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Abstract

Intelligent Transportation Systems (ITS) promise to improve the efficiency of the
transportation networks by using advanced processing, control and communication
technologies. The analysis and operation of these systems require a variety of models
and algorithms. Dynamic shortest paths problems are fundamental problems in the
solution of most of these models. ITS solution algorithms should run faster than
real time in order for these systems to operate in real time. Optimal sequential
dynamic shortest paths algorithms do not meet this requirement for real size networks.
High performance computing offers an opportunity to speedup the computation of
dynamic shortest path solution algorithms. The main goals of this thesis are (1)
to develop parallel implementations of optimal sequential dynamic shortest paths
algorithms and (2) to apply optimal sequential dynamic shortest paths algorithms to
solve dynamic traffic assignment models that predict network conditions in support
of ITS applications.

This thesis presents parallel implementations for two parallel computing plat-
forms:(1) Distributed Memory and (2) Shared Memory. Two types of parallel codes
are developed based on two libraries: PVM and Solaris Multithreading. Five de-
composition dimensions are exploited: (1) destination, (2) origin, (3) departure time
interval, (4) network topology and (5) data structure. Twenty two triples of (parallel
computing platform, algorithm, decomposition dimension) computer implementations
are analyzed and evaluated for large networks. Significant speedups of sequential al-
gorithms are achieved, in particular, for shared memory platforms. Dynamic shortest
path algorithms are integrated into the solution algorithms of dynamic traffic assign-
ment models. An improved data structure to store paths is designed. This data
structure promises to improve the efficiency of DTA algorithms implementations.

Thesis Supervisor: Ismail Chabini
Title: Assistant Professor
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Chapter 1

Introduction

Today's transportation infrastructure is often associated with congestion, inefficiency,

danger and pollution. Traffic congestion costs society a lost in productivity. One way

to solve the problems associated with traffic systems is to construct more highways.

This solution is increasingly more expensive and is not always feasible because of

spatial and environmental limitations, especially in urban areas.

A new way to reduce congestion problems is to use the existing infrastructure more

efficiently through better traffic management by equipping transportation systems

with information technologies. This is known as Intelligent Transportation Systems

(ITS). These systems are based on integrating advances in sensing, processing, control

and communication technologies.

The two building blocks of ITS are Advanced Traffic Management Systems (ATMS)

and Advanced Traveler Information Systems (ATIS). ATMS is expected to integrate

management of various roadway functions, predict traffic congestion and provide al-

ternative routing instructions to users and transit operators. Real time data will

be collected and disseminated. Dynamic traffic control systems will respond in real

time to changing traffic conditions. Incident detection is seen as a critical function

of ATMS. ATIS involves providing data to travelers in their vehicle, in their home or

at their place of work. Users can make their travel choices based on the information

provided by ATIS.

To achieve their goals, both ATIS and ATMS require certain decision support



models and algorithms. In order to meet the real-time operational requirement of

ATIS/ATMS, such algorithms must run much faster than real time.

Dynamic shortest paths problems are fundamental problems in the solution of the

network models that support ITS applications. These shortest path problems are dif-

ferent from the conventional static shortest paths problems since in ITS applications,

networks are dynamic. Optimal sequential dynamic shortest paths algorithms do not

compute dynamic shortest paths fast enough for ITS applications. High performance

computing gives an opportunity to speedup the computation of these algorithms.

In this thesis, we design, develop and evaluate various parallel implementations of

dynamic shortest path algorithms.

Dynamic Traffic Assignment (DTA) models are used to predict network conditions

to support ITS applications. Dynamic shortest paths algorithms are required to opti-

mally solve DTA models. In this thesis, we apply dynamic shortest paths algorithms

to the solution of analytical formulations of dynamic traffic assignment problems.

1.1 Research Objectives

The goals of this thesis are:

* to review optimal sequential dynamic shortest path algorithms and to report

on the experimental evaluation of efficient computer implementations of these

algorithms,

* to develop parallel implementations of optimal sequential dynamic shortest

paths algorithms,

* to apply the dynamic shortest paths algorithms to the solution of analytical

dynamic traffic assignment problems.



1.2 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 presents formulations,

algorithms and experimental evaluations of sequential computer implementations for

dynamic shortest path problems. Chapter 3 introduces parallel computation concepts

required to develop the parallel implementations. Chapter 4 presents twenty two

parallel implementations of optimal sequential dynamic shortest path algorithms.

Chapter 5 describes the application of algorithm DOT to the solution of analytical

formulations of DTA models developed by Chabini and He [8]. Chapter 6 summarizes

the main conclusions of this research and suggests some directions for future research.



Chapter 2

Dynamic Shortest Paths -

Formulations, Algorithms and

Implementations

Shortest path problems have been studied extensively in the literature for many years

due to their importance in many engineering and scientific fields. With the advent of

Intelligent Transportation Systems (ITS), a class of the shortest path problems has

become important. These are known as dynamic shortest path problems. In these

problems, the travel time of the link varies with starting time on the link. This varying

travel time adds a new dimension to the shortest path problems, thus, increasing their

complexity.

Dynamic shortest path problem has been first proposed by Cooke and Halsey [12]

about 30 years ago. Recently, Chabini [10] solved one of the variants of this problem

by proposing an optimal algorithm, that is, no other algorithm with a better running

time complexity can be found.

In this chapter, we present the formulations, efficient algorithms and an extensive

evaluation of dynamic shortest path problems, relevant to traffic networks with the

following objectives:

o To understand the efficient algorithms available to solve dynamic shortest path



problems since these problems are critical in many transportation applications.

* To demonstrate that these sequential optimal algorithrms do not solve realis-

tic dynamic shortest path problems fast enough for Intelligent Transportation

Systems applications. We will then conclude that an application of high perfor-

mance computing is essential for solving realistic dynamic shortest path prob-

lems in real time.

This chapter is organized as follows: In Section 2.1, we develop a classification of

dynamic shortest path problems. This classification is important to formulate these

problems and to develop solution algorithms and computer implementations for them.

In Section 2.2, we present a representation of the network using a time-space expan-

sion. This representation is useful in presenting certain properties of the dynamic

networks. These properties will be used to develop efficient solution algorithms. In

Section 2.3, we define the notation used in formulations and algorithms of dynamic

shortest path problems. Sections 2.4 through 2.9 are the crux of this chapter. In

these sections, we present the formulations and algorithms for different variants of

the dynamic shortest problems. In Section 2.10, we present an extensive experimental

evaluation of the computer implementations of the dynamic shortest path algorithms

discussed in this chapter. Finally, Section 2.11 summarizes the conclusions of this

chapter and motivates the need for parallel implementations of dynamic shortest

path problems.

2.1 Classification

Dynamic shortest path problems can be classified into many types. This classification

is important for formulations and solution algorithms of these problems. Chabini [10]

presents the following classification of the dynamic shortest path problems:

* Minimum time vs. Minimum cost: This classification is based on the

minimization criterion. For minimum-time problems, one wishes to find the



least travel time between a pair of nodes in the network. For minimum cost

problems, a path with the least cost is desired.

* Discrete vs. Continuous time networks: This classification is based on how

time is represented. For discrete time networks, time is represented in discrete

intervals. The link travel times and costs within this interval are assumed to be

constant. A discrete dynamic network can alternatively be viewed as a static

network, using a time-space expansion representation (see Figure 2.2). This

idea is further discussed in Section 2.2.

* Integer valued vs. real valued link travel times: In integer time networks,

travel times are assumed as positive integers. In real-valued time networks,

travel times can take real values.

* FIFO vs non-FIFO networks: First-In-First-Out (FIFO) networks are those

in which it is ensured that a vehicle entering a link earlier than another vehicle

will leave that link earlier. It is also referred to as the no-overtaking condition.

A mathematical definition of the FIFO condition is given in a later section.

This condition may be used to develop efficient algorithms for certain dynamic

shortest path problems.

* Waiting is allowed vs waiting is not allowed at nodes: Unlimited waiting

or limited waiting may be permitted at all the nodes or at a subset of nodes in

a network.

* Type of shortest paths questions asked: The models and algorithms de-

pend on the kind of shortest paths questions asked. For instance, one may want

to determine shortest paths from one origin node to all the nodes in the network

or from all the nodes to one destination node, for one departure time interval

or for many departure time intervals. These basic problems can be extended to

many-to-all or all-to-many problems.

The following two dynamic shortest path questions are most relevant for trans-

portation applications:



- Question 1: What are the shortest paths from one origin node to all the

other nodes in the network departing the origin node at a given instant,

say 0?

