadvantages
1] Use a parallel Speedup predicted in all Fine grain
numerical types of processing. parallelism is
integration scheme. required.
2] Calculate all mean Speedup increases with Speedup only in
elements, then use more processors as long evaluating short
the results to as there are enough periodic elements.
calculate the short short periodic points to Limited by serial
periodic be evaluated. Could be mean element
contributions across valuable in a generation.
multiple processors. differential correction

(DC) algorithm.
3] Propagate different Little communication No speedup for just
satellites on different overhead. Can use one satellite.
processors. some legacy software

without modification.

The third concept in Table 3-3 was chosen for implementation because it best

fit development goals. The main advantages to this approach are:

* No change required in the DSST algorithm which was already coded and
tested

* Coarse grained nature promised high work time/communication ratio.

* Scalable to as many processors as desired as long as number of satellites
to the number of processors ratio is high enough.

The disadvantage of this design is that one satellite could not be propagated at
a greater speed. The algorithm is only useful in propagating multiple
satellites.

The final design is a combination of all the limitations and goals discussed in

Sections 3.1 and 3.2. The design is particularly useful in examining the long

term evolution of multiple satellite constellations, a capability which is
exploited in Chapter 4.

106



3.2.6 Load Balancing Methods for Parallel Computing

Developing parallel algorithms on a heterogeneous group of processors

presents a challenging load balancing problem. It is impossible to know the

speed with which different processors will perform their work prior to the

creation of the next task. On a dedicated, homogeneous system such as the

CM-5, all processors can be assumed to work at nearly the same speed. The

software can be designed to evenly apportion the tasks among the available

processors. In a heterogeneous environment of workstations, many factors

enter into how fast a processor will perform a desired task:

* Clock speed of processor.

* Processor architecture, i.e. RISC, CISC, pipelining, co-processors.

* Load on processor.

* Memory/Cache usage.

* Physical location of disk and network traffic between processor and disk.

If all task assignment is done before the computation begins, a computer

heavily loaded with users might be given most of the work. All the other

processors would have to wait until the heavily loaded computer finished its

tasks. Even harder to predict, the path between the processor and the disk

with the data files could be heavily loaded, increasing disk access time. To

counterbalance these problems, a load balancing technique is used.

There are many sophisticated ways to approach this problem. Some

algorithms may periodically measure machine loads and distribute work

based on a combination of machine capacity and load at that time. The
'manager' could later redistribute work based on load averages or the

performance of a particular machine.

These algorithms can be very useful but may be difficult to implement. For

this application, a much simpler but effective approach was taken. The

balancing method used was known as the 'pool of tasks' algorithm 113]. The

terms process and task are used in very specific ways in this discussion;

therefore they should be clearly defined before continuing.

107



process

task

An executing program on the CPU or in memory on a UNIX
machine.

A job waiting to be executed by a process.

In this distribution algorithm, all the tasks are controlled by P 'master' process.

This process has all the information necessary to perform each task. To start,
the master creates slave processes distributed among the virtual machine.

More slave tasks can be assigned to faster machines, but PVM distributes the

tasks evenly among the machines by default. The master process then sends

out one task to each process. When a task is finished, the slave process will

return a message to the master indicating that it is done as well as an ID. The

master will then send this process the next task.

In this way, the processors that work the fastest will do the most work. Once

the master has sent out all the tasks, it waits for those tasks to be finished

before continuing. The 'pool of tasks' distribution algorithm is depicted in

Figure 3-2.

Figure 3-2: The pool of tasks algorithm.

This algorithm works most effectively when there is a high task-to-processor

ratio. If there is only one task per processor, for example, the faster processors

will be waiting while the slower processors finish their one job.

108



3.2.7 Programming Language Choice

PVM is compatible with both FORTRAN 77 and C programming languages.
The DSST stand-alone propagator was written in FORTRAN 77. To

minimize the interface problems with the DSST, the additional code was also

written in FORTRAN 77. C could have been used, but there are occasional

difficulties in calling FORTRAN routines from C programs, not the least of

which is the requirement of having two different compilers to create the one

executable. FORTRAN 90, a superset of FORTRAN 77, would have been

considered, but the lack of compilers limited portability.

3.3 Software Description

This section describes the software implementation of the design decisions

described in Section 3.2.

3.3.1 Top Level Software Design

There are two different methods of writing the required software: keeping

just one executable for the 'master' and 'slave' or dividing the code into two

different executables. Keeping just one executable is also known as the

'hostless' programming model; dividing the code into two executables is also
known as the 'host-node' model.

The hostless programming model is depicted in figure 3-3.

109



IF MASTER THEN

GRead
Constellation
Information

Spawn Slaves

Broadcast
Constellation
Information

Send Out
Work to
Waiting

Processes

Kill Slave
Processes

ELSE SLA VE:

Receive
Broadcast

Receive Send
Work Whe

Done

END IF

Figure 3-3: Program Flow for the Hostless Programming Model

The software used the PVM function pvmfparent() to determine if a

particular process was the master or slave. This function is not unique to

PVM; most all message passing facilities have such a capability. If the process

decides it is the master process, it creates several slave processes. It then

continues to manage the tasks and slave processes. Upon completion, the

110



master finally kills all its slaves before exiting. If a process decides it is a slave,

it waits to receive data before beginning computation.

The host-node programming model is depicted in figure 3-4.

MASTER EXECUTABLE SLA VE EXECUTABLE

Figure 3-4: Program Flow for the Host-Node Programming Model

Dividing the code into two pieces made the project slightly more difficult to

manage, but simplified the building process for the master. The master did

not need to be linked with the functionality of the orbit propagator, making it

a much smaller program than the slave executable.

Keeping all functionality in one executable was easier to maintain when the

software was being developed. Software changes in one function often

required changes in the other. Once the software was developed and tested,

dividing the software into two executables was more efficient; the master

executable did not have to be linked with the DSST software. For the initial

version of the PVM/DSST just one executable was created. When used with

the optimization tool (Chapter 4) two executables were used.

11 1

Constellation
Information

Spawn Slaves

Broadcast
Constellation
Information

Send Out
Work to
Waiting

Processes

Kill Slave
Processes



Figure 3-5 depicts the overall structure of the parallel orbit propagator written

using the hostless programming model.

rdconst

sat_prop

set_satopt sorttimes outdat

Figure 3-5: PVM/DSST Structure with the Hostless Programming Model

A more detailed program flow of the PVM/DSST is depicted in figure 3-6.

11)

Interface to DSST

intanl
began1
orbani



constprop I

, sat_ prop

I I
IZI

Master Process

Slave Process O0
sat_prop

Interface between const_prop
and sat_prop

Figure 3-6: Flow of the parallel orbit propagator

113



3.3.2 Process Distribution Manager: const_prop

The process distribution manager, const prop (constellation propagator)

creates multiple copies of itself across multiple processors. Each slave then

calls the subroutine sat_prop. The subroutine sat_prop, does not execute in

parallel; it will have a single thread of control and proceed through the

satellite propagation serially. The distribution manager uses the pool of tasks

algorithm, discussed previously, to best distribute the jobs among the

available processors.

In creating const_prop, a decision had to be made as to which of the sat_prop

variables would be specified to be the same across the entire constellation, a

constellation global parameter, or specific to an individual satellite, a satellite

local parameter. PVM provides a global broadcast capability for more efficient

communication of one message to all processes. Additionally, a global

message is only sent once at the beginning of a propagation run rather than

with every satellite. Therefore, it is desirable to move as much data as

possible into the constellation global parameters to reduce communication

costs. All the necessary data and a description of each of the global and local
data items is shown in Tables 3-4 and 3-5.

Table 3-4: Constellation Global Data

Data Item Description Name Given in constprop
Input File (Fig. 3-10)

Number of Satelli."- Total Number of satellites in N Satellites
the constellation

Element Type Description of the input ElType
element set

Number of Intervals Number of time intervals Nintervals
through which the satellite
is propagated. In each
interval, an equal time step is
used

Time Intervals Time of interval. Beginning Begin Interval
Time, Ending Time, and a End Interval
Timestep must be given for Deltat
each interval

Number of Burns Total number of burns Nburns

11.1



Table 3-5: Satellite Local Data

Data Item Description Name Given in const.prop
Input File (Fig . 3-10)

Satellite Number Unique number identifying each Satellite Number
satellite

Epoch Time Time information given for the Epoch Date
satellite's epoch date and time Epoch Time

Satellite State The element set in either Equinoctial Elements or
Keplerian or Equinoctial elements Keplerian Elements

Coefficient of Drag Coefficient of drag CD
Rho One The value of Rho Rho One
Spacecraft Mass Mass of the spacecraft in kg S/C Mass
Spacecraft Area Area of satellite that sees drag S/C Area

effects
Integrator Stepsize Step size used for numerical Integrator Step

integration in seconds
Retrograde Factor Retrograde factor for equinoctial Retro

elements
Atmospheric Model Describes which atmospheric Atmos Mdl

model to use
Potential Model The model for the spherical Potent Mdl

harmonics of the Earth
Maximum Degree Maximum degree of the central Nmax

body spherical harmonic used in
propagation

Maximum Order Maximum order of the central Mmax
body spherical harmonic used in
propagation

Central Body Zonal Harmonic Whether to use: Izonal
Averaging Option 1) Analytic Averaging

2) Numerical Averaging
3) Off
method of averaging

J2 Squared Effect Whether to include J2 squared IJ2J2
effect
1 - Yes 2 -No

Maximum resonant order Maximum resonant order Nmaxrs
Maximum resonant degree Maximum resonant degree Mmaxrs
Third Body Perturbation Whether to use: Ithird

I) Analytic Averaging
2) Numerical Averaging
3) Off
method of averaging the third
body contributions

Atmospheric Drag Whether to include atmospheric Ind Drg
drag
I - Yes 2 - No

J2 Height Correction for Drag Whether to compute ISZAK's lszak
height correction for atmospheric
drag
I - Yes 2 - No

Solar Radiation Pressure Whether to include solar radiation Ind Sol
pressure
I - Yes 2 - No

115



This division into constellation global and satellite local data was useful for

the work predicted to be done during the author's time at Draper Laboratory.

It may need to be changed in future applications. Both the propagator shell

and the distribution manager will require code changes, which simply

requires moving the send commands in the distribution manager between

local and global positions in the program. Similarly, the receive commands

at the top of the propagator shell will have to be moved between global and

local positions. These changes should be fairly straightforward.

3.3.3 Propagator Shell: sat_prop

The propagator shell was designed to provide flexibility when used with a

variety of applications. As described earlier, the stand-alone DSST legacy code

was used for orbit propagation, and the propagator shell was designed around

this software to implement the propagator. A previous implementation of

the propagator was used as a starting point for the shell design. This shell,
known as ORBIT_PROPAGATOR_SERVICES (OPS), was used by Draper

Laboratory as a mean element propagator for maneuver planning purposes.

It accepted a keyword and the necessary data for that keyword, and returned

the values requested. This shell was written by David Carter at Draper

Laboratory for the Landsat 6 project [34]. Much of the input information,
however, was read in from a precision mean element file (PME file) and then

loaded into the appropriate common block before implementing the

propagator. Figure 3-7 describes the external interface to OPS.

Data PME Keyword
Files File & Option

OPS

Output to
Standard-Out

Figure 3-7: External Interface to OPS.

11A



To make the interface between sat_prop and other applications, such as

constprop, simpler, all options were passed in through the argument list.

Data files were still necessary to run the orbit propagator, but the file

describing the satellite and a few propagation options, the PME file in OPS,

was removed. Figure 3-8 describes the interface to sat_prop.

Figure 3-8: External interface to sat_prop.

An additional change was made to the propagator shell to reduce the amount

of data that would have to be sent from the master to each slave. Rather than

specifying particular request times in seconds from epoch, an interval with a

start time, stop time, and time step was used. Multiple intervals could be

passed as well. This functionality turned out to be very valuable when using

the propagator.

The argument list to the subroutine sat_prop became:

117



subroutine sat_prop(satno, eltype, nintervals, intervals,
nburns, burnlist, satoptint, satopt_dbl,
outfile, indatapath)

Table 3-6: Argument Description for Subroutine sat prop
VARIABLE TYPE DESCRIPTION

satno integer*4 Satellite number used to describe the output
file.

eltype integer*4 Integer flag describing the element set type.
I - Keplerian
2 - Equinoctial

nintervals integer*4 Number of intervals to propagate through.
intervals real*8(5,') Interval description. Five numbers per

interval.
1&2 - Begin Date and Time
3&4 - End Date and Time
5 -Time step

nbums integer*4 Number of impulsive bums entered.
burnlist real*8(4,*) Bum information. Four numbers per bum.

1 - Burn time in seconds from epoch.
2 - Tangential burn impulse (m/sec).
3 - Normal bum impulse (m/sec).
4 - Radial burn impulse (m/sec).

satoptint integer*4(*) List of integer options described in Table 3-5,
satellite local data.

satoptdbl real*8(*) List of real*8 options described in Table 3-5,
satellite local data.

outfile character Output filename with path.
indata-path character Full path of input files.

The six necessary data files that are required in the new propagator design are
seen in Table 3-7.

Table 3-7: Data Files

Name of File Description
epotfld Earth potential models file
jacdat Jacchia data for drag

information

slp1950 Solar, Lunar, Planetary
ephemeris file in Mean of
1950 coordinates

slptod Same as above in GTDS true-
of-date coordinates

timecoef Timing coefficients file
newcomb Newcomb operators file

11R



There are several other integration options that are hardwired in sat_prop.

These options are listed in Table 3-8.

Table 3-8: Hardwired Propagator Options

Option Variable Current State Where The
of Option Option is Set

Mean or osculating input elements. mean Mean input satprop
elements

True of reference or mean of 1950 input mtod True of sat-prop
coordinate system Reference
Direction of integration forward Forward sat prop

3.3.4 Modifications to the DSST

The DSST stand-alone is a portable set of code, although a few changes were

implemented when moving between platforms. Jablonski (Boelitz) [33J
described how the DSST standalone could be used on a variety of platforms,

including a VAX using VMS, IBM PC using DOS, a SUN SPARC station using

UNIX, and an Apple Macintosh. Because the PVM/DSST software was built

from the version of the DSST on the VAX/VMS and had to moved to a

SPARC/UNIX environment, some small changes would have to be made.

However, when developing parallel software that works in a heterogeneous

environment, it is desirable to have one set of source code that compiles on
multiple platforms. One set of source code is much easier to manage,

especially when developing new software, as changes only have to be

integrated in one version.

The portability between platforms can be added without changing software by
using a pre-processor [44]. Keywords are set that indicate the type of computer

being used. This information is used by the computer to modify the software

before it gets to the compiler, effectively rewriting the software for the

particular platform.

The compiler used was the SPARCompiler FORTRAN 3.0, available to all the

SUN machines at Draper Laboratory. This compiler applied the C-
Preprocessor (despite its name, this preprocessor can be used successfully with

FORTRAN 77) to all FORTRAN files ending in extension .F, converting them

119



to .f files, which were then compiled [45]. According to Dowd [17], this
method of applying the preprocessor to FORTRAN programs is becoming
standard. The C-Preprocessor functions are described in many texts, including
[69].

The first change to be implemented when moving from a VAX/VMS

environment to a SPARC/UNIX environment was to modify the length of
direct access records. In a VAX OPEN statement, the keyword RECL is equal

to the number of bytes in the record divided by four. On a UNIX platform

RECL equals the number of bytes.

The preprocessor worked exceptionally well for this problem, providing code

that worked on both a VAX/VMS and SPARC/UNIX platforms. This fix was

made by adding the statements shown in Figure 3-9.

>cat setdaf.F

#include "machine.h"
#include "arraysizes.h"

SUBROUTINE SETDAF

C DEFINE FILE FOR SLP EPHEMERIS PERMANENT FILE
C DEFINE FILE 14 (2500,566,U,ID:4)

input_file = indata.path(1:i-1)//'s1p1950'
open(unit=14.
1 form= 'unformatted',
2 access=*direct'.
3 recl=566*WORDLENGTH,
4 file=input_file,
5 scatus='old',
6 readonly,
7 shared)

>cat ../include/machine.h
ifdef vax
#define WORDLENGTH 1
*endif

#ifdef unix
#define WORDLENGTH 4
vendif

Figure 3-9: Preprocessor modifications

At the user prompt, the command:

f77 -c setdaf.F

will fihst cause the C-preprocessor pass over setdaf.F before it sends it to the
compiler. The commands to the C-preprocessor all start with a # in the first

120



column. The preprocessor then looks for the file machine.h and
array_sizes.h and expands them into the file, setdaf.F. Examining machine.h,
the preprocessor then sees the conditional statements '#ifdef vax' or '#ifdef

unix'. If the machine is a vax, the term 'vax' will be defined; similarly for the

term 'unix' on a unix machine. Assuming a unix machine was being used,

the statement inside this conditional will be evaluated. The #define

command replaces its first argument with the second argument everywhere it

sees exactly the first argument in the code. In this case, the term

WORDLENGTH is replaced with 4, so the right value is calculated for the

RECL keyword on a SPARC/UNIX processor. Direct access files were opened
in two places in the DSST standalone / OPS software, the subroutines setdaf

and satellite. This code will, in the future, work on both the VAX and the

SUN.

The other changes that had to be made included:

* Change all block data filenames to the format '....bd.for'. The

SPARCompiler would not take filenames that have the same name as the

block data. With this change, the software will still work on the VAX.

* The file error_handler.for contained many VAX specific routines. This

file was not necessary for use in this project so it was commented out
using the preprocessor. A VAX compilation would still make use of the
error handler.

* Get rid of the VAX/VMS specific calls such as 'OPEN(SYS$INPUT)' in

OPS. This was commented out using the preprocessor.

3.3.5 Support Software

Several other routines were also written to support this software effort.

These routines are listed in Table 3-9. Listings of all software written is

shown in Appendix B.

121



Table 3-9: List of Additional Software Developed

Name of Subroutine Brief Description
crrequest_times.F This subroutine converts a time range and

interval into a list of times in seconds form epoch.
outdat.F This subroutine writes the results of the

propagation to disk.
rdconst.F This subroutine reads the input file which

contains the constellation data.
set_satopt.F This subroutine assigns the values input through

the argument list to the appropriate common

block locations.

sort_times.F This subroutine sorts the request times and burn

times into increasing order. It also keeps track of

which times were burns and which were requests

for output.

3.4 Validation of the PVM/DSST

The job distribution logic and implementation was tested in two ways:

* The program const_prop was run through a debugger to ensure the

correct messages were sent and received at the appropriate times.

* Use with the distribution manager produced the correct numerical

values when compared to previous implementations of the DSST.

This implementation of the DSST was also validated in two ways. Results

were first matched exactly to the test cases designed and used for verification

of OPS in the Landsat 6 and Radarsat programs at Draper Laboratory. As the

const prop propagation software was the same as that used for OPS, these

results should match to machine differences. Results were then compared

with a GTDS semianalytic run.

122



3.4.1 Comparison to previous tests

The Landsat 6 tests used for comparison included [43]:

* State comparison after a four day coast

* State comparison 10,000 seconds after epoch following a tangential
burn 1000 seconds after epoch.

The input file used to generate the four day coast in const_prop run is shown

below, in Figure 3-10.

1 Satellites: 1

nintervals: 1
Begin interval 1
End interval 1
Deltat interval 1

E1Type 2
19821025.0 000000.0
19821031.0 0.00
86400.0

nburns =

Satellite Number: 1 Epoch Date: 19821025.0 Epoch Time:

Equinoctial Elements : 0.7077636704480000D04
0.1564765048485586D-03
-0.8653247687711026D-04
-0.3855720457066417D-01
0.1154698444728130D,01
0.2305550252000000D~03

CD: 2.00000000 Rho One:
S/C Mass: 1675.80454500 S/C Area:
Integrator Step: 43200.00000000

Retro:
Imax:
Nmaxrs:
Ind Drg:

1 Atmos Mdl: 1 Potent Mdl:
21 Mmax: 21 Izonal:
21 Mmaxrs: 21 Ithird:

1 Iszak: I Ind Sol:

0.00000000
0.00001379

2
1 IJ2J2: 1
1
1

Figure 3-10: Four day coast input file

The first, or truth runs, were performed on a VAX station 4000-90 while the
tests were run on a SPARC 20-514. The comparison of the results are shown
in Table 3-10 and Table 3-11.

123

0.0



Table 3-10: Comparison of constprop against Landsat

after Four Day Coast

6 test cases

Keplerian Element Landsat 6 (Truth) const prop Absolute Difference
VAX/VMS SUN/UNIX

Mean Semimajor Axis 7077.5976156445210 7077.5976156445200 1.00E-12
(km)
Mean Eccentricity 0.0003643952697747 0.0003643952697747 0.00E+00
Mean Inclination 98.2450676985650 98.2450676985646 3.98E-13
(deg)
Mean Longitude of 2.04663721378651 2.04663721378651 0.00E+00
Ascending Node (deg)

Mean Argument of 147.6042249337675 147.6042249337670 5.00E-13
Perigee
Mean Mean Anomaly 175.4197101690098 175.4197101689990 1.08E-1 I

Table 3-11: Comparison of constprop against Landsat 6 Test Case. Impulsive

Burn 1000 Seconds After Epoch and Compare 10,000 Seconds After Epoch

Keplerian Element Landsat 6 (Truth) const-prop Absolute Difference
VAX/VMS SUN/UNIX

Mean Semimajor Axis 7077.824590834495 7077.824590834480 1.5004E-11
(km)
Mean Eccentricity 0.000156411702392 0.000156411702393 1.00e-15
Mean Inclination 98.24471614261371 98.24471614261360 1.10E-12
(deg)
Mean Longitude of 358.2020530693879 358.2020530693870 9.00E-13
Ascending Node (deg)
Mean Argument of 124.1159642833155 124.1159642832740 4.07E-11
Perigeee
Mean Mean Anomaly 355.1142900226430 355.1142900226840 4.14E-11

The differences in both tables are attributable to machine differences.

Differences of the same order of magnitude are apparent in different versions
of GTDS [81].

3.4.2 Comparison to GTDS

To validate the results of the PVM/DSST, a GTDS run was performed using

the card deck in Figure 3-1. Both the GTDS and the PVM/DSST were

executed on SPARC processors. This card deck gave results in mean elements
only so it would match the default setup of the PVM/DSST. The results of

124



this GTDS run, a five year EPHEM, are compared to the results of the

const_prop results after five years. The input file used to generate the

PVM/DSST run is shown in Figure 3-11.

N Satellites: 1 Eltype 1

nintervals: 1
Begin interval 1 19950401.0 0.0
End interval 1 20000401.0 10.00
Deltat interval 1 31570559.82

nburns =

Satellite Number: 1 Epoch Date: 19950401.0 Epoch Time:

Keplerian Elements:

0.0

0.730000000000000D+04
0.483000000000000D-03

0.659000000000000D+02
0.330400000000000D+03
3.271300000000000D+03
0.732000000000000D+02

CD: 2.00000000 Rho One:
S/C Mass: 1000.00 S/C Area:
Integrator Step: 43200.00000000

Retro:
Nmax:
Nmaxrs:
Ind Drg:

1 Atmos Mdl: 1 Potent Mdl: 4
21 Mmax: 21 Izonal: 1
21 Mmaxrs: 21 Ithird: 1
1 Iszak: 1 Ind Sol: 2

0.00000000
0.00010000

IJ2J2: 1

Figure 3-11: PVM/DSST Input File for Validation of Software

The results, after five years, of both the GTDS and PVM/DSST test cases are

shown in Keplerian Elements in Table 3-12. GTDS only outputs to 8 decimal

places so the comparison was not made to the same precision as the

comparison against the VAX/VMS OPS.

125



Table 3-12: Comparison of Results between GTDS and the PVM/DSST

Keplerian Element GTDS Results PVM/DSST Difference
Results

Semimajor Axis 7289.671441 7289.671441 0.00
(km)
Eccentricity 0.000306449787 0.000306449787 0.00
Inclination (deg) 65.8961296 65.89961296 0.00
Longitude of the 14.54720186 14.54720186 0.00
Ascending Node
(deg)
Argument of 30.72517568 30.72517568 0.00
Perigee (deg)

Mean Anomaly 20.02981688 20.02981683 5.0e-08

(deg) I I I

Table 3-12 shows that the PVM/DSST matches GTDS

in the output files.

to the accuracy shown

3.5 PVM/DSST Performance Analysis

Performance is very difficult to measure. Benchmarking computers is an

involved procedure and not of primary importance to this discussion. This

section concentrates on the performance of the software designed, as opposed

to an analysis of the hardware. To describe the results, however, a description

of the hardware environment is necessary. The hardware environment

description will be followed by a description of the performance tests and

results. The last section draws conclusions about the software design based on

the test results.

