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Abstract

One of the major difficulties faced in the numerical resolution of the equations of physics is
to decide on the right balance between computational cost and solutions accuracy, and to
determine how solutions errors affect some given "outputs of interest".

This thesis presents a technique to generate upper and lower bounds for outputs of
hyperbolic partial differential equations. The outputs of interest considered are linear func-
tionals of the solutions of the equations. The method is based on the construction of an
"augmented" Lagrangian, which includes a formulation of the output as a quadratic form
to be minimized and the equilibrium equations as a constraint. The corresponding La-
grange multiplier, or adjoint p, is determined by solving a problem involving the adjoint
of the operator in the original equations. The bounds are then derived from the under-
lying unconstrained max-min problem. A predictor is also evaluated as the average value
of the bounds. Because the resolution of the max-min problem implies the resolution of
the original discrete equations, the adjoint on a fine grid is approximated by a hierarchical
procedure that consists of the resolution of the problem on a coarser grid followed by an
interpolation on the fine grid. The bounds derived from this approximation are then op-
timized by the choice of natural boundary conditions for the adjoint and by selecting he
value of a stabilization parameter K.

The Hierarchical Bounds Method is illustrated on three cases. The first one is the
convection-diffusion equation, where the bounds obtained are very sharp. The second one
is a purely convective problem, discretized using a Taylor-Galerkin approach. The third
case is based on the Euler equations for a nozzle flow, which can be reduced to a single
nonlinear scalar continuous equation. The resulting discrete nonlinear system of equations is
obtained by a Taylor-Galerkin method and is solved by the Newton-Raphson method. The
problem is then linearized about the computed solution to obtain a linear system similar to
the previous cases and produce the bounds.

In a last chapter, the Domain Decomposition is introduced. The domain is decomposed
into K subdomains and the problem is solved separately on each of them before continuity
at the boundaries is imposed, allowing the computation of the bounds to be parallelized.
Because the cost of sparse matrix inversion is of order O(N 3), Domain Decomposition
becomes very useful for two-dimensional problems, where the overall cost is divided by K 2
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Introduction

When solving an engineering problem, one has to evaluate some outputs of interest, or

design variables that determine the performance of the design. These outputs are often

functionals of fields that are in turn solutions of ordinary or partial differential equations.

These functionals are often linear, or more generally convex, but they can be nonlinear

as well. An important part of the process followed by the engineer therefore consists of

modeling a given problem, i.e. of translating it into a mathematical model, which generally

yields a set of partial differential equations such as the Euler, Navier-Stokes or Maxwell

equations. The solutions of these equations are the fluid velocity and pressure fields or the

electromagnetic field. From the engineering point of view, these solutions are not as critical

as the outputs derived from them, like the lift of a wing, the drag of a body or the radar

cross section of an aircraft. The fields are nonetheless worthier than just intermediary steps

to these outputs of interest. Indeed, if the engineer finds that the outputs do not satisfy

the design constraints, he can go back to the fields to find information on the reasons for

the degradation of the performance (shocks, turbulent transition, scattering...).

Because the analytical solution to the equations of physical problems is not always

(and one could almost say rarely) available, the fields have to be computed numerically.

The resulting discretization of the equations leads to a necessary trade-off between cost

and accuracy : on one hand, a very fine discretization step usually yields very accurate

solutions, with a very high computational cost ; on the other hand, the computation of a

solution on a coarse grid may be much cheaper, but it is always at the cost of accuracy.

Several approaches have been suggested to reduce the cost of computations while keeping

an acceptable accuracy. The simplest one consists of using non-uniform meshes to discretize

the equations, the grids being refined only at places where high resolutions are needed : close

to walls, around the expected positions of shocks or where the solution is expected to vary



very fast. This method is limited by two factors. First, the cost may remain high because of

the regions where the mesh is refined. Second, the zones where solutions vary rapidly may

not be known a priori. To put up with the latter, an iterative process can be used, involving

adaptative mesh refinement. The key idea of adaptative techniques is to define a certain

norm for the error, which is made up by adding up the contributions from each point, the

mesh being refined in the regions where these contributions exceed a certain threshold. A

difficulty encountered by this approach is that the process does not stop by itself: either

it is stopped "manually", or a minimum size must be fixed for the elements, under which

the refinement is suspended. These mesh refinement methods achieve cost reduction by

performing accurate computations only where they are needed.

The technique adopted in this thesis does not aim at finding the "exact" solution, but

rather seeks to estimate bounds for an output derived from the solution. The idea is to

replace the direct solution of the equations on a fine grid by a Hierarchical Bounds Method

(HBM) that gives a much cheaper estimation of the output of interest considered, assuming

that the difference between the fine grid output and the exact output is negligible. Bounds

for this fine grid output are actually computed, so that, if they fit into the design constraints,

the "exact" solution need not be computed.

The first chapter of this thesis presents a general theory of the Hierarchical Bounds

Method, yielding bounds for some given output. The following chapters show how this

theory can be successfully applied to several typical problems, the convection-diffusion

equation, the pure convection equation (linear problems) and an equation derived from

the one-dimensional Euler equations for a nozzle flow (nonlinear problem). In each case

the particularities and difficulties encountered are illustrated, as well as the necessary ad-

justments made to apply the HBM. In particular, the natural boundary conditions used for

the adjoint are derived and the sharpness of the bounds is discussed. In the last chapter,

the Domain Decomposition technique is presented as a tool, useful especially in two or

more dimensions, that allows further computational cost reduction and parallelization of

the HBM.



Chapter 1

General Theory for Bounds

1.1 Introduction

This first chapter introduces a general theory for the Hierarchical Bounds Method, yielding

bounds for linear functionals of solutions (or outputs) of partial or ordinary differential equa-

tions. After a brief preliminary discussion about Sobolev spaces, the theory is developped

in three steps. First, the continuous problem is discretized by a Galerkin finite element

method. Second, the outputs of interest are cast as the stationary point values of a La-

grangian (saddle problem) and bounds for these outputs are derived. Third, a hierarchical

procedure is applied to obtain these bounds in a more computationally efficient manner.

The last part of this chapter presents a procedure for sharpening the bounds based on the

optimization of a stabilization parameter introduced in the formulation. In this thesis only

one-dimensional problems are considered.

1.2 Sobolev Spaces

In this section, Sobolev spaces are briefly introduced. For a more complete description, the

reader may consult [1] or [2]. First, let Q be an open subset of R' (n > 1). The space

of infinitely continuously differentiable functions with a compact support on Q is denoted

D(Q). The space D'(Q) of distributions on Q is defined as the dual space of D(Q), i.e. the

space of linear forms that are "continuous" on D(Q). The duality between D'(Q) and D(Q)

is denoted < T, > VT c D'(Q) and V E D(Q).

Let L2 (Q) be the space of square integrable functions on Q with respect to Lebesgue's



measure, i.e the set of functions such that

j/ f 12 dx < +00

A scalar product can be defined on L2 (Q) by

(f, g)o, =1

(1.1)

(1.2)f (x)g(x) dx

and the corresponding norm is :

fo, /2 (f f)1  = f ( X)2
IIf I o'Q = (f, o, I f)O) 2

dx)1/2 (1.3)

With this scalar product, L 2(Q) is a Hilbert space. Distribution derivation is then defined

as :

If T E D'(Q), VO D(Q) and Vi (1 < i < n),
DBT

(1.4)o

The first order Sobolev space on Q is then defined as

Dv
e 2(Q) Dx L 2 (Q), 1 < i

A scalar product can be defined on - 1(Q) as

+ v) dx

and the associated norm is :

d} 1/2IIuII1,Q = (u,u)1f = {I/ . () +u2]

With this scalar product, V-1(Q) is a Hilbert space. The closure of D(Q) in 7- 1(Q), i.e. the

set of all functions of '1(Q) that are limits of converging sequences of functions of D(Q), is

denoted Rl(Q). It can be shown that -l (Q) is the set of functions of 7-1(Q) that vanish on

the boundary of Q. For example, if n = 1 and Q =]0, 1[, then 7-t (Q) is the set of functions

of -1 (Q) that vanish at x = 0 and x = 1.

'()-= {V (1.5)

(uV)=n Dx Oxv(u, v1,n =Oxi axi (1.6)

(1.7)



The dual of 711(Q) considered as a subset of / 1 (Q) is denoted by W-1 (Q). That is,

W-1(Q) is the set of linear forms that are continuous on -(0(Q). One can show that the

elements of -- 1(Q) are the finite sums of functions in L2 (Q) and first order derivatives of

functions in L2 (Q).

1.3 Continuous Problem

The generality of the theory is kept if one assumes that the domain on which the differential

equation is defined is D =]0, 1[. The corresponding Sobolev spaces are denoted -I (D),

- (D) and NR-'(D). The problem considered is a second order linear problem where the

values of the solution u at 0 and 1 are imposed

f (x, u, ux, uxx) = g (1.8)
u(0) = Uo u(1) = U1

f is a linear function of its arguments and the forcing function g is assumed to be in H- (D).

Let R- (D) be the set of all functions v(x) in VI(D) that satisfy the boundary conditions

in 0 and 1 :

' (D) = v C 1(D) v(0) = Uo, v(1) = U1} (1.9)

One looks for solutions u to (1.8) in (1(D).

A weak formulation for the problem is obtained by multiplying the differential equation

by w E W-I(D) and integrating over D, the second derivative terms being integrated by

parts (see [3]). The final result can be written in the form

fir 1
fo[w f (x, u, ux) +wx f 2(xu, ux)] dx = wgdx (1.10)

In a more abstract form, the problem (1.10) can be stated as finding the solution u G~N(D)

such that :

a(u,w) = M(w) Vw E '(D) (1.11)

We shall consider problems such that the bilinear form a(u, w) is coercive

3a>0 such that VuE- (D), a(u,u) > a u (112)
E- 1,Q (112



Lax-Milgram's Theorem then ensures that the problem (1.11) has a unique solution [3].

Although the theory to be presented can be easily generalized to nonlinear convex func-

tionals, the outputs considered are linear functionals of the field u. These outputs are

written as :

s(1) l(1 )(u), S(2) - ( 2)(u),... (1.13)

1.4 Discrete Equations

We consider a linear Galerkin finite element approximation [4] on a general mesh with a

uniform grid-spacing 6.

Let n be the total number of nodes interior to the interval [0, 1]. One has :

1
n = 1 (1.14)

Let xj = j 6 be the coordinate of the jth node of the mesh (0 < j < n + 1). To each

of these nodes is associated a piecewise linear function pj ("hat" function) equal to 1 at

node xj and to 0 at all other nodes. Let XE C -1E(D) and X0 C V(D) be the classical

continuous-piecewise polynomial sets. They can be expressed as :

Xo = span{Il(x),..., Wn,(x)} (1.15)

XE = {VE(x) = UO o(x) + v(x) + UI n+(x) Iv(x) E Xo} (1.16)

where U0 and U1 are the boundary conditions of the problem.

The finite element method then consists of approximating the solution u by its decom-

position on the basis functions {0,..., yn+I} :

n

u(x) Uo1 o(x) u(x) pj(x) i + U Wn+l(X), (1.17)
j=1

The Galerkin finite element method is a particular case where the "test function" w is chosen

to be Wj(x) (1 < j < n), which leads, after inserting (1.17) into (1.10) and evaluating the

integrals, to a linear system of n equations with n unknowns that one can write as :

Lu = f (1.18)



where u = [Ul,...,u n]T now designates the set of unknowns (values of the solution u at the

points interior to the domain D). From now on, depending on the context, the notation u

may denote either the solution to the continuous problem (function) or the solution to the

discrete problem (vector). The context will prevent any confusion. L is an n x n matrix

(not necessarily symmetric) and f is the forcing term. The latter can be either calculated

exactly when the function g is simple enough :

f = ] pj gdx±+-o(O) 6, + /3(l)6 nj = + j gdx +a(0) 6 1,j + f 3 (l1), (1.19)
= fxj-1

or computed numerically by projecting g onto the space spanned by the basis functions Wi's

and performing the exact integration of the products pi pj :

1 n+1 1

joWj g dx Zgiz i i dx
2=0

=- (gj-1 + 4gj + g3+1) (1.20)

In (1.19), 61,j and 6n,j are the Kronecker symbols ; a(0) and 0(1) are coefficients that

depend on the equation and contain the boundary conditions u(0) = Uo and u(1) = U1 .

a(0) and /3(1) appear only in the first and the last components of the vector f respectively.