- Question 2: What are the shortest paths from all nodes to a destination

node in the network, for all departure times?

Some of the work published in the area of dynamic shortest paths has dealt

with Question 1 ( [15], [23], [25]) and some with Question 2 ( [12], [30], [10]).

Algorithms that answer Question 1 or Question 2 can be used for a specific

problem. One such specific problem is a dynamic shortest path problem in a

traffic network. For traffic problems, we will demonstrate that algorithms that

answer Question 2 are more efficient.

Most transportation problems need shortest paths from all nodes to many desti-

nations in the network. For instance, Let us assume that algorithm algl answers

Question 1 and that alg2 answers Question 2. A typical traffic network can have

approximately 3000 nodes, 9000 arcs and about 300 destinations. If the time

frame is discretized into 100 time intervals, then 100 iterations of algl will be

10 times slower than alg2 for this network (as will be seen in Section 2.10).

In the following section, we describe a way of representing dynamic networks,
which helps us present certain properties of the dynamic networks, which are useful

in developing efficient algorithms. These properties can be used to develop efficient

algorithms.

2.2 Representation of a Dynamic Network Using

Time Space Expansion

A discrete dynamic network can be represented as a static network using a time space

expansion. The time space expansion representation helps us understand certain

properties of the dynamic networks for example, the acyclic property of the dynamic

network along the time dimension.
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Figure 2.1: Representation of a dynamic network using time space expansion

Figure 2.1 illustrates this representation for a small dynamic network. Figure 2.1a,

shows a small dynamic network with 4 nodes, 4 links and 3 time intervals. The

numbers on the links denote the travel times of the link for each time interval. For

instance, (1, 1, 3) on link (3, 4) denote that the travel time on link (3, 4) 1 at time

interval 0, 1 at time interval 1 and at time interval 2 is 3. The time-space expanded

representation of this dynamic network is shown in Figure 2.1b. In this representation,

each node in the dynamic network is represented as 4 copies, one at each time interval.

Each row in the Figure 2.lb represents one time interval. In the dynamic network, the

travel times are assumed to be static after 3 time intervals, hence the nodes at time

interval t = 2 can be considered as extending to infinity. Each link in the dynamic

network is also represented by four copies in the time-space expanded network, but in

this representation, the links connect nodes at different time intervals. For example,

one copy of the link between nodes 1 and 2 in the dynamic network with a travel

time of 1 at time interval 0 is the link connecting node 1 at time interval 0 and node

2 at time interval 1. This shows that if we start at node 1 at time interval 0, we will

reach node 2 at time interval 1.

A static shortest path algorithm can be applied on the network shown in Fig-

ure 2.1b to compute dynamic shortest paths in the network shown in Figure 2.1a.



This will be inefficient because the static shortest path algorithm will compute short-

est paths labels for all nodes at all time intervals (Recall that these nodes are just

copies of the node in the dynamic network). Hence, we need to find the minimum

over all time intervals, for each node.

In the next section, we present the notation used in the formulations and algo-

rithms for dynamic shortest path problems presented in this chapter.

2.3 Definitions and Notation

Let G = (N, A, D, C) be a directed network where N = {1, ..., n} is the set of nodes,

A = {(i,j)li E N,j E N} is the set of links (or arcs). Let t be an index to an

interval of time. We denote by D = {dij(t) (i,j) E A}, the set of time dependent

link travel times and by C = {cj (t) I(i, j) E A}, the set of time dependent link travel

costs. Functions dij(t) are assumed to have integer valued domain and range. The

functions dij(t) are assumed to take a static value after M time intervals. Hence, t

can take values from 0 to M - 1. Functions cij(t) have integer valued domain and

real valued range. cij(t) are assumed to be static when departure time is greater than

or equal to M - 1. We denote by B(i), the set of nodes having an outgoing arc into

i, B(i) = {j E N(j, i) E A}. Let A(i) denote the set of nodes having an incoming

are from i.

Arc travel times can possess a property called FIFO (or no-overtaking) condition

([23]). This condition may be useful in developing algorithms for certain dynamic

shortest path problems. The FIFO condition can be defined mathematically in various

forms. For instance, FIFO condition is valid if and only if the following system of

inequalities hold:

t + dii(t) < (t + 1) + di(t + 1), V(i, j, t) (2.1)

Intuitively, it can be seen that this condition holds if no overtaking takes place. If

the link travel times of a link in the network satisfy the above condition, that link



is called a FIFO link. If all the links in the network satisfy the FIFO condition, the

network is called a FIFO network, else, it is called a non-FIFO network. When the

FIFO condition is not satisfied, it may be preferable to wait at the beginning of the

link before traveling on the link.

In non-FIFO networks, if waiting is not allowed, we can have shortest paths with

loops (which simulate waiting at the nodes). Therefore, two waiting policies need to

be considered: waiting is allowed at nodes and waiting is not allowed at nodes.

In the rest of the chapter, we present formulations, algorithms and evaluation of

computer implementations for two main dynamic shortest path problems: dynamic

fastest path problems and dynamic minimum cost path problems. The two main

questions discussed in each of these classes of problems are:

* Determine the dynamic fastest paths or minimum cost paths from one origin

node in the network to all the nodes in the network for a given departure time

at the origin node?

* Determine the dynamic fastest paths or minimum cost paths from all the nodes

in the network to one destination node in the network for all departure time

intervals?

For both these questions, we consider two kinds of dynamic networks: FIFO and

non-FIFO. For each of these types of networks, we consider two kinds of waiting

policies: unlimited waiting is allowed at all nodes and waiting is forbidden at all

nodes.

2.4 One to All Fastest Paths for One Departure

Time in FIFO Networks when Waiting is For-

bidden at All Nodes

This is the most studied version of the dynamic shortest paths problem ([12], [15],
[23]). A celebrated result is: When FIFO condition is satisfied, any static shortest path



algorithm can be generalized to solve the time dependent fastest path problem with the

same time complexity as the static shortest paths problem. Dreyfus [15] was the first

to present this generalization heuristically. He concluded that Dijkstra's algorithm

can be adapted to solve the dynamic shortest path problem. Later, Ahn and Shin [1]

and Kaufman and Smith [23] and a few others proved that this generalization is valid

only if the FIFO condition is valid.

Chabini [10] gives an intuitive and simple proof of the generalization of the results,
as opposed to a lengthy proof given by earlier authors. These are obtained from a

formulation of the problem. These are presented in the next subsection.

2.4.1 Formulation

Let fj denote the minimum travel time from origin node s to node j leaving the

origin node at a given time interval to. To write the Bellman's optimality conditions

for node j, we need to consider only the paths arriving at node i E B(j) at a time

greater or equal to fi. Minimum travel times can then be defined as solution of the

following set of equations:

minmm mmin (t+dij (t)) , j 0 o
f = iEB(j) t>fi, (2.2)

0 ,j=o

Proposition 1 If the FIFO condition is satisfied, the above formulation of the fastest

paths problem is equivalent to the following equations :

min (fi +di (fi)) , j o
fj = iEB(j) (2.3)

0 ,j=o

Proof: The equivalence holds because, min(t + dij(t)) = fi + dij(fi), if the FIFO
tfcondition holds (see equation 2.1).

condition holds (see equation 2.1). C]



The equivalent formulation in equation 2.3 is similar to static shortest paths opti-

mality conditions with t replaced by fi. Hence, it shows that all static shortest paths

algorithms can be extended, without any extra execution time, to solve the fastest

paths problem if the FIFO condition is satisfied. Chabini ([10]) also notes that only a

static forward labeling process can be used. We summarize this result in the following

proposition.

Proposition 2 If the FIFO condition is satisfied, the formulation of the fastest paths

problem in dynamic networks is equivalent to a static shortest paths problem. Hence,

any forward labeling static shortest path algorithm can be used to solve the dynamic

fastest paths problem. The dynamic fastest problem is solved in the same time com-

plexity as the static shortest paths problem.

Based on the above results, three different forward labeling algorithms/ imple-

mentations are designed: label setting algorithm with heaps (Dijkstra's algorithm

[13], label setting with buckets (Dial's implementation [14]) and a label correcting

algorithm with a dequeue ([26], [30]). As these algorithms have been discussed in

detail in the literature, we do not discuss them in this thesis. However, an evaluation

of these algorithms for dynamic networks similar to traffic networks is presented in

Section 2.10. This evaluation is done to determine which of these algorithms is an

efficient algorithm for transportation applications.

