
An Identity and Certificate Manager
by

Brian C. Wu
Submitted to the

Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2007

@ Massachusetts Institute of Technology 2007. All rights reserved.

Author
Department of Electrical Engineering and Computer Science

September 4, 2007

Certified by.........................

1

Roger Khazan
Research Scientist, MIT Lincoln Laboratory

Thesis Supervisor

Certified by ...
Joseph Cooley

Resea rh Scie tis I Lt

Accepted by.
Arthur C. Smith

Chairman, Department Committee on Graduate Students

This research was sponsored by the United States Air Force under Air Force Contract
FA8721-05-C-0002. Opinions, interpretations, conclusions and recommendations are not
necessarily endorced by the US Government.

ARCHIVES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 1 3 2008
LIBRARIES

An Identity and Certificate Manager

by

Brian C. Wu

Submitted to the Department of Electrical Engineering and Computer Science
on September 4, 2007, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

We have designed and implemented a software library, called Identity and Certificate
Manager (ICM), for managing, using, and exchanging application-level usernames,
users' digital certificates, and cryptographic username-certificate bindings. ICM can
be used in a variety of personal communication applications, such as chat, email,
VoIP telephony, and web browsing.

As part of ICM, we designed and implemented a communication-efficient protocol,
called Identity and Certificate Exchange (ICE), for exchanging certificates, usernames,
and bindings within applications. The protocol avoids sending redundant information
by remembering what information has been sent to whom; this feature is critical in
low-bandwidth networks. The protocol also implements a robust fail-over mechanism
for handling out-of-sync situations.

To illustrate the benefits of ICM and ICE, we used ICM in a plugin for a popular
chat-client, called Pidgin. The plugin allows users to engage in authenticated com-
munication over any of the chat protocols supported by Pidgin, such as Jabber and
Oscar (AIM). The plugin relies on ICE to provide assurances about users' identities
and to efficiently disseminate users' certificates.

Thesis Supervisor: Roger Khazan
Title: Research Scientist, MIT Lincoln Laboratory

Thesis Supervisor: Joseph Cooley
Title: Research Scientist, MIT Lincoln Laboratory

Acknowledgments

Many thanks to Roger Khazan for his guidance throughout the life of this project.

His creativity, especially during our design discussions, was truly invaluable. Joe

Cooley was also very helpful, although his assistance tended to come more from the

implementation side. Without his help, I would have spent countless more hours

hunting down obscure bugs.

Contents

1 Introduction 13

1.1 Overview 13

1.2 Motivation 14

1.3 Related Work 15

1.4 Accomplishments 17

1.5 Roadmap 18

2 Design Goals 19

2.1 Functionality 19

2.2 Security 20

2.3 Usability 20

2.4 Performance 20

3 Design 21

3.1 Modules 21

3.2 DB 22

3.3 CryptoLib 30

3.4 Identity and Certificate Exchange Protocol 31

3.5 Pidgin Plugin 39

4 Implementation 41

4.1 Coding Conventions 41

4.2 Libraries 41

7

4.3

4.4

4.5

4.6

4.7

4.8

Doxygen Documentation

D B

CryptoLib

Identity and Certificate Exchange Protocol

Identity and Certificate Manager (ICM) .

Pidgin Plugin

5 Evaluation

5.1 Testing - Module

5.2 Testing - System

5.3 Performance Evaluation

6 Conclusion

6.1 Future W ork

6.2 W hat I Learned

6.3 Conclusion

A Public Key Infrastructure (PKI)

A.1 Certificates (X.509)

A.2 Certificate Revocation Lists (CRLs)

A.3 Online Certificate Status Protocol (OCSP)

A.4 (S/MIME)

B OpenSSL

B.1 Creating Certificates

B.2 Revoking Certificates

B.3 S/MIM E

B.4 OCSP

C Writing C Wrappers for C++ Functions

D Building ICM

......... . .

...........

....... . . .

.

........ . ..

......... . .

42

42

47

51

55

55

63

63

65

72

75

75

78

78

81

82

82

83

83

85

85

86

86

87

89

95

List of Figures

3-1 ICM Module Diagram 22

3-2 Database Schema - Items 24

3-3 Deriving the Hash/MID from a Certificate 25

3-4 Iterating Through MID Collisions 26

3-5 Database Schema - Entities/Metadata 27

3-6 Database Schema - Applications 29

3-7 ICE Example Timeline (common case: smart push) 32

3-8 Probability of Collisions 33

4-1 Item Inheritance 43

4-2 Colliding MIDs 46

4-3 Message Format 52

4-4 Pidgin Plugin Configuration Window 59

4-5 Sample Pidgin Instant Message Conversation 60

List of Tables

5.1 IM Scenarios 67

5.2 Chat Scenarios, part 1 69

5.3 Chat Scenarios, part 2 71

Chapter 1

Introduction

1.1 Overview

In this thesis project, we have designed and implemented a software library, called

Identity and Certificate Manager (ICM), for managing, using, and exchanging application-

level usernames, users' digital certificates, and cryptographic username-certificate

bindings. The three main components of the library are:

* A database back-end for storing and accessing digital certificates and crypto-

graphic keys, application-username-certificate bindings, and other helpful meta-

data information about these items;

* A set of cryptographic functions for verifying digital certificates, producing dig-

ital signatures for applications' messages, and verifying these signatures using

the digital certificates; and

* A communication-efficient protocol, called Identity and Certificate Exchange

(ICE), for exchanging certificates, usernames, and bindings within applications.

The protocol avoids sending redundant information by remembering what in-

formation has been sent to whom; this feature is critical in low-bandwidth

networks. The protocol also has a robust fail-over mechanism for handling

out-of-sync situations.

The term identity, in the context of our project, means the application's notion of

users' identities, or usernames.

ICM can be used in a variety of personal communication applications, such as

chat, email, VoIP telephony, and web browsing. To illustrate the benefits of ICM, we

used it in a plug-in for a popular chat-client, called Pidgin [19]. The plug-in allows

users to have authenticated communication in Pidgin over any of the chat protocols

supported by Pidgin, such as Jabber [11] and AIM [1]. The plug-in uses the ICE

protocol to provide assurances about users' identities and to efficiently disseminate

users' certificates. The plug-in can also be used as a base for an authenticated Diffie-

Hellman key exchange, in order to enable confidential chat.

ICM is implemented using the C++ programming language and three supporting

libraries: SQLite [23], OpenSSL [17], and ACE (ADAPTIVE Communication En-

vironment) [25]. We have also implemented a set of C language wrappers around

the C++ API provided by ICM; these wrappers can be used for using ICM from C-

language applications, like Pidgin. ICM is built to be cross-platform (*nix, Windows-

cygwin [3]).

1.2 Motivation

The Internet was originally developed as a tool for academics only. Security was not

on the mind of the earliest users, and people assumed that everybody was who they

said they were.

Three decades later, the Internet is a vastly different "place." From journalis-

tic bloggers to malicious hackers, from script kiddies to identity thieves, from cam-

paigning politicians to sexual predators, the Internet's user population has changed

dramatically. Now, or perhaps several years ago, it is becoming more and more im-

portant to know who people are. The act of checking to make certain that a message

is from a particular person, and has not been modified in transit, is known as message

authentication.

One solution to the problem of authentication is called Public Key Infrastructure

(PKI). A Public Key Infrastructure is based on a hierarchical trust model. The basic

concept is that if Alice trusts Bob to trust other people, and Bob trusts Charles, then

Alice can trust Charles. See Appendix A for more on PKI.

These days, Internet users have tens or even hundreds of accounts at different web-

sites, along with similar numbers of passwords (or possibly using the same password

for all their accounts). Communication has also gotten more complicated, with ever

more protocols gaining popularity. For example, IRC (Internet Relay Chat) [10] used

to be the popular protocol to use. Since then, AIM (AOL Instant Messenger) [1] has

gained widespread usage, starting around when AOL was a popular ISP. However,

in the past five or so years, Yahoo! Messenger [31], MSN Messenger [29], and more

recently XMPP [30](Jabber [11]) protocols have become popular. Users often have

accounts with services implementing these protocols. Our project hopes to help a user

manage their account-specific information and corresponding contacts' information.

We want to bind usernames from these communication protocols to certificates

from a PKI. By creating these cryptographic bindings, we add some level of certainty

concerning the user's identity to the communication protocol. Teh bindings and

certificates can then be used as a baseis for authenticated communication.

1.3 Related Work

Certificate managers have been designed and realized in the past. For example, there

is Mozilla's Network Security Services (NSS) [14] which is used by Mozilla's popular

browser Firefox [7]. A plugin for Pidgin [19], an open-source instant messaging client,

also has a certificate manager (CertMgr) to enable SSL encrypted conversations.

Two other plugins for Pidgin (Pidgin-Encryption and OTR) involve some use of

cryptography. Certificate exchange has also been pioneered; a colleague, Joe Cooley,

wrote a simple application to perform certificate exchange.

1.3.1 NSS

Mozilla's Network Security Services (NSS) [14] provides cryptography libraries for

applications such as Firefox [7], Thunderbird [26], AOL Instant Messenger [1], etc.

on many different platforms. NSS has their own certificate database, along with a

key database. They have a few commandline tools (certutil, crlutil) to give users a

way to manage these databases. They also provide tools to create and verify digital

signatures. One major shortcoming of the NSS certificate manager is the inability to

search for certificates based on specific attributes. Also, the current certificate and

key databases cannot be extended with metadata. There are plans to use SQLite

[23], a SQL database, as the backend for Mozilla Firefox 3.0.

1.3.2 Pidgin CertMgr plugin

As a Google-sponsored Summer of Code 2007 project [9], William Ehlhardt wrote a

"certificate manager" [32] to enable Pidgin users to have SSL encrypted conversations.

His stated motivation reveals a modest goal.

Pidgin doesn't currently do any certificate verification for SSL. In order

to properly do this and ensure security, a certificate manager (something

like Mozilla's) needs to be added. [32]

CertMgr uses NSS as a backend, but does nothing as far as managing other cryp-

tographic items and bindings (see Section 3.2.1 and page 26).

1.3.3 Pidgin-Encryption plugin

The Pidgin-Encryption plugin [20] provides encryption and authentication for IM

conversations. Its features tend to focus on being user friendly, e.g. public/private key

pairs are generated when the plugin is loaded. The user's public key is automatically

sent to any contacts. Known contacts' public keys are saved locally, and the user is

notified if a contact's public key changes. Keys are stored directly on the file system,

so that they can be manipulated easily.

One major downside of this plugin includes lack of support for multi-user chats.

Also, it is only available for Pidgin on Windows [28].

1.3.4 Off-the-Record plugin

The Off-the-Record (OTR) plugin [15] seems to be significantly more complex and

mature than the Pidgin-Encryption plugin. Not only does it provide encryption and

authentication, but it provides other cryptographic properties such as deniability and

perfect forward secrecy. OTR messages are not digitally signed, unlike messages from

Pidgin-Encryption. Also, OTR offers perfect forward secrecy; previous conversations

are not compromisable with current keys.

OTR also has extensive documentation on its Authenticated Key Exchange (AKE),

which uses unauthenticated Diffie-Hellman key exchange to set up an encrypted chan-

nel and then authentication inside that channel. However, like Pidgin-Encryption,

OTR is not usable inside multi-user chats.

1.3.5 Certex

Prior to this project, Joe Cooley wrote an application that uses Bonjour and NSS to

exchange certificates. Bonjour is a networking technology that allows for computers

and other devices to communicate over Ethernet or wireless (802.11) without setup.

NSS is described in section 1.3.1. With Certex, when a new machine is detected on

the network, its certificate is sent to other machines, and vice versa. Certex also

includes a plugin for what used to be Gaim (now Pidgin).

1.4 Accomplishments

What did we actually end up accomplishing? We built a cross-platform identity

and certificate manager (ICM) library, using OpenSSL's cryptography and SQLite's

database. We wrote a utility that allows users to manage their ICM directly from the

commandline. We also designed an Identity and Certificate Exchange (ICE) protocol,

whose logic is embedded in our library. The protocol efficiently desseminates users'

certificates and username-certificate bindings among users. Finally, we wrote a Pidgin

plugin, which utilizes our library, and showed that our exchange protocol works as

intended. The plugin authenticates IM and multi-user chat messages using digital

signatures. The plugin balances security and usability, using informative notifications

and error messages.

1.5 Roadmap

In the next chapter (Chapter 2), we detail why we undertook this project, and what

we hoped to achieve. In Chapter 3, we explain the designs for our library, protocol and

plugin. In Chapter 4, we describe our implementations for the library, protocol and

plugin. In Chapter 5, we evaluate our work measuring the protocol's performance

in a number of different situations. Finally, in Chapter 6, we enumerate possible

extensions to our work, and then conclude.

Chapter 2

Design Goals

In this chapter, we explore the design goals for the Identity and Certificate Manager

(ICM). Our notion of "identity" encompasses email addresses, instant message user-

names, or website logins. Any information that indicates an individual person (or

possibly even a group of people) is an identity. Our use of the term "certificate" is

imprecise; what we really mean is a "cryptographic item" manager. We use the term

"certificate" because certificates are the main cryptographic items in ICM. See Sec-

tion 3.2.1 for more on cryptographic items and identity. We designed the ICM system

with four main goals in mind: functionality, security, usability and performance.