A discrete linear output of the problem can now be expressed as a function of the solution

vector u :

s = uTe + c (1.21)

with £ C Rn and ce R.

For the following analysis, we introduce the matrix A which is twice the symmetric part

of the matrix L :

A = L + LT (1.22)

Because the bilinear form in (1.11) has been assumed coercive, the matrix A is positive

definite.



1.5 Duality Approach to Bounds for the Outputs

Following [5], a quadratic "augmented" output functional is first constructed. The first step

consists of pre-multiplying (1.18) by uT, and post-multiplying the transpose of (1.18) by u,

to obtain

uTLu = uTf (1.23)

UTLT u = fTu (1.24)

Adding these two equations, dividing by 2 and noting that the right-hand sides are equal,

one obtains, with (1.22) :

1 UTA - uT f = 0 (1.25)2

Let us now define the functional

S±(v)= vrAv- vTf±(v + c) Vv e Rn and Vr C R +  (1.26)

From (1.21) and (1.25), the output and its opposite can be written:

± = S+(u) (1.27)

Because u is the unique solution of the system (1.18), it is the only element of the set

{v E WI L v = f}, and the output can be rewritten as:

+s = min S (v) (1.28)
{vER n I L v=f}

This trivial result transforms the original problem into a constrained minimization problem.

Following [6], a Lagrange multiplier (or adjoint) p can be used to build the constraint of

the primal problem (1.28) into a Lagrangian :

:l (v, P) = S± (v) + p T(Lv - f) (1.29)

(1.29) can be interpreted as an augmented Lagrangian with respect to the output s, in which

r plays the role of a stabilization parameter.

The dual problem is obtained by eliminating v from the Lagrangian. To that end, the



Lagrangian is minimized with respect to v. The stationarity condition for this unconstrained

minimization is

SAv = n f TP - LT (1.30)

A being positive definite, (1.30) has a unique solution that can be inserted into (1.29) to

obtain

min £(v, p) =- 1 (LTPi ± _- f)TA- (LTPi ± - r f) ± c -
veR n  2K

The dual problem can therefore be written:

PT f = -R_(p) (1.31)

max -R (t) =

By definition,

max
AER

n
1 (LTt ±- - f) A-1 (Lp T£- K f) ± c

2K ( )

V (v, /) E Jn X JRn, (1.33)

Weak duality then follows from the equality of £+(v, p) and S±(v) when the constraint is

satisfied:

For all admissible v and p, (1.34)

A small trick can be used to extend this inequality to all vectors (v, p) E ffn x 1n : if the

constraint is satisfied, then the value of S±(v) is given by (1.26), whereas, if the constraint

is not satisfied, the value of S+(v) is set equal to +oo. Thus, one has

(1.35)

It can be shown that the values of the constrained minimum of S± (v) and of the maximum

of -R±z(p) are equal:

S±(v) + R+(P) = vTAv - KvTf (vT£+ c)

1

+- (L - A- (L -f) Fc+p f

= (Av + L T  -4 ± f _ f)T A-' (KAv + L T P ± f- f)2n
1- (nA v)TA- (LTP ± f - f) - KVTL v ± vTf + P TLv

1
- ( A vL T p ± £ - f) A-' (r A vL TA ± - f)2K

- Tf] (1.32)

(1.36)

-R+(P) < C(v, ,P)

-nR(P) < S+(v)

-RL(p) (V, <) S+(v)V (v, p) E R x ",



Equation (1.36) is obtained by making use of the fact that A is symmetric and that for all

admissible v, the equality L v = f is satisfied. The stationarity condition of the Lagrangian

with respect to v being (1.30), the right-hand side in (1.36) vanishes, which proves the

Minimax Theorem: min S(v)= max- (p) (1.37)
{veRnILv=f} {ieR~n }

S+(v) is by construction the maximum of the Lagrangian when p varies and -R7(p)

is by definition the minimum of the Lagrangian when v varies, so the Minimax Theorem

allows us to write

±s = min max £+(v,p) (1.38)
{VemR=n} {PEm Rn

= max mmin £L (v, p) (1.39)
{ieJH } {vUR=}

The solution (u, 1 ) of this saddle problem, also called saddlepoint, is determined by the

stationarity conditions derived from setting the derivatives of the Lagrangian with respect

to v and to p equal to 0 :

KAu+LT - f ± = 0 (1.40)

Lu-f = 0 (1.41)

Equation (1.41), which is equivalent to (1.18), shows that u does not depend on the sign

chosen for the output and the Lagrangian, whereas, from (1.40), b± does.

The bounds immediately follow from (1.39), because

V E Rn mmin £+(v,f + ) < is (1.42)
{veJR }

which can also be written as

mm L+ (v, ) s < - min £ (v,-) (1.43)
{vcJR} {ve1R }

Thus, for any + JRn, solving (1.40) to obtain the vector v E Jn that minimizes the

left-hand side of (1.42) and plugging it into (1.29), we obtain upper and lower bounds for

the output.



1.6 Hierarchical Procedure

Equation (1.43) can be used to give bounds for the discretized output of interest. From

(1.38)-(1.39), the bounds are exactly equal to the output when the Lagrange multiplier

A' and the field v satisfy the stationarity conditions (1.40)-(1.41). Unfortunately, two

difficulties complicate the choice of ft+ in contradictory ways. First, the vector fA chosen to

compute the bounds must be as close to the "true" adjoint as possible, because the sharpness

of the bounds is closely related to the quality of the approximation of the exact saddlepoint.

Second, (1.41) shows that the computation of the adjoint requires the resolution of the

original discrete system, hence makes the computation of the exact saddlepoint on a fine

grid prohibitively expensive.

Because the saddlepoint cannot be computed cheaply on a fine grid, the Hierarchical

Bounds Method consists of considering 2 different grids, i.e. 2 levels of discretization, one

fine ("truth" mesh) and one coarse ("working" mesh), and solving for the saddlepoint only

on the coarse grid. The adjoint is then interpolated to obtain an approximation of the

exact saddlepoint on the fine grid and the bounds are obtained from (1.43) by solving only

a symmetric problem. Further gains on the cost can be achieved, even in one dimension,

by the use of the Domain Decomposition technique presented in the last chapter.

The general uniform grid-spacing 6 can now be equal either to H (coarse grid) or to h

(fine grid). The nodes of the coarse mesh are, from now on, assumed to be nodes of the

fine mesh as well. The variables corresponding to the coarse grid (H-mesh, or "working"

discretization) are denoted with an H subscript (e.g. LH, UH, XHj,...), while the variables

corresponding to the fine grid (h-mesh, or "truth" discretization) are denoted with an h

subscript (e.g. Lh, Uh, Xhi,...). The numbers of the points of the meshes that are interior

to the domain D are N and n for the coarse and the fine grids respectively.

1.6.1 Computational Procedure

The saddlepoint on the coarse mesh (UH, 0H) is first determined by solving the stationarity

conditions (6 = H) :

SAH UH + LHH - fH H = 0 (1.44)

LHUH-fH = 0 (1.45)



(1.45) is solved for UH (coarse grid solution), plugged into (1.44), which is then solved for

He RN by :

LH H = - (r AH uH - K fH H) (1.46)

Next, ff E is formed by interpolation of H on the h-mesh (5 = h). Let the

boundary values for the adjoint in x = 0 and x = 1 be 06 and ob+ respectively. One has

Vi (1<i <n):
N

()i = H,0 (h,i) H H,J (Xh,i) + :? H,N+1 (Xh,i) (1.47)

j=1

Equation (1.47) shows that the values of 4, especially at points close to x = 0 and

x = 1, directly depend on the choice of the boundary conditions ob± and ob+ for the

adjoint VH . Two considerations must be taken into account for this choice. First, the

approximation /± of the discrete adjoint has to be of good quality, otherwise accuracy

is lost and the sharpness of the bounds is affected accordingly. Second, the interpolated

adjoint has to be consistent with the underlying continuous problem. Because the choice

for these natural boundary conditions depends essentially on the problem studied, they

have to be determined for each particular case. Let us just mention, however, that the

boundary conditions are derived from the continuous problem and a continuous equivalent

of the discrete Lagrangian (1.29).

Finally, the bounds for the output Sh are computed on the fine grid as :

(Sh)LB (H) = min + (v, + )  (1.48)
{vemR}

(S)UB (H) = - min £- (v, (1.49)

The stationarity conditions for these two unconstrained minimization problems are sim-

ply (1.40) written on the fine grid with = +, i.e.

Ah 4i = - (LT - fh +h) (1.50)

which is solved for fi. The computation of the bounds is then straightforward by plugging

fi and eh into (1.29), (1.48) and (1.49)

(Sh)LB (H) = L+ ( + h )  (1.51)

(S)UB (H) = - (ih, I) (1.52)



Equation (1.50) shows that, although the first component of the exact saddlepoint (u, 0+)

did not depend on the sign chosen for the output and the Lagrangian, i does depend on

this sign, since it is determined from .jh •

A simpler expression can now be derived for (1.51) and (1.52) : multiplying (1.50) on

the left by T , one obtains

,TAh f4 :_ (,h±TLT+h - h4Tfh ±4-Teh) (1.53)

Therefore,

, + ^+ = 2hAh - 4 fL:+Tfh ± (U h + Ch) + T (Lh -fh) (1.54)

=A A c ± -A h (1.55)2

Equation (1.55) is obtained by adding (1.54) and (1.53). The bounds can thus be computed

as :

(Sh)LB (H) = - iTA h  + Ch - -+Tfh (1.56)
2 h hh

(Sh)UB (H) = h Aduh + Ch + g fh (1.57)2

1.6.2 Computational Cost

We now briefly discuss the advantages and drawbacks of the Hierarchical Bounds Method.

The advantages of this procedure are not immediately obvious. As a matter of fact, the

cost of the method resides essentially in the inversion of the matrix Ah to obtain i± : the

inversion of Lh has been replaced by that of Ah, which is as costly, since both matrices have

the same size and are tridiagonal in the one-dimensional case. Given that tridiagonal matri-

ces can be easily and cheaply inverted, even when their sizes are large [7], the Hierarchical

Bounds Method does not seem very advantageous.

However, the HBM presents two undeniable advantages. First, in two dimensions, the

HBM represents a real improvement, because the matrices are not tridiagonal anymore, but

sparse. Replacing the inversion of the matrix Lh, which is not necessarily symmetric, by the

inversion of Ah, which is symmetric becomes critical. As a matter of fact, numerous very

efficient algorithms are available to solve sparse symmetric problems (especially iterative



processes, like the conjugate gradient [8, 9, 10]), whereas existing methods to invert non-

symmetric matrices are usually neither systematic nor efficient. Second, the cost of the

HBM can be improved, even in one dimension, by the use of the Domain Decomposition

studied in more detail in the last chapter. The key idea here is to divide the domain D into

several subdomains and solve in each subdomain Neumann or Neumann-Dirichlet decoupled

problem with appropriate boundary fluxes. The cost is reduced because each subdomain

contains many less points and the resolution of the problems on the subdomains can be

easily parallelized.

