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Abstract

The properties of the actuator to sensor transfer functions for various shaped strain
actuator-sensor pairs on a Bernoulli-Euler beam are investigated. Analytical expres-
sions for these transfer functions and their associated dereverberated transfer func-
tions are derived. It is shown that the actuator-sensor pair can be designed such that
its dereverberated transfer function will have a desirable corner frequency and high
frequency rolloff rate.

The analytical and dereverberated transfer functions of noncollocated actuator-
sensor pairs are compared to those of the collocated pairs. General rules are found
which determine the frequency at which the transfer function no longer has an inter-
laced pole-zero pattern.

Finite element models are constructed which add damping, finite actuator thick-
ness, and finite beam and actuator widths to the model. The actuator to sensor
transfer functions are calculated for these models, and the effects of the added factors
are determined. It is shown that the transverse bending modes of the three dimen-
sional beam delay the rolloff of the actuator to sensor frequency transfer function
by at least two decades. Finally, experimental data confirms the results of the three
dimensional finite element model.
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Chapter 1

Introduction

Modern controlled structures are being designed for high performance, precise appli-

cations requiring pointing accuracy and vibration suppression. These specifications

typically require control systems, which often include many sensors and actuators, to

meet these performance objectives.

Aubrun [3], and Hall, et al. [12] have discussed the use of hierarchic control in

flexible structures. This included a global control loop, which is a multiple input,

multiple output (MIMO) system, whose transfer function includes the overall perfor-

mance objective. The information in the global control loop is obtained from several

single input, single output (SISO) local control loops. It is generally true that if

damping can be added to the local control loop, the robustness of the global control

loop will be improved.

This work focuses on the design of the strain actuator to strain sensor transfer

function of the local control loop. Collocated and dual actuator-sensor pairs will

produce a transfer function with an alternating pole-zero pattern and no associated

phase loss. Damping can always be added to the plant transfer function with rate

feedback. If rate feedback or any positive real compensator is used on the transfer

function of a collocated and dual actuator-sensor pair, stability is guaranteed [5].
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It is desirable to have a transfer function with good observability and controlla-

bility of the modes which need to be damped. This implies the frequency transfer

function should rolloff with a slope of at least -10 dB/decade. It is also beneficial for

the plant transfer function to roll off with a slope of at least -20 dB/decade above

the bandwidth of damping. Then the loop transfer function will not roll up in the

frequency range in which the transfer function must crossover.

Much work has been done recently to reduce the vibrations of various structures,

including plates [20], two dimensional boxbeams [6], trusses [14], [15], and cylin-

ders [13], using piezoelectric strain actuators and sensors. Nearly all of the analyses

in this area improve vibration suppression by optimizing structural placement of the

sensor or actuator or by improving the controller. Little work has been done regard-

ing the distributed shape of the actuator and sensor. Clark [7] has investigated the

use of distributed modal sensors on plates. Unfortunately, this type of sensor requires

a sensor that is the length of the structure, and its effectiveness is limited by the fact

that the sensor is shaped to match one particular mode of the structure. In 1987,

Crawley and de Luis [9] showed that the rectangular piezoelectric strain actuator to

point strain transfer function exhibits the undesirable property of no rolloff, limiting

its usefulness. However, Andersson [1] later showed that various shaped strain sensors

exhibit rolloff with no more phase lag than that of a point sensor. This leads to a

study of shaped actuator used in conjunction with shaped sensors.

This work investigates the properties of the transfer functions for various shaped

strain actuator-sensor pairs. The effect of the actuator and sensor shape upon the

transfer function's rate and frequency of rolloff is determined. Also, the feasibility of

implementing these actuator-sensor pairs for local control is examined.

The wave solution technique has been shown to lend physical insight into transfer



function equations [18]. In Chapter 2, this technique is used to derive the analytical

transfer functions for various collocated shaped actuator-sensor pairs on infinite, semi-

infinite, and finite Bernoulli-Euler beams. In 1985, de Luis[10] showed that the input

of the rectangular actuator could be modelled as a coupled moment input at the ends

of the actuator. Andersson [2] later demonstrated that output of the rectangular

sensor could be modelled as the difference of the slopes at the ends of the sensor.

Chapter 2 extends these arguments for the modelling of other shaped actuator-sensor

pairs. The dereverberated transfer functions associated with these analytical transfer

functions are then determined. This allows for an estimation of the analytical transfer

function without generating the complete wave model [16].

The analysis of Chapter 3 uses the tools in Chapter 2 to investigate the effects of

noncollocation upon various actuator to sensor transfer functions. Transfer function

derivation examples are shown for various actuator-sensor pairs on infinite, semi-

infinite, and finite Bernoulli-Euler beams.

Finally, in Chapter 4 finite element models are used to model the realistic effects of

damping, finite actuator thickness, and finite beam and actuator width. Piezoceramic

actuators are modelled as coupled field elements with the properties of PZT-5A,

including the constitutive relations as discussed by Hagood, et.al. [11]. The finite

width of the actuator and beam are placed in a finite element model to determine if

the width dimension will cause significant differences from the Bernoulli-Euler beam

transfer function, as suggested by Sullivan, Hubbard, and Burke [19].





Chapter 2

Analytical Models for Collocated
Actuator-Sensor Pairs

This chapter focuses on transfer functions of point and shaped collocated actuator-

sensor pairs on a Bernoulli-Euler beam. These are derived using wave and modal

residue solutions, and an effort is made to understand the physics represented in

these equations. The dereverberated behavior of the transfer functions is discussed,

and the effect of the distributed actuator-sensor pairs upon the dereverberated trans-

fer functions and the rolloff characteristics of the plant transfer function is shown.

Various beam end conditions are considered and their dereverberated behaviors are

compared. Finally, the implications of this knowledge upon actuator-sensor pair de-

sign are brought forth.

2.1 Modelling of Point and Shaped Actuators and

Sensors

This chapter compares the rolloff characteristics for the transfer functions of point

and distributed actuator-sensor pairs. The point actuator is modelled as a point



20 Chapter 2. Analytical Models for Collocated Actuator-Sensor Pairs

(c) (d)

Figure 2.1: Spatial Shapes of Distributed Actuators and Sensors: (a) Rect-
angular, (b) Triangular, (c) Quadratic, (d) Cubic

force at the appropriate coordinate. Several different shapes of distributed actuators

and sensors are modelled, including rectangular, triangular, quadratic, and cubic. A

spatial representation of these shapes is shown in Figure 2.1.

Assuming the horizontal coordinate, x, is measured from the center of the ac-

tuator or sensor and l. is the length of the actuator or sensor, the mathematical

(a)
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representation for the quadratic shape function is

+ 
la 

2

2 2
q = ' _ 2

8

( la )2

la la--- <x K-
2- 4

Ia <2 < l
4- -4

la< la <

4- -2

(2.1)

The mathematical representation for the cubic shape function, under the same as-

sumptions, is

C =

+ la2 '

32

1 3

32

(la 32

la la
<x<

2- - 4

a < <0
4

0<z<-a
4

la < < la

4- -2

(2.2)

These distributed actuators create an internal moment in the beam which corre-

sponds to their shape. This moment is defined by the equation

MA = fE(z)A(z)b(z) z dz (2.3)

where MA is the internal moment, z is the thickness of the beam, b is the width of

the beam, E is the stiffness of the beam, and A is the actuation strain [8]. If the

actuation strain, A, or the width of the actuator, b, are proportional to the prescribed

shape, then so is the internal moment, MA.

This internal moment can be modelled by force or moment inputs. The modelling

of the distributed shaped actuators is shown in Figure 2.2, where la is the length of
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la

(a)

F F

F

4 a 2 a 4

Figure 2.2:

F IF

12F
1la -la
2 2

(b)

F F

F

4a 2 a 4 la

(c) (d)

Applied Forces and Moments Modelling Distributed Actuators:
(a) Rectangular, (b) Triangular, (c) Quadratic, (d) Cubic

the distributed actuators. The rectangular actuator is modelled by a coupled mo-

ment input at the geometric ends of the actuator. This is possible since the moment

diagram of a beam with a coupled moment input is a rectangular shape. The trian-

gular actuator is modelled by three forces: a force of magnitude F at the geometric

ends and a force in the opposite direction of magnitude 2F at the geometric cen-

ter of the actuator. The moment diagram of a beam with these three forces is a

triangular shape, which replicates the actuator input. The quadratic and cubic actu-

ators are modelled by the applied distributed forces shown in Figure 2.2(c) and (d).

The moment diagrams of these beams shown are the quadratic and cubic shapes,

respectively.
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ls

(a)

WI W3

W2

4 2 4S

1ls IIs

(b)

WI W 3

W2

4s ls 4

Figure 2.3:

(c)
Displacement and Slope Measurements
Sensors: (a) Rectangular, (b) Triangular,
bic

(d)

Modelling Distributed
(c) Quadratic, (d) Cu-

These sensors measure the distributed strain of the structure, defined by the equa-

tion

S /2 f(x)e(x)dx (2.4)

where y is the sensor output, E(z) is the longitudinal strain along the structure, and

1, is the length of the sensor. The weighting function f(x) is implemented by varying

the spatial sensitivity of the sensor [2].

The output of the sensors can be modelled by displacement or slope measurements.

Each sensor is dual to its respective actuator, so the sensor measurements must be
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dual to the actuator inputs. The point actuator is modelled as a force input, and

a displacement measurement is dual to a force input. Therefore, the point sensor is

modelled as a displacement measurement at the appropriate coordinate.

The rectangular actuator is modelled as two moment inputs applied in opposite

directions. Since the slope measurement is dual to a moment input, the rectangular

sensor can be modelled by two slope measurement of opposite directions, or the

difference of the slope measurements at the geometric ends of the sensor. Figure 2.3

shows the modelling of the rectangular sensor and the other shaped sensors, where 1,

is the length of the distributed sensors.

In the case of collocated actuator-sensor pairs, 1, = la. Since displacement is dual

to force, the triangular sensor is modelled by 3 displacement measurements: the sum

of the displacements at the geometric ends of the sensor minus twice the displacement

at the geometric center of the sensor.

Since the quadratic and cubic sensors are dual to the quadratic and cubic actua-

tors, they can be modelled using a sum of displacementp integrated over the appro-

priate portion of the sensor length, i.e. a distributed displacement measurement, as

in Figure 2.3(c) and (d). The equation for the quadratic sensor output, assuming the

coordinate, X = 0, is at the center of the sensor, is

w(x)dx +] w(x)dx - w(x)dx (2.5)

The output of the cubic sensor is also an integrated displacement measurement as

well, and is expressed as
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Y3 8= (+ 1 1) w(x)dxL x + 1,) w(x)dx + I w(x)dxC , 8 a ( 8 ( 21 is. 4 1

Sw(x) d+J_ (x - 1 .)w(x)dx - J I(x - wl(x)dx (2.6)

2.2 Wave Solution for Simple Transfer Functions

In order to obtain insight into the physical significance of the actuator to sensor

transfer functions, a few mathematically simple examples are solved. First, these

include a point force actuator-sensor pair on an infinite, semi-infinite, and finite free-

free beam, as well as a moment actuator-sensor pair on an infinite, semi-infinite, and

finite free-free beam. The free-free end conditions are chosen for their similarity to

the infinite and semi-infinite beams. To obtain an understanding of the effects of a

distributed and shaped actuator-sensor pair, a rectangular actuator-sensor pair on

an infinite beam and a triangular actuator-sensor pair on an infinite beam are also

considered.

To determine the analytical form of the transfer functions for point and shaped

collocated actuator-sensor pairs on a Bernoulli-Euler beam, the partial differential

equation for a beam is solved

Elw""(x, t) + mw(x, t) = f(x,t) (2.7)

where w(x, t) is the displacement of the beam, EI is constant flexural stiffness, m is

constant mass per unit length, and f(x, t) is a forcing function.
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Assuming a sinusoidal input, the wave solution is of the form

w(x, t) = A, sin(wt - kx) + B 1 cos(wt - kx) + Cie-k" sin(wt) + De - kx cos(wt)

+ A2 sin(wt + kx) + B 2 cos(wt + kx) + C2ekx sin(wt) + D 2ekx cos(wt) (2.8)

where w is the forcing frequency, and k is the wavenumber where k4 = rn [17].

The sin(kx) and cos(kx) terms represent the spatial leftward travelling waves, and

the sin(-kx) and cos(-kx) terms represent the spatial rightward travelling waves.

The ekx terms represent the spatial leftward evanescent waves, and the e- kx terms

represent the spatial rightward evanescent waves.

2.2.1 Point Actuator and Sensor

The behavior of a point actuator-sensor pair on an infinite, semi-infinite, and finite

free-free beam is determined. A point force and a point displacement measurement

are used to model the point actuator-sensor pair; Figure 2.4 shows these three cases.

The forcing function F(x, t) is assumed to be of the form fo sin(wt). Also, F = up,

where up is the input of the point actuator. The beam is broken into two at the

point of actuation, as in Figure 2.5, and the boundary conditions are matched at that

point.

w(O+ ,t) = w(0-,t) (2.9)

w'(O+ ,t) = w'(O-,t) (2.10)

w"(0 + , t) = w"(0-,t) (2.11)
F

w"'(O, t) = w('"O-, t) - (2.12)
El



2.2. Wave Solution for Simple Transfer Functions 27

(a) (b)

Figure 2.4: Point Actuator-Sensor Pairs on (a) Infinite,
(c) Finite Beam

(c)

(b) Semi-infinite

Figure 2.5: Infinite Beam Broken into Two Beams at the Point of Actuation

The appropriate end conditions are set and a harmonic balance is performed for each

portion of the beam. These equations are then solved and the force to displacement

transfer function is determined.