2.1 Functionality

Our vision for ICM allows a single user to access from a single repository any and

all of the cryptographic items that the user has accumulated. That repository could

be a USB drive that the user carries around. Or, perhaps sometime in the future,

the repository could be surgically implanted in the user's body. Maybe it is more

convenient (and less physically invasive) to have the repository accessible online. The

user must be able to access the repository at any time and not worry about keeping it

up to date. Applications should be able to rely on our system to handle storage and

manipulation of cryptographic objects, message signing and signature verification, as

well as secure management of identities.

2.2 Security

We want our system to be secure; we must be sure that malicious individuals cannot

tamper with our system. We need to be mindful of SQL-injection attacks and buffer

overflows. We rely on well-known cryptography for authentication, such as PKI,

CRLs, and OCSP (see Appendix A). These schemes provide us with the security as-

surances that we seek. We use digital signatures to prevent attackers from tampering

with our messages. We use cryptographic bindings to create a chain of trust between

the root certificate authority and the application-level username. After creating such

a binding, the username can "speak for" the certificate authority, attesting to the

user's identity [36].

2.3 Usability

One problem that prevents users from using security features is the lack of usability in

security tools. Some say that "security and usability are often inversely proportional"

[21], but we aim to make our ICM usable by typical computer users in common situ-

ations. Having a clean graphical user interface, as well as informative error messages

in layman's terms, are important aspects of designing a usable security application.

2.4 Performance

With technology progressing at an exponential rate [35], application performance

seems to be less important in the minds of many. However, in some situations,

performance is especially important. For example, if a message must be transmitted

via a low-bandwidth radio, e.g. a cell phone, message sizes matter. Or if a message

incurs extremely high round-trip-times because it is bounced off a satellite, then the

number of overhead messages should be kept to a minimum. In our ICM, we try to

minimize both the number and size of messages required to exchange identities and

cryptographic items.

Chapter 3

Design

In this chapter we describe the design of the ICM system. The first section summarizes

the different modules, and how they relate to each other. The subsequent sections

describe the modules themselves, in the order in which they were designed.

3.1 Modules

We designed ICM from the bottom up. That is, we originally wanted an interface

with a database that would help users keep track of their cryptographic items (see

Section 3.2.1). We also want to keep track of the users' communication contacts, and

who has which of their cryptographic items. Naturally we designed a module directly

on top of the database (DB). We built two modules and an application on top of the

DB layer (see Figure 3-1). The CryptoLib module implements all of the cryptographic

functions necessary for secure communications. The Exchange module implements

our Identity and Certificate Exchange (ICE) protocol, using the CryptoLib module

heavily and storing its own state in the database. The Admin application provides

a simple commandline interface for a user to manage cryptographic items stored in

the database. A browser-based GUI gives the user a more intuitive way to manage

their database. In order to present a single high level API to other applications,

we have an Identity and Certificate Manager (ICM) layer sitting atop the Exchange

and CryptoLib modules. The c_icm layer consists of C wrappers around the C++

Pidgin Plugin

C icm

!CM

Exchange Admin

CryptoLib

DB

Figure 3-1: ICM Module Diagram

functions of the ICM layer. Finally, we designed a Pidgin plugin (written in C) to

use the c-icm API.

3.2 DB

The DB module represents the backend database used to store the user's crypto-

graphic items, and the state associated with the ICE protocol. In this section, we

first explore the schema in detail, followed by a discussion of why we chose to use

SQLite, and how the database can be maintained.

GUI

i~------II -- I C II

,I I

3.2.1 Schema

The database schema can be split into three main sections. First, there are the tables

representing cryptographic items; these include public keys, private keys, certificates,

shared keys, and passwords. Then, there is a table containing entities: Jabber [11]

usernames and email addresses. Finally, there are several tables relating entities and

items.

Cryptographic Items

Why are we storing cryptographic items in a relational database? We could have

easily stored all the items as encrypted files directly on the filesystem. Our reasoning

behind using a relational database is simple;

* We want to take advantage of the SQL relations. For example, we store meta-

data with foreign keys referring to items.

* Being able to search for an item based on a particular attribute is very im-

portant. Instead of simply storing binary representations of items, we extract

useful information that could help the user locate that item again. For exam-

ple, when storing a public key, we store the algorithm that it was generated for

(RSA, or DSA, or maybe ECDSA). We also store what the public key is used

for (either encryption or verification).

* We organize our cryptographic items into tables based on their type; certificates

and private keys are stored in their own tables. Some items have attributes that

others do not.

Cryptographic items all have a hash column. Each item has its own definition of

a hash; for certificates, it's the hash of the embedded public key. This hash is used by

all users to refer to the same item, but the hash is smaller than the item itself. For

example, if Alice wants to know if Bob has her certificate, she could send a hash of

her certificate to Bob, saving hundreds of bytes worth of communication. To achieve

even better performance (communication savings), we can use a prefix of the hash to

CREATE TABLE certificates
id
trusted

hash

INTEGER PRIMARY KEY,
BOOLEAN DEFAULT t:,
BLOB,

-- useful if trying to construct a chain of trust
ca id INTEGER,
-- fields pulled directly from the certificate
is ca BOOLEAN DEFAULT f:,
common name TEXT,
email TEXT,
organization TEXT,
organization unit TEXT,
state TEXT,
country TEXT,
caorganization TEXT,
castate TEXT,
ca country TEXT,
-- the certificate itself
certificate BLOB,
FOREIGN KEY (ca id) REFERENCES

CREATE TABLE cert rev lists
id
trusted
hash

caorganization
ca state

cacountry
cert rev list

CREATE TABLE public_keys (
id
trusted

hash

algorithm
usage
-- PEH or DER
type
public_key

CREATE TABLE private keys (
id
trusted
hash

algorithm

usage
-- PEM or DER

type
privatekey

INTEGER
BOOLEAN

BLOB,
TEXT,
TEXT,
TEXT,
BLOB

certificates (id)

PRIMARY KEY,
DEFAULT t. ,

INTEGER PRIMARY KEY,
BOOLEAN DEFAULT t ,
BLOB,
TEXT,
INTEGER,

INTEGER,
BLOB

INTEGER PRIMARY KEY,
BOOLEAN DEFAULT t ,
BLOB,
TEXT,
INTEGER,

INTEGER,
BLOB

Figure 3-2: Database Schema - Items

identify cryptographic items. We call this predefined-length prefix the item's "MID"

(member ID).

hash

Ox24a8402b

MID

Figure 3-3: Deriving the Hash/MID from a Certificate

The MID is used whenever referring to a particular item in communication. If

there are two distinct items which happen to have the same MID, then we iterate

through the possible matches to determine which item is being specified. The use

of MIDs in our system trades computation time and storage in exchange for less

communication. The probabilities of MIDs colliding is discussed later, in Section 3-

8. We originally wanted to use the MID as the primary key for every item's table.

However, this would have caused a big problem if two distinct cryptographic items had

the same MID. The second item would not be able to be inserted into the database,

because every primary key in a table must be distinct. Instead, we use local IDs as

primary keys which can be guaranteed to be unique. When trying to identify an item

by its MID, we simply compare to the stored hash column. However, this solution

requires us to perform frequent conversions between an item's MID and local unique

ID. The ID is used by metadata tables which are explained two sections later.

Alice's
Certificate

Message From Bob

Extract MID
Ox24a8402b

MID

Verification Failed
I ry... /-%Ie ,R Ia u UA dO4sU r Jr J

(0

Verification Succeeded 9

Figure 3-4: Iterating Through MID Collisions (Note: this scenario is very rare, see

page 32)

Entities

The database also stores entities. Entities have a few descriptive fields, such as name

and email, as well as a hash field. Entities can be described by their MIDs in the

same way that cryptographic items are. Again, just like items, entities have their own

local unique IDs so that they can be unambiguously referred to by metadata tables

(explained below).

Metadata

The ICM database also contains several metadata tables. The most straightforward of

the metadata tables is the bindings table. A binding can be described as a relationship

in which the entity "speaks for" a cryptographic item by an entity (see Figure 3-5).

d

a=

I

Try...

CREATE TABLE entities

id INTEGER PRIMARY KEY,
hash BLOB,

name TEXT,

email TEXT

-- associate entities with their items

CREATE TABLE bindings (

id INTEGER PRIMARY KEY,

entityid INTEGER NOT NULL,

-- references one of the item tables

item id INTEGER,
item_type INTEGER,
principal BOOLEAN DEFAULT
FOREIGN KEY (entityid) REFERENCES entities(id)

-- owners of certs that have a certificate/public key of mine
CREATE TABLE sent to cert (

-- the certificate id (not mine)
cert id INTEGER,
-- references one of the item tables
myitemid INTEGER,
myitemtype INTEGER,
myitembool BOOLEAN DEFAULT ,

my_binding id INTEGER,
my binding bool BOOLEAN DEFAULT ,
FOREIGN KEY (cert id) REFERENCES certificates(id),
FOREIGN KEY (mybindingid) REFERENCES bindings(id)

CREATE TABLE pending_binding

id INTEGER PRIMARY KEY,

entityid INTEGER,

my binding id INTEGER,
FOREIGN KEY (entity id) REFERENCES entities(id),
FOREIGN KEY (mybindingid) REFERENCES bindings(id)

Figure 3-5: Database Schema - Entities/Metadata

For example, "alice@jabber.org" "speaks for" a particular certificate-private key pair.

Thus, each binding refers to an entity and an item, both by local IDs. Since there

are many different item tables, each binding must also have an item type field. Each

binding has its own local ID so that other metadata tables can refer to it. The last

field in each binding is a "principal" Boolean. If it is set to true, then the item

referred is the entity's principal item for that type. Each entity can have only one

item of each item type marked as principal. The idea for a principal item for a given

entity is similar to a default.

Example: Suppose the item type is a certificate. Alice has a certificate

signed by Certificate Authority 1. Then, Alice gets a new certificate signed

by Certificate Authority 2, and wants this new certificate to be used in-

stead of the first certificate. Instead of deleting the first certificate (which

may be useful in the future), the principal flag allows Alice to simply set

the second certificate to be the principal.

Bindings allow for a decoupling of a user's certificate and the user's entity. If

the user wants to change names (i.e. switch entities), there is no need to get a new

certificate. The Certificate Authority does not need to know the user's entity at the

time of the certificate generation, so the user gains a lot of flexibility. Also, if the

user's certificate expires, a new certificate can easily be bound to the old entity.

Two other metadata tables keep track of the state necessary to achieve perfor-

mance enhancements in the Identity and Certificate Exchange (ICE) protocol (see

Section 3.4). The first is revealingly named sentto_cert. This table keeps track

of which items and bindings have been sent to a particular recipient. That recipient

is identified by the local ID of his/her certificate. The rest of the columns in the

table indicate which item and which binding have been sent. The item ID and item

type columns unambiguously identify an item. The binding ID identifies a binding.

The remaining two columns are Booleans, which allow the table some flexibility: the

first Boolean represents whether the recipient has the user's item, and the second

represents whether the recipient has the user's binding.

Example: Suppose Bob has sent Alice his certificate and his binding,

but Alice somehow loses Bob's binding. When Bob receives evidence that

Alice has his certificate, but not his binding, he marks the first Boolean

true (i.e. Alice has received his item), but the second Boolean false (i.e.

Alice does not have his binding). Having this information allows for high

performance recovery; Bob only needs to resend his binding, and not his

certificate.

The second metadata table which stores state for the ICE protocol is called

pending_binding (again, see Figure 3-5). A row in this table represents the fact

that we have sent our binding and certificate to the specified entity.

CREATE TABLE applications
id IIJTEGER PRIMARY KEY,
name TEXT

CREATE TABLE application bindings
id INTEGER PRIMARY KEY,
application id INTEGER,
binding id INTEGER,
FOREIGN KEY (application id) REFERENCES applications(id),
FOREIGN KEY (bindingid) REFERENCES bindings(id)

Figure 3-6: Database Schema - Applications

Example: Suppose Alice enters a chatroom, and sees "bob" and "charles".

She immediately sends her certificate to both of them so that they can

authenticate her future messages. Before she receives confirmation that

"bob" has received her certificate, she receives his certificate. Her sent_to_cert

table has no indication that she has already sent her certificate to "bob"

because she did not have his certificate at the time. The pendingbinding

serves a similar purpose to the senttocert table, except it is based on

the entity's ID, instead of the certificate's ID. In this example, pendingbinding

would contain a row that indicated that Alice had sent "bob" her certifi-

cate and her username "alice".

Application-specific data

Every application using the ICM has its own notion of identity. For example, Pid-

gin's notion of Alice's identity might be "alice3@jabber.org". Similarly, Microsoft

Outlook's [12] notion of identity may be "alice@microsoft.com". In order to represent

these different notions, we have the applications table and application_bindings

table (see Figure 3-6). The applications table simply maps each application name

(and perhaps other information in the future) to an ID. The application_bindings

table maps each application to a binding. Therefore, when an application initializes

ICM, ICM knows which binding to use. Each application can have its own binding,

while sharing information about the user's contacts.