1.7 Optimal Stabilization Parameter

The results of Sections 1.5 and 1.6 are valid for all positive values of the stabilization

parameter r. This additional parameter can now be used to optimize (i.e. sharpen) the

bounds. To begin, the adjoint on the coarse grid is decomposed as :

0 = o+ + (1.58)

where

= T(LH)-1H (1.59)

= (LH) - 1 [fu - AHUH] (1.60)

UH being the solution of the system on the coarse grid (1.18). Similarly, the boundary

values for this adjoint are decomposed as :

ob+ = VOb+ KV¢ib± (1.61)

¢o+ = 70b+ K01 b± (1.62)

where 00 b±, o1 b±,i 0 b± and 01 bl are independent of .

The approximated adjoint on the fine grid can now be written as

A 0+ 1 (1.63)



where Ao+ and A: are interpolations on the fine grid of o and H respectively

N

= °±H0 (xhi)+

j=1

()H PHj (Xhi) "+ b~ 0 H,N+1 (Xhi)

N

i HO hi) + ( ~H1±) H bi(h HN+ (hi)

j=1

for all i (1 < i < n). Following the notations of [5], the bounds are denoted as:

77+(s) -(Sh)LB

1-(s) - - (s)UB

(1.64)

(1.65)

(1.66)

(1.67)

Two new vectors can be introduced :

±Y = L o±
Yh = Lh -h fh

Zh LhTA fh

(1.68)

(1.69)

and the corresponding inner products are defined as :

a± = TA-1 ±

0 = yT AK+2fT1-
h=z Ag z + 2 fh h

(1.70)

(1.71)

where Ah 1 is interpreted as the inverse of Ah.

Using (1.50), (1.55), (1.63) and (1.68)-(1.71), the bounds (1.66) and (1.67) can be

written :

S- (Ah) A (Ah&) ±ch h+ rA Tfh

[Lh(h +gNPh) -Kfh ±h] Ah I [Lh ( O K P h ) - r fh ± h]

±Ch - A + Nh±) f

(y ± - ), z ) T A-1 (y± I-z)±Ch - ± ) T

1± - - 2fhh ) - y Z h -c h + h fh (1.72)2± - (1±-2A'z/±C .P

(o) i

1



where the symmetry of Ah (therefore of Ah 1) has been used.

expressed as functions of i:

Finally, the bounds are

z - fho + Ch (1.73)

Taking the first derivative of rq (;) with respect to K :

1 _
7± (r) = 12 - I

2 0
(1.74)

The stationarity condition 7 (n) = 0 yields the value of the optimal stabilization parameter,

/3± (1.75)

where the denominator is assumed positive for K*± to be defined. This is not guaranteed,

in particular for nonlinear problems.

Note that (1.59)-(1.62) and (1.64)-(1.65) show that po- = -po+ and A+- = , so

that yh = -y+ and z- = z + . Therefore, a- = a + and - = /3+ , which leads to

* *- = * (1.76)

A second consequence concerns the predictor (or predicted output) defined as the average

value of the bounds :
1

Spre(H) = [(S)UB (H) + (Sh)LB (H)] (1.77)

This predictor does not depend on the stabilization parameter r. Indeed, we have

Spre(H) = 2

1 +

2K
+ 1 T T^O+_ ± y+TAh l + Ch2 h h h f

1 T -1 hTAf[O- h+ 2 a - + /3- + yhT A- zh + +C

S +TA-' z - ff/O+ + Ch (1.78)

where K does not appear anymore.

From a computational cost point of view, the optimal stabilization parameter needs to

(<) = - 2-- - 0 - yh

=- [-



be computed only for one of the bounds, its value being the same for the other bound. The

computation of n* requires the inversion of Ah to be performed twice, which was already

the cost of the HBM without optimizing n. Furthermore, there is no need for any other

inversion of Ah, since the expression for the bounds is (1.73), the last inversion in this

equation having already been performed to compute 0+.

Finally, taking the second derivative of 79 (t) with respect to n, we obtain:

3 (1.79)

When n = n*, this second derivative is negative, which means that the optimum obtained

is indeed the maximum of ql(). Practically, (1.66) and (1.67) show that the maximum of

the lower bound and the minimum of the upper bound are determined by this procedure.

The following chapters are devoted to the application of this theory to three differ-

ent equations. Each of these problems have its particular features. The first one is the

convection-diffusion equation, for which the general theory developed in [5] can be readily

applied, without any modification. The second one is the purely convective case, where the

straight finite element formulation needs to be modified to stabilize the solution and deal

with the absence of the second boundary condition. The third one is a nonlinear equation

derived from the steady Euler equations, where the problem needs to be linearized before

it can be solved.



Chapter 2

The Convection-Diffusion Problem

In this chapter, the Hierarchical Bounds Method is applied to the one-dimensional convec-

tion-diffusion equation.

2.1 Continuous problem

The problem can be formulated in a differential form as:

-v xx+ u=g VxED

u(O) = Uo, u(1) = U1

(2.1)

(2.2)

where v is a (small) positive constant, U0 and U1 are real numbers and D =]0, 1[. Be-

cause the problem is time-independent, (2.1) is an ordinary differential equation. The weak

formulation of the problem can be written :

For ge - 1(D), find u E 71(D) such that

(vwxux + wuz) dx= wgdx Vw e - (D)
0O

(2.3)

The outputs of interest considered are the average value of the solution (s(1)) and a

pointwise value, i.e. the value of the solution u at a given point T < 1 (s(2) ) :

s(1) - 1)(u) -

s(2) - 1(2)(u) =

Su(x) dx
U(T)

(2.4)

(2.5)



2.2 Continuous Formulation

A continuous formulation for the problem is first introduced. This will prove useful to

determine natural boundary conditions for the adjoint.

The first step consists of deriving the equivalent of the discrete Lagrangian (1.29) for

the continuous case. Multiplying (2.1) by u and integrating between 0 and 1, one obtains :

I 0 I 
1 1

0 -vu uzx dx + uuz dx - u g dx = 0 (2.6)

The first integral is integrated by parts and the second one can be integrated directly :/01 u(1)2 -u(0)2 f ud O 27

- ux(1)u(1) + vu(O)u() + v (ux)2 dx + U(1)2 U(0) 2 ugdx 0 (2.7)
o0 2 fo

The continuous form of the augmented output (1.26) is then defined as :

S+(v) = r, -vvx(1) Ul + vv(O) Uo+ v (vx) 2 dx + U1
2 - U0  Ivgdx +l(v) (2.8)

The trivial minimization follows :

s = min S (v) (2.9)
vEWE(D) (V X ux+wux-wg) dx=0 VwEWo(D)

and the corresponding Lagrangian becomes :

£L (v, p) = S (v) + f p (- vvzxx + vx - g) dx (2.10)(010

Integrating the second derivative term by parts, one obtains :

L± = (VI) K -vx(1)Ul+vvx(0)Uo+ jv (vx) 2 dx+ 2 v g dx] ±1(v)

/1
-Vp (1) vx(1) + V (0) vx(0) + (v/ pxvx +/1 vx - p g) dx (2.11)

Let us now consider the first output, namely the average value of the solution over the

domain , i.e. (1)(v) = f v dx. The first variation of (2.11) with respect to variations

w(x) = v(x) - u(x) must be equal to 0 for u to be a stationary point:

K -vwz (1) U1 +± v wX (0) U + 2v wx ux dx - w g dx ]± wdx

-v(1)wx(1)+ (0)wx(0)+ (xwx+1wx) dx 0 (2.12)-VP(1) wx(1) + V AM)wX(0) + O(v pxwx + p w) dx 0 (2.12)



The natural boundary conditions for the adjoint now appear simply by grouping the

terms containing either wz(0) or w,(1), and setting them to 0, since the equation must be

valid for any value of w,(0) and wx(1). One obtains :

A(0) = - Uo

P(1) = -r U1

(2.13)

(2.14)

As far as the second output is concerned, the reasoning is not modified and, since

0 < Y < 1, the natural boundary conditions for the adjoint remain unchanged.

2.3 Discrete Equations

The problem (2.1)-(2.2) is discretized with a Galerkin finite element method. Denoting the

size of the space discretization 6 and the number of points interior to the domain n, the

elements of the resulting n x n matrix of the system (1.18) are given by :

Ld p dj + i d
10 dx dx dx V(i,j) (1 < i,j < n)

where the basis

functions). The

functions pi (1 < i < n) are the usual "hat" functions

matrix L then becomes :

2v v2 1

62
2v

7

(piecewise linear

(2.16)

2v

0

2v

7

The corresponding matrix A = L + LT can be obtained either from (2.16), or directly

by discretizing the self-adjoint part of the differential operator in (2.3), i.e. :

Aij = 2 v dx dx

(2.15)

V (i, j) (1 < ij < n) (2.17)



which leads to :

[I 2v

2v 4v

0

4v 2v

2v
0

4v

The forcing term f is defined in the general case, for (1 < i < n), as :

dpi dOn+lSdx dx
d Pn+ )

-Z dx U1 doi dpo
dx dx d- x UO]

Assuming that g is discretized using the i (1 < i < n) basis, one obtains :

fi - (gi-1 + 4gi + gi+i) +
6

o li -
Uo Ji'i + Ul 6n,i

where 6 1,i and 6n,i are the Kronecker symbols; + 1 Uo and

oz(0) and /3(1) seen in (1.19) respectively.

The discrete form of the outputs can be written as

are the terms

8s = U~+ c (2.21)

where £ E JJn and c C f?. For the two outputs considered in this chapter, one has s(1 ) =

£(1)

f(2)

= [1...1]T, c1) = 6

2

0= 0... 0 1 0 ... 1 T c(2) = 0

(2.22)

(2.23)

In the case of the second output, the single nonzero component corresponds to j = -/j

assumed integer.

(2.18)

[Oi g -
(2.19)

(2.20)

f ()d n
i=1

n
ui i dx = E ui 6+ ! and s(2) = u(:) = u(xj) = uj. Hence

i=1

f =0

21



2.4 Numerical Results

The general theory of the Hierarchical Bounds Method can be applied directly to the

convection-diffusion equation. The numerical results obtained are presented for both ouputs

with and without optimization of the stabilization parameter.

For these numerical simulations, the viscosity parameter v has been taken equal to

0.1. The forcing term g in (2.1) is equal to 0 over the whole domain D and the boundary

conditions are Uo = 0 and U1 = 1. The right-hand side of the discrete equations f therefore

has all its components equal to 0 but the last, which is equal to - 1). The boundary

conditions for the adjoint become :

p(0) = 0
p(1) = -K

(2.24)

(2.25)

The size of the fine grid cells is h = 10- 3 , and the bounds presented have been computed

for values of the coarse grid discretization H ranging between h and 0.1. More precisely,

H e {0.1; 0.05; 0.025; 0.02; 0.01; 5.10 - 3 ; 4.10- 3 ; 2.10- 3 ; 10-3}. Figure 2-1 presents the

0.2 0.4 0.6 0.8 1
x

Figure 2-1: Solution of the convection-diffusion problem (h = 10- 3 , H = 0.1)

solutions of the problem obtained on the fine and coarse (H = 0.1) grids. The exact solution



of the problem (2.1)-(2.2), u(x) = (evx - 1) / (e' - 1) is given as a reference.

Good accuracy is observed, even for the coarsest grid. For the fine grid, the plot of

the solution computed by the Galerkin finite element method cannot be distinguished from

that of the analytical solution.

2.4.1 First Output : Average of the Solution

The results obtained for the first output (average of the solution over the domain D) are now

presented. The stabilization parameter n is chosen equal to 1, which in this case happens

to coincide with the optimal value, as described in Chapter 1. Figure 2-2 shows the adjoints

H 4 for this output.