The displacement of the infinite beam is

(,4EI [cos(wt + kx) + e sin(wt)] ,
4E-1 k3 [cos(wt - kx) + e sin(wt) ,

z<O

x>Ox > 0
(2.13)

The slope and curvature at any point on the beam can be found by simply taking the

appropriate number of derivatives of Equation 2.13.

The sensor output for the infinite case is

ypi = w(0O,t)

tw
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x

w

F

x

w

F
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ypi = [cos(wt) + sin(wt)]
4Eik3

where ypi is the output of a point sensor on an infinite beam.

The transfer function of this actuator-sensor pair is defined as

ypi w(0, t)
up F

ypi cos(wt) + sin(wt)
up 4EIk3 sin(wt)

Since no end conditions exist on the infinite beam, the transfer

phase other than 0O or 1800. The transfer function of a collocated

on a finite beam only has phase of 00 or 1800.

The magnitude of Equation 2.15 can be found by simplifying

cos(wt) + sin(wt)

(2.14)

(2.15)

function can have

actuator to sensor

A sin(wt + q)

A(sin(wt) cos() + cos(wt) sin(o))

Performing a harmonic balance

A cos(4)

A sin(O)

A

1

1

450, 2250

V-,-
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Therefore, the transfer function magnitude is

yp / (2.16)
up 4EIk3

While the magnitude and phase of the transfer function can be calculated, it

is apparent that more physical insights come from the sensor output, Equation 2.14.

Therefore, for infinite and semi-infinite cases, only the sensor output will be evaluated.

The infinite beam has the simplest solution due to its innate symmetry and the

lack of reflecting waves. The sensor output clearly shows no delays due to the prop-

agation of travelling waves and no decay in the response due to evanescent waves

at the coordinate of the collocated actuator-sensor pair. From Equation 2.14 and

Equation 2.16, it is apparent that the transfer function has a slope of k- 3 at all

frequencies.

The sensor output for the semi-infinite beam in Figure 2.4(a) can be derived as

in the case of the infinite beam. This output is

yp, = (0, t)

ype = [sin(wt) + cos(wt)] (2.17)

where y,, is the output of a point sensor on a semi-infinite beam.

Since the input of the semi-infinite beam is at the left (finite) end, evanescent

and travelling waves emanate only from the left end, and no reflecting waves exist.

Equation 2.17 is proportional to the output of the infinite beam sensor, Equation 2.14,

and again there are no artifacts of any spatial waves in the sensor output.
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The actuator to sensor transfer function for the finite beam is

Ypf w(0, t)
up F

ypf ekl(sin(kl) - cos(kl)) + e-kl(sin(kl) + cos(kl)) (2.18)(2.18)UP Elk3 [cos(kl)(ek + e - kl) - 2]

where ypf is the output of a point sensor on a finite beam, and I is the beam length.

The finite beam has a more complicated solution because the beam reflects waves

at both ends. Since the length is finite, there are no time dependent terms and

the effect of travelling waves and evanescent waves is understood directly from the

transfer function. The explicit k- 3 in Equation 2.18 determines the slope of the high

frequency transfer function.

2.2.2 Moment Actuator and Slope Sensor

Here, the behavior for a moment actuator and slope sensor pair on an infinite, semi-

infinite, and finite free-free beam is determined. The free-free end conditions are

chosen for the finite beam due to the similarity of the modeshapes to the displace-

ment profiles of the infinite and semi-infinite beams. A moment input and slope

measurement are used to model the moment actuator-sensor pair. The three cases

are shown in Figure 2.6. The forcing function M(x, t) is assumed to be of the form

mo sin(wt). Also, M = Urn, where um is the input of the moment actuator. The

sensor output for the infinite and semi-infinite cases and the actuator-sensor trans-

fer function for the finite case are determined in the same manner as for the point

actuator-sensor pair.
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(a) (b) (c)

Figure 2.6: Moment Actuator and Slope Sensor on (a) Infinite, (b) Semi-
infinite, (c) Finite beam

The displacement of the infinite beam due to the moment actuator is

m0 [sin(wt + kx) - ek' sin(wt)] x < 0
w(x, t)= 4Ek2 - (2.19)

4E [- sin(wt - kx) + e-k" sin(wt)] , x > 04Eik,

Taking the derivative to determine the slope, the sensor output for the infinite

beam case is

ymi = w'(O,t)

Ymi = [- cos(wt) + sin(wt)] (2.20)
4EIk

where y-, is the sensor output due to the moment input on an infinite beam.

Again, the infinite beam has the simplest solution due to symmetry and the lack of

reflecting waves. The sensor output again shows influence from the travelling waves

or evanescent waves at the actuator-sensor coordinate, and it explicitly shows the

rolloff is proportional to k-'.

M

x

M

x

M

x
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The sensor output, i.e. slope, for the semi-infinite beam:

ym,= w'(O, t)

ym= [cos(wt) - sin(wt)] (2.21)Elk

As before, evanescent and travelling waves emanate only from the left end, and

no reflecting waves exist. The semi-infinite solution is very similar to the infinite

solution, with no spatial dependence at all. The rolloff is again proportional to k- 1.

The actuator to sensor transfer function for the finite beam:

Ymf w'(O,t)
um M

y _ e2 k(sin(kl) + cos(kl)) + sin(kl) - cos(kl)

Um  EIk [cos(kl)(e 2ki + 1) - 2ekl]

where ym is the output of the moment sensor on a finite beam, Urn is the moment

input, and I is the beam length.

The finite beam exhibits a more complicated solution due to the waves reflecting at

both ends. Since the length is finite, the existence of travelling waves and evanescent

waves is understood directly from the transfer function, and the high frequency rolloff

is proportional to k- 1 .

2.2.3 Rectangular Actuator and Sensor

To demonstrate the complexity of solutions associated with shaped actuators and

sensors, the sensor output for a rectangular actuator-sensor pair on an infinite beam

is determined. Figure 2.7(a) shows the coupled moment and difference of slopes
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(a) (b)

Figure 2.7: Infinite Beams with (a) Rectangular and (b) Triangular
Actuator-Sensor Pairs

measurements used to model the rectangular actuator-sensor pair. Since the actuator

and sensor are collocated, la is the length of the actuator and the length of the sensor.

The same solution algorithm is followed as in previous sections, and the sensor output

is used to obtain insight into the case of the infinite beam.

The sensor output for the infinite beam:

Yri = W' - W' (2.23)

Yri - sin k- sin wt + sin k sin wt -
Elk ( 2 ) 2 ) ( 2 (Uj 2

cos ( cos wt + ka+ cos Cos wt - ka
2 2 2 2

- e- kl sin(wt) + sin(wt)] (2.24)

where yri is the output of the rectangular sensor on an infinite beam. Unlike the point

and moment actuator-sensor pairs, Equation 2.24 shows the influence of travelling and

evanescent waves in the solution for the rectangular actuator-sensor pair on an infinite

beam. This is due to the spatial distribution of the actuator-sensor pair. Also, the

/W)

M M

la

F 2w2 F

wl 2F W3

2a 2la
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high frequency rolloff is explicitly proportional to k- '.

2.2.4 Triangular Actuator and Sensor

Here, the sensor output for a triangular actuator-sensor pair on an infinite beam is

determined. Figure 2.7(b) shows the three force input and sum of displacements

measurements used to model the triangular actuator-sensor pair on an infinite beam.

The solution algorithm is the same as in previous sections, and again, the sensor

output is used to obtain insight into the case of the infinite beam.

The triangular sensor output for the infinite beam is

Yti = 2w 2 - W1 - W3 (2.25)

fo
Yti - 2Eik3

2Elk
[sin ( a sin (At + ka + cos ka cos wt + kla

2 2 2 2

+sin (a sin (wt -2a

+ 2 + cos ka)) cos wt - ka + e-k1 sin(wt)

2 sin )- I sin(wt)- 2 cos - 2 cos(wt)
( 2Z1snw) ( 2 )O.w)

where yti is the output of the triangular sensor

length of the actuator-sensor pair.

on an infinite beam, and 1, is the

Equation 2.26 shows how increased complexity of the actuator-sensor shape in-

creases the complexity of the solution. However, the travelling and evanescent wave

(2.26)
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terms can still be seen, and the rolloff is proportional to k- 3 .

2.3 Asymptotic Solution for Point and Shaped

Actuator-Sensor Pairs

Using the wave solution method in Section 2.2, the analytical transfer function for

various point and shaped actuator-sensor pairs can be found. Each of these transfer

functions has a dereverberated transfer function associated with it which determines

the general behavior of the transfer function. If the dereverberated transfer function is

known, then an estimate of the crossover frequency and rate of rolloff of the transfer

function can be found. Thus, the ability to alter the rolloff characteristics of the

dereverberated transfer function implies an ability to alter the rolloff characteristics

of the transfer function. This section determines the dereverberated transfer function

for point and shaped actuator-sensor pairs, demonstrating how different actuator-

sensor shapes affect the actuator to sensor transfer function.

2.3.1 Methodology

The methodology for determining the dereverberated transfer function is explained

using examples of transfer functions for point and shaped actuator-sensor pairs on

a pinned-pinned beam. The pinned-pinned end conditions are chosen due to the

simplicity of the associated modeshapes.

A point actuator-sensor pair at the center of a pinned-pinned beam of length I is
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x

Figure 2.8: Pinned-Pinned Beam with Point Actuator-Sensor Pair

shown in Figure 2.8. The analytical actuator input and sensor output are defined as

p = F = fo sin(wt) (2.27)

YP= w(0,t) (2.28)

The analytical actuator to sensor transfer function is

yp eT (sin(-) - cos(')) + e-- (sin( ) + cos( )) (2.29)

up 4EIk cos( t )(e + e-)

The dereverberated transfer function is composed of two asymptotes. The low

frequency asymptote, which is the limit as k - 0, and the high frequency asymptote,

which is the limit as k -+ oo. The low frequency asymptote is found by expanding

the transfer function into a series.

1yP 1 _7 k 691111
lim - k -- k" - Ok1 2  (2.30)
k-O up 48EI 80640EI 319334400EI

The first term of this series is the remaining term when k -+ 0; this is the low

asymptote.
-13

TPLow = 48E (2.31)
48ET

The high frequency asymptote is found by taking the limit as k -- oo. The mathe-

1 1
2- 2
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matical limit of Equation 2.29 as k --+ oo is

y, _sin(') - cos( )lim = 2 2 (2.32)
kIoo up 4EIk3 cos(k)

The limit of the sinusoidal terms as k --+ oo is between -1 and 1. To determine

the high frequency asymptote, either -1 or 1 is substituted for sin(-) and cos(-)

in Equation 2.32. When sin(-) = 1 and cos( ) = 1, or when sin( ) = -1 and

cos(B) = -1,

lim YP =0 (2.33)
k-+oo up

When sin( -) = -1 and cos(-) = 1, or when sin(!) = 1 and cos(-) = -1,

lim Y - 1 (2.34)
k-oo Up 2EIk3

Only one of these solutions will fit the centerline of the high frequency transfer func-

tion; this is the high frequency asymptote. Thus,

TPHigh - 2Eik3  
(2.35)

Figure 2.9 shows the two asymptotes of this dereverberated transfer function over-

laid by the analytical transfer function of Equation 2.29, where El = 1, 1 = 1. The low

frequency asymptote matches the static behavior, and the high frequency asymptote

fits nicely down the middle of the high frequency transfer function. The intercept of

these two asymptotes is an estimate for the corner frequency of the transfer function.

Table 2.1 shows the different values of TP.ow and TPHigh when the collocated

actuator-sensor pair is placed at different locations of the beam. This shows that

as the actuator-sensor pair moves to different points on the beam, the low asymptote
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-250 1  I

10- 100 101 102
wavenumber (k)

Figure 2.9: Transfer Function for Point Actuator-Sensor Pair Centered on a
Pinned-Pinned Beam

Table 2.1: Low and High Frequency Asymptotes for Point Actuator-Sensor
Pair at Different Locations on a Pinned-Pinned Beam

Position TPLow TPHigh

I 13 1
2 48EI 2EIk3

1 413 1
3 243EI 2EIk3

1 313 1
4 256EI 2EIk3

1 4913 1
8 12288EI 2EIk3

1 2713 1
10I 10000EI 2EIk3



2.3. Asymptotic Solution for Point and Shaped Actuator-Sensor Pairs 39

decreases. This is due to the increased local static stiffness of the beam as the point

actuator and sensor are moved closer to the pinned end. However, as the actuator-

sensor pair are moved along the beam, the high asymptote remains the same as in

Equation 2.35. At very high frequencies, the actuator-sensor pair will not change due

to its proximity to beam end conditions. Thus, the intercept point is at a minimum

when the forcing is at the middle of the beam, but there is no maximum. Also note

that the high frequency rolloff is proportional to k-3, which is written explicitly in

the denominator of the analytical transfer function, Equation 2.29.

A rectangular actuator-sensor pair centered on a pinned-pinned beam of length

I and actuator-sensor length l is shown in Figure 2.10(a). The same method is

used to determine the dereverberated transfer function of this system. The analytical

actuator to sensor transfer function is

Yr =- (2.36)
Ur Elk cos( )(e' + e- )

ki -ho(,l _ai=( ), os(
where V is a complicated function of e2, e 2 ,, e , 2 () sin(L), cos(ja),

and sin( ). The complete analytical transfer function is listed in Appendix A.