3.2.2 SQLite

We chose to use SQLite [23] as the backend database for a number of reasons. SQLite

is a lightweight and reasonably high performance database with minimal configura-

tion. SQLite is ACID compliant (atomic, consistent, isolated and durable) and the

entire database is a single file. SQLite has a full-featured C/C++ API (well-tested

with over 98% coverage), and it is completely free (no licensing at all).

We use a single database for each user. This allows different applications to share

their items with each other. We do not, however, want to have multiple people using

the same database; we want to keep each user's information isolated for security.

3.2.3 DB Maintenance

We want to allow users to manipulate the database. Users may want to add items

manually, delete them, or perform other simple database options. While users may

use the sqlite3.exe client, they may not want such a low level view of their database.

Applications may choose to allow certain database operations (for an example, see

Section 4.8.4). We did, however, design a command line tool (Admin) to allow for

simple inserts and deletes. This tool is more user-friendly than the generic sqlite

client, but also more powerful than a high-level application's GUI. This tool allows

one to insert cryptographic items into the database from files (like certificates in Dis-

tinguished Encoding Rules (DER) [4] or Privacy Enhanced Mail (PEM) [18] format).

The browser-based GUI allows users to manage their database even more intuitively.

3.3 CryptoLib

This module contains all of the cryptographic operations performed by our system.

We purposely designed this module so that multiple versions could be implemented,

each using different backend cryptography libraries. This flexibility makes the system

easier to maintain, update, and extend. Some of the important operations performed

in CryptoLib are certificate validation and creation/verification of digital signatures.

3.4 Identity and Certificate Exchange Protocol

The purpose of the Identity and Certificate Exchange (ICE) protocol is to provide

a mechanism for users to engage in authenticated communication. To do this, users

must exchange a binding between the application's notion of identity (i.e. username)

and a cryptographic notion (i.e. certificate; see Appendix A.1). In our efforts to make

communications secure, we must reconcile an application's notion of a user with the

cryptosystem's notion of a user. We want the user to have the flexibility to use any

valid certificate with any application. Users can exchange only their own certificates,

i.e. certificates for which they have private keys.

Depending on the situation, message authentication can be merely comforting

or highly mission critical. A digital signature is attached to every single message

sent via ICM, including messages containing certificates. Confidentiality (achieved

via encryption) can easily be implemented on top of our protocol, so we decided to

decouple confidentiality from our authentication goal.

3.4.1 ICE Overview

If performance (bandwidth/latency) were of no concern to us, we could easily attach

our identity, certificate and signature to every single message and have a simple au-

thenticated protocol. Sending the same identity and certificate in every message is

highly wasteful. This is in fact exactly the way S/MIME (secure email) (see Appendix

A.4) works; the certificate is sent in every email. Compare that with Secure Socket

Layer (SSL) which initiates every session with a seven-way "handshake" to exchange

certificates and set up an encrypted channel through which to send messages. After

the SSL connection is established, certificates are no longer exchanged. If the con-

nection ends, and is re-established, the handshake must be accomplished again to

initiate a new session.

Our ICE protocol tries to take the idea of a "session" from SSL and go one step

further. Once we receive a certificate, we store it in our database so that we can

access it in the future. In order to prevent sending our certificate to the same user

Alice

E

ce

..I'

Bob

Figure 3-7: ICE Example Timeline (common case: smart push)

more than once, we remember who has received our certificate by storing state in our

database. In general, we remember what information other users have about us to

eliminate extraneous communications.

In typical usage, ICM exchanges identities and certificates via a "smart push"

method. That is, each user's ICM consults its own data to decide whether the other

user is missing either his identity or certificate. If one or both are missing, ICM

sends the required information. The metadata that we store makes this common case

exchange very efficient.

When an unexpected event occurs, then ICM "pulls" (requests) the missing infor-

mation. These unexpected events, such as failures and other errors, are detected when

trying to verify a message's signature. ICM sends the signing certificate's MID (see

page 25) or the certificate itself in every message. When verifying a certificate, ICM

matches the MID to a certificate in its database, and uses that certificate to verify the

signature. The MID is only on the order of 10 bytes, compared to hundreds or even

thousands of bytes in a typical certificate. Of course, to achieve this performance gain,

we sacrifice simplicity in certain unlikely scenarios such as hash collisions. Collisions

are unlikely and their probability only grows with the square root of the number of

possible distinct bit strings (V 2length). For example, if we use 4 bytes (32 bits) to

represent items, then we would need on the order of a3 = 216 = 65536 items to

have a good chance of getting a collision. According to Figure 3-8, we would need to

have more than 1000 MIDs to be less than 99.99% sure that we have no collisions.

Collision Probabilities
4 4 4- .

35

items

20 50 100 200 soo 1000

Figure 3-8: Probability of Collisions

3.4.2 Exchange module

The ICE protocol is realized in the functions contained by the Exchange module.

All of the protocol logic is contained in two functions CREATECERTIDMSG and RE-

CEIVEMSG (described in pseudocode below). CREATECERTIDMSG contains logic

for the "smart push" scenarios, i.e. sending necessary information unrequested. RE-

CEIVEMSG is called by the recipient of any ICE message, which may trigger a "pull"

for the sender's identity or certificate.

3.4.3 ICE pseudocode

CREATECERTIDMSG (entityMID, certMID, request, cert)

1 result.type +- TYPE_CERTID_MSG

2 result.requestflag +- request

3 result.stmtLen +- LEN(myEntity.name)

4 result.stmt +- myEntity.name

5 result.timestamp +- TIME()

6 // No recipient specified

7 if entityMID = NIL and certMID = NIL

8 then result.recipient +- TYPERECIPIENT_BROADCAST

9 result.ack <- NIL

10 if certMID / NIL

11 then result.sgnrLen +- LEN(myCert)

12 result.sgnr -- myCert

13 result.cert +- TYPE_CERT_CERT

14 else result.sgnrLen +- 0

15 result.sgnr +- myCert.mid

16 result.cert +- TYPECERT_MID

17 else // We have recipient's cert, or can look it up

18 if certMID / NIL or

19 ENTITYMID2CERTMID (entityMID, certMID) = 1

20 then result.recipient +- TYPERECIPIENTUIDMID

21 result.ack <- (entityMID, certMID)

22 else // We only have recipient's name

23 result.recipient = TYPERECIPIENT_UID

24 result.ack +- (entityMID)

25 result.sgnrLen -- LEN(myCert)

26 result.sgnr - myCert

27 result.cert - TYPECERTCERT

28 // We know recipient's cert

29 if certMID 0 NIL

30 then if HASMYBINDING(certMID, myCert.id, myBindinglD) and

31 request = 0

32 then return NIL

33 if HASMYCERT(certMID, myCert.id, myBindingID)

34 then result.sgnrLen +- 0

35 result.sgnr - myCert.mid

36 result.cert +- TYPE_CERT_MID

37 else result.sgnrLen -- LEN(myCert)

38 result.sgnr +- myCert

39 result.cert - TYPE_CERT_CERT

40 HASMYCERT(certMID, myCert.id, myBindingID) +- TRUE

41 HASMYBINDING(certMID, myCert.id, myBindinglD) +- TRUE

42 entitylD - ENTITYMID2ENTITYID(entityMID)

43 PENDINGBINDING (entitylD, myBindingID) <- FALSE

44 else // We know recipient's username

45 if entityMID 0 NIL

46 then entityID +- ENTITYMID2ENTITYID(entityMID)

47 if PENDINGBINDING(entityID, myBindingID) = TRUE

48 and request = 0

49 then return NIL

50 PENDINGBINDING(entitylID, myBindinglD) -- TRUE

51 return result

RECEIVEMSG (packedMsg, packedMsgLen, sender, msgText, verif yFunc)

1 // Unpack Message

2 msg +- MSGUNPACK (packedMsg, packedMsgLen)

3 if msg = NIL

4 then error "Message could not be unpacked"

5 return NIL

6 msgText +- msg.stmt

7 // Obtain Signing Certificate (from database or message)

8 if msg.cert = TYPE_CERT_MID

9 then certMID +- msg.sgnr

10 signingCert +- CERTMID2CERTIFICATE(certMID, numCerts)

11 if numCerts = 0

12 then if msg.requestflag = TYPE_REQUEST_TRUE

13 then HASMYCERT(certMID, myCert.id, myBindinglD) +- FALSE

14 HASMYBINDING(certMID, myCert.id, myBindinglD) +- FALSE

15 e.name +- sender

16 ADDENTITY(e)

17 return CREATECERTIDMSG(e.mid, certMID, TRUE, FALSE)

18 else signingCert +- BUF2x(msg.sgnr, msg.sgnrLen)

19 if signingCert = NIL

20 then error "Failed to convert attached certificate to X509"

21 return NIL

22 // Check Signature

23 if MSGVERIFY(msg.sig, msg.sigLen, packedMsg, signingCert) = FALSE

24 then error "Unable to verify signature"

25 return NIL

26 // Check to see that this message is for me

27 if msg.recipient $ TYPE_RECIPIENT_BROADCAST

28 then if msg.ack 5 NIL or msg.ack / myEntity.mid

29 then error "Message not intended for this user"

30 return NIL

31 if msg.recipient = TYPERECIPIENT_UIDMID and

32 msg.ack[MID_SIZE] $ myCert.mid and certMID $ NIL

33 then error "Sender has wrong certificate for you"

34 HASMYCERT(certMID, myCert.id, myBindinglD) - FALSE

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

HASMYBINDING(certMID, myCert.id, myBindingID) *- FALSE

entityMID +- BITS2MID(sender)

return CREATECERTIDMSG(entityMID, certMID, FALSE, FALSE)

// Check Message type

if msg.type TYPE_TEXT_MSG and msg.type # TYPE_CERTID_MSG

then error "Unknown message type"

return NIL

// Done with text messages

if msg.type = TYPE_TEXT_MSG

then return NIL

// Only CertID messages from here

// Check sender's username and binding match

if VERIFYFUNCsender, msg.stmt = FALSE

then error "Sender not verified"

return NIL

e.name -- msg.stmt

senderlD +- ADDENTITY(e)

entityMID +- e.mid

// Add certificate to database

if msg.cert = TYPE_CERT_CERT

then ADDX(signingCert, e)

if ENTITYMID2CERTMID(entityMID, certMID) > 1

then error "Entity MID collision"

return NIL

if msg.recipient = TYPERECIPIENT_UID

then error "Sender has no certificate for you"

if HASMYBINDING(certMID, myCert.id, myBindingID)

then HASMYCERT(certMID, myCert.id, myBindinglD) - FALSE

HASMYBINDING (certMID, myCert.id, myBindinglD) <- FALSE

numEntities <- ENTITYMID2CERTMID (entityMID, temp)

65 if numEntities > 1

66 then error "Entity MID collision"

67 return NIL

68 else c.mid +- certMID

69 certlD <-- ITEM2ITEMID(c)

70 INSERTBINDING(senderlD, certlD, ITEM_CERTIFICATE)

71 SETPRINCIPAL(senderID, certlD, ITEM CERTIFICATE, TRUE)

72 ENTITYMID2CERTMID (entityMID, temp)

73 if certMID $ NIL and certMID $ temp

74 then error "Username is associated with a different certificate"

75 certMID +- temp

76 if CERTMID2ENTITYMID (certMID, temp) = 0

77 then error "Can't find an entity bound to this certificate"

78 return NIL

79 if entityMID $ temp

80 then error "Username change"

81 if ENTITYMID2ENTITYID (entityMID, entityID) $ 1

82 then error "Entity MID collision"

83 return NIL

84 if msg.request_flag = TYPEREQUEST_TRUE

85 then HASMYCERT(certMID, myCert.id, myBindinglD) +- FALSE

86 HASMYBINDING (certMID, myCert.id, myBindinglD) +- FALSE

87 else if PENDINGBINDING(entitylD, myBindinglD) = TRUE

88 then HASMYCERT(certMID, myCert.id, myBindinglD) +- TRUE

89 HASMYBINDING (certMID, myCert.id, myBindinglD) +- TRUE

90 else if msg.recipient = TYPERECIPIENT_UIDMID and

91 msg.ack = myEntity.mid and msg.ack[MID_SIZE] = myCert.mid

92 then HASMYCERT(certMID, myCert.id, myBindinglD) <- TRUE

93 HASMYBINDING (certMID, myCert.id, myBindinglD) -- TRUE

94 return CREATECERTIDMSG(entityMID, certMID, FALSE, FALSE)

3.5 Pidgin Plugin

We designed a Pidgin plugin as an example application of ICM and ICE. The plugin

will use the ICE protocol in two separate manners depending on the mode of commu-

nication that the user chooses. In an instant message (IM) conversation, where the

user is only communicating with another single user, the ICE protocol will simply

exchange certificates (if necessary!) and cryptographic username-certificate bindings.

In a chat conversation, which is often called a "chatroom" because there may be mul-

tiple users in the room, the user must exchange certificates with all the other users

in the chat. One thing to remember, whenever a user sends a message, IM or chat,

that message is packed into the ICE protocol message format (see Section 4.6.1).

As soon as a user tries to send an IM, the ICE protocol is activated. If necessary,

the user's plugin sends his/her certificate, before sending the IM. On the other end, as

soon as the user receives a message which is tagged as being part of the ICE protocol,

that user's plugin may respond with his/her own certificate if necessary.