3.5.1 Test Environment Description

Four computers were involved in the performance testing of the software.

The machines all belong to Draper Laboratory and are associated with the

ACME Lab within Draper Laboratory. The four computers used are described

in Table 3-11 [26].

126



Table 3-13: Computer Description

Computer Description
wile-e SPARC ELC.

SunOs 4.1.3 Operating System
coyote SPARC 10-30

SunOs 4.1.3 Operating System
porky SPARC 20-61

SunOs 4.1.3 Operating System
petunia SPARC 20-514

Four Processors using a shared
memory system. SOLARIS 2.4
Operating System.

The connection between the computers is crucial

communication overhead, as described in Chapter 2.

connected as shown in Figure 3-12.

to the amount of

The computers are

FDDI RING

Other -
Ethernet
Connections

Figure 3-12: Hardware Configuration

The toaster is a network file server, and

Table 3-6. The executable programs

it contained the data files described in

and timing results were on a disk

127



connected to taz, a SPARC 20-61. Otherwise, taz was not used in the

performance testing.

The four computers were turned into fifteen different testing environments.

Each system consisted of a combination of computers and test routines. This

was done so test results could be easily associated with the correct system. The

testing environments are described in Table 3-14.

Table 3-14: Description of Systems Timed

System Computer(s) Test
Type

1 Porky Serial
2 Coyote Serial
3 Wile-e Serial
4 Porky Parallel
5 Coyote Parallel
6 Wile-e Parallel
7 Porky-Coyote Parallel
8 Porky-Wile-e Parallel
9 Coyote-Wile-e Parallel
10 Porky-Coyote-Wile-e Parallel
11 Petunia with 1 slave tasks Parallel
12 Petunia with 2 slave tasks Parallel
13 Petunia with 3 slave tasks Parallel
14 Petunia with 4 slave tasks Parallel
15 Petunia Serial

Two different types of tests were run for performance analysis. The parallel

test used PVM and distributed the tasks among each system. The serial test

was used to perform the same calculations without the PVM overhead and

using only one processor.

No system combining both the multiprocessor (petunia) and a single

processor were timed as optimal process assignment on such a virtual

machine would have required additional code. This mixed configuration was

used for constellation analysis (Chapter 4). Additionally, the PVM

implementation on the multi-processor platform was not bug free. Using the

mixed configuration occasionally created problems. Problems with PVM are

discussed more fully in Chapter 5.

128



Slight modifications were made to the programs const_prop and sat_prop to

facilitate performance testing. The version of sat_prop was modified to

become sat_opt, which was originally changed for constellation optimization.

This program output the results of a cost function back through an argument

list variable rather than writing a list of states to a file. Performance testing

was more manageable using this version as no new files were created with

each run. Similarly, the function const_prop was split into a master process,
const_opt and its slave process const_opt_slave. These routines were created

to run sat_opt and made testing easier as const_opt accepted the number of

processes created at one time as a parameter in the argument list.

The program timing was used to time a test case on a particular configuration;

timing passed the number of satellites to be propagated and the number of

processes to create to the constopt subroutine. The number of satellites was

set as an UNIX environment variable, which could then be easily changed

before running the program again [16]. The FORTRAN subroutine getenv

was used to pass the information from the UNIX environment into the

program.

The subroutine const_opt then created the requested number of processes

evenly across the virtual machine and began sending out the satellites to each

const_opt_slave, until each of the requested satellites had been propagated.

Figure 3-13 depicts the structure of the program timing.

129



crrequest_tines

Figure 3-13: Structure of timing

130

Interface to DSST
intanl
beganl
orbanl

set1saopt
set_satpt



For the timing results, the exact satellite was repeatedly propagated. The
input file for the test case is shown below, in Figure 3-14.

N Satellites: 1 ElType 1

nintervals: 2
Begin interval 1
End interval 1
Deltat Interval I

19950402.0 000000.0
19960401.0 0.00

86400.0

nburns =

Satellite Number: 1 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7073140000000000D+04
0.1173029490000000D-02
0.981420000000000000D02
0.0000000000000000D*00
0.9000000000000000D02
0.0000000000000000D00

CD: 0.00000000 Rho One:
S/C Mass: 1.00000000 S/C Area:
Integrator Step: 43200.00000000

Retro: 1 Atmos Mdl: 1 Potent Mdl:
Nmax: 21 Mmax: 0 Izonal:
Nmaxrs: 21 Mmaxrs: 0 Ithird:
Ind Drg: 2 Iszak: 2 Ind Sol:

0.00000000
0.00000000

I
1 IJ2J2: 2

Figure 3-14: PVM/DSST input File for Performance Testing

For the serial test case, time_sat_opt, the PVM overhead was removed by
making calls directly to sat_opt for each satellite to be propagated. Figure 3-

15 depicts the structure of the program time_satopt.

131



sat_prop

sort_times outdat

Figure 3-15: Structure of time_sat_opt

A script file automated the testing on a variety of configurations. An example

script file used to time a constant number of satellites and vary the number of

processes is shown in Figure 3-16.

132

Interface to DSST

intanl
beganl
orbanl



!/ usr/local bn/bash
iThis script executes the timing
otest for testing the PVM/DSST
*Sl is the system number
'$2 is the number of slaves

SYS=S1
:SLAVES=S2
export NSLAVES

sGet the envrionment
S(HOME): .UserLogin Path
SS(HOME)..UserLogin Variables

export FVM._ARCH='"Users.taziscott!pvm3i libipvmgetarch
export PATH=$ S(PATH} : SPVMROOTbinS (PVMt_ARCH} :$(PVM-ROOT):lib

DIR=S(HOME)ccm_satUtil db!TEMP-OPT.2.0/TEMP_OPT/timingtests/

*Halt pVm
pvm << EOF
halt
EOF

sClear tmp of pvm files
rm -f ,tmp/pvyr.10995

*Start pvm with appropriate hostfile
pvm S(DIR)/hostfiles/sysS(SYS) << EOF
quit
EOF

$Print current virtual machine configuration
echo My system is S(SYS)
pvm << EOF
conf
EOF

#Run the test case
for i in 1 2;
sCreate the filename
do FILE=$DIR)/perfData/s$(SYS)_'date %d%H%M%S''" .dat
for j in 1 2 4 8 16 32 64 128 256:

do export IISATS=S(j);
w echo 'Running Timing Test With '${NSATS)' satellite(s).';

ONE=" timing'
echo S(ONE) lawk '(print 53)' >> $S(FILE)

done;
done

XHalt pvrr
pvm << EOF
halt
EFF

l::ear p'.r :.p f-'es
-f tr.p pv'." 1Z995

Figure 3-16: Example script to perform timing tests

133



The UNIX script file was written with the help of Roseman and Beaupre

[44,16]. Kernighan is an excellent reference for writing UNIX scripts (70]. The

commands for starting and stopping of PVM were necessary for this script to

be executed automatically by the UNIX croti utility. The utility cron executes

any UNIX commands in crontab files on a regular basis, once per day at 5 PM,

for example. The cron capability was especially important for timing tests as

each test could then be run many times, at the same time every day to ensure

consistency. Figure 3-17 lists an example cron tab file.

30 23 "'
/Users/ taz/scott/ccmsatUtl_db/TEMP OPT,2.0/TEMP_OPT/tlmngtests/parallel_ tme_test 5 1 •
'Users/ taz/scott/ ccm_satUtil_db/TEMPOPT,2.0 /TEMP_OPT/ timingtestsserial_t-me_test 2;
; Users/ taz /scott / ccmsatUtil_db/TEMP_OPT,2.0/TEMPOPT / timing_tests/paralleltimetest 9 2

Figure 3-17: Example crontab File

Statistics were then compiled on the results, to increase the accuracy of the

answers. All the timing tests were performed ten times and the average

result was used for performance comparison.

3.5.2 Serial Test Case

The same satellite was propagated 1, 2, 4, 8, 16, 32, 64, 128, and 256 times for

every test. The serial test case was designed to demonstrate the overhead

associated with creating a parallel program. This test case was also used to

compare the relative speed of the systems described in Table 3-14 in executing

the routine sat_opt. No conclusion is intended relative to the performance

characteristics of a particular type of machine. The network configuration,
the average load, and the setup of each of the computers adds many variables

to the execution time. The intent was to compare the computers in their

environment so more sense could be made out of the resulting parallel

performance tests.

The normalized value of one processor is defined in Equation 3-1.

134



Execution Time of Fastest Processor
P=

Execution Time of Processor of Inter.

(3-1)

Table 3-15 lists the average execution times for the entire serial test case (all

511 satellites), and the normalized value of each processor. Each test case was

run ten times. The average execution time and the standard deviation are

listed in table 3-15. Because this was a serial test, the normalized value of

petunia represents only one of its four-processors.

Table 3-15: Serial Test Case Execution Times and Normalized Processor

Values

Machine Average Serial Test Standard Deviation Normalized Value of
Name / Case Execution Time (sec) One Processor (p')
System (sec)

porky / 1 594.04 11.10 1.00
petunia / 15 783.95 19.85 0.76
coyote / 2 1078.34 6.82 0.55
wile-e / 3 2578.72 43.34 0.23

When using a heterogeneous network of processors, the sum p* can be

summed to calculate the total number of normalized processors in a virtual

machine. This sum will take the place of p in Equation 2-2 used to calculate

the efficiency of a parallel execution.

3.5.3 Overhead

Overhead is defined for these tests as the amount of work introduced by
turning a serial application into a parallel application. To demonstrate the

overhead created in developing the PVM/DSST, the serial execution times

were compared to the parallel execution times, using only one computer.
Systems four through six were compared to systems one through three,

respectively. This test could not be successfully performed on petunia, as the

computer will automatically distribute the master and slave tasks to different
processors. No command existed within PVM to insure that processes were
spawned on a particular processor within the multi-processing system.

135



The overhead is predicted to consist of two portions: a constant value,

independent of the number of satellites propagated, and a value that increases

linearly with number of satellites. The constant value originates from the

time required to create a new process and enroll the processes in PVM. Each

satellite directly corresponds to an additional message, so the time required to

generate and send each message should appear to increase linearly with the

number of satellites propagated.

An additional metric used to demonstrate overhead is the efficiency of the

one processor system (Eq. 2-2). The normalized value of each processor is

then used to calculate the appropriate value for p. This ratio represents the

performance loss in executing the test case on one processor as two separate

communicating processes. When the efficiency is one, no overhead is

introduced by sending messages. Ratios less than one indicate the time lost in

overhead. The communication time for this test is very small, as all the

communication will take place on one computer. However, the extra work

involved in using PVM to create a new process and send information

between processes is demonstrated.

Figures 3-18 through 3-20 visually demonstrate the experimental results of

the overhead tests. The first graph in each figure plots execution time vs.

number of satellites. Both the serial and parallel execution times are shown.

The second plot in each figure graphs the difference between the parallel and

serial execution times. The times used are the mean times from the ten

separate tests. Note that in all cases, the parallel execution took slightly

longer than the serial execution on the same computer.

136



Total Execubon Time
350

300

04 - System I

r 200 System 4

IS
r100r

Dlfterence in Execution Tames

i 

6 .

3r

0 50so 100 50 200 250 300
1Number of Satellies

Figure 3-18: Overhead Comparison: System 1 and System 4

TOtal EAecutson Tamw
600

400

I oo

OO

0 50 100 150 200
Number of Saeeees

- System 2

System 5

250 300

Oufference n Execuwlon Tmes.
B-

'71-

in 6

5 r

3

2r
x
g~

NumDer Of Se1itates

Figure 3-19: Overhead Comparison: System 2 and System 5.

137



Total Executaon Tee

1200

600

400

200

0 50 100 150 200 250 30
Number of Saelltles

Dulerence in Execu o- n Tamlro

150
Number of Sataletes

Figure 3-20: Overhead Comparison: System 3 and

Table 3-16 quantifies the overhead information in the previous three figures

by giving the best-fit line to the second graph in each of the figures. These

values describe the constant (satellite-independent) and satellite dependent

costs associated with the PVM/DSST.

Table 3-16: Overhead Values per Machine

Machine / System Overhead Constant Additional
(sec) Overhead Cost /

Satellite (sec/sat)
Porky/1,4 0.3507 0.0174
Coyote/2,5 0.4142 0.0294
Wile-e/3,6 1.446 0.2144

The efficiency (equation 2-2) on one processor also gives an indication of the

overhead. The normalized value of each processor is used for p. The

efficiencies of the single machine cases are shown in Table 3-17.

138

System 3

System 6

300

System 6.



Table 3-17: Efficiencies of the PVM/DSST on One Machine

Machine / System Efficienc
Porky /1,4 0.980
Coyote/2,5 0.985
Wile-e/3,6 0.956

The efficiencies demonstrate the performance loss in propagating the same

number of satellites with the PVM/DSST as compared to using time_sat_opt,
which executes the DSST without the PVM overhead.

The numbers shown in Table 3-17 only represent communication between

processes on the same machine; therefore, messages sent between different

machines will have a higher overhead and lower efficiencies. The amount

of work done on each satellite, the granularity, will also impact the overhead.

Whether or not overhead has a significant impact on performance depends

on the exact application of the PVM/DSST. The results for this test case

showed that the PVM/DSST worked very well. Very little setup time is

required in comparison to the time required for computation. Because there

are many variables affecting performance, it is difficult to generalize these

positive results to other applications or other environments. The results do

show PVM has the potential to develop effective distributed applications.

3.5.4 Speed-Up and Efficiency

Speed-up and efficiency of a parallel algorithm are defined in equations 2-1

and 2-2. Table 3-15 was used to determine the normalized processor value for

a network of heterogeneous workstations. This value was used to calculate

the efficiency across a network of heterogeneous processors. Efficiencies equal

to one demonstrate the best possible performance (indicates that no

processing time was lost to communication or other overhead).

As the PVM/DSST on one processor showed overhead (Section 3.5.3),
computation across multiple processors will introduce even larger overheads

resulting in lower efficiencies. Systems 11 through 14, which only use the

139



multi-processor platform, will have lower communication times but are also
sharing resources, so the efficiencies are difficult to predict.

Figures 3-21 and 3-22 give a qualitative measure of the relative speed-up of

the parallel systems. The mean execution time vs. the number of satellites is

plotted in both figures.

Figure 3-21: Execution times vs. number of satellites for systems 7-10

140

350-

a30

200

100-

- System 7

System 8

- - System 9

Syslem 10

0 50 100 150 200 250 300
Number of Satelhtes

__ _ _



450

400 /
350 / ( -- Syslem 11

300 System I2

0- 
- System 13

2- - System 14

S200

100 0
so

100 so 100 200 250 -
Number of Satelbes

Figure 3-22: Execution times vs. number of satellites for systems 11-14

Figures 3-21 and 3-22 demonstrate that using a network of computers

decreases execution time. Multiple processors are effectively used to speed up
the execution.

In addition, the small speed increase in going from system 13 to system 14 in
figure 3-21 indicates that the multiprocessing platform, petunia, moved the
master process to an unloaded CPU. Systems 11 through 13 spawned fewer

tasks than the number of processors available. The master task then

proceeded to run on an unloaded CPU. System 14 spawned as many slave
tasks as there are processors, so the master process shared a CPU with the

slave task. Therefore the resulting difference between systems 13 and 14 is

not proportional to the difference between 11 and 12.

To quantify the gain achieved, equations 2-1 and 2-2 are applied to the results
shown in figures 3-21 and 3-22. Using the normalized value of processors to
calculate p (Table 3-15), speed-up and efficiency are calculated. Systems 11
through 13 could not be shown, however, because the correct value of p could

141



not be calculated. Because petunia automatically spread its work among the

available processors, p can only be calculated if the entire machine is used.

The speed-up and efficiency results are presented in Table 3-18 and in Figures

3-23 and 3-24.

Table 3-18: Speed-up and efficiency of the PVM/DSST

System Normalized Speedup Efficiency
Number Value of (Compared to

System System 1)
7 1.55 1.50 0.9678
8 1.23 1.16 0.9432
9 0.78 0.751 0.9606
10 1.78 1.70 0.9564
11 0.76 NA NA
12 1.52 NA NA

13 2.28 NA NA

14 3.04 2.39 0.7874

3.5

3
Linear Speedup

2.5-

uO Petunia

2
Actual Speedup

1.5

1

0.5
0.5 1 1.5 2 2.5 3 3.5

Number of Processors Normalized to Porky

Figure 3-23: Actual Speed-up

142



0.98

Figure 3-24: Efficiency

3.5.5 Performance Conclusions

The PVM/DSST worked well for the test case. Communication overhead

affected the performance as predicted. The overall effect of communication

was relatively small compared to the potential gain. Speed-up and efficiency

showed that the algorithm worked exceptionally well for the distributed
network. A comparison between tables 3-18 and 3-17 show a small decrease in

efficiency in moving from one machine to a distributed processing

environment, as would be expected.

Figures 3-23 and 3-24 show that the multi-processing system did not perform

as well as expected, however. The multi-processing platform had lower

efficiency than any of the distributed systems, despite the requirement for

network communication on a distributed processing system. The most likely

reasons for the degraded efficiency on the four-processor machine include:

The work required to manage the shared resources reduced the effective
CPU available.

143

0.96

0.94

c 0.92

W 0.9

0.88

0.86

0.84

0.82

0.8- Petunia

0.78
0.5 1 1.5 2 2.5 3 3.5

Number of Processors Normalized to Porky

_ _ _



* The shared resources caused parts of the application to be 'serialized'.
Memory writes, for example, are sequentialized because two processors
cannot write at the same time [53].

* The system has not been correctly tuned for performance.

* The PVM interface to the native communication system degrades
performance.

The efficiency decrease in the four-processor machine was not predicted but

is understandable. This machine must perform extra work to manage the
four-processors competing for common resources. It is impossible from

these series of tests to deduce exactly what caused the reduced efficiency.

Figure 3-23 shows that the speed-up appears to degrade as more processors

are added. However, the only point showing significant loss in speed-up is

the four-processor machine. If more distributed machines were added to the

computing environment, speed-up should not decrease significantly, to a

point. Eventually too many machines will saturate the network and

overload the pvnmd's. At this point, the management and communication

requirements of an additional task will require more work than the benefit

of adding a new machine. Not enough machines were available to approach

this performance limit, however. For a limited number of machines, this

algorithm will continue to scale well if the size of the problem is large

enough.

144



4.0 Satellite Constellation Design

The PVM/DSST (Chapter 3) employs a network of computers to make

multiple satellite orbit propagation efficient and practical. Combining the

PVM/DSST with an optimization algorithm provides a powerful orbit design

tool which is easily applied to satellite constellations. This chapter discusses

constellation design, the integration of a genetic algorithm (GA) optimization

method with the PVM/DSST, and an example application of the

optimization tool to the Teledesic satellite constellation.

The constellation design problem has been addressed by many engineers.

Walker has presented perhaps the most well-known descriptions of the

problem and possible solutions [56]. Other authors have presented studies on

designing orbits and constellations 157,58]. These studies have looked at

designing constellations to maximize performance characteristics based on

the geometry of the initial constellation and the dynamics of orbital motion.

The goal of this study is to refine and automate a portion of the constellation

design process so that an initial orbit can be chosen to better meet system

requirements in the presence of orbital perturbations. This addition to the

design process should help the engineer develop more effective satellite
constellations.

Section 4.1 describes the constellation design problem and metrics used to
evaluate satellite constellations. Section 4.2 goes on to discuss the orbit

optimization tool, which is used in Section 4.3 to automate frozen orbit

selection. Finally, Section 4.4 demonstrates the capabilities of the orbit

optimization tool in performing an analysis of the Teledesic orbit.

4.1 Design of Homogeneous Satellite Constellations

"The design of a system represents a decision about how resources should be

transformed to meet some objectives [54]." Satellite orbits are designed to
meet specific requirements. Requirements are balanced to meet mission

145



objectives. The sun-synchronous orbit described in section 1.2.4 is an example

of an orbit designed to meet specific objectives.

Larson and

orbit design

Wertz present a checklist for orbit design, acknowledging that

has no "absolute rules [55]." The checklist is shown in figure 4-1.

1. Establish orbit types

2. Establish orbit-related mission requirements

3. Assess applicability of specialized orbits

4. Evaluate a single satellite vs. a constellation

5. Do mission orbit design trades

6. Assess launch and retrieval or disposal options

7. Evaluate constellation growth and replenishment

8. Create AV budget

9. Document orbit parameters, selection criteria, and allowed ranges

10. Iterate as needed

Figure 4-1: "Checklist " for Orbit / Constellation Design [55]

A satellite constellation is normally used instead of a single satellite when

coverage over the Earth is the key criteria in the system design [55]. The term

'coverage' describes how often a satellite system can be accessed from the

ground. Because coverage is important to constellations, coverage can be

used as a measurement of the performance of a satellite constellation.

Therefore, the ability of satellite constellations to provide Earth coverage is an

important metric for constellation evaluation.

4.1.1 Satellite Communication Systems

Communication systems use satellite constellations for their ability to

provide access to some or all of the entire Earth. The most recent proposals,

specifically the systems mentioned in Figure 1-1, plan to use constellations to

provide continuous and worldwide access to communication and data.

These systems are of primary interest in this description.

146



4.1.1.1 Requirements of Communication Satellites

There are two requirements for establishing a communication link between a

satellite and a ground user:

* The ground user has a line of sight view to the satellite.

* The communications link between the satellite and the ground has the

appropriate signal to noise ratio.

Signal to noise ratios are calculated using a link budget [2]. Both Gordon [2]
and Agrawal [3] thoroughly discuss link budgets for communication satellites.

Elevation angles, described in Section 4.1.1.2, determine whether the user has

a line-of-sight connection to the satellite. In addition, elevation angles

indirectly enter into the link budget calculation.

The recently proposed satellite constellations for mobile communications

must maintain a minimum elevation angle above the Earth's surface to

ensure users will always have communication access. A minimum elevation

angle is required for a particular communication system because:

* Distance from the ground to the satellite increases as elevation angles
decrease.

* Obstructions on the horizon prevent a line of sight connection to the
satellites.

* Antenna orientation may favor higher elevation angles.

* Atmospheric interference is greater at low elevation angles.

Because the GPCS communication satellites are interested in continuous,
worldwide coverage, the minimum elevation angles over the entire Earth for

a period of time are of interest. Many metrics can be used to analyze

constellations. These metrics include:

147



Metric Description

Coverage Percent of time above the minimum

necessary elevation angle for a

selection of grid points.

Maximum Coverage Gap [55] The longest length of time a point on

the Earth is below the minimum

elevation angle.

Mean Coverage Gap [55] Average length of time a point on

the Earth is below the minimum

elevation angle.

Minimum Elevation Angle The minimum elevation angle at

any time for a point on the Earth.

Although all of these metrics are important for constellation design, only the

minimum elevation angle metric was used to examine the effects of

perturbations on constellations.

Calculation of the elevation angles and the minimum elevation angle

constellation design metric is discussed in the next section.

4.1.1.2 Elevation Angles

The elevation angle (E) is measured from the projection of the station-to-
spacecraft vector on the local tangent plane to the vector itself. This angle is
positive when the spacecraft is above the horizon [49]. Figure 4-2 depicts the
geometry of the elevation angle.

148



Figure 4-2: Elevation Angle Calculation

where: F and F* are the foci of the reference ellipsoid.

C is the center of the reference ellipsoid (the geocenter).

S is the instantaneous position of the satellite.

P is the location of a point on the Earth's surface.

E is the elevation angle.

d is the vector from the equatorial plane to the normal to the
surface of the reference ellipsoid passing through point P.

D is the acute angle between the equatorial plane and the vector
d (geodetic latitude).

p is the vector from P to S.

x, is the projection of the vector p on the local tangent.

y, is the projection of the vector p on the unit vector normal to
the local tangent.

Practical calculation of the elevation angle uses the spherical Earth

assumption. The errors introduced into the elevation angle calculation as a

result of this assumption are discussed in Section 4.4.3. The geometry of the

elevation angle on a spherical Earth is shown in figure 4-3.

149



Figure 4-3: Elevation Angle Calculation using the Spherical Earth

Assumption

From the above picture, the elevation angle E is 90 minus the angle between

d and p. Equation 4-1 describes the calculation of the angle E.

E= - - arccos
2 pd

(4-1)

The elevation angle calculated by equation 4-1 solves for an elevation angle at

one time at one point over the Earth. As the satellite constellations are

interested in continuous coverage over the entire Earth, the same ,alculation

must be performed for a grid latitude and longitude of points over a period of

time. The minimum elevation angle metric is calculated with the following

algorithm:

150



For each time DO

For each grid point DO

Calculate the elevation angle to each satellite.