The asymptotes of the dereverberated transfer function for the collocated rectan-

gular pair are

TRLow = a (2.37)
EI

1
TRHigh = (2.38)

2EIk

From Equation 2.38, the high frequency rolloff is a function of k-1, which is written

explicitly in the analytical transfer function, Equation 2.36.

Figure 2.11 shows the two asymptotes overlaid by the analytical transfer function
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(a) (b)

Figure 2.10: Pinned-Pinned Beams with Collocated Actuator-Sensor Pairs
(a) Rectangular (b) Triangular

in Equation 2.36, where El = 1, 1 = 1, and la = i-. As the actuator-sensor pair moves

to different locations on the beam, the analytical value of the asymptotes remain the

same as in Equation 2.37 and Equation 2.38. However, as the size of the actuator

and sensor decreases, the numerical value of the low asymptote decreases, increasing

the intercept wavenumber. So, although the analytical value of the intercept point is

constant, the numerical value decreases with decreasing actuator-sensor length. This

implies that the minimum intercept occurs when the rectangular actuator and sensor

cover the entire beam. This concurs with physical intuition since the sensor rolls off

at the largest wavelength modes, which are the lowest frequency modes. However, it

should be noted that when the actuator length is as low as 6.7% of the beam length,

the intercept is still near the second pole of the transfer function.

A triangular actuator-sensor pair centered on a pinned-pinned beam of length 1

and actuator-sensor length la is shown in Figure 2.10(b). The dereverberated transfer

function is determined in the same manner as the previous cases. The analytical

M M

2la 2la

2 2

F 2w2 F

W 1  2F W3

Sla 2l a

2 2
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10 -  100 10 102  103

wavenumber (k)

Figure 2.11: Transfer Function for Rectangular Actuator-Sensor Pair on a
Pinned-Pinned Beam, l, = 6.67%l

actuator to sensor transfer function is

Yt

Ut
(2.39)

Ekcos()(e + e-k)
E~k +

where A/ is a function of e2, e 2 , e , cos(), sin(), cos(), and sin ),

and is more complicated than the rectangular analytical transfer function. The com-

plete analytical transfer function can be found in Appendix A.

The asymptotes of the dereverberated transfer function for the triangular actuator-
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-200'
10-

Figure 2.12:

sensor pair are

100 101 102  
10

3

wavenumber (k)

Transfer Function for Triangular Actuator-Sensor Pair on a
Pinned-Pinned Beam, la = 6.67%1

TTLow

TTHigh

a

12EI
5

2Elk 3

The high frequency rolloff of the triangular actuator to sensor transfer function is a

function of k-3 . This is written explicitly in the analytical transfer function, Equa-

tion 2.39.

Figure 2.12 shows the analytical transfer function of Equation 2.39 overlaid by the

two dereverberated asymptotes where El = 1, 1 = 1, and la = !. As in the rectangu-15

(2.40)

(2.41)
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W1

41la

w 3

-a '
21a

(a) (b)

Figure 2.13: Pinned-Pinned Beams with Collocated Actuator-Sensor Pairs
(a) Quadratic (b) Cubic

lar case, when the triangular actuator-sensor pair moves to different locations on the

beam, the analytical value of the asymptotes remains the same. Also, as the size of

the actuator and sensor decreases, the value of the low asymptote decreases, increas-

ing the intercept wavenumber. Therefore, the numerical value of the low frequency

asymptote decreases with decreasing actuator-sensor length.

As in the rectangular case, the minimum intercept occurs when the distributed ac-

tuator and sensor cover the entire beam. However, since the low frequency asymptote

of the triangular sensor is a function of lP instead of 1, the intercept of the asymptotes

is much higher in frequency for a triangular actuator-sensor pair than the rectangular

actuator-sensor pair. For example, when the rectangular actuator-sensor pair covers

6.7% the entire beam, as in the Figure 2.11, the intercept occurs near the second pole.

However, when the triangular pair covers the same length, as in the Figure 2.12, the

intercept is near the eighth pole of the transfer function, a difference of nearly 40 in

k.

A quadratic actuator-sensor pair centered on a pinned-pinned beam of length I

F F

F

4La 2la 4la
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and actuator-sensor length I' is shown in Figure 2.13(a). The analytical actuator to

sensor transfer function is

yq _ - 2kl, cos( k )(ekl
k1 2 - (2.42)

uq - Elk cos()(ek 1)

where N is a function of exponential and sinusoidal terms more complicated than the

triangular analytical transfer function. The complete transfer function for this case

is also found in Appendix A.

The asymptotes of the dereverberated transfer function are determined using the

same method as in previous cases. These asymptotes are

2315
T QLow a (2.43)

15360EI

TQHigh la 4 (2.44)
Elk4

The high frequency rolloff of the quadratic is a function of k- 4 . However, this is

not written explicitly in the denominator of the analytical transfer function. Instead,

the denominator is a function of k and the numerator is a function of k, which

mathematically limits the rolloff to a function of k - 4 .

This conclusion can be reached by considering the phase of the actuator to sensor

transfer function. In the collocated case, the phase will always be between 00 and

-1800. In the worst case, -1800 of phase, the system rolls off as a function of

k - 4 . Therefore, as long as the actuator-sensor pair are collocated, the dereverberated

transfer function cannot rolloff faster than k- 4

Figure 2.14 shows the analytical transfer function of Equation 2.42 and the two

dereverberated asymptotes, where EI = 1, 1 = 1, and la = -i. As in the rectangular

and triangular cases, when the quadratic actuator-sensor pair moves to different lo-



2.3. Asymptotic Solution for Point and Shaped Actuator-Sensor Pairs 45

100 101 102 10
wavenumber (k)

Figure 2.14: Transfer Function for Quadratic Actuator-Sensor Pair on a
Pinned-Pinned Beam

cations on the beam, the analytical value of the asymptotes remains the same. The

characteristics of the intercept frequency are the same as in the rectangular and tri-

angular cases as well. The numerical value of the low frequency asymptote decreases

with decreasing actuator-sensor length. Once again, the minimum intercept occurs

when the distributed actuator and sensor cover the entire beam. However, in the

quadratic case the low frequency asymptote is a function of 1s . As a result, the in-

tercept of the asymptotes of a quadratic pair is higher in frequency than that of a

triangular or rectangular actuator-sensor pair of the same length. As seen in Fig-

ure 2.14, the intercept of the asymptotes is near the 13th pole which is much higher

than the triangular and rectangular transfer functions.
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A cubic actuator-sensor pair centered on a pinned-pinned beam of length 1 and

actuator-sensor length la is shown in Figure 2.13(b). The analytical actuator to sensor

transfer function is
y, + k j.3 cos( '-)(e kl+ 1)

S +klo( +) (2.45)
uc E k7cos()(ekl + 1)

where A/ is a function of exponential and sinusoidal terms more complicated than the

quadratic analytical transfer function. The complete analytical transfer function is

listed in Appendix A.

The asymptotes for the cubic case are:

402117
TCLow = 4021_ (2.46)

660602880EI
13

TCHigh a (2.47)
192EIk4

The high frequency rolloff of the cubic is a function of k- 4 . However, as in the

quadratic case this is not written explicitly in the denominator of the analytical

transfer function. Instead, the denominator is a function of k7 and the numerator is

a function of k3 , which mathematically limits the rolloff to a function of k - 4 . Again,

this result concurs with the natural physical limits of the system.

Figure 2.15 shows the two dereverberated asymptotes and the analytical transfer

function in Equation 2.45, where El = 1,1 = 1, and la = . The intercept of15"

the asymptotes of this transfer function is near the 13th pole of the system. As

in previous cases, the analytical value of the asymptotes remains the same, when

the cubic actuator-sensor pair moves to different locations on the beam. Also, the

numerical value of the low frequency asymptote decreases with decreasing actuator-

sensor length. The minimum intercept occurs when the distributed actuator and

sensor cover the entire beam. In the cubic case, the low frequency asymptote is a

46
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E -300
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Figure 2.15: Transfer Function for Cubic Actuator-Sensor Pair on a Pinned-
Pinned Beam

function of l1 . However, since the high frequency asymptote is a function of 1P, the

intercept for the cubic dereverberated transfer function is nearly the same as the

intercept for the quadratic case. This is due to the rolloff limitation of k-4 which is

naturally set for the system.

These examples show that any shape more complex than a quadratic will not

contribute additional rolloff to the system, since the rolloff is physically limited to

k- 4 . Additionally, the manufacturing of a shape more complex than the triangular

is very difficult, further limiting the benefits of using these shapes. Therefore, there

will be no further investigation of shapes more complex than triangular.
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2.3.2 Correlation of Asymptotes using Modal Residue

Solution

In order to confirm that the asymptotes of the wave solution are correct, another mod-

elling technique is used to determine the transfer functions and their dereverberated

solutions. The modal residue solution uses a Rayleigh-Ritz solution of a Bernoulli-

Euler beam [17], assuming the modes of a pinned-pinned beam to be sin( ), where

n is the mode number and I is the length of the beam [4].

The modal solution for the transfer function from point actuator to point sensor

centered on a pinned-pinned beam is

0-2 sin2 n(-)
YP= kT)(2.48)

up n=1E E(k4 - k4)

where the natural wavenumber is k = 

To determine the dereverberated transfer function, the contributions of each mode

is reduced to that of an asymptotic Bode plot.

2 sin2 < (±,2 kk
00 EIk 4

Yp = (2.49)
UP n= 1 . n7r

-2 sin2

Ei 4 2 k> k,

Approximately 1000 of these dereverberated modes are summed to generate the modal

solution dereverberated transfer function. This solution compares favorably to the

asymptotic wave solution in Figure 2.16; the low frequency asymptote is nearly exact

and the high frequency asymptote is very close.
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Figure 2.16: Modal Residue Solution vs. Dereverberated Wave Model for a
Point Actuator-Sensor Pair Centered on a Pinned-Pinned Beam

The method for finding the dereverberated transfer functions for the shaped

actuator-sensor pairs is the same as for the point actuator-sensor pair. The modal

solution of the transfer function for a rectangular actuator and sensor centered on a

pinned-pinned beam is

- 87rn2 cos2 ) - ) Cos2 ( ) )2
_ = EI (2.50)

Ur n=l 13 EI(k4 - k)

The modal solution for the triangular actuator to sensor transfer function is

- -8coS2 - ) Cos( ) - 1)2
Ut = EI(k4 - k4 ) (2.51)
The modal solution of the transfer function for the quadratic actuator-sensor pair is

The modal solution of the transfer function for the quadratic actuator-sensor pair is
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Figure 2.17: Modal Residue Solution and Dereverberated Wave Solution
where la = 6.67%1 on Pinned-Pinned Beam (a) Rectangular
(b) Triangular
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S-81 (cos 2)1 os2(n )+4 cos2( n)I 4sin(n ) sin =e) -5

Uq n=l n27r2 EI(k 4 
- kn)

(2.52)

The modal solution of the transfer function for the cubic actuator-sensor pair is

oo 81coS2 ) -1 (2cos ( ) - cos A) - 2 cos n1

Uc n= n4 7r4EI(k4 - k4)
(2.53)

The dereverberated modal transfer functions of the shaped actuator-sensor pairs

are determined using the same algorithm as the point actuator-sensor pair. These

transfer functions are compared to the asymptotic wave solution in Figures 2.17 and 2.18.

These four plots show that the two solution methods match very well at low fre-

quency. At high frequency, the correlation of the modal solution asymptote to the

wave solution asymptote increases as the actuator-sensor shape increases in complex-

ity. While the correlation of the asymptotes for the simpler shapes is not as precise

as the more complex shapes, these results are accurate enough to confirm the results

of the wave solutions.

2.3.3 Asymptotes for Various End Conditions

Table 2.2 summarizes the low frequency and high frequency asymptotes for differ-

ent shaped actuator-sensor pairs on a pinned-pinned beam. The value for the low

frequency asymptote of the point actuator to sensor transfer function corresponds

to actuator-sensor placement at the center of the beam. The asymptotes for the

shaped actuator-sensor pairs are independent of their placement on the beam. Ta-

ble 2.3 and Table 2.4 summarize the same information for cantilevered and free-free
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Table 2.2: Low and High Frequency Asymptotes for a Pinned-Pinned Beam

Shape Low High
1 1

Point 4E- 2EIk 3

Rectangular ~ E1

Triangular i 2EIk3

Table 2.3: Low and High Frequency Asymptotes for a Cantilevered Beam

end conditions.

From these three tables, it is evident that for a point actuator-sensor pair, the

low frequency asymptote is dependent upon beam location and beam end conditions,

which is due to a local beam stiffness effect. Discounting singularities, the high fre-

quency asymptote is not dependent upon its location on the beam. However, it is

dependent upon the specific beam end conditions due to the effects of evanescent

Table 2.4: Low and High Frequency Asymptotes for a Free-Free Beam

Shape Low High

I 1Point 4 4Eik3

Rectangular 1r 1

Triangular 1 2EI k3

Shape Low High

Point 1 1
lEIk4  4EIk3

Rectangular 1 1
3  5Triangular - 2E133
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waves. The low frequency and high frequency asymptotes of all shaped actuator to

sensor transfer functions are the same regardless of beam placement and end con-

ditions, as long as there are no singularities and the end conditions are statically

determinate.

