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Abstract

In order to develop a sociable robot that can operate in the social environment of
humans, we need to develop a robot system that can recognize the emotions of the
people it interacts with and can respond to them accordingly.

In this thesis, I present a facial expression system that recognizes the facial features
of human subjects in an unsupervised manner and interprets the facial expressions of
the individuals. The facial expression system is integrated with an existing emotional
model for the expressive humanoid robot, Mertz.
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Chapter 1

Introduction

Robotics has emerged as a field that can transform how technology is used in our so-

ciety. Because of their ability to interact with us physically, robots can be integrated

into the human environment in ways that traditional computers and other technolo-

gies have been unable to achieve. The 2001 US Census Bureau report on disabilities

stated that 34.9 percent of Americans aged 80 and older needed personal assistance

to perform daily activities [17]. Robotic technology can fulfill the needs of the elderly

by fetching objects that are difficult to reach, helping them in and out of bed, and

alerting medical personnel to an emergency. These robotic applications would not

only benefit the elderly, but they would also have the potential to be ubiquitous in

every part of society.

Even with devices such as the Roomba being welcomed into many households, the

presence of robots in our everyday lives is still limited. There are many challenges

to overcome before robots can interact with humans in a natural way and operate

autonomously within the human space. One of the greatest challenges for a sociable

robot is to be able to interact with people, to interpret the emotions of the person

and to respond accordingly. This ability is important for day-to-day human-robot

interactions, especially when the human is not a trained user, such as the elderly, and

is being assisted by the robot in home tasks.

The goal of this thesis is to build a facial expression recognition system that

interprets the facial expressions of individuals in an real time. The facial expression



system is then integrated with an existing emotional model for the social robot, Mertz.

This thesis takes a step to understanding the emotions of the person by identifying five

basic facial expressions (happy, surprised, sad, angry, and neutral). These expressions

are then integrated with an emotional model to generate emotional responses for the

robot.

In this thesis, we attempt to bridge between two different technology directions.

First, in the field of social robotics, the research is focused on facial animation and

the emotion system. The facial animation research investigates how to create robotic

expressions that are realistic [3]. The emotion system research focuses on high-level

conditions such as the presence or absence of a desired stimulus, as the motivation

for the robot's emotive responses [3, 23]. Second, in the field of computer vision,

the research is focused on automated facial expression detection, identification, and

analysis [14].



Chapter

Related Work

2.1 Robot Platform

This thesis is designed for a humanoid robot, Mertz [2]. Mertz is an active-vision

head robot with thirteen degrees of freedom (DOF). Its face has actuated eyebrows

and lips, capable of generating facial expressions. It is able to vocalize through a

phoneme-based speech synthesizer. To capture visual input, the robot has two digital

cameras, one mounted in each eye. The cameras produce 640 x 480, 24-bit color

images at the rate of 30 frames per second. It also has a set of voice array desk

microphones to gather audio input.

The robot is capable of tracking faces, motion and color segments. It has a multi-

Figure 2-1: Mertz, an active-vision humanoid head robot.



modal attention system that determines where the robot should focus its attention

among all the different stimuli within the robot's sensory ego-sphere.

2.2 Emotional Model

This thesis is integrated with the emotional model designed for Mertz [22]. The

emotional model processes the face inputs of the robot, maintains an internal model

of emotions, and expresses the appropriate emotional responses for the robot. In

generating emotion values, the model uses a three-dimensional affect space of arousal,

valence, and stance [3]. It is the goal of this thesis to provide the facial expression

analysis as inputs to the emotional model, thereby enriching the outputs of the model.

2.3 Facial Features Detection

There have been many approaches in research in tracking specific facial features.

Lip Tracking

One common way of lip tracking is through the use of templates [10, 13]. These

templates often use two parabolic arcs to model the lip shape. Tian et al. combined

the template method with color and motion information in their lip tracking research.

Another variation of using deformable templates is to combine it with the snake

algorithm, coding the lip contours using multidimensional vectors [4].