Chat exchanges are significantly more complicated. When a user (Alice) joins

a chat, the plugin first checks the list of users in the chat. If there are any users

to whom Alice has not sent her certificate, then the plugin sends a single message

containing her certificate and cryptographic binding to the chat. The chat server

then distributes this message to the chat's users. The plugins of the other users in

the chat may send their bindings and/or certificates to Alice if necessary. If there are

n users in the chatroom, Alice sends at most 1 message to the chat, and each of the

n users sends at most 1 message to Alice.

Chapter 4

Implementation

In this chapter, we focus on our implementation of the designs described in the

preceding chapter. We also describe coding conventions we used, as well as third-

party libraries. The format of this chapter is mostly parallel to that of the Design

chapter; we discuss the modules from the bottom up.

4.1 Coding Conventions

In our C++ code (the ICM library, Admin tool), we use lowerCamelCase for variable

names, and UpperCamelCase for class/struct names [2].

4.2 Libraries

We used 3 open source libraries in this system. First, there's the free SQLite [23]

software which has a full-featured C API. For all our cryptography needs, we used

OpenSSL (version 0.9.8e) [17]. Finally, we used ADAPTIVE Communication Envi-

ronment (ACE) [25] for our portable types and data structures

4.3 Doxygen Documentation

We used the open source tool Doxygen to produce documentation for our code. All

of our classes are thoroughly documented.

4.4 DB

The purpose of the DB class is to abstract away all of the underlying database API

calls. This allows future code maintainers/updaters to easily change the underlying

database without changing the higher level code. We specifically did not want any

SQL code in any layer higher than the DB. Since only the DB layer would be making

any direct calls to the SQLite API, we decided to open the SQLite connection in the

DB constructor, and subsequently close it in the destructor. The constructor also

checks to see if the database has been initialized with our schema. If the database is

empty, then the constructor loads the schema into the database from a file.

4.4.1 Items

Cryptographic items are represented as C/C++ structs. Our implementation sup-

ports three types of items: asymmetric keys (public and private keys), certificate

revocation lists, and certificates.

We use inheritance and virtual functions (see Figure 4-1) to maximize code reuse

and modularity. Our base class, Item, has a few fields common to all cryptographic

items. First, all Items have an integer ID which is that Item's database ID. Second,

every Item is either trusted or not. This Boolean (which defaults to true) indicates

whether the user trusts this Item to be used in cryptographic operations, or whether

it should not be used anymore. Third, every Item has a "type" which is simply an

enumeration of the different cryptographic item types. Finally, all Items have MID,

hash and hashSize fields. The hash is a bytestring produced by running the SHA256

hash over some particular part of the Item. For example, SHA256 is applied to the

public key of a certificate to produce the certificate's hash. The hashSize is the

number of bytes in the hash. The MID

in further detail in Section 4.4.3.

is a short prefix of the hash, and is explained

A'j\ f\-

I

1 y

PrivateKey PublicKey

Figure 4-1: Item Inheritance

Items also have a few virtual functions. First, they have constructors to initialize

their specific member fields. Second, they have destructors to properly delete the

member fields which are allocated on the heap. Finally, FORMSQL, BINDPARAM-

ETERS and SELECTEDITEMS handle SQL statement generation, binding arguments

and returning results from a SELECT statement, respectively.

* FORMSQL is called when making a query to the database. It returns a SQL

statement based on the member fields of that particular Item. It takes one pa-

Item

id
trusted
type
mid
hash

AsymmetricKey

algorithm
usage
type
key

CertRevList

caOrganization
caState
caCountry
certRevList

Certificate

isCa
commonName
email
organization
organization Unit
state
country
caOrganization
caState
caCou ntry
cerfificate

rameter which tells the function which kind of query is being prepared (INSERT

/ UPDATE / SELECT / DELETE). For example, if we wanted to generate a

SQL statement to select the certificate which is untrusted with ID=5, we would

just create a new certificate, set its ID to 5, and set its trusted field to "false".

Then we would call FORMSQL on that item, and it would produce a string like

"SELECT * FROM certificates WHERE id=? AND trusted=?;". FORMSQL is

straightforward, with one exception: handling MIDs (see Section 4.4.3). Since

SQLite provides a safe method for constructing SQL statements and all exe-

cuted SQL comes directly from our code (as opposed to user input), we avoid

the risk of SQL-injection attacks.

* BINDPARAMETERS is called to fill in the arguments in the SQL statement that

was just created with FORMSQL. In the example detailed above, BINDPARAM-

ETERS would bind the integer 5 to the first variable, and false to the second

variable. Since the same Item is used as the basis for FORMSQL and BINDPA-

RAMETERS (and presumably left unchanged between the two function calls),

the variables and their values are always going to match up.

* SELECTEDITEMS deals with the results of executing a SELECT query. Un-

like the other three types of queries (INSERTs, UPDATEs and DELETEs),

SELECTs return possibly multiple results. The SELECTEDITEMS packs these

results into new appropriate Item objects, and sets these objects' member vari-

ables according to the corresponding rows in the Item's database table. If a

column is NULL, then that variable does not get set. These new Items are

returned in a single ACE DLList, which is a doubly-linked list implemented by

the ACE library (see Section 4.2).

Our design decouples our logic from the actual schema of the database tables.

As a result, only a limited amount of code must change to support a change in the

database schema. For example, in order to add a column in the table for a private

key, a single field needs to be added to the PrivateKey struct, and a couple lines

must be added to the PrivateKey implementations of FORMSQL, BINDPARAMETERS,

and SELECTEDITEMS. As another example, if we want to add a new kind of crypto-

graphic object, we only have to design the new database table, write a corresponding

derived struct of Item, and implement the FORMSQL, BINDPARAMETERS, and SE-

LECTEDITEMS functions.

4.4.2 Entities

Entities are fundamentally different from Items in terms of what each represent.

Entities represent individual people, groups of people, or software agents. Still, the

Entity objects share many fields in common with the base Item struct. Entities have

ID, MID, hash and hashSize fields. They also have name and email fields. However,

the database treatment of Entities is very similar to Items, so Entities also have

FORMSQL, BINDPARAMETERS and SELECTEDENTITIES methods.

4.4.3 MID

The purpose of the MID is to provide a short name for a particular item (explained

in further detail on page 25). The current implementation has the MID_SIZE set to 4

bytes. As described earlier, the MID was originally intended to be used as a database

ID.

How do we use a MID to identify a particular certificate? We wrote a SQLite

extension that compares two BLOBs and returns 1 if one of the BLOBs is a prefix of

the other. So, by comparing the MID with the stored full hash, we can find all the

potential matches (rarely more than 1 - see page 32).

4.4.4 Bindings

Bindings are primarily used to associate Entities with their Items, and so the bindings

table is a many-to-many relation. If there were only one type of Item, the bindings

table could simply consist of a foreign entity_id key and a foreign itemid key.

However, since the items are spread out amongst many tables, we need an itemtype

hash

MID

Figure 4-2: Colliding MIDs

column to indicate the table to which item_id column refers. For example, "alice"

could be bound to a certificate, a public key, or a symmetric key.

The DB Bindings API consists of only four functions: an insert function (INSERTBINDING,

an update function (SETPRINCIPAL), and two select functions (GETPRINCIPALID and

GETBINDINGID).

* INSERTBINDING simply adds a row representing a binding to the bindings table.

* SETPRINCIPAL allows us to designate a particular binding as "principal" (de-

fault). If a user has multiple certificates, we use the principal flag to indicate

which certificate should be used for that user.

* GETPRINCIPALID gets the principal itemid of the given item_type for a spec-

ified entity_id.

* GETBINDINGID simply gets the local database's primary key for the binding.

It has several uses: (1) it is used before inserting to check that a binding is

not already in the bindings table, (2) it is used to uniquely refer to a particular

binding (see Section 4.4.5), and (3) the binding ID is used for initializing any

given application (see page 29).

4.4.5 Metadata

Metadata is defined as information about who might have my cryptographic items/bindings:

it is stored to allow for significant performance gains in the ICE protocol (see Sec-

tion 3.4). There are two database tables storing metadata: sentto-cert and pending_binding.

This metadata contains information on to whom we have sent our cryptographic items

(see Section 3.2.1). For each of these tables, there is a pair of functions essentially

amounting to accessors and modifiers.

For the sentto_cert table, all of the data for the columns are passed to the

NowHASMY function, which simply stores the information in the database. The

underlying logic can be expressed in a simple, though grammatically incorrect sen-

tence. "The owner of certID nowHasMy itemID of type itemType true/false, and

nowHasMy bindingID true/false." While the typical case involves sending both the

item and binding simultaneously, the Booleans referring to the item and binding

allow us flexibility to revise our metadata in the case of unexpected failures. The

GETHASMY function retrieves one of the Booleans referring to either the item or the

binding.

The pendingbinding table is much simpler, and the SETPENDINGBINDING either

inserts or deletes a row with the given entityID and bindingID. The GETPENDING-

BINDING returns true if there is a row with the given entityID and bindingID.

4.5 CryptoLib

In order to store and use cryptographic items, we clearly need a library that provides

some tools for manipulating them. We chose to use OpenSSL [17] over Mozilla's

Network Security Services (NSS) [14] because OpenSSL makes using elliptic curve

cryptography (ECC) easier. Also, the fact that OpenSSL builds on Windows with

very little hassle is a big advantage. Not only are OpenSSL's commandline applica-

tions easy to use, it has a convenient API to its cryptography library. Finally, ICM

will be incorporated into a larger project, which already uses OpenSSL.

In order to limit the effects of our choice of OpenSSL, we perform all the necessary

cryptographic operations in this module. Similarly, all the SQLite operations are

contained in the DB layer.

The CryptoLib module has three main sets of functions. The first set of func-

tions consists of little more than shallow wrappers of underlying database functions.

The second set of functions performs some of the necessary cryptographic operations

involved in using X.509 certificates. Finally, the last set of functions performs con-

versions between various data types. The remaining functions simply set the private

member variables ocspURL, myPrivateKey, and myPKey.

4.5.1 DB Operations

The database operations are fairly straightforward. Three functions simply add cryp-

tographic items when given a path (ADDRSAPRIVATEKEYPATH, ADDXPATH, AD-

DCRLPATH). These are useful for the Pidgin plugin (see Section 4.8) and for the

commandline administrative tool. ADDX and ADDENTITY are also fairly similar to

their DB counterparts (INSERTITEM and INSERTENTITY), but they also make sure to

set their own hashes before calling their respective DB functions. NOWHASMYCERT

and GETHASMYCERT are also wrappers of DB functions (NOWHASMY and GETH-

ASMY metadata functions). Finally, the rest of the database operations functions are

used only internally by other CryptoLib functions. Instead of making them private

though, we made them public to provide a more complete, if slightly redundant API.

4.5.2 Cryptographic Operations

The cryptographic operations are the most important and interesting functions in

this API. First, we have the MSGSIGN and MSGVERIFY functions. These calculate

and verify signed message digests. Then, we have a couple of functions to calculate

hashes and MIDs (BITS2HASH and BITS2MID). Finally, we have two functions to

validate X.509 certificates.

Digital Signatures

For the MSGSIGN, we use the SHA-1 hash function to create the message digest,

and then we sign the digest with the private key (set with the SETMYPRIVATEKEY

function). In the MSGVERIFY function, we take in an X.509 object, extract its public

key, and use it to verify that the message digest does in fact correspond to the message

that we have received.

Hashes and MIDs

BITS2HASH and BITS2MID both calculate the SHA256 hash of their given bitstrings.

BITs2MID actually calls BITS2HASH and simply returns the first few bytes of the

result.

Certificate Validation

Finally, we have the X.509 validation functions. VALIDATECERTIFICATE takes in

a Certificate and returns true if the Certificate is considered valid. First, we

start building a "chain of trust" by adding to a data structure all the certificates in

the database that claim to be Certificate Authorities (CAs). If the certificate being

validated claims to be a CA, we add it as well. OpenSSL takes care of constructing

the chain of trust from the certificates we add to its X509_STORE_CTX.

If a certificate is self-signed, we do not check any Certificate Revocation Lists

(CRLs). Otherwise, we add all CRLs that share the same CA as the certificate we

are checking. We search the database for the CRLs that share the same organization,

state and country as the certificate we are validating. When we actually run the

OpenSSL validation, the function checks the Certificate to make sure that the current

date falls between the notValidBefore and notValidAfter fields.

The second part of validation (VALIDATECERTIFICATEOCSP) involves using the

Online Certificate Status Protocol (OCSP) (see Appendix A.3). First, we form an

OCSP request using a hash function, the certificate and its certificate authority. Then,

we pack and send the OCSP request to the URL set previously (ocspURL). If there

is no URL set, then OCSP validation is not performed. We then wait for an OCSP

response. There are only a few valid responses, and the only ones that we care about

are "good" and "revoked". "good" means that the certificate is still valid, while

"revoked" means that the certificate used to be valid, but for some reason no longer

is. The rest of the responses are all interpreted as indicating that the certificate is

not valid. We used the built-in OpenSSL OCSP client function.

If an error occurs in any part of the validation process, the user is notified that

the certificate should not be trusted.

4.5.3 Conversions

The conversion functions are mainly focused on manipulating certificates. Certificates

are found in three different forms in the system: X509, Certificate, and DER binary

format. X509 is the C struct used by OpenSSL's cryptographic libraries. Certificate

is our struct which is a subclass of Item. It has many of the fields commonly found

in certificates like commonName and organization. Finally, DER binary format is

sometimes used to store certificates as files, and it's also used to transport certificates

over the wire.