2.4 Discussion

This chapter has discussed the modelling of Bernoulli-Euler beams with point and

shaped actuator-sensor pairs. The dereverberated transfer functions for several cases

were determined, and several insights were gained. First, it is possible to use different

shapes of actuator-sensor pairs to shape the dereverberated transfer function of the

plant. The rolloff of the point actuator-sensor pair is proportional to k- 3 , the rolloff of

the rectangular actuator-sensor pair is proportional to k- 1 , the rolloff of the triangular

actuator-sensor pair is proportional to k-3 , the rolloff of the quadratic actuator-sensor

pair is proportional to k- 4 , and the rolloff of the cubic actuator-sensor pair is also

proportional to k- 4 . Note, there is a limit of k- 4 for rolloff that is obtainable. Also,

as the shapes become more complex, the corner frequency at which the transfer func-

tion begins to roll off increases. There are also limitations which make shapes more

complex than triangular difficult to manufacture. Additionally, the point actuator to

sensor dereverberated transfer function changes depending upon the location of the

actuator-sensor pair and the end conditions of the beam. The shaped actuator to

sensor dereverberated transfer functions are the same regardless of its location on the

beam and regardless of the beam end conditions, if those end conditions are statically

determinate.

From these observations, general rules can be stated for any transfer function of
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a collocated actuator-sensor pair on a beam. If the type of actuator-sensor pair is

known, the rate of rolloff is known as well. When distributed shaped sensors are

used, the intercept is known, and the crossover frequency can be estimated. It is

not necessary to know the exact location of the actuator-sensor pair to understand

behavior of the transfer function. Thus, an appropriate actuator-sensor pair can be

chosen for certain plant transfer function characteristics. Finally, the benefits of using

shapes more complex than triangular do not outweigh the associated costs. Therefore,

they should not be considered.





Chapter 3

Analytical Models for Noncollocated
Actuator-Sensor Pairs

In this chapter, transfer functions of point and shaped noncollocated actuator-sensor

pairs on a Bernoulli-Euler beam are derived. As with collocated sensors and actua-

tors, wave solutions are employed, and subsequently the underlying physics in these

relations is examined. The characteristics of the dereverberated transfer functions are

investigated, and the effect of noncollocation of actuator-sensor pairs is considered.

3.1 Wave Solution for Simple Transfer Functions

In order to obtain insight into the physical significance of the noncollocated actuator

to sensor transfer functions, a few mathematically simple examples are solved. These

include a point force actuator-sensor pair on an infinite, semi-infinite, and finite free-

free beam, as well as a moment actuator-sensor pair on an infinite, semi-infinite, and

finite free-free beam. The free-free end conditions are chosen for their similarity to the

infinite and semi-infinite beams. These results are then compared to the collocated

results found in Chapter 2.
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(a) (b) (c)

Figure 3.1: Noncollocated Point Actuator-Sensor Pairs on (a) Infinite,
(b) Semi-infinite, (c) Finite beam

3.1.1 Point Actuator and Sensor

The behavior of a noncollocated point actuator-sensor pair on an infinite, semi-

infinite, and finite free-free beam is determined using the solution method in Sec-

tion 2.2. A point force and displacement measurement are used to model the point

actuator-sensor pair; Figure 3.1 shows these three cases. The forcing function F(x, t)

is assumed to be of the form fo sin(wt). The variable x, is the distance from the

actuator to the sensor.

As in Section 2.2, the physical insights of the infinite and semi-infinite cases come

from the sensor output, and the physical insights of the finite beam are obtained from

the actuator to sensor transfer function.

The sensor output (displacement) for the infinite case is

Ypin =w (Zx,t)

Ypin [cos(wt + kx,) + ek sin(wt)] , < 0
pin[os(wt- k sin(wt) (3.1)

_ f0 [cos(wt - kx,) + e- k x 8 s in ( w t ) ] , > 0
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3.1. Wave Solution for Simple Transfer Functions

where ypin is the output of a point sensor on an infinite beam, where the actuator and

sensor are noncollocated.

If x, = 0, then Equation 3.1 is the collocated result found in Equation 2.14. The

simplicity of the infinite solution is due to symmetry and the lack of reflecting waves.

The sensor output clearly shows the effect of travelling waves and evanescent waves

upon the beam.

The sensor output for the semi-infinite beam is

Ypsn = W(x 8 , t)

yf0k [-sin(wt - kx.) + cos(wt - kxs) + e-kx'(sin(wt) + cos(wt))] (3.2)

where ypn is the output of a point sensor on a semi-infinite beam, where the actuator

and sensor are noncollocated.

Substituting z, = 0 in Equation 3.2 confirms the collocated results of Equa-

tion 2.17. Since the input of the semi-infinite beam is at the left (finite) end, evanes-

cent and travelling waves emanate only from the left end, and no reflecting waves

exist. Equation 3.2 is more complicated than the infinite beam sensor output, but,

the effect of the travelling waves and evanescent waves is easily discernible.

The actuator to sensor transfer function for the finite beam is

Ypfn w(X,, t)

up F
1

C k3
2ElkI (cos(kl)(ehk' + e-k')- 2)
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UPfn = CIcos (kx,)(ekl(sin(kl) - cos(kl)) + -l(sin(kl) + cos(kl))

- sin(k,)(ekl(sin(kl) + cos(kl)) + e-kl.(- sin(kl) + cos(kl)) - 2)

+ ek( -kl(sin(kl) + cos(kl)) - 1)

+ e-k (ekl(sin(kl) - cos(kl)) + 1)] (3.3)

where I is the beam length, and ypf, is the output of a point sensor on a finite beam,

when the actuator and sensor are noncollocated.

The finite beam has a very complicated solution because the it experiences re-

flecting and evanescent waves from both ends. Since the length is finite, there are

no time dependent terms and the effect of travelling waves and evanescent waves is

understood directly from the transfer function. Again, if x, = 0 is substituted into

Equation 3.3, then the transfer function simplifies to the simpler collocated transfer

function found in Equation 2.18.

3.1.2 Transfer Function Relationship to a Pinned Boundary

Condition

Consider the case of a collocated point actuator-sensor pair on a finite beam. A known

relationship exists between the zeros of the actuator to sensor transfer function and

the poles of the transfer function when a the actuator-sensor pair are replaced with

a pinned boundary condition. This subsection investigates whether there is a similar

relationship in the noncollocated case.

Two beams are pictured in Figure 3.2, the first was discussed Section 2.2.1, while

the second beam was discussed in Section 3.1.1. From Equation 2.18 the transfer
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Figure 3.2:

(a) (b)

Free-Free Beams with (a) Collocated, (b) Noncollocated Point
Actuator-Sensor Pairs

function for the collocated actuator-sensor pair in Figure 3.2(a) is

Ypf

Up

ekl(sin(kl) - cos(kl)) + e-kl(sin(kl) + cos(kl))
(3.4)

El 3 [cos(kl)(ekl + e-kl) - 2]

where 1 is the beam length.

The effect of high gain control on a collocated transfer function is now considered.

A proportional controller, with gain IC, is included and the loop is closed. When

IC --+ oo the poles of the closed loop transfer function move to the open loop zeros,

i.e. the zeros of Equation 3.4. The poles of the closed loop transfer function are now

defined as the values of k where

0 = e"'(sin(kl) - cos(kl)) + e-&l(sin(kl) + cos(kl)) (3.5)

This is the same equation which defines the poles of a beam with a free end at x = 1

and a pin at x = 0, the position of the actuator-sensor pair in Figure 3.2(a). Thus as

the gain of the controller increases, the location of the actuator-sensor pair becomes

infinitely stiff.

The same procedure can be followed in the noncollocated case, Figure 3.2(b).

w

F

x

wX

F

x
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As KIC - oo, the poles of the closed loop transfer function move to the zeros of

Equation 3.3. The high gain closed loop poles are defined as the values of k where

0= [cos (kx,)(ekl(sin(kl) - cos(kl)) + e-kl(sin(kl) + cos(kl))

- sin(kz,)(ekl(sin(kl) + cos(kl)) + e-kl(- sin(kl) + cos(kl)) - 2)

+ ekx.(e-kl(sin(kl) + cos(kl) - 1)

+ e-kx, (ekl(sin(kl) - cos(kl) + 1)] (3.6)

The poles of a system where the location of the actuator is pinned are the same

as the poles in the collocated case, as in Equation 3.5. The poles of a system where

the location of the sensor at x, is pinned are defined as the values of k where

O= 2 cos(kl) [ e-k (ek' (sin(kxs) -

+ ek (e-kx (sin(kx,) +

+2 sin(kl) [e-k (ek (- sin(kx,)

+ ekl (e-k. (sin(kx,) -

+2 cos(kl) [ ek - e-kxa

+2 sin(kl) [ -eks - e-kx]

cos(kx,)) - cos2(kx,))

cos(kx,)) + cos2(kx,))

-os(k,)1 k cos(k,) sin(kx,) -\
2 2

cos(kx,) - e- k) + cos(kx,) sin(kx,) -I

(3.7)

Table 3.1 lists kTF, the values of k which are the zeros of the noncollocated

actuator-sensor transfer function in Equation 3.6. Also listed is kActPin, the values of

k which are the poles of the beam in Figure 3.2(b) with a pin at the location of the

actuator, as in Equation 3.5. Finally, the table lists ksens,,,in, the values of k which are

the poles of the beam in Figure 3.2(b) with a pin at the location of the sensor, as in
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Table 3.1: Values of k for Poles of Beams with Pinned Boundaries and Zeros
of Noncollocated Point Actuator-Sensor Transfer Function

kTF kActPin kSensPin

4.592 3.926 4.706

8.611 7.068 7.225

12.703 10.210 9.737

16.698 13.352 13.314

20.633 16.493 17.031

Equation 3.7. From this table, it is obvious that neither a pin at the actuator, nor a

pin at the sensor models the noncollocated system with high gain.

Another way to consider the noncollocated system is using the s-domain transfer

function. It is obvious that at some high frequency the deflection of the beam at the

point of the sensor will be opposite to direction of the force. Therefore, the s-domain

transfer function must have nonminimum phase zeros. This implies that with high

static gain, K: -- oo, the system will go unstable. Thus, there is no simple boundary

which replicates the poles of the noncollocated case, as there is in the collocated

problem.

3.1.3 Moment Actuator and Slope Sensor

The behavior for a noncollocated moment actuator and slope sensor on an infinite,

semi-infinite, and finite free-free beam is determined using the wave solution. A

moment input and slope measurement are used to model the moment actuator-sensor

pair; Figure 3.3 shows these three cases. The forcing function M(x, t) is assumed to

be of the form m o sin(wt). The dimension x, is the distance from the actuator to the
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(a) (b) (c)

Figure 3.3: Noncollocated Moment Actuator and Slope Sensor on (a) Infi-
nite, (b) Semi-infinite, (c) Finite beam

sensor. The sensor output for the infinite and semi-infinite cases and the actuator-

sensor transfer function for the finite case are determined in the same manner as for

the point actuator-sensor pair.

The slope sensor output for the infinite case is

Ymin = w'(z,, t)

- 4 [- cos(wt + kxs,) + ekxa sin(wt)] , 2, 0
ymin (3.8)

mo4E k [_ cos(wt - kxs) + e - km- sin(wt)] x, > 0

where yin is the output of the slope sensor when there is a moment input on an

infinite beam, where the actuator and sensor are noncollocated.

Substituting x, = 0 confirms the solution for the collocated case found in Equa-

tion 2.20. Again, the simplicity of the infinite solution is due to symmetry and the

lack of reflecting waves. The slope sensor output clearly shows the effect of travelling

waves and evanescent waves upon the beam.

The slope sensor output for the semi-infinite beam is

Ymsn = w'(xs, t)

W
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yn mo [cos(wt - kx,) - sin(wt - kx,) + e-ka'(cos(wt) - sin(wt))] (3.9)

Substituting x, = 0 in Equation 3.9 confirms the collocated results of Equation 2.21.

As before, evanescent and travelling waves emanate only from the left end, and no

reflecting waves exist. Although the semi-infinite solution has more terms than the

infinite solution, the travelling waves and evanescent waves are easily identified.

The actuator to sensor transfer function for the finite beam is

Ymfn w,'(X,t)
um M

1

2EIk (cos(kl)(e2 k + 1) - 2ekl)

Ymfn~= D [cos (kx,)((1 - e2kl) cos(kl) + (-1 - e 2 k) sin(kl))
Um

- sin(kx,)((e 2 k + 1) cos(kl) + (1 - e2 kl) sin(kl) - 2e"k

+ e-k "(-e 2k(sin(kl) + cos(kl)) + ek)

+ ek "(- sin(kl) + cos(kl) - ek)] (3.10)

The finite beam has the most complicated solution due to the reflecting and

evanescent waves from both ends. Since the length is finite, the effect of travelling

waves and evanescent waves is understood directly from the transfer function. Again,

the transfer function simplifies to the collocated transfer function, Equation 2.22,

when x, = 0.
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xs

x

Figure 3.4: Noncollocated Point Actuator-Sensor Pair on a Pinned-Pinned
Beam

3.2 Noncollocated Point Actuator-Sensor Pairs

In this section, the noncollocated point actuator-sensor transfer functions are consid-

ered. As in Chapter 2 the dereverberated transfer function determines the general

behavior of the analytical transfer function. Knowing the dereverberated transfer

function allows for an estimate of the crossover frequency and rate of rolloff of the

analytical transfer function. The procedure of Section 2.3 is used to find the dere-

verberated transfer function for the noncollocated point actuator-sensor pair. The

transfer function is then compared to the collocated case, and a quantitative measure

of how the transfer function is affected by the noncollocation is discussed.

