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Doctor of Philosophy in Aeronautics and Astronautics

The mechanism of the bending mode flutter of a modern transonic fan has been

studied using a quasi-3D viscous unsteady code. The type of flutter in the scope of

this research is that for a highly loaded blade with a tip relative Mach number just

above unity, commonly referred to as transonic stall flutter. This type of flutter is often

encountered in modern wide chord fans without a part span shroud.

The code written as a part of this research uses an upwinding scheme with Roe's

3rd-order flux differencing, and Johnson and King's turbulence model with later mod-

ification by Johnson and Coakley. An extensive series of code validation calculations

were performed and the reliability of the code has been verified against data and other

calculational procedures.

The calculations of the flow in this fan revealed that the source of the flutter is

an oscillation of the passage shock, rather than a stall. As blade loading increases,

the passage shock moves forward. Just before the passage shock unstarts, the stability

of the passage shock decreases, and the shock oscillates at a large amplitude between

unstarted position and started position with small blade vibration. The shock foot of

the oscillating passage shock on the blade pressure surface exerts the dominant blade

exciting force.
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Nomenclature

A +  van Driest damping constant

a speed of sound

C chord length

Cf skin friction coefficient

D near wall damping factor

e total energy

F, G flux vectors in directions normal to and 17 direction cell faces

Fv, Gv viscous flux vectors in directions normal to and r direction cell faces

H total enthalpy

H boundary layer shape factor

h enthalpy

h passage height

I unit matrix

i grid number in ( direction

J Jacobian of a grid cell

J+ downstream- and upstream-going characteristics

j grid number in 77 direction

k reduced frequency

Lm dissipation length

M Mach number

Pr Prandtl number

p pressure

Q state vector = (p, pu, p, pe)T

R universal gas constant

Re Reynolds number

S correction term vector for moving grids

s entropy

T temperature

t time



u velocity in x direction

Ub outward velocity of the cell face

us velocity normal to the cell face

u2 boundary-layer frictior velocity

v velocity in y direction

X axial direction

y circumferencial direction

y + boundary-layer inner coordinate

a flow angle

P inter-blade phase angle

' specific heat ratio

6 boundary-layer thickness

77 grid direction approximately normal to the blade surface

KC von Karman's constant (= 0.41)

A eigenvalue matrix

Ai eigenvalue

# viscous coefficient

v kinematic viscosity

Vt turbulence kinematic viscosity

12 numerical cell control volume

p density

7 time after coordinate transformation

7 shear stress

characteristic variable

grid direction approximately parallel to the blade surface

Subscripts and superscripts

( )!j value at position (i, j), time step n

( )P time step after ( direction ADI, but before 77 direction ADI



( ) dimensional values

( ),n inflow values

( )out outflow values

( )wall values on the wall

( )m values at maximum Reynolds stress height in the boundary layer

( )i values in the inner layer in the boundary layer

( )o values in the outer layer in the boundary layer

( )eq values of equilibrium boundary layer



Chapter 1

Introduction

1.1 Background

One of the most important requirements for jet engines for modern civil transport air-

craft is high fuel efficiency at high-subsonic cruising speeds. This requirement results

in high bypass-ratio transonic fans, which have very thin and flat blade sections. Such

blades with less camber angle are more vulnerable to flow separation at high incidence

angle than conventional low-speed blade sections. In a typical compressor/fan the in-

cidence angle increases as the speed is reduced through the operating line. Hence,

separation is more likely to be encountered in a transonic fan at a part speed operating

point. When separation happens, the blade can experience stall flutter under certain

conditions, as we can see as the hatched region-I and region-Ia in Fig. 1.1. In the fig-

ure, region-I is categorized as subsonic/transonic stall flutter, but the mechanism of

the transonic stall flutter is not well understood yet. What we know of this flutter is

that the oscillation mode is in bending, whereas classical stall flutter is predominantly

in a torsional mode (a study by Sisto [21] shows less likelihood of classical stall flutter

in a bending mode). Some reports point out the possibility of shock wave oscillation

being involved [25, 28], but the mechanism of how the shock oscillation occurs is still

unknown.

Since higher loading is desirable to achieve higher efficiency with less weight, engine

designers often encounter stall flutter in prototype rigs. When they encounter stall

flutter, the solution is to reduce the blade loading by reducing the stage pressure ratio,

which also results in lower efficiency at the cruise point due to a shifting of the entire

operating line towards the lower blade loading side. An alternative solution is thickening



the blade, which also reduces the performance. They may use a sophisticated control

system to avoid efficiency loss at the cruise point, but this will penalize the performance

by increasing the weight and complexity of the system and is not likely to be used yet.

Designers may also increase the number of blades to reduce the load of each blade, but

this will again increase the weight and losses. Therefore, a better understanding of the

flutter itself is needed first, in order to handle this problem with less penalty.

PRESSURE
RATIO

I Subsonic / Transonic Stall Flutter
a System Mode Instability
II Choke Flutter
Ill Low incidence Supersonic Flutter
IV High Incidence Supersonic Flutter
V Supersonic Bending Stall Flutter

CORRECTED MASSFLOW

Figure 1.1: Typical axial compressor/fan characteristic map (from Sisto[20])

1.2 Previous Work

Because of the difficulty in observing and modeling the behavior of separated flow, there

is less research on stall flutter than on flutter with attached flow. Sisto(1953) [21] pre-

dicted stall flutter by solving differential equations for blade vibration with aerodynamic

forces, derived from subsonic static cascade experiments, used as an exciting force. He

treated the effect of stall by describing the dynamic force coefficient versus angle of at-



tack by a polynomial. In his calculation, he showed that the blades in a torsional mode

will exhibit large unsteadiness but the one in bending mode may not flutter. Yashima

and Tanaka (1977) [32] introduced a leading edge separation model into a potential flow

calculation. The modeled separation area was extended far downstream. The match

with experimental data was only qualitative. Chi(1980) [5] performed a calculation

with a small perturbation equation and a separation model initiating from a certain

fixed point on the blade suction surface. The matching of the reduced frequency for the

largest negative damping was excellent but the magnitude of damping was not. Sisto,

et al (1989) [22] adapted a vortex method used by Spalart [23] in a rotating stall cal-

culation to the stall flutter case. They were very successful in simulating the evolution

of separation, but all these calculations were for low subsonic stall flutter in torsional

mode. None of them handled viscous effects nor compressibility effects, including shock

waves.

For bending mode stall flutter of a transonic fan, Stargardter [25] of Pratt&Whitney

performed thorough flutter measurements in a transonic fan rig and pointed out the

possibility of shock wave oscillation contributing to the flutter. The flutter occurred

only at conditions at which shock waves existed, however he could not find any evidence

of the exciting aerodynamic force from the pressure measurements. Szechenyi [28] of

ONERA performed two dimensional wind tunnel experiments for the cases in which

a shock wave is attached to the leading edge of the blade, and found the shock wave

oscillation contributed to a dominant exciting force. But the experiment with the shock

wave detached was not successful because it was too difficult to attain a pitchwise

periodic condition in the cascade. Also, in an unpublished two dimensional transonic

wind tunnel test done by Isomura(1988), a detached shock impinging on the adjacent

blade's suction surface was observed to exert a large exciting force (Fig. 1.2). However,

due to the lack of a proper mechanism to synchronize the cascaded blades in bending

mode oscillation and due to poor pitchwise repeatability of the flow in the cascade, the

quality of the data was insufficient to show whether this is the true mechanism for this

type of flutter. The experiment was performed by allowing the free oscillation of the

cascaded blades, but the resulting inter-blade phase angle was far from uniform, passage

to passage (Fig. 1.3). When the shock wave is detached from the leading edge of the



blade, the unique incidence condition is lost, and the flow changes its angle continuously

in the subsonic region behind the strong shock upstream of the cascade. In an annular

cascade, the shock waves extend upstream, and the flow coming into each passage passes

through the same number of shock waves to be deflected to the correct flow angle. But

in a linear cascade, the flow coming into a passage will experience only the shock waves

generated by the blades upstream of it, the blade immediately downstream of it, and the

blade itself. Hence, the number of shock waves the flow passes through is different from

passage to passage. When the shock is detached, it is not as stable as when it is attached,

and so it is extremely difficult to obtain a pitchwise periodic condition in a linear cascade

experiment even at steady flow. An annular cascade or rig test will solve such a problem,

but it is very expensive to perform unsteady experiments in such facilities and also

difficult to visualize the flow to clarify the aerodynamic mechanisms. Hence, numerical

simulations are a very useful and feasible tool to study this phenomena, and the author

decided to start a research of the flutter mechanisms by numerical simulations.

Joubert [15] of SNECMA performed an unsteady quasi-3D Euler code calculation,

and showed that the shock oscillation is indeed a source of exciting force. Since this was

an Euler calculation, the shock oscillation was all due to the change of the potential field

due to the given blade oscillations and the effect of the shock boundary layer interaction

was not included. Thus, he could show the possibility of the instability by the shock

movement due to potential effects, but did not show whether it is the most important

mechanism for the transonic flutter. In transonic fan with strong shock wave in the

flowfield, shock-boundary layer interaction may play an important roll, and therefore

the author decided to use a viscous algorithm for his numerical simulations.
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1.3 Objectives of the thesis

The objective of the dissertation is to reveal the detailed mechanisms of the transonic

high-loaded flutter observed in a IHI transoraic fan rig at part speed. Some specific

questions to answer in this research are as follows.

1. Is this flutter stall flutter or not?

2. Is shock wave playing important role in this flutter?

3. Is the effect of the reduced frequency large so that increasing the natural frequency

of the blade works effectively to avoid the flutter?

4. Are the mechanisms of this flutter unsteady so that quasi-steady analysis is not

valid for this flutter?

Since the cascade test in transonic regime difficult to perform, and because the nu-

merical simulation will facilitate us to study the effect of various aerodynamic parameter

one by one, these objectives will be studied by the numerical simulation. One thing to

emphasize in using the computational fluid dynamic code is that, it is important to

validate the code thoroughly so that we can trust that the output of the computation

corresponds to the results of an experiment.

1.4 Numerical approach of the research

The physics to be simulated in the numerical calculations include

1. shock movement,

2. shock-boundary layer interaction,

3. separation.



Therefore the basic equations should be the Navier-Stokes equations. To accurately

simulate these phenomena

1. numerical scheme,

2. turbulence model,

3. transition model,

4. proper grid and,

5. proper boundary conditions,

are all important. At the beginning of research, rather than develop new methods for

each of these items, the author considered it more important to select the best existing

methods for each item. Furthermore he chose to write a code rather than using an

existing code in order to have the flexibility to quickly modify the code during the

research.

1.5 Construction of the thesis

The thesis consists of two parts. The first part describes the detail of the numerical

code and its validation processes. The second part describes the results of the numerical

simulation of the transonic flutter using this code.

Chapter 2 and 3 describes the basic equations and the detail of the numerical scheme,

respectively. Chapter 4 describes the calculation grid, and Chapter 5 shows the accu-

racy of the code by a series of the validation calculations. In Chapter 6, numerical

investigation of a flutter in a transonic fan is reported, and the effects of a variety of

parameters are discussed. Conclusions and recommendations for future work are stated

in Chapter 7.



Chapter 2

Basic equations

In a transonic fan flow, shock waves exist in a passage and its interaction with boundary

layers on blade surfaces can generate unsteady forces. Since an object of this research

is to find the effect of such an interaction on flutter, it is essential to start from viscous

equations.