Eye Tracking

For eye tracking, Tian et al. developed a dual-state eye model that detects whether

the eyes are open or closed [12]. Furthermore, they also combine the model with

eye corner and iris tracking. In this model, however, they assumed that the initial

location of the eye is given in the first frame of the image sequences. This assumption

is not possible for this thesis because our system needs to operate in an online manner



since the robot operates continuously and autonomously in environments with various

different people.

2.4 Facial Expression Analysis

There has been many ongoing research on recognizing facial expression from video

sequences. Cohen et al. used naive Bayes classifiers to learn different facial motion

features and a hidden Markov model (HMMs) to automatically segment and recognize

facial expressions [6]. Gokturk et al. used a 3D model-based tracker that tracks both

the pose and shape of the face [9]. The expression classification is then performed by

a support vector machine.

Instead of recognizing a set of prototypic expressions, Tian et al. developed an

automatic face analysis system that recognizes facial expressions into action units

of the Facial Action Coding System (FACS) [14]. The action unit recognition is

performed by a three-layer neural network. Lucey et al. used the Active Appearance

Model (AAM) to recognize the FACS action untis [16].





Chapter 3

Facial Features Detection

The facial feature detection system accepts three types of inputs: a real-time camera

capture, a sequence of images, or a single image. With a camera capture, the system

samples at every 40 milliseconds. We captured three datasets, Dataset A, B and C,

at this rate (more details in Section 5.1).

3.1 Face Detection

3.1.1 Modified AdaBoost Face Detector

Detection of faces in the image was implemented using a modified Viola-Jones Ad-

aBoost face detector, which uses a cascade of boosted classifiers working with Harr-

type wavelets as weak feature detectors [24, 15, 18]. We use a trained cascade classifier

and object detector provided by the OpenCV library [21]. The object detector out-

puts a number of rectangular areas each containing the detected face.

We improve upon on the speed and detection rate of the face detector by reducing

the size of the input image by a factor of three and run face detection on the image.

If no face is detected at the original orientation, we rotate the image 150 and -15'

and try face detection on each of the rotated images, in case the subject has tilted his

or her head. Once we have detected a face, we smooth the location of the rectangular

area by averaging the location of the newly detected face with the location of the last



Figure 3-1: An example of edge detection from Dataset A.

detected face.

The face detection takes an average of 14.21 milliseconds per image. This rate is

fast enough to allow for face detection on a live video stream in real time.

3.1.2 Canny Edge Detector

Once we detect a face using the face detector, we pass the detected rectangular face

area through a Canny edge detector provided by the OpenCV library [5, 21]. The

output from the edge detector is used to improve on the eye and mouth detection

algorithms. We choose a threshold value of 35 for the edge detector in an attempt to

balance between having too many and too few edge details on the dataset faces (see

figures 3-1 and 3-2). The threshold parameter is highly sensitive to the quality of the

face images. As a further improvement, we would have liked to adapt the threshold

parameter to faces of each individual, thus providing the optimal edge details on the

individual's face.

3.1.3 Masking the Detected Face Image

We tried to improve upon the detected rectangular face area by adding a mask func-

tion that blacks out the non-face portions of the image rectangle, such as the neck and

the space beyond the contours of the face. We search from two thirds of the height

down along the y-axis of the edge detected image. At each y-coordinate, we search

from the outside inwards along the x-axis, looking for the first edge pixel. We have



Figure 3-2: An example of edge detection from Dataset B.

two bounding lines (x = w/h * y - w/2 and x = -w/h * y + 3w/2) for the search area.

This will either find the contour of the face within the search area or assume that

the contour lies outside of the search area. Ultimately, we abandoned the use of this

masking function because of the reliability of the edge detection and the variability

of the face contours. The edge detector does not always capture the face contour,

which lead the masking function to black out necessary parts of the face. Also, parts

of the facial contour may be well outside the detected rectangular face area that the

bounding lines will cut off parts of the mouth. If we were able to smooth out the face

contour and use that as our bounded search area, then this masking function would

be more successful.