Figure 3.4 shows a pinned-pinned beam with a noncollocated point actuator-

sensor pair, where the actuator is centered on the beam and the sensor is x, from the

actuator. The pinned end conditions are chosen due to the simplicity of the associated

modeshapes. There are two transfer functions for this beam: xz is positive, i.e. the

sensor is to the right of the actuator, and x, is negative, i.e. the sensor is to the left

of the actuator.

1 21 l2
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The analytical actuator to sensor transfer function when x, _ 0 is

Ypn 0w(x., t)

up F

1

4EIk3 (cos()( h kl eIl) (3.11)

Ypn . l Akl 2 kl= cos (kx,)(sin( -e(e 1 - e 1))
UP 2

+ sin(kx)(cos()( ekl + e-kl))

+ cos(2 (e kle-e, k ekl Ic] (3.12)

When x, < 0, the analytical transfer function is

ypn= G cos (kx,) (sin( e ki - -kl))

+ sin(kx,)(cos (;)(-e l - e ))

+ cos(2 (ekek" - ek I-k.] (3.13)

Substituting x = 0 into these two equations results in Equation 2.29, the collocated

transfer function.

Table 3.2 shows the different values of the asymptotes of the dereverberated trans-

fer function when the actuator is placed at different points on the beam and x, is

positive. Table 3.3 shows the different values of the asymptotes of the dereverberated

transfer function when the actuator is placed at different points on the beam and x,

is negative. TRtLow and TRtHigh are the asymptotes when x, is positive, and TLtLow and

TLtHigh are the asymptotes when x, is negative. Note that if x, = 0, then the value
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Table 3.2: Low and High Frequency Asymptotes for Different Placement of
Point Actuator and Noncollocated Point Sensor; X, Is Positive

Position TRtLow TRtHigh

I I + 4x3 - 61x 1
2 48EI 4EIk3

1 913 + 2412 X - 721x2 + 32x2 1
47 768EI 4EIk3

I 8113 - 13501x + 500x3 + 72012X8  1
U 30000EI 4EIk3

1 115213 + 15625x, + 2760012 , - 450001x 1
25 2343750EI 4EIk3

Table 3.3: Low and High Frequency Asymptotes for Different Placement of
Point Actuator and Noncollocated Point Sensor; z, Is Negative

Position LtLow TLtHigh

1 l- -61x 1
2 48EI 4EIk3

1 3l 3 + 812%o - 2412x + 32x4 1
4 256EI 4EIk3

-2713 - 45012O + 1500X3 + 24012X 1
10000EI 4EIk3

1 19213 + 625002x + 46002x, - 749612x 1
25 390625EI 4EIk3

of the low asymptote is equal to the collocated low asymptote found in Table 2.1.

The high frequency asymptote is THigh = 1 for the noncollocated case re-
4EIk3

gardless of actuator position, which is lower than the high frequency asymptote for

the collocated case, THigh = 1 3 This small shift down occurs due to the effect of2EIk "

the evanescent waves between the actuator and sensor.

Two facts about the noncollocated point actuator-sensor pair are notable: the first

is that the point actuator-sensor pair, regardless of their proximity to each other, will

roll off as a function of k-3 . Second, only in the case of analytically perfect collocation
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100 101
wavenumber (k)

Figure 3.5: Transfer Functions for Collocated and Noncollocated Point
Actuator-Sensor Pairs on a Pinned-Pinned Beam

is THigh = . Even an infinitesimal degree of noncollocation will cause the change

to THigh = 14Elk3 •

Figure 3.5 shows the analytical transfer functions of a collocated point actuator-

sensor pair centered on a pinned-pinned beam and a noncollocated point actuator-

sensor pair with the actuator at the center and the sensor is offset by 3% of the beam

length, i.e. z, = 0.031. Note how the two match very closely until the noncollocated

transfer function loses a zero at k 50. This is the wavenumber of noncollocation,i.e.

kno n 50, where the wavenumber is sufficiently large that the deflection at the

location of the sensor and the deflection at the location of the actuator have opposite

signs. This is shown in Figure 3.6, where x is the position of the actuator and o is

3.2. Noncollocated Point Actuator-Sensor Pairs 69
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(a) (b)
1 ..1

0.5 0.5

C
0 0

-0.5 .. -0.5

-0.5 0 0.5 -0.5 0 0.5
coordinate (x) coordinate (x)

Figure 3.6: Pinned-Pinned Modeshapes for Beam of Length 1 = 1 (a) 15th
Mode and (b) 17th Mode

the position of the sensor.

Also, when the actuator is in the center of a pinned-pinned beam, symmetry allows

for an analytical expression relating the wavenumber of noncollocation, kon, and the

distance from the actuator to the sensor, X,.

7r
k 1on = (3.14)

21x 51

For the preceding example, where x, = 0.031, the wavenumber of noncollocation is

k on r 52.36, which correlates with Figure 3.5.

Thus, at the wavenumber of noncollocation the transfer function has its first

missing zero, and the high frequency asymptote changes from the collocated value

to the noncollocated value. Figure 3.7 illustrates this point with the noncollocated

transfer function of Figure 3.5 with the low asymptote, collocated high asymptote,

and noncollocated high asymptote.
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10-  100 101 102 10
wavenumber (k)

Figure 3.7: Analytical and Dereverberated Transfer Functions for Noncollo-
cated Point Actuator-Sensor Pair on a Pinned-Pinned Beam

3.3 Noncollocated Shaped Actuator-Sensor Pairs

In this section, noncollocated transfer functions for rectangular and triangular actuator-

sensor pairs are considered. The aspect of noncollocation is limited to a sensor of

different length than the actuator; the centroid of the actuator-sensor pair remains

collocated. Two cases are considered for each shape: in the first the sensor is shorter

than the actuator, and in the second the sensor is longer than the actuator. The

dereverberated transfer functions for both shapes are determined and compared to

the collocated results of Chapter 2. Also, an investigation is conducted to determine

the most reasonable and best performing actuator and sensor lengths.
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Figure 3.8:

Table 3.4:

(a) (b)

Noncollocated Rectangular Actuator-Sensor Pair (a) Sensor
Shorter than Actuator (b) Sensor Longer than Actuator

Low and High Frequency Asymptotes for Noncollocated Rectan-
gular Actuator-Sensor Pairs on a Pinned-Pinned Beam

3.3.1 Rectangular Actuator-Sensor Pairs

Figure 3.8(a) shows a rectangular actuator-sensor pair where the sensor is shorter

than the actuator, and Figure 3.8(b) shows a rectangular actuator-sensor pair where

the sensor is longer than the actuator. The duality of the actuator-sensor pair is such

that if la = x and 1, = y, the transfer function is identical when la = y and 1, = x.

The procedure of Section 2.3 is used to find the dereverberated transfer function

for the noncollocated rectangular actuator-sensor pair. The dereverberated transfer

function is determined for both cases shown in Figure 3.8 and for varying actuator

placement. Table 3.4 shows the values of the low and high frequency asymptotes

when the sensor is longer than the actuator and when the sensor is shorter than the
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actuator. These asymptotes hold regardless of the position of the actuator on the

pinned-pinned beam.

Note that if 1, = l., then the value of the low asymptote is equal to the collocated

low asymptote in Equation 2.37. Also, the noncollocated low asymptote is actually

controlled by the smaller of the two dimensions I, and la. The most important ob-

servation, however, is that for a rectangular actuator-sensor pair, regardless of the

placement on the beam or their relative size, the rolloff will be a function of k-1.

The contrast in the noncollocated rectangular actuator-sensor pair is of the same

form as the point case; there is a difference in high frequency asymptotes between

the collocated and noncollocated cases. The high frequency asymptote for the non-

collocated case is TRNHigh = regardless of actuator position or sensor size, while

the high frequency asymptote for the collocated case is TRHigh = 1 This means

that the noncollocated transfer function actually shifts upward, unlike the case of the

noncollocated point actuator-sensor pair. The magnitude lowering effect from the

evanescent waves is not as strong as the magnitude rising effect due to the numerous

missing zeros in the transfer function. Therefore, the transfer function shifts upward.

Since the transfer function follows the noncollocated high asymptote due to the

occurrence of many missing zeros, a very noncollocated case will show the shift upward

more effectively. For visual purposes, an extreme case is shown in Figure 3.9, where

the actuator is centered on the beam and l, = 0.51 and la = 0.051.

In an effort to quantify the effects of length noncollocation on the transfer function

of a rectangular actuator-sensor pair on a pinned-pinned beam, Figure 3.10 shows the

pole-zero patterns when l. = 0.21 and the value of 1, varies such that the ratio of 1, : 1,

is the value on the horizontal axis. Figure 3.11 is a similar plot; however, l. = 0.41 in

this case. These plots show no consistent, quantifiable change in the pole-zero spacing
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Figure 3.10: Pole-Zero Spacing for Rectangular Actuator to Sensor Transfer
Functions; 1, = 0.2

3.3.2 Triangular Actuator-Sensor Pairs

The steps followed to analyze the noncollocated rectangular actuator-sensor pair are

now used to analyze the noncollocated triangular actuator-sensor case. Figure 3.12(a)

shows a triangular actuator-sensor pair where the sensor is shorter than the actuator,

and Figure 3.12(b) shows a triangular actuator-sensor pair where the sensor is longer

than the actuator. As in the rectangular case, the duality of the triangular actuator-

sensor pair is such that if la = x and 1, = y, the transfer function is identical when

I, = y and 1, = x.

As before, the procedure of Section 2.3 is used to find the dereverberated transfer

function for the noncollocated triangular actuator-sensor pair. The dereverberated
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Table 3.5: Low and High Frequency Asymptotes for Noncollocated Triangu-
lar Actuator-Sensor Pairs on a Pinned-Pinned Beam

TTLow TTHigh

12(18 3 11, < 1t -31a)
24EI Elk 3

1 > 2 (la - 31,) 1S> a 24EI Eik3

transfer function is determined for the two cases shown in Figure 3.12 and for vary-

ing actuator placement. Table 3.5 shows the values of the analytical dereverberated

asymptotes when the sensor is longer than the actuator and when the sensor is shorter

than the actuator. Barring any singularities, the asymptotes in this table are inde-

pendent of the position of the actuator on the pinned-pinned beam.

It is observed from this table that when 1, = la, the value of the low frequency

asymptote is equal to the collocated low frequency asymptote, as in Equation 2.40.

As in the rectangular case, the noncollocated low asymptote is actually dominated by

the smaller of 1, and a,. Also, the rolloff of a triangular actuator-sensor pair, regardless

of their placement on the beam or their relative size, will roll off as a function of k .

The high frequency asymptote for the noncollocated triangular actuator-sensor

pair is TRNHigh = Elk3 ' regardless of actuator position or sensor size. The high

frequency asymptote for the collocated case is TRHigh - 5 Figure 3.13 shows
2EIk3 "

the transfer function and dereverberated asymptotes for a noncollocated triangular

actuator-sensor pair on a pinned-pinned beam where the actuator is centered on a

pinned-pinned beam, I, = 0.21, and 1. = 0.41.

The high asymptote drops by a factor of 2.5 in comparison to the collocated case,

yet in the rectangular case, the noncollocated high frequency asymptote was higher

than the collocated high frequency asymptote. This magnitude lowering effect is

3.3. Noncollocated Shaped Actuator-Sensor Pairs 77
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Figure 3.13: Analytical and Dereverberated Transfer Functions for Noncol-
located Triangular Actuator-Sensor Pair on a Pinned-Pinned
Beam

due to the evanescent waves across the actuator-sensor pair and the fact that, for

length noncollocation, the triangular actuator to sensor transfer function maintains

an interlaced pole-zero pattern.

To quantify the effects of length noncollocation on the transfer function for a

triangular actuator-sensor pair on a pinned-pinned beam, Figure 3.14 shows the pole-

zero patterns when 1a = 0.21 and the value of 1, varies such that the ratio of 1, : la is the

value on the horizontal axis. Unlike the rectangular case, there seems to be a pattern

in the pole-zero spacing. As the length of the sensor increases, the wavenumber at

which the zero first nears the frequency of the next pole decreases. For example,
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Figure 3.14: Pole-Zero Spacing for Triangular Actuator to Sensor Transfer
Functions; la = 0.2

when = 1, this occurs near k = 50, while for = 1.4, this occurs near I = 40.
la la

Figure 3.14 also implies that an actuator-sensor pair can be designed to have

close zero-pole spacing at specific wavenumbers. Figure 3.15 demonstrates this by

plotting a collocated actuator to sensor transfer function, where la = 1, = 0.21, and

a noncollocated transfer function, where la = 0.21 and 1, = 0.31. The static response

of the two transfer functions is normalized to 0 dB in order to see the magnitude

reduction of the noncollocated transfer function. In addition to this decrease in

magnitude due to noncollocation, it is possible to see the close zero-pole spacing

between k = 40 and k = 70. If damping were added to these closely spaced modes,

the transfer function would lose even more magnitude.
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Figure 3.15: Collocated and Noncollocated Transfer Function for Triangular
Actuator-Sensor Pair on Pinned-Pinned Beam

The alternating pole-zero pattern is usually associated with a collocated actuator

to sensor transfer function, while a missing zero is usually associated with a non-

collocated actuator-sensor pair. However, in the case of a triangular actuator-sensor

pair, if the centroid remains collocated and the lengths are different, an alternating

pole-zero pattern will remain, regardless of the difference in length. When the strain

across the beam is cos(kx), the output of the triangular sensor, in relation to the point

at the center, is k . This function is shown in Figure 3.16. Thus, the shape of

the window requires the sign of the input to be the same as the sign of the output.