Keep the largest elevation angle

End DO

Keep the smallest elevation angle for each grid point and all times

calculated.

End DO

However, due to the satellite and ground station dynamics, a numerical

minimum elevation plot can definitively calculate only the upper bound of

the minimum elevation angle at each grid point. With a numerical

evaluation, the claim can be made that the minimum elevation angle is at

least this small. In addition, the values calculated are only valid for each timr

step and each grid point, not for the time span and the area of the grid points.

To make use of the minimum elevation angle metric for constellation

design, the maximum errors must be estimated. Section 4.4.3 quantifies the

errors introduced in creating minimum elevation plots.

4.2 Orbit Optimization Design Tool

The minimum elevation metric described in Section 4.1 is one way to

measure the effectiveness of a satellite constellation. With a performance

metric established, an optimization method can be used to design a

constellation that best satisfies the metric. This section describes the

development of the orbit optimization tool, which couples the PVM/DSST

with a genetic algorithm (GA) optimization method, designed and

implemented by Schott [64].

151



4.2.1 Genetic Algorithm Optimization Method

Two definitions are necessary before continuing in this section:

cost function The function to be minimized.

parameters Variables that the GA modifies to find the minimal cost

function. There must be some relationship between the

parameters and the cost function, but the relationship may not

be analytically defined.

A genetic algorithm optimization method was chosen for this optimization

problem because:

* GA's only require parameter ranges and a cost function. No derivative

information is necessary.

* GA's provide a good global answer to the optimization problem. Global is

defined as the parameter space.

* GA's can make use of parallel cost function evaluations.

* Ongoing work at Draper by Schott [64] and Schor [65] provided an excellent

source of expertise in the use of GA's.

A well known reference on the GA optimization method is Goldberg [63).

Forrest 1681 presents a brief overview of GA's :

"The basic idea of a genetic algorithm is very simple. First, a population of

individuals is created in a computer (typically stored as binary strings in the

computers memory), and then the population is evolved with use of the

principles of variation, selection, and inheritance."

For the GA used in the orbit optimization tool, each member of the

population represents a different combination of initial orbital elements.

Each member is used to evaluate the cost functions, which are found by

152



propagating the orbit forward in time. The members are then modified using
genetic operators, so the orbit which minimizes the cost function is chosen.

4.2.2 Software Description

The GA used was designed for a Master's thesis by Schott [641. It was
developed within the Design Optimizer / Markov Evaluator software,
written at Draper Laboratory [65]. All the software is written in FORTRAN 77.

4.2.2.1 Interface to Genetic Algorithm Software

The interface between the GA software requires that the cost function
evaluations be performed by a subroutine call. This subroutine was a

modified version of const_prop, known as const_opt. A combination of the
GA software and const_opt became the master process. For every series of
cost function evaluations required, a call to const_opt was made. The
subroutine const_opt enrolled itself as a PVM task, spawned slave processes

across the virtual machine, and sent a member of the population to each
slave process where the cost function evaluation was calculated in parallel.
The interface between the PVM/DSST and the GA is shown in figure 4-4.

153



MASTER EXECUTABLE

Cf)
Accept number of

paramters, paramters,
and return cost

function evaluations.

Read
Constellation
Information

Spawn Slaves

Broadcast
Constellation
Information

Send Out
Work to
Waiting

Processes

Receive Cost
Function

Evaluations

Kill Slave
Processes

SLAVE EXECUTABLE

Receive
Broadcast

Receive
Work

Return
Cost

Function
Evaluation
when Done

Propagate
Evaluate

Function

Gray area indicates
software is different

(new or changed)
from the original

PVM/DSST

Figure 4-4 : Interface Between GA and PVM/DSST

The slave executable is detailed in Figure 4-5.

154

GA Optimization
Software

Get Cost
Function

Evaluations



Receive Broadcast
(Constellation
Global Data).

DO WHILE .TRUE.

Receive Satellite
Local Date.

Wait Until Message
Received

DO FOR ALL REQUEST TIMES

Propagate to
request time.

Evaluate cost
function.

END DO

Return evaluated cost
function to master.

END DO

Figure 4-5: Slave Executable

One of the main advantages in using the GA for the optimization technique
is its capability to make use of parallel cost function evaluations. Other
optimization techniques only operate on one set of parameters; after every
cost function evaluation, new parameter values are chosen. There is no
concept of a population requiring multiple cost function evaluations at the
same time.

The majority of the computation required for an optimization algorithm is in

the cost function evaluation. The ability to perform this step in parallel

results in a significant performance improvement.

155



4.2.2.2 Modification of Propagator

The following changes had to be made to the PVM/DSST (Chapter 3) so it

would work with the GA software:

* The slave program, satopt, had to send the cost function evaluation to

the master process.

* The master program, const_prop, had be written as a subroutine. The

argument list passed the parameters from the GA, the number of

parameters to evaluate, and returned the cost function evaluations.

* Because the cost functions were evaluated in parallel, the order in which

the cost functions were evaluated did not necessarily match the order of

the parameters. An extra value had to be sent between the master and the

slave. This number identified the slave process to the master so the

correct parameters could be matched with their respective cost function

evaluations. (Ref. Section 2.3.4)

4.3 Frozen Orbit Design

This section describes an example use of the orbit optimization tool. The

example applies the orbit optimization tool to the frozen orbit design

problem. Use of the optimization tool is described in detail in Appendix
D.3.4.2.

4.3.1 Use of the Optimization Tool

Two steps are required before using the optimization tool. The two steps are:

* Develop a cost function that the optimization tool will minimize. The

cost function must include all factors going into the orbit design as the tool

will neglect any concerns that do not appear in the cost function.

156



* Determine which parameters to vary and the range of each of the

parameters.

4.3.2 The Frozen Orbit

The goal of a frozen orbit is to maintain a constant argument of perigee and

eccentricity [621. Many satellites require frozen orbits. Earth observation

satellites need to be at the same altitude over the same place on the Earth to

obtain several pictures for comparison over time [27]. Frozen orbits also

reduce fuel consumption in station keeping [271. In addition, both Ellipso and
Teledesic GPCS are using frozen orbits [66, 50].

The central body non-sphericity causes the largest changes in the argument of

perigee and eccentricity. The changes in argument of perigee and eccentricity

due to the J2 and J3 zonal harmonics are shown in equations 4-2 [62]:

de 3nR,J3 sini 5 .,
dt 2a3(1- e-) 2  4

do 3nJ, 2 (l_5sini
dt a2(1-e2) 4

j3R sin i -ecos' 2i sino (4-2
2J,a(1 - e )iJ sin i e

Because J2 is the dominant zonal perturbation (Table 1-3), equations 4-2 will

provide a good estimate of a frozen orbit. Further refinement must be

accomplished in the presence of a full zonal field.

Analyzing equations 4-2 reveals the methods to achieve a frozen orbit. There

are three methods to null the eccentricity rate:

* Place the orbit in the critical inclination [I - 5sin i =0]
4

* Place the satellite in an equatorial orbit. [ i=0' ]

* Set the argument of perigee to 90 or 270'.

157



To remove the argument of perigee variation, the satellite must be in a

critical inclination orbit or 0 must be set to zero [62].

4.3.3 Frozen Orbit Design using the Orbit Optimization Tool

A nominal satellite is given with near frozen starting conditions. This orbit

is taken from the Teledesic constellation (Section 4.4) [66]. The satellite orbital

elements are shown in Table 4-1.

Table 4-1: Satellite Keplerian Elements used for

Frozen Orbit Determination [66]

Element Value

Semimajor Axis (km) 7073.14

Eccentricity 0.00118

Inclination (deg) 98.142

Longitude of Ascending 0.0

Node (deg)

Argument of Perigee 90

(deg)

This orbit achieves its frozen state by using a argument of perigee equal to 90'

and choosing the appropriate value for eccentricity where 0 is zero. Due to

other constraints the semimajor axis and inclination are fixed, therefore the

critical inclination cannot be used to achieve the frozen orbit. To numerically
depict the frozen orbit, the PVM/DSST can be used to generate element

histories over time. The input file used to generate the element histories is
shown in figure 4-6.

158



N Satellites: 1 ElType 1

nintervals: 1
Begin interval 1 19950401.0 000000.0
End interval 1 19951001.0 1.00
Deltat interval 1 86400.0

nburns =

Satellite Number: 1 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7073140000000000D*04
0.1180000000000000D-02
0.9814200000000000D+02

0.0000000000000000D-00

0.90000000000000000D+02
0.0000000000000000D-00

CD: 2.20000000 Rho One:

SiC Mass: 800.00000000 S/C Area:

Integrator Step: 43200.00000000

Retro: 1 Atmos Mdl: 1 Potent Mdl:
Nmax: 21 Mmax: 0 Izonal:
Nmaxrs: 21 Mmaxrs: 0 Ithird:

Ind Drg: 2 Zszak: 2 Ind Sol:

0.00000000

0.00014400

4
1 IJ2J2: 2

3
2

Figure 4-6 Input file for Generating Element Histories from the Nominal

Satellite State

The zonal harmonics through degree 21 were the only perturbation used in

this analysis. However, developing the frozen orbit in the presence of other
perturbations only requires modification of the satellite input file. The

PVM/DSST propagated the satellite six months, outputting mean elements

once per day. The resulting argument of perigee and eccentricity element

histories are shown in figure 4-7.

159



Eccentriciy vs Time

N

16 2 0 8 0 1 0 16 10 -2
20 40 60 80 100 120 140 160 180 200

Time in Days

Argument of Perigee vs Time

Time in Days

Figure 4-7: Element Histories of Nominal Satellite

It is also useful to plot a phase plane, the eccentricity versus the argument of

perigee.

1 162 -
89 5 89 6 89 7 898 89 9 90 90 1 90 2 90 3 90 4 90 5

Figure 4-8: Argument of Perigee Vs eccentricity

A simple cost function was then developed to reduce the variation in

argument of perigee and eccentricity. The cost function calculated the total

160

x
18ff

1.175-

" 1.17 -,

0

----

10
-

1



variation from the initial eccentricity. This was accomplished by adding the

absolute value of the eccentricity deviation from the initial value at every

output time. The output time step (86400.0 seconds) is shown in the input

file, figure 4-6. Because deviations in the eccentricity and argument of perigee

are directly related, there was no need to add the argument of perigee

variations to the cost function. Although this problem has a very simple cost

function, more complex problems will require more complex cost functions.

Multiple parameters in the cost function require normalization and

weighting of each parameter, for example.

The final step was to choose which parameters to vary. For this problem the

choice was very simple. Only the eccentricity could be varied to achieve the

frozen orbit. All other parameters were fixed by other constraints or the

equations in 4-2.

The optimization software used the following input file (titled dome.in) to

find the best frozen orbit.

..-. se the most frozen eccentricity
itest

S5:.. 0 .7. iopt.maxitr,epsiln
-1: 5.1. kseed,mpopsize.ncc.p

1.3.2.0. Opts: constr,clones.Pcpt.Ropt.Topt.lshr
fixed parameters
continuous parameters
it chooses iniz.ial conditions

: - , min of continuous
. .. "max of continuous

discrete parameters (3 failure rates)
number of bins for each discrete parameter
initial discrete (ga: parame ie. el

. .. .': 1171,.001173..001175.

Figure 4-9: Example GA input file

The orbit and perturbation options in figure 4-6 were used to describe the

nominal conditions. The eccentricity values are generated by the genetic

algorithm within the range 0.0010 and 0.0012, as specified in the GA input file,

figure 4-9. The GA generates 255 discrete values from the one 'continuous'
parameter. For this problem, it is trivial to evaluate all the 255 possible

combinations of values. With just two parameters, the number of
combinations would rise to 2552 or 65,025 function evaluations. The real

161



power of this optimization method is in finding the region of the optimal

multi-criteria answer without evaluating all possible functions. The GA will

not continue to narrow its focus or 'zero in' on the best value beyond the

initial discretization of the problem. However, the chosen values will be in

the area of the best solution. In order to come up with the best value the

parameter range must be narrowed manually. This process will be illustrated

in this example.

The output of the GA is given in two files, DO and Dz. Figure 4-10 and table

4-2 show the output generated using the input files shown in figures 4-6 and
4-9.

.... DOME BEGAN ON 27-Apr-95 AT 23:04:35
Run ID: Choose most frozen eccentricity

* Optimization method: 9 .

Optimization search stopping criterion:

Maximum number of optimization iterations:
Genetic Algorithm:
population size: 50 random number
crossover: 0.80 per bit mutat
markov model states: 1 fixed paramet
continuous: 1 discrete para

seed:

ion:
ers:
meters:

7.0000E-02

250

20985
0.0040

0
0

continuous initial lower upper
variable value bound bound

0.0000E-00 1.0000E-03 1.2000E-03
cfe# 139 s" stop due to population convergence ""
Parameters reverted to original: 0
Total cost function evaluations: 139
Evaluation of minimum value: 50

Algorithm elapsed time: 101.4633

Function value Parameter values

1.64641633E-05 1.17098039E-03
.... DOME TERMINATED ON 27-Apr-95 AT 23:06:17

Figure 4-10: DO Output Report.

162



Dz Output Filel.
Number of Population Number of Cost Function 'Best' Parameter Convergence Factor
Function Size identical Evaluation Value

Evaluations members of the
Performed population

50 50 0 1.64641633E-05 1.17098039E-03 1 53222466E-02
95 50 11 1.64641633E-05 1.17098039E-03 4.34377119E-02
139 50 14 1.64641633E-05 1.17098039E-03 8.91743973E-02

The resulting eccentricity is close to the value given in the initial design.
However, small changes in the initial parameters have a dramatic effect on
the element histories. The first value chosen by the GA was used to narrow

the eccentricity range so that the optimization calculation could be repeated.
Three more refinements were made. Table 4-3 lists the ranges used, the 'best'
eccentricity found, and the value of the cost function evaluation for each
successive iteration.

Table 4-3: Optimization Results for Iterations 2,3 and 4.
Iteration Range Best Eccentricity Cost

2 0.001170-0.001175 0.00117105874 1.3255e-06
3 0.0011710-0.0011711 0.00117106584 4.6564e-08
4 0.00117106-0.00117107 0.00117106561 1.5760e-09

of the eccentricity chosen
4-11B.

by the fourth iteration is shown in figures

IThe first row of text has been added to this file for explanation

163

The
4-11

effect

A and

Table 4-2:



1.16

Eccentncity vs Time

1 17'-

165r

0 20 40 60 80 100 120 140 160 180 200
Time in Days

Argument of Pengee vs Time
90.5

0\ Nomtnal Result

0 90 Optimized Result
90

E

89.5
0 20 40 60 80 100 120 14

Time in Days
40 160 180 200

/

Figure 4-11A: Nominal and Optimized Element Histories

x 10- Ecc vs Argument of Pengee
1.18

1 178

Nominal Result
1.176

1.174

1 172

1 17 Optimized Result

1 168

1 166 -

1 164

1 162
89.5 89.6 89 7 89 8 89 9 90 90 1 902 903 90 4 90.5

Figure 4-llB: Nominal and Optimized Argument of Perigee Vs Eccentricity

Figures 4-11 depict the improvement in reducing argument of perigee and

eccentricity variations. These results are seen more clearly in figure 4-12.

This figure shows the difference between the maximum and minimum

values of eccentricity and argument of perigee, plotted on a loglo scale.

164

r 1 •

x 10-3



Maximum Vaniation in Eccentnc ty

S minai

First Optimization

E

12

Maximum Variation in Argument of Pengee
0

S-4

C', Fourth Optimization

Figure 4-12: Maximum Variations

The element histories of the optimized orbit demonstrate the effectiveness of

the optimization tool applied to this problem.

An advantage of using the orbit optimization tool for frozen orbit
determination is its ability to include arbitrary perturbations. Propagating the
'optimized' orbit described in figure 4-6 and table 4-3 in the presence of
tesseral harmonics, (J2)2, third body, and solar radiation pressure generates
figure 4-13. A year interval, as opposed to the six month interval shown
previously, was used to generate figure 4-13.

165



Ecc vs Argument of Pengee

Figure 4-13: Argument of Perigee Vs Eccentricity with Perturbations

Further attempts to achieve a more frozen orbit by adjusting eccentricity

showed negligible improvement in both the eccentricity and argument of

perigee histories. Any future attempts to achieve a more frozen orbit will

require modification of additional orbital elements.

An improvement to the optimization tool would use the GA to find the
region of the best values and use other optimization methods to refine the
solution.

4.4 Application of the PVM/DSST and the Optimization Tool: The

Teledesic System

The Teledesic Corporation has proposed the construction of a
communication satellite constellation to "provide interactive broadband
information services to people in rural and remote parts of the United States

and the World [66]." Teledesic plans to offer fixed satellite services. The

Teledesic target market is remote and rural areas of the world, where access to
broadband information services do not already exist. Unique to Teledesic is
the size of the constellation proposed. As shown in figure 1-1, Teledesic is

166

x 10-315S-"

14

13

E 1.2

11

1

65 70 75 80 85
Argument of Pengee (deg)

__

91 4 ,
90 95



planning to operate 840 satellites. As stated in Chapter 1, this constellation

alone is proposing to operate more satellites than are currently operating in

space.

4.4.1 Overview of Satellite System Design

The Teledesic satellite is depicted in figure 4-14.

Figure 4-14: The Teledesic Satellite

The constellation consists of twenty-one evenly spaced planes, each plane

separated by 9.5. Each plane will contain forty-four near circular satellite

orbits. Forty of the satellites will be operational and four will be used as on-

orbit spares [66]. The satellites are in a sun synchronous, frozen orbit. The

constellation plans to provide a minimum elevation angle of 40* between

+72* latitude. The constellation Keplerian elements are listed in table 4-4.

167



Table 4-4: Teledesic Orbital Parameters [66]
Plane Number of Altitude Angle of Arc Right Eccentricity Inclination
No. Satellites (km) Perigee (deg) Ascension (deg)

of
Ascending
Node (deg)

I 40 to 44 695.0 90 360 0.0 0.00118 98.142
2 40 to 44 695.5 90 360 9.5 0.00118 98.144
3 40 to 44 696.0 90 360 19.0 0.00118 98.146
4 40 to 44 696.5 90 360 28.5 0.00118 98.148
5 40 to44 697.0 90 360 38.0 0.00118 98.150
6 40 to 44 697.5 90 360 47.5 0.00118 98.152
7 40 to 44 698.0 90 360 57.0 0.00118 98.154
8 40 to 44 698.5 90 360 66.5 0.00118 98.156
9 40 to 44 699.0 90 360 76.0 0.00118 98.158
10 40 to 44 699.5 90 360 85.5 0.00118 98.160
11 40 to 44 700.0 90 360 95.0 0.00118 98.162
12 40 to 44 700.5 90 360 101.5 0.00118 98.164
13 40 to 44 701.0 90 360 114.0 0.00118 98.166
14 40 to 44 701.5 90 360 123.5 0.00118 98.168
15 40 to44 702.0 90 360 133.0 0.00118 98.170
16 40 to 44 702.5 90 360 142.5 0.00118 98.172
17 40 to 44 703.0 90 360 152.0 0.00118 98.174
18 40 to 44 703.5 90 360 161.5 0.00118 98.176
19 40 to44 704.0 90 360 171.0 0.00118 98.178
20 40 to 44 704.5 90 360 180.5 0.00118 98.180

21 40 to 44 705.0 90 360 190.0 0.00118 98.182

4.4.2 Assumptions

Several assumptions were made in analysis of the Teledesic satellite

constellation. Teledesic has staggered the orbital altitudes to prevent collision

between satellites [66]. To simplify the refinement of the constellation, this

requirement was removed from the design constraints.

Secondly, because long time spans (5 years) were used in analyzing the

constellation, the effects of drag were not studied. The satellite has a higher

than average area/mass ratio (0.18 m2 /kg), so drag will have a significant

impact on the satellite [67]. Note that this area/mass ratio is a worst case for

this satellite. Drag studies will require modeling the effective area of the

satellite. However, neglecting drag is a valid assumption if drag make-up

168



maneuvers maintain the nominal semimajor axis of the orbit. The no-drag
assumption leads to additional assumptions in the analysis of the orbit.

The frozen orbit constraint requires the eccentricity and argument of perigee

to remain constant. However, the Keplerian VOP equations demonstrate that

drag make-up maneuvers can also be used to control the variations in the

argument of perigee and eccentricity [5]. Therefore, changes in the initial

constellation were only constrained to maintain the original amount of

variation in argument of perigee and eccentricity. Although obtaining the

minimum variation in argument of perigee and eccentricity was desirable, it
was not accomplished in this project.

Element histories are presented per plane, with the implied assumption that

the perturbative effects are the same for every satellite in the plane. This

assumption is not valid for the tesseral harmonics, as these perturbations are

dependent on the ground track of the satellite. The minimum elevation

angle plots, however, do not use this assumption as all 840 satellites are

propagated individually. Because the satellites have a 100 minute period, the

in-plane differences in third body and solar radiation pressure perturbations

are negligible.

Finally, the DSST was assumed to accurately predict the future state of the
satellites.

4.4.3 Error Sources in Elevation Angles

In order to use minimum elevation angles as a constellation design metric,

the maximum errors in the evaluation process of these angles must be

determined. If the error is not determined, the minimum elevation angles

for different constellations cannot be compared. The error could be larger

than the differences between the metrics, making a comparison meaningless.

Due to the process error, the calculated minimum elevation angle will have

different upper and lower bounds. The upper and lower bounds are described

in equation 4-3.

169



E-E, < E< E+ e (4-3)

where E is the elevation angle.

eM is the maximum error below the numerically calculated
minimum elevation angle.

E., is the maximum error above the numerically calculated
minimum elevation angle.

E - Eb is the lower bound for the minimum elevation.

E + Eu, is the upper bound for the minimum elevation.

There are four sources of error in the minimum elevation angle calculation:

1] Spherical Earth assumption.

2] Error in satellite position.

3] Length of time between each angle evaluation.

4] Grid spacing.

Because finding the minimum elevation angle is of interest, the upper bound

is easily calculated. The upper bound is found by correcting the calculated
elevation angle for the error in numerical evaluation (errors 1 and 2). Error
introduced due to the time or position of evaluation (errors 3 and 4) will not
factor into determination of the upper bound.

Calculation of the lower bound requires subtracting all four error sources
from the calculated minimum elevation angle. The third error source is
necessary for the minimum elevation angles to be generalized over the
duration of the time interval. If this error source is ignored, the minimum
elevation angles are only valid for the exact time of calculation. Calculation

of the fourth error source allows the elevation angles to be generalized for the

area between the grid points. Ignoring this error makes the minimum
elevation angles valid only for the exact locations calculated.

170



4.4.3.1 Spherical Earth Assumption

The spherical Earth assumption adds error to the calculated minimum
elevation angle. The worst case situation is used to calculate the maximum

error introduced into the minimum elevation angle evaluation. For this

error analysis, an ellipsoidal Earth model that varies with latitude will be

used as truth. No longitude dependent errors enter into the calculation.

The error due to a spherical earth assumption is important only in finding

the 'true' minimum elevation angle. When using the minimum elevation

angle to compare constellations, this error can be neglected as it is the same

for each angle evaluation.

The spherical Earth error can be broken into two parts. The two parts are:

* The local topocentric coordinate system (LTCS) has an incorrect

orientation.
* The (LTCS) has an incorrect origin.

The first error is depicted in figure 4-15.

171



Figure 4-15: Error Generated by Ignoring the Difference Between Geodetic and

Geocentric Latitude .

Geocentric and geodetic latitude are depicted in figure 4-15 [38]. In calculating

the elevation angle, the vector from the center of the Earth (C) to the grid

point (P) is assumed to be perpendicular to the local horizon. Because the

geodetic latitude describes the angle perpendicular to the local horizon, an

error of magnitude E is introduced into the elevation angle evaluation. The

quantity El is simply the difference between the geocentric and geodetic

latitudes. The maximum El can be found using equation 4-4 [49]

L'= arcsin R( - e2)sin L - e coS2 L

R ,Ji -e 2 sin 2 L
(4-4)

where: e is the eccentricity of the Earth

RV is the equatorial radius

R1, is the polar radius

172

L': Geocentric Latitude
L: Geodetic Latitude



The maximum difference occurs at L=45.

R = 6378.137 km R, =6356.753 km e=0.08182

gives a maximum error of E1=0.1917*.