3.2 Eye Detection

3.2.1 Modified AdaBoost Eye Detector

We use the same modified AdaBoost object detector provided by the OpenCV li-

brary [21] to detect eyes. We use a trained cascade classifier for the eye which has

been provided by the Watson library [19]. Because we can rely on robust output

from the face detector, we input only the top half of the detected face image to

the eye detector. As a refinement to increase the number of successful eye detec-

tions, we try the object detector at most three times with increasingly accurate but

slower parameters: (minneighbors = 2 & scale_factor = 1.1, minneighbors = 1 &



scalefactor = 1.01, minneighbors = 0 & scale_factor = 1.001).

Once we receive the candidate eye rectangles from the object detector, we sort

the candidates into left and right eyes using the x- and y-coordinates. Afterward, if

we still have more than one candidate for each eye, we choose the candidate with, in

order of preference, the greatest y-coordinate value (closest to the bottom) and the

smallest width. Choosing the highest y-coordinate value minimizes the likelihood of

the rectangle containing parts of the eyebrow, since this issue arises often with this

cascade classifier. We choose the smallest width because we want to minimize the

non-eye area of the rectangle.

3.2.2 Refining the Detected Eye with Eye Corners

We further improve upon the detected eye area by eliminating non-eye areas using

the Canny edge detection output of the face. For each candidate eye, we start half

way down the height of the eye and search along the y-axis. At each y-coordinate,

we search for the first edge pixel (xmin) from the outside inwards toward the center

of the eye, updating only when the x-coordinate differs from the very first edge pixel

found at the half-height (xfirstMin) by more than 10. This helps identify the two

eye corners of each eye, so we can refine the eye-region to span only from one corner

to the other (see figures 3-3 and 3-4). We start the search from the middle of the eye

because the corners of each eye are closest to the halfway point. When we previously

searched from the top down, we often received mistaken results, usually because parts

of the eyebrow would be the furthest points out, thus preventing us to find the actual

eye corners.

After doing this analysis for both candidates, we compare the widths and heights

of the two eyes. If they vary by more than the thresholds (5 pixels for width, 2 pixels

for height), we correct for the differences by using the smaller width or height.



Figure 3-3: An example of eye corner refinement from Dataset A.

Figure 3-4: An example of eye corner refinement from Dataset B.

3.2.3 Eyebrow Detector

To find the eyebrows, we search within the rectangle defined by the width of the eye,

and the height from the top of the eye to half way to the top of the face bounding

rectangle. While this bounded search area may cut off the ends of the eyebrow, it

also lowers the probability of including the hair line and other lines that result from,

for example, furrowing of the brows. We use the Canny edge detection output during

our search, assigning all the edge pixels we found as eyebrow pixels.

We improve upon our search results for each eyebrow by eliminating outliers from

the set of points that define the eyebrow (see figure 3-5). In our algorithm, we

eliminate points that are outside of the range of (xmean ± 1.8 * xstd, ymean ± 1.2 *

ystd). The parameters are chosen because we want to be more tolerant of variations

in the x-coordinates since the eyebrow can be pretty wide, but we want to be less

tolerant of variations in the y-coordinates since the height of the eyebrow is generally

uniform.

3.2.4 Finding the Eyebrow Angles

Once we have the set of points defining each eyebrow, we fill in the polygon and

find the line through it using the Hough transform [7]. We use the implementation

provided by the OpenCV library, decreasing incrementally from a threshold of 40

1
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Figure 3-5: An example of eyebrow detection and refinement from Dataset B.

Figure 3-6: Eyebrows of 6' and 60 from Dataset A.

until a set of lines is found [21]. We average the results of the Hough transform and
measure the angle from the center of the x-axis, positive toward the top of the face
and negative otherwise (see figure 3-6).

3.2.5 Finding the Distance between the Eyebrows and the

Eyes

With the detected eye image, we attempt to locate the iris by looking for the darkest
part of the eye. We first tried looking for a 3x3 square with the lowest RGB sum,
but often this mistakenly identified the corners of the eye instead of the iris. We then
modified the search shape to a 5x5 hexagon without the center pixel, but again it
located the darker corners of the eye instead of the iris. We now calculate the central
moment of the eye image, with far better results. We also calculate the central
moment of the eyebrow and find the vertical distance between the two moments.