This means that there will be no sign changes in the modal residues of the transfer

functions, which implies that there is an alternating pole-zero pattern, regardless of
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Figure 3.16: Function for

0 5 10
k (wavenumber)

Triangular Sensor and Actuator Output

the difference in length between actuator and sensor.

Therefore, an investigation can be held to determine the best size of sensor and

actuator. Using Figure 3.16 as a guide, the most effective difference in length for the

actuator-sensor pair would use the local minimum of the sensor, designated with by

o, to be at the local maximum of the actuator, designated with an by x. This should

allow for several near pole-zero cancellations in the transfer function, which, when

damping is added, would minimize the magnitude contribution of these modes. The

first local minimum can be found by setting the function equal to zero and solving it.

sin2 (kl)

kl = (3.15)
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The first local maximum is found by solving the equation

d sin2 (k2)0 =
dIca k

ck2 = tan(k2 )

k2 = 4.4934 (3.16)

This implies that for the most effective results, the ratio is

l, k2-= k = 1.43 (3.17)

Figure 3.14 confirms this, since the pole-zero spacing at = 1.4 has five near
ela

pole-zero cancellations. At = 1.5, the spacing between the eighth zero and the

ninth pole is increased. Also, as the length of the sensor nears twice the length of

the actuator, the spacing increases, and the large band of near pole-zero cancellations

splits. At this point, adding damping will not be as effective. Finally, it should be

noted that as the actuator becomes a smaller percentage of the beam length, the close

pole-zero spacing occurs at a higher wavenumber, which means that the property of

close pole-zero spacing becomes less useful.

3.4 Discussion

This chapter has discussed the modelling of noncollocated point, rectangular, and

triangular actuator-sensor pairs on pinned-pinned Bernoulli-Euler beams. The dere-

verberated transfer functions for each pair were determined and compared to the

collocated case. In each case, the high frequency rolloff was shown to be of the same

power of k as the corresponding collocated case. This implies that regardless of beam
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end conditions, collocation or length noncollocation, the transfer function rolloff in k

is known by the type of actuator-sensor pair.

Different actuator-sensor pairs were shown to impact different design parameters.

A relation was found between the wavenumber of noncollocation and the distance

between point actuator and point sensor. It was also shown that the point actuator

to sensor transfer function follows the noncollocated high frequency asymptote after

the first missing zero in the transfer function.

The rectangular actuator-sensor is very sensitive to length noncollocation. With

very little percentage difference in actuator and sensor length, a missing zero appears

in the transfer function. Also, there is an increase in the noncollocated high frequency

asymptote which is accounted for by the numerous missing zeros in the noncollocated

transfer functions.

Finally, the noncollocated triangular actuator-sensor pair was compared to the

collocated pair. There are no missing zeros in the length noncollocated triangular

actuator to sensor transfer function, which allows for use of the noncollocated transfer

function to obtain a small amount of additional gain margin without phase loss.

If the ratio I = 1.43, then there will be a region of near pole-zero cancellations

within the transfer function. If damping is added to the transfer function, then at

the wavenumber of the near pole-zero cancellation, there will be little response, and

additional gain margin can be obtained. This analysis can be used to determine the

best design for an actuator-sensor pair to be placed upon a real structure.
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Chapter 4

Collocated Shaped Actuator-Sensor
Pairs in Realistic Geometries

The transfer functions derived in Chapter 2 showed the analytical results for a

Bernoulli-Euler beam with modelled actuator inputs and sensor outputs. However,

these models eliminated the effects of the finite thickness of the actuators and sensors,

as well as the finite widths of the beam and the actuators. This chapter investigates

the transfer functions for a rectangular actuator-sensor pair and a triangular actuator-

sensor pair when these effects are included.

4.1 Rectangular Actuator-Sensor Pair

This section examines the influence of applying a rectangular piezoceramic actuator-

sensor pair to a cantilevered steel beam. Various models are generated to determine

the different effects of increased actuator thickness and of finite beam width upon the

actuator to sensor transfer function.
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Figure 4.1: Cantilevered Steel Beam with Rectangular Actuator-Sensor Pair
of Zero Thickness

4.1.1 Analytical Wave Model

First, the analytical transfer function is found for the example beam using the wave

solution technique of Section 2.2.3. The analytical dereverberated transfer function

is then determined using the results in Equation 2.37 and Equation 2.38. Figure 4.1

is a diagram of the steel, cantilever beam that is 20 inches long, 1.125 inches wide,

and 0.032 inches thick. In metric units, this is 508mmx28.575mmx 0.8128mm. The

modulus of elasticity for steel is E, = 2.05 x 10"N/m2 and the density is p, =

7860kg/m 3 . Figure 4.2 shows the analytical transfer function and dereverberated

asymptotes for this case. Note the magnitude of the transfer function has units of

rad/N-m.

This solution technique neglects the mass and stiffness of the actuator and the

finite width of the beam and actuator. Also, since this analytical model includes

no damping, the actual magnitude of the transfer function at the frequencies of the

poles is oo dB, and the actual magnitude of the transfer function at the frequencies

of the zeros is -oo dB. The poles and zeros shown in Figure 4.2 appear to have finite
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Figure 4.2: Analytical and Dereverberated Transfer Functions for Rectangu-

lar Actuator-Sensor Pair on Cantilevered Beam

magnitudes because MatlabTM, the software package used in constructing the figure,

evaluates the transfer function at discrete points.

4.1.2 Finite Element Models Using 2-D Beam Elements

As mentioned before, the analytical wave solution neglects actuator mass and stiffness,

as well as the finite width of a real beam and actuator. In this section, two-dimensional

finite element models are used to determine more accurate models which would match

the transfer function of an actual beam. The ANSYS program is chosen to create

the finite element models, since the program has the ability to directly model three-
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dimensional piezoelectric elements.

The first step to improve upon the analytical model is adding a small amount

of damping to the transfer function, such that the magnitudes of the peaks of the

transfer function can be compared to each other. A finite element model of the

beam in Figure 4.1 is created in ANSYS using two-node, two-dimensional, elastic,

symmetric beam elements. The modes of this beam are determined and placed into

a state space model, one percent of critical modal damping is added (( = 0.01), and

the transfer function is generated. Figure 4.3 compares the damped finite element

transfer function and the analytical transfer function. These two transfer functions

apparently plot exactly except for the magnitudes of the poles and zeros. The transfer

function from the finite element model gives insight into the relative magnitudes of

the finite peaks of the transfer function, as well as determining a better estimate of

the final reverberant crossover frequency.

To find the dereverberated transfer function for the finite element model, the

model is critically damped, ( = _N, and the transfer function is determined. This

transfer function is then compared to the asymptotes of the analytical dereverberated

transfer function found in Equations 2.37 and 2.38. Figure 4.4 shows these two

dereverberated transfer functions. The two transfer functions compare favorably, and

the fidelity of the finite element model is again confirmed.

Next, the finite thickness of the actuator-sensor pair is included in the model. The

piezoceramic actuator is composed of PZT-5A, and the sensor is made of Polyviny-

lidine Fluoride (PVDF). The modulus of elasticity of the PZT-5A piezoceramic ac-

tuator is Ep = 6.098 x 101'N/m 2 and the density is pp = 7500kg/m 3 . The mass and

stiffness of the PVDF have very little effect, so they are neglected. This model is

shown in Figure 4.5.
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Figure 4.3: Transfer Functions for Rectangular Actuator-Sensor Pair on Can-

tilevered Beam: Analytical with No Damping, and 2D FE Model

with 1% Modal Damping

To maintain symmetry about the beam, a representative actuator thickness is

placed on the top and the bottom of the beam. In order to incorporate this thickness,

two beam elements types are included within the finite element model. One element

type has the properties of the steel beam, as in the first finite element model. The

second element type includes the mass and stiffness of the PZT-5A actuators on the

top and the bottom of the beam. These two element types are given the proper

dimensions, and together they are used to create the finite element model. The

transfer function is then found using the previously described technique, and 1%

modal damping is added.
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Transfer Functions for FE Model with Zero Rectangular Actuator
Thickness and with Rectangular Actuator Thickness of 7.5 mil
on a Cantilevered Beam

Figure 4.6 is a plot of the actuator to sensor transfer functions of the finite element

model without the actuator thickness and the finite element model with the actuator

thickness. Note how the increased thickness of the actuator causes the frequencies

of the poles to increase, indicating that the stiffness perturbation is more significant

than the mass perturbation.

Thus, the question arises: what is the effect of increased actuator thickness upon

the actuator to sensor transfer function? Figure 4.7 addresses this question by plotting

the dereverberated transfer functions when the actuator thickness on each side of the

beam is 0 mils, 7.5 mils, and 15 mils. This plot shows that as the thickness increases,
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Figure 4.7: Analytical Asymptotes and Dereverberated Transfer Functions
for Varying Rectangular Actuator Thickness on Cantilever Beam:
0 mil, 7.5 mil, 15 mil

the beam stiffness increases and the static gain decreases. The transfer function is still

rolling off at -10 dB/decade at high frequencies. However, as the actuator thickness

increases, the frequency at which the transfer function begins to rolloff increases as

well.

To explain this theoretically, the stiffness of the actuator can be modelled as

strain feedback. As the gain KC is increased, the frequencies of the closed loop poles

move to the frequencies where the undamped open loop zeros cross 0 dB. At very

low frequencies, the poles do not move much because they are already very close

to the zeros. As the frequency increases, the pole-zero spacing of the open loop

transfer function increases, so that the finite actuator thickness has a greater effect.

However, at high frequencies, the open loop transfer function has rolled off such

that the undamped open loop zeros never cross 0 dB, so the finite thickness does not

affect these modes. This means that as the actuator thickness increases, the pole-zero

-I1I1I
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Y

Figure 4.8: Finite Element Mesh of the Top View of Cantilevered, Steel Beam
with Rectangular Actuator

spacing of the transfer function only changes within a small bandwidth near crossover,

and the pole-zero spacing does not change at very low or very high frequencies.

4.1.3 Finite Element Model Using 3D Brick Elements

The finite element models presented in the previous subsection improve upon the

analytical wave model by adding damping and finite actuator thickness. However,

they ignore a major factor in the transfer function that would influence actual be-

havior in the laboratory: the finite width of the beam and the actuators. In order to

model these effects, a finite element model is developed which is composed of three-

dimensional,eight-node, brick solid elements, and three-dimensional, eight-node, brick

elements with electromechanical coupling. The solid elements are used to model the

beam, and the coupled elements are used to model the PZT-5A actuators. The side

view and end view of this beam are the same as in Figure 4.5. The beam dimensions

are 20 inchesx 1.125 inchesx 0.032 inches. Since this model is three-dimensional,

there is now a top and bottom view, which are the same due to the symmetry of the

beam. A top view of the finite element mesh of the beam is shown in Figure 4.8.

The cantilevered end is on the left, and the actuator is on the portion of the beam

which has the finer mesh. The dimensions of the PZT-5A actuators are 5 inches x

0.75 inches x 0.0075 inches.



94 Chapter 4. Collocated Actuator-Sensor Pairs in Realistic Geometries

20

10

0

-10

m

-20

, -30
E

-40

-50

-60

-70'
10- 100 101 102 103  10 4

frequency (Hz)

Figure 4.9: Rectangular Actuator to Sensor Transfer Functions for 2D FE
Model with Finite Actuator Thickness and for 3D FE Model

To obtain the transfer function, a state space representation of the model is cre-

ated. The modal frequencies are placed into the A matrix, the voltage output of the

actuators is placed into the B and C matrices, 1% modal damping is added, and the

transfer function is calculated. Figure 4.9 plots the transfer function of the finite

element model using two-dimensional beam elements and an actuator thickness of 7.5

mils, as shown in Figure 4.5, and the transfer function of the finite element model

using three-dimensional brick elements. The output of the 3D model, whose units

are V/V, is normalized to the output of the 2D model. The frequencies of the low

frequency poles and zeros match fairly well, although they are not exactly the same.

This could be related to the fact that, in the three-dimensional model the width of



4.1. Rectangular Actuator-Sensor Pair

Figure 4.10: Three-Dimensional Modeshapes near 16000 Hz of Cantilever
Beam with Rectangular Actuator-Sensor Pair

the actuator is not the same as the width of the beam, whereas the two-dimensional

beam assumed a uniform cross-section in the portion of the beam covered by the

actuator.

From this plot, it is obvious that including the width of the beam has a profound

effect upon the transfer function. The rolloff of the transfer function for the three-

dimensional beam occurs after 20,000 Hz, rather than after 200 Hz in that of the

two-dimensional beam. There is also a high magnitude resonance in the transfer

function for the three-dimensional beam near 16000 Hz. This resonance is caused by

several modes exhibiting bending across the width of the beam. Figure 4.10 shows
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a few of the mode shapes of the beam near 16000 Hz. It is this family of modes,

which exhibits bending across the width of the beam and has high strain coupling to

the actuator and sensor, which causes the high magnitude response in the transfer

function. Therefore, if this experiment were performed in a laboratory, one would

expect the magnitude of these modes to delay the rolloff of the transfer function by

two decades.