0.8
Psi- -

Psi+ ---
0.6

0.4

0.2

0-

-0.2

-0.4

-0.6

-0.8

-1 i i
0 0.2 0.4 0.6 0.8 1

x

Figure 2-2: Adjoints ?H (H = h = 10- )

Figure 2-3 shows the bounds obtained. Three observations can be drawn from this

graph. The first one is that the outputs computed on the coarse grids are very close to

the output on the fine grid, since the curves seem to be on top of each other. The second

one is that the bounds computed on the coarse grid estimate the "true" output within

approximately 20%, even for large values of H (e.g. H = 0.1). The third one concerns the

predictor. Like the coarse grid output, this predictor is so close to the h-mesh output that

it becomes impossible to distinguish one curve from the other in the plot.
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Figure 2-3: Bounds for the output : Average Value of the Solution

A closer look at the neighborhood of the fine grid output shows that the predictor is

actually closer to the h-mesh output than the H-mesh output (see Figure 2-4). Therefore,

the predictor estimates the "true" output better than the coarse grid.

To examine the convergence to the "true" output as a function of H, the rate of con-

vergence r of the upper bound is defined as : suB(H) - Sh = O (Hr). One has,

log ISUB(H) - Sh = r log H + constant (2.26)

Therefore, the rate of convergence of the upper bound is given by the slope of a graph of

log IsUB(H) - ShI as a function of log H. The same reasoning holds for the lower bound,

the predictor and the coarse grid output. Figure 2-5 presents plots showing the convergence

rates of the upper and lower bounds as well as those of the predictor and the coarse grid

output. The plot of the logarithm of the difference between the upper and the lower bounds

is also represented. Some observations can be drawn from this graph. First, there is

a large difference between the error bounds and the predictor error. Second, the errors

corresponding to H = h have of course not been shown, since by definition they are equal

to 0. Third and final, the slope of the lines is equal to 2, which confirms the prediction of [5]

according to which the convergence of the bounds is O(H 2). This second order convergence

Upper bound --
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Figure 2-4: Predictor for the output : Average Value of the Solution

of the coarse grid output is characteristic of linear finite elements, at least as long as the

problem is elliptic and the solution is sufficiently regular.
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Figure 2-5: Convergence of the bounds for the output : Average Value of the Solution



2.4.2 Second Output : Pointwise value of the solution

In this subsection, we consider the value of the solution at point I = 0.9, i.e. s = u(0.9),

as the output of interest. The discretizations are such that x = 0.9 corresponds to a grid

point in all meshes. In this case, the optimal value of the stabilization parameter ,* is

not 1 anymore, but converges to a finite value (approximately 1.124) as H converges to h.

Because this value is very close to 1, we present the results obtained for K = 5 and K = n*

to highlight the improvement of the bounds computed.

Figure 2-6 presents one characteristic feature of the chosen output : the first derivative

of the adjoint shows a discontinuity, which occurs at the point T = 0.9 where the solution

is evaluated.
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Figure 2-6: Adjoints for the output : Pointwise Value (H = h = 10- 3

The improvement on the bounds between the case where K = 5 and the one where K

takes its optimal value is significant, as shown on Figure 2-7. In particular, while the lower

bound is below the output of the H-mesh in both cases, it is much closer to the fine grid

output in the optimized case. Two other observations can be drawn from this figure. First,

the bounds obtained on the coarsest grids give the "true" output within 20% for K = 5,

and within 10% for K = K*, which is even better than for the average output. The bounds

are thus very sharp. Second, although the coarse grid output is better than either of the
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Figure 2-7: Bounds for the output : Pointwise Value

bounds, the predictor/estimator is significantly better than the coarse grid output. As

expected, this predictor is also independant of K.
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The convergence of the bounds with the stabilization parameter u optimized is given on

Figure 2-8. As in the case of the average output, a second order convergence is numerically

observed.

2.5 Conclusion

Three aspects of the Hierarchical Bounds Method have been highlighted in this chapter.

First, the numerical results show that the bounds for the output computed on the fine grid

are fairly sharp, and that the convergence is in O(H 2) (second order). Second, although,

in the case of the outputs considered so far, the coarse grid gives a better approximation

than the bounds, the average value of the bounds (predictor) is still better than the coarse

grid output in the sense that it is closer to the "true" output than the output computed

on the H-mesh. Third, the improvement brought by the optimization of the stabilization

parameter has been illustrated numerically.



Chapter 3

The Convection Problem

3.1 Introduction

This chapter considers the application of the Hierarchical Bounds Method to the linear

pure convection equation. This equation is of interest for two reasons. First, the direct dis-

cretization of this equation with a Galerkin finite element method leads to a skew-symmetric

matrix (hence with a zero symmetric part) and in certain cases to solutions with unphysical

oscillations. Second, the convection equation is a first order ordinary differential equation

that requires only one Dirichlet boundary condition.

In this chapter, we present a modification of the Galerkin procedure that allows for nu-

merical solutions without oscillations to be computed. We then apply the theory developed

in the first chapter, suitably adapted to this problem. We consider a problem in which the

convection speed is from left to right and where a Dirichlet condition is applied at x = 0

while the solution at x = 1 is unknown.

The first step consists of finding a new formulation of the problem that eliminates the

oscillations and allows for the computation of the solution at x = 1, yielding an "augmented"

matrix L of dimensions (n + 1) x (n + 1). In the second step, a variation of the scheme

leads to the algebraic computation of the boundary conditions for the adjoint 0i at 0.

This modification is necessary because, by definition, the adjoint is solution of the dual

convection problem that involves a boundary condition at x = 1. This results in augmenting

the dimensions of the matrix once again to (n + 2) x (n + 2).



3.2 Formulation of the problem

The purely convective problem can be written as :

du
= g(x) (3.1)

dx

u(0) = U0  (3.2)

where g is a function of the space variable x. For simple enough functions g, analytic

solutions can be obtained to compare with the results of the numerical schemes.

In certain cases (in particular when g is not continuous), a direct Galerkin finite element

method fails to give an acceptable solution (presence of unphysical oscillations). A possible

way of avoiding this numerical difficulty consists of using a simple Taylor-Galerkin approach

[11]. The basic idea of this approach is to introduce an artificial time-dependence :

Ou Ou
- +  = g  (3.3)

and compute the solution to problem (3.1) as the steady-state solution of (3.3).

ut = -ux + g (3.4)

Utt = -UtX (3.5)

= uXz - 9gx (3.6)

since g does not depend on the time variable t. u(x, t + At) can be expanded in a Taylor

series, and, keeping the first terms up to the second order, one gets :

At 2
u(x,t + At) = u(x,t) +Atut(x,t) + 2 utt(x,t) + O(At 2) (3.7)

= u(x, t) + At (-uX + g) 2 (u - gx) + O(At 2 ) (3.8)

The solution of the original convection problem is then the steady-state solution of this

differential equation. One thus writes :

u(x, t + At) = u(x, t) (3.9)



The new scheme then consists of solving the equation

- TUXX + ux = -g-Tgx (3.10)

with - = At/2. Applying a CFL condition to the equation, one gets, for 6 E {h, H}

T- (3.11)
2

A convection-diffusion problem can be recognized in (3.10), except that, in the Taylor-

Galerkin formulation of the convection equation, the diffusion term goes to 0 as the size of

the space discretization goes to 0. One should thus be able to apply a straight Galerkin

finite element method to (3.10), just like in the case of the convection-diffusion problem.

Before performing the discretization, one difficulty must be solved concerning u(1).

Because the boundary condition on u at x = 1 is not specified in the original problem, the

value of the solution at this point must be computed algebraically. u(1) = u(xn+l) must

therefore be considered as the (n + 1)st unknown of the problem.

A weak form for (3.10) can now be written :

S(T Wx Ux + W Ux) dx = (w g + T wx g) dx (3.12)

The output considered for this problem is the pointwise value of the solution u at point

Xn+1 = 1. This output offers a direct way of checking the convergence of the scheme to the

exact value at 1 as the space discretization becomes small.

Using the Galerkin method with piecewise linear approximations leads to a matrix of

the form:

S 2T 7 1
+- 0 ... ... 0

6 6 2
T 1 2T .

6 2 6

0.

L=

0

.. .. 2 - - 1• "T i
2Ti T I

T I -r I

0. 5 2 +2



hence
1 0 ...

0 .. . .. 0

0

0
-1 1

where L is of dimensions (n + 1) x (n + 1).

3.3 A New Formulation for the Adjoint

In order to be able to determine algebraically the values of the adjoints at the boundaries,

the numerical algorithm is modified so that the Dirichlet boundary condition is imposed

through the variational statement.

3.3.1 Additive term

Equation (3.12) can be written as :

[w (ux - g) + T W x (u x - g)] dx = 0
dx10

for all w and u equal to zero at x = 0. A modified scheme is obtained by allowing u(0) to

take any value and requiring :

f[w (u~ - g)+ TWx (u - g)] dx + w(0) u(O) =0
0

(3.13)

for all w and u (with no condition on u in 0). After integration by parts, one gets :

J[w (ux - g) - w (ux - g)] dx

This is valid for all values of w(0) and w(1),

the solution of this problem are :

+ [T w (u~ - g)] + w(0) u(0) = 0 (3.14)

so that the natural boundary conditions for

u(0) - (u~ - g)(0) = 0

(Ux - g)(1) = 0

(3.15)

(3.16)



The solution of the original convection problem (3.1)-(3.2) satisfies (3.15)-(3.16) as well as

(3.14), but these boundary conditions are only used to check the validity of the solution given

by the scheme. In the process, the initial single Dirichlet condition has been transformed

into a pair of Neumann-Dirichlet conditions.

The absence of boundary conditions implies that, instead of looking for solutions of

(3.13) in W1(D) like in the general theory, we shall look for u E -(l(D). The continuous-

piecewise polynomial set XE therefore needs to be redifined as

XE = span { o0(x),... , Wn+1 (X)} (3.17)

Moreover, because of the second term in the integral in (3.13), g E -- 1 (D) is not sufficient

to ensure the existence of this integral. g must be such that the integral of the product

(wx g) is defined, even for w = Wo or w = Pn+l. Therefore, g is restricted to a subset of

W-I(D). The forcing functions chosen for the numerical tests do not raise any difficulty

from that point of view.

The resulting system has dimensions (n + 2) x (n + 2). Three new terms appear in

this matrix. First, a 1 appears in the upper left corner because of the new term w(0) u(0)

(Loo = 1 + - ). The other two are linked to the addition of uo = u(0) as a new unknown:

the term previously containing the boundary condition is taken back to the left-hand side

of the equation (L 0 = - ) - as well as the term expressing the dependance of ul on this

boundary condition (Lo1 = - + ).

The resulting matrix is :

+ T 1 7 1
1+ - 0 ... ... 0

6 2 6 2
T 1 2T .

6 2 6

0
L=

0

27 7 1

66 2

0 ... ... 0 2 6 2
\6 2 6 +2/



1 0 -.. . . 0

-1

0
L=

0

0 ... ... 0 -1 1

3.3.2 Natural Boundary Conditions for the Adjoint

Although they are computed algebraically, natural boundary conditions for the adjoint

can be determined analytically from the continuous problem. The continuous Lagrangian

corresponding to the new scheme can be written :

L(v, ) = {[v2] 1 vgdx + v dx - j vx g dx + v(0)2 +1(v)1
+ [P(vx -g) + TPx(Vx - g)] dx + p(O) v(0) (3.18)

0

= V{ [ v2 v l 1 dx + j v dx - 7 g dx + v (0)2 ±1(V)

- f v + g + r (V xx + P g)] dv + p (1) v(1) + T [Px Vo (3.19)
0 0

Taking the first variation of the Lagrangian with respect to variations w(x) = v(x)-u(x)

and considering the pointwise value of u in 1 as the output one obtains

i [wu]o -j [wg± + (-2wxux +wxg)] dx +2w(0)u(0)} ±w(1)

- f [w (px + T[1tx)] dx + p(1)w(1) + - [Pz w] = 0(3.20)
0

The coefficients of w(0) and w(1) are set equal to zero, since all variations around 0 are

allowed. This gives natural boundary conditions for the adjoint

p(1) +T/x(1) = - (ru(1) ±I 1) (3.21)

7TzI(0) = Ku(0) (3.22)

Again, these conditions are not used directly in the numerical scheme, but are useful as



a check of the numerical results.