2.5 One to All Fastest Paths Problem for One De-

parture Time in non-FIFO Networks with Wai-

ting Forbidden at All Nodes

This variant of the problem is the least studied in the literature. Orda and Rom

[25] prove that in continuous dynamic non-FIFO networks, computation of simple or

loop-less fastest paths is NP-Hard. This is mainly due to the fact that in non-FIFO



networks, fastest paths are not "concatenated", i.e., subpath from node s to node q

of the fastest path from node s to node p via node q, may not be the fastest path

from node s to node q.

The following approach to solve this problem in discrete networks was proposed

by Chabini and Dean [6]. The fastest paths returned using this approach may contain

loops. The main idea is to apply an increasing order of time labeling algorithm on

the part of time-space expanded network, after departure time interval t.

2.5.1 Formulation

Let the origin node be s and the departure time interval be to. We define variables

wi(t) for every node (i, t) in the time-space expansion representation as:

i(t)=
t -to if there is at least one path

reaching node i at time t

oo otherwise

(2.4)

Let fi denote the minimum travel time to reach node i from origin s departing at

time interval to. These are given by :

fi = min wi(t), Vi E N
t>to (2.5)

For optimality, wi(t) should satisfy the following system of equations:

w,(to) = 0,

w (t + dij(t)) = wi(t) + daj(t),

mmin

iEBO(),

t+dij (t)> M-1,
t<M-1

V jE N, Vi E B(j),

Vt<M-1

wi (t) + di (t),

wi(M - 1) + dij(M - 1)

(2.6)

(2.7)

Vj E N (2.8)



Proposition 3 Labels wi(t), Vt < M - 1, Vi can be set in an increasing order of

time intervals.

Proof: Since all arec travel times are positive integers, labels corresponding to time

intervals t are updated only by labels at time intervals earlier than t (see equation

2.6). This result implicitly reflects the acyclic property, along the time dimension, of

the time-space expanded network. 1

When the labels are set in the increasing order of time, at a particular time

interval, some of the nodes may not have been reached (wi(t) is still infinity). These

nodes will not be able to improve the label of any other node. Hence, this leads us

to our next proposition.

Proposition 4 At each time interval t, only those nodes i for which wi(t) = t - to

need to be processed.

Some nodes may not have feasible paths in the dynamic network (i.e., the node is

never reached in the dynamic part of the network). Also, some other nodes can have

paths consisting of both a dynamic part and a static part. When an increasing order

of time algorithm is applied till the end of dynamic part, the fastest paths to these

nodes are not computed. Hence, once we reach the time interval M - 1, we use the

following proposition to determine the labels of these nodes.

Proposition 5 At time horizon M - 1, any one-to-all static shortest paths algo-

rithm can be used to compute fastest paths to those node whose fastest paths do not

entirely belong to the dynamic part of the dynamic network. In the static shortest

path computation, label of every node i E N should be initialized to wi(M - 1).

Proof: This can be easily proved using the equation 2.6. In the static part, label

of a node j is minimum of length of paths coming from dynamic part and those in

the static part. After processing the dynamic part of the dynamic network in the

increasing order, the first term (wi(t) + dij(t), t + dij(t) > M - 1, t < M - 1) in the

minimum is determined. Hence, this can be viewed as a constant. The second part of



the equation is exactly similar to a static shortest path formulation. Hence, we can

use any static shortest path algorithm to compute the labels for t > M - 1. But, the

labels computed for each node i should be compared against wi(M - 1). Hence, we

initialize the label of node i to wi(M - 1), before we proceed with the static shortest

path computation.

This result can also be illustrated by viewing the static shortest path computation

as a reoptimization problem with certain initial estimates of the labels given by the

dynamic network. Figure 2.2 illustrates this idea. In Figure 2.2, s denotes the source

node and the dashed line from (s, to) to (s, M - 1) indicates the minimum path going

from (s, to) to (s, M - 1) in the dynamic part of the network. The solid lines in the

graph are the links in the static part of the network. The dashed lines are paths in

the dynamic network with length of path to node i computed as wi(M - 1) using an

increasing order of time algorithm till time interval M - 1. These can be considered

as the artificial arcs added to the static part of the network. Hence, it is clear that

the shortest path from node s can be computed by initializing the labels of all nodes

to wi(M - 1) and then, applying any one-to-all static shortest path algorithm. [

source at to

w2(M-1) ..-- 2, M-1 w3(M

-------- ,----M-1

arc in
s, to s, M-1 s ic part

. ...1 .

are from
dynamic part w5( -1) 5, M-1

label from dynamic part Node in static part

Figure 2.2: Illustration of forward labeling for non-FIFO networks

An algorithm, called IOT using the above approach is developed by Chabini and



Dean [6]. This algorithm is discussed in the next section.

2.5.2 Algorithm IOT

Chabini and Dean [6] design the following algorithm using propositions 3, 4,and 5 to

compute dynamic fastest paths from node s to all nodes in the network for a given

departure time interval to. Let fi denote the minimum time in which i can be reached

from s starting at time to and wi(t) be the label of the node (i, t) in the time space

expanded network. Let Q(t) contain the nodes (i, t) which have been reached and

hence for these nodes wi(t) = t - t,.

Once n node labels have been set, the algorithm can stop, even if all time intervals

are not processed. Hence, we denote by S, the set of nodes, whose labels are set. The

algorithm stops when ISI = n.

If G is the network, C is the set of link costs, 7r is the set of labels of the nodes

and s be the source node then, SSP(G, C, 7r, s) is a static shortest path procedure,

which returns a set of shortest path labels ai for every node i E N.

Algorithm IOT

Step 0 (Initialization):

fi = 0, Vi EN- {s}

wi(t) = oo, ViENand to t M

W (t,) = 0
(2.9)

f, =0

Q(t) = {s}
S= {s}



Step 1 (Main Loop):

For t =to ... M - 1

For all i E Q(t)

if (i S) then S=SU{i}

if (ISI =n) then RETURN.

For all j E A(i) (2.10)

7 = min(M - 1, t + dij (t))
if (wj(r) = oc) then

Q(T) = Q(7) U {j}

Wj (T) = T - to

fj = min(fj, T)

Step 2 (Static Shortest Path Computation for t M - 1):

if(ISI < n)

a = SSP(G, d(M - 1), w- 1), 1), s)
(2.11)

for all i V S

fi = ai

2.5.3 Complexity of algorithm IOT

Let L0 denote the longest fastest path from the origin node s to any node in the

network. Then, the running time complexity of the algorithm IOT can be given by

the following proposition.

Proposition 6 Algorithm IOT has a running time complexity of :

O(nM + m * Lo)

O(nM + mM + SSP)

if L, < M

if Lo ~ M,
(2.12)

where SSP is the time taken to compute static shortest paths.



Proof: The running time complexity can be easily obtained by counting the number

of operations in the algorithm IOT. In the worst case (i.e., for departure time 0),
initialization takes O(nM) operations. Recall that the main loop of the algorithm

is exited as soon as the fastest paths to all the nodes in the network are computed.

Hence, if (Lo < M), that is, all the nodes have fastest paths within the dynamic part

itself, then, the running time complexity of the main loop is O(m * Lo) and Step 2

(Static shortest path computation) need not be executed.

If the (Lo > M), the running time of the main loop would be in the order of

O(mM) and as the fastest paths to some of the nodes have not been found yet,
we need to compute one-to-all static shortest paths(O(SSP)). Hence, the order of

algorithm IOT in this case is O(nM + mM + SSP). i
The value of Lo depends on the maximum link travel time in the network, and

also on the diameter of the network. Hence, the performance of algorithm IOT is

better understood by an extensive experimental evaluation (see Section 2.10).

In the next section, we present certain results relating to dynamic fastest path

problems when waiting at nodes is permitted.

2.6 One to All Fastest Paths for One Departure

Time when Waiting at Nodes is Allowed

One of the earliest papers dealing with waiting at nodes has been published by Orda

and Rom [25]. They study the following waiting policies for continuous networks:

* Unrestricted waiting (UW) in which unlimited waiting is allowed everywhere in

the network.

* Forbidden waiting (FW) in which waiting is disallowed everywhere in the net-

work (same as described in Sections 2.4 and 2.5 ).

* Source Waiting (SW) in which waiting is disallowed everywhere in the network

except at the source node where unlimited waiting is permitted.



They prove that unrestricted waiting problem can be solved in the same time com-

plexity as the static shortest path problem. They also prove that if the departure

time from the source node is unrestricted, a shortest path with the same path travel

time as that of unrestricted waiting time can be found.

The most celebrated result of the waiting at nodes is allowed variant is: When

unlimited waiting is permitted at all nodes, the fastest paths problem in a FIFO or

a non-FIFO network has the same time complexity as that of static shortest paths

computation.