4.2 Triangular Actuator-Sensor Pair

This section compares the analytical wave solution, two-dimensional finite element

solutions and three-dimensional finite element solution for a cantilevered beam with a

triangular actuator-sensor pair. Damping, finite actuator thickness, and finite beam

and actuator width are included in the models to determine their effects upon the

actuator to sensor transfer function. A transfer function from experimental data is

then compared to these models.

4.2.1 Analytical Wave Model

The analytical transfer function for the cantilevered steel beam with a triangular

actuator-sensor pair is determined using the solution algorithm of Section 2.2.4. The

asymptotic dereverberated transfer function is found from Equations 2.40 and 2.41.

A diagram of this cantilevered steel beam with the applied triangular actuator-sensor

pair is in Figure 4.11. Figure 4.12 plots the analytical transfer function and its

dereverberated asymptotes.

Since the finite thickness of the actuator and the finite width of the beam are not
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included in this model, this model will not match with any experimental data. As

in the case of rectangular actuator-sensor pair, finite element models will be used to

improve upon this model.

4.2.2 Two-Dimensional Finite Element Models

A finite element model of the beam in Figure 4.11 is generated using two-dimensional

elastic beam elements. The modes of this beam are determined and placed into a state

space model, and the transfer function is generated. Figure 4.13 shows the damped

transfer function and the analytical transfer function. In the case of the triangular

actuator-sensor pair, the units of the magnitude of the transfer function are m/N.

However, Figure 4.13 plots the magnitude of the transfer function in decibels. As in

the case of the rectangular actuator-sensor pair, these two transfer functions appar-

ently plot exactly except for the magnitudes of the poles and zeros. Now, with the

transfer function generated from the finite element model, a better estimate of the

magnitude response for the individual modes and the final reverberant crossover fre-

quency are known. Note that the crossover frequency of the dereverberated transfer

function remains the same. Also, when this small amount of damping is added, above

1000 Hz, many pole-zero pairs nearly disappear due to high modal overlap.

As in the rectangular case, the dereverberated transfer function for the finite

element model is determined by adding critical damping to the model, and solving

for the transfer function. This transfer function is then compared to the asymptotes of

the analytical dereverberated transfer function, Equations 2.40 and 2.41. Figure 4.14

shows these two dereverberated transfer functions, which match well, but not as well

as the corresponding plot for the rectangular actuator-sensor pair.
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Figure 4.13: Transfer Functions for Triangular Actuator-Sensor Pair on Can-
tilevered Beam: Analytical with No Damping, and 2D FE
Model with 1% Damping

The finite thickness of the actuator is next to be included in the model, as shown

in Figure 4.15. In order to incorporate this triangular actuator thickness, two types of

beam elements are included within the finite element model. The first element type

has the properties of the steel beam, as in the previous finite element model. The

second element is a two-node, two-dimensional, tapered, symmetric, elastic beam,

which includes the thickness of the PZT-5A actuators on the top and the bottom of

the beam. These two element types are given the proper dimensions and are used to

create the finite element model. The transfer function is then found as in Section 4.1.

Figure 4.16 plots the triangular actuator to sensor transfer functions of the finite
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Figure 4.15: Cantilevered Steel Beam with Finite Thickness of Rectangular
Actuator

100



4.2. Triangular Actuator-Sensor Pair 101

-o -100 -

E

-120

FEM Dereverberated TF
- Analytical Asymptotes

-140

-160 300

10 10 101 102 103  10 10
frequency (Hz)

Figure 4.16: Transfer Functions for FE Model with Zero Triangular Actuator
Thickness and with Triangular Actuator Thickness of 7.5 mil

element model without the actuator thickness, from Figure 4.11, and the finite element

model with the actuator thickness, from Figure 4.15. Note how the increased mass

and stiffness of the beam cause the frequencies of the poles to increase. This is same

effect as in the rectangular actuator-sensor case. As the thickness of the actuator

increases, the beam stiffness increases and the static gain decreases. Figure 4.17 plots

the dereverberated asymptotes of the wave model and the dereverberated transfer

function for the actuator being 0 mils, 7.5 mils, and 15 mils at its thickest point. As

this plot shows, the transfer function is still rolling off at -30 dB/decade. However, as

the thickness increases, the frequency at which it begins to rolloff increases slightly,

but not as much as in the case of the rectangular actuator-sensor pair of Figure 4.7.

1014.2. Triangular Actuator-Sensor Pair
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Figure 4.17: Analytical Asymptotes and Dereverberated Transfer Functions
for Varying Actuator Thickness on a Cantilever Beam: 0 mil,
7.5 mil, 15 mil
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Figure 4.18: Top and End View of Three-Dimensional Steel Beam with Tri-
angular Actuator-Sensor Pairs

4.2.3 Three- Dimensional Finite Element Models

In Section 4.1 it was shown that including the finite width of the beam in a finite

model has a large effect upon transfer function. Now, a three-dimensional brick model

of the cantilevered beam with triangular actuators and sensors is developed using the

same element types as in the rectangular case.
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Figure 4.19: Three-Dimensional Perspective of Steel Beam with Triangular
Actuator-Sensor Pairs

Figure 4.18 is a schematic of the top and end views of the three-dimensional beam

with triangular actuator-sensor pairs. In the three-dimensional case, the triangular

shape is obtained by shaping the width of the actuator; the thickness is a constant

7.5 mils. The symmetry of the beam is maintained by including two triangles which

are symmetric about the center of the beam in the shape of the actuator. Also, there

is an actuator-sensor pair on the top and the bottom of the beam. Figure 4.19 gives

a three-dimensional perspective of the entire beam, where the thickness of the beam

and the actuator are exaggerated.

To obtain the actuator to sensor transfer function for this beam, the natural

modes of the beam are calculated by the finite element software. Then a state space

representation of the model is developed as in the rectangular case, and the transfer

function is calculated.

Figure 4.20 compares the transfer function of the two-dimensional finite element

model with a finite actuator thickness in Figure 4.16 and the transfer function of the

1034.2. Triangular Actuator-Sensor Pair



Chapter 4. Collocated Actuator-Sensor Pairs in Realistic Geometries

-160' ... ..... I . . . . . .. . , 3 e.

10 101 10 103 104 105
frequency (Hz)

Figure 4.20: Triangular Actuator to Sensor Transfer Functions for 2D FE
Model with Finite Actuator Thickness and for 3D FE Model

three-dimensional finite element model. The output of the 3D model, whose units

are V/V, is normalized to the output of the 2D model. The transfer function of the

three-dimensional beam shows the impact of the transverse bending modes, similar

to Figure 4.9. However, the frequency range at which the transverse bending modes

take effect is lower for the triangular case. Also, a second resonance in the transfer

function delays some of the rolloff after the first group. These resonances are caused

by families of first and third transverse bending modes in the beam. Figure 4.21

shows a few of these mode shapes.
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(a)
Frequency: 5623 Hz

x

(b)
Frequency: 6200 Hz

x

(c)
Frequency: 33176 Hz

(d)
Frequency: 36312 Hz

Figure 4.21: Modeshapes of Cantilever Beam with Triangular Actuator-
Sensor Pair Showing First and Third Mode Transverse Bending
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Figure 4.22: Experimental Transfer Function and FE Model Transfer Function

4.2.4 Experimental Results

In order to confirm this analysis an experiment was conducted in the laboratory using

a beam matching the dimensions and properties of that pictured in Figure 4.18. The

actuator to sensor transfer function was recorded, and in Figure 4.22 the experimental

data is compared to the transfer function generated from the three-dimensional finite

element model. The static gains of both transfer functions have been normalized such

that the two transfer functions match at 1000 Hz.

Overall, the experimental data correlates very well with the finite element model.

At low frequency, there is a small gain error due to laboratory inconsistencies, such

as thermal effects, to which the PVDF sensor is particularly sensitive. Additionally,

the coherence of the data at low frequency is poor due to noise in the system. At very
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high frequencies, the correlation between transfer functions is low due to increasing

inaccuracies when nearing the limit of the finite element model. Regardless of these

small errors, the message is clear: the finite width of the beam, the actuator, and the

sensor lead to a large response in the transfer function above the frequency of the

rolloff predicted by the two-dimensional transfer function. This large response is due

to higher frequency transverse bending modes.

4.3 Discussion

This chapter discussed various models generated to improve upon the original Bernoulli-

Euler analytical models generated in Chapter 2. While adding damping and finite

actuator thickness to the model improved its accuracy, the most accurate model was

obtained when the finite width of the beam and the actuator-sensor pair were in-

cluded. In this case, the rolloff due to the lengthwise bending modes still occurs,

however, the magnitude of the response to the transverse bending modes is strong

enough to delay that rolloff.

A current field of research is the use of interdigitated electrodes on piezoceramic

actuators and sensors, which would allow for uniaxial actuation and sensing. This

means that an actuator would excite only the longitudinal bending strain, and the

sensor would only measure the longitudinal bending strain. If such an actuator-sensor

pair were used on this beam, the response to the transverse bending strain could be

lessened, and the rolloff due to the longitudinal bending stain would reappear.

To investigate this possibility of decreasing the response to the transverse bending

modes, a new finite element model is created. This model has the same dimensions

and properties as in Figure 4.18, except for one: the electromechanical constant which

1074.3. Discussion
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Figure 4.23: Transfer Function for FE Model of Rectangular Actuator-Sensor
Pair with d32 is Active and Inactive

couples the modal strain of the transverse bending modes and the voltage, d32, is set to

zero. A new state space model is determined, and the transfer function is calculated.

Figure 4.23 compares the rectangular actuator to sensor transfer functions where

d32 is active and inactive, i.e. when the actuator and sensor are piezoelectrically

isotropic, d32 = d31 , and piezoelectrically anisotropic, d32 = 0. These two transfer

functions are normalized such that the static response is 0 dB. The transfer function is

exhibiting some of the rolloff due to the longitudinal bending modes. The response to

the transverse waves is not zero when d32 = 0, however, the magnitude of the response

has dropped significantly as compared to the magnitude of the transfer function when

d32 = d31. This magnitude reduction is approximately 20 dB, which is about a factor
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Figure 4.24: Transfer Function for FE Model of Triangular Actuator-Sensor
Pair with d32 is Active and Inactive

of 10. Poisson's ratio for steel is v = 0.33, and v2 = 0.1089, which is one-tenth of the

previous coupling. It is evident that the magnitude reduction is related to the Poisson

ratio of the beam, since the transverse strain associated with transverse bending is

still sensed and actuated by the d31 piezoelectric effects.

Figure 4.24 compares the transfer functions for the triangular pair where the

actuator and sensor are sensitive to transverse bending waves and are not sensitive

to these waves. The effect of setting d32 = 0 in the triangular case is similar to that

of the rectangular case. Therefore, in both the rectangular and triangular cases it is

possible to retain some of the rolloff of the transfer function for the Bernoulli-Euler

beam by further tailoring the actuator-sensor pair to the task.

1094.3. Discussion





Chapter 5

Conclusions

5.1 Analytical Models for Collocated Actuator-

Sensor Pairs

It was shown in Chapter 2 that wave models can be used to determine analytical

expressions for the magnitude of actuator to sensor transfer functions for Bernoulli-

Euler beams. The analytical dereverberated transfer function is composed of low

and high frequency asymptotes, which are determined by taking the limits of the

analytical transfer function as k -+ 0 and k -+ oo.

The high frequency transfer function for a point actuator-sensor pair always rolls

off as a function of k-3 . The exact solution for the low frequency asymptote depends

upon the location of the actuator-sensor pair on the beam and the beam end condi-

tions. The exact solution for the high frequency asymptote is only dependent upon

the beam end conditions.

The high frequency transfer function for a rectangular actuator-sensor pair always

rolls off as a function of k- 1, while the transfer function for a triangular pair always

rolls off as a function of k -3 . The exact solutions for the dereverberated transfer

111



112

functions of the rectangular and triangular pairs are not dependent upon actuator-

sensor location or the beam end conditions.

At first glance, the analytical transfer function for actuator-sensor pairs whose

shapes are more complex than a triangular, e.g. quadratic and cubic, appear to

rolloff with slopes steeper than k - 4 . However, further investigation revealed implicit

factors of k in the numerator of the analytical transfer function, which causes it to roll

off as a function of k-4 , whenever the shape is more complex than triangular. Due

to manufacturing difficulties and diminishing returns in rolloff, shapes more complex

than triangular are deemed impractical, and no further investigation was conducted.

In addition to the wave solution, a modal residue solution were used to determine

the dereverberated transfer functions for several actuator-sensor pairs on a pinned-

pinned beam. These solutions produced results which more closely matched the

analytical asymptotes as the actuator and sensor shapes increased in complexity.

However, when end conditions other than pinned-pinned are used, the assumed mode

shape becomes complicated, and the solution becomes difficult to generate due to

numerical instabilities.

5.2 Analytical Models for Noncollocated Actuator-

Sensor Pairs

In Chapter 3, wave modelling was used to determine the transfer functions for non-

collocated point, rectangular, and triangular actuator-sensor pairs on pinned-pinned

beams. Only noncollocation due to a difference in length were considered for the

shaped actuator-sensor pairs.