The change in elevation angle due to the error in the origin of the LTCS is
created by assuming a spherical Earth of radius Re.

in figure 4-16.

This difference is depicted

Figure 4-16: Difference in Elevation Angle Due to Site Position Difference.

The maximum difference in the elevation angle calculation will occur at the

North and South poles. At the poles the difference in position creates a

maximum difference in elevation angle shown in equation 4-5.

173

Using :



E, = abs(E -E')= arcsinj P

(4-5)

where: p is the minimum distance from the ground to the satellite.

The quantity p is evaluated at the minimum p as the error reaches a

maximum at this point.

The maximum 6 is 21.384 km, when the values for RC and R, shown above

are used. The quantity p depends on the satellite orbit.

The error E,2 will only affect the upper bound of the minimum elevation

angle. Using the equatorial radius for the spherical Earth radius will cause

the assumed LTCS origin to be father from the center of the Earth than the

actual origin (equal at the equator). Therefore, this error source will cause the

calculated elevation angles to be less than or equal to the actual elevation

angles.

The upper and lower bounds due to a spherical Earth assumption are given

in equation 4-6.

E, =, + E E,, = +  E

(4-6)

where: E is the calculated elevation angle.

4.4.3.2 Error in satellite position

The worst case difference in elevation angle caused by an error in the satellite

position is described by equation 4-7.

174



e, = arcsin( A

(4-7)

where: e,, is the maximum error in the minimum elevation angle
calculation due to error in satellite position.

A is the maximum difference between the actual and calculated
satellite position.

p is the minimum distance from the ground to the satellite.

This value depends on the maximum error for a particular orbit and the

propagation technique used.

Using the DSST (Chapter 1) without the contribution of the short periodic

functions results in a maximum position error of 10 km for a low Earth, near

circular satellite [27]. With a p of 690.3 km using the mean elements only

gives an E,P of ±0.83'.

4.4.3.3 Length of time between each angle evaluation

The maximum change in elevation angle between each time step must be

calculated to generalize the minimum elevation angle calculation over the

time interval from the first to the last evaluation. The minimum elevation

angle to one satellite changes monotonically over a time step, unless the

satellite passes through its maximum value in between the time steps.

Assuming the elevation angle is at the predicted constellation minimum at

time t1 and monotonically decreases with a constant rate until time t2 , the

maximum deviation from a calculated elevation angle will occur halfway

between two time steps.

As the elevation angle rate depends on the elevation angle, the constant rate

assumption is not accurate. However, the absolute value of the elevation

angle rate decreases with the elevation angle, so the rate at time t1 is larger

than time t2 . Therefore, this assumption is conservative in generating the

maximum deviation in elevation angle.

175



The maximum error is then found by integrating the maximum elevation

angle rate over half a time step.

The elevation angle rate is calculated from the worst case geometry. The

worst case assumes the following:

* The satellite is moving directly away from the point of interest (P) on the
Earth. For the satellite to be moving directly away from the point of
interest on the sphere, the orbital plane must intersect P.

* For the development of the elevation angle rate equations, the spherical
Earth and the circular orbit assumptions are made.

* For eccentric orbits, the elevation angle rate is larger near perigee. If
elevation angles of a highly eccentric orbit is of interest, the satellite

de
velocity at perigee can be used for the worst case central angle rate, (see

figure 4-17).

* All coordinates are in ECEF, so the quantity must reflect the maximum
dt

difference between the satellite velocity and the rotation rate of the Earth.

The geometry of the worst case is shown in figure 4-17.

176



Figure 4-17: Geometry of Elevation Angle Rate Calculation

where: R is the vector from the center of the Earth to the satellite.

* is the angle between the projection of p on the local tangent
plane and the vector R.

0 is the angle between the vector xp and p.

y, is the projection of the radius vector of the satellite on the
normal to the local tangent.

R is the spherical Earth radius.

Equation 4-8 calculates the elevation angle from figure 4-17.

tan E = R, tan - -- sec 4
XP a

(4-8)

where: a is the semi-major axis of the satellite

Taking the derivative of both sides and simplifying results in equation 4-9 for
the elevation angle rate.

177

E TI



d (a' - y * R)
dE _ dt x 0
dt p

(4-9)

where: dis a constant for the circular satellite.
dt

As p, yp, and p are functions of E, equation 4-9 demonstrates that the rate of

change of the elevation angle is a function of the elevation angle. When

solving for the maximum chai,ge in elevation between time steps, the

constellation predicted minimum elevation for the constellation is used as

the initial condition. This is again the worst case. Assuming that the satellite

is at the desired minimum elevation angle at the evaluation time and the

elevation will continue to decrease until the next evaluation will result in

the error in elevation angle. As described above, integrating equation 4-9 for

a half a time step with the initial elevation angle equal to the constellation

minimum elevation angle results in the maximum change in the minimum

elevation angle.

This error only appears in the change in the lower bound of the minimum

elevation angle. The error is shown in equation 4-10.

2 (dE
(4-10)

where: e,, is the error due to the time step size.

t is the time step size.

4.4.3.4 Grid spacing

In order to calculate the maximum change in the minimum elevation angle

between grid points, figure 4-17 and equation 4-8 are used. The maximum

difference in minimum elevation angle due to grid spacing will occur

between grid points. As with the error introduced from generalizing over

178



time, the constellation minimum elevation angle is used to determine the

worst case impact. This will determine the maximum change between grid

points below the minimum elevation angle. Starting with the constellation

minimum elevation angle, equation 4-8 is used to calculate the angle 9. The

angle 0 is then increased until E changes by the maximum error desired. The

change in 0 is used to describe the necessary spacing between grid points.

With this error source calculated, the minimum elevation angles for a grid of

points over the Earth can be generalized to include the area between the grid

points. The error due to grid spacing will be referred to as E,

4.4.4 Impact of Perturbations on Nominal System

The minimum elevation angle metric was used to evaluate the impact of

perturbations on the nominal constellation. As described in Section 4.4.3 , to

make use of the minimum elevation angle metric, the maximum error in

numerically calculating the angles must be determined.

4.4.4.1 Error in Minimum Elevation Angle Metric

The elliptical Earth model was used to calculate the ECEF position vectors on

the Earth. However, the vector from the center of the Earth was assumed to

be perpendicular to the local horizon at the surface of the Earth. From

equation 4-4, this assumption introduced a maximum error of ±0.19'.

Mean elements were used to generate the satellite positions. The maximum

difference between mean and osculating positions for the Teledesic orbit is 10

km [271. From equation 4-5, the worst case error in satellite position creates a

maximum error in the minimum elevation angle of ±0.83'.

To keep the error bound within -2.0' a grid spacing of 0.4' was necessary.

Because the metric calculated the minimum elevation angles, the grid

spacing and time step errors can only increase the lower error bound. The

satellite position and spherical Earth assumptions, however, affect the upper

and lower bounds.

179



To place an evenly spaced grid over the entire Earth would require

approximately 257,600 grid points 2. These points are evenly spaced on the

surface of the Earth, every 0.4" in central angle. The grid spacing requirement

generated too many points to numerically evaluate, so only one longitude

was evaluated. Calculating the upper and lower bounds of the minimum

elevation angle for one longitude was still effective to demonstrate the effect

of perturbations on the constellation.

The final error source involves calculating the maximum possible elevation

rate. Figure 4-18 shows the elevation rate versus elevation angle calculated

using equation 4-8. The worst case (lowest altitude) Teledesic satellite was

used and a circular orbit assumption was made.

Elevation Rate vs Elevation Angle for Teledesic
0

-0.1

S-0.2

-0.3

E-07

a : - 0 .5

0 10 20 30 40 50 60 70 80 90
Elevation Angle (deg)

Figure 4-18: Elevation Angle Rate Vs Elevation Angle

Figure 4-18 shows that the elevation angle rate from E=40' to E=30' varies

from -0.3 deg/sec to -0.2 deg/sec. To achieve the desired -2' maximum error
would result in evaluating the elevation angles every 14.4 seconds. A 14.4

second time step would require excessive calculation times on the computer

systems used. Therefore, the minimum elevation plots could not be

2 This number is found in generating equally spaced points over the Earth, as opposetd to points
equally spaced in latitude and longitude.

180



generalized to include all times between each evaluation. The metric is only
valid for the time of each evaluation, so comparison between plots at

different times do not necessarily demonstrate a worse constellation. A 60
second time step for two days was eventually used to generate the minimum

elevation plots.

Table 4-5 summarizes the maximum errors and assumptions in the

minimum elevation angle plots.

Table 4-5: Error and Assumption Summary

Error Source Error / Assumption
Vector from center of the Earth to ±0.19"
grid point is perpendicular to the
surface.
Satellite Position ±0.830
Grid Spacing -2 °

Length of time between each Elevation maps only describe
elevation angle evaluation elevation angles at time steps, not

time between evaluations.
LOWER BOUND E - 3.02(E is the calculated elevation

angle)
UPPER BOUND E + 1.02"(E is the calculated elevation

angle)

The numbers in table 4-5 are important as they describe how accurately the

calculated values describe the true minimum elevation angles.

When comparing the minimum elevation angle between constellations, the

spherical varth errors are removed. The upper and lower bounds for

comparing minimum elevation angles between constellations are shown in

table 4-6.

Table 4-6: Error Bounds for Comparing Constellations

LOWER BOUND

UPPER BOUND

E - 2.83'(E is the calculated elevation
angle)

E + 0.83"(E is the calculated elevation
angle)

181

1

I



4.4.4.2 Minimum Elevation Angles

The minimum elevation angle metric was used to compare the constellation

at epoch and five years after epoch to quantify the impact of perturbations on

the constellation. A summary of the perturbations and metric evaluation

conditions is shown in table 4-7.

Table 4-7: Summary of Perturbations and Metric Evaluation Conditions

Epoch Date April 1995
Comparison Date April 2001
Perturbations Geopotential ( 21X21 JGM2)

Third Body
Solar Radiation Pressure

Propagation Method PVM/DSST
Points Evaluated Longitude. +90 ° degrees latitude.

Points every 0.4" latitude.
Frequency and Duration Evaluated Every 60 Seconds for 2
of Elevation Angle Days.
Evaluation.
Number of Satellites 21
used to Generate
Element Histories
Number of Satellites 840
Propagated to Generate
Minimum Elevation
Angle Plots

Propagating the constellation two days after epoch gives the minimum

elevation plot shown in figure 4-19.

182



Minimum Elevation Angles vs Latitude

-100 -80 -60 -40 -20 0 20 40 60 80 100
Latitude in Degrees

Figure 4-19: Initial Minimum Elevation Angles Vs

Constellation

Latitude for the Nominal

The nominal Teledesic constellation at epoch for the times sampled is very

close to meeting its minimum elevation angle requirements.

The impact of perturbations on the nominal constellation are shown as

maximum variations in Keplerian elements over five years. The input file

containing the twenty-one nominal satellites is included in Appendix B.

Generating these element histories took approximately 2 hours and 30

minutes, using two SPARC 20's, one SPARC 10, and a SPARC ELC.

183

50

45

cici

040

Ci

.235

ci



x 10- 4  Max Eccentncity Vanation vs Sat Plane
7

6

5
4

3
0 5 10 15 20 25

Max Argument of Pengee Variation vs Sat Plane in Degrees
30

5-

15 -

10
0 5 10 15 20 25

Figure 4-20: Nominal Constellation Element Histories

Max Inclination Vanation vs Sat Plane in Degrees

Max Nodal Variation from Sun Sync vs Sat Plane in Degrees

0 5 10 15 20 251

Figure 4-21: Nominal Constellation Element Histories

The element histories lead to two conclusions about the Teledesic satellite

constellation:

184



* The orbits are not frozen over time.

* The ascending nodes vary from the sun-synchronous rate.

The minimum elevation angles after five years are shown in figure 4-22. As
stated in table 4-4, the minimum elevation angles depicted in figure 4-22
cannot be directly compared to the nominal elevation plots because the
elevation angles were not calculated at a high enough frequency to remove

reasonable errors from the metric evaluation. However, minimum

elevation plots evaluated at the same times can be compared.

Figure 4-22: Minimum Elevation Angles of Nominal Constellation Five

Years after Epoch.

The minimum elevation angles in figure 4-22 were generated by propagating

for five years after epoch and then outputting satellite positions every minute

for two days. Figure 4-22 shows that the angles drop well below the required

40" minimum elevation. Section 4.4.5 describes the process in which the

initial constellation was modified with the goal of better achieving the

constellation requirements.

185



In summary, the nominal constellation propagated five years has the

following problems with respect to orbital requirements.

* The orbits are not frozen over time.

* The ascending nodes vary from the sun-synchronous rate.

* The minimum elevation angles at the comparison times fall below the
elevation angle requirements.

4.4.5 Constellation Modifications

To understand what was causing the deviation from orbital requirements

seen in the previous section, the solar radiation pressure was removed and

the same plots were generated again. The element histories and minimum

elevation plots are shown in figures 4-23 through 4-25.

3-

0 5 10 15 20 25

Max Argument of Pengee Variation vs Sat Plane rn Degrees
13

2-

.9
0 5 10 15 20 25

Figure 4-23: Element Histories Without Solar Radiation Pressure

11 9b 11

Max Eccentricity Variation vs Sat Planex 10-5



Max Inclination Vanalon vs Sat Plane in Degrees
0.4

0.2

-0

-0.4
0 5 10 15 20 25

Max Nodal Vanaltn from Sun Sync vs Sat Plane in Degrees
10r -1

-20 .

-40

400 5 10 15 20 25

Figure 4-24: Element Histories Without Solar Radiation Pressure

Minimum Elevation Angles vs Latitude

040
S
c
Ch

C

2 35
'
:B.

--Too -80 -60 -40 -20 0 20
Lautuoe in Degrees

40 60 80 100

Figure 4-25: Element Histories Without Solar Radiation Pressure

The following hypotheses are generated from a comparison of figures 4-23

through 4-25 against figures 4-20 through 4-22.

Because the satellite area/mass ratio is much larger than average, the solar

radiation pressure is a significant perturbing force on the satellite. Solar

187



radiation pressure results in the largest variation in eccentricity and

argument of perigee.

* Solar radiation pressure and thi J body create large inclination changes

which effect the nodal rate. The solar radiation pressure counteracts the

solar point mass effects on the inclination and the nodal rate.

* The less than required elevation angles result from differing nodal rates.

If the nodal rates can be made more consistent across all the planes, the

minimum elevation angles will not decrease.

4.4.5.1 Initial Cost Function Design

From the hypotheses, the constellation requirements, and trial and error, the

cost function shown in equation 4-11 was developed in order to make use of

the GA to perform orbit optimization.

cost abs(e - e.,, ) abs(w -wo,, )COSt = +
max(Ae) max(Ao)

3 * abs(Q - ,,, )

max(Q,,,, ) (4-11)

One satellite in each plane was then modified by the orbit optimization tool

to minimize the cost function shown in equation 4-11. Each orbit was treated
as a separate optimization problem. The entire process of optimizing all

twenty-one orbits took approximate twenty-four hours using two SPARC 20's,

one SPARC 10, and one SPARC ELC. The dome.in file used is shown in
figure 4-26.

10 L



Firs t run of optimizing satellite orbits
0, itest
9.35000.0.1. iopt.maxitr,epsiln
42.1000,1. kseed.mpopsize.ncomp
1.0,0,0.0.2.0. Opts: constr,clones.Popt,Ropt.Topt.ishr
0. fixed parameters
3, continuous parameters
0,0.0, it chooses initial conditions
7071.14.0.00100,98.1020, min of continuous
7085.14.0.00136,98.2220. max of continuous

0, discrete parameters (3 failure rates)
4, number of bins for each discrete parameter
0. initial discrete (ga: param# ie. #1)
.001169,.001171,.001173,.001175,

Figure 4-26: dome.in for Constellation Optimization

The semimajor axis, inclination, and eccentricity were the parameters the

optimization tool modified. The initial semi-major axis, eccentricity, and

inclination chosen by the optimization run are shown in figure 4-27.

189



Initial Semimajor Axis(km) vs Satellite Plane707A
707

7

707

7(07
17C

0 5 10 15 20 251

Figure 4-27: 'Optimized' Elements at Epoch

The element histories of the optimized constellation are shown in figures
4-28 through 4-29. Note that these element histories correspond to the
nominal element histories shown in figures 4-20 and 4-21.

1 Cit

3.5

073'

2 5

0 5 10 15 20 25

x 10 Initial Eccentnoty vs Satelhte Plane
13..

.25 2

12-

0 -5 10 15 20 25

Initial nclination (deg) vs Satellite Plane
.22

8.2]

18 - ,

.16

I

98

9

98

98

an



x 10 -  Max Eccentrincty Variation vs Sat Plane

6-

51

4-

3
0 5 10 15 20 25

Max Argument of Pengee Vanation vs Sat Plane in Degrees
30F , I

25

15

0
0 5 10 15 20 25

Figure 4-28: 'Optimized' Constellation Element Histories

Max Inclination Variation vs Sat Plane in Degrees
0.05 1
0 .1

0.05

.05

0 5 10 15 20 25

Max Noaal Variation from Sun Sync vs Sat Plane in Degrees

101

Figure 4-29: 'Optimized' Constellation Element Histories



Figure 4-30: 'Optimized' Minimum Elevation Angles

The resulting 'optimized' constellation had some positive and negative

features. The argument of perigee and eccentricity variations were kept to

near their original value. The inclination variations were also similar to the

nominal variations.

The nodal rate was much closer to the sun synchronous rate. This can be

seen more clearly in figure 4-31.



Max Nodal Vanation from Sun Sync vs Sat Plane in Degrees

Opti mzed
- Nominal

0 5 10 15
Satellite Plane

20 25

Figure 4-31: Maximum Deviation from

and 'Optimized'

Sun Synchronous Node for Nominal

Constellations

The optimization algorithm chose elements for the constellation that best

satisfied the cost function. In doing so, the maximum deviation from the
sun-synchronous value varied more quickly in adjacent planes. Because of
this problem, larger gaps in coverage occurred and the minimum elevation
plot was actually worse. This is seen more clearly in figure 4-32.

1Q



Minimum Elevation Angles vs Latitude

Figure 4-32: Minimum Elevation for Nominal and Optimized System

The optimized constellation has a much worse elevation angle five years

from epoch, approximately 10' at every latitude. This comparison

demonstrates a significant degradation in performance as the errors calculated

in table 4-6 are much smaller than the average difference.

4.4.6 Conclusions

Maintenance of the Teledesic constellation presents a great number of
technical challenges. Different planes will require different maneuver
planning budgets to make up for the inclination changes induced by the third

body perturbation. All satellites will have to be designed to carry the 'worst

case' amount of fuel so that each satellite can be produced identically. Certain

planes will require much more frequent inclination maintenance

maneuvers. These problems all have impact on the system design.

If the sun-synchronous requirement were removed from the Teledesic

system, it is possible the variation in nodal rates would decrease dramatically.

The orbit optimization tool could be configured to choose a new nodal rate
and 'design' a constellation that has a more consistent node rate across each

plane.

1C.

Optimized
- Nominal

1000
Latitude in Degrees



The orbit design tool is an effective tool for the orbit designer. Because the

GA is operating in a parallel environmeit with the DSST, an enormous

amount of computation can be performed. Careful design of the cost function

is critical to the result achieved with the tool. Any concerns or requirements

not present in the cost function or the parameter constraints will be ignored,

which may lead to unwanted results.

195





5.0 Conclusions and Future Work

5.1 Conclusions

5.1.1 PVM/DSST

Satellite constellations are increasing in number for a variety of reasons, the

most important of which are:

* Ability to provide worldwide communications.

* Market potential of mobile communication and information services.

* Technological developments in communication systems.

All the satellite constellations proposed will require significant computing

resources to track, control, and maintain. The demand for scalable, portable,

and flexible flight dynamics software will continue to grow as many of these

systems are being proposed by commercial ventures interested in cost efficient

use of resources. Parallel computing can provide the necessary computing

resources required for such systems with cost efficiency. However, software

must be designed to take advantage of the parallel hardware.

PVM was chosen from the available methods for implementing a parallel

orbit propagator, as it provided the most capability in the shortest amount of

time. It's main advantages included:

* Portability

* Ease of using legacy code

* Ability to use on a network of workstations

The data parallel and multi-threaded approaches may have produced more

performance but would have required re-writing more software. With PVM

the legacy software was used almost 'as is'.

197



The PVM/DSST is an initial step in the development of a constellation flight
dynamics system. Combining the message passing approach to interprocess
communication with a FORTRAN 77 programming environment proved to
be an effective method for creating a parallel application from existing serial
code. The development of the PVM/DSST required very little new software
in comparison to the amount of existing code used. The use of this legacy
software created a much more powerful application.

The PVM/DSST was used to effectively propagate multiple satellites. Adding
additional processors demonstrated speed-up and efficient use of all available

hardware. Several factors make the PVM/DSST practical for examining
multiple satellite constellations. These factors include:

* A simple approach to the work division and task management.

* A versatile orbit propagator with the capability to produce mean
elements using a variety of perturbation models.

* An easily reconfigurable networking system with low setup costs and
efficient communication.

* A network of computers using shared disk resources.

* The ability to produce a wide variety of output data ir, different
formats.

The only significant limitation in the design of the PVM/DSST was its
inability to demonstrate speedup in propagating a single trajectory.

Because the goal was not to produce an operational system, the error
handling capabilities of the UNIX programming environment and the PVM
system were not exploited. Lack of error handling development occasionally
caused failures while using the PVM/DSST. For instance, processes would
remain running after program completion or PVM would not start correctly.
In such a situation the following actions were taken:

* Halting p\nm, if possible.

198



* Killing all active processes.

* Deleting all the /tmp/pvm[dl.[uid] files.

The four processor SPARC, known to PVM as a SUNMP architecture, had
more problems than any of the single processor machines. Use of PVM on
the four processor machine required tuning of kernel parameters. These
parameters are located in the /etc/system file.

On the multiprocessor platform, the problems seen were most likely due to:

* The PVM implementation on the SUNMP architecture is not
completely error free.

* The four processor machine was not administered for optimal parallel
application execution. This job would require thorough knowledge of
the architecture as well as the operating system.

These problems may also contribute to the lower efficiency achieved on the
multi-processor platform. Despite the lower efficiency, the computation-to-

cost ratio of this machine is still very good.

5.1.2 Orbit Optimization Tool

The use of Schott's genetic algorithm (GA) optimization method proved to be
an excellent match with the PVM/DSST [641. GA's are not as computationally
efficient as other approaches, requiring more cost function evaluations to
reach the optimal answer. However, by operating on a population instead of
just one set of parameters, GA's can take advantage of parallel cost function
evaluations. Using a GA in a parallel computing environment reduces the
impact of its computational inefficiencies. If the hardware is available to
perform the necessary computation, the simple interface to the GA makes
this a powerful optimization method for orbit design. Cost functions are
easily developed and no derivative information is necessary.

Unfortunately, the effort was not made to automate the process of
minimizing the cost function to within a given tolerance. However,

199



excellent results were attained by manually reducing the interval and

repeating the optimization algorithm in a smaller parameter space.

The capabilities of the GA combined with the PVM/DSST were demonstrated

in Section 4.3.3. Frozen orbit determination in the presence of a 21-by- 0 zonal

field was achieved to an arbitrary level of accuracy. A more difficult problem

was examined in the attempt to optimize the Teledesic orbit to better meet
requirements. This problem is discussed in the next section.

5.1.3 Teledesic

The Teledesic satellite communication system is an enormous project. There

are many factors that complicate the development of this system. One of

largest technological challenges is constructing the 840 satellite constellation.

Analysis of the 840 satellite Teledesic constellation was performed, in part, to
stretch the computational capability of the PVM/DSST and the optimization
tool.

A system of distributed workstations using 2 SPARC 20's, a SPARC 10, and a

SPARC ELC was able to propagate the 840 satellite orbits for five years in

approximately 2 hours and 15 minutes. All available perturbation models

except drag (21-by-21 spherical harmonics, solar radiation pressure, and third

body) were used in this analysis.

The orbits initially chosen for the constellation represent a unique approach
to satellite constellation design. Because Teledesic uses a high inclination
orbit and does not control the phasing of satellites in adjacent planes,
different semimajor axes are required for each plane to prevent collision.
Because of the sun-synchronous and frozen orbit constraints, each plane will
require slightly different orbital elements. With very tight tolerances on
collision and different elements for each of the planes, orbital perturbations to
the constellation will be a significant part of the orbit refinement procedure.

200



The following assumptions were made in the analysis of the Teledesic
constellation:

* Drag effects were canceled by satellite maneuvers.

* The possibility of collision was not addressed.