3.4 Optimal Scaling

3.4.1 Optimal Value for r

To compute the optimal value of r in the case of the pointwise value output, we follow the

procedure outlined in Chapter 1 and write :

= T(LH)

= (LHT) - 1 [fH -AH uH]

(3.23)

(3.24)

Given the form of the matrix LH (previously noted L

inverse of its transpose is simple to find :

(LH)

for simplicity of notations), the

0 1

01

With the output vector eH = [0 . _ 0 1]T (column vector of

of the adjoint for the coarse grid becomes :

(3.25)

size (N + 2)), the constant part

(3.26)

This vector is then interpolated on the "truth" mesh. The values of the components of

H0+ being all equal, the components of the interpolated vector o are also all equal :

1
(3.27)

The interpolation process therefore does not change the form of the constant part of the

I1## = .
1



adjoint, which means that, on the fine grid, one has :

(3.28)

Equation (3.28) immediately shows that

p- ± h = 0
= h -h 0

(3.29)

which also implies that

a± = pT Ahp = 0 (3.30)

The optimal value of K given by (1.76) is thus equal to 0.

The natural boundary conditions for the adjoint given by (3.21) and (3.22) then become:

= +1 (3.31)

(3.32)= 0

Equation (3.28) and i* = 0 imply that ( h i = ( = +1 V i, so (AP = 0 and
h-Z h i

thus, both equations (3.31) and (3.32) are satisfied.

3.4.2 Behaviour of the Bounds as r goes to K* = 0

In this section, we investigate the limiting case where r tends to zero. It is not clear that

for K = 0 the formulation presented applies as the Lagrangian is not strictly convex.

First, from (3.23) and (3.24), one has

^o+
Ph

0-= -- h (3.33)

(3.34)1+ =l-
h =

all terms being independent of K. fz4 is then defined by

- Ah±-fh) (3.35)

which, using (3.28) leads to

Ah f = -L + f
h--hp h ± +t Ah

Ioh = T(L ) -Ih

5+A(1) + r (1)

TL = L T1p+) = l1
Lh Ph h Ph + 6 P h ==:

(3.36)



fi~4 is therefore independent of K and one has

fih = f = ih

Furthermore, the bounds SUB(H) and SLB(H) can be computed by

SUB(H) = T Ahih + ATfh2hh
SLB(H)= ' TAh h - ±+Tfh

Hence,
Hence,

SUB(H)

SLB(H)

'_ [ j AI-T f] + ^0-T f2 Ah kh + 24 h fh + fh

= j h + +Tfh] _ O+Tfh
-2 h h h+ 2Ah J h

(3.37)

(3.38)

(3.39)

(3.40)

(3.41)

In both formulas, the factor in brackets and the second term of the right-hand side are

independent of K. This establishes the linear convergence of the bounds to a finite limit

when K converges to 0. The limits are :

lim SUB(H)
K-O

lim SLB(H)
--+0

(3.42)

(3.43)

Because of (3.28) and (3.33),

^0-Tfth fh =

=+Tf
h Jh

where Uh is the solution obtained on the

Since, by definition, f'Uh is the output Sh

[(LT) -lh]T

lh Lfh

_Tu
--h u h

(3.44)

(3.45)

fine ("truth") grid (by definition, LhUh = fh).

computed on the fine grid, one finally finds :

lim SUB(H) = lim SLB(H) = ShK-+0 --+0

h f

-p 0+Tf= -h Ah

(3.46)



In other words, for any fixed value of H, when n goes to 0, the upper bound and the lower

bound computed from the coarse grid both converge to the output computed on the fine

grid.

Equation (3.46) is valid as long as Vo+ is a linear function of x. Indeed, the interpolation

Aoh has then the same form as 0o+, and (3.28) is satisfied. Otherwise (in the case of the

average output for the convection-diffusion problem, for instance), one should rather write

L T0 + Eh (3.47)

with all the terms being independent of K. Thus,

Ah± = -L p t± fh - (3.48)

The solution u can be decomposed as 6 = fo + +/K and it immediately appears

from (3.38) and (3.39) that one has :

lim SUB(H) = - lim SLB(H) = +o00 (3.49)
K--+0 ---0

This explains why 0 is not an optimal value for the scaling factor in general.

3.5 Numerical results

Different functions have been considered for the forcing function g. The first one is a "step

function" equal to 1 between 0.4 and 0.6, and to 0 everywhere else. Figure 3-1 shows

the oscillations obtained when a Galerkin finite element method is directly applied to the

convection equation. This figure demonstrates the need for another formulation to avoid an

oscillatory numerical solution. The presence of oscillations only on one side of the domain is

linked to the fact that, in one dimension, the finite element method is equivalent to central

finite differences everywhere, but with an artificial Neumann boundary condition imposed

in 1.

The other two functions tested for the forcing term are g(x) = x and g(x) = cos x. The

numerical results are presented for K = 1 and for the optimum K.
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Figure 3-1: Finite Element Method directly applied to the convection equation

3.5.1 Results for a non-optimal stabilization parameter : K = 1

The modifications proposed for the scheme lead to a numerical solution, which does not

exhibit an oscillatory behaviour. The results obtained for different values of H are given in

Figure 3-2.

Although the error is rather large on the coarse mesh, it decays rapidly as the grid is

refined. This error behaviour is characteristic of a non-continuous right-hand side g : when

the function g is continuous, the solution computed by the modified scheme is very close to

the exact solution, even for the coarsest grid (H = 0.1).
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The computed adjoint has to satisfy the natural boundary conditions (3.21) and (3.22).

To check this property, the adjoint b is plotted on Figure 3-3. The following values can

0.5

-0.5

Figure 3-3: Adjoint for K = 1, H = h = 10- 3

be determined from this figure :

()x (0) = 0

0+(1) = -1.2

-(1) = 0.8

(H)x (1) = 0

so that with u(0) = 0 and u(1) = 0.2, the boundary conditions on the adjoint are immedi-

ately satisfied.

The bounds for the value of the fine grid solution at x = 1 are plotted on Figure 3-4.

In this figure, h = 10- 3 and H varies from 0.1 down to 10- 3 . Two conclusions can be

drawn from this graph. First, the output computed on the coarse grid is closer to the

"exact" output than both bounds, especially when the discretization step becomes very

large. Second, the curves representing the bounds are symmetric with respect to the fine
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Figure 3-4: Bounds for K = 1, h = 10- 3 , 10- 3 < H < 0.1

grid output, so the average of the bounds, used as an estimation of the value of the output

(predictor), matches exactly the output produced by the "truth" mesh. Again, we can

verify that K only affects the bounds and not the predicted value.

The convergence of the bounds is again given by a plot of the logarithm of the er-

ror as functions of the logarithm of the grid size. This graph is shown on Figure 3-5.

Although, in the present case, the coarse grid output converges only linearly because of the

discontinuity of the forcing term, the bounds still converge as O(H 2). The error on the

predictor/estimator has not been plotted because this error is equal to 0, the bounds being

symmetric with respect to the fine grid output.

Four other functions have been tried for the forcing term g. The results obtained are

given for two of them. First, we investigate the case of a linear forcing term : choose g = x

and solve {ux = x Vx E D, u(0) = 0}. The solutions obtained by the finite element method

are given in Figure 3-6. One can immediately check that the nodal values of the solutions

on both the coarse and the fine grids coincide with the exact solution (u(x) = x2 /2). This

is to be expected, from the inspection of the resulting difference scheme.
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The bounds computed are presented on Figure 3-7. Two observations can be drawn

from this figure. First, the bounds appear to be very close to the fine grid output (even if

they do not exactly match it) and the average of the bounds exactly matches the output

computed on the h-mesh. The second observation concerns the sharpness of the bounds
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Figure 3-7: Bounds for u- = x, u(0) = 0, pointwise value output, r = 1

although the estimation obtained is not exact, the bounds remain within 0.016% of the

exact solution.

The convergence of the bounds is now plotted on a log-log graph presented in Figure

3-8. This figure shows another feature of the bounds obtained in the purely convective case

with a C' forcing term : not only are the bounds very sharp, but they also converge very

fast, a fourth order convergence is observed (i.e. O (H 4)). The errors on the coarse grid

output and on the predictor are of the same order as machine precision. The bounds in this

purely convective case with a linear forcing term are therefore sharper and converge faster

than those obtained for the convection-diffusion model case.

Finally, we consider the case g = cos x, i.e. the resolution of uz = cos x, u(0) = 0. The

exact solution is u(x) = sin x. The solutions given by the finite element method are shown

in Figure 3-9. The forcing term being C', the numerical solutions are much closer to the

exact solution than when the forcing term is a step function. Also, the forcing term is not

linear, so the coarse grid solution does not match the exact solution at the nodes anymore.
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The bounds obtained by the general method described in the previous sections are shown

on Figure 3-10. Once again, the bounds are very sharp. In this case, they give even a better
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Figure 3-10: Bounds for u, = cos x, u(0) = 0, pointwise value output, i = 1

estimation of the fine grid output than the coarse grid does. In other words, the bounds are

closer to the "target" output than the coarse grid output. The convergence of the bounds is

again O (H 4), as shown on Figure 3-11. However, the convergence of the coarse grid output

is still O (H 2), which is usual for the linear finite element method.

In summary, one can say that in the case of the purely convective problem, when one

chooses n = 1 (which is not optimal), the method gives very good results, especially when

the forcing term is continuous.

3.5.2 Optimization of the Stabilization Parameter : K* = 0

The results obtained for n, = 1 are already good, but the optimal value of the stabilizing

factor is not 1 but 0, independantly of the forcing term g or of H. Let us see what happens

numerically when n = 0 is directly imposed for the case where g is the step function equal

to 1 between 0.4 and 0.6 and to 0 everywhere else. The solutions remain unchanged, since ,

comes into play only in the computation of the bounds. The bounds obtained are given on

Figure 3-12. Apart from the coarse grid output that does not match the fine grid output,

all the other curves are so close to each other that they cannot be distinguished on this plot.
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This is understandable : it has already been shown that they are theoretically supposed to

match the "exact" output.

0.3

0.29

0.28 -

0.27 -

0.26 -

0.25 -

0.24 -

0.23 -

0.22

0 0.01 0.02 0.03 0.04 0.05 0.06
H

0.07 0.08 0.09 0.1

Figure 3-12: Bounds for u_ = g, u(O) = 0, K = K* = 0, pointwise value output

Upper bound ---
Lower bound -+--

Predictor -E--
Fine grid ..........

Coarse grid -

1

_I _ I _ r ) _ I



Figure 3-13, which is the same graph, but with the coarse grid output removed, gives a

better resolution, and it appears that, in perfect accordance with the theory, the bounds,

as well as the predictor, match the fine grid output perfectly. This fine grid output is just

0.225 1 1
Upper bound --
Lower bound ---

0.22 Predictor -n--
Fine grid ..........

0.215
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Figure 3-13: Bounds for ux = g, u(0) = 0, K = * = 0, pointwise value output

above the exact value 0.2 because the point where the difference is negligible has not been

reached with 1000 elements. Although this might seem surprisingly good, the plotting of

the curves at higher resolutions (zooming around y = 0.2) gives exactly the same result.

Furthermore, a look at the computed numerical values also reveals a perfect match between

the fine grid output, the upper and lower bounds, and the predictor.

It is not clear that the theory applies directly with n = 0, given that all the results

were derived with the assumption that n 4 0. The question is thus to know what happens

if one chooses ,n 0 and has this stabilization parameter tend to 0. Figure 3-14 shows

that the bounds get closer and closer to the output obtained on the fine grid, which is a

good indication of the consistency between the results and the theory. The upper and lower

bounds have been plotted for K E {1; 0.5; 0.1; 10-2; 10-3}.