2.1 Non-dimensionalization

The variables are non-dimensionalized as follows:

P

Pin

ee
a-2,tn

Kin

Pinin

Re pinain,

Pin

pin - 7 Rin
P, (-1)

n7-1

Hence, relations between some aerodynamic variables are written as follows:

p = p(-r- 1)(e - 1 (u + v 2))

H = e+1
P

in
Pin

(2.1)

(2.2)

(2.3)



a = .o
Vp,

2.2 Quasi-three-dimensional thin-shear-layer Reynolds-

averaged Navier-Stokes equations

The basic equations to be solved are quasi-three-dimensional thin-shear-layer Reynolds-

averaged Navier-Stokes equations. The equations before the thin-shear-layer approxi-

mation are as follows.

* Continuity

Ohp 8hpu
at+ -
Bt Bz

+hp
+ = 0

ay

* X - momentum

ahpu ahpu2

at ax
ahpuv+ y ap 1 ah7,,-h + (

Ox Re Ox

* Y - momentum

ahpv

at

* Energy conservation

ahpuv
+ xOz

ahpv
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+ y
Op

-hap
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1 ( +_h )
Re z y

ahpe ahpue ahpve ahup ahvp 1 h f ahg
at + ax + ay - y + ay

These equations can be written in the matrix equation form as

OhQ OhF 8hGat+ + ayat 82 By
1 ahFv
R ( a

ahGv
+ ~y =S

dy

(2.4)

(2.5)

+ ay )ay
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(2.8)

where
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f = urj + Oa (2.15)
' (7 - 1) 1 x

g = ay + uyy + a 2  (2.16)S+v p(7 l - 1) Oy

Since we do not want to restrict the grid to be aligned to the Cartesian co-ordinate

system, we transform the basic equations to the arbitrary co-ordinate system , 77 by

L1 2aa2)
at 1 at at O

a 0 a (2.17)toX a ab t a

a ay ay an

The mapping from (r,,7) to (t,z,y) can be written as
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Because the mapping from (t,z,y) to (r,(,q) is the inverse of the mapping from (7,(,i)

to (t,z,y), following relations are derived
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0 O a 0 a at 0 ax
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where J is the determinant of the mapping from (7,(,77) to (t,z,y)
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Then, the Navier-Stokes equations are
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In a high Reynolds number flow like the one in transonic fans, the viscous effect due

to the shear normal to the flow direction is dominant and that due to the streamwise

gradient of the velocity can be neglected. So if we choose the grid system to be ap-

proximately aligned to the flow direction in. the boundary layer and in the wake, we can

simplify the basic equation by neglecting the streamwise shear stress term. This is called

the thin-shear-layer approximation, and the basic equations are written as follows:

J + + V* = S* (2.25)J 0 1+ + 77

0

G * 1Pa
V* - 1 a7 (2.26)

Re Re av

-2 U + I2 + a
2

Now, rewrite Eq.( 2.25) in "conservation form" to allow the discontinuities at shock

waves by integrating the equations over the computational cell

S Q rF* + (G - V*). (2.27)

Jhdd - + - S dd. (2.27)

Since the Jacobian is equivalent to the computational cell area, the left hand side

(L.H.S.) of these equations can be rewritten by using Q, the average value of Q in

the control volume

dhQ= - (F*d - (G* - V*)d) + J/ S*d d. (2.28)

Note that the area of the computational cell in (6, 77) coordinate is unity. Also note that

the sign in form of (G* - V*) is flipped due to the counter-clockwise line integral.

The quasi-three-dimensional assumption was employed because the primary objec-

tive of this research is to see the detail of the phenomena at the point where the detached



shockwave hits the suction surface of the adjacent blade. There may some objections

to this assumption since the shock oscillation in a real fan may be smaller than that in

the quasi-three-dimensional calculation because there is a relief effect of the unsteady

pressure through the subsonic part which always exist at the hub.

In the rest of the thesis, the time variable will be written as t instead of 7 to avoid

confusion with shear stress.



Chapter 3

Numerical schemes

In this chapter, detail of the numerical scheme, boundary conditions, turbulence model,

and transition model are explained.

3.1 Upwinding ADI scheme

The basic scheme used in this research is the upwinding Alternating Direction Implicit

(ADI) scheme formulated by Giles [10]. This scheme is similar to the ADI scheme used

by Rai [16] except the difference terms of the other direction are not neglected and are

kept in the right hand side of the equations.

The implicit scheme was chosen because of its unconditional stability. In time-

accurate, viscous, transonic, turbulent-flow calculations, the grid size in the boundary

layer has to be extremely small to resolve the laminar sub-layer which is essential for

accurate skin-friction calculation and shock-boundary layer interaction simulation. In

such a case, explicit schemes for which the CFL number is limited by unity, take a

couple of orders of magnitude longer calculation time than implicit schemes and may

not be practical. In implicit schemes, the code can be run with a CFL number larger

than 1000, based on the smallest grid size.

An upwinding scheme is chosen because of its ability to capture shockwaves without

excessive smearing. The capability to simulate the shock behavior accurately is a very

important aspect of the current code.

The basic partial differential equation (PDE) (Eq.( 2.25)) is discretized in implicit

form by using backward Euler time differencing as
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This non-linear equations cannot be solved directly. The way to solve this problem is

to linearize the equations by taking delta-form as follows:

At 
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1,3 '23 -

(3.3)

(3.2)

Note that the effect of the moving grids are included in the last term in the right hand

side (R.H.S.) and in the flux terms in the left hand side (L.H.S.) of the equations. The

detail of the treatment of the moving grid is discussed later. These basic difference

equations were solved by splitting the implicit matrix inversion calculations in two

steps; one step for each dimension. This is the ADI scheme and the basic equations

were rewritten as follows:

i( J )+1+
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The superscript ( )(p),and ( )(Pl) indicate the interim time steps after 77 sweep and

Ssweep, respectively. To calculate these equations, AQ '+L (po) is set to zero

A Q l (po) = 0, (3.6)

at the beginning of a time step. AQn+l Pl is calculated by ( sweep calculation of

Eq.( 3.4), and the results are used in Eq.( 3.5) to calculate AQ,+'po by 7 sweep. The cal-

culations of these two equations will be repeated for a specified number of sub-iterations,

and the final result of the time step is attained by

113 Z,j,j
Qf +l_ 49 1(po) (3.7)

at the end of the time step.

The 1/2s in the subscripts indicate that the value is evaluated on the face of the



calculation cells. This is done by mass-weighted averages as follows:

Pi+

Ui+

Vi+ L

Pi+1 + Pi

i+lui+1 + zi

=+ "
f~H+

The ADI line calculations were executed as shown in Fig. 3.1. The ( direction

calculations were done first and then 77 direction calculations. The 77 direction ADIs

in the downstream region of the blade were shifted to make the wake boundary just

ordinary points.

Figure 3.1: The ADI line calculation procedure

The J in Eq.( 3.5) are the Jacobians, which state the relation between z - y coor-

dinates and ( - 77 coordinates. In the current case, the ( - r7 coordinate system is a

rectangular coordinate system with unit spacing both in ( and 77. Thus the Jacobians

are simply the area of the computational cells

J = Xzy, - Xz y 9

(3.8)

(3.9)
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Each Q derivative term of inviscid fluxes in the L.H.S. of the equations

decomposed into three matrices by similarity transform as in
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As' is the length of the calculation cell face. Note that the additional terms due to the

moving grid, which appeared only in the S* term of the original Navier-Stokes equations

Eq.( 2.28), are implemented also in Q derivative terms of inviscid fluxes of the L.H.S.

of the discretized equations.

The four numbers in the matrix A are the eigenvalues of the -* :ve system, corre-

and where
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1
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sponding to the upstream going pressure wave (u - a), the downstream going pressure

wave (u + a), the vorticity wave (u), and the entropy wave (u).

The eigenvalue matrices can be split into those for positive eigenvalues and those

for negative eigenvalues as in

A+ = diag(max(O, Ai))

A- = diag(min(O, A)).

Using this notation, the Q derivative terms of the fluxes can be split into positive and

negative matrices

A: = T-'A+T. (3.23)

Hence, the Q derivative terms of the fluxes in Eq.( 3.5) are

(3.22)
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When a = 0, these are Roe's 3rd-order flux differencing [18]. When a = 1, these fluxes

are first order.

Second order central differencing was used for the viscous terms
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3.2 Sonic point treatment

In the upwinding scheme, the information corresponding to each eigenvalue propagates

in the direction of the sign of the eigenvi lues, with the speed of the magnitude of

the eigenvalues. Hence, across the point at which the sign of eigenvalue changes, the

direction of the eigenvalues are opposite and there can be no information exchange. In

such a case, a flow variable can be discontinuous. This can be physically true in the

case of compression wave, which is a shockwave. But in the case of expansion wave

this is not true. A straight implementation of the upwinding scheme will cause an

"expansion shock" at the sonic point. However, in physical reality an expansion will

take place isentropically, requiring the exchange of the information in both directions.

So the scheme needs a correction to simulate this phenomena. The basic idea of the

sonic point treatment is illustrated in Fig. 3.2. The eigenvalues are split into positive

and negative parts while keeping the sum of these two parts equal to the one found by

straight application of the upwinding scheme. We found that this treatment should be

applied not only to the sonic point, but over several grid cells on both sides of the sonic

point in order to achieve practical stability. The best number of cells was found to be

three by numerical experiments.

The numerical formula used for the sonic point treatment was thus

A+ = max(O,A)+ 0.5max(0,3AA- IAl)

A- = min(O, A)- 0.5max(0, 3AA - IAX), (3.30)

where

AA = A +1 - Ai. (3.31)

Mathematically, it looks better to use a smooth function as



-2

+2 ( A+ )  (3.32)

where

1 LX
A -(A 2 -± ), (3.33)

which van Leer, Lee, and Powell proposed [29] (Fig. 3.2). But numerically Eq.( 3.30)

is more robust since there is no division by a small number. The difference of the

formulation is negligible since the positive part and the negative part are continuous

functions, and their sum is kept equal to the correct eigenvalue.



Figure 3.2: Sonic point treatment used in the code
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3.3 Johnson and King's turbulence model

Since the basic equations are the Reynolds-averaged Navier-Stokes equations, turbulence

viscosity terms vt appear in the equations. The turbulent viscosity term is used to

model the Reynolds-stress term u'v' emerging from the averaging of the sub-grid scale

activities in the fluid. The value of vt has to be determined by a certain modeling. In

the current work, because a non-equilibrium transonic flow including mild separations

needs to be well simulated, a one-half equation model by Johnson and King [14] with

later correction by Johnson and Coakley [13] was used. The model is called a "one-half

equation" model because the outer (wake) region uses a one-equation model and the

inner sub layer uses a zero-equation equilibrium model. The non-equilibrium effect in

the inner layer is imposed by matching the outer edge of the inner layer with the inner

edge of the outer layer. The Johnson and King's model is known to perform best for

cases with shock-boundary layer interaction [6, 24] Therefore this model was chosen

for the current code in order to simulate the key phenomenon of shock-boundary layer

interaction on the transonic blade's suction surface. Another attractive point of this

model is that it has only three empirical constants.

In Johnson and King's model, the inner turbulent viscosity is expressed as

Vti = D 2~cyu,, (3.34)

where

D = 1 - exp A+ near-wall damping factor (3.35)

A +  = 17 Van Driest damping constant (3.36)

y+ = yur (3.37)
V

= 0.41 von Karman's constant (3.38)

u, = r ,(1- tanh ) )+ umtanh (3.39)

L = u Lm (3.40)
c gow + if-um



and the outer turbulent viscosity is expressed as

Vt - r (tm n tm)m tm
V 1 - exp /Lto

(3.41)

The itm in this equation is obtained using the PDE of the maximum Reynolds stress

u'v'm = -1/g 2 in the outer wake region in the boundary layer with the streamwise

pressure gradient. Note that the unsteady term is included in this equation

Og 8g al g Cdif Lma-1 + u~m = - , - + 1 - I],
ot as 2Lm geq a1 [0.76 - yim]

(3.42)

where
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_ 0.4ym
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Cdji = 0.25

a, - -u'vm/km

= 0.50

vto
1

to,eq

dissipation length

if ym/6 < 0.225

if ym/6 > 0.225

modeling constant

modeling constant

The outer turbulent viscosity is not a self closed turbulence model. It is an iterative

modification model, and the iteration starts from the converged result by a certain

equilibrium turbulence model, such as Cebeci-Smith, or Baldwin-Lomax. In the current

case, Cebeci-Smith model was used for the equilibrium seed to start the calculations.