BUF2X and x2BUF are more error tolerant forms of OpenSSL's D2I_X509 and

12DX509 functions. They convert certificates stored in a buffer in DER format

into X509 objects and back, respectively. They are sure to manage memory, and

check for errors that may have silently occurred during one of the OpenSSL function

calls. c2x converts a Certificate to an X509 struct by simply calling BUF2x on the

Certificate's DER buffer.

x2c is the most interesting of the conversion functions. It converts an X509 struct

into a Certificate by populating all of the Certificate's fields. The conversion

steps are:

* Populate the certificate field by converting the X509 into a DER buffer;

* Pull out all of the fields (e.g. commonName, email, organization, state, country,

etc.);

* Extract the information about the X509's Certificate Authority;

* Set the hash of the public key and corresponding MID.

The last of the conversion functions is CERTMID2CERTIFICATE which is simply a

wrapper that tries to find a Certificate in the database that matches the specified

MID.

4.6 Identity and Certificate Exchange Protocol

In this section, we detail the ICE message format and ICE functions (found in the

Exchange module).

4.6.1 Message format

We designed the ICE message format to be as compact as possible to minimize com-

munication overhead (see Figure 4-3). The protocol involves two different types of

messages:

* a message containing the sender's certificate and identity/username, and

* a message containing some plain text (email, instant message, etc.).

Our message format accomodates both message types. The format has 13 fields,

but is quite compact. The first five fields are combined to use a single byte of space.

These are the message type (2 bits), the version (2 bits), certificate-attached (1 bit),

recipient (2 bits) and a request flag (1 bit). The message type is named to distinguish

among the two types: a certificate-identity message and a text message. We use two

bits just so that this format is a little flexible to include future types. The version

is the version of the protocol, which again allows for some future flexibility. The

certificate-attached bit indicates whether there is a certificate or just a MID from

the sender. The recipient field indicates what the sender knows about the recipient.

Either the sender knows nothing, or the recipient's username, or both the recipient's

username and the recipient's certificate. Finally, the request flag is set to true if

the sender wants the recipient to send the recipient's certificate to the sender. We

crammed all these fields into the first byte of the message so that the recipient can

parse this single byte, and have a good idea of what to expect in the rest of the

message.

Info (1B)

Figure 4-3: Message Format

The next field is simply a 4-byte timestamp which allows the protocol users to

protect themselves against replay attacks (assuming their clocks are reasonably syn-

chronized). While our current implementation does not make use of the timestamp,

we may defend against replay attacks with the timestamp in the future. The next

two fields are the equivalent of an email's "From:" field, so we call them the signer

fields. The first signer field is 2 bytes indicating the length in bytes of the next field.

The second field is either the sender's certificate in DER format, or the MID of the

sender's certificate. Since the MID is fixed at 4 bytes, the size field is completely

omitted. The 4 byte MID can be distinguished from a 2 byte size field and the first

2 bytes of a certificate because of the certificate-attached bit in the first byte of the

message.

The following two fields are collectively called the statement. The first is again 2

bytes describing in bytes the length of the second field. The statement can be viewed

as the payload of the message; in a normal text message, the text would be in the

statement. In a certificate-identity message, the statement is the sender's username.

The next field is the equivalent of an email's "To:" field. However, in our protocol,

we use it to acknowledge the information that we have about the recipient, so we call

it the acknowledgement field. The acknowledgement field is described by the two bit

recipient field in the first byte. If the recipient field is 0 (we are broadcasting), then

the acknowledgement field is empty. If the recipient field is 1 (we know the recipient's

username), then the acknowledgement field is 4 bytes long containing the MID of

the username. Finally, if the recipient field is 2 (we know the recipient's username

and have the recipient's certificate), then the acknowledgement field is 8 bytes long

containing the MID of the username and the MID of the recipient's certificate.

The last two fields contain the cryptographic signature of the message. All of

the previous contents are signed, and this signature (consisting of 2 bytes indicating

the length of the signature and the signature itself) is appended to the end of the

message. Every single message in the protocol is signed. By signing a certificate-

identity message, the recipient can verify that the sender does indeed have the private

key corresponding to the enclosed certificate. Also, the sender's username is signed,

forming a cryptographic binding between the certificate-private key pair and the

username.

4.6.2 Exchange module

The exchange module implements functions necessary to perform the ICE protocol.

Since the protocol is rather simple, there only six functions in the API. Three of these

functions are devoted to constructing messages. There is CREATECERTIDMSG which

builds a certificate-identity message (containing the user's certificate and username).

While this may sound simple, there is a lot of logic (see Section 3.4.3) to use and

store state with the goal of reducing the size and number of communications. If the

stored state indicates that the recipient already has this user's certificate, then a null

message is returned and nothing will be sent. There is another similar function called

CREATECERTIDMSGGroup. This function performs similar functions to CREATE-

CERTIDMSGGroup, but does so for multiple intended recipients. It is useful when

trying to broadcast out a certificate in a chatroom for example. If all of the recipients

are thought to already possess the certificate, then again, nothing will be sent. The

last similar function is CREATETEXTMSG which creates a signed text message.

The next two functions are descriptively called MSGPACK and MSGUNPACK. MS-

GPACK produces a byte string from a Msg object by simply concatenating the fields

in the proper order. MSGUNPACK does the exact opposite, but carefully checks to

make sure that the input byte string is long enough to contain the expected fields.

These packing functions take into account the local architecture's byte order by using

htonl and ntohl (host to network long and network to host long). These functions

make sure that the message's integers are sent in network byte order.

On the recipient's end, RECEIVEMSG handles the byte string by first calling MS-

GUNPACK. After a Msg object is produced, the signature is verified to ensure that the

contents are unaltered and that the message was produced by its proclaimed sender

(holder of the corresponding private key). If the recipient realizes that the message

was signed by an unknown certificate, then a certificate request with the request flag

set is returned to be sent to the original sender. If the message received is a text

message, then the contents are returned. Otherwise, the certificate is stored, and the

recipient's certificate may be sent if the sender is known not to already possess it.

4.7 Identity and Certificate Manager (ICM)

The Identity and Certificate Manager module presents a single API to applications

using the system as the back-end for the Identity and Certificate Exchange protocol.

All of the functions are designed to allow an application developer to easily take ad-

vantage of the entire system's functionality. With the exception of the portable ACE

data types, none of our internal data types are exposed. The functions are mostly

thin wrappers around Exchange and CryptoLib functions. The only exceptions are

CREATETEXTMSG, its sibling functions; CREATECERTMSG and CREATECERTMSG-

GROUP, and their counterpart RECEIVEMSG. These all do packing and signing for

the application developer. By abstracting all the lower level details away, we simplify

the application developer's job.

4.8 Pidgin Plugin

Pidgin is the new name of the open-source instant messenger client formerly known

as Gaim. Pidgin is designed to be easily extended by providing an extensive API

available to plugins. We decided to develop a Pidgin plugin to use and test our ICM

library and ICE protocol.

We do not allow users to have aliases for other users or chats, because we often use

the name of the conversation to retrieve the username. Aliasing prevents those from

necessarily being equivalent. In our plugin, we often need to make use of the "name"

of a particular IM or chat conversation, which can be masked by a user-specified alias.

4.8.1 C wrappers

Because Pidgin is written in C, we wrote thin C wrappers around our C++ class

methods (see Appendix C for an example).

4.8.2 Base64

The MSGPACK function returns a binary string which is not even necessarily null-

terminated. In fact, the byte string may have one or more null characters in it.

Because XMPP requires text-only strings, we encode the message in Base64 format.

Base64 uses lower case and upper case letters of the alphabet, the ten numerals 0-9,

and the '+' and '=' characters to encode any binary message. Of course, this encoding

increases the size of the message by 33% because three bytes (24 bits) gets encoded as

four bytes. Each character takes up one byte, but there are only 64 (26) possibilities

per character, so only six bits of information can be stored. Base64 is frequently used

to encode binary objects when only text characters are allowed.

4.8.3 Signals

Pidgin has an extensive selection of callbacks (Pidgin calls them signals), which makes

event-driven programming quite simple. In the plugin initialization function, callback

functions of particular types are linked to signals. Signals range from "conversation-

created" and "chat-joined" to "quitting" and "playing-sound-event". However, only

a handful of these signals is actually useful to the ICE protocol.

IM signals

The signals sending-im-msg and receiving-im-msg are used for running the ICE

protocol over an instant message conversation between two users. The sending-im-msg

signal is emitted after the user tries to send a message in an IM window. It gives

the plugin a chance to replace the outgoing text with whatever the plugin wants to

print. In our case, we can take the text and create a text message with a signature,

before passing it on to the recipient. Also, if we think the recipient does not have our

certificate and/or username, we send our certificate-identity message right before our

text message. On the recipient's side, the receiving-im-msg is emitted right before

displaying the contents to the user. Again, this signal allows the plugin to replace the

incoming text with anything. This is where we call RECEIVEMSG, and in the normal

case, verify the message's digital signature, extract the message text, and display it

in the IM window.

Chat signals

In the design described in Section 3.5, we attach a callback to the conversation-created

signal which would send out a chat certificate-identity message if any of the users in

the chat did not have this user's certificate or username-certificate binding. Our final

design ended up being rather different.

ICM is unable to obtain the list of the users in the chat as soon as Alice joins.

When the chat is created (conversation-created), the Pidgin C-structure contains

an empty list of users. Even after the chat-joined signal, the list of users is still

unpopulated. Soon after, chat-buddy-joined signals are emitted, one for each user

in the chatroom. There is no way for the plugin to know when it has a complete list

of the users in the chat. Therefore, we are forced to choose between processing each

user individually (as a callback to chat-buddy-joined), or to wait until Alice wants

to send a message before initiating the ICE protocol. We chose the latter, because

processing each user individually would certainly incur more overhead.

We used a callback for the sending-chat-msg signal. When Alice joins a chat,

ICM actually does nothing. ICM only sends out Alice's certificate-identity message

to the chatroom if at least one user in the chatroom needs it. However, ICM waits to

send out Alice's certificate-identity message until right before she is about to send a

normal text message to the chat.

On the receiving end, the plugin reacts to the receiving-chat-msg signal. If

necessary, the plugin automatically replies to a chat message via IM. For exam-

ple, suppose Dan and Fred are in a chat when Alice joins. Alice's plugin sends her

certificate-identity message, as well as a text message. If Dan's plugin needs to reply

with his certificate-identity, it IMs Alice directly. There is no need to reply to the

chat, because Fred's plugin presumably already has Dan's certificate.

One of the main disadvantages of our design is apparent when using a low-

bandwidth link. If Alice wants to send her first message, she must first send a much

larger message to the chat containing her certificate. Then, she can send her text

message. The overall latency of sending her text message, when preceded by her

certificate-identity message, can be increased significantly.

Alternatively, we could have implemented the plugin to wait several seconds after

joining before trying to retrieve the list of users. Then, the plugin could determine

whether to send the user's certificate to the chat.

There are several Jabber-specific [11, 30] aspects to our implementation. For

example, Jabber allows users to choose a "handle" when entering a chat. By default,

a user's handle is their username, as registered with the server. When a message

is received in a chat, the "sender" is chatname@server/handle. Usually, in an IM

message, the format of the "sender" is username@server/resource.

For example, suppose Alice's and Bob's usernames are Alice@server/Home

and Bob@server/Home. Let Alice and Bob be in a chatroom (CoolKids@server),

with handles Alice and Bob, respectively. Bob sends a message to CoolKids@server/Alice,

the server will translate the recipient and route it to Alice@server, but the

"sender" will be CoolKids@server/Bob. However, if Bob sent an message

to Alice@server/Home, then the "sender" would be Bob@server/Home.

For these reasons, we currently do not support handles in this format. We assume

that a user's handle is their username as well. In the future, we may create a binding

between the handle and the certificate.

Another Jabber-specific quirk that we had to deal with is chat history. The Jabber

server can be configured to send all or some of the messages from the chat to the user

who is just joining. This feature makes certificate exchange very easy, but is a poor

model for limited communication. In our tests (Section 5.2), we turned the chat

history feature off.

4.8.4 Pidgin GUI/Preferences

Pidgin uses the GIMP Toolkit (GTK) to display its graphical user interface (GUI).

Pidgin makes it pretty easy to load and unload plugins, and also to provide a configu-

ration GUI. Preferences, specific to a particular plugin, can be stored in an XML file

along with other Pidgin preferences. These allow us to store any state that we want,

but we use a database to store most of our state anyway. The two preferences that

we do store are a path to the database, and a URL to query for OCSP responses.

These preferences can be altered in the ICM configuration window.

Figure 4-4: Pidgin Plugin Configuration Window

The ICM configuration window (as shown in Figure 4-4) also provides a simple

front-end to load a few select cryptographic items into the database. Users may add

X509 certificates, RSA private keys and certificate revocation lists via our GUI. These

are added by typing in a path to the desired item.