Figure 3-15 describes the evolution of the upper and lower bounds for H fixed equal to

0.1, K varying from 1 down to 10- 3. This plot confirms that, for a fixed value of H, the

upper and the lower bounds both converge to the "true" output when K tends to 0, and

that the convergence is linear, as predicted by the theory. This is why one can take n = 0,
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since the bounds present a regular behaviour near 0. In other words, when K goes to 0, the

bounds converge to the bounds obtained when K = 0 is directly imposed in the equations.
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3.6 Conclusion

Three important conclusions can be drawn from the results presented in this chapter. First,

the Hierarchical Bounds Method can be adapted to first order differential equations, where

only one boundary condition is available in the problem, and the numerical diffusion added

to stabilize the numerical solution is sufficient to force the symmetric part of the discrete

system matrix to be positive definite, so the Hierarchical Bounds Method can work.

Second, the boundary values of the adjoint are computed algebraically. Thanks to this

property of the formulation, the natural boundary conditions need not be derived from the

continuous problem, which is quite convenient, because the natural boundary conditions

given by the continuous problem are not of the Dirichlet type, and are not very easy to

implement.

Third, the bounds can be impressively sharp. In the case of the convection-diffusion

equation, the coarsest grids give bounds within 20% of the "target" output (fine grid out-

put). For the pure convection equation, the bounds are within less than 1% for the coarsest

grids (H = 0.1) when the stabilization parameter is not optimal. What may be even more

remarkable is that, even if the problem is solved only on a coarse grid, the optimization of

the stabilization parameter produces bounds that match exactly the fine grid output, which

is not the case for the convection-diffusion equation. This is of course particular to this

problem, and not necessarily generalizable to other problems.



Chapter 4

Nonlinear Problem

In this chapter, the Hierarchical Bounds Method is extended to nonlinear problems. The

model equation chosen is a scalar nonlinear equation derived from the one-dimensional

steady Euler equations.

4.1 Governing Equations

The model problem considered is the steady flow of an inviscid fluid in a diverging nozzle.

The problem can be modelled as one-dimensional, and it is thus governed by the 1D steady

Euler equations

X +g= 00<x<1 (4.1)

where

puA 0

S= (pu 2 + p) A , = -p A (4.2)

(pE+p) uA 0

In (4.2), p is the density, u is the velocity, p is the pressure and A is the variable cross-section

of the nozzle. Here, only the diverging part of the nozzle is modelled and A is assumed to

be a given monotonically increasing and differentiable function. One also has

U 
2

E = e + - (4.3)
2

where e is the specific internal energy.



The pressure p is given by the equation of state of a perfect gas :

p = (-y - 1) pe (4.4)

where -y > 1 is the gas constant. For air, -y = 1.4. Three types of flows can be observed

physically : totally supersonic, totally subsonic and transonic. In the latter case, the flow

is supersonic at the inlet and subsonic at the outlet.

In the case of a steady flow, the Euler equations (4.1)-(4.2) can be reduced to a sin-

gle nonlinear equation (see [12]). To that end, the first and third equations are directly

integrated to obtain :

puA = C (4.5)

(4.6)(pE+p) uA = H

With (4.3) and (4.4), (4.6) gives
U

2

e +- = H
2

(4.7)

The constants C (mass flow rate)

inflow boundary or at the outflow

Using (4.5) and (4.7), p and e can

writes :

and H (total

boundary, as

be eliminated

C
uA

1e
7

enthalpy) can be evaluated either at the

they are conserved even through a shock.

from the second component of (4.1). One

(4.8)

(4.9)
u2)

2

Plugging this into

[(pU2 +p) A] -pAx = 0

yields :

C [U2-1 ( )U2]}AX -Y-1 U2) =0
u ml H -an- Am b ls -(= -

Simplifying by C and multiplying by 2-7- leads to :

+2-1H Ax y-12

(4.10)

(4.11)

(4.12)



Denoting 7= 1 and H= 27H, one finally obtains:Y+1

fx + g = 0 (4.13)

where

H
f(u) = u +- (4.14)

U

g(u,) = u ) (4.15)
A U

Equation (4.13) is now a single scalar nonlinear equation, to which the HBM is applied.

Assuming that the direction of the flow is from left (inlet) to right (outlet), the solution

of (4.13) satisfies the following properties

* the flow is sonic at

u=u,_V- , (4.16)

subsonic for u < u, and supersonic for u > u ;

* the shock jump from UL (left of the shock) to UR (right of the shock) satisfies the

Rankine-Hugoniot condition

UL-UR = H ; (4.17)

* the entropy condition ensures that any shock is physically acceptable (i.e. no expan-

sion shock) :

UL > U, > UR (4.18)

For a smooth flow, (4.13) being a first order ODE, only one boundary condition is

required. Rewriting (4.13) as :
Of
Ou u + g = 0, (4.19)

au

Equation (4.19) has the form of a convection equation where the direction of the information

flow is given by the sign of the coefficient of ux : if this coefficient is positive, information

is transported from the inlet to the outlet, if it is negative, information is transported from

the outlet to the inlet. Equations (4.14) and (4.16) show that for completely supersonic

flows, f'(u) = is strictly positive, whereas, for completely subsonic flows, f'(u) is strictly



negative. As a consequence, for a completely supersonic flow, the boundary condition on

the velocity is to be imposed at the inlet. For a completely subsonic flow, the velocity should

rather be imposed at the outlet. If a shock is present in the flow, then the inflow has to be

supersonic and the outflow must be subsonic. For this reason, one boundary condition has

to be imposed at each end of the nozzle.

For smooth solutions, the nonlinear equation (4.13) can now be integrated analytically :

fx is first expanded and one obtains :

1 - ux + Ax (u2 - 2H) =0 (4.20)
( H Au

which leads to

Axu7 (2H - u2) + Aux (27H - u2) = 0 (4.21)

and

(Au)x (2H - u2) + -2 1A u2 ux = 0 (4.22)
1y-

Let r = - and multiply (4.22) by (2H - U2) r - l, (4.22) becomes

d [Au (2H- U2 r= 0 (4.23)

and finally

Au (2H - u2) r = K (4.24)

K is a constant determined from the boundary conditions. When there is a shock in the

duct, the constants computed from the inflow and outflow boundary conditions are different

and it can be shown that K, which is an entropy function, increases across a shock (see

[12]). (4.24) actually defines a family of curves relating the area of the cross-section of the

nozzle to the velocity of the flow. The shape of the curves is given in Figure 4-1.

Equation (4.24) and Figure 4-1 illustrate the discussion on the boundary conditions.

When the solution is smooth, then a single boundary condition completely determines

the flow in the nozzle. Indeed, this boundary condition defines the constant K, hence a

particular curve of the family (4.24), and one remains on this curve throughout the duct. If

a shock is present, then each of the two boundary conditions determines a constant K and

a curve of the family. The shock then enables to "jump" from one curve to the other. Let
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Figure 4-1: Curves for K0 (supersonic), K1 (subsonic) and Solution with shock

then K0 and K 1 be the values of the constant computed based on the supersonic inflow and

the subsonic outflow boundary conditions respectively. The function z(u) being defined, as

[12]

z(u) = u (2H - u2) r  (4.25)

the position of the shock is given by :

z (uL) - z ) = 0 (4.26)
Ko Ki UL

Equation (4.26) is derived by making use of (4.17) and of the fact that, at the shock, the

area is the same on both sides. In the case where a shock is present, it can be shown that,

since K0 < K 1, (4.26) has a unique solution (see [12]).

4.2 Discrete Analysis Problem

The domain D =]0, 1[ is discretized with a uniform grid. The node coordinates are xi =

i 6 (1 < i < n) and ui is the (unknown) value of the solution at point xi. Equation (4.13)

looks very much like the pure convection equation, and better results can be expected if a

Taylor-Galerkin approach is applied prior to the resolution of the equation. To that end, a



non-physical time dependance is introduced :

t + f + g = 0

from which

ut = -(A "

leading to

Utt = -fAt

and the equation corresponding to (3.10) is then

+- g)

- gt

fx + g + T (fXt + gt) = 0

Using Schwarz's Lemma, the order of the derivatives can be inverted and one obtains :

fXt = (ft)x

Of (ut)

(4.31)=[f
= (-

and similarly
Og9x = oU (- fx - g)

Plugging (4.31)-(4.32) into (4.30), one obtains the following scheme :

Equation (4.33) can be "checked" intuitively by noting that, when f = u and g is indepen-

dant of u, like in the convection equation, (4.33) becomes exactly (3.10).

The corresponding weak form is then :

17 w (-f[ - g) dx -
1 Og
ITW 9

(4.27)

(4.28)

(4.29)

(4.30)

(4.32)

) X + (-f- g) = 0 (4.33)

l w (fx + g) dx + (fx + g) dz = 0 (4.34)

fX + g - T Of (-f-



4.2.1 Smooth Flow

Let us now assume a smooth solution with no shock. For simplicity, the flow is assumed

supersonic in the rest of this section. The results obtained can be derived in a very similar

way for totally subsonic flows. The solution is determined by the inflow boundary condition,

and consequently, no outflow boundary condition can be imposed. Following the same

reasoning as for the purely convective case, an additional term is introduced and the values

of the solution u at all the points including the boundaries of the domain D are assumed

to be unknowns. The scheme can now be written as

w + wx T - w ( f x + g ) dx + w(O) (u(0) - uin) = 0 (4.35)

where uin is the boundary condition that defines the problem. By analogy with the linear

case where 7 was the term multiplying the wx term, one now chooses

S2max (= ) (4.36)
2 max 6,

where E is a fixed small number that prevents divisions by zero at sonic points (not exercised

in this case).

If w is set equal to the piecewise linear basis function oj (0 < i < n + 1) and a one point

integration is performed to approximate the resulting integrals, one obtains a nonlinear set

of n equations with n unknowns, which can be written as :

W(u) = 0 (4.37)

with

W, U) 6 + i f 6 af af ui - uj g_W'(u) = [ +T 7n n +J g (ui)
12 Du 2 au Ou Ui 6

a 8f 6 f8f Ui+1 - ni- u Ti f ] -u - + g9 (i+1) (4.38)

where ui = u+u_ and -i = T(uji). In (4.38), one can recognize the contribution of element

i (between xi- and xi) on the first line and the contribution of element (i + 1) on the

second line. The first contribution of course does not exist for i = 0 (in which case the



additional term u(0) - uin appears), and the second does not appear for i = n + 1.

This nonlinear system can be solved by the Newton-Raphson method. This requires

the computation of the Jacobian matrix of the nonlinear system, which will also be needed

for the HBM. Practically, the Jacobian matrix is computed by assembling the matrices

computed on each element i (1 < i < n + 1) as

We

aWe-1
aui- 1
aWe

aui-1

OWi- 1

aUi
aui

(4.39)

in (4.39), the index e indicates that the contribution of element e is considered.

The reasoning for subsonic flows is exactly the same, except that the boundary condition

is imposed at x = 1 and the additive term is w(1) (u(1) - Uout ) instead of w(0) (u(0) - Uin).

4.2.2 Normalization

In the rest of this chapter, the following normalization is used. The speed of sound at

infinity is set equal to 1. This speed of sound is given by :

(4.40)c 2 = 7POO - 1) 0Poo

so that, with co = 1, one obtains

e ( b- 1)

If one moreover assumes poo = 1, one has

Hoo= -Eo + P = Eoo + -P o Eoo - 1

Poo Poo 2

which gives the following consistent set of variables

Poo 1

po = 1

uo, = Moo

1
Ho = 1+-

9'-1

(4.41)

200 200 (4.42)

(4.43)

(4.44)

(4.45)

(4.46)2
2



since by definition u = c M. The parameter H is then determined by

2 7-14.47)H = 27Hm = + M, (4.47)
2;YHo + 1 +7+1 A0

4.3 Bounds for the Average Value of the Solution

The goal of the previous section was to provide a discrete solution to the problem (4.13).