The Cebeci-Smith model is written as

Vtieq= p2D2y2 oe = o
0?7 ro

(3.47)

where

A+ = 26

(3.43)

(3.44)

(3.45)

(3.46)

(3.48)



JO Y 1udy
6 _ d 7 y (3.49)

The factor 7 used in calculating the boundary layer thickness may change depending on

the type of the boundary layer, so it needs to be found by trial and error.

The final turbulence viscosity to be used in the N-S equation is obtained by blending

the inner and outer turbulence viscosities by the following formula

vt= vt tanh( ). (3.50)

3.4 Turbulence transition model

In jet-engine transonic fan flow, the inflow will be laminar unless there is a distortion,

and will transition to turbulent flow somewhere in the boundary layer on the blade

surfaces. Hence a model for switching from the laminar flow to turbulent flow is required.

The transition model used in the current code is the e" method [30], which has long

been a popular method. The flow transitions to turbulent flow when

h > limit, (3.51)

where

A
Ai Inn-

Ao

da
- (H)[Ree - Reeo(H)] (3.52)
dRee

(3.53)

by approximating that H is constant, and

dRee 0.01 (2.4H - 3.7 + 2.5 tanh[1.5(H - 3.1)])2 ± ,: (3.54)



log Reeo 1.415 - 0.489 tan 20 - 12.9 + 3.29+ 0.440. (3.55)
H-1 H-1 H-1

The critical number, filimit, was chosen to be a typical number, 6, but no noticeable

difference in the flow field was seen by changing this number from 0 to 10. This is

probably because the i-grid space is coarse.

3.5 Modeling the movement of the transition point

The en method explained in the previous section gives the turbulent transition point

in a quasi-steady sense, but will not simulate movement of the transition point. One

can easily imagine that the transition point will suddenly move upstream when a new

transition occurs upstream of the current transition point. But one may imagine that a

turbulent spot won't instantly disappear, therefore a transition point would not suddenly

move downstream.

Accurate simulation of the movement of a transition point has not been studied

much. But Platzer showed in his pitching helicopter blade calculations that the unsteady

blade exciting force cannot be calculated if the transition point is fixed [7]. For this

report, accurate modeling of the movement of the transition point is important.

The basis for modeling the downstream movement of the transition point is given by

an experimental observation by Schubauer and Klebanoff [19] in 1956. They generated

a turbulent spot by an electric spark, and observed how the spot evolves. Fig. 3.3 shows

what they observed. The turbulent spot is shed downstream at 0.9 times the freestream

velocity (U1 ) at its front, and at 0.5 times U1 at its rear end, with the spreading angle

(half angle) of 11.3 degrees. From these data, the maximum velocity of the transition

point moving downstream can be modeled as 0.5 x Ue, where Ue is the boundary layer

edge velocity. In the code, if e" method predicts larger downstream movement of the

transition point than this, the new transition point is set to be 0.5UAt downstream of

the current transition point. For accurate simulation, the precise transition points on



both suction and pressure surfaces are kept. When the transition point moves upstream,

the new transition point is estimated by linear interpolation of the f's calculated at the

two grid points which bound iii,,it.
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Figure 3.3: The evolution of a turbulent

(from Schubauer and Klebanoff (1956)[19])

spot.



3.6 Boundary conditions

The calculation domain has five different types of boundaries. They are inflow boundary,

outflow boundary, wall boundary, wake b< andary, and side boundary. The locations

of these boundaries are shown in Fig. 3.4. These boundary conditions will now be

discussed.

Figure 3.4: The various boundaries in the calculation domain



3.6.1 Inflow & outflow boundary

Steady calculation

At the inflow and outflow boundaries, one-dimensional characteristic boundary condi-

tions were applied for steady calculations. "One dimensional" means in the direction

normal to the boundary face. Four conditions were applied at the boundaries: three

conditions are determined from upstream and one condition is determined from down-

stream. The three quantities to be conserved from upstream are

1. Entropy

s = Inp - 7 In p, (3.56)

2. Downstream going characteristics

J+ = u, + 2a (3.57)
7-1

3. Tangential velocity

v. (3.58)

The quantity to be conserved from the downstream is

4. Upstream going characteristics

J- = u 2a (3.59)
7-1

Since the inflow and outflow boundaries are selected to be aligned to the circumferential

direction of the fan, the velocity normal to the cell face u, is equal to the axial velocity

u. The implementation of these conditions in the ADI scheme was done as follows:

e inflow boundary
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and jmax are the maximum grid number

Unsteady calculation

The one-dimensional, unsteady, non-reflecting boundary conditions were applied for

unsteady calculations. Again, "one-dimensional" means only in the direction normal

to the boundary face. The fundamental idea of the non-reflecting boundary conditions

is to specify the incoming perturbation wave from the steady solution to be null. The

basic equations used in the current code were formulated by Giles [11] as follows. First,

rewrite the basic 2D Euler equation in a form using p, u, v, and p as the primitive

0
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asape
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u p 0 0

0 u 0 1

0 0 u 0

0 yp 0 u

P

p +

v O p 0

0 v 0 0

00 v 1

0 0 7p v

p

u
= o. (3.62)

v

p

Then, substitute the primitive variables with those which contain steady solution ( ),

and perturbation (-)

P = +P

U = + 2

V = +

p = p+P

and subtract the steady equation. The resulting perturbation equations are

(3.63)

u p 0 0

0 U 0 1

00 u 0

0 7P 0 u

Ox 9 k j382v
+

v 0 p 0

0 v 0 0 0 21S0 ( = 0. (3.64)
00 V v f

P

0 0 -(p v

Four perturbation waves are found by substituting solutions in wave form

Q(X, y, t) = lei(kx+ly-wt)

into the perturbation equations

O+ A + B = 0.
at Oxz y

Here Q is a constant vector.

Then

variables

+

Ot
+

(3.65)

(3.66)



(-wI + kA + IB)Q = 0.

The z-direction wave number k of the four waves are found as the eigenvalues of the

equation

det(-wl + kA + IB) = 0 (3.68)

w - vl

u

k 3 ,4

(w - vl)(-u ± a2 - (a2 - 2)12 /( -

a 2 - u

Vl)2)
(3.69)

After choosing the simplest eigenvectors, the four perturbation waves are found as

C1 -a 2  0 0 1

c2 0 0 pa 0 f1

c3 0 pa 0 1 v

c4 0 -pa 0 1

The non-reflecting condition is obtained by specifying

* inflow boundary

C2 = 0 (

* outflow boundary

C4 = 0.

This is implemented in the code as follows:

.70)

.71)

3.72)

* inflow boundary

(3.67)



-ck 0 f or k = 1, 2, 3
AQ + ck 3.73)(8AQ ) = 1 \ Q +ck . . ffor k=4a Q "' ++- c k 

i,jmaz-1

* outflow boundary

c +k 0 + ck . for k= 1, 2, 3
( AOQ + ck = )2' (3.74)

Q1, 0 for k = 4

and similarly for i = imaz.

3.6.2 Side boundary

The side boundary is where the effect of inter-blade phase angle is imposed. There are

two typical approaches for the side boundary conditions. One is "Shift periodic side

boundary conditions" and the other is "Wrapped periodic side boundary conditions".

The advantages of the former method are that arbitrary interblade phase angles can

be chosen, and required memory size is smaller than the latter method. The advantage

of the latter method is that the stability is larger and can handle the cases where

nonlinearities such as shock waves cross the side boundary.

Shift periodic side boundary

This is done by keeping the timewise data of the state vectors on the boundary and

using it in the difference equation at the side boundary with the correct amount of time

shifting as did Erdos [9]. The number of grids in r7 direction is 2 to maintain third-order

accuracy. The timewise data are kept at every nth time step, which is specified in the

input file. The data are interpolated to get the value at the correct time. This procedure

is used to reduce the memory requirements.



Wrapped periodic side boundary

Wrapped periodic side boundary conditions is just a multi-passage calculation, in other

words. The concept is shown in Fig. 3.5. Nlunber of the passages to calculate is given by

dividing 27r by the inter-blade phase angle. Since the blade number has to be an integer,

the choice of the inter-blade phase angle is limited to divisors of 27r. A disadvantage

of this boundary treatment is that you need to keep the state vector values of all the

grid points of all the passages. If a smaller inter-blade phase angle is requested, a

larger number of blade passages is required and the calculation takes a larger memory

area. The merit of this approach is the stability on the side boundaries. Because the

information is exchanged across the boundary at every blade number iteration, sudden

change of the state vector values across the side boundaries won't happen.

In subsonic attached flow case, shift periodic side boundary condition works fine.

However, for cases with shock waves and large separations, introducing wrapped periodic

side boundary conditions is essential.

3.6.3 Wake boundary

The wake boundary is the same as the side boundary, except there is no time shifting

across the boundary. Therefore no furthere detail is discussed here.

3.6.4 Wall boundary

The wall boundary is assumed to be an adiabatic wall boundary in current calculations,

since in fan flow the heat transfer is not large. The basic equations for wall boundary

are hence

U = Uwall

v = vwall (3.75)
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One thing to note on the wall boundary in the current code is that the grid cells are

different from those of the usual points. This is shown in Fig. 3.6. The difference of the

grid size appears in the Jacobian calculations, the calculations of the fluxes on the cell

faces, and the cell face length calculations.

0r



Figure 3.5: Wrapped periodic computational domain
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Figure 3.6: The grids at the wall boundaries



3.6.5 Trailing edge

The boundary conditions at the trailing edge are basically the same as the wall bound-

ary conditions, but the two values al the trailing edge calculated from two different

7 direction ADI calculations were equated afterward by averaging. The trailing edge

values are not updated in the 6 direction ADI calculations.

3.7 Moving grid

In unsteady calculations, the grids at 77 < 77,a, - 2 move as the blade moves. The

corrections for the moving grid appear in two places.

In the explicit R.H.S, following terms representing the effect of the cell face motion

are added in the S* term of the discretized equations Eq.( 3.2).

+ h_,,j(Ub1 ~ , 3y _i , - Vbi ,j ,- 2(Qj Q-,j)
+ hi,j+!(Ubi,j+!Ayzj+L Vb r j 1 -- V- WAz.._) 1

. ,, (j+Q - Qj)
+ hij_1(ubij_ 1 VAYij_ - vb )-(Qn80)

where ub and vb are the velocity of a cell face in z and y direction, respectively.

In the L.H.S. the changes appear in the eigenvalues in the derivatives of the fluxes

as shown in Eq.( 3.21). For example, the grid moving speeds are subtracted from the

eigenvalues as

A1 = As'i+ ,j(Un - a) +,.- (Ubi+,jAi++ . - Vbi + 31,jAi+IJ) (3.81)



Chapter 4

Grid

The quality of the calculation grid is very important in CFD. For the current calculation,

the requirements for the grid can be summarized as follows.

1. The grid should have sufficient 7l-direction resolution in the boundary layer, while

the remaining area should have far fewer grid nodes to avoid unnecessary increase

in computational time.

2. The a-direction resolution should be sufficiently fine at the leading edge and the

trailing edge, which are very sharp on a transonic compressor blade, and at the

shockwave foot on the blade surface.

3. The grid should allow easy handling of arbitrary inter-blade phase angle in un-

steady calculations.