We thought that indicating to the users whether a message has been verified would

be very useful. A similar problem is solved by popular web browsers by showing a

lock icon when using TLS [27]. At first, we considered simply coloring the text in

the IM/chat windows. This would be extremely easy to implement since the text

is encoded in HTML. Green text could be verified, while unverified text could be

red. The problem with this approach is that these colors could be faked by the user

changing their text to green (or red). One alternative that we came up with was

to include a small image with verified messages. Images can only be sent between

users in Pidgin by establishing a "direct connection". Plugins have another way to

insert images, so malicious users would have a lot of difficulty spoofing a verified

message. See Figure 4-5 for Alice's conversation with Dan. Further improvements to

UI-security notifications will be the subject of future work.

Figure 4-5: Sample Pidgin Instant Message Conversation

4.8.5 Initialization

There are a few things that are done by the plugin, and that need to be done by

the user before the ICM plugin can be used properly. First, the plugin checks to see

whether there is a path to the database in the preferences file. If there is a path, the

plugin opens the database. However, if there is no path, the plugin simply creates a

database in the current directory named with the account's username by loading the

schema from a file. This default behavior is also reflected by setting this path in the

preferences file.

The user has to load at least one certificate and one private key, obtained from an

appropriate authority. Without these two items, a user cannot participate in authen-

ticated messaging. The items may be loaded in any order, with the exception that

a CA-signed certificate should be loaded after its signing CA and the corresponding

certificate revocation list. That is, the CA and CRL should be loaded before the

other certificate, so that the second certificate can be verified properly. Also, the last

certificate to be loaded via the configuration window is the certificate that is used

in the ICE protocol. Similarly, the last private key loaded is used to sign messages

in the ICE protocol. In one of our tests, we used two certificates, one private key,

and one certificate revocation list. One of the certificates was a self-signed certificate

authority. The other was a user certificate signed by that CA.

4.8.6 Multiple accounts

Pidgin can support multiple account simultaneously, even using different protocols.

However, ICM currently only supports a single application's notion of identity at a

time. Therefore, if a user is logged into multiple accounts in the same application,

then ICM is unable to know which identity to exchange with other users.

There are two possible solutions to handling multiple accounts in the future. First,

an ICM instance can be created for each account, but that would greatly increase

the complexity of the plugin. Another option is to modify ICM to handle a list of

accounts, and pass information about which account is being used to every function.

Chapter 5

Evaluation

In this chapter, we discuss our testing and evaluation of the ICM system and ICE

protocol.

5.1 Testing - Module

We implemented the ICM system from the bottom up, writing and performing unit

tests along the way for each of the three major modules (DB, CryptoLib and Ex-

change). We simply wrote executables that would cover all of the different functions.

5.1.1 testdb

The DB test executable (testdb) is script-like in that it simply creates a new database

and performs different operations on it. All of the DB layer functions perform one

or more INSERT, SELECT, UPDATE or DELETE operations. Naturally we call

functions to insert rows into the database tables before selecting/updating/deleting

them. The tests output debugging feedback to indicate which tests have passed

successfully. To determine whether a test was successful, we hardcoded the expected

results, and matched them with the output of the SELECT functions. We did not

perform any thread safety or multiple access tests.

5.1.2 testcryptolib

The CryptoLib test executable (testcryptolib) is similar to testdb in that it tests

most of the functions individually. There is some set-up required before running

testcryptolib.

Setup

One of the main purposes of the CryptoLib module is to manipulate and validate

certificates. In order to test certificate handling, we generated our own certificates,

complete with a certificate authority and certificate revocation list. See Appendix B

for OpenSSL commands to generate these test files.

In order to test OCSP validation (see Section 4.5.2), we need to run an OCSP

responder. OpenSSL has a simple OCSP responder that can be run as described

in Appendix B. This responder uses files created in the process of generating the

certificate authority (the CA's certificate, private key and index). The index contains

information (including validity status) on all of the certificates signed by the CA.

Testing

The order in which certificates are inserted into the database by the CryptoLib module

is important. Every certificate is validated before inserting it into the database.

Therefore, we insert the CA's certificate first so that the subsequent certificates'

signatures can be verified. Also, we insert the CRL before the CA-signed certificates.

The CRL is also used when verifying whether a certificate is valid. We tested inserting

a valid certificate, a revoked certificate, a valid certificate while the OCSP responder

was unavailable. Then we performed a few sanity checks. For example, we verifyed

that the same certificate was the same length in DER format when stored in two

different databases.

5.1.3 testexchange

The Exchange test executable mainly checks the logic of the functions implementing

the ICE protocol. We tested creating a number of typical common-case messages, as

well as all sorts of error-inducing messages. We make sure that MSGPACK can take

a Msg and produce a bytestring that the MSGUNPACK function can use to reproduce

the original Msg.

Most of the ICE protocol logic resides in the CREATECERTIDMSG and RE-

CEIVEMSG. Therefore, most of the testexchange tests focus on these two functions.

We performed four tests on CREATECERTIDMSG by simply varying the three

parameters to cover the different parts of the code. First, we provided no inputs, but

had the request flag set to true. This message is the response when we receive an ICE

message for which we do not have a certificate. We know neither the sender's certifi-

cate nor identity, so both parameters are NULL. The second test involved knowing

both the recipient's identity and certificate. This is a common case where the recip-

ient has just sent us a certificate-identity message. The third test involved knowing

the only the identity of the recipient. This might happen if the we join a chat and see

only one user that does not have our certificate. Finally, the circumstances of the last

test were similar to the previous one's. We only had the recipient's identity, but we

happened to have a corresponding certificate in our database for that identity. This

happens when we see a user in a chatroom for which we have a certificate, but for

some reason we have not sent our certificate to them.

5.2 Testing - System

Our system evaluation tests checked for protocol correctness (expected behavior vs.

observed behavior), and performance overhead. The performance metrics cover the

number and size of the messages that we send, and compare them to the messages

produced without using the ICE protocol.

In the following sections, we describe tests for IM scenarios and chat scenarios. We

constructed these scenarios as combinations of username changes, certificate changes,

and database failures. Often, multiple different scenarios result in the same behavior

from the ICE protocol. We also describe how many bytes are saved in each scenario

assuming a single text message from each user. We will compare these results to an

S/MIME scheme that attaches a certificate to every message (see Appendix A.4).

All of the numbers in the following tests do not include overhead associated with

XMPP. All of the messages, both ICE and S/MIME, are Base64 encoded, so in that

respect, they are identical. The certificates used contain 1024-bit RSA keys, and

when we refer to Alice's certificate, both in the context of ICE and S/MIME, we are

actually referring to the same X.509 certificate.

5.2.1 Scenarios - IM

In all of the following scenarios, Alice is trying to send a message to Dan, but one or

both of them may not have the other's certificate. In the Table 5.1, we enumerate ten

scenarios. Scenario 1 involves both Alice and Dan without each other's information.

Scenarios 2-4 involve one or more changes in username. Scenario 5 is the result of a

successful exchange of certificates and bindings. Scenarios 6-8 involve old certificates,

and finally Scenarios 9 and 10 involve database failures.

In order to clarify which cryptographic item is being specified, "alice", "notalice",

"oldalice", alice@ll, and oldalice@ll refer to the current binding, wrong binding, old

binding (associated with the wrong certificate), current certificate and old certificates,

respectively. Parallel terms are used for Dan and Fred.

For the Savings column in the following tables, we calculated how many Bytes

are saved for a "conversation" in which each user sends a single message "hi". For

S/MIME, the "hi" message was 2403B, 2383B and 2371B for Alice, Dan and Fred,

respectively. Therefore, the maximum possible savings in an instant message con-

versation between Alice and Dan is 4786 Bytes. The maximum savings for a chat

between all three users is 7157 Bytes.

Note that in Table 5.1, a user never has a binding without a certificate, because

the binding is a link between a username and a certificate. Without the certificate,

the binding cannot be authenticated. Suppose Alice and Dan had each other's bind-

Alice has Dan has Observed Savings (B)
1 "alice"/alice@ll - D 4786 - 3100

A +- "dan"/dan@ll 1686
2* "notdan" "notalice" "alice"/alice@ll -+ D 4786 - 1940

dan@ll alice@ 11 A +- "dan" 2846
3* "notdan" "alice" "alice"/alice@ll -- D 4786 - 1940

dan@ll alice@ll A +- "dan" 2846
4 "dan" "notalice" "alice" -+ D 4786 - 604

dan@ll alice~ll 4182
5 "dan" "alice" (nothing) 4786 - 400

dan@ll alice@ll 4386
6 "olddan" "alice" msg -+ D 4786 - 1760

olddan@ll alice@ll A +- "dan"/dan@ll 3026
7 "dan" "oldalice" msg -+ D 4786 - 3104

dan@ll oldalice@ll A +- "dan"/dan@ll 1682
"alice"/alice@ll -+ D

8 "olddan" "oldalice" msg -+ D 4786 - 3104
olddan@ll oldalice@ll A +- "dan"/dan@ll 1682

"alice"/alice@ll -+ D
9 "alice" "alice"/alice@ll -+ D 4786- 3100

alice@ll A +- "dan"/dan@ll 1686
10 "dan" msg -+ D 4786 - 3104

dan@ll A +- "dan"/dan@ll 1682
"alice" /alice@ll -+ D

Table 5.1: IM Scenarios

ings and certificates, but Alice gets a new certificate. Dan would not have the new

certificate, nor the new binding between the name "Alice" and Alice's new certificate.

Therefore, the situation is the same as Dan having neither Alice's certificate nor her

binding. In practice, the only difference is that a warning is shown to Dan alerting

him to the fact that he had previously had a different certificate for Alice's username.

The scenarios marked with an * are special because the observed behavior is

different from what we might expect. alice@ll is sent along with "alice", because

Alice cannot associate "dan" with dan@ll. She knows that she has sent alice@ll to

the owner of dan@ll, but she has a binding for "notdan" and dan@ll. The reverse

case does not occur (Scenario 4) because Dan receives "alice", and therefore knows

he does not need to send his certificate. In Scenario 9, Alice sends both "alice" and

alice@ll because she has no record that dan already has those items.

In Scenario 6, how does Dan know to send Alice his binding and certificate? The

answer lies within the acknowledgment field of our message format (see Section 4.6.2).

Alice acknowledges the wrong certificate for Dan, so Dan responds appropriately.

5.2.2 Scenarios - Chat

Scenarios for chats are significantly more complicated (and numerous!). There are a

few situational aspects that we keep constant. First, there are 3 users in the chat:

Alice, Dan and Fred. Second, Alice is always entering the chat last, and sending a

message as soon as she arrives. Third, Dan and Fred have already exchanged each

other's certificates and bindings.

Scenario 1 is the situation where Alice has never communicated with Dan or

Fred. Scenarios 2-9 involve different usernames. Scenario 10 is the result of successful

exchange of certificates and bindings among all three users. Scenarios 11-13 involve

old certificates. Finally, Scenarios 14-17 involve database failures.

#11 Alice has Dan has Fred has Observed Savings(B)
1 "fred" "dan" "alice"/alice@ll -+ chat 7157 - 4612

fred@ll dan@ll A -"dan"/dan@ll 2545
A +- "fred"/fred@ll

2 "notdan" "notalice" "notalice" "alice"/alice@ll - chat 7157 - 2304
dan@ll alice@ll alice@ll A +- "dan" 4853
"notfred" "fred" "dan" A - "fred"
fred@ll fred@ll dan@ll

3 "notdan" "notalice" "alice" "alice"/alice@ll -+ chat 7157 - 2304
dan@ll alice@ll alice@ll A +- "dan" 4853
"notfred" "fred" "dan" A +- "fred"
fred@ll fred@ll dan@ll

4 "notdan" "alice" "alice" "alice"/alice@ll -+ chat 7157 - 2304
dan@ll alice@ll alice@ll A +- "dan" 4853
"notfred" "fred" "dan" A +- "fred"
fred@ll fred@ll dan@ll

5 "dan" "notalice" "notalice" "alice"/alice@ll - chat 7157 - 2104
dan@ll alice@ll alice@ll A +- "fred" 5053
"notfred" "fred" "dan"
fred@ll fred@ll dan@ll

6 "dan" "notalice" "alice" "alice"/alice@ll - chat 7157 - 2104
dan@ll alice@ll alice@ll A -- "fred" 5053
"notfred" "fred" "dan"
fred@ll fred@ll dan@ll

7 "dan" "alice" "alice" "alice"/alice@ll -+ chat 7157- 2104
dan@ll alice@ll alice@ll A +- "fred" 5053
"notfred" "fred" "dan"
fred@ll fred@ll dan@ll

8 "dan" "notalice" "notalice" "alice" - chat 7157 - 756
dan@ll alice@ll alice@ll 6401
"fred" "fred" "dan"
fred@ll fred@ll dan@ll

9 "dan" "notalice" "alice" "alice" -+ chat 7157 - 756
dan@ll aliceell alicell 6401
"fred" "fred" "dan"
fred@ll fred@ll dan@ll

10 "dan" "alice" "alice" (nothing) 7157- 564
alice@ll alice@ll alice@ll 6593
"fred" "fred" "dan"
fred@ll fred@ll dan@ll

Table 5.2: Chat Scenarios, part 1

Scenario 1 is probably the most typical scenario; the users already present in the

chat (Dan and Fred) have exchanged certificates/bindings, and a new user is joining

the chat. Alice recognizes that she has sent her certificate/binding to neither Dan nor

Fred, so she sends her certificate-identity message to the chat. Dan and Fred both

respond directly to Alice with their respective certificate-identity messages.