In this section, the Hierarchical Bounds Method is applied to the problem to find bounds

for the average value of the solution u. Because the HBM can only be applied to linear

problems, the equation must be first linearized. A heuristic approach is now used. The

solution on the coarse grid is assumed sufficiently close to the solution on the fine grid, so

that W(u) can be linearized about the H-mesh solution. Let UH and Uh be the solutions on

the coarse and fine grids respectively, and let WH(UH) and Wh(Uh) be the corresponding

systems of nonlinear equations. By definition, one has :

WH(UH) = 0 (4.48)

Wh(uh) = 0 (4.49)

Let UiH be the linear interpolation of UH on the fine grid. If Uh is sufficiently close to uH,

one can write :
8Wh

Wh(Uh) Wh(uiH) + (uiH) (Uh - UiH) (4.50)au
hence, from (4.49)

Lh Uh = fh (4.51)

where

OWh
Lh = (uiH) (4.52)

Ou

fh = Lh UiH - Wh(UiH) (4.53)

One can verify that, in virtue of (4.48), the linearized equation on the coarse grid has

the same form as (4.51).

The HBM is then applied to the linearized problem, with the possible extensions or

modifications mentioned for the smooth case. Two main conceptual difficulties can be



expected. First, because nothing ensures that the self-adjoint part of the linearized system

matrix is positive definite, one cannot be sure that the HBM gives correct bounds for the

output. Second, even when this matrix is positive definite, the bounds obtained correspond

to the linearized problem, and nothing ensures that the fine grid output computed directly

from the nonlinear system lies between these bounds.

4.4 Numerical Results

The simulations were performed using some of the numerical data given in [12]. More

precisely, the diverging nozzle has a linearly growing area, with A(0) = 1.05 and A(1) =

1.745. The inflow boundary condition in the case of a completely supersonic flow is u(0) =

1.299, and the outflow boundary condition for the totally subsonic flow is u(1) = 0.35. The

fine grid discretization step is h = 10- 3 , and the coarse grid element size is refined from 0.1

to 10- 3 .

4.4.1 Supersonic Flow

The completely supersonic flow is first investigated. The solutions obtained by the Newton-

Raphson method applied to the modified scheme (4.35) are given on Figure 4-2. Even for

coarse grids, the solution is very accurate, so one may expect the coarse grid output to

be very close to the fine grid output. Contrary to the previous two equations studied is

Chapters 2 and 3, the analytical solution is not readily available in the present case, at least

not under the explicit form u = u(x). The exact solution given as a reference was actually

computed as x = x(u) from (4.24) and the velocity appears to be a growing function of the

space coordinate, as is expected from a supersonic flow in a diverging nozzle.

The adjoints associated to this problem are now plotted on Figure 4-3. The boundary

values of the adjoints are computed algebraically, as in the purely convective case. One

remark should be made at that point. The choice of the parameter - is critical to the quality

of the solution, as well as to the stability and the convergence of the scheme. Indeed, this

parameter T, which is "artificial" (it is introduced to improve the quality of the solution)

can be interpreted from two different points of view. First, as the coefficient of the second

derivative of the solution in the equation, T can be seen as an (artificial) viscosity coefficient.

Second, from (4.36), T is also a time step that can be used for time marching.
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Hence, a large CFL number multiplying the factor - smooths the solution and pre-

vents numerical oscillations by adding some artificial viscosity, but destabilizes the iterative

Newton-Raphson procedure. On the contrary, a small CFL number stabilizes the numerical

scheme, but allows parasite oscillations to appear in the solution. In the results given in

this section, the CFL number is equal to 1, which seems numerically to be a good trade-off

between stability and accuracy.

The bounds obtained for this problem are given on Figure 4-4. Four observations can
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Figure 4-4: Bounds for the Output : Average of the Solution, Completely Supersonic Flow,
h = 10- 3 , 10- 3 < H < 0.1

be drawn from this graph. First, the fine grid output represented is the output computed

directly on the fine grid, and not the linearized problem output. sh is indeed between the

bounds computed by using the linearized problem. The second observation concerns the

sharpness of the bounds. Even though the lower and upper bounds are not as sharp as in

the linear purely convective case, they estimate the fine grid output within less than 1% in

the worst case, i.e. when the coarse grid is made of only 11 points (10 elements). The third

observation concerns the coarse grid output. The main difference between the nonlinear

case and the other previous cases is the closeness with which the the coarse grid output

matches the fine grid. In the nonlinear case, the coarse grid is closer than either the bounds



or the predictor. This of course does not mean that the method fails for the nonlinear

case. Indeed, the present results show that one can compute strict bounds for the average

of the velocity, which, for the engineer, is at least as important, if not more important than

computing the output exactly. Finally, it has to be noted that in these simulations, the

stabilization parameter K has been optimized at each step. A characteristic feature of this

problem is that the optimal value of K becomes very large as H converges to h. Even if

the optimal value of , is not computed when H = h because both the numerator and the

denominator in (1.76) vanish, the evolution of K for the last values of H indicates that the

stabilization parameter goes to +oo as H converges to h.

Again, the convergence of the bounds is O(H 2), as shown by Figure 4-5. This figure
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Figure 4-5: Convergence of the Bounds for the Output
Supersonic Flow, h = 10- 3 , 10-3 < H < 0.1

Average of the Solution, Completely

shows that the coarse grid output and the predictor are not as close to the fine grid output

as in the purely convective case (the gap between the lines is not as important), and that

the convergence is much more similar to the convection-diffusion case.



4.4.2 Subsonic Flow

Similar numerical results can be obtained when the flow is subsonic, i.e. when a subsonic

boundary condition is imposed on the outflow velocity. Not all subsonic boundary conditions

are acceptable in this case. Indeed, when one "goes back" into the nozzle, the velocity grows,

since in that direction, the nozzle is converging, so the sonic point may be reached before

the inlet if the outflow velocity imposed is too large, and the flow cannot be solved. One

can also understand this phenomenon by looking at Figure 4-1 : starting at A(1) and u(1)

on the subsonic curve, the sonic point (extremum of the curve) is reached before A(0) (the

vertical line A = A(0) is left of the extremum), so that no point of the curve corresponds to

A(0). This explains why the value u(1) = 0.35 has been chosen for the boundary condition.

The solutions computed are given by Figure 4-6. Again, the accuracy of the solutions, even
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Figure 4-6: Modified Finite Elements, Completely Subsonic Flow, h = 10- 3, H = 0.1

for very coarse grids is remarkable and the coarse grid output is expected to be very close

to the fine grid output.

The bounds obtained for the average output are given on Figure 4-7. Several points

can be derived from this graph. First, the coarse grid output is very close to the fine grid

output, as expected. Second, the bounds are clearly not as sharp as in the supersonic case.

In particular, in spite of the optimization of the stabilization factor, the lower bound is
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very poor for the coarsest grid, which affects the estimator accordingly. Third, although

the sharpness of the bounds is a little disappointing, their convergence is still fast and the

fine grid output is indeed between the bounds. Fourth and finally, except for the coarsest

mesh, the predictor estimates very well the fine grid output, since on this plot, the curve

representing the predictor cannot be distinguished from the curve representing the fine grid

output when H < 0.05. A closer look at the neighborhood of the fine grid output (Figure

4-8) shows that, even if the predictor remains close to the fine grid output (as shown by the

vertical scale of the plot), its evolution is not as regular as in other cases, and the coarse

grid output gives better results.

The convergence of the bounds is illustrated on Figure 4-9. The irregularities in the

evolution of the predictor are more apparent on this plot, but one has to take into account

that the general theory does not give any indication on the behaviour of this predictor. On

the other hand, the convergence of the bounds is regular (but for the first points of the

curves), and the slope of the lines is approximately 2.56 for the error bounds (the coarse

grid output converges as O(H 2)).
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4.5 Conclusion

The main conclusions of this chapter are twofold. First, the Hierarchical Bounds Method

can be adapted to nonlinear cases, at least to a certain extent. Even though the results are

not as good as those in the linear cases considered, the bounds provided by coarse grids

remain fairly sharp. Second, the fine grid output computed directly from the nonlinear

discrete system lies between the bounds in the cases considered. The problem is now that

in the case where the flow is not smooth (presence of a shock), it seems that the HBM

fails, mainly for two reasons. First, the self-adjoint part of the linearized system is not

positive definite. Second, in certain cases, the optimal value of K is not defined because the

denominator /± of the fraction under the square root is negative.



Chapter 5

Domain Decomposition

5.1 Introduction

In the problems considered so far, the Hierarchical Bounds Method hardly brought any

improvement with respect to the direct resolution of the equations on a fine grid. This is

because, in one dimension, the matrix Lh of the discrete system is tridiagonal, inverting its

symmetric part is as costly as the direct inversion of Lh.

However, two features of the HBM have been highlighted by these examples. First, the

values of the fine grid output predicted by the bounds (average value of the upper and lower

bounds) is usually closer to the exact solution than the coarse grid output. Second, in higher

dimensions, the matrix of the discrete system is not tridiagonal anymore, but sparse, so the

symmetry of Ah can be fully exploited. On one hand, a whole range of methods is available

to invert symmetric matrices : direct inversion (Gauss's pivot, LU or QR Decompositions

[7, 10]), iterative methods (conjugate gradient, GMRES [8], Krylov subspace methods in

general [9]),... On the other hand, the existing methods to invert non-symmetric matrices

like Lh are either not very efficient in general (Gauss's Pivot) or not systematic.

The Domain Decomposition is a technique that further reduces the cost by using the

fact that the inversion of a general n x n matrix (even sparse) is a O(n 3 ) process. The

domain D is decomposed into K subdomains and the problem is solved on each subdomain

before continuity is imposed at intersubdomain boundaries. For simplicity, and following

[5], the Domain Decomposition is presented in this chapter for one-dimensional problems.



5.2 Domain Decomposition Formulation

5.2.1 Notations

The problem is defined on D =]0, 1[. The closure of D is noted D. A decomposition of D

into K subdomains is now introduced. Let IC = {1,...,K} C NV, one has:

(5.1)D= U k

kceC

where Vk is the closure of Dk = ]a k a k + 1

al = 0 < a2 <... -<a K + - 1.

The subdomain boundaries are assumed

indices jk are defined by :

I

J 1 -1

ak = Xjk

K+1 = n

[. The points ak (1 < k < K) are such that

to be nodes of the grid, and the corresponding

for (2 < k < K) (5.2)

where n is the number of points of the mesh in D and {Xi} 1 <i<n are the nodes of the grid.

Two sets of indices, local and global, are then defined on each subdomain. Let MAk =

{1,...,Mk} be the set of "local" indices on Dk for all k E {1,...,K}. The number of

points in each subdomain Dk interior to the domain D is thus

Mk = jk+1 - jk + 1 for keK (5.3)

In the enumeration of the points of the subdomains, the extremities are cited twice, once

for each participating subdomain, so the number of degrees of freedom before imposing the

continuity of the solution at the subdomain boundaries is i = n + K - 1.

The global indices of this "decoupled" enumeration are defined on each subdomain by

the sets jk = {jk,..., jk+1 - 1}, where

Jk = jk + k - 1

jK+1 = ii + 1

for k IC
(5.4)



5.2.2 Subdomain Operators

With the notations of the previous subsection, one defines two hybridization operators

Q E JfRin and V E ff?(K-1)xi related to direct stiffness summation and intersubdomain

continuity respectively. The matrix Q is given by

Vk e KC and pE .Mk, ij
0

and the matrix V is defined as

if i=Jk+p-1 and

otherwise

j= k +Pp-
(5.5)

Vie/ K, Vij=

-1

1

0

if j=Ji+l

if j = Ji+l

otherwise

(5.6)

To be more explicit, let us consider a decomposition into 3 intervals of equal length, we

have
0 ... 0

1

1 0

. 0 1

1

0

0

0

1 0

1

" -" "

S10

S0 1

(5.7)

and

V= 0 ... 0 -1 1 0
0 ... 0 0 0 0

The columns of Q containing two nonzero

aries (columns Jk). The nonzero entries of V

• - 0 0 0 0 -.. 0 (5.8)
0 -- 0 -1 1 0. -..- 0

entries correspond to the subdomain bound-

are in the columns jk+1 - 1 and jk+l. The



matrix V is defined only for K > 2.