4. The size of adjacent grids should not change abruptly, because the scheme assumes

constant spacing for third-order flux differencing. Large grid size change can cause

a numerical oscillation, and as a rule of thumb, the size change should be kept

within ±20%.

5. The grid intersecting the solid surface should not be far from being perpendic-

ular to the surface, because the scheme assumes such for the thin shear layer

approximation.



4.1 Elliptic grid generator

An elliptic grid generator was used to get a nicely spaced grid. The grid control was

generated by the non-uniform 6 - 77 grid method [2]. The numerical scheme used to solve

the elliptic partial differencial equation is the usual SOR (Successive Over Relaxation)

method.

4.2 C grid

A C-type grid was chosen for current calculation because a C grid has less skew with

fewer grids around the leading edge than a H-type grid. In the current calculations, the

blade has a very sharp leading edge and the condition of interest is that with shockwave

detached from the leading edge. So the flow around the leading edge impacts the whole

flow field. An example of the grid is shown in Fig. 4.1. The inflow region of the grid is

twisted to the axial direction, from the blade chordwise direction. This is a necessary

treatment for stability with the elliptic grid generator. If the grid is extended straight to

the chordwise direction, the grid breaks away from the lower corner of inflow boundary

which has a very narrow angle. The example of this phenomenon is shown in Fig. 4.2.

The rule of thumb to avoid such a phenomenon is that distances from the leading edge

to the inflow boundary's upper edge and to the lower edge should be about the same.

After the SOR iteration, the grids around the corners of inflow boundary and the

upper and lower side boundaries tend to be too stretched. This can be avoided by

reducing the iteration number, but then the grids on the blade surface tend to be too

skewed. This problem was solved by redistributing the grids near the inflow and the

side boundaries after iterating enough to get a non-skewed grid on the blade surface.

The redistribution was done by simple interpolation.



4.3 Neumann boundary condition on the wall

To keep the grid on the blade surface normal to the wall and have "nicely" spaced grid

overall, the Neumann boundary condition was applied on the solid wall surface. Here,

"nicely" means to have following qualities.

1. fine enough to represent the curve at the leading edge and the trailing edge,

2. coarse enough to save computation time and memory,

3. transfer from fine grid to coarse grid without having sudden grid size change more

than 1.2 in the ratio of the grid lengths.

The grid position on the wall moves around to keep the grid normal to the wall during

the SOR iteration of the elliptic grid generator. After the grid on the blade was "nicely"

spaced, the surface grid positions were fixed and the elliptic generator was reiterated

with the Dirichlet boundary condition on all the boundaries.



NASA Rotor67 30% span from the shroud
Grid

0.50 1.00 1.50
X

Figure 4.1: An example of the C grid around a transonic cascade
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Figure 4.2: The phenomena seen in the grid with slanted inflow region

59



Chapter 5

Code test cases & comparisons

In this chapter, various test cases are calculated to validate the accuracy of the numerical

code. The code developed is called FCASQ3. The ultimate test must be done by

comparison to the experimental data, since the object of the computation in this research

is to simulate the real flow. However, real data contain many complex fluid dynamic

effects and it is hard to separate out each effect and accurately assess its accuracy.

So the evaluation should first be done step by step by checking fluid dynamic effects,

such as compressibility, viscosity, unsteadiness, turbulence model, etc, one by one. It

is hard to get experimental data containing one and only one effect. However, it is the

strength of the numerical calculation to have such selective data. Therefore most of

the validation compared results to the numerical data produced by existing codes well

proven for each fluid dynamic effect. Only one comparison with real transonic fan rig

data was made at the end as a general check.



5.1 Quasi-1D unsteady compressible inviscid test case

A quasi-ID de Laval nozzle flow calculations with exit pressure oscillating was calcu-

lated, to check the code's capability to cap ure the unsteady shock movement crisply.

Comparison was made to the calculation by Allmaras [1]. The exit pressure oscillated

sinusoidally with the peak to peak amplitude 5 percent of its average value.

The result is shown in Fig. 5.1. The pressure waves are propagated upstream, pass-

ing through the throat, and reach the inflow boundary. The wave's propagation speed

and the decay rate of its amplitude matched in the two calculations. The shockwave

is captured very crisply within 3 grid points, which is the attractive feature of the up-

winding scheme. At the inflow boundary, there is no reflection of the wave seen because

non-reflecting boundary conditions were imposed.
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5.2 Unsteady 1-D non-reflecting boundary condition test

case

1-D straight duct flow calculations with exit pressure oscillating were performed, to

check the capability of unsteady non-reflecting boundary conditions to suppress the

reflection at the calculation domain boundary. The result is shown in Fig 5.2. The exit

pressure is oscillated sinusoidally or in saw-tooth shape with a peak-to-peak amplitude

of 5 percent of the average value.

In the Laval nozzle case, Fig 5.1, the reflection from the inflow boundary was success-

fully suppressed, but in the straight duct with saw-tooth mode oscillation, a significant

amount of the reflection remained. This is because the unsteady non-reflection bound-

ary condition is formulated with a small perturbation assumption, which assumes that

the amplitudes of the fluctuations at the boundary are more than an order smaller than

the steady values. In the straight duct case, the amplitude of the pressure wave at

the inflow boundary is 10 percent of the mean pressure, so the basic assumption of a

small perturbation is no more valid. This shows the limit of non-reflecting boundary

conditions in unsteady flow, which users should be aware of.
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5.3 Steady incompressible inviscid test cases

Steady flow around the Gostelow cascade was calculated to check the accuracy of quasi-

2D steady incompressible flow calculation. This calculation shows the accuracy of the

flux vector at each cell face. The calculation grid and the result is shown in Fig. 5.3. To

reduce the compressibility effect in the calculation by the current code, the inflow Mach

number was set to 0.05. Although there are some discrepancies around the leading edge

and the trailing edge, where the flow acceleration is large and the compressibility effect

takes places even with very small inflow Mach number, the result by the current code

matches very well with the result by a potential flow code [12].
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5.4 Unsteady compressible inviscid test cases

Unsteady flat plate cascade flow calculations with the cascade oscillating in bending

mode and in pitching mode were performed t . check the code's accuracy of calculating

unsteady pressure waves. The reference data was calculated by the program LINSUB.

LINSUB is a linear compressible cascade flow program written by Whitehead. See [31]

for details of the program. The calculation conditions are, Mach number M,, = 0.2,

reduced frequency K = 15.7. The grid is shown in Fig. 5.4. The leading edge is

contoured elliptic to avoid excessive expansion, and the trailing edge is cut off abruptly

to save the grid number.

The results from the current code match very well with the LINSUB results in

both bending and pitching oscillation mode with inter-blade phase angle, ac = 0 degree

(Fig. 5.5 , 5.6). There is some discrepancy when a = 120 degree. This is because the

LINSUB result is not far enough from the resonance, which happens at around a = 180

degree in the current case. Resonance is a phenomena peculiar to a linear system, and

won't happen in the real cascade flow.
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Figure 5.4: Grid for the flat plate flow calculations
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5.5 Unsteady incompressible viscous test cases

Unsteady flat plate cascade flow calculation with the cascade oscillating in chordwise

bending mode was performed to check the cc le's accuracy in calculating viscous effects.

The analytical solution of the flow over the oscillating flat plate ( known as Stokes'

second problem ) was used as the reference data. The basic equation of the Stokes'

second problem is

Ou 02u
= .U(5.1)

at Oy2'

y is the direction normal to the wall surface, and the wall is oscillating in the direction

normal to y. u is the velocity normal to the y direction, and v is a kinematic viscosity.

This equation contains only an unsteady term and a viscous term. The solution will

indicate the velocity of the viscous effect propagation. Therefore this testcase can be a

good check for the accuracy of the unsteady viscous effects in the code.

The result is shown in Fig. 5.7. The numerical calculation matches the theory very

well.
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Figure 5.7: Vorticity distribution above the chordwise oscillating flat plate



5.6 Steady incompressible viscous turbulent flow test cases

Viscous flow calculations were performed under three conditions: laminar flow, turbulent

flow with equilibrium turbulence model by Cebeci and Smith [4], and turbulent flow with

non-equilibrium turbulence model by Johnson and King [14].

The displacement thicknesses 6, momentum thicknesses 0, and the boundary layer

profiles match very well with flat-plate theory (Fig. 5.8 , 5.9). The skin friction coefficient

C1 also matches very well, but the matching near the leading edge is a little bit off with

equilibrium turbulence model. The non-equilibrium turbulence model by Johnson and

King shows the merit over the equilibrium model by Cebeci and Smith in such a place.
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5.7 Steady compressible viscous test cases

Two steady test cases were calculated to check the code's ability to calculate practical

transonic compressor cascade flow. ThesE test cases check not only the validity of the

code itself, but the effect of the calculation grid. One case is a steady cascade test

result, and the other is a rig test result. The cascade rig test case will show the ability

to simulate a 2-D and a quasi 3-D flow, and the rig test case will show the ability to

simulate the blade-to-blade flow field at a specific spanwise position in a 3-D transonic

fan flow.

5.7.1 DFVLR cascade

The steady transonic cascade data were taken by H. Starken and H. A. Shereiber of

DFVLR and are reported as the test case E/CA-4 in Ref. [26]. Two cases are tested

and both cases are calculated here.

The specification of the linear cascade is as follows:

Blade shape MCA

Max. thickness 4.74 %Chord

Chord length 90 mm

Test section width 167 mm

Solidity 1.610

Stagger angle 138.51 deg

Number of blades 6

The test conditions are as follows:



Test No. 53A Test No. 115

Inflow Mach No. 1.023 1.086

Inflow angle 56.8 58.5 deg

Static pressure ratio 1.417 1.448

AVDR 1.092 1.184

Reynolds No. 1.54 x 106 1.49 x 106

Total press. loss coeff. 0.061 0.084

where

Total pressure loss coefficient = Pi-P'"

AVDR = Axial Velocity Density Ratio = ().

Since puh is constant due to the mass conservation, AVDR is related to the stream-

tube height by

AVDR = h

The resulting isentropic blade surface Mach number distributions and the Mach

contours are shown in Fig. 5.10 through Fig. 5.13. The matching of the blade surface

isentropic Mach number distribution is excellent except for the shock position in the

test number 115. From the Mach contour, the reason for this mismatch looks to be due

to the smearing of the shockwave due to the skewed grid. The shockwave is smeared

while keeping its rear end at the correct position because the shock is fully detached,

and the average position of the shock wave is shifted forward. It may be better to use

an OH-type grid rather than a C grid in a transonic cascade flow calculation to prevent

a skewed grid.



The total pressure loss coefficients were calculated as lower than the measured value.

The calculated values for test No. 53A and No. 115 are 0.040 and 0.044, respectively,

corresponding to 0.061 and 0.084 in the cascade test. These are even lower than the

calculated results by H. Youngren using the program MISES (Ref. [33]), which are

0.0454 and 0.0588. One explanation of these mismatch is due to the modeling of the

sidewall boundary layer by simple passage contraction model, as Youngren pointed out.

The mismatch of current calculations from Youngren's results may be due to the coarse

grid at the exit flow region. The mixing loss in the exit flow region is not simulated well

in current calculations.
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5.7.2 NASA Rotor 67

Steady simulation calculation of NASA rotor 67 blade to blade flow was performed to

check the quasi-3D code's applicability to simulate three dimensional transonic fan flow.

This research transonic fan has 22 rotor blades with the inlet diameter of 51.4cm and

the inlet hub/tip ratio of 0.375. At the design point, the mass flow rate is 33.25 kg/sec,

the pressure ratio is 1.63, tip relative Mach number is 1.38, and the fan speed is 16043

rpm. The rotor blades are snubberless wide chord blades, and the aspect ratio is 1.56

based on the average span and root axial chord. The reference data were taken from

NASA's laser anemometer measurement data by Strazisar et al [27]. The axial and

tangential velocities were measured at 50 points in tangential direction, 30 points in

axial direction at approximately every 10 percent span. The data at each data point

are the average of those of 17 different passages, and data at a point in a passage are

the average of 10 to 70 measurements.