Chapter 5. Conclusions
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The transfer function for the noncollocated point actuator-sensor pair will rolloff

as a function of k-3 , regardless of the distance between the actuator and sensor.

Only in analytically perfect collocated conditions will the transfer function follow the

collocated high frequency asymptote. Even with a slight noncollocation, the transfer

function will eventually follow the lower noncollocated asymptote. The asymptote

is lower because the rolloff effect of the evanescent waves is stronger than the rollup

effect of the missing zeros in the transfer function.

The transfer function becomes noncollocated at the wavenumber where the defor-

mation of the beam at the position of the actuator is the opposite sign of that of the

position of the sensor. A general rule of thumb for wavenumber of noncollocation is

knon - (5.1)21 2,

where knon is the wavenumber of noncollocation and x, is the distance between the

actuator and sensor.

It is known that for a collocated point actuator-sensor pair, the zeros of the transfer

function are the same as the poles of the transfer function for the same beam with a

pinned boundary at the position of the actuator-sensor pair. Analysis showed that,

in the case of a noncollocated point actuator-sensor pair, the zeros of the transfer

function cannot be replicated by the poles due to any simple boundary condition.

In the case of the noncollocated rectangular actuator-sensor pair, the transfer

function will always rolloff as a function of k- ', regardless of the difference in actuator

and sensor lengths. However, in the rectangular case, the noncollocated asymptote is

actually higher than the collocated asymptote. The asymptote is higher because the

missing zeros have a greater effect on the magnitude than the evanescent waves.



The rule of thumb in Equation 5.1 can be used as a rough estimate for the

wavenumber of noncollocation, where x, = 1, - la. As the difference in length of

actuator and length of sensor increases, the wavenumber of the first missing zero de-

creases. This implies that there is little room for manufacturing error if a collocated

transfer function is desired using a rectangular actuator-sensor pair.

The actuator to sensor transfer function for the triangular pair will always rolloff

as a function of k- 3 , regardless of the difference in length between the actuator and

sensor. The noncollocated transfer function follows an asymptote which is lower than

the collocated asymptote. This is a result of two factors: there are no missing zeros

in the noncollocated transfer function to increase the magnitude, and the evanescent

waves cause a magnitude decrease in the transfer function.

These properties make it possible to improve the rolloff characteristics of the

transfer function. By following the rule

- = 1.43 (5.2)
la

where 1, is the length of the sensor and la is the length of the actuator, the region of

near pole-zero cancellations in the transfer function can be maximized. Thus, a small

amount of additional rolloff can be gained, and reverberant modal responses in this

range of wavenumber are minimized.
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5.3 2D and 3D Solutions for Collocated Shaped

Actuator-Sensor Pairs

Chapter 4 showed that finite element models could be used to add realistic effects

to the beam model that were not included in the wave models. Such effects include

damping, finite actuator thickness, and finite beam width. The general results of

adding these effects is the same for both the rectangular and triangular actuator-

sensor pair.

The transfer function created from the two dimensional finite element models

match the wave solution extremely well. Once this correlation is established, the

finite element model can be used to add damping and finite actuator thickness to

the system. As the thickness of the actuator increases, the transfer function de-

creases in magnitude due to the increased stiffness. Also, the frequency at which

the dereverberated transfer function rolls off increases as the actuator thickness in-

creases. However, the slope of the high frequency rolloff remains the same regardless

of actuator thickness.

The transfer functions generated from the three dimensional finite element models

show the problems associated with high frequency transverse bending modes. Since

the actuators impose transverse strain, the sensor observes transverse strain, and there

is a Poisson coupling between longitudinal bending modes and transverse bending

modes, a large response occurs in the transfer function due to the transverse modes.

This large response causes the response due to the transverse modes to mask the

rolloff associated with the longitudinal bending modes.

If the actuator and sensor are designed such that the actuator imposes no trans-

verse strain and the sensor observes no transverse strain (d3 2 = 0 for both the actuator
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and sensor), only the Poisson coupling remains. This will reduce the transfer function

response to the transverse bending modes by about 20 dB, and some of the rolloff

associated with the Bernoulli-Euler bending can be recovered.
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Appendix A

Transfer Functions for Collocated
Actuator-Sensor Pairs

This Appendix is a listing of some representative transfer functions that were derived

for the completion of this work. For all of the following transfer functions listed, the

actuator is centered on the beam.

A.1 Transfer Functions for Point Actuator-Sensor

Pairs

Collocated point actuator-sensor pair on a pinned-pinned beam, which is the same as

Equation 2.29:

Yp e k (sin( ) - cos(!-)) + e-kl (sin(L) + cos()) (A.1)
1 2 (A.1)

Up 4EIk3 cos( ) (e1 + e kl

Collocated point actuator-sensor pair on a free-free beam:

cos() (e2' + e-2kl) + 2Y(p 2 (A.2)
up 2EIka [e (sin( )+ cos( )) + e- (sin(l) - COS(-))]

2 2 2 2 j
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Collocated point actuator-sensor pair on a cantilevered beam:

cos(() [cos(!) (ek - e-kl) - sin( ) (ek + -kl + 2)]
(A.3)

Up 2EIk3 (2 cos2() - 1) (ekI -kl) + 2]

Noncollocated point actuator-sensor pair on a pinned-pinned beam for negative x,:

up 4EIk3 cos(L) (e' + e-2k ')

(A.4)

for positive x,:

\I fI .1k -k/ 1 L 2 L ekI

Sp ekl -k!, cos(kx,)sin() + sin(k ,) cos( ) +cos( ) e -e 'ke

up 4EIk3 cos(-) (ek' + e-k')

(A.5)

Noncollocated point actuator-sensor pair on a cantilevered beam for negative x,:

C= 2 sin(kx,)[sin(")(e- kl_ eIkl)- cos )(e l ekl)+( - cos2l )ek l e -kI

+cos(kx,) 2 sin( ) cos() (-ekI e-kl) + ek1 - klI

+e-ksn) (el l kl -Ik-2cos())-o(e- k kl2e-klCOS+ -k

+ek [in(l) I(- '- 2 cos(2)) -cos() (e-2k kl 2eklCos( )) e-k

yp C1
p 4EI [(2 os - (e e) 2] (A.6)

Up 4Elk 3 2 coS2(I) - 1 eki + e-kl) + 2
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for positive x,:

C = 2sin(kx,)[sin() e- 1- eIkl)COS -kle klCOS2 1)(e kl+e -k) +

2 -_ ( l= C 2 (A .7)

Sensor Pairs

Collocated rectangular actuator-sensor pair on a pinned-pinned beam:

C3 = (cos(k)[e ksin - 2 cos( ) sin( )-k') e - e- k 2 cos( )sin )-1

+2eksi()(cos2 (,kk )- (e '-2e + ekkl)]

y r = C3  (A.8)

U r 2EIk3cos() -(eIk e-kl

Collocated rectangular actuator-sensor pair on a free-free beam:

0= [cos() [ekl (kl~2 cos() sin( ) -2 coSe2 )+ e-cl(ekl+2 cos2 C"()-2 cos(ka) sin(k)sn(

+sin()e (ekla -2 cs) sin( e)-  2 cos(ka)3)

+ e , ( keIl 2 cos 2( )_2 cos() sin( 3)]
+2sin +4sin()C 2 ek +
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Yr (A.9)
ur 2Elk cos() (k1 - e-kl) + sin() eikl + e-1k)

Collocated rectangular actuator-sensor pair on a cantilevered beam:

C5 = 2 cos() sin() [(2 cos 2( ) -1) (ek+ e- k l) -ekla - e-kl + 2]

+ 2 cos ) sin() [(1 - 2 cos2()) (ekI e-kl)

+ 2 cos2 (B) [-kl (1 eI) -eki ( -kl)]

+ (2 cos2 ( ) - ekl _- 3) (e-ki - ekI) e-kl - ekli

Yr

Ur 2EIk [(2 cos2(N) - 1) (eki + e-kl) + 2]
2/ ' / Y

Noncollocated rectangular actuator-sensor pair on a pinned-pinned beam, where the

sensor is shorter than the actuator:

C = -2sin(-k) [(elkl - e-) (sin() sin(k) + cos(') cos(k))

+COS( [ -2l ,

Yr

- e2kl+ ee -kle kla

06

ur 2EIk cos(e) (ekl + e-2kl)

When the sensor is longer than the actuator:

C7 =-2 sin(k ) [(e l + e ikl) (sin() sin(k CO) + cos(!) os-)]

(A.11)

+cos( ) [(e k

Yr

Ur ,

- ekl) (eI2 e + ek ekl

C7
Ekcos() kl + kl!Elke cos(! - (e + e_2

- 2]

(A.10)

(A.12)
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A.3. Transfer Functions for Triangular Actuator-Sensor Pairs

A.3 Transfer Functions for Triangular Actuator-

Sensor Pairs

Collocated triangular actuator-sensor pair on a pinned-pinned beam:

C8 = 2 sin() [(ekil + 1) (2 cos(k) - 1) + el Cos2 (a)]

+cos() [2 sin() (cos(ka) -2)(el +)ek'1 (e-kla 4e1 +3) - ekla +4e -3

(A.13)
Ut 2EIk3 cos(!) (ekI + 1)

Collocated triangular actuator-sensor pair on a free-free beam:

C = sin() [2 cos(a) cos(A) - 2) (1 - eikL)

+2 sin(k) (cos(A) - 2) (1 + ekL')

ekl -k 4- 1) - ek + 4e2 - 1]

+ cos(L) [2 cos( ) (coS(a) - 2) (eki + )

+2 sin() (cos() - 2) (eki - 1)

+ekl (e-kle - 4e- k l + 5) + ekla - 4e 'kla +

+4e kl1 - cos(a) (2 - e- - ekla)

2EIk3 (cos(-) (ek l - 1)+ sin( ) (ekI + 1))

Yt

Ut
(A.14)
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Appendix A. Transfer Functions for Collocated Actuator-Sensor Pairs

Collocated triangular actuator-sensor pair on a cantilevered beam:

C10 = 2 cos() sin( i ) e (4e22 - l -kl "-6)+2 cos() (e2kl+) (2-cos())]

+ 2 cos(k) sin(,) [(2 cos 2( - 1) (e2kl + 1) - 2ekl]

+ 2 cos2 ( [e2k (e-kl. - 4e- 2kl -_ik) + 3) - ek' + 4Ikl - sin(-) - 3]

+ 2 cos(k) (2 - cos (k)) (e2kl + 1) + 4 sin(kl (21- 2ek' + 1)

e-kl (4e_"' -4e- .l+e- kle.)e2l (4e- _1 -k _l)a 4e ka

Yt C10 (A.15)
Ut 2EIk3 2ekl + (2 cos2( i 2kIL (A.15)

Noncollocated triangular actuator-sensor pair on a pinned-pinned beam, where

sensor is shorter than actuator:

C11 = 2 sin (ek +) (1 - cos)) (os() - )

+ cos( 2 (ekl + ) (sin(k) cos(k) - sin(k) - sin(k))

+e- e - e2kla) (kl + ekl" - 2)

+2 (ekl (1 - ek) + e -)]

Yt (A.16)
Ut 2EIk3 cos() (ek + 1) (A.16)

When the sensor is longer than the actuator:

C12 = 2 sin() (ekl 1) (1 - cos() ( o() - )

+cos()[2(ekl + 1) (sin ) cos k) -sin )- sin(

+ e klkl - - k) (e~ ka + ekl - 2)

+2 (ekl ( - ekl) + kla
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A.4. Transfer Function for Quadratic Actuator-Sensor Pair

Yt C12 (A.17)
Ut 2EIk3 cos(_) (ek l + 1)

A.4 Transfer Function for Quadratic Actuator-

Sensor Pair
Collocated quadratic actuator-sensor pair on a pinned-pinned beam:

C 13 = 2 sin (e 1+ 1) (5 - 4 cos(k) - cos(k) - sin() sin())

+ cos() [2 (e" + 1) (4 sin (a) cos(k-) + sin( ) cos(2') - 4 sin( o ) cos(- ))

+ekl (5 - 2kl, + 4e- ka - 4e- kla - 4e- lk "l -

-5 - 2kI,, - 4e ' +4ekl" + 4ekl + ekl]

Yq C13

Uq 2EIk cos( ) (ek 1)

A.5 Cubic Actuator to Sensor Transfer Function

Collocated cubic actuator-sensor pair on a pinned-pinned beam:

C14 = 192 sin( ) eki + 1) (cos( ) 2 - cos( )) - 1)

+ 4 cos ) (cos ) - cos()- 1)

+ 4 cos(k ) (2 cos(-3 ,) - cos(k2- ) - cos(ka) +

+cos(&) [ 192 (ekl + 1) [sin(") (cos(k2z) - 4 cos(-3 ) + 4 cos(k')

+4 sin(-a) (cos(ka) - 1)

+4 sin( ) (cos(3) - 2 cos(kA) + 1)]

+ 96 ekl(e - k l' + 12e - kla + 4e- kla - +4e 4e- ka

-12e- 4ke - - 12e - kl 11)

e - kla)

(A.18)

(A.19)

1)]

-2)
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Appendix A. Transfer Functions for Collocated Actuator-Sensor Pairs

- 12ekl -4e4kld +4e kla " 4e% kl

+12e kl +4e6kl + 12e2kl- 11]

+ k1 eki +1

S_ C1 4 (A.20)

uc 192EIk7 cos(k) (ekl + 1)

2I
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