To prove this result, let us denote by Dij(t), the minimum travel time on arc (i, j)

when one arrives at node i at time t. Hence, Dij(t) = min(s - t + dij(s)). That is,
s>t

if we leave the node i at time interval s, the waiting time is s - t and travel time on

the link is dij(s), at time interval s.

Proposition 7 Functions Dij(t) satisfy FIFO condition.

Proof : It can be seen from the definition of Dij(t) that, for a given link (i, j) and

time interval t, Dij(t) < Dij(t+ 1) +1. If we add t to both the sides of this inequality,

we obtain an inequality that satisfies the mathematical condition given for FIFO

links (see equation 2.1). Hence, it is proved that functions Dij(t) satisfy the FIFO

condition.

When waiting is allowed at nodes, the minimum travel times are given by the

following functional form :

min min (t + Dij (t)) j o
fj = iEBi) ot>,f (2.13)

0 j=o

Proposition 8 The waiting is allowed variant is a particular case of waiting is not

allowed variant of the dynamic fastest paths problem. If unlimited waiting at nodes is

permitted, results of propositions 1, 2 hold even for non-FIFO networks.

Proof: Using the optimality conditions given in equation 2.13, we can deduce that

waiting is allowed at all nodes variant of the fastest paths problem is equivalent to



waiting is not allowed variant with the dj(t) in the latter replaced by Dij(t). As Dij(t)

satisfy FIFO condition (see proposition 7), the waiting is allowed at all nodes variant

is exactly similar to the waiting is not allowed at nodes policy in FIFO networks,

hence, propositions 1, 2 hold even for non-FIFO networks. 1

Any work discussing limited waiting at nodes has not been published yet. But, cer-

tain optimal algorithms for this problem have been proposed by Chabini and Dean [6].

As it is established that waiting is allowed policy is a special case of waiting is not

allowed variant, we study only the latter variant from now on.

We conclude the above discussion of one-to-all fastest paths problems noting that

the most difficult variant of this problem, in terms of worst time complexity, is finding

loopless fastest paths when waiting is not allowed in non-FIFO networks.

2.7 All-to-One Fastest Paths for All Departure Ti-

mes

This variant of the dynamic shortest paths problem is most relevant in context of

traffic networks. The problem can be modeled using a backward star formulation.

2.7.1 Formulation

When waiting is not allowed , the minimum travel times can be defined by following

functional form:

min (dj(t) + rj(t + dij(t)) i q
ri(t) = jA(i) (2.14)

0 i=q

where, ri(t) denotes the fastest travel time to destination q departing node i

at time interval t. This optimality condition was first established by Cooke and

Halsey [12]. They developed an algorithm using this optimality condition, with worst

case running time complexity of O(n3 M2 ). Later, Ziliaskopoulos and Mahmassani



[30] extended the static label correcting algorithm to design a solution to this problem.

The worst case running time complexity of their algorithm is O(nmM2 ).

Chabini [10] used the acyclic nature in the time dimension of the discrete dynamic

network and designed an optimal algorithm for this problem. The algorithm computes

labels in the decreasing order of time, and is called DOT. Algorithm DOT is proved to

be optimal and offers many parallelization avenues. Hence, we use DOT to develop

parallel implementations of all-to-one dynamic fastest paths problems. We present

the ideas behind the design of this algorithm and algorithm in the rest of the section.

Proposition 9 Labels iri(t) can be set in a decreasing order of departure time inter-

vals.

Proof: Since all arc travel times are positive integers, labels corresponding to time

steps t never update labels corresponding to time steps greater than t (see equation

2.14). This result implicitly reflects the acyclic property, along the time dimension,

of the time-space expansion of a discrete dynamic network.

2.7.2 Algorithm DOT

Algorithm DOT was developed by Chabini [10] using the Proposition 9.

Algorithm DOT

Step 0 (Initialization):

ri(t) = oo, V(i # q),

rq(t) = 0, V(t < M - 1) (2.15)

iri(M - 1) = StaticShortest(dij (M - 1), q) Vi

Step 1 (Main Loop):

For t = M - 2 down to 0 do

For (i, j) E A do (2.16)

7ri(t) = min(ri(t), dij (t) + rj (t + dij (t))



2.7.3 Complexity of algorithm DOT

Proposition 10 Algorithm DOT solves for the all-to-one fastest paths problem, with

running time in O(SSP + nM + mM), where O(SSP) is the worst time complexity

of static shortest paths computation.

Proof: The correctness of the algorithm follows directly from Proposition 9. The

running time complexity can be calculated in a straight forward manner by counting

the number of operations in the algorithm. The initialization step needs 0(nM)

operations, the main loop requires 0(mM) operations and the worst time complexity

of the static shortest path computation is O(SSP). Hence, the total running time

complexity is O(SSP + nM + mM). [

Proposition 11 The complexity of the all-to-one fastest paths problem for all depar-

ture times is O(nM + mM + SSP). Hence, algorithm DOT is optimal (no algorithm

with better running time complexity can be found).

Proof: The problem has the complexity of O(nM +rmM + SSP) since every solution

has to access all arc data (mM), initialize nM labels because fastest paths for all

departure times are sought (nM), and compute all to one static shortest paths for

departure time interval greater than or equal to M - 1 (SSP). In proposition 10 we

proved that worst time complexity of algorithm DOT is 0(nM + mM + SSP). Hence,

algorithm DOT is optimal. 0

In Section 2.10, we discuss the performance of algorithm DOT for different test

networks.

In the next two sections, we discuss the dynamic minimum cost path problems.

We will see that some of the results obtained for dynamic fastest path problems can

be extended to these problems as well.



2.8 One-to-All Minimum Cost Paths for One De-

parture Time

The one-to-all minimum-cost path problems are more complex than the fastest path

problems. No obvious condition resembling FIFO condition in the fastest path prob-

lems can be identified for these problems, because, time and cost are two different

dimensions. Hence, a variety of combinations of conditions on link costs and link

travel times is possible.

Moreover, The waiting at nodes is allowed variant of this problem is more com-

plicated than that of the fastest path problems because a new function to measure

the waiting cost as a function of amount of time waited needs to be defined. This

function can be any general function. Note that in the fastest paths problems, the

cost incurred due to waiting is the amount of time we wait at a node.

The optimality conditions for the one-to-all minimum cost path problems when

waiting is not allowed are given in the next section. Algorithms developed using

these conditions may be used to solve the fastest path problems, but they will be

inefficient compared to the algorithms developed for fastest path problems. Because,

algorithms developed for fastest path problems are more specialized and take into

account certain properties of those problems.

2.8.1 Formulation

Let the origin node be s and departure time be to. Let us denote the minimum cost to

reach a node i in the network by Ci and let wi (t) denote the minimum cost of reaching

the node (i, t) in the time space expanded network. If there is no path reaching node

(i, t), the value of wi(t) = oo. Therefore, Ci(t) = min wi(t). For optimal solutions,
tto

wi (t) should satisfy the following system of equations:



w,(t0) = 0,

wj () = min (wi(t) + cij(t))
iEB(j)

mmin

iEB(j),

t+dii (t). M-1,
t<M-1

(2.17)

(2.18)
{ = t + djj(t)

wi (t) + cij (t),

Wi M - 1)+ CijM 1
Vj E N (2.19)

It can be seen that the above conditions are similar to those in equation 2.6.

Hence, the propositions 3, 4, 5 can be extended to minimum cost path problems. We

present below the extended propositions.

Proposition 12 Labels wi(t), Vt < M - 1, Vi can be set in an increasing order of

time intervals.

Proposition 13 At each time interval t, only those nodes i for which wi(t) # 00

need to be processed.

Proposition 14 At time horizon M - 1, a one-to-all static shortest paths algorithm

should be used to compute shortest paths in the static part of the network. The mini-

mum cost path of each node is the minimum of the minimum cost path in the dynamic

network and that in the static network.

An algorithm IOT-MinCost using propositions 12, 13 and 14 was developed by

Chabini and Dean [6]. We discuss this algorithm in the next section.

ViEj N, Vt < M - 1,



2.8.2 Algorithm IOT-MinCost

We extend the notation used for algorithm IOT to algorithm IOT-MinCost. Again, let

us denote by Q(t) the bucket at time interval t. It contains the nodes that have been

reached at time interval t, and hence for these nodes, wi(t) 5 oc. We also assume

that there exists a static shortest paths procedure SSP(G, C, r, s) same as the one

assumed for fastest paths problem.