The calculations were done for the blade-to-blade flow at the "30% from the shroud"

radial position of "near stall" and "peak efficiency" conditions. The input data used for

the calculations are tabulated in Table 5.1.

The calculations never came to a steady state. The instantaneous Mach contour in

Fig. 5.15 shows vortex shedding and resulting shock oscillation. The frequency of the

vortex shedding is 10 to 22 kHz. This matches to the vortex shedding frequency of a

transonic fan shown by Epstein et al [8].



The averaged Mach contours shown in Fig. 5.14-a and Fig. 5.17 match well to the

NASA laser measurement data, except at the pressure surface just downstream of the

leading edge of the "near stall" case. The laser data shows a thin region accelerating to

supersonic, which is not seen in the averaged CFD result, but in instantaneous Mach

contours in Fig. 5.15. The unsteady calculations revealed that the acceleration region on

the pressure surface is due to periodic separation by shock oscillation. Timewise blade

surface pressure distribution in Fig. 5.15 shows that the separation on the pressure

surface appears when the shock wave is in rear position, and disappears when the shock

is detached.

The position and the shape of the shock foot of the calculation match very well with

the laser data in both "near stall" (Fig. 5.14) and "peak efficiency" (Fig. 5.17) cases.

This implies that the separation behind the shock foot due to the shock-boundary layer

interaction is simulated well. Accurate simulation of the shock-boundary layer inter-

action is an important feature for an accurate transonic flutter simulation calculation.

Hence, by matching Mach contour very well with the measurement, the code has been

verified as a plausible tool for the flutter mechanism study.

Table 5.1: Input data for NASA rotor 67 steady flow calculations

near stall peak efficiency

Inflow relative Mach number 1.185 1.248

Inflow relative velocity 393.3 409.6 [m/s]

Inflow angle 64.9 61.8 [deg]

Static pressure ratio 1.576 1.654

Blade chord length 8.917 8.917 [cm]

Kinematic viscosity 1.779 1.847 x10 - s [m2 /sec]

Reynolds number 1.971x 106 1.978x 106
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5.8 Unsteady compressible viscous test cases

Calculations of oscillating transonic compressor cascade were performed to verify the

ability of the code to simulate transonic fl ;w in flutter. The test data used is the

configuration No.7 in the standard configuration data set compiled by A. B51cs and T. H.

Fransson (Ref. [3]). The original data were taken in the Detroit Diesel Allison rectilinear

air test facility under the sponsorship of NASA Lewis research center (Ref. [17]). The

specifications of the test facility and the test cascade are listed below:

Number of blades 5

Blade oscillation mode Torsion

Oscillating frequency 710 - 730 Hz

Axis of the torsional oscillation 50 % chord

Test section width 76.2 mm

Blade profile MCA

Chord length 76.2 mm

Max. thickness 3.4 % chord

Solidity 1.170

Stagger angle 51.55 deg .

The test data set contains 12 different test cases. Most of the cases have rather

large scatter in blade-to-blade uniformity of their oscillation amplitude and of the inter-

blade phase angle. This is due to the high blade oscillation frequency (725Hz), and the

considerable complications involved in measuring unsteady transonic flow in cascades.

However, it should be noted that the quality of the data is representative for the state-

of-the-art of aeroelastic experiments on compressors in transonic flow regime.

The case with the best blade-to-blade uniformity is selected for the calculation. The

conditions of the case selected for the calculations are listed below:



Inflow Mach number

Inflow angle

Outflow Mach number

Reduced frequency

Amplitude of the oscillation

Inter-blade phase angle

The scatter of the blade oscillation amplitudes and

the cascade test data are as follows.
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a
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the inter-blade phase angles of
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1

a0

Amplitude of the oscillation 0.64 0.96 1.11 0.0
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The calculations were done by assuming uniform blade oscillation amplitude of

0.1157 degree and uniform inter-blade phase angle of 0.0 degree.
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First, the steady state calculation was performed. The resulting blade surface pres-

sure distribution is shown in Fig. 5.18. The calculation was performed by adjusting

the passage contraction to let the calculation result match to the measured data, since

the blockage effect data by the sidewall boundary layer are not supplied and the code

already showed excellent match to the data in steady calculation when the passage con-

traction data were given. Also note that the passage contraction value used to match

the steady results was similar to the value used in the DFVLR cascade cases.

Next, the unsteady calculation was performed for the case of interblade phase angle

at 0 degrees. The resulting amplitude distribution and phase distribution of the blade

surface aerodynamic pressure are shown in Fig. 5.19 and Fig. 5.20. Considering the

scatter of the data, the matching of the calculated results to the cascade data is good.

Although a discrepancy was seen in the phase behind the shock foot on the suction

surface, the amplitude and the phase of the blade surface unsteady pressure upstream

of the shock foot and on the pressure surface show a good match. The chordwise

amplitude of the shock oscillation also shows a good match. Hence the code is validated

as a plausible tool to simulate 2D unsteady transonic flow.
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5.9 The importance of the turbulence model

In the NASA rotor 67 "near flutter" test case, calculations with two different turbulence

models and a calculation with laminar flov were performed to check the importance of

the turbulence model in the transonic blade to blade calculations. The calculation

conditions are shown in Table 5.1 of the previous section. The timewise blade surface

pressure distributions are shown in Fig. 5.21, and the snapshots of the blade to blade

Mach contours are shown in Fig. 5.22.

The differences are significant. The laminar case shows a totally different bound-

ary layer separation position. This indicates that turbulent transition keeps the flow

attached on the suction surface behind the leading edge and thus turbulent calculation

is essential for the transonic blade to blade calculations.

Turbulent calculation with the Cebeci-Smith model shows a long separation region

behind the shock wave. The separation region is so long that the first half of the

separation region will not be changed by the vortex shedding at the end of the separation

region, and therefore the shock wave position does not move. This will cause totally

different aerodynamic blade exciting force from the result of the Johnson-King model. It

is really important to use a turbulence model which can correctly simulate the separation

due to the shock-boundary layer interaction. The Johnson-King model was developed

to handle shock-boundary layer interactions, and is known for its ability to simulate

them well in steady 2D transonic flow. Although its ability in unsteady calculations

is not well known, this model would be the best model we currently have available for

these cases.
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5.10 The importance of the transition point model

Motion of the transition point is modeled in the code using the experimental results

reported by Schubauer and Klebanoff [19] was previously explained in Section 3.5.

Since Platzer reported [7] that the unsteady blade exciting aerodynamic force didn't

emerge in the calculation with fixed transition point, it is worth checking the effect of

the current transition point motion model on the blade exciting aerodynamic force in

unsteady transonic cascade flow calculations.

Three cases of unsteady calculations with (1) current transition point motion model,

(2) current model without downstream motion limiter, and (3) a fixed transition point,

are compared to see the effect of the moving transition point model. A set of input data

near flutter condition is taken from IHI research fan rig test. Details of the IHI research

fan are described in Chapter.6.

The blade total unsteady aerodynamic forces are compared in Table 5.2. A difference

is seen in the phase angle.



Table 5.2: The effect of moving transition point

Current mc lel e' only Fixed transition point

Amplitude 0.695 0.740 0.678

Phase -111.7 -125.7 -118.1 [deg]

Blade exciting energy -0.646 -0.601 -0.598

The motion of the transition point during a cycle of the blade oscillation of these

cases are shown in Fig. 5.23. Triangular plots in the figures are the transition points.

For the current model, periodic downstream-shedding of the transition points is seen,

whereas for the case with only the e' method, a larger scatter of transition points

is seen and the transition points are located further downstream than the other cases.

The average location of transition points differs greatly from the most upstream location

calculated. In unsteady calculations, the e" method does not give a stable transition

location, and therefore it is important to have a model for the downstream shedding of

transition points to simulate the unsteady behavior of the transition point better, even

if the model is not perfect.

Although the difference in the calculated results tabulated in Table. 5.2 does not

seem large, the difference in the blade surface energy distribution is large (Fig. 5.24).

Not only the location of the shock waves, but also the location of the blade exciting

energy are different. Therefore the downstream shedding model should be used with the

en method in unsteady calculations. The limiter of the downstream motion of transition

points played an important role in unsteady calculations.
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5.11 Cusping of the trailing edge

The code has been shown to be an plausible tool for the flutter mechanism study,

but there remains a problem that the calcilation time takes too long for the practical

design calculations. The stationary calculation shown in Fig. 5.16 took about a week

of calculation for 223 x 70 mesh points by DECstation 5000/200. Since the reduced

frequency of the interest is very low, it was estimated that a case of the unsteady

calculation with the blade oscillation would take a month. Therefore, a way to reduce

the calculation time was sought. Of course the easiest way is to use a faster computer.

But there is also room for improvement by modifying the code or the grid. One way

is to reduce the number of grid points, but this depends on the case and is hard to

generalize. Another way is to cusp off the trailing edge to increase the CFL number.

From observations, most of the code failures occurred at the trailing edge where the grid

direction suddenly turns 90 degrees. Adding a little pinch to the trailing edge shape

could eliminate such a sudden direction change and can make the code more stable.

Fig. 5.25 show three types of the cusp studied. Type-A is just a little pinch and the

grid still has the direction change as large as 40 degree. Type-B is a larger pinch and

the maximum grid direction change is reduced to 20 degree. Type-C is the full cusp

covering the whole trailing edge circle.

Fig. 5.26 shows the timewise blade surface pressure distribution of the case without

a cusp and a case with type-B cusp. A significant difference in the frequency of the

vortex-shedding is seen. But this is not a problem because the frequency of the vortex-

shedding in the case without the cusp is two orders of magnitude higher than the blade

natural frequency therefore this won't cause a difference in the blade exciting force.

The averaged Mach contours of both cases are similar(Fig. 5.27). Therefore, it can be

concluded that cusping off the trailing edge with type-B cusp won't affect the unsteady

blade oscillating force which is our current interest.



The type-A cusp didn't show appreciable increase of the CFL number from the

no-cusp case, and type-C cusp didn't show appreciable difference of the CFL number

increase from type-B cusp case. So, it was concluded that type-B cusp is the best among

the three cusps to use in current calculations.

Another possibility to increase the CFL number is to use combined O-C or O-H

grid to eliminate any of the sudden grid direction change without altering the blade

shape. This is also better because the grid around the blade surface can have a better

distribution. However this option will be left just as a suggestion for future work.
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5.12 Effect of the downstream region length

In flutter simulations in transonic flow, the accurate simulation of the wave system is

very important since the wave syster will force the shock wave to move, or oscillate

and the shock motion may generate the dominant unsteady blade exciting pressure.

To eliminate the wave reflection from the inflow and the outflow boundary, a non-

reflecting boundary condition is employed in the code. But the non-reflecting boundary

condition used in the code is a one dimensional condition, and will only suppress the

wave propagating normal to the boundary. The components of the wave in the dimension

tangential to the boundary may reflect back to the blade and influence the shock wave

system. The outflow boundary is more important than the inflow boundary because

the pitchwise nonuniformity of the flow is larger due to the wake. On the other hand,

the inflow boundary is set far enough from the blade so the shock wave becomes weak

enough to be suppressed by the boundary condition.

A way to check if there is any influence of the wave reflecting back from the exit

boundary is to compare calculation results with several different downstream region

lengths. If there is no appreciable difference, the code is validated for its ability to

simulate the unsteady transonic flow with shock waves.

Three calculations with different downstream region lengths were done at the inter-

blade phase angle 240 degree. This case was chosen because clear shock motions were

seen without extremely long calculations. Two cases, (1) 2.6 x chord, and (2) 1.1 x

chord were done.