* Mean elements were used in the analysis.

From the analysis discussed in Chapter 4, the Teledesic system provides the

desired minimum elevation angle with the nominal system. However,

perturbations will have different effects on each of the satellite planes.

The initial orbit design does not passively meet the sun-synchronous

requirement in the presence of perturbations. Although thrusting

maneuvers could be used to maintain the sun-synchronous requirement, it

appeared that different initial conditions could be chosen to better maintain

the orbits. Using the genetic algorithm optimization method, a new system

was designed that more closely meets the sun-synchronous requirement with

the same perturbations. However, the new system did demonstrate a lower

minimum elevation angle after five years. This was due to increased nodal

spacing between adjacent planes.

Both the nominal and optimized systems exhibit large variations in

inclination. To maintain the nominal constellation minimum elevation

angles, inclination must be kept within a narrow tolerance. Because the

inclination variations are plane dependent, the fuel budget will be different

per plane. This result may alter the optimal design of a common satellite for

all planes, as each satellite will be forced to carry the 'worst case' amount of

fuel for out of plane maneuvers.

201



5.2 Future Work

5.2.1 PVM/DSST

There is an enormous amount of future work in the area of parallel

computing and astrodynainics. If algorithms and software are created to be

efficient and scalable, the amount of computation capability available will

increase dramatically. This could impact many areas of astrodynamics.

Specific ideas for future work include:

* The current software is written to be portable to the CM-5. A CM-5
implementation would provide more computing capability than
feasible within the current environment. The CM-5 would also be a
stable platform for testing that would give a direct comparison between
the computation levels achieved using a network of workstations and
a supercomputer.

* Move the software to an IBM PC using the LINUX operating system to
demonstrate high level performance on a network of personal
computers. This implementation would demonstrate the power of
networking low cost computers.

* Examine the cost/performance ratio for additional multi-processor
workstations. Some machines are currently being offered with sixteen
processors per workstation (SGI), which could represent enormous
computing capability for the cost if the efficiency of these machines
remains relatively high when executing parallel applications.

* Develop a GUI interface to the current system with the concept of
expanding it into a constellation flight dynamics interface.

* Examine other workstation networking products such as Network
Linda. These tools may provide a better parallel programming
environment to develop a more comprehensive parallel and scalable
flight dynamics system.

* Redesign and rewrite sections of the stand-alone to perform vector
calculations with a data parallel language such as FORTRAN 90/HPF.
This effort is currently ongoing at the Charles Stark Draper Laboratory
with support from Phillips Lab/VTA.

202



* Implement a different algorithm for orbit propagation using the DSST.
For example, calculate the mean elements for an interval and then
spawn processes to calculate the short periodic contributions in
parallel. This concept could produce significant speed-up when a high
density of accurate state evaluations are needed in a short amount of
time, as in a batch orbit determination.

* Develop a full flight dynamics system on top of a networking system
such as PVM. Keeping the software scalable and efficient would allow
the system to increase its computing capability by simply adding more
computers instead of redesigning the software.

These ideas do not include all the future work in combining parallel

computing and astrodynamics.

5.2.2 Orbit Optimization Tool

There are many possible future applications of the orbit optimization tool,

from calculating optimal maneuvers that minimize fuel expenditures to a

more comprehensive optimization of a satellite constellation.

The constellation design problem could be approached more thoroughly if

the constellation was examined as one optimization problem. Each satellite

could be represented as an additional parameter to be optimized. Other than

machine capacity, the GA has no limits on the number of parameters that can

be solved for. Cost functions could be designed for the entire constellation,

including direct evaluation of metrics such as the minimum elevation angle.

This could be particularly helpful in refining current designs to perform

optimally in the presence of perturbations.

In addition, the design of the orbit optimization tool can be improved. Many

different types of GA's are available for solving a variety of problems. A

thorough investigation may show other GA's will solve the problems more

efficiently. Additionally, the combination of the GA with different

optimization methods could be used to automatically refine an answer

within a given tolerance.

203



5.2.3 Teledesic

The perturbative effects on the Teledesic constellation should be examined if

the nodal rate is changed from the sun synchronous rate. This can easily be

done using the orbit optimization tool, by optimizing the constellation to
minimize nodal deviations to the desired rate. If the relaxation of the sun-

synchronous constraint significantly decreases the variations between planes,
Teledesic may have to weigh the advantages of a sun-synchronous orbit

against a decreased fuel budget.

The Teledesic constellation will undoubtedly undergo further revisions to its

initial constellation. The next level of analysis should examine the area-to-

mass ratio to determine how to best model the drag and solar radiation

pressure effects. The perturbative variations due to the natural solar cycles

should be analyzed for the lifetime of the constellation.

204



Appendix A: Keplerian and Equinoctial
Elements

This appendix describes the Keplerian and equinoctial lements. The

Keplerian elements are well known because they geometrically describe the

two-body orbit.

The Keplerian elements are described in table A-1. The descriptions apply to

elliptical orbits only in an inertial reference system (I J K).

Table A-1: Description of Keplerian Elements [38]

ELEMENT DESCRIPTION

Semimajor Axis (a) One half the major axis of the ellipse.

Eccentricity (e) The shape of the ellipse.

e=O is a circle

e=1 is a parabola

The eccentricity vector (e) points in

the direction of periapsis.

Inclination (i) The angle between the vector normal

to the plane and the K vector.

Longitude of Ascending The angle between I and the point

Node (Q) where the orbit crosses the (I J) plane

in a northerly direction (-K to +K).

Argument of Perigee (w) The angle between the ascending

node and the periapsis measured in

the orbital plane.

True Anomaly (u) The angle between the eccentricity

vector and the position of the

satellite.

Figure A-1 depicts the Keplerian orbital elements.

205



U

Figure A-I: Geometry of Keplerian Elements [38]

The non-singular equinoctial elements can be defined in terms of the

Keplerian elements. The equinoctial elements are described by equations

given in table A-2.

The retrograde factor (I) is necessary to describe the equinoctial elements. If
the wrong retrograde factor is used, the equinoctial element set is singular for

equatorial orbits. For direct equatorial orbits, the retrograde factor must be set

to +1; for retrograde =auatorial orbits, it must be -1.

206

/1



Table A-2: Equinoctial Elements [49]

Equinoctial Keplerian Element
Element

a a

h esin(o-+10)

k ecos(o)+I1)

p I=+1 tan(i/2)sin(f2)
I=-1 cot(i/2)sin(2)

q I=+1 tan(i/2)cos(Q)

I=-1 cot(i/2)cos(Q )

h M+ow-I

I Retrograde Factor

I=+1 for 0" 5 i < 180" Direct Elements

I=-I for 0 <i 5 180" Retrograde Elements

207





Appendix B: Software Listings

The first two sections of this appendix contain software listings. Section B.1

contains the listings for the const_prop software. This software contains all

the routines that were used to perform communication between processes.

The difference between const_prop and sat_prop, is demonstrated in figures

3-5 and 3-6.

The routines listed Se=tion B.1 are:

* const_prop.F

* const_opt.F

* rdconst.F

Section B.2 lists the software written to interface directly to the DSST. This

software contains no PVM calls and can be used without a message passing

environment. This software is used to execute the DSST (figure 3-15) and also

interface below the constellation software (figure 3-5).

The routines listed in Section B.2 are:

* sat_prop.F

* sat_opt.F

* set_satopt.F

* crrequest_times.F

* sort_times.F

Section B.3 lists an example PVM/DSST input file. The input file contains

one satellite per plane from the nominal Teledesic constellation.

209



B.1 Message Passing Listings

B.1.1 Program const_prop

winclude "array_sizes.h"
#define MAXNPROCS 200
#define NTASK_PER_HOST 4
#define MSGTAG 10

c--------------------------------------------------------------------

program const.prop
c
c const_prop.F - a FORTRAN program that distributes
c itself among a pvm virtural machine to run multiple instances
c of the DSST
c
c Scott T Wallace, LT, USAF
c Master's Student, MIT Aero/Astro
c
c----------------------------------------------------------------------
c

implicit none
c
c Include the FORTRAN PVM header file

include '/Users/taz/scott/pvm3/include/fpvm3.h'
C

character*18 nodename, host(MAX_NUM_HOSTS)
character'8 arch
character'12 envinput, envoutput
characterMAX_PATH_LENGTH indata..path, outdatapath
character*MAXPATH_LENGTH const_file, satdat file

c
integer*4 mytid, info
integer'4 tids(0:MAX_NPROCS)
intege.'4 i, info, nproc. nhost
integer*4 mytid, ptid, dtid
integer*4 speed, narch, ntask
integer*4 bufid
integer*4 njobs, jobs rec, jobs_sent
integer*4 numt, k
integer'4 const_size, nintervals
integer'4 nburns, satno
integer*4 constoptint(INTOPT_SIZE.MAX_NUM_SATS)
integer*4 satoptint(INTOPT_SIZE)
integer'4 eltype

logical fileex

real*8 intervals(5,MAXJNUMINTERVALS)
real'8 burn_list(4,MAX_NUM_BURNS)
real'8 constopt_dbl(REAL_OPT_SIZE.MAXYNUM_SATS)
real'8 satopt_dbl(REAL_OPT_SIZE)

c
c
c Get the pathnames for the data files

satdatfile = 'satdata'
env-input = 'CONST INPUT'
env_output = 'CONST_OUTPUT'
call getenvienvinput, indata_path)

210



call getenv(env_output. outdata_path)
print ",outdata_path

c
c Enter this process in PVM

call pvmfmytid( mytid
c
c If I am the parent process then read in data start
c and manage other programs

call pvmfparent( ptid )
if (ptid .eq. pvmnoparent) then

c
c Get the name of the input file

write(*,')'Please enter the name of the constellation file:'
read(',') const_file

c const-file='teledesic21'
c
c Check to make sure the input file is there
c Remove spaces at end of path

i = 1
do while(indata_path(i:i).ne.' ')
i = i+l
end do
const_file = indatapath(l:i-1)//const_file

c

inquire(FILE=constfle, EXIST=fileex)
if (.NOT.fileex) then

write(*,*)'This file is not located in the CONSTINPUT dir'
stop

end if

c Read in the satellite data
call rdconst(const_size, eltype, nintervals, intervals,

1 nburns, burn_list, constopt_int, constopt_dbl,
2 const_file)

njobs = const_size

nhost = MAX_NUM_HOSTS
do i=l,nhost

call pvmfconfig( nhost, narch, dtid, host(i), arch,
speed, info )

print *,'My name was ',host(i), dtid
print *, 'I have ',nhost,' hosts'

end do
ntask = NTASK_PER_HOST'nhost

S heck to make sure ntask is not larger than the njobs
if (ntask.gt.njobs) then

ntask = njobs
end if

C
c If arch is set to 1'0 then ANY configured machine is acceptable

nodename = 'constprop'
arch = '

if (ntask.gt.0) then
call pvmfspawn( nodename, PvmTaskDefault, arch, ntask,

1 tids, numt)
else

write(*,*) 'No jobs to spawn'
stop

end if

c Check for spawning problems
d do 100 i=0, ntask
d print *,'tid',i.tids(i)

211



d 100 continue

if( numt .It. nproc ) then
print *, 'trouble spawning ',nodename
print , ' Check tids for error code'
call shutdown( numt, tids )

endif

c

cc Send constellation data
call pvmfinitsend(PVMDEFAULT, bufid)
call pvmfpack(INTEGER4, eltype, 1, 1, info)
call pvmfpack(INTEGER4, nintervals, 1, 1, info)
call pvmfpack(REAL8, intervals, nintervals*5, 1, info)
call pvmfpack(INTEGER4,nburns,1,1,info)

call pvmfpack(REAL, burn_list, nburns'4, 1, info)
call pvmfmcast(ntask,tids,MSGTAG, info)

c Setup for keeping track of jobs
jobs_rec = 0

jobssent = 0

k = 0

c Start loop to
c 1] Send out jobs to all processors
c 2] Wait til a job comes in and send out the next job

c 3] Collect jobs not received
c

do while (jobs_rec.lt.njobs)
c
c If I have already sent enough jobs

if (jobs_sent.ge.ntask) then
call pvmfrecv(-l,-l,bufid)
call pvmfunpack(INTEGER4. k, 1, 1, info)
jobs_rec = jobs_rec + 1
write(*.*) 'I received from ',host(k+l)

end if

cc If I need to send a job
c Note: Jobs_sent = satno

if (jobs_sent.lt.njobs) then
jobssent = jobs_sent + 1
call pvmfinitsend(PVMDEFAULT, bufid)
call pvmfpack(INTEGER4, k. 1, 1, info)
call pvmfpack(INTEGER4, jobs_sent, 1, 1, info)
call pvmfpack(INTEGER4, constopt_int (1,jobssent),

1 INT_OPT_SIZE, 1. info)
call pvmfpack(REAL8, constopt_dbl(l,jobs_sent),

1 REAL_OPT_SIZE, 1, info)
call pvmfsend(tids(k), MSGTAG, info)
write(',') 'I sent satellite,, jobs_sent,' to

2 ,host(k+l)

k = k +1
end if

c
end do

c
c Kill the slaves I spawned and then exit pvm myself

call shutdown(numt,tids)

c If I was a slave receive the data and do work
else

C

c Generate the output filename with path

212



do while(outdatapath(i:i).ne.' ')
i = i+l

end do
satdat_file = outdata_path(l:i-l)//satdat_file
print *,satdat_file

c

cc Receive the global broadcast data
call pvmfrecv(ptid.MSGTAG,bufid)
call pvmfunpack(INTEGER4, eltype, 1, 1, into)
call pvmfunpack(INTEGER4, nintervals, 1, 1, info)
call pvmfunpack(REAL8, intervals, nintervals'5, 1, info)
call pvmfunpack(INTEGER4,nburns,1,1. info)
call pvmfunpack(REALS, burnlist, nburns*4, 1, info)

c
c Do this loop always until I am killed

do while (.TRUE.)
c
c c Receive the local satellite data

call pvmfrecv(ptid. MSGTAG, bufid)
call pvmfunpack(INTEGER4, k, 1, 1, info)
call pvmfunpack(INTEGER4. satno, 1, 1, info)
call pvmfunpack(INTEGER4,. satoptint,

1 INT_OPTSIZE. 1. info)
call pvmfunpack(REAL8, satopt_dbl.,

1 REALOPTSIZE, 1. info)
c
cc Perform work

call sat_prop(satno. eltype, nintervals. intervals, nburns.
2 burn list, satopt_int, satopt dbl. satdat file,
3 indatapath)

c
cc Send back my id so I can get more work

call pvmfinitsend(PVMDEFAULT, bufid)
call pvmfpack(INTEGER4, k, 1, 1. info)
call pvmfsend(ptid. MSGTAG, info)

c

end do
end if
stop
end

c
c

subroutine shutdown( nproc, tids )
integer nproc, tids(e)

c
c Kill all tasks I spawned and then myself
c

do 10 i=l, nproc
c write(',') 'Tid ', i,' was ',tids(i)

call pvmfkill( tids(i), info
10 continue

call pvmfexit( info )
return
end

213



B.1.2 Program const_opt

#include "array_sizes.h"
#define NPARAMETERS 3
#define MAX_NPROCS 200
#define NTASKPERHOST 4
#define MSGTAG 10

c--------------------------------------------------------------------

subroutine const_opt(njobs,params,answers,ntask)
c
c const_prop.F - a FORTRAN subroutine that distributes

c itself among a pvm virtural machine to run multiple instances

c of the DSST
c
c Scott T Wallace, LT, USAF
c Master's Student, MIT Aero/Astro
c
c-----------------------------------------------------------------------

c
implicit none

C

c Include the FORTRAN PVM header file

include '/Users/taz/scott/pvm3/include/fpvm3.h'
C

character*18 ..3dename, host(MAXNUM_HOSTS)
character*8 arch
character*12 env_input

character'MAX_PATH_LENGTH indata_path
character*MAX_PATH_LENGTH const_file, satdat file

C

integer*4 mytid, info
integer*4 speed, narch, ntask
integer*4 tids(MAX_NPROCS)
integer*4 i, info, nproc, nhost
integer*4 mytid, ptid, dtid
integer*4 bufid
integer*4 njobs, jobs_rec, jobs_sent
integer*4 numt, k

integer"4 const_size, nintervals
integer*4 nburns, satno
integer*4 constopt_int(INT_OPT_SIZE,MAX_NUM_SATS)
Integer*4 satoptint(INT_OPT_SIZE)
Integer*4 eltype, jobno

logical fileex

real*8 intervals(5,MAX_NUM_INTERVALS)
real*8 burn_list(4,MAX_NUMBURNS)
real*8 constopt dbl(REAL_OPT_SIZE,MAX_NUM_SATS)
real*8 satoptdbl(REAL_OPT_SIZE)
real'8 pararms(NPARAMETERS,*), answers(')

c
c
c Get the pathnames for the defualt constellation

env_input = 'CONST INPUT'
call getenv(env_input, indatapath)

c

c Enter this process in PVM
call pvmfmytid( mytid

c If I am the parent process then read in data start

:214



c and manage other programs
call pvmfparent( ptid )

c

c if (ptid .eq. pvmnoparent) then
env_input = 'OPT_FILE'

call getenv(env_input,const file)

c constfile='tel-opt.14'
c
c Check to make sure the input file is there
c Remove spaces at end of path

i = l
do while(indata_pathti:i).ne. ')

i = i+l
end do
const_file = indata_path(l:i-l)//const_file

c
inquire(FILE=const_file,EXIST=fileex)
if (.NOT.fileex) then

write(',*)'This file is not located in the CONST_INPUT dir'
stop

end if

c Read in the general satellite data
call rdconstlconst_size, eltype, nintervals, intervals,

1 nburns, burn_list, constopt_int, constoptdbl,
2 constfile)

c

c do i=1,MAXNUM_HOSTS
c call pvmfconfig( nhost, narch, dtid, host(i), arch,
c 2 speed, info )
d print *,'My name was ',host(i), dtid
d print *, 'I have ',nhost,' hosts'
c end do
c ntask = NTASK_PER_HOST
c
c Check to make sure ntask is not larger than the njobs

if (ntask.gt.njobs) then
ntask = njobs

end if
c
c If arch is set to '*' then ANY configured machine is acceptable

nodename a 'const-opt_slave'
arch = *'
if (ntask.gt.0) then

do i=l,ntask
tids(i)=0

end do
numt=0
call pvmfspawn( nodename, PVMTASKDEFAULT, arch, ntask,

1 tids, numt)
else

write(*,*) 'No jobs to spawn'
stop

end if

c Check for spawning problems
d do 100 i=0, ntask
d print *,'tid',.i,tids(i)
d 100 continue

if( numt .It. nproc ) then
print a, 'trouble spawning ',nodename
print a, ' Check tids for error code'

215



call shutdown( numt, tids )
endif

c
cc Send constellation data

do i=l,ntask
call pvmfinitsend(PVMDEFAULT. bufid)
call pvmfpack(INTEGER4, eltype, 1. 1i, info)
call pvmfpack(INTEGER4, nintervals, 1, 1. info)
call pvmfpack(REAL8, intervals, nintervals'5. 1, info)
call pvmfpack(INTEGER4,nburns1,1,,info)
call pvmfpack(REALS, burnlist, nburns4., 1. info)
call pvmfsend(tids(i), MSGTAG, info)

enddo

c Multicast has problems on petunia
c call pvmfmcast(ntask,tids,MSGTAG,info)

c Setup for keeping track of jobs
jobs_rec = 0
jobs_sent = 0
k =1

c Start loop to
c 1] Send out jobs to all processors
c 2] Wait til a job comes in and send out the next job
c 3] Collect jobs not received
c

do while (jobs_rec.lt.njobs)
c
c If I have already sent enough jobs

if (jobs_sent.ge.ntask) then
jobs_rec = jobs_rec + 1
call pvmfrecv(-l,-l,bufid)
call pvmfunpack(INTEGER4, k, 1, 1, info)
call pvmfunpack(INTEGER4, jobno, 1, 1, info)
call pvmfunpack(REAL8, answers(jobno),1,1,info)
call pvmffreebuf(bufid, info)

d write('.') 'I received from ',host(k+l)
end if

c
cc If I need to send a job
c Note: Jobs_sent = satno

if (jobs_sent.lt.njobs) then
c Add in the appropriate parameters
c 1,4 is the eccentricity. The rest can be found in setsatopt.F

jobssent = jobssent + 1
constopt-dbl(3,1) = params(l.jobssent)
constopt_dbl(4,1) = params(2,jobssent)
constoptdbl(5,1) = params(3,jobs_sent)
call pvmfinitsend(PVMDEFAULT, bufid)
call pvmfpack(INTEGER4, k, 1. 1, info)
call pvmfpack(INTEGER4, jobs_sent, 1, 1, info)
call pvmfpack(INTEGER4, jobs_sent, 1, 1, info)
call pvmfpack(INTEGER4, constopt_int(l,1),

1 INT_OPT_SIZE, 1, info)
call pvmfpack(REAL8, constopt_dbl(1.1).

1 REAL_OPT_SIZE, 1, info)
call pvmfsend(tids(k). MSGTAG, info)

d write(',*) 'I sent satellite', jobssent,' to
d 2 ,host(k+l)

k = k +1
end if

C
end do

216



c Kill the slaves I spawned and then exit pvm myself
call shutdown(numt,tids)

c

return
end

c

c

subroutine shutdown( nproc, tids )

implicit none

integer4 info
integer'4 nproc, tids(')
integer*4 i

C

c Kill all tasks I spawned and then myself
c

do 10 i=l. nproc

c write(',') 'Tid ', i,' was ',tids(i)
call pvmfkill( tids(i), info )
if (info.ne.0) then
print *,'Error in pvmfexit ',info
end if

10 continue
call pvmfexit( info )
if (info.ne.0) then
print -,'Error in pvmfexit ',info

end if
return
end

217



B.1.3 Program rdconst

#include "array_sizes.h"
subroutine rdconst(constsize, eltype, nintervals, intervals,
1 nburns, burn_list, constopt_int, constopt_dbl,
2 const_file)

C---------------------------------------------------------------------

c

c subroutine rdconst - reads the constellation file
c
c This program reads a constellation file
c for use in the multiple satellite propagator
c
c Jan 95
C
c Scott T Wallace, Lt, USAF
c MIT / Aero Astro Dept/ Draper Fellow
c---------------------------------------------------------------------C

implicit none
c

character'(*) constfile

integer'4 unitnum, numsats, nintervals, intervalnum
integer'4 nburns, satno, eltype
integer*4 const_size, is(INT_OPT_SIZE)
integer'4 constoptint(IWIT_OPT_SIZE,MAXNUM_SATS)
integer-4 i, j
integer*4 status

c

logical unit_unavailable
c

real8 rs(REAL_OPT_SIZE)
real'8 constoptdbl(REAL_OPT_SIZE.MAX_NUMSATS)
real*8 intervals(5,MAXNUM_INTERVALS)
real'8 burn_1ist(4.MAX_NUM_BURNS)

c

include 'constformat'
c
c Find the first available unit

unitnum = 10
unit_unavailable = .true.
do while ( unit_unavailable )

unitnum = unitnum + 1
inquire ( unit=unitnum, opened-unit_unsvailable,

2 iostat=status)
end do

c
c Open the constellation file

open(unit=unitnum, file=constfile, status='old')
c
c Read the initial, global, data

read(unitnum,ll0) const_size, eltype
read(unitnum,')
read(unitnum,100) nintervals
do i=l,nintervals

read(unitnum.200) intervalnum, intervals(l,intervalnum),
1 intervals(2,intervalnum)

read(unitnun,200) intervalnum, intervals(3,intervalnum),
1 intervals(4,intervalnum)

read(unitnum,300i intervalnum, intervals(5.intervalnum)
end do

218



read(unitnum.,100) nburns
do i=l,nburns

read(unitnum.400) burn_list(1.i), burn_list(2,i).
burn_list(3,i), burn_iist(4,i)

end do
read(unitnum,')

c Read the data for each satellite
do i=.,const_size

read(unit=unitnum. 900)
read(unit=unitnum.1000) satno
read(unit=unitnum,2000) rs(3)
read(unit=unitnum,3000) rs(9)
read(unit=unitnum,4000) rs(ll
read(unit=unitnum.5000) rs(13
read(unit=unitnum,6000) is(1)
read(unit=unitnum,7000) is(4)
read(unit=unitnum.8000) is(8)
read(unit=unitnum,9000) is(ll
read (unit=unitnum.900)

c
do j=1.INT_OPT_SIZE

constopt_int(j.i)=is(j)
end do
do j=1.REALOPT_SIZE

constoptdbl(j.i)=rs(j)
end do

. rs(1), rsi2)
,rs(4).rs(5).rs
, rs(10)
). rs(12)

. is(2), is(3)

. is(S), is(6).