Note that in the fastest paths problem, if t < r, then, wi(t) < wi(T). Hence,

we used this condition to quit the IOT algorithm once n node labels are set. In the

minimum cost paths problem, wi(t) are not functions of t. Hence, in these problems,

one has to process all the time intervals and also compute the static shortest paths

for any network.

Algorithm IOT-MinCost

Step 0 (Initialization):

Ci=oo, ViEN-{s}

W(t)= oo, ViEN and to ~ t M

V.(to) = o (2.20)

C, = 0

Q(to) = {()

Step 1 (Main Loop):

For t = to...M - 1

For all i E Q(t)

For all j E A(i)

7 = min(M - 1, t + dij (t)) (2.21)

if (j(r)=00) then Q(r)= Q(T)U{j}

j () = min(vj(r), t + ci (t)

Cj = min(Cj, w(7))



Step 2 (Static Shortest Path Computation for t > M - 1):

a = SSP(G, c(M - 1), vi(M - 1), s)

for all i N (2.22)

Ci = min(Ci, ai)

2.8.3 Complexity of algorithm IOT-MinCost

We have seen that algorithm IOT-MinCost is similar to algorithm IOT except that we

do not have any dependence on the factor Lo, where L, is the longest minimum-cost

path to a node in the network. The complexity of this algorithm is given by the

following proposition.

Proposition 15 Algorithm IOT-MinCost has a running time complexity of O(nM +

mM + SSP), where SSP is the time taken to compute the static shortest paths.

Proof: The running time complexity can be easily computed by counting the number

of operations in the algorithm. In the worst case, we need to initialize O(nM) labels.

The main loop needs to process O(mM) links in the worst case. And, finally for time

interval t = M - 1, we need to compute the static shortest paths. Hence, the order

of the algorithm IOT-MinCost is O(nM + mM + SSP). E

The performance of this algorithm will be demonstrated in the experimental eval-

uation section (Section 2.10).

In the next section, we discuss the all-to-one minimum cost paths problem, for

all departure time intervals. The extension of algorithm DOT to solve this problem

has been proposed by Chabini [10]. We call this extension algorithm DOT-MinCost to

distinguish it from algorithm DOT.



2.9 All-to-One Minimum Cost Paths Problem for

all Departure Times Problem

In this section, we present a formulation of the all-to-one minimum cost paths problem

for all departure time intervals. This formulation will be used to extend the results

obtained in Section 2.7 for all-to-one fastest paths problem to this problem.

2.9.1 Formulation

Let Ci(t) denote the minimum cost to reach the destination q from node i departing

at time interval t. Minimum costs are then defined by the following functional form:

inmm (ci (t) + Ci (t + dij (t)) if q
C (t) = jEA(i) (2.23)

0 i=q

Again, as dij(t) are positive integers, we can see that proposition 9 can be extended

to the minimum cost paths problem. Note that to extend this result, cij(t) can be

any real value. Hence, we formalize this result using the following proposition.

Proposition 16 Labels Ci(t) can be set in a decreasing order of departure time in-

tervals.

2.9.2 Algorithm DOT-MinCost

As the network is static after time interval M - 1, we use a static shortest path

algorithm to set the labels Ci(M-1). The choice of the static shortest paths algorithm

should be made depending on the costs ci,(t). Some static shortest paths procedures

require that there is no negative cycle in the network. Otherwise, this negative cycle

can be circled infinite number of times leading to an infinite decrease in the labels.

Hence, depending on the values of cji(t), we have to choose an appropriate static

shortest path algorithms.



Algorithm DOT-MinCost

Step 0 (Initialization)

Ci(t) = oo, V(i / q),

Cq(t) = 0, V(t < M - 1) (2.24)

Ci(M - 1) = StaticShortest(cij (M - 1), q) Vi

Step 1 (Main Loop)

For t = M- 2 down to 0 do

For (i, j) E A do (2.25)

Ci(t) = min(Ci(t), cij (t) + Cj (t + dij (t)))

We can extend the propositions 10 and 11 to the minimum cost paths problem

as well.

2.9.3 Complexity of algorithm DOT-MinCost

Proposition 17 Algorithm DOT-NinCost solves for all-to-one minimum cost paths,

for all departure times in O(nM + mM + SSP).

Proof: This result can be proved by counting the number of operations in the

algorithm DOT-MinCost. Initializing the labels of all nodes for all time intervals

requires 0(nM) operations. Then the main loop requires O(mM) operations and one

needs to compute static shortest paths for the time interval M - 1. Hence, the order

of the algorithm DOT-MinCost is O(nM + mM + SSP). 11

Proposition 18 The complexity of the all-to-one minimum cost path problem, for all

departure times is O(nM + mM + SSP). Hence, algorithm DOT-NinCost is optimal.

Proof: The problem has the complexity O(nM + mM + SSP) because to compute

minimum cost paths, we need to access all the arc data (mM) and initialize labels

for all nodes for all departure time intervals (nM), as the minimum cost paths from

all nodes for all departure time intervals are desired. We have to compute static



shortest paths for the time interval M - 1 (O(SSP)). In proposition 17, we have

proved that the order of algorithm DOT-MinCost is 0(nM + mM + SSP). Hence,

algorithm DOT-MinCost is optimal. 0

All the above mentioned algorithms were coded in C++. An extensive evaluation

of these implementations was done to gauge the performance of different algorithms.

We discuss this evaluation in the next section.

2.10 Experimental Evaluation

In this section, we report on the experimental evaluation of the following solution

algorithms:

* is-heap : Label setting algorithm using heaps to compute one to all fastest

paths problem for FIFO networks.

* lc-dequeue: Label correcting algorithm using dequeue for one to all fastest

paths for FIFO networks.

* dial-buckets: Dial's implementation of label setting algorithm using buckets

to compute one to all fastest paths for FIFO networks.

* IOT : Increasing order of time algorithm to compute one to all fastest paths for

one departure time in non FIFO networks.

* DOT : Decreasing order of time algorithm to compute all to one fastest paths for

all departure times.

* IOT-MinCost : Increasing order of time algorithm to compute one to all dynamic

minimum cost paths for a given departure time.

* DOT-MinCost : Decreasing order of time algorithm to compute all to one mini-

mum cost paths for all departure times.

The network instances used for evaluation in this section are generated using a

discrete dynamic network generator developed to test computer codes on networks



with different topologies, number of cycles, densities and link travel times. Running

times are wall clock times obtained on a SUN SPARC workstation.

Let the maximum link cost be denoted by W and the maximum link travel time

be C. Unless otherwise mentioned, in the following tests, W = 10 and C = 3. The

evaluations done are presented below.

" Comparison of the performance of the three algorithms for FIFO

networks : In Figure 2.3, we show the performance of algorithms is-heap,

lc-dequeue and dial-buckets for networks similar to transportation networks

(i.e., with degree of 3). The x-axis in the Figure 2.3 shows the number of nodes.

The network has n nodes, 3 * n links and 100 time intervals. We can see that

for these networks, the algorithm lc-dequeue performs better than the other

two algorithms. Considerable evaluation of these algorithms has appeared in

the literature. Hence, we do not do a detailed evaluation of these algorithms.

* Performance evaluation of algorithm IDT with respect to the different

network parameters : Algorithm IOT was designed using certain specific

properties of the dynamic networks. We have established in Proposition 6 that

the worst time complexity of algorithm IOT is a function of the longest fastest

path in the network, the number of time intervals and the number of links. The

longest minimum path is the network is, in turn, a function of the diameter of

the network and the maximum link travel time.

In this evaluation, we establish the performance of algorithm IOT with respect

to the following network parameters: maximum link travel time, number of

nodes, number of arcs and number of time intervals in the network. In all these

evaluation, we show the variation of running time with respect to each network

parameter and also the variation of Min(Lo, M) with respect to each network

parameter.

- Maximum link travel time: In Figure 2.4, we show the performance of

algorithm IOT with respect to the maximum link travel time (C) for a



network with 3000 nodes, 9000 links and 100 time intervals. We also show

the variation of Min(Lo, M) with respect to the network parameter C.

In Figure 2.4, we notice the following: for smaller values of C, the running

time increases and for very high values of C, the running time decreases.

With increasing C, Lo increases. For smaller values of C, L, is less than

M. Hence, the running time increases as Lo increases. This explains the

performance of algorithm IOT for smaller values of C. When C is very

high, there are lesser number of nodes in each bucket. Hence, the time

taken by the main loop (See set of equations 2.10) is less. The time taken

by the static shortest path algorithm very less when compared to the time

taken by the main loop in the algorithm IOT. Hence, the running time of

algorithm IOT decreases for high values of C.