The results are shown in Fig. 5.28. No difference is seen in the blade surface unsteady

wave system. Therefore it has been shown that there is no wave systems reflected from

the outflow boundary affecting the unsteady calculation results, such as unsteady shock

motion.
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5.13 Summary of the code validations

From the series of the validation calculations described above, the code has been vali-

dated as a reasonable quasi-three-dimensional tool to simulate the unsteady flow in tran-

sonic cascades. Also from the test case of NASA rotor 67, the quasi-three-dimensional

tool has been shown its capability of accurately simulating a slice of blade-to-blade flow

in a three-dimensional flow field. From these results, the author has proceeded to flutter

simulation calculations of a transonic fan by the code, FCASQ3.
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Chapter 6

Flutter simulation of IHI transonic fan

A research transonic fan rig provided by IHI Co Ltd. has been used as the model

for the flutter simulation calculation. The fan experienced flutter at mid-speed high

pressure-ratio conditions during rig tests. The simulation calculations were performed

at the near-flutter conditions and at in-flutter conditions. The input data for near-flutter

aerodynamic condition calculations were obtained from through flow calculations using

data measured in the rig test. The input data for in-flutter condition calculations were

obtained by extrapolating the through flow calculation results from the points with no

flutter because aerodynamic data could not be measured during flutter.

Using the rig data, parametric calculations were performed to answer questions listed

in the section 1.3. One benefit of numerical simulations is that a single parameter can

be easily perturbed at a time to separate the effect of the parameter. First, the effect

of the vibration amplitude is checked to find a proper amplitude to use in the following

calculations. Then the code is checked whether the flutter seen in the rig test can be

simulated. This is done as follows.

1. Vary the inter-blade phase angle and see if the inter-blade phase angle to give the

minimum aerodynamic stability matches that seen in the rig test, -32.7 degrees.

2. Perturb the pressure ratio to simulate increasing the pressure ratio along the

constant speed line in the fan characteristic map. See if the blade-exciting aero-

dynamic energy appears at the pressure ratio which flutter was observed in the

rig test.
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The mechanisms of the flutter can also be found from these parametric studies, by

observing the variation of the source of the blade exciting energy when the parameters

are perturbed.

Some parametric studies provide information useful for blade design engineers. Two

of these follow. The effect of the reduced frequency is studied to see if the increase of

the natural frequency of the blade suppresses this flutter. The effect of the Reynolds

number is studied to find out if a scaled rig test is a valid method to confirm the flutter

boundary of the engine.

Finally, the spanwise variation and spanwise integration of the unsteady aerody-

namic energy are examined to see if a strip-theory approach is applicable for quantitative

prediction of the fan flutter.

In this chapter, the detail of the IHI fan rig data is explained first, followed by the

results of the parametric calculations.
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6.1 Rig data

The research fan rig has the cross section shown in Fig. 6.1. The specification of the

fan is tabulated in Table 6.1. The blades h Lve a multiple circular arc (MCA) type cross

section, which is typical of modern transonic fans. The characteristics of the fan is

shown in Fig. 6.2. From the characteristics, we can see a deep intrusion of the flutter

boundary into the intended operating line at around 75% of the design fan speed high

loading side. This intrusion forms a very sharp and narrow kink, as is shown in Fig. 6.3,

and the fan tip relative Mach number at this kink is about unity. This kink cannot

be predicted by classical methods, i.e. by the graph of the relation of reduced velocity

(or reduced frequency) versus incidence as is shown in Fig. 6.4. The flutter boundary

is jagged and the incidence angle varies by as much as 1.2 degrees. The jagged flutter

boundary suggests that the mechanism of transonic flutter differs from that of subsonic

stall flutter, for which the trailing edge stall due to high loading causes a phase shift in

unsteady lift. One may imagine that shock waves may be involved in the mechanism of

transonic flutter and therefore the classical method cannot work accurately enough as

a tool to predict the flutter boundary for practical fan aero-mechanical design. Thus,

we would like to find the mechanism of this flutter.

Table 6.1: Specifications of the IHI research fan

Number of the blades 22

Fan diameter 75.8 [cm]

Fan inlet hub/tip ratio 0.302

Design fan speed 10663 [rpm]

Design pressure ratio 1.6247

Design flow rate 177.4 [kg/sec]

Design tip relative Mach number 1.474

Blade L.E.span/tip chord 1.924
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6.2 Input data

The blade geometries used in the simulation calculations are transformed from actual

blade geometries along conical surface . The conical blade geometries are derived by

interpolating the original constant-radius geometries using the streamlines calculated

by a through-flow calculation (streamline curvature calculation) at the fan speed of

interest. The blade-to-blade passages to be used in the calculations are transformed

from the conical to a cylindrical surface by keeping the pitch at the leading edge and

matching the rate of the passage area variation.

The radius for the blade-to-blade calculation is chosen by considering the radial

distribution of the rotor pressure ratio rise. In Fig. 6.5, it is seen that the pressure ratio

does not increase around the 85% span position when the fan overall pressure ratio is

raised by closing the exit valve. Radial distribution of the loss coefficient (APt/Pti,)

calculated from rig data in Fig. 6.6 shows a large increase of the total pressure loss

around this radius. The relative inflow Mach number is unity around this radius which

implies the existence of a loss mechanism related to the normal shock wave at that

spanwise position. However it is yet not clear whether a mechanism related to the

flutter lies at this position or not.

Since the calculation code FCASQ3 is quasi-3D, the code cannot simulate three

dimensional phenomena. Therefore, the phenomenon of not having pressure rise at 85%

span should be checked to see if it can be handled by the current code. If it cannot be

simulated by the current quasi-3D code, then the flowfield calculated by the quasi-3D

code can be very different from the three-dimensional flowfield in the fan, and therefore

this spanwise position should not be chosen for the flutter simulation calculations.
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Steady calculations at the "high" valve position and the "low" valve position were

each performed at the 79.3%, 85.6%, and 91.2% span positions. The results are shown

in Fig. 6.7. The results showed the same tendency as the rig data, i.e. no pressure

ratio rise at 85.3% span position. Therefore the capability of the current quasi-3D code

to simulate this important aspect of the flowfield at 85.3% span has been shown, and

this spanwise position has been chosen as the radius to start the flutter simulation

calculations because the loss mechanism at this span position may be related to the

flutter.

The static pressure contours of the flow fields are shown in Fig. 6.8. Among the

shock waves shown here, the detached normal shock at the 85.3% span position is the

strongest. The reason that there is no total pressure rise at 85.3% span is probably due

to loss generated by the strong normal shock wave and by its interaction with the blade

surface boundary layer.
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The aerodynamic data for non-flutter and near-flutter points were taken from the

through-flow calculations based on the measured rig data, and those for in-flutter points

were calculated by extrapolating the near-flutter and non-flutter points data. These

points on the characteristic map are shown in Fig. 6.9. The data are tabulated in Table

6.2.

Table 6.2: Input data for IHI rotor flow calculations

Fan % speed

Case

Rel. Mach No.

Rel. velocity

Inflow angle

P, ratio

Blade chord

Kin. viscosity

Reynolds No.

1.6

o
1.55

Cn,) 1.5 -
1.45D1

o 1.4
I-

S1.35

1.3
0.55

79%

In

flutter

1.012

336

69.1

1.32

14.67

1.779

2.77

Near

flutter

1.0175

338

68.5

1.30

14.67

1.847

2.68

76%

In

flutter

0.977

324.5

68.7

1.29
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0.984
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Figure 6.9: The operating points of the simulation calculations
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The operating point of the flutter calculation was chosen to be not at the flutter

kink, but at slightly higher speed, 79% speed. This is due to the observation during the

rig test that the repeatability of the flutter boundary is better at the fan speed above the

kink. Although the error of the rig measured data is less than 1%, the rig data showed

poor repeatability of the flutter boundary at the fan speed below the kink point. There

is also an error in the CFD results which arose from the circumferentially averaged

inflow and outflow boundary conditions taken from the through-flow calculations based

on the measurements. In addition, the growth of the blade vibration amplitude at the

flutter boundary is far faster at this point than the region around the kink. Thus the

calculation at 79% speed is less likely to miss simulating the flutter condition than at

the kink point.
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6.3 Steady flow field at 79% speed, 85.3% span

At 79% fan speed, it was observed during the rig flutter test that the blades developed

strong flutter with just a slight change of exi valve angle, and that the flutter boundary

had good repeatability. Therefore this speed has been chosen as the point to perform a

variety of investigations to reveal the general mechanisms of transonic flutter.

Steady-state flowfields at the fan speed and the spanwise position chosen to conduct

flutter simulation calculations are shown here to see such features as the position of the

shock waves and the extent of the separations.

The Mach contour of the steady calculation at "Near Flutter" point (Fig. 6.10)

shows that the shock wave has just detached, while the shock wave is fully detached

at the "In Flutter" condition (Fig. 6.11). While the "Near Flutter" case has the flow

attached even on the suction surface behind the shock foot (Fig. 6.12), the "In Flutter"

case shows rather large separation region on the suction surface behind the shock foot

(Fig. 6.13).

A second steady state calculation with "In Flutter" condition is performed, but

with the static pressure ratio raised from 1.32 to 1.34 to investigate the sensitivity of

the steady state shock position to the pressure ratio. This condition is called the "Deep

In Flutter" condition. A separation region exists as shown in Fig. 6.14, but the scale of

the region is smaller than that of the "In Flutter" case. The Mach contour in Fig. 6.15

shows that the shock position has moved forward, and the shock wave is now fully

detached.

The important differences of the flowfield observed at these conditions are summa-

rized in Table. 6.3.
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Table 6.3: The important differences in the flowfield in & out of flutter

Flutter condition Aerodynamic events

Near flutter Shock just detached.

In flutter Large separation behind the detached shock.

Deep in flutter Fully detached shock. Smaller separation region.

Figure 6.10: Mach contour of the steady calculation of IHI transonic research fan

at a "Near Flutter" condition

119



Figure 6.11: Mach contour of the steady calculation of IHI transonic research fan

at a "In Flutter" condition

Figure 6.12: Velocity distribution behind the shock foot at a "Near Flutter" condition
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Figure 6.13: Velocity distribution behind the shock foot at a "In Flutter" condition

Figure 6.14: Velocity distribution behind the shock foot at a "Deep In Flutter" condition



Figure 6.15: Mach contour of the steady calculation of IHI transonic research fan

at a "Deep In Flutter" condition
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6.4 Effect of vibration amplitude

If the blade oscillating amplitude affects our phenomena of interest, a careful selection of

the range of the amplitudes for the simulation calculation is required so that important

fluid dynamic phenomena are not missed. However, if the blade oscillating amplitude

does not affect the aerodynamic event, calculations at one typical amplitude are enough.

Therefore the influence of the blade vibration amplitude on the aerodynamic instability

is checked here.

The amplitudes calculated were chosen from 2.5% pitch to 7% pitch, which are

representative amplitudes encountered during flutters in engines and rigs.

The results in Table 6.4 and Fig. 6.16 shows no appreciable difference over the

range of blade oscillation amplitude except for the 2.5% pitch case, where the phase

angle showed large difference cycle to cycle of the blade oscillation. The reason for the

difference in the 2.5% pitch case is that the absolute amplitude of the blade surface

unsteady pressure due to blade oscillation is not large enough to lock the frequency of

the mild separation and shock oscillation onto the blade oscillation frequency. Therefore

a 2.5% pitch amplitude is not large enough for reliable calculations.