3.3 Mouth Detection

3.3.1 Modified AdaBoost Mouth Detector

We train a cascade classifier for the mouth using a set of mouth samples provided

by the AVCSR library [20]. Because the mouth detection rate is low, we try two

different object detectors to look for the mouth. For both detectors, we use the bottom

third of the face image as input. First, we try the OpenCV object detector at most

three times with increasingly accurate but slower parameters: (minneighbors = 2 &

scale.factor = 1.1, min-neighbors = 1 & scale_factor = 1.01, min-neighbors = 0

& scale_factor = 1.001). If this detector fails to identify any candidate mouths,

we then try an object detector provided by the AVCSR library, again with the same

three sets of parameters. The AVCSR object detector differs from the OpenCV object

detector in that it restricts the width of the detected object to the range [minwidth,

maxwidth], instead of to a minimum window size. The AVCSR object detector

provides an additional layer of detection because changing widths is suitable for the

search for the mouth.

Once we receive the candidate mouth rectangles from the object detector, we

choose the candidate with the smallest width as our detected mouth.

3.3.2 Analyzing the Mouth State

We analyze whether the detected mouth is open or closed by combining the following

two sets of information.

Using the Color Information

First, we analyze the color information of the detected mouth. We check the RGB

values of each pixel within the detected mouth and find the percentage of white

and black pixels over the sum of red, white, and black pixels. The reason is that

when someone's mouth is open, the white pixels represent his teeth and the black

pixels represent the inside of the mouth, with the red pixels representing the lips. By



Figure 3-7: An example of increased number of correctly identified red pixels by
switching from an absolute scale to a relative scale in red classification from Dataset
A.

Figure 3-8: An example of increased number of correctly identified red pixels by
switching from an absolute scale to a relative scale in red classification from Dataset
B.

checking the ratio of these three colors, we can estimate whether the mouth is open.

We discover that the RGB values vary greatly among the different datasets. So in

order to classify whether a pixel is red, we have to use a relative scale based on the

average RGB values of the whole detected mouth instead of an absolute scale (see

figures 3-7 and 3-8). The detection of red pixels improve the most by switching to

the relative scale. We keep the absolute scale for the white and black pixels.

We also make another refinement to the red, white, and black pixel classification of

the detected mouth. We notice that, within the detected mouth rectangle, the corners

of the rectangle would get misclassified as white, thus throwing off the color ratio. We

know that when the mouth is open, the white pixels representing the teeth should be

within the red pixels representing the lips. So we eliminate all the white pixels that

fall outside of the range of (xmeanred ± 3 * x-stdred, ymean,,red 1 * y-Stdred), where

the range is calculated from the set of red pixels (see figure 3-9). We choose these

parameters because we want to be tolerant in the x direction since the mouth can

be pretty wide, but less tolerant in the y direction since the teeth should be tightly

confined within the lips.

Figure 3-9: An example of eliminating white pixel outliers from Dataset A.
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Figure 3-10: A 45% increase of edge pixels in the detected mouth from Dataset B.

Using the Edge Detection

Second, we analyze the percent change of the number of edge pixels in the detected

mouth from that of the previously detected mouth. We note that when the mouth

switches from closed to open, the number of edge pixels increases because the teeth

are captured in the edge detection (see figure 3-10).

Combining the Information Sets

In doing this analysis, we now take into account the location and state of the pre-

viously detected mouth. We are able to take advantage of this information because

we are observing a continuous sequence of images, as in the situation of human-robot

interactions. We use this additional information in several ways. First, if the mouth

detector fails to detect any candidates in the current face image, we use the previously

detected mouth location for the rest of our analysis. This was a necessary improve-

ment because the mouth detection rate is much lower than the face and eye detection

rates. Second, we use the pixel and state information from the previous mouth to

strengthen our analysis.

if(lastMouthState == MOUTH_CLOSED && change > .3)

if (ratio < .05)

isMouthClosed = true;

else

isMouthClosed = false;

else if(lastMouthState == MOUTH_OPEN && change < -.3)

if (ratio > .5)

isMouthClosed = false;

else

isMouthClosed = true;