Given any v C Bn specifying the global nodal values of the solution, Q - v assigns these

values to the local nodes on each subdomain. Conversely, given any w E V, V -w evaluates

the jumps in w across the K - 1 subdomain boundaries. From (5.7) and (5.8), the following

equalities can easily be derived :

QTVT = 0 (5.9)

V VT = 2 1 K-1 (5.10)

where IK-1 is the (K - 1) x (K - 1) identity matrix.

The subdomain matrix operators Lk and Ak can now be defined along with the subdo-

main right-hand sides fk by writing the weak form of the equation on each subdomain. For

instance, for the convection-diffusion problem, one obtains

Vk c K, V (i, j) E (Mk) 2

Lkij ak+1 dxi+Jk_1 dpj+k-l +  i+Jk-1 djk_ dx (5.11)

Ak) = 2 ak d+Jk 1 dJ+Jk-1 dx (5.12)
) ak dx dx

(fk)i [ [k+1 di+Jk_ d dnid_ U_+
Sk -+j19 k ' dx dx iJk-1 dx U

( dok _x do -_ i+Jk _ dx) Uo dx (5.13)

The output linear functionals also need to be decomposed. This decomposition is not

unique. A judicious choice can however facilitate computations in certain cases as discussed

in [5]. One possibility consists of writing

) k) i+Jk l if z E 11 ... )M k

VkK k i= k = K and i = MK (5.14)

0 if kC{1,...,K-1} and i=Mk

The block diagonal operators used to solve the problem numerically are now formed.

These operators are denoted with an underlining bar to distinguish them from the original

matrices on the global discretizations. These operators contain the unassembled, decoupled



matrices (5.11)-(5.12). One thus defines (L,A) E (R ~X) 2 by :

Vk E :

Lk i_ jk+lj-Jk+l

0

(Ak i- jk+l,jjJk+l

0

if (ij) (jk )2

otherwise

if (ij) (jk )2

otherwise

The vectors (f, I) ( R)2 are also formed. They contain the "unassembled" and

decoupled inhomogeneities (5.13) and output functionals (5.14) respectively :

Vk E K Vi E jk

S= (k) +jkl
(5.17)

(5.18)

The operators (5.15)-(5.16) and the vectors (5.17)-(5.18) can be expressed simply using

(5.7) and (5.8) as:

L = QTLQ

A = QTAQ

f = QTf

(5.19)

(5.20)

(5.21)

f = Q'_ (5.22)

The consequences of the domain decomposition on the general theory provided in Chap-

ter 1 are now discussed.

5.3 Duality Approach to Bounds for the Outputs

u is the unique solution of (1.18), so that, using (5.9) and (5.19) and letting

u = Qu (5.23)

(5.15)

(5.16)



u becomes the solution of the system :

QT Lw

Vw =

(5.24)

(5.25)

Moreover, V is of rank (K - 1) and Q is of rank n, so (5.9) shows that the columns of Q

span the nullspace of V. Adding to this the assumption that A is positive definite leads to

the conclusion that this solution is also unique.

If (5.19), (5.20), (5.21) and (5.23) are now plugged into (1.25), one obtains

SuT A - u f = 0 (5.26)

An augmented output form is then defined for all v E R" :

(5.27)=(A) =! - _ (vT e c)S+(2) = -VT - vTf ±

and the output can be written, with (5.24) and (5.25), as

(5.28)min
{veR IQTL v-f=0, V v=0}

The Lagrangian corresponding to (1.29) introduces the additional adjoint p :

(5.29)

and the duality result (1.38)-(1.39) can be written as

Sminm max
{veN"h} {ie fn,pE RK-1

max minm £ (v, p,p)
{,-eJn,peJK-1} {VEffJA}

The bounds are therefore given by :

V A± c Rn and Vp± (Z RjK-1

mmin £ (v,+,) < s < - min L£-(v, ,p )
{ve R } {vE^ }

L+(v, p, p) (5.30)

(5.31)

(5.32)

£(, p, p) = S+(v) + PT(QTL v - f) + PTV v



and the saddlepoints (u, 4+, w±) are solutions of the systems of equations

KAu+LTQ + VTw± - Kf±f = 0 (5.33)

QTLu-f = 0 (5.34)

VU = 0 (5.35)

obtained as stationarity conditions for the Lagrangian (5.29) with respect to u, p and p for

(5.33), (5.34) and (5.35) respectively. (0+,w + ) are the values of the adjoints that make the

bounds (5.32) exact.

5.4 Hierarchical Procedure

Two levels of discretization are now introduced, one coarse ("working mesh") and one fine

("truth mesh"), and the domain decomposition is chosen such that all the intersubdomain

boundaries are also nodes of both grids. ( ^ are computed as linear interpolants of

the best choice for the adjoints on the coarse grid, which are, from (5.33)-(5.35), (i, w ) .

5.4.1 Computational Procedure

First, the solution on the coarse grid UH and its "decomposed" version uH = QH UH are

computed. The stationary conditions on the coarse grid are

AH + WH +LHV HH = 0T± T (5.36)

QTLH uH- fH = 0 (5.37)

VH UH = 0 (5.38)

Pre-multiplying (5.36) by QT and using (5.9), (5.19)-(5.21) and (5.23), VA is obtained by

LH = - (K AH uH - K fH H) (5.39)

which is exactly (1.46), which does not include the domain decomposition. w is then

obtained by pre-multiplying (5.36) by VH and using (5.10), which yields directly

± 1
wH = 2 VH ( AH UH + LH H S-fH H) (5.40)



The domain decomposition technique therefore does not add any complexity to the pro-

cedureso far, at least from a numerical point of view. OH can now be interpolated as in

(1.47). Moreover, both wH and p have the same dimension (K - 1), so, given the results

of the coarse grid computations, the best choice for P is

+= W±
Ph WH (5.41)

The bounds are then computed as

(Sh)LB (H)

(Sh)UB (H)

vE h E + }+)mi L+Wv_/hP

S-- min h (V, Ahh,1 h)
- mm/

(5.42)

(5.43)

(5.44)

From the stationarity condition (5.33) applied on the fine grid (6 = h), if

A = arg min h (, , h)

one must have

T bTh Lh Qh A h f±-h- - (+ V, ph - fh ±-h)

and the bounds become, as in (1.56) and (1.57)

(Sh)LB (H)

(Sh)UB (H)

(5.45)

(5.46)

h -h + T - h 7 Ph +

- u- + Ch - p fh

2

f- A^h -Tf

2-h;2 h+ h (5.47)

In view of (5.19), (5.20) and (5.23), these expressions for the bounds are actually exactly

the same as in (1.56) and (1.57). Furthermore, using (5.9) and (5.21), (5.45) pre-multiplied

by QT gives exactly (1.50).

5.4.2 Computational Cost

Given that the final results obtained are exactly the same as in Chapter 1, one might wonder

whether the Domain Decomposition really improves the performance of the Hierarchical



Bounds Method. Furthermore, nothing guarantees that (5.45) has a solution. In fact, as

shown in [5], there is always a solution and f can be computed.

The main gain may not be obvious from this presentation because the procedure has

been presented only in one dimension for simplicity. It appears nevertheless that the cost of

the method once again comes from the inversion of Ah. Only this time, (5.16) shows that

this inversion is in fact decomposed in the resolution of K decoupled systems of size n/K.

The Domain Decomposition is thus cost effective for two reasons. First, the resolution of

subsystems can be parallelized. Second, in higher dimensions, the cost of the inversion of

Ah (which is sparse instead of tridiagonal) is O(n 3), whereas the cost of the inversion of Ah

is the cost of K inversions of systems of sizes n/K, so the total cost is divided by K 2

5.5 Optimal Stabilization Parameter

The determination of the optimal boundary conditions for the adjoint refers only to the

continuous problem and not to the discretization, so that the natural boundary conditions

for the adjoint are not modified by the Domain Decomposition. On the contrary, the

determination of the optimal stabilization parameter r* has still to be discussed, since it

depends on the domain decomposition.

The procedure is similar to the one presented in Section 1.7. The first equations (1.58)

(1.64) remain unchanged and are kept as such. But another adjoint must now be taken into

account. WH is therefore also decomposed as :

H W °+ + W (5.48)

where

w0 = - VH Q H ± H) (5.49)

W( = - VH H + LH H H L) (5.50)

and ± can be written as

Ph +XPh (5.51)



where

S= WO± (5.52)

Ph WH/5 +  = wH+  (5.53)

because of (5.41). (1.68), (1.69), (1.70) and (1.71) are then replaced respectively by

y_= T i ho  " hO (5.54)

h= TQh A - f+ V 1- (5.55)-h h - Mh
L),T T1±

-- I h +Vl Ph

= y ±-T A-' (5.56)
h -h Yh

-' + 2 f^f1 (5.57)

The values of a + and /3 are unchanged. Indeed, with (5.20), the pseudo-inverse of Ah

is determined by :

Ah1 = Q Ah 1 QT (5.58)

The notations for a± and 0± are therefore the same, with or without domain decomposition.

With the same notations as in Chapter 1, the bounds then become

c >± +TA-' fTO±+Ch (5.59)
±(K) = - 0 - p h - yh z -h c(

which yields the same result as the theory without domain decomposition

K* = (5.60)

On the contrary, the values of y+ and z + are different from the values of y+ and z +

respectively, but because of (5.58), the value of the inner product y+TA-1 ± remains
-h -h h

unchanged, so the values of the bounds are unchanged by domain decomposition.

The cost of the procedure is once again in the inversion of A, and the reasoning of

Section 1.7 still holds. The gain of the procedure using domain decomposition is then the

same as for the resolution with any value of K.



Conclusion

Three main conclusions can be drawn from the results obtained. First, the Hierarchical

Bounds Method works and gives good results in the linear case, whether it is applied to

second or first order differential equations. The bounds are sharp, even for coarse grids, and

second order convergence has been observed in all cases. Second, the HBM is a global method

that gives bounds for a fine grid output, but gives no information as regards the contribution

of each element to the error. Its use in adaptative methods is thus not straightforward.

Third, although the HBM also works in some cases for nonlinear problems, success is far

from being guaranteed. In particular, the heuristic approach adopted in Chapter 4 does not

automatically yield discrete systems that satisfy all the assumptions made in the general

theory of the HBM (e.g. symmetric part positive definite).

Efforts for the future development of the HBM should therefore concentrate on two

aspects of the problem. First, some further theoretical study should be conducted on the

nonlinear case to come up with a formulation that either guarantees that the conditions

of application of the HBM are gathered or at least that specifies the "functioning domain"

of the method. Maybe the use of a simpler nonlinear equation (Burger's equation for

example) would be a good starting point. Second, the HBM needs to be implemented in

two dimensions, because that is where the gains can be realized : inversion of symmetric

sparse matrices instead of general matrices and Domain Decomposition. Some initial efforts

in that direction are already available [13]. They seem very promising, and one can hope

to see the HBM applied in the near future, for instance to validate low-order models like

those developed in [14] without going to the full solution.
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If riding in an airplane is "flying", then riding in a boat is "swimming".

To experience the element, you have to get out of the vehicle.

.. And once you have tasted flight, you will walk the Earth, looking skyward,

For there you have been, and there you long to return.