Scenario 5 involves two new usernames. Alice has switched from "notalice" to

"alice", while Fred has switched from "notfred" to "fred". Alice sees that she has

sent her certificate-identity to neither Dan nor Fred, so she sends it to the chat. Fred

has not sent his newest binding to alice@ll, so he sends it.

Scenario 7 tests one user changing names (from "notfred" to "fred"). Note that

Alice sends her certificate needlessly, but Fred only sends his binding.

Scenario 8 shows off some special case code; Alice recognizes that she has sent her

certificate to both Dan and Fred, but has changed her username since then. Therefore,

she sends only her new binding to the chat.

Scenario 10 is the simple case of everybody having exchanged information already.

Alice has Dan has Fred has Observed Savings (B)
11 "olddan" "alice" "alice" A -+ chat 7157 - 3272

olddan@ll alice@ll alice@ll chat +- D 3885
"fred" "fred" "dan" "alice"/alice@ll - D
fred@ll fred@ll dan@ll A -- "dan"/dan@ll

12 "olddan" "oldalice" "alice" A -> chat 7157 - 3272
olddan@ll oldalice@ll alice@ll A &- "dan"/dan@ll 3885
"fred" "fred" "dan" "alice"/alice@ll -+ D
fred@ll fred@ll dan@ll

13 "dan" "oldalice" "alice" A -4 chat 7157 - 5968
dan@ll oldalice@ll alice@ll A -- "dan"/dan@ll 1189
"oldfred" "fred" "dan" "alice"/alice@ll -+ D
oldfred@ll fred@ll dan@ll chat - F

"alice"/alice@ll -4 F
A +- "fred"/fred@ll

14 "dan" "oldalice" "alice" A -+ chat 7157 - 3272
dan@ll oldalice@ll alice@ll A +- "dan"/dan@ll 3885
"fred" "fred" "dan" "alice"/alice@ll -+ D
fred@ll fred@ll dan@ll

15 "alice" "alice" "alice"/alice@ll -+ chat 7157 - 7316
alice@ll alice@ll chat +- D -159
"fred" "dan" "alice"/alice@ll - D
fred@ll dan@ll A +- "dan"/dan@ll

chat +- F
"alice"/alice@ll -+ F
A -- "fred"/fred@ll

16 "dan" "alice" A - chat 7157 - 3272
dan@ll alice@ll A "dan"/dan@ll 3885
"fred" "dan" "alice"/alice@ll - D
fred@ll dan@ll

17 "alice" "alice"/alice@ll -+ chat 7157 - 5968
alice@ll A +- "dan"/dan@ll 1189
"dan" chat +- F
dan@ll "alice"/alice@ll -+ F

A +-- "fred"/fred@ll

Table 5.3: Chat Scenarios, part 2

Scenario 11 has some strange behavior. Alice thinks she has Dan's and Fred's

certificates/bindings, but she actually has Dan's old certificate and binding. However,

she sends her message to the chat, without any problems. It is only when Dan sends

a message to the chat that Alice realizes she has the wrong certificate for him. She

then requests his certificate and binding, and he sends them to her.

Scenario 15 shows how a database failure can cause many extra communications.

Alice's database has died, but Dan and Fred believe Alice still has their certificates

and bindings. Alice does not know that they already have her information. She sends

her certificate/binding to the chat, but receives no responses. When Dan and Fred

send messages to the chat, Alice has to request their certificates/bindings individually.

If all of the users had universal knowledge, Dan and Fred would have just sent their

certificates/bindings to Alice. Instead, there are three extra messages containing

Alice's certificate/binding; the initial one to the chat, and the two individual ones

to Dan and Fred. The overhead is associated only with the failure-induced "pull"

method of exchange; Alice is requesting information directly, instead of Dan/Fred

knowing that that she needs their information.

Note how the savings in Table 5.3 are small, and even negative in Scenario 15.

These numbers, as well as all the savings numbers for chat scenarios, are misleading

when considering a network without true multicast. If Alice, Dan and Fred are all

within transmission distance of each other in a wireless network, then they do have

true multicast. That is, Alice can send a message to both Dan and Fred for the

same price as a message to only Dan (or only Fred). If Alice, Dan and Fred are on

a switched network, then at some point, Alice's message to Dan and Fred must be

replicated. Therefore, the cost to send to both Dan and Fred is essentially the cost

of sending to Dan plus the cost of sending to Fred.

5.3 Performance Evaluation

In the Scenarios discussed earlier in this chapter, we compared the performance of

our protocol to S/MIME. Our protocol improves on S/MIME in three ways (two are

specific to a wireless network):

* Message Size: we produce smaller messages since certificates are not sent every

time;

* Shorter Transmission Latency: smaller messages can be sent faster, usually

certificates do not need to be transmitted;

* Lower Power Consumption: fewer/smaller messages require less power to trans-

mit.

It is possible to send an S/MIME message without attaching the signing certificate.

However, the resulting messages (for text "hi") are all 1197B, as compared to Alice's

2403B, Dan's 2383B and Fred's 2371B. The same message is about 200B in the ICE

protocol (no certificate attached).

Calculating the performance gains over a "typical" conversation, or over a given

period of time requires some numbers that are not easily obtained. We will assume

that a typical conversation involves 25 messages, each averaging 30 characters, trans-

mitted over 5 minutes [33]. Assuming that certificates and bindings are exchanged

once in the ICE protocol, a typical conversation between Alice and Dan amounts

to 8604B. If Alice and Dan were using S/MIME, the same conversation would be

60525B. If they only exchanged their certificates once, but still used S/MIME for

the remaining messages, the conversation size would be 33017B. Applications that do

not involve transferring large amounts of data are likely to have certificate exchange

constitute a large percentage of overall transmissions.

Chapter 6

Conclusion

In this chapter, we explore possibilities for future work, summarize what I learned

over the course of this project, and conclude.

6.1 Future Work

In this section, we discuss areas that could use future development. These are features

and ideas that we, in our limited time, did not implement.

6.1.1 Multiple Applications

As explained earlier (page 29), there are tables in the database schema provisioning

for allowing multiple applications to use ICM simultaneously. Applications should

then be able to initialize themselves properly with their own bindings.

6.1.2 MID/Hash Collisions

We use hashes and especially MIDs to represent different Entities and Items. However,

in the unlikely event that there is a collision (e.g. two different Entities with the same

MID), we would like our performance to degrade gracefully. Right now, we simply

do not handle collisions, and an error is displayed. Handling collisions can be quite

simple in some cases, like trying to verify the signature of a message given the signing

certificate's MID. All the matching certificates can be tried, until one succeeds. Other

cases are likely to be more complex, such as trying to find the certificate associated

with a given Entity's MID. If there are two distinct Entities with the same MID, then

we may think we have a user's certificate when we actually do not.

6.1.3 Service

We would like a single user's multiple applications to be able to use the same ICM

simultaneously. Right now, this is possible by using the same SQLite database back-

end. However, we would like to have an ICM service running in the background on

the user's machine. Then, applications wishing to use ICM would make requests to

and process responses from the ICM service process. The ICM would have to be

modified to register and verify application IDs so that application-specific settings

are maintained.

Yet another step would be to make the ICM service run on a server, perhaps

accessible via the Internet. This would be significantly more involved and dangerous;

it would obviously be a major problem if our service gets compromised. A secure

scheme to authenticate users to the server would be absolutely necessary. After the

authentication problem is solved, an encryption scheme would also be necessary to

ensure that eavesdroppers cannot steal items like private keys off the wire. A secure

ICM service accessible from anywhere would be useful to users who work on different

machines.

6.1.4 OCSP

We allow for optional OCSP validation of certificates. For simplicity, we ask the

application for a URL which would handle our OCSP requests. Sometimes, in one

of the optional X.509v3 extension fields, there is a URL for the appropriate OCSP

responder. A simple extension of ICM would be to parse these fields in search of such

URLs.

6.1.5 Thunderbird Extension

We tout ICM as a library that can be used by multiple applications for authenticated

communication. However, we only had time to implement one example, a Pidgin

plugin (Section 4.8). Writing a Thunderbird extension would be a great way to show

ICM's versatility.

6.1.6 Pidgin Plugin

There are several usability features that can be added to the plugin. First, when a

user receives a certificate, show that certificate's information in a new GTK window.

Allow the user to accept or decline to trust that certificate. Also, when a user is using

a "new" certificate, show both the new and old certificates, again with an option to

decline to use the new one. However, whether this would improve security/usability

depends on the user; many users are accustomed to simply clicking through pop-up

dialogs until the application works as expected.

Another feature that might be useful is re-verification of old messages. Suppose

Alice sends several messages to Bob before she receives his request for her certificate.

Then all of those messages would show up as unverified to Bob. With the new feature,

Bob's ICM would be able to verify Alice's older messages.

6.1.7 Browser-based GUI

webpy is a Python-based webserver that would allow us to write a GUI that could be

accessed via a user's browser. This GUI would provide a more usable interface to our

database than our commandline-based Admin program.

6.1.8 Certificate Retrieval via URL

Suppose Alice uses a personal digital assistant (PDA) and wants to send her identity-

certificate to Bob, who is on broadband. One possible extension of our ICM would

be to allow users to send URLs in place of their certificates. Then, in our example,

Alice could just send a URL for Bob to download her certificate. This would save

Alice precious bandwidth and power on her PDA.

6.2 What I Learned

Over the course of this project (designing and implementing ICE and ICM), I learned

a lot, from how to use certain developer tools to secure programming practices. I

used emacs [8] as my IDE, but I had never used tags [6] to navigate through third-

party libaries. This was invaluable, especially when trying to comprehend OpenSSL's

cryptography library. Other tools that I became familiar with include Subversion [24]

(a versioning system) and Doxygen [5] (a documentation tool).

One of the most important skills that I acquired is writing/editing Makefiles.

Using Makefiles made building my project infinitely easier; compiling each source file

individually would have been very tedious and time-consuming. I also learned to use

GCC from MinGW [13] compiler under the cygwin [3] shell, since we performed most

of our development on Windows [28].

The three open-source/free libraries that we used (SQLite [23], OpenSSL [17] and

ACE [25]) were also new to me. While the SQLite online documentation was superb, I

had to rely on books ([37] and [34]) to get a grasp on the OpenSSL and ACE libraries.

Finally, there were several secure programming practices that I learned to use.

For example, to prevent buffer overflow attacks, one must use safe string functions

(strncpy, strncat), instead of their unsafe and more common counterparts (strcpy,

strcat). Also, when building a SQL query for the database, one must use bind pa-

rameters to accept user input, instead of simply concatenating the statement together.

Otherwise, the system is vulnerable to SQL-injection attacks.

6.3 Conclusion

In conclusion, we have designed and implemented an Identity and Certificate Manager

(ICM) library for storing and using applications' identities and digital certificates. We

also designed an efficient protocol, called Identity and Certificate Exchange (ICE),

allowing users' ICMs to exchange identities and certificates. We demonstrated the

use of both ICM and ICE in by writing a Pidgin plugin.

Appendix A

Public Key Infrastructure (PKI)

Public Key Infrastructure (PKI) is a system designed to simplify authentication (the

act of checking to see whether a person is who he says he is, and whether he wrote

what he said he wrote). PKI follows a hierarchical trust-based model with each node

in the hierarchy representing a certificate. Any certificate that is not a leaf in the

hierarchy is called a certificate authority. The certificate authority at the top of the

hierarchy is called a root certificate authority.

PKI relies on cryptographic digital signatures. Digital signatures are similar to

normal signatures in that they are only easy for one person to create, but anybody

can verify them to see that they are authentic. A certificate authority encloses a

signature in any certificate that it issues. A root certificate authority signs its own

certificate.

The basic concept of a PKI is that trust can be transitive, i.e. if Alice trusts Bob

to trust other people, and Bob trusts Charles, then Alice can trust Charles. In this

simple example, Bob would be the certificate authority (CA), trusted by Alice. If the

CA signs a certificate (like Charles'), that signifies that the CA trusts that Charles

is actually Charles (presumably after doing some other kind of authentication). If

Alice trusts Bob to verify people's identities, then she trusts that Charles' certificate

belongs to Charles.

A.1 Certificates (X.509)

X.509 is an ITU-T standard adopted by the Internet Engineering Task Force (IETF)

in RFC3280. There are many useful fields in an X.509 certificate. For example,

there's a field called "Subject" which details the person or organization represented

by that particular certificate. There are subfields in Subject including common name

(often the name of the person), email, organization, state, country, etc. Common

names are often used by applications to verify identity. X.509's also have two dates,

delimiting the period during which the certificate is considered valid. There is also

a field called "Issuer" which has the same subfields as "Subject". The Issuer is the

certificate authority which issued, and therefore trusts this certificate. Perhaps most

importantly, all certificates enclose a public key. Some public keys are for digital

signatures, allowing anyone possessing the certificate to authenticate any message

signatures from the owner of the certificate. Therefore, if Charles wants Alice to

be able to authenticate her messages, he sends her his own certificate, and signs his

messages.