I



else if(ratio > .15 && ratio < .7)

if(lastMouthState == MOUTH_CLOSED && (abs(change) < .1 II change < -.4))

isMouthClosed = true;

else

isMouthClosed = false;

}
else if (ratio >= .7)

isMouthClosed = false;

else //ratio <= .15

if(lastMouthState == MOUTHOPEN && (abs(change) < .15 II change > .4))

isMouthClosed = false;

else

isMouthClosed = true;

In our algorithm, if the mouth was previously closed and the percent edge pixel

change is above a threshold of 30%, we determine that the mouth is now open.

In the opposite case, a previously open mouth and a percent change of less than

-30% will yield a now closed mouth. In both of these cases, we safeguard against

our assumptions by also checking whether the color information is congruent. For

example, if the ratio of white and black pixels is very low, we reject the assumption

that the mouth has opened.

In the fourth case, the ratio of white and black pixels is very large, so we determine

that the mouth is open. In the third case, the ratio indicates that the mouth is likely

to be open. In the fifth case, the ratio is very small, so the mouth is likely to be closed.

But to safeguard against our assumptions, we check with the pixel information to see

whether there is a large change and also whether the change is in the right direction.

For example, when the ratio is small but the previous mouth is open and the percent

change is small or is largely positive, the mouth is more likely to have remained open.

In these cases, the thresholds are chosen to favor determining that the mouth is open

because the color ratio is unreliable.



Chapter 4

Facial Expression Analysis

4.1 Parameters to the Facial Expression Recogni-

tion System

Upon passing the input image through the facial features detection system, four pa-

rameters (mouthState, browAngle, browIrisDistance, deltaDistance) are generated

from the image as inputs to the facial expression recognition system. These param-

eters are the mouth state (open or closed), the average of the left and right eyebrow

angles, the average of the left and right distances between the central moment of the

eyebrow and the central moment of the eye, and the percent change of the current

browIrisDistance from the browIrisDistance of the previous image.

We try two versions of calculating the browIrisDistance from the input image.

At first, we use directly the average distance measured in each image. However, we

discover that this parameter varies significantly depending on the individual (21.92

for Dataset A, 14.94 for Dataset B, 11.65 for Dataset C). So in our second attempt,

we normalize this parameter with the mean and standard deviation of each dataset

((browlrisDistance - mean)/std). The normalized parameter yields better results

than the unnormalized parameter, as discussed later in Section 5.2. However, the

normalized parameter also requires a different set of assumptions about the inputs

presented to this facial expression recognition system. First, because our datasets



are collected according to the individual, we have the labels necessary to determine

the mean and standard deviation for each individual. Since we do not have facial

recognition in our facial expression recognition system, we have to assume that "per-

soil" label would be provided to us as an input. In the case of Mertz, there is an

unsupervised incremental face recognition framework that can provide this labeling

to our system [2]. The second concern is over calculating the mean and the standard

deviation over the whole dataset. To align with the incremental framework of Mertz,

it would be more appropriate to build the two measures incrementally as well. But

performance would likely go down and we would also need to store and revisit the

entire history of the parameter upon each new input.

4.2 Facial Expression Training and Recognition

We conduct experiments on classifying and recognizing facial expressions using two

different methods: a naive Bayes classification and a self organizing map. We use a

training set of 118 images (31 from Dataset A, 55 from Dataset B, 32 from Dataset C).

We also manually code the facial expressions of these images with four possibilities:

happy, surprised, sad, and angry. The results of these experiments are presented in

Chapter 5.

4.2.1 Naive Bayes Classification

The first method we use on our training set is a naive Bayes classifier, which is

probabilistic model based on Bayes' theorem. The trainer is presented with four-

dimensional feature vectors from the training set. During the training, we compute

the parameters of the model by counting the occurrences of the training data feature

vectors in each feature bin. For mouthState, there are only two bins since the value

is binary. For each of the other three features, we choose five bins that are equally

spread over the range of the feature from the training data.