The other results showed good agreement regardless of the blade oscillation am-

plitude. This implies that the phenomenon causing flutter is insensitive to the blade

oscillation amplitude, which rules out sudden occurrence of large separation from a cer-

tain blade oscillation amplitude, etc. The calculation can be done at any amplitude in

this range and the results will hardly differ. Therefore the amplitude for the remaining

calculations was chosen to be 4.5% pitch.
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Table 6.4: Results of various reduced frequency calculations

blade oscillation amp.

% pitch

4.5

5.0

7.0

amp. phase

C, deg

0.944 -17.1

1.041 -21.8

1.030 -22.6

0.869 -23.5

Blade oscillation amplitude

Figure 6.16: Aerodynamic stability change due to the blade vibration amplitude
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6.5 Effect of inter-blade phase angle

Unsteady calculations at various inter-blade phase angles were performed to see whether

the inter-blade phase angle which yields the minimum stability in the calculations

matches that observed in the rig test, and to see what aerodynamic mechanisms generate

the minimum stability at this inter-blade phase angle.

The variation of the blade exciting energy against the inter-blade phase angle at the

"In flutter" condition is shown in Fig. 6.17. The blade exciting unsteady aerodynamic

energy is calculated to be the largest (smallest damping force) at the inter-blade phase

angle -32.7 degrees. This result agrees with the observation in the rig test.

The breakdown of the unsteady aerodynamic energies on the blade surface into five

characteristic regions, namely shock-foot region, upstream of the shock-foot region, and

downstream of the shock-foot region on both suction and pressure surfaces is shown

in Fig. 6.18. It can be seen from this figure how the source of blade exciting energy

varies according to the inter-blade phase angle. Note that the ordinate is the unsteady

exciting energy per unit area. So a large value does not necessarily mean large blade

exciting energy, because the area can be small depending on the magnitude of the

shock oscillation amplitude (chordwise displacement). It is seen from the figure that

the shock-foot on the suction surface and the shock foot on the pressure surface (due

to the passage shock) work approximately in opposition energies. The sum of these

two energies almost corresponds to the shape of the Fig. 6.17, implying that these two

energies are the dominant energies working on the blade. It is the balance between

these two energies which define the stability of the blade section. It can be seen from

Fig. 6.18 that the source of the unstable blade total energy at inter-blade phase angle

-32.7 degrees in Fig. 6.17 is the shock foot on the pressure surface.
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Now that we recognize that the balance between the unsteady pressures due to the

two shock feet controls the aerodynamic stability of the blade section, the mechanisms

that vary the strength of the two shock feet are investigated. Fig. 6.19-a,b shows the

variation of the amplitude and the phase of the unsteady pressure at the two shock feet.

The amplitude of the shock foot on the suction surface is always larger than that on the

pressure surface, and the difference of the two amplitudes stays approximately the same.

So the variation of the amplitude is not responsible for the variation of the aerodynamic

energy. Thus the phase must be responsible for the difference of the relative strength of

the two energies. Fig. 6.19-b shows roughly symmetric phase variations but the phase

of the energy on the pressure surface is shifted to left. This left shift results in the

difference of the blade exciting energies.

The separation region behind the shock foot on the suction surface which is marked

"S. S. downstream" in Fig. 6.18 works as a blade damping force at all the inter-blade

phase angles. Therefore it has been shown that this flutter is not a stall flutter. The

source of the blade exciting force is not a stall, but the unsteady shock foot of a passage

shock near the blade's leading edge on the pressure surface.
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Figure 6.17: The effect of the inter-blade phase angle on aerodynamic blade ex-

citing force
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6.6 Effect of fan pressure ratio

Calculations perturbing the rotor static pressure ratio were performed to investigate the

effect of the pressure ratio. The pressure ratio is perturbed along the constant speed

line in the fan characteristic map shown in Fig. 6.20. Therefore the inflow angle and

the inflow Mach number are also perturbed accordingly. The idea is to investigate the

effect of the blade loading through one parameter, the pressure ratio. The static pressure

ratios were chosen to be around the point which the shock wave has just unstarted, i.e.

1.32. The inter-blade phase angle is -32.7 deg.

The result is shown in Fig. 6.21. Although the amplitude is not a maximum in

Fig. 6.21-a, the phase angle in Fig. 6.21-b causes an unstable exciting energy at the

static pressure ratio 1.32. The figure shows that the aerodynamic instability appears at

the static pressure ratio 1.32, and the unsteady pressure is working as a blade exciting

force only in the vicinity of this pressure ratio. This agrees with the observation in the

rig test that the flutter subsided by further closing the exit valve at some fan speed. At

most fan speeds, the exit valve could not be further closed because of the fan vibration

amplitude limit for safe operation, so it could not be checked if this observation is true

at all fan speeds.

The details of the unsteady blade surface pressures are seen qualitatively in a time-

wise surface pressure distribution in Fig. 6.22. In the case of pressure ratio 1.30, a shock

foot is visible on each surface, but the shock oscillation is less on the pressure surface.

At pressure ratio 1.32, large shock oscillations are seen on both suction and pressure

surfaces. In the case of pressure ratio 1.34, the shock wave is detached and the shock

foot on the pressure surface has almost disappeared.
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For the three pressure ratios, quantitative details of the unsteady pressure can be

seen from the blade surface unsteady pressure amplitude distributions, phase distribu-

tions and energy distributions shown in Fig. 6.23, 6.24, 6.25, respectively. The unsteady

pressure amplitude distributions in Fig. 6.23 show that the amplitude on the pressure

surface is the largest in the case of pressure ratio 1.32, where the passage shock wave

is just about to unstart. The phase distribution in Fig. 6.24 shows that the phase of

the shock foot on the pressure surface has shifted to approximately 70 degrees at the

pressure ratio 1.32, while it is approximately 180 degrees at the other pressure ratios.

A phase angle contributes to a maximum blade exciting energy at 90 degrees and no

blade exciting energy at 180 degrees. So the shock foot on the pressure surface works

as a large blade exciting energy only at the pressure ratio 1.32. The blade surface en-

ergy distributions in Fig. 6.25 show that the shock foot on the suction surface behaves

as a blade damping energy, and the passage shock foot on the pressure surface works

as a blade exciting energy in the whole calculated pressure ratio range. Note that in

Fig. 6.25 the unstable blade-exciting positive energies are shown with the positive axis

up; in Fig. 6.21-c the positive axis was down. It is a balance between these two un-

steady aerodynamic energies which determines the stability of the blade section. The

displacement of the passage shock foot on the pressure surface becomes very large when

the shock is in between the started and the unstarted positions, and this exerts the

dominant blade exciting energy.

In each of these cases, no blade exciting force due to stall was detected. So the

flutter could only have been caused by the displacement of the pressure side passage

shock.
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In summary the key mechanism that causes transonic flutter is the reduction of

aerodynamic stability due to the position of the passage shock wave. The stability of

the blade due to the unsteady aerodynamic energy reduces when the passage shock wave

comes close to unstarting. The reasons for the blade exciting energy becoming large on

the pressure surface near the leading edge at the pressure ratio 1.32 are:

1. the chordwise displacement of the shock motion is large at this pressure ratio when

the shock is just about to detach, and

2. the steady pressure is high near the leading edge so the pressure jump due to the

shock wave passing is large, and

3. the phase angle of the shock oscillation becomes a value which causes the phase

angle of the unsteady pressure to be close to 90 degrees.
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Figure 6.20: The fan operating points used in the perturbed pressure ratio calculations

131

0.8



0.8

0.7

0.6

0.5

0.4

0.3

0.2
1.

180

. 90

-90

-180
1.:

-0.6
En

C
Fn -0.4
x
E

, -0.2

CD

S 0
X

CI

0.2

3 1.3 1.32 1.34
Static Pressure Ratio

(a) Amplitude of the unsteady pressure

Static Pressure Ratio

(b) Phase of the unsteady pressure

1.3 1.32
Static Pressure Ratio

(c) Blade exciting force

Figure 6.21: Aerodynamic stability change due to the pressure ratio

132



T sE. urface ucan urace

T.E. LS

90

TE.

-120 0.60 0.00 0 0

(a) pressure ratio = 1.30

160

60 Ong

T.E L.E T.E.

I0 060 0.00 0.o0 .

(b) pressure ratio = 1.32

-120 -00.0 0.00 O.W

(c) pressure ratio = 1.34

Figure 6.22: Timewise

(inter-blade

blade surface

phase angle -32.7 degree)

pressure distribution

133

100.

* CI

0.

-100.

10020,

-CO

0.

I



~0300

sure swlac. suction surlace

-O ----------- --------- -- -- -- - - -------- . .... .... .. . . . . . . .. . .

ABS(P J,

........... .................................0. .. . ......

00,00 ----------- ...................................... 4--- ---

-060 000 060
X

(b) pressure ratio = 1.32

.10 060 000 060 120

(c) pressure ratio = 1.34

Figure 6.23: Blade surface distribution of the amplitude of the unsteady pressure

(inter-blade phase angle -32.7 degree)

134

000 ocoo-
-120

00300

00300

ABSdP)

00100

00000

ASS(dP)

00100



LE
................. ............... ... ..... .... ..... ... . . .....--------------------

P h a s .e Psi ac

pressure surface sugaWn surface

120 -060 00 3160 20

(a) pressure ratio = 1.30

60

Phase OP

-60

-.10

s 0

50

Phae dP

40

-060 000 04

(b) pressure ratio = 1.32

-620 -0 00 0

(c) pressure ratio = 1.34

Figure 6.24: Blade surface distribution of the phase

(inter-blade phase angle -32.7 degree)

of the unsteady pressure

135



pressure surface Su n lu e

0010 -

HEE

"0010 - -................................ ..............................

------------------- --------------------- ---------------------------

-120 -060 000 . . . 20

(a) pressure ratio = 1.30
0030

psuWe Snurface sucn suace

0010 - -

. ............ . ........................ . . ................... . .I
LE

-0010 - -

-0030
-120 460 000 060 1 20

(b) pressure ratio = 1.32
0030

Tr

t -- -- -- -

3030
-120 -060 000 060 120

(c) pressure ratio = 1.34

Figure 6.25: Blade surface aerodynamic stability distribution

(inter-blade phase angle -32.7 degree)

136



6.7 Effect of incidence angle

In a transonic fan, the shock position is defined by the inflow Mach number, the pressure

ratio, and the passage area contraction, but not directly by the incidence angle. The

incidence angle does change as a result of :hanges in the pressure ratio, and the inflow

Mach number, or in the stagger angle, but the incidence angle itself does not change

the inflow Mach number and the pressure ratio. The inflow Mach number and the

pressure ratio are defined by the passage area change. In the case of a stagger angle

change, the change in the stagger angle can cause the blade passage throat area to

change, and will result in a change of the inflow Mach number. Therefore an incidence

angle change affects the shock position indirectly instead of directly. The effect of the

incidence angle change due to the pressure ratio change was discussed in the previous

chapter. In current research, the data is limited to those of a transonic fan rig which

has only one stagger angle, so the effect of changing stagger angle was not studied. This

will be left as a subject for work in the future.
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6.8 Effect of reduced frequency

The flutter in the rig occurred at the reduced frequency K = =C - 0.44. The effect of

increasing the natural frequency of the blade on this flutter is investigated here. It is a

common practice to increase the natural frequency of the blade to avoid flutter, and it

is useful for designers to know whether this approach is effective for this flutter or not.

This investigation checks whether the selected reduced frequency is high enough to be

truly unsteady, or whether this phenomena can be treated by a quasi-steady approach

gives this useful information on how to handle the problem most efficiently in practical

flutter prediction calculations.

Calculations at various reduced frequencies were performed. All the calculations

here were done at an inter-blade phase angle of 0 degrees, and static pressure ratio 1.32.

The results are shown in Table 6.5 and Fig. 6.26. At the reduced frequency (K)

between 0.44 and 0.88, the phase decreases monotonically as K increases, and the aero-

dynamic stability increases. Therefore it has been shown that increasing the blade's

natural frequency is an efficient method to suppress this flutter.