- Number of nodes: Figure 2.5 shows the performance of algorithm IOT with

respect to the number of nodes in the network. In the same figure, we also

show the variation of Min(Lo, M) with number of nodes.

In Figure 2.5, we observe that the running time of algorithm IOT initially

increases with the number of nodes and then decreases as the network

tends to be a tree. The running time increases initially because the value

of L increases (see Figure 2.5). For a network with 9000 nodes and 9000

links, the number of nodes to be processed within the main loop of the

algorithm IOT is less and as Lo is greater than M, the static shortest path

computation is necessary. The static shortest path computation requires

very less amount of time when a network is a tree as there are lesser number

of loops in the network. Hence, we observe a decrease in the running time

of algorithm IOT when the number of nodes is increased to 9000.

- Number of arcs: Figure 2.6 shows the performace of algorithm IDT with

respect to the number of links in the network. In the same figure, we show

the variation of Min(Lo, M) with number of links.

In Figure 2.6, we notice that the running time of algorithm IOT increases



initially with the number of links and then decreases. We also notice that

L decreases with the number of links in the network. We have established

in Proposition 6 that the running time of algorithm IOT is proportional to

m * Lo when Lo < M. We have observed in Figure 2.6 that as m increases,

Lo decreases. For lesser m, the decrease of Lo is not high. The running

time increases (the increase in m outweighs the decrease in Lo). But, for

higher values of m, we see that Lo decreases a lot. Thus, the running time

of algorithm IOT decreases (the decrease in L, outweighs the increase in

m).

- Number of time intervals: Figure 2.7 shows the performance of algorithm

IOT with respect to the number of time intervals. In the same figure, we

show the variation of Min(Lo, M) with number of time intervals.

The longest minimum path in the network should not depend on the num-

ber of time intervals. That is why, we see only a slight increase in the

value Lo with the increase in the number of time intervals. This may be

due to the random nature of these networks. This increase in Lo leads to

an increase in the running time of the algorithm IOT.

* Performance evaluation of algorithm IOT-MinCost with respect to the

different network parameters : Algorithm IOT-MinCost was developed to

compute one-to-all minimum cost paths for a given departure time. For any

network, all the three part of the algorithm IOT-MinCost should be run (see

Section 2.8.2. The factors which would affect the run time highly are: total

number of nodes in the buckets, the number of links per each node to be pro-

cessed and the time required for the static shortest path computation. These

factors would depend on the following network parameters: number of nodes,
number of links, number of time intervals, maximum link travel time and max-

imum link cost. Hence, we evaluate the performance of algorithm IOT-MinCost

with respect to these parameters.

- Number of nodes: Figure 2.8 shows the performance of algorithm IOT-



MinCost with respect to the number of nodes. In this figure, we observe

that the run time of algorithm IOT-MinCost decreases with the number of

nodes. As the number of nodes increases, number of links to be processed

per each node decreases. This leads to lesser number of nodes in the

buckets. Moreover, as the network tends to be a tree, the time required

for static shortest path computation decreases. Hence, the running time

of algorithm IOT-MinCost decreases with increase in number of nodes.

- Number of arcs: Figure 2.9 shows the performance of algorithm IOT-

MinCost with respect to the number of links. In this figure, we that the

running time of algorithm IOT-MinCost increases with the number of links.

This case exactly the reverse of the earlier evaluation (with respect to the

number of nodes). As the number of links increase, the number of links

per each node increases. This leads to an increase in the number of nodes

in the buckets. Also, the static shortest path computation time increases

with increase in the number of links. Hence, the running time of algorithm

IOT-MinCost increases with increasing number of links.

- Number of time intervals: Figure 2.10 shows the performance of algorithm

IOT-MinCost with the respect to the number of time intervals. In this

figure, we see that the running time of algorithm IOT-MinCost increases

with the increase in the number of time intervals. The running time of

the main loop in algorithm IOT-MinCost is in the order of mM. Thus,
as the number of time intervals increases, the running time of algorithm

IOT-MinCost increases.

- Maximum link travel time: Figure 2.11 shows the performance of algorithm

IOT-MinCost with respect to the maximum link travel time (C). In this

figure, we see that the running time of algorithm IOT-MinCost decreases as

C increases. As C increases, the number of nodes in the buckets decreases

(since, lesser number of nodes are reached). Thus, the computation time

of the main loop in algorithm IOT-MinCost decreases leading to a decrease



in the running time of algorithm IOT-MinCost.

- Maximum link cost: Figure 2.12 shows the performance of algorithm IOT-

MinCost with respect to the maximum link cost (W). W does not directly

impact any of the major factors which affect the running time of the al-

gorithm. Hence, although W effects the running time of the algorithm

IOT-MinCost, the variation of the running time with respect to W can

not be determined. Hence, in figure 2.12, we do not observe any specific

pattern of variation of the performance with W.

* Performance evaluation of algorithm DOT with respect to the different

network parameters : We have noted that the order of algorithm DOT is

9(nM + mM + SSP). To confirm this theoretical analysis, performance of

algorithm DOT was evaluated with respect to the following network parameters:

number of nodes, number of links and number of time intervals. These results

confirm the theoretical analysis.

- Number of nodes: Figure 2.13 shows the performace of algorithm DOT with

the respect to number of nodes. In this figure , we observe that the running

time of algorithm DOT is indeed linearly proportional to the number of

nodes.

- Number of arcs: Figure 2.14 shows the performance of algorithm DOT with

respect to number of links. In this figure, we notice that the running time

is linearly proportional to the number of links.

- Number of time intervals: Figure 2.15 shows the performance of algorithm

DOT with respect to number of time intervals. In this figure, we see that

the running time of algorithm DOT is linearly proportional to the number

of time intervals. Note that all the other algorithms proposed to calculate

the all-to-one dynamic shortest paths are proportional to M2 in the worst

case.

* Performance evaluation of algorithm DOT-MinCost with respect to the



different network parameters : Algorithm DOT-MinCost is not very different

from the algorithm DOT. We evaluate the performance of this algorithm with

respect to the following parameters: number of nodes, number of links and

number of time intervals. We have noted in Proposition 17 that the worst time

complexity of algorithm DOT-MinCost is 0(nM + mM + SSP). We confirm this

theoretical analysis from the following evaluations:

- Number of nodes: Figure 2.16 shows the running time of algorithm DOT-

MinCost with respect to number of nodes. In this figure, we observe that

running time of this algorithm is linearly proportional to number of nodes.

- Number of arcs: Figure 2.17 shows the running time of algorithm DOT-

MinCost with respect to number of links. In this figure, we notice that

the running time of algorithm DOT-MinCost is linearly proportional to the

number of links.

- Number of time intervals: Figure 2.18 shows the performance of algorithm

DOT-MinCost with respect to number of time intervals. In this figure,

we see that the running time of the algorithm DOT-MinCost is linearly

proportional to the number of time intervals.

* Comparison of algorithm IOT and algorithm DOT: We know that algo-

rithms IOT and DOT solve two different basic dynamic fastest paths problems.

But, given a specific dynamic fastest problems (For example, to calculate the

many-to-many dynamic fastest paths for all departure time intervals in a net-

work), which is a better algorithm to use? The following evaluation partly

answers this question. We compare the running times of both algorithms to

compute same amount of information. That is, we calculate the one-to-all dy-

namic fastest paths for all departure time intervals using IOT and compute the

all-to-one dynamic fastest paths for all departure time intervals using algorithm

DOT.

Figure 2.19 shows these results for a network with 3000 nodes, 9000 arcs and

100 time intervals. This figure shows running times for this network for different



maximum travel times (C), as we know that algorithm IOT is very sensitive to

the parameter C. Of course, algorithm DOT does not depend on C. It can be

seen from Figure 2.19 that algorithm DOT is approximately 10 times faster than

algorithm IOT.

Comparison of algorithm IOT-MinCost and algorithm DOT-MinCost: (Ta-

ble 2.20) We do a similar comparison as was done for the minimum cost paths

problem. Algorithm IOT-MinCost would be more time-consuming than algo-

rithm IOT. Algorithm DOT-MinCost requires approximately same time as taken

by algorithm DOT. Hence, in Figure 2.20 we see that algorithm DOT-MinCost is

approximately 30 times faster than algorithm IOT-MinCost.
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Figure 2.3: Algorithms for FIFO networks

2.11 Summary

In this chapter, we first, presented a classification of dynamic shortest path problems.

We then, described a way of representing dynamic network using the time space ex-

pansion. This representation was useful in designing some efficient algorithms for
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certain variants of dynamic shortest path problems. Then, we presented the formula-

tions, algorithms and computer implementations for the following types of dynamic

shortest paths problems:

* One-to-all dynamic fastest paths for one departure time for FIFO networks

when waiting is forbidden at all nodes.