We make a simplification in our classification by limiting the number of expression

types to two, combining happy and surprised to a "positive" expression, and sad and



angry to a "negative" expression. We than use the probabilistic model built from this

classification to recognize expressions on future inputs.

4.2.2 Self Organizing Map

The second method we use to classify the facial expression training set is the self orga-

nizing map [8, 1, 11]. Self organizing map is a neural network that uses unsupervised

learning to allow visualization of data by reducing the dimensions of the training sam-

ples. In our case, we reduce the four dimensions of our dataset to a two-dimensional

self organizing map. We chose a map of size 5x5, initializing each node's weight vec-

tor with random values between 0 and 1. We find the best matching unit (BMU) to

the current input vector by calculating the euclidean distance between each node's

weight vector and the input vector. Because the range of our four parameters are

quite different, we normalize the euclidean distance by the standard deviation of each

parameter. Upon finding the best matching unit, we update the weight vectors of the

nodes that lie within the BMU's neighborhood. The neighborhood starts off with a

radius of 2.5, shrinking according to an exponential decay function as time and the

number of iterations increase. For each node that lies within the the neighborhood,

its weight vector is updated proportional to the distance the node is from the BMU

with a learning rate that decays over time.

While a self organizing map provides a way to classify the training set in an

unsupervised manner, we still need to apply the expression labels to the nodes of the

map in order to use the map to recognize expressions from other data images. We use

the expression data coded for the training set to label each node, with probabilities for

each expression calculated based on the percentage of each expression is found within

the node. When we receive an input image for recognition, we find the best matching

node to the input and output the expression with the highest overall probability. The

probability is calculated similar to the neighborhood used in training; we use not only

the probabilities associated with the matching node but also those within the node's

neighborhood with each weight proportional to the distance from the matching node.



Figure 4-1: An example of a self organizing map classifying facial expressions.
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Chapter 5

Results

5.1 Datasets

We collected 320 x 240 color frontal facial images from three individuals in an indoor

environment. We did not control for illumination or background. The images were

captured at every 40 milliseconds or 25 frames per second. There are 84 images in

Dataset A, 154 images in Dataset B, and 131 images in Dataset C. Datasets A and C

were captured with a Logitech QuickCam Zoom camera and Dataset B was captured

with a Logitech Quickcam Pro 3000 camera. The quality and brightness of the images

vary among the datasets, yielding to different performance results.

5.2 Facial Features Detection

Face Detection

Face detection rate is 99% for Dataset A and 100% for Datasets B and C (see figures

B-l, B-2, B-3). The face detection takes an average of 14.83 milliseconds for Dataset

A, 15.01 milliseconds for Dataset B, and 12.87 milliseconds for Dataset C.



Eye Detection

The detection rate for both eyes and eyebrows is 93% for Dataset A, 97% for Dataset

B, and 72% for Dataset C (see figures B-4, B-5, B-6). The lower performance of

Dataset C is due to the less precise output from the modified AdaBoost eye detector.

The matching rectangle for the eyes tend to be much bigger then the area of the

actual eye, thus often including the eyebrow inside the rectangle. Thus, it is much

harder to detect the eyebrow.

Mouth Detection

We manually coded the mouth states of the images in the three datasets in order to

check the performance of our mouth detection algorithm. We find that the algorithm

correctly identified the mouth states at a rate of 80% for DatasetA, 77% for Dataset

B, and 84% for Dataset C (see figures B-7, B-8, B-9).

5.3 Naive Bayes Classification and Facial Expres-

sion Recognition

Using the training data with the normalized browIrisDistance parameter, the naive

Bayes classification yields a 77% rate of matching the manually coded expressions of

the training data. Using the training data without the normalized browIrisDistance

parameter, the naive Bayes classification yield a 80% rate of matching the manually

coded expressions of the training data.