At K less than equal to 0.44, some flow separations were seen. At K = 0.22,

flow separation causes large scatter of the phase because the period of the unsteady

separation is not locked onto the blade oscillation period.

At K = 0.44, the unsteady flow separation and the blade oscillation is synchronized.

Since the synchronization of the unsteady separation and the blade oscillation depends

on the reduced frequency, the phenomena cannot be treated by quasi-steady methods.

It is necessary to use unsteady tools to analyze this type of flutter.
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Table 6.5: Results of various reduced frequency calculations

reduced frequency

K = WU

0.22

0.44

0.66

0.88

1.32

-1

C-cc

c-0.5

x
dCi
E
CU

0
C,,
C,

0-

0.5.
0.5

pressure amp.

C,

pressure phase

deg

scatter too large

0.758

0.743

0.684

0.275

-23.4

-76.4

-89.9

-38.8

Reduced frequency

Figure 6.26: Aerodynamic stability change due to the reduced frequency
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6.9 Effect of Reynolds number

In industry, it is common practice to use scaled rigs to develop engines. In high bypass

fan engines, the diameter of the engine is esj ,cially large and therefore half-scale fan

rigs are often used for aerodynamic performance tests to save cost. In such cases, the

tip relative Mach number is matched to the engines, and the Reynolds number cannot

be matched. The question in such rig tests is whether the flutter boundaries observed

in rig tests represent the flutter of the engine.

Since it has been shown that transonic flutter is caused by the shock wave oscillating

between attached and detached positions, the flutter onset can be very sensitive to the

Reynolds number. Although the shock position itself is usually thought as not being

strongly dependent on the Reynolds number, it is different in transonic cascade flow.

Boundary layer thickenings or separations always exist behind the shock foot, and the

displacement thickness of the boundary layer will change the passage area behind the

shock wave. Since the shock position is very sensitive to the passage area, the onset of

the transonic flutter can be very sensitive to the Reynolds number. Calculations at the

inter-blade phase angle -32.7 degrees at 91.2% span, which is the case in blade-damping

condition, were performed to check the effect of the Reynolds number. The Reynolds

number was increased from 1.77 x 106 to 3.77 x 106 which correspond to that of the

rig and the engine, respectively. The calculation results are shown in Fig. 6.27 and

Fig. 6.28.

The results show only small variation with Reynolds number. Since it has been

shown that no separation is involved in the flutter mechanism, the effect of Reynolds

number is expected to be small and current result supports it. However, the number of

calculations shown here is not enough to conclude that the Reynolds number effect is

small, and more calculations especially at blade-exciting conditions are needed to verify

if the statement is applicable even in a flutter condition. This work is beyond the scope

of current research, and will be left for future research.
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6.10 Spanwise variation and total blade exciting energy

So far, all the calculations were done at the 85.3% span position, and 2-dimensional

aerodynamic mechanisms of flutter were explored only at this position. Although the

possibility of flutter was found by such a "typical section" approach, this will not yield

the flutter boundary of the real fan. In reality, the flow field in a transonic fan is 3-

dimensional, and the fan will flutter only when the total unsteady energy moment on

a whole blade becomes unstable. To get the flutter boundary of the whole blade, one

should evaluate the total blade exciting energy moment by summing the blade exciting

energy at each section after multiplying it by the distance of the section from the root

of the blade. This is called the "strip theory" approach.

It is generally believed that the spanwise section above 70% span has the dominant

influence on the total blade exciting energy since the unsteady aerodynamic force is

large due to high relative Mach number, and the moment arm from the root of the

blade is long. Therefore, for the strip theory calculation, only three spanwise sections,

namely 79.3% span, 85.3% span, and 91.2% span were used. 95.3% span section was

omitted because large three dimensionality due to the end wall and tip clearance flow

was anticipated.
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The blade exciting energies on the three sections to use in the strip theory approach

are shown in Fig. 6.29. The stability is minimum at 85.3% span and the blade exciting

energy is seen only at this position at the pressure ratio 1.32. The reasons can be seen

in the timewise blade surface pressure distribution in Fig. 6.30, and in the blade surface

unsteady energy distribution in Fig. 6.31. At 91.2% span, the shock wave is located

closer to the trailing edge and is weaker than for the 85.3% span case. Although a small

blade exciting energy is seen at the downstream of the shock foot on the suction surface,

the blade exciting energy due to the shock foot on the pressure surface has weakened

and the total blade exciting energy at the section has become a blade damping energy.

At 79.3% span the shock wave is detached and no blade exciting energy due to a shock

foot on the pressure surface is seen. The mechanism of the blade exciting energy change

due to the spanwise position variation is similar to that due to the static pressure ratio

variation. The key mechanism is that the blade exciting aerodynamic energy due to the

shock foot on the pressure surface emerges when the shock wave is just about to detach.

This matches the observation that the flutter appeared only when the fan is operating

at a tip relative Mach number over unity.

In a transonic fan operating with the tip Mach number over unity, a spanwise position

at which the shock wave detaches always exists. Therefore transonic fans can have an

aerodynamically unstable radius whenever the tip Mach number exceeds unity.
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The spanwise integrated energy moments at several different pressure ratios are

plotted in Fig. 6.32. Since the blade exciting energy was seen only at 85.3% span

pressure ratio 1.32 case, no blade total exciting energy moment is calculated. The

reason for this mismatch with the rig result is not clear now. The research to find this

reason may need full 3-D calculations, and therefore is left as a research topic for future.

To use the current code for practical flutter boundary predictions, a "typical section"

approach calibrated by a certain data point appears to be acceptable.
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6.11 Summary of the flutter mechanism at 79% speed

An unsteady quasi-3D viscous calculation has demonstrated the aerodynamic mecha-

nisms of the flutter at high loading co-dition in an IHI transonic fan. For the transonic

fan oscillating in bending mode, the dominant unsteady aerodynamic energies are gen-

erated by the unsteady pressure at the shock feet on both suction and pressure surfaces

due to the passage shock. The shock foot on the suction surface works as a blade damp-

ing energy, but that on the pressure surface works as a blade exciting energy at the

inter-blade phase angle observed in the rig flutter test, -32.7 degrees. The sum of these

two energies determines the stability of the blade section.

The instability of the shock wave becomes large just before it detaches, and the

shock oscillates at a large chordwise displacement. The foot of this oscillating shock

wave on the pressure surface of the blade exerts the dominant blade exciting energy.

Therefore the flutter boundary is sensitive to the position of the shock wave and to

the pressure ratio, because the pressure ratio affects the position of the shock wave.

Transonic flutter will be resumed when the shock wave is fully detached because there

is no shock foot on the pressure surface, and the shock oscillation reduces.

The flutter observed in an IHI transonic fan has been demonstrated to not be a stall

flutter. It is the unsteady pressure due to the large oscillation of the passage shock

wave which generates the large blade exciting energy, and not the separation behind the

shock wave.

If the pressure ratio is further increased, and/or the incidence angle become large,

a classical stall flutter due to trailing edge separation may emerge, overwhelming tran-

sonic flutter. For sophisticated modern fan designs, a transonic flutter due to the shock

unstarting appears to occur first. This mechanism explains why it was sometimes ob-

served at conditions around the kink in the flutter boundary plot, that flutter subsided

by further closing the fan exit valve during the rig tests.
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The reduced frequency was found to have large effect on this flutter. Increase of the

natural frequency of the blades is an efficient method to suppress this flutter.

The Reynolds number was found not to have a large influence on the flutter bound-

ary. Therefore a scaled rig test can represent the flutter boundary of the engine as far

as the material and the structure of the blade are the same and the reduced frequency

is not changed.

When strip theory was applied to the results of the calculations, this research indi-

cated no flutter under any conditions. To use current code for practical flutter boundary

prediction, a "typical section" approach with calibration to a certain data point is rec-

ommended.
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Chapter 7

Summary and conclusions

7.1 Summary of the work

1. A quasi-3D viscous unsteady code has been developed to calculate the blade-

to-blade flow of a modern transonic fan with shock waves. The code has been

validated by a series of calculations so that the result of calculations can be trusted

as representing physically true phenomena.

2. Johnson and King's one-half equation turbulence model has been implemented in

the code. It performed well on simulating the shock/boundary-layer interaction

on a transonic blade section. Laminar calculations and turbulent calculations

with an equilibrium model such as Cebeci-Smith's gave totally different flow fields

which was inconsistent with experiments. The importance of choosing the proper

turbulence model has been shown.

3. The importance of properly modeling the motion of transition points in unsteady

calculations has been shown. In steady calculations, the e" method is sufficient to

model the transition point, but in unsteady calculations it has been shown that a

model which simulates the streamwise shedding of the transition point is needed.

4. The ability to use a quasi-3D code for simulating the unsteady blade-to-blade

flow in modern transonic fan has been demonstrated. The calculation by "typical

section" approach showed that the largest aerodynamic instability occurred at

the same inter-blade phase angle as seen in the flutter of the rig test. Also, the

calculation confirmed that a blade-exciting aerodynamic energy appears at the

boundary condition taken from the rig data when the flutter occurred.
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7.2 Conclusions

Mechanisms and characteristics of a transonic fan flutter at a high loading condition

have been shown by quasi-3D unsteady viscous calculations.

1. The flutter observed in the IHI fan rig was found not to be a classical stall flutter,

but it is a flutter due to shock oscillation. While the shock oscillation produces a

dominant blade exciting energy, the separation behind the shock foot was found

to not produce a blade exciting aerodynamic energy during the flutter.

2. The shock wave has been found to be playing an important role in the mechanisms

of this flutter.

(a) The key mechanism of the transonic fan flutter lies in the oscillation of the

shock wave as it detaches. At a pressure ratio close to the value at which the

shock wave detaches, the stability of the shock wave reduces, and the shock

wave oscillates between the started and the unstarted positions with minor

blade oscillation. At such a condition, the unsteady blade surface pressure on

the pressure surface generated by the foot of the passage shock wave becomes

a dominant blade oscillating energy.

(b) The unsteady blade surface pressure at the shock foot on the suction surface

works as a blade damping energy when the flutter occurred.

(c) Flutter due to the shock oscillation will occur at conditions near the shock

unstarting point. This kind of flutter will not occur when the shock wave is

fully detached.

(d) Since a fan operating at a tip relative Mach number over unity always has

a spanwise position which the shock wave detaches, transonic fans can have

an aerodynamically unstable radius whenever the tip relative Mach number

exceeds unity.

3. The reduced frequency has large effect on this flutter. As with other type of

flutters in a cascade, an increase of the natural frequency of the blade is effective

to suppress the flutter.
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4. The mechanism of the flutter is unsteady, and therefore quasi-steady analysis is

not a proper approach to analyze this flutter.
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7.3 Recommendations for future work

1. A study on the effect of the blade design parameters, such as the camber angle,

stagger angle, and the curvature of the blade passage between unstarted position

and the started position is suggeste 1 to develop a method to design a transonic

fan that is much more robust to high loading flutter.

2. Three dimensional effects, such as unsteady passage contraction, end-wall bound-

ary layers, tip-clearance vortices, and spanwise slanted shock waves should be

checked by full 3D calculations.

3. Spanwise integration of the unsteady aerodynamic energy, i.e. strip theory, did

not show flutter at the conditions studied. The reason why it did not show flutter

should be clarified. This work may need 3D calculations.

4. Unsteady viscous calculations with multiple blade passages take a tremendously

long time even with today's high speed workstations. Methods to reduce the cal-

culation time are very important from a practical point of view. Some possibilities

worth trying to shorten the calculation time are:

(a) parallelize the code to run over multiple workstations, and

(b) use a better grid, such as an O-H grid to improve the numerical stability of

the calculations.
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