. is(9), is(10)
), is(12), is(1

(6),rs(7).rs(8)

is(7)

3)

end do

close(unitnum)

return
end

219



B.2 DSST Shell Listings

B.2.1 Subroutine satprop.F

c---------------------------------------------------------------------c
c

c subroutine sat_prop - propagates the satellite described
c in the argument list using the DSST.
c
c This subroutine invokes Draper semianalytic satellite theory
c to provide satellite precision mean elements and element rates
c at user request intervals. All input is through the argument
c list. Output is directly into a file
c
c Jan 95
c
c Scott T Wallace. Lt. USAF
c MIT / Aero Astro Dept/ Draper Fellow
c -----------------------------------------------------------------------------------------

c
c Include files / This file requiures preprocessing
c
c machine.h includes the machine specific definitions
c maxArrays.h includes the maximum array sizes
c
#include "machine.h"
#include "arraysizes.h"
#define NDATA_ITEMS 3
c

subroutine sat_prop (satno, eltype, nintervals, intervals, nburns,
2 burn_list, satopt_int, satopt_dbl,outfile. indata_path)

Argument list definitions

name i/o meaning

satno
nintervals
intervals(5,*)

nburns
burn_list(4,*)
satoptint(a)

satopt_dbl()

burnlist (1,j)
burnlist (2,j)
burn_list (3,j)
burn_list (4,j)

i satellite identification number
i number of intervals in interval array
i array containing times and deltas
intervals(begining: yyyymmdd(l.), hhmmss(2,')
end: yyyymmdd(3,'), hhnmmss(4.4), deltat(5,'))

i number of burns in the burn array
i array containing impulsive burns deltas
i an array of integer values for satellite

propagation global to the constellation
i an array of double precision values

for satellite propagation global to the
constellation

i time of impulsive velocity manuever
i delta velocity in the x (r of rtn) direction
i delta velocity in the y (t of rtn) direction
i delta velocity in the z (n of rtn) direction

c -------------------------------------------------------------------------

c

c iatmos_preburn i selector for preburn drag modification
c -1 => no drag. 0 => overestimate drag
c ,1 => nominal drag. *2 => underestimate drag
c iatmospostburn i selector for postburn drag modification

220



rhoonehi
rho one low
epochymd
epoch_hms

-1 => no drag. 0 => overestimate drag

*1 => nominal drag, +2 => underestimate drag
drag modification: overestimation percentage
drag modification: underestimation percentage
epoch of mean elements file (yymmdd.)
epoch of mean elements file (hhmmss.ssss)

c

Cc subroutines called
c intani - helps initialize draper semianalytic theory
c beganl - starts the draper semianalytic theory
c orbanl - propagates using draper semianalytic theory
c kepeqn - makes kepler elements from equinoctials

c julpak - converts packed calendar time to julian date
c calpak - converts julian date to packed calendar time
c
c impulsive burn_propagator - propagates with an
c impulsive burn model

- computes the time difference a.l - utc
- division with remainder
- read the potential model matching the number
used in the pme file

c

c

c data types
c
c no implicit types

implicit none
C

c Character Variables ========== ============

filename
buffername / *uninitialized'
text
blank
comment / c'/
outfile, indatapath

i
nrequest_times

mean
k

hmsint
zscelm (6
avrdrv!6,30C)

satoptint(e)
burn cntr, data-cntr,
nburns, nintervals.
satno, eltype
equin, mtod.
status, unitnum,

unit-unavailable
burn logical(MAX NUM TIMES)
setrtr

intervals(5,")
satopt-dbl(')

requesttimes(MAX_NUM TIMES)
times (MAX_;NUM_TIMES)
burn- times (MAX_NU_BUR1S)
burn_list(4,')
data (IJDATA._ITEMS.MAX _! M_TIMESI
kepler(6)

elmint(6),
pos(3).
avrelm.,

ymdint.
ve (3).
pvdrv(6,30C).

221

aldiff
ddiv
readepot

(60)
(18)
(72)

(1)
(1)

(')

cnaracter
character
character
character
character
character

integer'4
integer'4
integer'4
integer*4
integer*4
integer'4

logical '4
logical '4
logical '4

real'8
real '8
real '8
realo8
real '8
real'8
real '8
real'8

real'8
real'8
real'8



real'8 endorb, avrkep(6), avrate(6)
real"8 epoch_date, epochtod, obstim
real'8 offset
real8 burn_deltax, burn_deltay, burn_delta-z
real'8 oayjul0, secjul0, ymd
real'8 hns. dayjul. secjul
real*8 leapseconds, quoc
real'8 aldiff
real'8 radians, degrees, infinity
real'8 rfactor. forward
realu8 ymdvec(MAX_NUM_TIMES). hms_vec(MAX_NUM_TIMES)
real'8 gha, ecefR(3)
real*8 calcgha

c
c constants =============================== =---
c

parameter ( radians = 57.295779513082321 d00 )
parameter ( degrees = 0.017453292519943296 dOO )
parameter ( infinity = 99999999. d20 )
parameter ( forward = 1. dO
parameter ( equin . 3
parameter ( mtod = 2
parameter ( mean = 2

c

c FORTRAN include modules ===================== ============
c
c include the satellite epoch data buffer

include 'PMEhN.CMN'
c
c BEGIN PROGRAM =---========- - -=== --====-====- -
c
c Convert to equinoctial elements

if (eltype.eq.1) then
rfactor = satopt_int(l)
setrtr = .false.
kepler(l) = satoptdbl(3)
kepler(2) = satopt_dbl(4)
kepler(3) = satoptdbl(5) /radians !Convert to radians
kepler(4, = satopt_dbl(6) /radians
kepler(5) = satopt_dbl(7) /radians
kepler(6) = satoptdbl(8) /radians
call eqnkep(elmint,rfactor,kepler,set:tr)
satopt_dbl(3) = elmint(l)
satopt-dbl(4) = elmint(2)
satoptdbl(5) = elmint(3)
satopt-dbl(6) = elmint(4)
satopt_dbl(7) = elmint(5)
satopt_dbl(8) = elmint(6) / degrees !Convert to degrees

end if
c
c Call the routine which will take the options input in the argument
c list and put them in the PMERN common area and read in the
c potential field

call set_sat'pt(satopt_dbl, satoptint. status)

c setup satellite at epoch
pme_cd = pme_cd ( 1.dO + pme_rho_one )
pme_rho_one = 0.d0

c
c find the first available unit

unitnum = 10

unit_unavailable = .true.

222



do while ( unit_unavailable )
unitnum = unitnum + 1
inquire ( unit=unitnum, opened=unit_unavailable.

2 iostat=status, err=999 )
end do

c
c open the gravity field file

k = 1
do while(indata-path(k:k).ne.' ')
k = k+l
end do
filename = indata_.path(l:k-1)//'epotfld'

c print *, filename
open (unit=unitnum, file=filename, status='old'.
2 form='unformatted', access='direct',
3 recl = 1050*WORDLENGTH

c
c Call read_epot to read new gravity model and update common

call read_epot(unitnum,status)
if ( status .ne. 0 ) goto 999

c
c Close the input earth file

close(unitnum)

c Extract epoch from the buffer and adjust the century
epoch_date = pme_date
epoch_tod = pme_time
ymdint = epochdate-19000000.dO
hmsint = epoch_tod

C
c Call julpak to obtain julian date at epoch

call julpak (dayjul0,secjul0,ymdint.hmsint)
C
c Extract epoch equinoctial elements from the buffer

eimint (1) = pmeelsequin (1)
elmint (2) = pme elseqiin (2)
elmint (3) = pmeels_equin (3)
elmint (4) = pme_els_equin (4)
elmint (5) = pmeelsequin (5)
elmint (6) = pmeelsequin (6) a degrees
rfactor = pme_retro

:all intanl to initialize force models
call intanl (elmint,rfactor.equin.mtod,mean,ymdinthmsint)

S a:l beganl to start the semianalytic integrator
call beganl (forward)

c Set integrator time to zero
offset = 0. dO

c
c Make a list of request times (in seconds from epoch)
c Check all request times to insure they come after the epoch

call crrequest_times(dayjul0,. secjul0, intervals, nintervals,
1 request_times, nrequest times, status)

C

c Assign all the burn times to a vector
do i=l,nburns

burn_times(i)=burn_list(4.i)
end do

c
c Sort the request times & burn times together

call sort_times(burntimes, nburns, request_times,
$ nrequesttimes,times, burnlogical, nrequest_timestnburns,

223



$ status)
c

c Create a separate cntr to keep track of burns and amount of output
burn_cntr = 1
datacntr = 1

c

c For each request time and burn time

do i=l,nrequest_times*nburns
c

c call orbanl to propagate to the next time (a.l offset)
secjul = secjul0 + times(i)
call ddiv(quot,secjul,secjul,86400.d0,43200.d0)
dayjul = dayjul0 + quot
leapseconds= aldiff(dayjul,secjul) - aldiff(dayjul0,secjul0)

obstim = times(i) + leapseconds

call orbanl ( pos,vel,oscelm,avrelm,avrate,
2 pvdrv,avrdrv,endorb,obstim-offset )

c

c If time was a burn, do a burn and restart propagator

c at the burn time
if (burn logical(i)) then

c

c extract burn parameters from the burn list
burn_delta_x = burn_list(l,burn_cntr) / 1000.0d0

burn_delta_y = burn_list(2,burn_cntr) / 1000.0d0

burn_delta_z = burn_list(3,burn_cntr) / 1000.0d0

c call impulsive_burnpropagator to add the delta_v to the averaged
c elements

call impulsiveburnpropagator(burn_delta_x,
1 burn_delta_y,
2 burndelta z, avrelm)

c
c call calpak for utc calendar time

secjul = secjulO + obstim - leapseconds

call ddiv (quotsecjul,secjul,86400.d0,43200.d0)

dayjul = dayjul0 + quot

leapseconds= aldiff(dayjul,secjul) - aldiff(dayjul0.secjul0)
call calpak (ymd,hms,dayjul0,secjul0+obstim-leapseconds)

c

c Call intanl to reinitialize force models at utc time

c and reset propagator epoch to burn time
call intanl (avrelm,rfactor,equin,mtod,m ean,ymd,hms)

c

c Call beganl to restart the semianalytic integrator
call beganl (forward)

c

c Set integrator time to time at end of burn, as we just restarted
c it.

offset = obstim
c

c Add one to the burn counter
burncntr = burn_cntr - 1

c End the work for a burn, return to next time
end if

c

c if time was a request time store state

if (.not.burnlogical(i)) then
C

Call kepeqn to obtain classical elements at request time
call kepeqn iavrkep.avrelm,rfactor)

C

22:4



c Call calpak for utc calendar time to output back to the user
secjul = times(i)
call ddiv (quot.secjul,secjul,86400.d0,43200.d0)
dayjul = dayjul0 + quot
leapseconds= aldiff(dayjul,secjul) - aldiff(dayjul0,secjul0)
call calpak (ymd,hms.dayjul0,secjul0+obstim-leapseconds)

c
c Evaluate the GHA angle

gha=calcgha(ymd,hms)
C

c Rotate to ecef coordinates
ecefR(1) = cos(gha)'pos(l) , sin(gha)'pos(2)
ecefR(2) = -l.0*sin(gha)'pos(l) + cos(gha)'pos(2)
ecefR(3) = pos(3)

c
c Output the data
c
c data(1,data-cntr) = avrkep(l)
c data(2.datacntr) = avrkep(2)
c data(3.data_cntr) = avrkep(3)
c data(4.data_cntr) = avrkep(4)
c data(5,datacntr) = avrkep(5)
c data(6,data-cntr) = avrkep(6)
c data(7.datacntr) = ymd
c data(8,datacntr) = hms
c

data(l,datacntr) = ecefR(1)
data(2,datacntr) = ecefR(2)
data(3,datacntr) = ecefR(3)

c

if (satno.eq.1) then
ymdvec(data_cntr) = ymd
hmsvec(datacntr) = hms

end if
c

data_cntr = datacntr + 1
c
c End the request time option

end i'
c
c Return to propagate to the next time

end do
c
c Send the data to the data file

call outdat(satno,data,nre-.est_times,NDATAITES,.outfile)
c
c Write out the time information

if (satno.eq.1) then
open(unit=37,file=ymdhms',status='unknown')
do i=l,data-cntr
write(37,'(2f25.16)')ymdvec(i),hms_vec(i)

end do
close(37)

end if
c
c mark buffer undefined
999 buffername = 'uninitialized

c
c return with error status

text = 'i/o error in orbit_propagator_services. status =
write (*,'(i4)') status
return

end

225



B.2.2 Subroutine sat_opt.F

#include "machine.h"
#include "array_sizes.h"
#define MAXDELTANOD 0.43630d0
#define MAXDELTAARG 0.52360d0
#define MAXDELTAECC 0.00070d0
#define SSRATE 0.0172027910d0
#define TWOPI 6.2831853070d0
#define PIE 3.14159270d0
c-----------------------------------------------------------------------

c

c subroutine sat_opt - propagates the satellite described
c in the argument list using the DSST.
c

c This subroutine invokes Draper semianalytic satellite theory
c to provide satellite precision mean elements and element rates
c at user request intervals. All input is through the argument
c list. Output is through the argument list.
c

c Jan 95
c

c Scott T Wallace, Lt, USAF
c MIT / Aero Astro Dept/ Draper Fellow
c ---------------------------------------------------------------------------------------- c
c

c Include files / This file requiures preprocessing

c machine.h includes the machine specific definitions
c maxArrays.h includes the maximum array sizes
c

c

subroutine sat_opt (satno, eltype, nintervals, intervals, nburns,
2 burnlist, lc_satoptint,lc_satopt_dbl,outfile,indata_path,
3 optval)

Argument list definitions

name i/o meaning

satno
nintervals
intervals(5.'*)

nburns
burnlist(4,*)
satopt_int(*)

satopt_dbl(')

burn_list (l,j)
burn_list (2,j)

burn_list (3,j)

burnlist (4,j)

i satellite identification number
i number of intervals in interval array
i array containing times and deltas
intervals(begining: yyyymmdd(1,"), hhmmss(2,h)
end: yyyymmdd(3,*), hhmmss(4,'), deltat(5,'))

i number of burns in the burn array
i array containing impulsive burns deltas
i an array of integer values for satellite

propagation global to the constellation
i an array of double precision values

for satellite propagation global to the
constellation

i time of impulsive velocity manuever
i delta velocity in the x (r of rtn) direction
i delta velocity in the y (t of rtn) direction
i delta velocity in the z (n of rtn) direction

iatmospreburn i selector for preburn drag modification
-1 => no drag, 0 => overestimate drag
+1 => nominal drag, +2 => underestimate drag

226



iatmos_oostburn i

rhoone hi
rhoonelow

epochymd
epochihms

selector for postburn drag modification
-1 => no drag. 0 => overestimate drag
*1 => nominal drag, +2 => underestimate drag
drag modification: overestimation percentage
drag modification: underestimation percentage
epoch of mean elements file tyymmdd.)
epoch of mean elements file (hhmmss.ssss)

subroutines called

intanl
beganl
orbanl
kepeqn
julpak
calpak

- helps initialize draper semianalytic theory
- starts the draper semianalytic theory
- propagates using draper semianalytic theory
- makes kepler elements from equinoctials
- converts packed calendar time to julian date
- converts julian date to packed calendar time

c impulsive_burn.propagator - propagates with an
c impulsive burn model
c
c aldiff - computes the time difference a.1 - utc
c ddiv - division with remainder
c readepot - read the potential model matching the number
c used in the pme file

c data types ========================--===============

c no implicit types
implicit none

C Character Variables ==========================

character
character
character
character
character
character

integer'4
integer'4
integer*4
integer'4
integer'4
integer'4

logical'4
logical'4
logical'4

real*8
real '
real'8
real'8
real's

real e
rea!'
real'

real*8
real*E

(60)
(18)
(72)
(1)

(1)
( -)

filename
buffername *'uninitialized'
text
blank
comment / 'C'
outfile. Indata_path

satopt_int(INTOPT_SIZE) , lc_satoptint(INT OPTSIZE)
burncntr. data_cntr. i
nburns, nintervals, nrequesttimes
satno, eltype
equin, mtod, mean
status, unitnum, k

unitunavailable
burn_logical (MAX_NU.MTIMES)
setrtr

intervals(5,')
satopt_dbl(REAL_OPT SIZE)
lc_satopt_dbl(REAL_OPT_SIZEI
request-tlmes (MAX_nUM_TIMES)
times (MAXjM.MTIMES)
burn_times(MAiX_-RNMBURJS)
burn_list(4,')
kepler(6)

elmint(6).
posi3 .

ymdint.
velt3;,

h,-rlsint
oscelmi6)

227



real'8 avrelm(6), pvdrv(6,300), avrdrv(6,300)
real'8 endorb. avrkep(6). avrate(6)
real'8 epoch_date, epoch_tod, obstim
real"8 offset
real'8 burn_delta_x, burn_deltay. burn_delta_z
real'8 dayjul0, secjul0, ymd
real'8 hms, dayjul, secjul

real8 leapseconds, quot
real'8 aldiff
real'8 radians, degrees, infinity
real*8 rfactor, forward

real'8 optval
real'8 ideal, noddev

c

c constants
c

parameter ( radians = 57.295779513082321 dOO )
parameter ( degrees = 0.017453292519943296 dOO )
parameter infinity = 99999999. d20 )

parameter ( forward = 1. dO
parameter ( equin = 3
parameter ( mtod = 2
parameter ( mean = 2

c FORTRAN include modules

c
c include the satellite epoch data buffer

include 'PMERN.CMN'
C

c BEGIN PROGRAM =================================

c
c Copy argument list into local variables

do i=l,REAL_OPT_SIZE
satopt_dbl(i)= Icsatopt_dbl(i)

end do

do i=l.INT_OPT_SIZE
satopt_int(i)= Icsatopt_int(i)

end do

c Convert to equinoctial elements
if (eltype.eq.l) then

rfactor = satopt_int(1)
setrtr = .false.

kepler(l) = satoptdbl(3)
kepler(2) = satopt_dbl(4)
kepler(3) = satopt_dbl(5) !radians !Convert to radians
kepler(4) = satopt_dbl(6) iradians
kepler(5) = satopt_dbl(7) /radians
kepler(6) = satopt_dbl(8) /radians
call eqnkep(elmint,rfactor,kepler,setrtr)
satoptdbl(3) = elmint(l)
satoptdbl(4) = elmint(2)

satopt_dbl(5) = elmint(31
sauopt_dbl(6) = elmint(4)

satopt_dbl(7) = elmint(5)
satopt_dbl(a) = elmint(6) , degrees !Convert to degrees

and if
c

c Call the routine which will take the options input in the argument
list and put them in the PMERU ccmmon area and read in the

c potential field

228



call set_satopt(satopt_dbl, satoptint, status)

c setup satellite at epoch
pme_cd = pme_cd * ( l.dO + pme_rho_one )
pme_rho_one = 0.dO

c
c find the first available unit

unitnum = 20
unit_unavailable = .true.
do while ( unit_unavailable )

unitnum = unitnum * 1
inquire ( unit=unitnum, opened=unit_unavailable.

2 iostat=status)
end do

c
c open the gravity field file

k= 1
do while(indata_path(k:k) .ne.' )
k = k*l
end do
filename = indata_path(l:k-l)//'epotfld'
open (unit=unitnum, file=filename, status='oldl,
2 form='unformatted', access="direct',
3 red = 1050*WORDLENGTH,IOSTAT=k)

c
c Call readepot to read new gravity model and update common

call readepot(unitnum,status)
if ( status .ne. 0 ) then
print *,'Error in opening epotfld'
stop

end if
c

c Close the input earth file
close (unitnum)

c Extract epoch from the buffer and adjust the century
epoch_date = pme_date
epoch_tod = pme_time
ymdint = epoch-date-19000000.dO
hmsint = epoch-tod

c
c Call julpak to obtain julian date at epoch

call julpak (dayjulO, secjul0,ymdint,hmsint)
c
c Extract epoch equinoctial elements from the buffer

elmint (1) = pme_elsequin (1)
elmint (2) = pme_els_equin (2)
elmint (3) = pmeelsequin (3)
elmint (4) = pmeelsequin (4)
elmint (5) = pmeelsequin (5)
elmint (6) = pmeelsequin (6) 0 degrees
rfactor = pmeretro

c
c Call intanl to initialize force models

call intanl (elmint,rfactor.equin.mtod,mean,ymdint,hmsint)
c

c Call beganl to start the semianalytic Integrator
call beganl (forward)

c Set integrator time to zero
offset = 0. dO

C
c Make a list of request times (in seconds from epoch)
c Check all request times to insure they come after the epoch

229



call crrequest_times(dayjul0, secjul0, intervals, nintervals,
1 request_times, nrequest_times, status)

c

c Assign all the burn times to a vector
do i=l.nburns

burn_times(i)=burn_list(4,i)
end do

c

c Sort the request times & burn times together
call sorttimes(burn_times, nburns, request times,
$ nrequesttimes,times, burn_logical, nrequest_times+nburns,
S status)

c
c Create a separate cntr to keep track of burns and amount of output

burncntr = 1
datacntr = 1

C

c For each request time and burn time
do i=l,nrequest_times+nburns

c

c call orbanl to propagate to the next time (a.l offset)
secjul = secjul0 + times(i)
call ddiv(quot,secjul,secjul,86400.d0,43200.d0)
dayjul = dayjul0 + quot
leapseconds= aldiff(dayjul.secjul) - aldiff(dayjul0,secjul0)
obstim = timesfi) * leapseconds
call orbanl ( pos,vel,oscelm,avrelm,avrate,

2 pvdrv,avrdrv,endorb,obstim-offset )
c

c If time was a burn, do a burn and restart propagator
c at the burn time

if (burn_logical(i)) then
c
c extract burn parameters from the burn list

burn_delta_x = burn_list(l.burncntr) / 1000.0d0
burn_delta_y = burn_list(2,burncntr) / 1000.0d0
burn_delta_z = burn_list(3,burncntr) / 1000.0d0

c
c call impulsive_burn_propagator to add the delta_v to the averaged
c elements

call impulsive_burn_propagator(burndelta_x,
1 burn_delta_y.
2 burn_delta_z, avrelm)

c

c call calpak for utc calendar time
secjul = secjul0 + obstim - leapseconds
call ddiv (quot,secjul,secjul,86400.d0,43200.d0)
dayjul = dayjul0 + quot
leapseconds= aldiff(dayjul,secjul) - aldiff(dayjulO,secjul0)
call calpak (ymd,hms,dayjul0,secjul0+obstim-leapseconds)

c
c

c Call intanl to reinitialize force models at utc time
c and reset propagator epoch to burn time

call intanl (avrelm,rfactor,equin,mtodmean,ymd.hms)
c
c Call beganl to restart the semianalytic integrator

call beganl (forward)
C

c Set integrator time to time at end of burn, as we just restarted
C It.

offset = obstim
c

c Add one to the burn counter

230



burn_cntr = burn cntr * 1

c End the work for a burn, return to next time
end if

c
c if time was a request time store state

If (.not.burnlogical(i)) then
c
c Call kepeqn to obtain classical elements at request time

call kepeqn (avrkep.avrelm.rfactor)
c
c Call calpak for utc calendar time to output back to the user

secjul = secjul0 + obstim - leapseconds
call ddiv (quot,secjul,secjul,86400.d0,43200.d0)
dayjul = dayjul0 + quot
leapseconds= aldiff(dayjul,secjul)

& - aldiff(dayjul0,secjul0)
call calpak (ymd.hms,dayjul0.secjul0+obstim-leapseconds)

c
c Record the total change in eccentricity
c
c Calculate the ideal sunsync value

ideal = O.OdO
ideal = kepler(4)+(SSRATE)*((dayjul-dayjul0)-

(secjul-secjul0)/86400.0d0)
ideal = dmod(ideal.TWOPI)

c
c Calculate the deviation

noddev = abs(ideal-avrkep(4))
if (noddev.gt.PIE) then
noddev = TWOPI - noddev

end if

c Evaluate the cost function
c optval = abs(avrkep(2)-kepler(2))/MAXDELTAECC
c & + abs(avrkep(5)-kepler(5))/MAXDELTAARG
c & * 3"noddev/MAXDELTA.NOD
c & * optval
C
c Evaluate the cost function

optval = noddev/MAXDELTANOD v optval
c Evaluate the cost function
c optval = abs(avrkep(3)-kepler(3))

c End the request time option
end if

c
c Return to propagate to the next time

end do
c

return
c

end

231



B.2.3 Subroutine set_satopt.F

subroutine set_satoptsatoptdbl. sacopt-int. status)
C

C----------------------------------------------------------------------- C

c

c subroutine set_satopt - Sets the values in common area PMERN
c to run the satellite propagator
c
c set_.satopt is necessary to keep all the options in two arrays
c in higher level programs
c
c Jan 95
c
c Scott T Wallace, Lt. USAF
c MIT A ero Astro Dept/ Draper Fellow
c----------------------------------------------------------------------c
Cc

real"8 satopt_dbl (I
integer'4 satopt_int(')
integer'4 status

c

implicit none
c
c

include 'PMERN.CM'

c---------------------------------------------------------------------c

pmedate
pme_time
pmeelsequin (1)
pmeels sequin(2)
pmeelsequin(3)
pmeels equin (4)
pmeelsequin(5)
pme_els_equin(6)
pme_cd
pmerho_one
pmescmass
pme_scarea
pme stepsize

pme_retro
pme-atmos_model
pmepotential_model
pmenmax
pmemmax
pme_izonal
pme_ij2j2
pme_nmaxrs
pme.mmaxrs
pme_ithird
pme_inddrg
pme_iszak
pm.e_indsol

satopt_dbl(1)
satopt_dbl(2)
satopt_dbl(3)
satopt_dbl(4)
satoptdbl(5)
satopt-dbl(6)
satopt_dbl(7)
satopt_dbl(8)
satcpt_dbl(9)
satopt_dbl(10)
satopt_dbl(ll)
satopt_dbl(12)
satopt_dbl(13)

satoptint(1)
satopt_int(2)
satopt_int(3)
satoptint(4)
satopt_int(5)
satopt_int(6)
satopt_int(7)
satopt_int(8)
satoptInt(9)
satopt int(10)
satoptint(ll)
satopt_ nt(12)
satoptint(1.3

return
end

232



B.2.4 Subroutine crrequest_times.F

subroutine crrequesttimes(day3ul0. secjul0, intervals,
S nintervals, request_times, nrequest_times, status)

c

C---------------------------------------------------------------------

c
c subroutine crrequest._times - Create Request times
C
c This subroutine creates the request times in seconds from
c epoch from the intervals given in the intervals argument.
c
c Jan 95
C
c Scott T Wallace, Lt, USAF
c MIT / Aero Astro Dept! Draper Fellow
c ----------------------------------------------------------------------------------------- c

c
real'8 dayjulO
real*8 secjul0
real'8 intervals(5,')
real'8 request_times(')
real*8 currenttime
real"8 daybeg, dayend
real'8 secbeg, secend
real'8 deltat
real'8 begint_sec. endint_sec
real08 dayseconds

C

integer nintervals
integer nrequest_times
integer status
integer i
integer timecntr

parameter Idayseconds = 86400.0)
C

implicit none
C
c ----------------------------------------------------------------------------------------- c

C

c
c Initialize variables

timecntr = 1
nrequesttimes=0

c

c For each interval
do i=1,nintervals

c Call julpak to obtain julian date at interval beginning and end
call julpak (daybeg. secbeg, intervals(l.i)-19000000.0DO.