* One-to-all dynamic fastest paths for one departure time for non-FIFO networks

when waiting is forbidden at all nodes.

* One-to-all dynamic fastest paths when waiting is allowed at all nodes.

* All-to-one dynamic fastest paths for all departure times

* One-to-all dynamic minimum cost paths for one departure time

* All-to-one dynamic minimum cost paths for all departure times.

We have shown that static shortest path algorithms can be extended to solve the

one-to-all dynamic fastest problems in FIFO networks.



We have shown that an increasing order of time algorithm can be used to solve one-

to-all dynamic fastest paths in non-FIFO networks. Algorithm IOT was developed to

solve the one-to-all fastest paths problem in non-FIFO networks using this result. An

extension of algorithm IOT called IOT-MinCost was developed to solve the one-to-all

dynamic minimum cost path problems.

We have established that decreasing order of time algorithms can be used to solve

all-to-one dynamic fastest paths and all-to-one minimum cost paths problems. Using

these results, algorithms DOT and DOT-MinCost were developed to solve the all-to-one

dynamic fastest paths and all-to-one minimum cost paths problems respectively. We

have proved that algorithms DOT and DOT-MinCost are optimal, that is, no other

algorithm with a better running time complexity can be found.

An extensive experimental evaluation of all these algorithms was done. The con-

clusions of this evaluation can be summarized as:

* Among the algorithms tested, label correcting algorithm with dequeue data

structure to hold the candidate list is the best algorithm to use for FIFO net-

works. Tests were carried out on traffic-like networks.

* For traffic networks, that require computation of fastest paths from almost all

nodes in the network to few destinations for all departure times, DOT leads to

best results.

* For a random network with 3000 nodes, 9000 links and 100 time intervals and

maximum link travel time as 3, 100 iterations of IOT are 10 times slower than

DOT. (see Figure 2.19).

* Although, algorithm DOT is proved to be an optimal algorithm, it still does not

solve realistic dynamic fastest path problems faster than real time. Consider, for

instance, the traffic network model of Boston with approximately 7000 nodes,

20000 arcs and 100 time intervals and 700 destinations. 100 time intervals usu-

ally denote 100 seconds of real time. DOT requires approximately 1000 seconds

to compute fastest paths from all nodes to 700 destinations for all departure



time intervals. Hence, we can conclude that even an optimal algorithm like DOT

does not provide faster than real time solutions that are needed for dynamic

management of traffic systems. One way of solving these problems faster, is to

use high performance computing platforms.

Chapters 3 and 4 describe the concepts of high performance computation and the

different parallel implementations developed.



Chapter 3

Parallel Computation

In Chapter 2, we presented efficient algorithms to solve dynamic shortest path prob-

lems. While developing those algorithms, we have implicitly assumed that they will

be executed on a machine that can do only a single calculation at a given time. In the

same chapter, we had concluded that these implementations do not solve dynamic

shortest path problems fast enough for Intelligent Transportation Systems (ITS) ap-

plications. One of the ways of improving the speed of these algorithms is to use

parallel computers.

Parallel computers have multiple processors. These processors simultaneously

solve a given problem and this may involve collaboration between them. Chapter 4

presents parallel algorithms for dynamic shortest path problems exploiting parallel

computing technology. To develop parallel algorithms, a thorough understanding of

parallel computing concepts is necessary.

This Chapter is organized as follows: In Section 3.1, we present a classification of

the parallel computers. In Section 3.2, we describe the two kinds of parallel systems

used for developing the parallel implementations developed in this thesis. Then, in

Section 3.3, we present the issues that are common to parallel computing which do

not arise in the case of sequential computing. In Section 3.4, we describe the sequence

of steps involved in developing parallel implementations. Finally, in Section 3.5, we

present the measures used to assess the performance of a parallel program.



3.1 Classification of Parallel Systems

The growing need for parallel computation in different scientific fields has led to

the development of a variety of parallel computers. These parallel computers differ

from each other in many ways. Hence, to develop efficient parallel implementations,

we need to choose a suitable parallel computing architecture for a given problem.

For this, a systematic classification of parallel computers is necessary to understand

the different parallel computing paradigms and to choose the most suitable parallel

computer for a given problem.

Chabini et al [9] describe the following two modes of classification of parallel

computers:

* Number and Type of Streams of Instructions and Data: This is one of

the first and most popular classification due to Flynn [16]. The classification

distinguishes computers by the number and types of streams they permit. This

leads to four classes of computers:

- Single Instruction Single Data (SISD): In this model, the processors ex-

ecute a single instruction stream on a single data item. Hence, it corre-

sponds to the classical sequential computers.

- Multiple Instruction Single Data (MISD): This model is not useful.

- Single Instruction Multiple Data (SIMD): In this model, all the processors

execute a single set of instructions on different data items. For example,

the connection machine CM-2 is based on such a kind of model. Parallel

implementations of shortest path algorithms using such machines have

been reported in the literature (see Habbal et al [18], Ziliaskopoulos et

al [30]).

- Multiple Instruction Multiple Data (MIMD): In this model, processors can

execute multiple instructions on multiple data. Most parallel machines

are based on this model. For example, a network of workstations can be

considered as an MIMD parallel system.



* Hardware Characteristics: Flynn's classification helps to categorize par-

allel computers, but, it does not present the parameters required for parallel

implementation of algorithms. These implementations should take advantage

of some hardware characteristics. Parallel computers differ a lot in their hard-

ware characteristics. The most important of these hardware characteristics are:

- Type and Number of Processors:

* Massively Parallel Computers / fine grained parallel systems: These

parallel computing systems have thousands of processors. The grain

refers to the amount of RAM memory available to each processor. In

these machines, each processor has only 16kB of RAM, hence these

machine as also called is small fine grained parallel systems. They can

be used for solving very huge computational problems. CM-2 machine

is an example of massively parallel systems.

* Coarse grain parallel systems: These parallel systems contain a small

number of processors, usually in the order of 10. Each processor can

handle a large amount of data, of the order of megabytes. Most parallel

systems are of this type. They are particularly attractive because

these computers are affordable by most organizations. All the parallel

implementations developed in this thesis use these parallel systems.

- Synchronous vs. Asynchronous Operation: The distinction in this

case refers to the presence or absence of a common global clock used to

synchronize the operations of the different processors. Machines with a

single global clock are called synchronous, while, those without the global

clock are called asynchronous.

For example, SIMD machines are synchronous because all the processors

in a SIMD machine process a single instruction stream.

- Processor Interconnection: An important requirement of parallel

computation is the communication of the required information between

the processors. Processors may communicate in different ways. The main



categories into which the parallel computers are classified based on this

parameter are:

* Shared Memory: In this design, there exists a global shared memory

which can be accessed by all the processors. A processor can commu-

nicate with another by writing into a memory location in the global

memory and the other processor requiring this information, reads from

the same memory location in the global memory. Though this solves

the inter processor communication problem, it introduces the problem

of resolving conflict of simultaneous modification of the same mem-

ory location by different processors. This problem is usually solved

using mutual exclusion locks. These are discussed in greater detail

in Section 3.4.3. The processors may not try to modify the value in

the memory location, but just try to access/read it simultaneously.

This operation calls for complex switching circuits, resulting in longer

memory access times. Figure 3.1 illustrates a shared memory system.

This figure shows that processors P1, P2 , P3 and P4 have access to a

global memory through a switching circuit.

processor

Figure 3.1: Shared Memory System



* Message Passing / Distributed Memory systems: Each processor has

itF own local memory and communicates through an interconnection

network. It has a topology which describes how processors are con-

nected. The most common topologies are the ring, the tree, the mesh

and the hypercube. An appropriate topology can be has to be chosen

depending on the communication requirements of the parallel algo-

rithm. A major factor effecting the speed of parallel algorithms devel-

oped for these systems is the amount of time taken to communicate

between the processors. We will notice in the next chapter that for

certain decomposition strategies, the communication requirements of

these systems can be high. In such a case, shared memory systems are

proven to be better than distributed memory platforms. Figure 3.2

shows an example of a distributed memory system. In this figure, P1,

P2, P3 and P4 are four processors connected by an interconnection

network and M1, M2, M3 and M4 denote their local memories.

memory
processor

M1I 2

P1 P2

communication link

P4 P3

Figure 3.2: Distributed Memory System

Several hybrid choices are also available where some or all the processors

have a local memory and communication links and share a global memory.



These designs are not discussed in this thesis. Interested reader is referred

to Bertsekas and Tsitsikilis [4].