5.4 Self Organizing Map and Facial Expression Recog-

nition

Using the training data with the normalized browIrisDistance parameter, the 3x3

self organizing map classification yields a 58% rate of matching the manually coded

expressions of the training data to four dimensions and 79% to two dimensions



(see figure B-13 and table A.2). Using the training data without the normalized

browIrisDistance parameter, the 3x3 self organizing map classification yields a 57%

rate of matching the manually coded expressions of the training data to four dimen-

sions and 80% to two dimensions (see figure B-12 and table A.1).

We create a test image set using images from Dataset B that were not used in the

training set, throwing out blurry images. The test image set consists of 94 images.

We use the 3x3 normalized self organizing map to recognize the test data (see figure

B-14). We also manually coded the expressions associated with the test data set. The

recognition yields a 24% rate in four dimensions and a 26% rate in two dimensions.

5.5 Discussion

The performance of the face and eye detections is good across the three datasets.

The mouth and mouth state detection performance could benefit from the use of a

deformable template.

As for the classification, it is surprising to see that the naive Bayes classification

performs at the same level as the self organizing map classification for the two ex-

pression dimensions. The self organizing map in this case has the advantage of being

unsupervised. It is also surprising to see the unnormalized parameter success rate to

be slightly higher than the normalized parameter success rate. In the self organizing

maps though (see figures B-12 and B-13), we can see that in the unnormalized version,

the cells are populated more according to the individuals. In the normalized version,

most cells contain a mixture from the three datasets. This question of whether to use

normalization will need to be explored with a bigger sample size.

The facial expression recognition performance was disappointingly low. I believe

the experiment suffers from the following problems. First, the test data were a poor

representation of the four expressions we are trying to recognize. The manual coding

was difficult because many of the data does not really fit in any of the four categories.

I think we can improve our performance by adding a neutral expression. It would

also be beneficial to have a test data set that consists of images outside of our three



datasets, such as images from the Cohn-Kanade Facial Expression Database. Second,

the manual coding of the expressions is unreliable. It was done by one person, without

any objective measures. We can improve this source of error by having multiple

people code the data and choose the group consensus. Alternatively, we can use a

more objective system such as the Facial Action Coding System (FACS).



Appendix A

Tables



Happy 0.33 0.33 0.67
Surprised 0 0.67 0.08
Sad 0.56 0 0.08
Angry 0.11 0 0.17
Happy 0 0.25 0
Surprised 0 0.25 0
Sad 0 0.50 0
Angry 0 0 0
Happy 0.60 0.71 0.11
Surprised 0.20 0.29 0.11
Sad 0 0 0.48
Angry 0.20 0 0.30

Table A.1: Facial expression probabilities associated with Figure B-12.

Happy 0.50 1.00 0.72
Surprised 0 0 0.07
Sad 0.25 0 0.07
Angry 0.25 0 0.14
Happy 0.08 0.33 0.29
Surprised 0.08 0.67 0.71
Sad 0.54 0 0
Angry 0.31 0 0
Happy 0.63 0.21 0
Surprised 0.25 0.12 0
Sad 0 0.49 0.50
Angry 0.13 0.19 0.50

Table A.2: Facial expression probabilities associated with Figure B-13.



Appendix B

Figures



Figure B-1: Face detection results from Dataset A.



Figure B-2: Face detection results from Dataset B.
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Figure B-3: Face detection results from Dataset C.
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Figure B-4: Eye, eyebrow and mouth detection results from Dataset A.



Figure B-5: Eye, eyebrow and mouth detection results from Dataset B.



Figure B-6: Eye, eyebrow and mouth detection results from Dataset C.
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Figure B-7: Mouth analysis results from Dataset A.

Figure B-8: Mouth analysis results from Dataset B.



Figure B-9: Mouth analysis results from Dataset C.



Figure B-10: A 5x5 SOM with 5000 iterations on the training set.
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Figure B-11: A 5x5 SOM with 5000 iterations on the training set with the normalized
browIrisDistance parameter.
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Figure B-12: A 3x3 SOM with 5000 iterations on the training set.
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Figure B-13: A 3x3 SOM with 5000 iterations on the training set with the normalized
browIrisDistance parameter.
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Figure B-14: Facial expression recognition results using the normalized 3x3 SOM.
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