$ intervals(2.i))
call julpak (dayend, secend, Intervals(3,ij-19000000.ODO,

S Intervals(4,ij)

deltat = intervals(5.1)

begintsec = (daybeg-day3ulOi)DAY_SECODS v secbeg-sec3ul0
endint_sec = (dayend-dayjul0i'DAY SECODS , secend-sec)ucO

current_time = begint_sec

233



do while (current time.lt.endint_sec)

request_times(timecntr)=current time

current_time = current-time + deltat

nrequesttimes=time_cntr
time_cntr = tiine_cntrl

end do
end do

end

234



B.2.5 Subroutine sort_times.F

vifdef DEBUG
Odefine NATEST 3
*define NBTEST 2
odefine NTESTTIMES (NATEST*NBTEST)

program testtimes

integer nra. nrb, nout,. i. status
C

real'8 ra (NATEST), rb(NBTEST), rout(NTESTTIMES)
c

logical lout(NTESTTIMES)
C

implicit none
C

nra = NATEST
nrb = NBTEST
nout = nra*nrb

do i = 1.NATEST
ra(i)=ioi

end do

do i = 1,NBTEST
rb(i)=ioisi - i

end do

call sorttimes(ra, nra, rb, nrb, rout, lout,
S nout, status)

end

endif
subroutine sorttimes(ra, nra, rb, nrb, rout, lout,

S nout, status)
c ----------------------------------------------------------------------------------------- c

c

c subroutine sort_times - Puts two arrays into one long array
c sorts the long array along with a logical array describing where
c the array came from (TRUE if first array, FALSE if second)
c
c JAN 95
C
c Scott T Wallace. Lt. USAF
c MIT / Aero Astro Dept/ Draper Fellow
C ----------------------------------------------------------------------------------------- c

c

integer nra. nrb, nout. i. status

real'8 ra(*), rb(-), routinout)

logical lout(nout)
c

c-----------------------------------------------------c

implicit none

do i a I.nra
routliz = raii
lou (il = .TR*E.

end do

235



do i = nra+1,nout

rout(i) = rb(i-nra)

lout(i) = .FALSE.
end do

call sort2(nout, rout, lout)

return

end

c----------------------------------------------------------------------c

SUBROUTINE SORT2 (N, RA, RB)

integer n,l,ir,i,j

real*8 ra,rra
logical :b,rrb

implicit none

DIMENSION RA(N) , RB(N)

L=N/2+1
IR=N

10 CONTINUE
IF (L.GT.1) THEN

L=L-1
RRA=RA(L)

RRB=RB(L)
ELSE

RRA=RA(IR)
RRB=RB (IR)
RA (IR)=RA(1)
RB(IR)=RB(1)
IR=IR-1

IF(IR.EQ.1)THEN
RA(1)=RRA
RB(1)=RRB
RETURN

ENDIF
ENDIF
I=L
J=L+L

20 IF(J.LE.IR)THEN
IF(J.LT.IR)THEN

IF(RA(J).LT.RA(J+1))J=J+l
ENDIF

IF(RRA.LT.RA(J))THEN
RA(I)=RA(J)
RB(I)=RB(J)
I=J
J=J+J

ELSE
J=IR+1

ENDIF
GO TO 20

ENDIF

RA(I)=RRA
RB (I) =RRB

GO TO 10
END

c----------------------------------------------------------------------C

236



B.3 Example PVM/DSST Input File

N Satellites: 21 ElType 1

nintervals: 1
Begin interval 1 19950401.0 000000.0
End interval 1 20050401.0 0.00
Deltat interval 1 432000.0

nburns =

Satellite Number: 1 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements :

CD:
S/C Mass:
Integrator

0.7073140000000000D,04
0.1180000000000000D-02
0.98142000000000000D,02

0.000000000000000D00
0.9000000000000000D+02

C.0000000000000OOO0000

2.20000000 Rho One:
800.00000000 S/C Area:

Step- 43200.00000000

0.00000000
0.00014400

Retro: 1 Acmos Mdl: 1 Potent Mdl: 4
Nmax. 21 Mmax: 21 Izonal: I IJ2J2:
N!maxrs: 21 Mmaxrs: 21 Ithird: 1
Ind Drg: 2 Iszak: 2 Ind Sol: 1

Satellite Number: 2 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7073640000000000D04
0.1180000000000000D-02
0.98144000000000000D02
0.9500000000000000D*01
0.90000000000000000D02
0.0000000000000000D,00

CD: 2.20000000 Rho One:
S/C Mass: 800.00000000 S/C Area:
Integrator Step: 43200.00000000

Retro: 1 Atmos Mdl: 1 Potent Mdl: 4
Nmax: 21 Mmax: 21 Izonal:
Nmaxrs: 21 Mmaxrs: 21 Ithird

Ind Drg: 2 Iszak: 2 Ind Sol:

Satellite Number: 3 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7074140000000000D.04
0.1180000000000000D-02
0.98146000000000000D02

0.1900000000000000D*02
0.9000000000000000D+02

0.0000000000000000D.00

CD: 2.20000000 Rho One:
S:C Mass: 800.00000000 S'C Area:

Integrator Step: 43200.00000000

0.00000000
0.00014400

1 IJ2J2:
1

0.00000000
0.00014400

237



Retro. 1 Atmos Mdl: 1 Potent Mdl: 4
Nmax: 21 Mmax: 21 Izonal: 1
Nmaxrs: 21 Mmaxrs: 21 Ithird: 1

Ind Drg: 2 Iszak: 2 Ind Sol: 1

Satellite Number: 4 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7074640000000000D+04

0.1180000000000000D-02
0.9814800000000000D+02
0.2850000000000000D+02
0.9000000000000000D+02
0.000000000000000D+00

CD: 2.20000000 Rho One:
S/C Mass: 800.00000000 S/C Area:
Integrator Step: 43200.00000000

Retro: 1 Atmos Mdl: 1 Potent Mdl:
Nmax: 21 Mmax: 21 Izonal:
Nmaxrs: 21 Mmaxrs: 21 Ithird:
Ind Drg: 2 Iszak: 2 Ind Sol:

0.00000000
0.00014400

4
1 IJ2J2: 1
1
I

Satellite Number: 5 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7075140000000000D+04
0.1180000000000000D-02
0.981500000C00000D+02

0.3800000000000000D02
0.9000000000000000D+02
0.0000000000000000D+00

CD: 2.20000000 Rho One:
S C Mass: 800.00000000 S/C Area:
Integrator Step: 43200.00000000

Fe:r:: 1 Atmos Mdl: 1 Potent Mdl:
::. x 21 Mmax: 21 Izonal:

::3.m.rs 21 Mmaxrs: 21 Ithird:
:r.d Drg: 2 Iszak: 2 Ind Sol:
------------------------------------------

0.00000000
0.00014400

4

1 IJ2J2: 1

1
1

t--te!te Number: 6 Epoch Date: 19950401.0 Epoch Time: 0.00

Kep.erar. Elements : 0.70756400000000000D04
0.1180000000000000D-02
0.9815200000000000D*02
0.4750000000000000D+02
0.9000000000000000D+02

0.0000000000000000D+00

2.20000000 Rho One:
800.00000000 S/C Area:

Step: 43200.00000000

Petro: 1 Atmos Mdl: 1 Potent Mdl:

Nmax: 21 Mmax: 21 Izonal:
Nmaxrs: 21 Mmaxrs: 21 Ithird:
Ind Drg: 2 Iszak: 2 Ind Sol:
..........................................

0.00000000
0.00014400

IJ2J2: 1

238

IJ2J2:

CD:
S/C Mass:

Integrator



7 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.70761400000000000D+04
0.1180000000000000D-02
0.981540000000000D-02
0.5700000000000000D*02
0.90000000000000000D02
0.0000000000000000D*00

CD: 2.20000000 Rho One:
S,'C Mass: 800.00000000 S/C Area:
Integrator Step: 43200.00000000

Retrc: 1 Atmos Mdl: 1 Potent Mdl:
!max: 21 Mmax: 21 Izonal:
Nrmaxrs: 21 Mmaxrs: 21 Ithird:
Ind Drg: 2 Iszak: 2 Ind Sol:

Satellite Number: 8 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements :

CD:
S": Mass:
Integrator

0.7076640000000000D+04
0.1180000000000000D-02
0.9815600000000000D02
0.6650000000000000D+02

0.9000000000000000D,02
0.0000000000000000D00

2.20000000 Rho One:
800.00000000 S/C Area:

Step: 43200.00000000

Retro; 1 Atmos Mdl: 1 Potent Mdl:
Nmax: 21 Mmax: 21 Izonal:
2maxrs: 21 Mmaxrs: 21 Ithird:
Ind Drg: 2 Iszak: 2 Ind Sol:

0.00000000
0.00014400

IJ2J2:

Satellite Number: 9 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.70771400000000000Dt04
0.118000000000000D-02
0.9815800000000000D-02
0 .76000000000000000D-02
0.9000000000000000D02
0.0 000000000000000D*00

CD: 2.20000000 Rho One:
S'C Mass: 800.00000000 S/C Area:
Integrator Step: 43200.00000000

Retro: 1 Atmos Mdl: 1 Potent Mdl:
Nmax.: 21 Mmax: 21 Izonal:
1nmaxrs: 21 Mmaxrs: 21 Ithird:
Ind Drg: 2 Iszak: 2 Ind Sol:

0.00000000
0.00014400

IJ2J2: 1

Satellite Number. 10 Epoch Date. 19950401.0 Epoch T.me: ..

Keplerian Elements : 0.7077640000C00000D-04
0. 18G003250C000D-02

.98160030C 00003D002
0.855000000000000000D02
0.900000000C000000D-02

239

0.00000000

0.00014400

1J2J2:

Satellite Number:



0.0000000000000000D*00

CD: 0.00000000 Rho One:
SC Mass: 800.00000000 S/C Area:

Integrator Step: 43200.00000000

Retro: 1 Atmos Mdl: 1 Potent Mdl:
Nmax: 21 Mmax: 21 Izonal;
Nmaxrs: 21 Ymaxrs: 21 Ithird:

Ind Drg: 2 Iszak: 2 Ind Sol:

Satellite Number: 11 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements :

CD:

S.C Mass:
Integrator

0.7078140000000000D*04
0.1180000000000000D-02

0.9816200000000000D00+02
0.950000000L00,00000D+02
0.9000000000000000D+02
0.0000000000000000D*00

2.20000000 Rho One:
800.00000000 S/C Area:

Step: 43200.00000000

Retro: 1 Atmos Mdl: 1 Potent Mdl:
Nmax: 21 Mmax: 21 Izonal:
Nmaxrs: 21 Mmaxrs: 21 Ithird:

Ind Drg: 2 Iszak: 2 Ind Sol:

0.00000000
0.00014400

4
! IJ2J2: 1
1

Satellite Number: 12 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7078640000000000D+04
0.1180000000000000D-02
0.9816400000000000D*02
0.1045000000000000D+03

0.9000000000000000D+02
0.0000000000000000D+00

CD: 2.20000000 Rho One:
S!C Mass: 800.00000000 S/C Area;

Integrator Step: 43200.00000000

1 Atmos Mdl:
21 Mmax:
21 Mmaxrs:
2 Iszak:

1 Potent Mdl:
1 Izonal:
1 Ithird:
2 Ind Sol:

Satellite Number: 13 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7079140000000000D04
0.1180000000000000D-02
0.9816600000000000D02
0.1140CO00000000G 03
0.90000C00000000000002
0.303G00000000C0000C00

S2.2000000C Rho One:

S C Mass: 800.00000000 S.C Area:

Integrator Step: 43230.000000000

Fezr:A /: Poten Mdl:

0.00000000
0.00014400

1J2J2:

Retro:
Nmax:
Nmaxrs:
Ind Drg:

0.00000000
0.00014400

4
1 IJ2J2: 1
aL

0.00000O00
0.00014400

240



21 Mmax:
21 Mmaxrs:

2 Iszak:

21 Izonal:
21 Ithird:
2 Ind Sol:

Satellite Number: 14 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements :

CD:

S/C Mass:
Integrator

0.7079640000000000D+04
0.1180000000000000D-02
0.9816800000000000D+02

0.1235000000000000D+03
0.9000000000000000D+02
0.O000000000000000D+00

2.20000000 Rho One:

800.00000000 S/C Area:

Step: 43200.00000000

0.00000000

0.00014400

Retro:
Nmax :

1 Atmos Mdl:
21 Mmax:

Nmaxrs: 21 Mmaxrs:

Ind Drg: 2 Iszak:

1 Potent Mdl: 4
21 Izonal: 1
21 Ithird: 1
2 Ind Sol: 1

Satellite Number: 15 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements :

CD:

S/C Mass:
Integrator

Retro:
Nmax:

Nmaxrs:
Ind Drg:

0.7080140000000000D+04

0.1180000000000000D-02
0.9817000000000000D-02
0.1330000000000000D*03
0.9000000000000000D*02

0.0000000000000000D+00

2.20000000 Rho One:

800.00000000 S/C Area:
Step: 43200.00000000

1 Atmos Mdl:
21 Mmax:

21 Mmaxrs:
2 Iszak:

1 Potent Mdl:
21 Izonal:
21 Ithird:
2 Ind Sol:

0.00000000
0.00014400

IJ2J2:

Satellite Number: 16 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7080640000000000D+04
0.1180000000000000D-02
0.9817200000000000D002
0.1425000000000000D+03
0.9000000000000000D0002
0.0000000000000000Dc00

CD: 2.20000000 Rho One:
S/C Mass: 800.00000000 S/C Area:

Integrator Step: 43200.00000000

Retro:
N!max:

Nmaxrs:
Ind Drg:

1 Atmos Mdl: 1 Potent Mdl: 4

21 Mmax: 21 Izonal: 1

21 Mmaxrs: 21 Ithird: 1

2 Iszak: 2 Ind Sol: 1

0.00000000

0.00014400

IJ2J2: 1

Satellite NT mber: 17? Epoch Date: 19950401.0 Epoch Time: 0.00

241

Nmax:
Nmaxrs:

Ind Drg:

IJ2J2:

IJ2J2: 1



Keplerian Elements :

CD:
S/C Mass:

Integrator

Retro:
Nmax:
Nmaxrs:
Ind Drg:

0.70811400000000000D04
0.1180000000000000D-02
0.98174000000000000D02
0.15200000000000000D03

0.90000000000000000D02
0.0000000000000000D+00

2.20000000 Rho One:
800.00000000 S/C Area:

Step: 43200.00000000

1 Atmos Mdl:
21 Mmax:
21 Mmaxrs:
2 Iszak:

Potent Mdl:
Izonal:
Ithird:
Ind Sol:

0.00000000

0.00014400

1J2J2: 1

Satellite Number: 18 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7081640000000000D+04

0.1180000000000000D-02

0.9817600000000000D+02
0.1615000000000000D+03
0.9000000000000000D+02
0.0000000000000000D+00

CD: 2.20000000 Rho One:

S/C Mass: 800.00000000 S/C Area:
Integrator Step: 43200.0'000000

Retro:
Nmax:
Nmaxrs:

Ind Drg:

1 Atmos Mdl: 1 Potent Mdl: 4
21 Mmax: 21 Izonal: 1
21 Mmaxrs: 21 Ithird: 1
2 Iszak: 2 Ind Sol: 1

0.00000000

0.00014400

IJ2J2:

Satellite Number: 19 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7082140000000000D+04

0.1180000000000000D-02
0.9817800000000000D*02
0.17100000000000000D03
0.9000000000000000D+02
0.0000000000000000D+00

CD: 2.20000000 Rho One:
S/C Mass: 800.00000000 S/C Area:
Integrator Step: 43200.00000000

Retro: 1 Atmos Mdl: 1 Potent Mdl: 4
Nmax: 21 Mmax: 21 Izonal: 1
Nmaxrs: 21 Mmaxrs: 21 Ithird: 1

Ind Drg: 2 Iszak: 2 Ind Sol: 1

Satellite Number: 20 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements : 0.7082640000000000D,04
0.1180000000000000D-02
0.9818000000000000D+02
0.1805000000000000D+03
0.90000000000000000D02
0.000000000000000D+00

242

0.00000000
0.00014400

IJ2J2:



CD: 2.20000000 Rho One:
S/C Mass: 800.00000000 S/C Area:
Integrator Step: 43200.00000000

1 Atmos Mdl:
21 Mmax:
21 Mmaxrs:
2 Iszak:

1 Potent Mdl:
21 Izonal:
21 Ithird:
2 Ind Sol:

Satellite Number: 21 Epoch Date: 19950401.0 Epoch Time: 0.00

Keplerian Elements :

CD:
S/C Mass:
Integrator

0.7083140000000000D*04

0.1180000000000000D-02
0.9818200000000000D*02

0.1900000000000000Dt03

0.9000000000000000D,02
0.0000000000000000D00

2.20000000 Rho One:
800.00000000 S/C Area:

Step: 43200.00300000

0.00000000
0.00014400

1 Atmos Mdl:
21 Mmax;
21 Mmaxrs:
2 Iszak:

1 Potent Mdl:
21 Izonal:
21 Ithird:
2 Ind Sol:

Retro:
Nmax:
Nmaxrs:
Ind Drg:

0.00000000
0.00014400

IJ2J2:

Retro:
Nmax:
Nmaxrs:
Ind Drg:

IJ2J2: 1

243





Appendix C: Data Files

This appendix documents the data files that were used for each of the

program executions performed in conjunction with this thesis.

All the tests using the PVM/DSST used data files are stored in the Continuus

Configuration Management system. Instructions on the use of this system

can be found in 1731. The data files used for the PVM/DSST can be found in:
Database: satUtil_db

Project: BSD,1.1

C.1 Software Validation Tests

C.1.1 Comparison to Orbit_Propagator_Services (OPS)

Table B-1: Data Files used for OPS to PVM/DSST Comparison

epotfld radarsatearthfld.dat
jacdat jacchia.data-sun

sip1950 de96_slp1950.dat
slptod de96 slptod.dat

timecoef de96 _timcoef.dat
newcomb N/Al

C.1.2 Comparison to GTDS

Table B-2: Data Files used for GTDS to PVM/DSST Comparison

epotfld radarsat earthfld.dat
jacdat jrschatten nom.dat

slp1950 orbit.sip.mnl950.dat
slptod orbit.sip.tod 1950.dat

timecoef orbit.slp.timcof.dat
newcomb N/A

1 This fildt was not needed for an of these tests.

245



C.2 Performance Analysis

Table B-3: Data Files used for Performance Analysis

epotfid radarsat earthfld.dat
jacdat jr schatten nom.dat

slp1950 orbit.slp.mn1950.dat
slptod orbit.sip.todl950.dat

timecoef orbit.slp.timcof.dat
newcomb N/A

C.3 Teledesic Analysis

Table B-4: Data Files used in the Teledesic Analysis

epotfld radarsat-earthfld.dat
jacdat jr schatten nom.dat
slp1950 orbit.sp.mn1950.dat
slptod orbit.slp.tod 1950.dat

timecoef orbit.slp.timcof.dat
newcomb N/A

246



Appendix D: Using the PVM/DSST

This Appendix provides a description of the software, how to access the
current version and how to execute it from the Draper Laboratory
environment.

Section D.1 describes the different executables currently built from the

software. Section D.2 describes the input files for the various executables.

Section D.3 details test case execution of the software.

D.1 Executable Description

The software is currently written to generate the executables described in table
D-1.

247



Table D-1: Executable Description

Executable Name Description
testsat prop Executes the DSST for one satellite The orbit and satellite

are hard-coded in the file 'test sat prop F'

cotlstprop Propagates the satellites described in the input file Prompts

user for input file. Requires environment variable

CONSTINPUT be set to the directory with the links to the

input files. The output, ECEF positions, are written in the

CONST_OUTPUT (also an environment variable) to the files

satdata?, where ? is the satellite number.

constprop_kep Same as const_prop except the output is written in Keplerian

elements.

,a32 Executes the genetic algorithm optimization software.

Currently set to find the best frozen orbit (minimize changes,

from initial eccentricity). Input data files must be located in

the CONST_INPUT directory. The environment variable

OPT_FILE describes the name of the input file. GA output

files are put in the current working directory. Uses the

const_opt_slave executable to perform propagation. The cost

function is located in sat opt.F. To change the number of

modifiable parameters, (currently set to one) the following

changes must be made:

declare.inc (GAOPT project) . Set mxalfa and mxcont to the

number of parameters and recompile the software.

const_opt.F (DSSTSHELL) : The values sent to the slave

task must contain the values passed in through the GA

software.

const_opt._slave Used by ga32 to evaluate the cost functions. Must be a
spawned process as the required input be sent via PVM.

D.2 Input File Description

D.2. 1 const _rop Input Files

The following data files are necessary to execute the propagator.

248



Table D-2: Data Files Description

Name of File Description
epotfld Earth potential models file.
jacdat Jacchia data for drag

information.

slp 1 9 50  Solar, Lunar, Planetary
ephemeris file in Mean of

1950 coordinates.
slptod Same as above in GTDS true-

of-date coordinates.

timecoef Timing coefficients file.
newcomb Newcomb operators file.

The operator is prompted for the orbit input file or the OPT_FILE

environment variable is used (see Table D-1).

The output is controlled by the CONST_OUTPUT environment variable.

D.2.2 Genetic Algorithm (GA) Input Files

The environment variable OPT_FILE describes the input file. The input path

is given by CONST_INPUT. This variable also describes the location of the

data files.