A.2 Certificate Revocation Lists (CRLs)

A certificate whose validity period has not ended yet may need to be invalidated for

some reason. An example is if Alice worked for a company which issued her a cer-

tificate, but she was fired. One solution is called a certificate revocation list (CRL),

which is also specified in RFC3280. A CRL lists certificates that have been "revoked",

which means that the certificate authority has invalidated them. Certificate authori-

ties are supposed to generate CRLs periodically. Theoretically, anyone trusting this

certificate authority should be checking for new certificate revocation lists often, so

that the certificates can be confirmed valid.

CRLs have three main problems. They may become very large files; downloading

one could be a lot of overhead if only one certificate needs to be validated. The

second problem is that users often forget or do not even bother to check for CRLs.

Finally, for very large CAs, CRLs need to be published very often, since certificates

are revoked frequently.

A.3 Online Certificate Status Protocol (OCSP)

Online Certificate Status Protocol (OCSP) is a possible replacement for downloading

CRLs, and is specified in RFC2560. An OCSP responder is a server that keeps track

of what certificates' statuses are (usually the CA). If Alice wants to find out whether

Bob's certificate is still valid, she can send an OCSP request to the OCSP responder,

and then receive information only pertaining to Bob's certificate. OCSP requests

and responses are very small; only the hash algorithm, issuer's hashed name, issuer's

hashed public key, and the certificate's serial number are included for each certificate.

The size of an OCSP request is 41B + 64B*n where n is the number of certificates

being verified. Two advantages of OCSP over CRLs are that the information gathered

is more up-to-date, and no much less extraneous information is transmitted. One

disadvantage of OCSP is that it requires the status checking to be done online.

A.4 (S/MIME)

Secure/Multipurpose Internet Mail Extensions is a standard for encapsulating en-

crypted and signed electronic mail. S/MIME requires the use of private keys and

certificates from an appropriate Certificate Authority. Typically, S/MIME is used for

generating digital signatures of messages, providing authentication, message integrity,

and non-repudiation properties. Authentication gives the recipient information attest-

ing that the message was written by the holder of the private key. Message integrity

provides assurance that the message was not tampered with after the signature was

generated. Finally, non-repudiation makes it difficult for the signer to deny authoring

the message. [22]

Appendix B

OpenSSL

In this chapter, we illustrate the OpenSSL commands used to generate test certifi-

cates, keys, CRLs, etc. Please refer to Appendix A for information on any of the

aforementioned terms. We used OpenSSL-0.9.8e in this project.

B.1 Creating Certificates

First, we set up our own Certificate Authority (CA). For detailed instructions on how

to do this, see [16]. Be sure to download the openssl.cnf file. After we have our CA

set up, we go on to create our own private key and certificate pairs:

openssl req -newkey rsa:1024 info.txt -keyout key.pem -out req.csr

Note: we use RSA 1024-bit keys (yes, admittedly weak). Larger keys can easily be

generated, as well as keys using other kinds of cryptography, such as elliptical curve

cryptography (ECC).

The above command will produce a certificate request file (req.csr) and a private

key file (key.pem). To sign the request and produce a certificate:

openssl ca -config openssl.cnf -in req.csr -out cert.pem

As might be suspected, the newly signed certificate is cert.pem. In order to verify

that a certificate was signed by a given CA, we use the following command:

openssl verify -CAfile ca-cert.pem cert.pem

This command allows us to establish a chain of trust; i.e. if we trust the CA

(ca-cert.pem), then we can trust the certificate (cert.pem).

B.2 Revoking Certificates

Now that we know how to create certificates, we might want to revoke invalid certifi-

cates:

openssl ca -config openssl.cnf -revoke cert.pem

However, just revoking a certificate is insufficient; users need to be notified. One

way users can stay up-to-date on the latest revoked certificates is to periodically

download certificate revocation lists (CRLs). To generate a CRL:

openssl ca -config openssl.cnf -gencrl -out ca-crl.pem

Now, we just need to put ca-crl.pem in a place where users can easily down-

load it. ca-crl.pem contains the serial numbers (unique for a given CA) of revoked

certificates.

B.3 S/MIME

S/MIME provides a standard for digital signatures in email, as well as an option for

encryption. To create a signed email from a text file named msg.txt:

openssl smime -sign -in msg.txt -text -out signed.msg

-signer cert.pem -inkey key.pem

The output is signed.msg. Why do we need to include the "-signer" certificate?

S/MIME includes the signing certificate by default. Of course the private key is

needed as well. If we want to explicitly exclude the signing certificate, we simply add

"-nocerts" as an extra argument to the above command.

On the other end, how do we verify a signed S/MIME email?

openssl smime -verify -in signed.msg -CAfile ca-cert.pem

The above command only works if the signing certificate is included in the mes-

sage. If the certificate is not included, then it must be specified by hand, with the

"-certfile" option.

B.4 OCSP

OCSP is an abbreviation of Open Certificate Status Protocol (see Appendix A.3 for

details). To run an OCSP responder, use the following command:

openssl ocsp -index index -port 8888 -rsigner ca-certkey.pem

-CA ca-cert.pem

ca-certkey.pem is the concatenation of ca-cert.pem and ca-key.pem (the cer-

tificate's private key). The "-rsigner" option allows us to sign our OCSP responses,

so that the requester can have some assurance that the response was not falsified.

The OCSP responder can be run on any port, but in this example, it is running on

port 8888.

To send an OCSP request from the commandline, use the following command:

openssl ocsp -url http://ocsp.org:8888 -issuer ca-cert.pem

-cert cert.pem

This sends an OCSP request to the OCSP responder running on ocsp.org on

port 8888 for the certificate cert.pem.

Appendix C

Writing C Wrappers for C++

Functions

C++ has classes, while C does not. So then, how do we use C++ libraries from C?

The solution involves a few steps, but the main idea is that a void* generic pointer

can be used to point to instances of a C++ class. The other important points are

to use extern "C" around the C++ function declarations, and to have all the C++

included files in the .cpp file as opposed to in the .h (header) file. Below are a simple

C++ class and its header file.

ace hello.h

#include "ace/OS.h"

#include "ace/LogMsg.h"

class Hello {

public:

Hello(ACE_TCHAR* name);

~Hello();

void printHelloName();

private:

ACE_TCHAR* myName;

acehello.cpp

#include "ace_hello.h"

Hello::Hello(ACE_TCHAR* name) { myName = name; }

Hello::~Hello() {}

void Hello::printHelloName() {

ACE_DEBUG((LM_INFO, "Hello, %s!\n", myName));

}

Note that there is nothing special about these files. Below, we have the C wrappers

for this class.

chello.h

struct hello_st {

void* hello;

typedef struct hello_st cHELLO;

#ifdef __cplusplus

extern "C" {

#endif

int HELLO_new(cHELLO* cHello, unsigned char* name);

int HELLOprint(cHELLO cHello);

#ifdef __cplusplus

#

#endif

chello.cpp

#include "c_hello.h"

#include "ace-hello.h"

#define cHELLO2Hello(cHELLO) (Hello*) cHELLO.hello

int HELLOnew(cHELLO* cHello, unsigned char* name) {

Hello* h;

ACE_NEWNORETURN(h, Hello(reinterpretcast<ACE_TCHAR*> (name)));

cHELLO result;

result.hello = h;

*cHello = result;

return 0;

int HELLOprint(cHELLO cHello) {

Hello* h = cHELLD2Hello(cHello);

h->printHelloName ();

return 0;

Note that we use a struct similarly named to hold a void* pointer to the C++ ob-

ject. Also, note the extern "C" statement in the header file, surrounded by #ifdef

__cplusplus and #endif preprocessor commands. This allows chello.h to be in-

cluded by C++ files (c_hello. cpp) as well as C files (hello. c) as shown below. The

other items to note in chello.cpp are that it includes another C++-only header

(acelhello.h), and the conversion of inputs from C-friendly types to the real C++

types.

hello.c

#include "c_hello.h"

int main(int argc, char* argv[]) {

cHELLO h;

if (argv[1])

HELLO_new(&h, argv[l]);

else

HELLO_new(&h, "some guy");

HELLO_print(h);

In the Makefile, note that gcc is used to compile the hello. c file, while g++ is

used to compile the rest of the files, including the shared libraries (libhello.dll

and libchello.dll). We marked the C wrappers by prepending the wrapped class

name with c_.

Makefile

ACE_ROOT="C:\ACE_wrappers"

CPPFLAGS=-I${ACEROOT}

LDFLAGS=-L${ACE_ROOT}/ace -1ACE

CPP=g++

CC=gcc

objects = ace-hello.o

.PHONY: clean all

all: $(objects) libhello.dll libchello.dll hello

libhello.dll: $(objects)

$(CPP) -shared \$(objects) $(LDFLAGS) -o libhello.dll

libchello.dll: libhello.dll c_hello.o

$(CPP) -shared c_hello.o -L. -llibhello $(LDFLAGS) -o libchello.dll

hello: hello.c

$(CC) -o hello.o -c hello.c

$(CPP) -o hello hello.o -L. -lchello

acehello.o: acehello.h

chello.o: chello.h

clean:

-rm -f *.exe *.o *~ *.dll

Appendix D

Building ICM

This appendix contains build notes ICM, and its dependencies (ACE, SQLite, Pidgin,

OpenSSL).

1. SQLite: Download the latest version of SQLite from http://sqlite.org/download.

When compiling SQLite, be sure to comment out this line in Makefile.in:

TCC += -DSQLITEOMITLOAD_EXTENSION=1

Without extensions, all uses of ICM's MIDs (see page 25) will be rendered

ineffectual. When we compare the MID to the hashes stored in the database,

we use the prefix extension.

2. ACE: Download the latest version of ACE from http://download.dre.vanderbilt.edu.

Follow the extensive ACE build instructions.

3. OpenSSL: Download the latest version of OpenSSL from http://openssl.org/source.

4. Pidgin: Download the latest source of Pidgin from http://www.pidgin.im/download/source.

If compiling on Windows, be sure to compile in a directory whose path contains

no spaces.

5. ICM: Download the source from Subversion (LL only: http://subversion/svn/sgc/trunk/certmgr)

If debugging, uncomment -DACE_NTRACE=O to turn on ACE tracing.

Bibliography

[1] AIM. http:/www.aim.com.

[2] CamelCase. http://en.wikipedia.org/wiki/CamelCase.

[3] Cygwin. http://www.cygwin.com.

[4] Distinguished Encoding Rules (DER). http://asnl.elibel.tm.fr/standards.

[5] Doxygen. http://www.stack.nl/ dmitri/doxygen.

[6] etags. http://www.gnu.org/software/emacs/emacs-lisp-
intro/htmlnode/etags.html.

[7] Firefox. http://www.mozilla.com/en-US/firefox.

[8] GNU Emacs. http://www.gnu.org/software/emacs.

[9] Google Summer of Code. http://code.google.com/soc/2007.

[10] Internet Relay Chat. http://www.ietf.org/rfc/rfcl459.txt.

[11] Jabber. http://www.jabber.org.

[12] Microsoft Outlook. http://office.microsoft.com/en-us/outlook/default.aspx.

[13] MinGW. http://www.mingw.org.

[14] Network Security Services (NSS). http://www.mozilla.org/projects/security/pki/nss.

[15] Off-the-Record Messaging. http://www.cypherpunks.ca/otr.

[16] OpenSSL Certificate Authority Setup. http://sial.org/howto/openssl/ca.

[17] OpenSSL: The Open Source toolkit for SSL/TLS. http://www.openssl.org.

[18] PEM. http://www.ietf.org/rfc/rfcl421.org.

[19] Pidgin. http://www.pidgin.im.

[20] Pidgin-Encryption. http://pidgin-encrypt.sourceforge.net.

[21] Security Axioms. http://www.avolio.com/papers/axioms.html.

[22] S/MIME Mail Security (smime) Charter. http://www.ietf.org/html.charters/smime-
charter.html.

[23] SQLite. http://sqlite.org.

[24] Subversion. http://subversion.tigris.org.

[25] The ADAPTIVE Communication Environment (ACE).
http://www.cs.wustl.edu/ schmidt/ACE.html.

[26] Thunderbird. http://www.mozilla.com/en-US/thunderbird.

[27] Transport Layer Security (tls) Charter. http://www.ietf.org/html.charters/tls-
charter.html.

[28] Windows. http://www.microsoft.com/windows/default.mspx.

[29] Windows Live Messenger. http://get.live.com/messenger/overview.

[30] XMPP. http://www.ietf.org/rfc/rfc3920.txt.

[31] Yahoo! Messenger. http://messenger.yahoo.com.

[32] CertMgr - Pidgin, August 2007. http://developer.pidgin.im/wiki/CertMgr.

[33] Daniel Avrahami and Scott E. Hudson. Communication Characteristics of In-
stant Messaging: Effects and Predictions of Interpersonal Relationships. CSCW,
November 2006.

[34] Stephen D. Huston, James CE Johnson, and Umar Syyid. The ACE Program-
mer's Guide: Practical Design Patterns for Network and Systems Programming.
Addison-Wesley, 2003.

[35] Raymond Kurzweil. The Law of Accelerating Returns.
http://www.kurzweilai.net/articles/art0134.html.

[36] Butler Lampson. Practical Principles for Security. In Software System Reliability
and Security, 2006.

[37] John Viega, Matt Messier, and Pravir Chandra. Network Security with OpenSSL.
O'Reilly, 2002.