The GA requires the file 'dome.in' to be in the current working directory

(C\'D). A typical 'dome.in' file is shown in figure D-l and explained in table
D-3.

. :. .. St frozen e:centricity
itest

.. - - iopt.ma&x tr.epsiln
:: 9t %.. . kseed,mpopsize, ncomp
S-. .. ...... , Opts: constr.clones,Popt.Ropt.Topt,lshr

fixed parameters
continuous parameters

" ." it chooses in.tial cornditions
.,3 J. ...inm of ccr.tinuous

5.&5ax. X 3 ccnr.:inuous
d.scret ara.rs -a -r :ates

4 :- t-um er t ',:r.-2 -:r 1c . ._ri I - -:.t e
n-la: di szrete ,gi: p=a =. .. '.. #1

Figure D-1: 'dome.in' Input File

249



Table D-3: 'dome.in' Description 2

Parameter Description

iopt Optimization method.
9-Traditional GA
10- 'Improved' GA [64]

maxitr Maximum number of iterations

epsiln Convergence tolerance, where convergence describes how sure
the GA is of the answer. Typical values range from 0.1, 0.9
(0<epsiln<1).

0 - Easy to converge
1 - Difficult to converge

kseed Random number seed.
mpopsize Population size.

continuous parameters Number of continuous parameters. Discrete parameters are
parameters for which only specific values can.be chosen.

it chooses... A zero followed by a comma is needed for every parameter.
min of continuous Parameter ranges.
max of continuous

D.3 Executing the PVM/DSST

This Section describes how to access the software developed for this thesis.
The user is assumed to have access to the Continuus Configuration
Management Tool (CCM), MATLAB, and be working within the BASH shell.
In addition, to execute the entire test suite without repeating sections, all
commands must be executed on the same type of computer.

The following convention will be used in the next three sections:

* The operator is the individual running the tests.

* The symbol ... indicates there will output coming from the computer
that was not listed in this document.

* The > symbol was the prompt in the environment used to generate the
tests.

* Courier font represents text taken directly off the computer
screen.

20nl\ the parameters described in Table D-3 were used. Other parameters did not need to be
modified. Information concerning these parameters can be found in 1651

250



* Bold courier describes information that must be entered
exactly as shown.

D.3.1 Environment Setup

Before executing the software, the operator will need to copy two setup files
into their home directory. These files are automatically executed at login and

will create the environment for the rest of the tests.

If these files already exist in the operator's home directory, they should be

renamed to a different file before continuing; otherwise they will be

overwritten.

The first commands shown copy the necessary files into the operator's home

directory.

>cp /Users/taz/scott/.ccmdefaults
>cp /Users/taz/scott/.UserLogin

The operator should now co mpletely logoff and then log in to the computer.

D.3.2 Building PVM

If the operator does not have PVM installed, it must be installed and built as

described in this section before continuing. The parallel virtual machine is
very easy to build. General instructions can be found in [13]. The instructions
in this section are specific to the Draper environment.

PVM can be installed by root such that everyone has access to the same pvn

and pvmd executables. However, PVM can also be installed in the operator's
home directory, so that root privileges are not required.

PVM, along with many other useful utilities and information, is kept on the
lab-wide file server fsl. If PVM is not found on the fsl, it can be obtained over
the Internet through anonymous ftp to netlib2.cs.utk.edu.

251



To get PVM type:

>cd
>cp /nfs/fsl/ftp/source/hpcl/pvm/pvm3.3.7.tar.gz -/.

The environment variable, PVM_ROOT, must be set to before building PVM.

If PVM is installed in the operator's home directory, PVM_ROOT is set in the

login files copied in Section D.3.1. Otherwise, PVM_ROOT must be set

manually.

To build PVM in the operator's home directory type:

>cd
.>tar -xzf pvm3.3.7.tar.gz
> cd pvm3
>make

D.3.3 Starting the Configuration Management Tool

CCM projects a copy of its file system into the user's directory using soft links.
All the work for this thesis is contained in the satUtil_db database.

A database contains projects and a project contains the software. The software

for this thesis was divided into projects as much as practical so that it was

easier to work with. Dividing up the original stand alone-code DSST into
functional projects would have been desirable but represented a significant
eftort that was not accomplished as a part of this thesis.

The software for this thesis is divided into the following projects:

252



Table D-4: Project Descriptions

Project Brief Description

PDSST-2.0 Highest level project. Contains all

the other projects and makefiles.

GAOPT-2.0 Genetic algorithm optimization

software.

DSST SHELL-2.0 Software for performing

constellation propagation.

DSST BASE-2.0 The stand-alone DSST software.

BSD-1.1 Binary data files.

The configuration management tool will be used here without a graphical

user interface (GUI). This is done so that the description presented here is

complete.

>cd
> ccm start -nogui
Starting Continuus/CM...

>ccm sync PDSST-2.0
?ersonal workarea update starting for /Users/taz/scott/ccmsatUtil _db,

Updating /Usersitaz/scotticcm_satUtil_db/PDSST-2.0/..
Updating /Users/taz/scott/ccm_satUtildb/BSD-l.1/..
Updating iUsers/taz/scott/ccm_satUtil_db/DSSTBASE-2 . 0/ ...
Updating /Users/taz/scott/ccmsatUtil_db/DSST_SHELL-2.0/...
Updating 'Users/taz/scott/ccmsatUtil_db/GAOPT-2.0/...

Personal workarea update complete.

At this point, the projects are projected into the operator's account.

D.3.4 Executing the Software

Two different tests are performed to demonstrate that the software is fully

tested. The first test is the serial test case described in Chapter 3. PVM is not

used in this test.

253



D.3.4.1 Serial Test Case

After completing sections D.3.1, D.3.2 and D.3.3 type:

>cd
>cd ccm_satUtil_db/DSST_BASE-2.0/DSST_BASE

>Is

Mbakefile.aimk include test
data_files source

The script aimk comes with the PVM distribution. It executes the UNIX
make facility after creating a directory based on the architecture and operating

system of the computer. The object files are placed into this directory, so
heterogeneous platforms using a shared disk can safely build the same

executable. Note that the SUN4SOL2 in the next line describes the platform

used to generate these tests. This will be different dependent on the platform

the operator is using.

>aimk test_satprop
making in SUN4SOL2/ for SUN4SOL2

>export CONST_INPUT=./test/

The next command will run the DSST using the input files described in

./test/ directory. The output file generated, 'test_satprop.out', is also placed

into the ./test/ directory.

>test_sat_prop
0

>cd test
>matlab

>> verif_sat_prop

Your results are
1.0ev03

7.07759761564452
0.00000036439527
0.09824506769856
0.00204663721379
0.14760422493377
0.17541971016900

>>quit

Note that these results match the numbers given in table 3-10.

This completes the serial test case.

254



D.3.4.2 GA Test Case

This test case executes the genetic algorithm optimization software, set up to
find a frozen orbit. This test case executes on two computers. It is assumed

that the second computer is a different type according to PVM, so PVM will

also be built on the second computer.

>cd
>cd -/ccm_satUtildb/PDSST-2.0/PDSST
>export CONST_INPUT=$HOME/ccmsatUtil_db/PDSST-2.0/PDSST/test/
>aimk all
making in SUN4SOL2/ for SUN4SOL2

>rsh porky
Last login: ..
>cd
> cd pvm3
>make

>cd -/ccm_satUtil_db/PDSST-2.0/PDSST

>aimk all
making in SUN4/ for SUN4

>exit
>pvm
pvm> add porky
1 successful

HOST DTID
porky 80000

pvm> quit

pvmd still running.
>cd test
>ls
dome.in loadmats.m nom_sat.in opt_sat.in

This directory contains the input files necessary to execute the optimization

algorithm.

The next commands link the appropriate data files for use by the propagator.

The commands each take two lines to describe but should be entered into tihe

computer as a single line.

>In -s -/ccm_satUtil_db/PDSST-2.0/PDSST/BSD/sun_ binary_ data/
radarsatearthfld.dat epotfld

255



>1n -s -/ccm_satUtil db/PDSST-2.0/PDSST/BSD/sun_binary_data/
jr_schatten_nom.dat jacdat
>ln -s -/ccmsatUtil db/PDSST-2.0/PDSST/BSD/sunbinary data/
orbit.slp.mnl950.dat slp1950

>ln -s -/ccmsatUtil db/PDSST-2.0/PDSST/BSD/sun_binarydata/
orbit.slp.todl950.dat slptod
>1n -s -/ccm_satUtildb/PDSST-2.0/PDSST/BSD/sun binarydata/
orbit.slp.timcof.dat timecoef

>export OPT_FILE=nom_sat.in

The next command starts the optimization process, where the cost function

evaluation takes place on two processors.
>ga32

0
50
95

>more Dz
50
95

139

0 1.64641633E-05 1.17098039E-03 1.53222466E-02
11 1.64641633E-05 1.17098039E-03 4.34377119E-02
14 1.64641633E-05 1.17098039E-03 8.91743973E-02

(The times and dates indicated in the following file are not important)
>more DO
.... DOME BEGAN ON 11-May-95 AT 06:28:22

Run ID: Choose most frozen eccentricity

W Optimization method: 9 *
Optimization search stopping criterion:
Maximum number of optimization iterations:
Genetic Algorithm:
population size: 50 random number
crossover: 0.80 per bit mutat
markov model states: 1 fixed paramet
continuous: 1 discrete para

continuous initial lower
variable value bound

1 0.0000E+00 i.0000E-
cfe 139 "" stop du

Parameters reverted to original:
Total cost function evaluations:
Evaluation of minimum value:
Algorithm elapsed time:

Function value

0
e

seed:
ion:
ers:
meters:

7.0000E-02
250

20985
0.0040

0
0

upper
bound

3 1.2000E-03
to population convergence

0
139
50

100.5320

Parameter values

1.64641633E-05 1.17098039E-03
DOME TEPMINATED ON 11-May-95 AT 06:30:03

256



D.3.4.3 const_prop Test Case

This test case propagates the two orbits described in the file 'opt_sat.in'. This

file contains the same orbit and satellite information as 'nom_sat.in' for the

first satellite. The second satellite is identical except for the eccentricity is the

value chosen by the GA execution in section D.3.2. The results, in the form of

two MATLAB plots, are output to the screen as well as encapsulated post

script files.

>const prop_kep
!Users/taz/scott/ccm_satUtil_db/PDSST-2.0/PDSST/test!
Please enter the name of the constellation file:

opt_sat in
I sent satellite 1 to taz
I sent satellite 2 to taz
I received from taz
I received from taz
>matlab

> >loadmats

>>quit

The plots generated by the loadmats command are depicted in figures D-2
and D-3.

257



Eccentricity vs Time

Figure D-2: Nominal vs. Optimized Eccentricity and Argument of Perigee

Ecc vs Argument of Perigee

89.6 89.7 89.8 89.9 90 90.1 90.2 90.3 90.4 90.5

258

x 10'
1.18 -

1.175-

Optimized Result
117- \

1 1651-

1 160 20 40 60 80 100 120 140 160 180 200
Time in Days

Argument ol Perigee vs Time
90.5

o ~ ~ oNominal Result

0-
S90 Optimized Result

CD
E

89.5
0 20 40 60 80 100 120 140 160 180 200

Time in Days

x 10
- 3

1.18-

1.178

1.176

1.174

1.172

1.17

1.168

1.166

1.164

1.162 L
89.5

Figure D-3: Argument of Perigee vs. Eccentricity

w



References

[1] Thurston, Robin G. "The State of the Space Catalog." Proceedings of
the Air Force Space Command Space Control Workshop held in

Colorado Springs. 23-25 August 1994.

[2] Gordon, Gary D. Principles of Communication Satellites. New York:

John Wiley and Sons, Inc. 1993.

[3] Agrawal, Brij N. Design of Geosynchronous Spacecraft. Washington

D.C.: Prentice-Hall, Inc. 1986.

[4] Roy, A. E. Orbital Motion. New York: Adam Hilger. 1991.

[5] Battin, Richard H. An Introduction to the Mathematics and Methods

of Astrodynamics. New York: AIAA Education Series. 1987.

[6] K6nig-Lopex, Orly. "Are We Trashing the Heavens." Via Satellite.

January 1995. p. 32-39.

[7] Kreyzig, Erwin. Advanced Engineering Mathematics. 6th Edition.
New York: John Wiley & Sons. 1988.

[8] Danielson, D.A., B. Neta, and L.W. Early. Semianalytic Satellite Theory

(SST): Mathematical Algorithms. Naval Postgraduate School, Report

Number NPS-MA-94-001, January 1994.

[9] McClain, Wayne D. "A Semianalytic Artificial Satellite Theory." Vol

1. 1992. Copy available through Wayne D. McClain at Charles Stark

Draper Laboratory.

[10] Cefola, Paul J. and Roger Broucke. "On the Formulation of the

Gravitational Potential in Terms of Equinoctial Variables." AIAA Pre-
print 75-9. AIAA 13th Aerospace Sciences Meeting. Pasadena, CA.
January, 1975.

259



[11] Fonte, Daniel. "An Introduction to Perturbation Theory." A report for

16.601, an advanced special topics course at MIT's department of

Aeronautics and Astronautics. Copy available through Dan Fonte or

Draper Laboratory.

[121 Lovell, Bob. Lecture on the Orbcomm Satellite System given at the

Massachusetts Institute of Technology. November 1994.

[13] Giest, Al, et al. PVM: Parallel Virtual Machine A User's Guide and

Tutorial for Networked Parallel Computing. Cambridge, MA: The

MIT Press. 1994. Postscript copy of this text also available via

anonymous ftp at netlib2.cs.utk.edu.

[141 Shaver, Jeffrey Scott. Formulation and Evaluation of Parallel

Algorithms for the Orbit Determination Problem. Doctor of

Philosophy Thesis, Department of Aeronautics and Astronautics,

Massachusetts Institute of Technology. CSDL T-709. March 1980.

[15] Simon, Horst D. "High Performance Computing: Architecture,
Software, Algorithms." NASA report number RNR-93-018. December

1993

[16] Beaupre, James. Personal Discussion. Charles Stark Draper Laboratory,

Inc. (617)-258-1000. September 1994 through May 1995.

[17] Dowd, Kevin. High Performance Computing. Sebastopol, CA:
O'Reilly & Associates, Inc. 1993.

[181 Bertsekas, Dimitri. Distributed and Parallel Computing. Englewood

Cliffs, New Jersey: Prentice Hall. 1989.

119] Blitzer, Leon. "Handbook of Orbital Perturbations." Professor of

Physics, University of Arizona. Partially reprinted for Astrodynamics

422 course at the United States Air Force Academy (Spring 1993). Copy

available from Department of Astronautics, USAFA.

260



[20] Ferguson, Jack. Notes taken in Astrodynamics 422 at the United States

Air Force Academy. Copy available from Scott Wallace.

[21] Gropp, William, et al. Using MPI. Cambridge, MA: The MIT Press.

1994.

[22] SunOS TM' 5.3 Guide to Multithread Programming. Mountain View,

CA: SunSoft. 1994.

[23] Mueller, Frank "A Library Implementation of POSIX Threads under

UNIX." 1993 Winter USENIX. San Diego, CA. January 25-29, 1993.

[24] Turcotte, Louis. "A survey of Software Environments for Exploiting

Networked Computing Resources." Available by anonymous ftp as

bulldog.wes.army.mil: /pub / report.ps.Z.

[251 Petrie, Ann and Ron Kerr. "A Qualitative Comparison of Network

Linda and PVM." University of Newcastle upon Tyne. 30th September

1993.

[261 McDonald, Kyle. Personal Discussions. September 1993 through April
1995. Northeastern University.

127) Cefola, Paul. Personal Discussions. August 1993 through May 1995.

[2I Cappellari, J. O., C.E. Velez and A. J. Fuchs. Editors. Mathematical

Theory of The Goddard Trajectory Determination System. Greenbelt,

Maryland: Goddard Space Flight Center. April 1976.

[29] Fonte, Daniel J. "PC Based Orbit Determination." Paper presented at

the AIAA/AAS Astrodynamic Conference. August 1-3, 1994.

Scottsdale, AZ.

[30] arches. Document Included with PVM 3.3.7. Available by anonymous

ftp to netlib2.cs.utk.edu.

261



[31] CM VIEW. On-line Documentation for the CM-5. Accessed over the

Internet at scout@mit.lcs.edu. For account information on the CM-5

contact project SCOUT at the Laboratory for Computer Science at MIT.

[32] Early, L. W. A Portable Orbit Generator Using Semianalytic Satellite

Theory. AIAA/AAS Astrodynamics Conference. Williamsburg, VA.

August 1986.

[33] Jablonski (Boelitz), Carole. Application of Semnianalytic Satellite

Theory to Maneuver Planning. Master of Science Thesis, Department

of Aeronautics and Astronautics, Massachusetts Institute of

Technology. CSDL T-1086. May 1991.

[34] Carter, David. Personal Discussions. August 1993 through October
1994.

[35] Carter, Scott S. GTDS Card Deck developed in support of this work.

Charles Stark Draper Laboratory.

[36] Wackernagel, H.B. "Orbit Representation." SCC Development

Division. Memorandum for Record. 2 October 1975. Copy available

from Dr. Paul Cefola, CSDL.

[37) Comparetto, Gary M. "A Technical Comparison of Several Global

Mobile Satellite Communications Systems." Space Communications

11 (1993). 97-04.

[38] Bate, Rodger R., Donald D. Mueller and Jerry E. White. Fundamentals

of Astrodynamics. New York: Dover Publications.

[39] Battin, Richard. Class notes from 16.347 Astrodynamics II. 5 April

1994. Copy available through Scott Wallace.

262



[40] Fonte, Daniel John. Implementing a 50 X 50 Gravity Field Model in an
Orbit Determination System. Master of Science Thesis, Department of

Aeronautics and Astronautics, Massachusetts Institute of Technology.

CSDL-T-1169. June 1993.

[41] Kozai, Yoshihide. "Analytical Orbital Theories for Satellites." The Use

of Artificial Satellites for Geodesy and Geodynamics. Proceedings of
the International Symposium on the use of Artificial Satellites for

Geodesy and Geodynamics. Athens, Greece. May 1973.

[42] Lindeburg, Michael R. EIT Training Manual. Belmont, CA:
Professional Publications, Inc. 1992. 8th Ed.

[43] "Software Test Description for the Flight Dynamics CSCI of the

Radarsat MSC Program." CSDL-306787. November 12, 1993.

[44] Stu Roseman. nineCo unlimited. Personal Discussions. September

1993 through April 1995.

[45] SPARCompiler FORTRAN 3.0. User's Guide. Mountain View, CA:
SunPro. 1993.

[46] Cefola, Paul J., et al. "The RADARSAT Flight Dynamics System: An

Extensible, Portable, Workstation-based Mission Support System."

Paper presented at the AIAA/AAS Astrodynamics Conference. August
1-3, 1994. Scottsdale, AZ.

[47] Smith, Dan. "Efficient Mission Control for the 48 Satellite Globalstar

Constellation." Loral Aero Sys. Space Ops 94. November 16, 1994.

[48] Neal D Hulkower, Ph.D. "A Reevaluation of Ellipso(TM), Globalstar,

IRIDIUM (TM/SM) and Odyssey (TM)." Talk given at Volpe Center for

Transportation. Sponsored by the New England Section of the AIAA.
October 1994.

263



[49] Long, A.C., et al. Goddard Trajectory and Determination System

(GTDS) Mathematical Theory. NASA's Operational GTDS

Mathematics Specification. Revision 1. Edited by Computer Sciences

Corporation and NASA Goddard Space Flight Center. GSFC Code 550.

July 1989.

[50] Sabol, Chris. Application of Sun-Synchronous Critically Inclined

Orbits to Global Personal Communications Systems. Master of Science

Thesis, Department of Aeronautics and Astronautics, Massachusetts

Institute of Technology. CSDL T-1235. Nov 1994.

[511 Livingston, Marilynn, and Quentin Stout. "Introduction to Parallel

Computing." Transcript from a tutorial presented at Supercomputing

92 on November 16, 1992.

[52] Hwang, Kai and Faye A. Briggs. Computer Architecture and Parallel

Processing. New York: McGraw-Hill Book Company. 1984.

[53] Chiou, Derek. "Symmetric MultiProcessors (SMP's)." Notes for course

CS-722, Parallel Architecture, at Boston University. Fall 1994.

[51] Neufville, Richard de. Applied Systems Analysis. New York:

McGraw-Hill, Inc. 1990.

[551 Wertz James R. and Wiley J. Larson. Space Mission Analysis and

Design. Boston: Kluwer Academic Publishers. 1991.

[56] Walker, J. G. "Satellite Constellations." Royal Aircraft Establishment,

Farnborough. 1983.

[57] Gordon, K. J. "The Computation of Satellite Constellation Range

Characteristics." AIAA-94-3704-CP.

[581 Karrenberg, H. K., E. Levin, and R. D. Lders. "Orbit Synthesis." The

Journal of the Astronautical Sciences. 17 (Nov-Dec 1969). p. 129-177.

[59] Telephone Conversation with SUN Microsystems. 24 April 1995.

264



[60] Metzinger, Richard. RADARSAT Interview for D-Notes, to be

published May 1995.

[61] Not Used.

[62] McClain, Wayne D. "Eccentricity Control and the Frozen Orbit Concept
for the Navy Remote Ocean Sensing System (NROSS) Mission."

Presented at AAS/AIAA Astrodynamics Conference, Kalispell

Montana. August 1987.

[63] Goldberg, David E. Genetic Algorithms in Search, Optimization and

Machine Learning. Addison-Wesley Publishing Company. New York.

1989.

[64] Schott, Jason. Fault Tolerant Design Using Single and Multi-Criteria

Genetic Algorithm Optimization. Master of Science Thesis,

Department of Aeronautics and Astronautics, Massachusetts Institute

of Technology. CSDL T-1251. May 1995.

[65] Hammett, Robert C. et al. "Design Optimizer / Markov Evaluator

(DOME) Version 1.0 -- User's Manual." Charles Stark Draper
Laboratory. Analysis and Software Department of the Control and

Decision Systems Division. CSDL-R-2409. May 1992.

[66] "Application of Teledesic Corporation for a Low Earth Orbit Satellite

System in the Domestic and International Fixed Satellite Service."

Presented before the Federal Communications Commission.

Washington D.C. File No. DSS-P/L-94.

[67] Uphoff, Chauncey. Telephone interview. 20 January 1995.

[68] Forrest, Stephanie. "Genetic Algorithms: Principles of Natural

Selection Applied to Computation." Science. Vol. 26. 13 August 1993.

265



[69] Qualline, Steve. Practical C. O'Reilly & Associates, Inc. Sebastopol,
CA. 1993.

[70] Kernighan, Brian W, and Bob Pike. The UNIX Programming

Environment. Prentice Hall, Inc. New Jersey. 1984.

[71] Aho, Alfred V. et al. Compilers Principles, Techniques, and Tools.
Addison-Wesley Publishing Company. Reading, MA. 1986.

[72] Hwang, Kai. Advanced Computer Architecture. McGraw-Hill, Inc.
New York. 1993.

[731 Command Reference. Continuus Software Corporation. Irvine, CA.
Copy available from Charles Stark Draper Laboratory. Cambridge, MA.

[74] Cefola, P. J. and R. A Broucke. "On the Equinoctial Orbit Elements."
Celestial Mechanics. 1972: 303-310.

[75] Brouwer, D. and Hori, C. "Theoretical Evaluation of Atmospheric
Drag Effects in the Motion of an Artificial Satellite." Astronomical

Journal. Vol. 66. No. 1290. June 1961.

[76] Computer Sciences Corporation and Systems Development and

Analysis Branch (GSFC). Research and Development Goddard
Trajectory Determination System. User's Guide. July 1978.

177] "Detailed Descriptions of the Draper Semianalytic Satellite Theory
GTDS Keyword Cards". Appendix A to the Research and Development
Goddard Trajectory Determination System. User's Guide. Copy
available through Draper Laboratory.

[78] Jameson, Kevin. Multi-Platform Code Management. Sebastopol, CA:
O'Reilly and Associates, Inc. 1994.

[79] Whitgift, David. Methods and Tools for Software Configuration
Management. New York: John Wiley and Sons. 1991.

266



[80] Babich, Wayne A. Software Configuration Management Coordination

for Team Productivity. Reading, Massachusetts: Addison-Wesley

Publishing Company. 1986.

[81] Metzinger, Richard W. "Validation of the Workstation Version of

R&D GTDS." Cambridge, MA: Charles Stark Draper Laboratory.

February 24, 1993.

267