In the next section, we discuss the parallel computing systems used to develop the

parallel programs described in Chapter 4.

3.2 Parallel Computing Systems Used in This The-

sis

One of the objectives of this thesis is to develop parallel implementations of dynamic

shortest paths algorithms for both distributed and shared memory platforms. Parallel

systems used to develop these parallel implementations are the following:

* A Sun Ultra HPC 5000 symmetric Multiprocessors' Cluster (Xolas):

These machines are used to develop the shared memory implementations of

dynamic shortest path algorithm. A Symmetric Multiprocessing (SMP) system

can be defined as a MultiProcessing system, where all CPUs can share all or

a part of the main memory with the other CPUs, and have equal access to all

peripherals. All CPUs are equal, and hence, any of the CPUs can do any work,

including scheduling work inside the kernel.

MIT is equipped with a cluster of SMPs called the Xolas cluster, providing

access to high performance scientific computing. The Xolas cluster has nine

HPC 5000 machines. All the workstations are Sun Ultra HPC 5000 Machines.

Their configuration is:

- 512MB RAM

- 8 CPU

- 1GB of swap memory

- Solaris 2.5.1/2.6 operating system

More information on this cluster can be found at URL: http://xolas.lcs.mit.edu.

We will demonstrate in Chapter 4 that shared memory implementations on



these systems show a significant improvement in the computation time of the

dynamic shortest path algorithms.

* A Network of SGI Workstations: This network is used for the distributed

memory implementations of dynamic shortest path algorithms. In this network,

we have a set of 6 SGI workstations connected through by a Local Area Network.

In addition to the parallel computers, we need a parallel programming language to

develop a parallel implementation. Parallel programming is different from sequential

programming in many ways. These differences are discussed in the next section.

3.3 How is Parallel Computing different from Se-

rial Computing?

There are some generic issues common to parallel computing which do not arise in

serial computing. It is important to understand these issues in order to design efficient

parallel implementations. The following issues distinguish parallel computing and

serial computing:

* Decomposition, Task Allocation and Load Balancing: In parallel com-

puting, the given task is divided into sub tasks that can be executed simulta-

neously. The task allocation consists of assigning each of these subtasks to a

processor and coordinating the activities of all the subtasks. For efficient parallel

implementations, the load on different processors should be balanced. Hence,

the objective of load balancing is to obtain subtasks with the most possible

uniform execution time.

* Communication: Communication is one of the major overheads of paral-

lelization. A decomposition strategy should be designed in such a way that

communication required between subtasks is as minimum as possible. In the

next chapter, we will see that for dynamic shortest paths algorithms, certain

decomposition techniques may require considerable amount of communication



between subtasks. Hence, those parallel implementations may not be worth-

while.

We have noted earlier that the information exchange is carried out using an in-

terconnection network between the processors in distributed memory platforms

and through the global memory in shared memory platforms. Communication

between subtasks in distributed memory implementations should be carried out

efficiently by exploiting the topology of interconnection network.

* Synchronization: In some parallel algorithms, one or more processors have to

wait till the completion of certain computations or arrival of certain data to pro-

ceed with the next step. Hence, these processors should be synchronized. The

process of synchronization can slow down the parallel implementation. Most

software libraries provide many different ways of synchronization. Some of

them will be discussed in Section 3.4.3.

For a given problem, it may be possible to design both synchronous and asyn-

chronous algorithms. Asynchronous algorithms are usually faster, but, are more

complex to design [3].

* Idle Time: Idle time is the time lost when one or more processors are not

computing. This may result due to following factors: load imbalance, synchro-

nization and communication. Hence, for an efficient parallel implementation,

idle time should be minimized.

* Termination Detection: The information available to each subtask is local.

Usually, the termination condition of the given subtask may require a global

condition to be satisfied. Hence, special algorithms may be required to detect

termination, so that each process can know when it can quit using the informa-

tion available to it.

Hence, to develop a parallel implementation, we need to first identify a sequen-

tial algorithm, identify certain parallelization strategies in that algorithm, choose a



suitable parallel architecture and use the software development tools associated with

this parallel system to implement the parallel algorithm.

In the next section, we describe the different dimensions along which an algo-

rithm can be decomposed and the different software libraries to develop the parallel

programs.

3.4 How to Develop a Parallel Implementation?

In this section, we first discuss three general decomposition mehods. We then present

one way of scheduling the different tasks in the parallel program. Then, discuss the

various software libraries that can be used to develop parallel programs.

3.4.1 Decomposition Methods

The decomposition strategy that can be used for a given problem depends on the

logic in the solution algorithm of the problem. The following are three general de-

composition methods as discussed by Ragsdale [28]:

" Perfectly Parallel Decomposition: Certain applications are perfectly par-

allel by nature. These can be easily decomposed into subtasks with almost no

communication between the subtasks.

For example, calculation of all to one dynamic shortest paths for all depar-

ture time intervals for all the destinations in the network in a shared memory

system can be considered as a perfectly parallel problem. Each processor can

run algorithm DOT (see Section 2.7.2) for a subset of destinations. Hence, no

communication is required between the subtasks.

* Domain Decomposition: Certain problems have a large data domain on

which an algorithm is applied. For these problems, we can decompose the do-

main of computation into sub domains. Each processor updates its data by

applying the algorithm to its subdomain while collaborating with other pro-

cessors. A major bottleneck of this decomposition strategy is the amount of



information required by a processor from other processors to update its data.

For example: in traffic problems, shortest paths computations are required for

huge networks. The network on which the shortest path algorithm is applied can

be viewed as the "domain" of the problem. Certain parallel implementations of

shortest path algorithms reported in the literature ([18], [21]) use this domain

decomposition strategy. The network is decomposed into subnetworks. One

subnetwork is allotted to each processor. Each processor updates the labels of

nodes in its subnetwork. To update its labels, each processor needs information

about the labels of the nodes in the subnetworks of the other processors.

Functional Decomposition: This decomposition strategy is based on the

flow of control in the algorithm. The algorithm is represented as a set of

modules/operations, that express the algorithm's functional parts. Hence, if

the logic of the solution algorithm permits, modules that can simultaneously

executable are allotted to different processors. For example, Dynamic traffic

assignment problem can be decomposed into different modules: shortest path

generation, network loading, users' behavior model etc (see [19], [22]). Lacagn-

ina and Russo [22] design a parallel implementation of this problem using the

functional decomposition technique to decompose the problem.

3.4.2 Master/Slave Paradigm

One of the ways of implementing a parallel algorithm is using the master/slave

paradigm. In this paradigm, we have one master process and many slave processes.

The master process decomposes the problem into subproblems and spawns out slave

processes to solve each of the subproblems. In this technique, all slave process usu-

ally report back to the master process after they solve their subproblems. We use the

master/slave paradigm in all the parallel implementations described in Chapter 4.



3.4.3 Software Development Tools

An important question that still remains is: how do we develop parallel programs?

Depending on the kind of parallel computer being used, a parallel programming lan-

guage/ software library designed for that computer is used to develop the parallel

program. This subsection describes the basic concepts of the software libraries used

in Chapter 4 to develop parallel implementations of dynamic shortest paths algo-

rithms.

We use PVM (Parallel Virtual Machine [17]) library to develop distributed mem-

ory implementations and Solaris Multithreading (MT) library [24] for shared memory

implementations. All implementations are developed in C++, using the appropriate

" .h"' file (pvm3.h for the PVM based implementations and thread.h for MT im-

plementations).

PVM

The Parallel Virtual Machine(PVM) library uses the message passing model to allow

programmers to exploit distributed computing across a wide variety of computer

types. A key concept in PVM is that it makes a collection of computers appear as

one large virtual machine. To use the PVM software, the user needs to write his

application as a collection of tasks, which are implemented as processes. Tasks access

PVM resources through a library of standard interface routines. These routines allow

for initiation and termination of tasks across the network as well as for communication

and synchronization between tasks.

The following PVM library functions are most frequently used in PVM implemen-

tations:

* Spawning tasks: pvmspawn command is used to spawn tasks. The syntax of

this command is:

int numt = pvmspawn(char *task, char **argv, int flag,

char *where, int ntask, int *tids)



task: Character string which is the executable file name of the PVM process to

be started. The executable must already reside on the host on which should be

started.

argv: Pointer to an array of arguments to the executable (if supported on the

target machine), not including the executable name, with the end of the array

specified by NULL.

flag: Integer specifying spawn options. For more details, the reader can see [17].

where: Character string specifying the computer on which to start the PVM

process. Depending on the value of flag, where can be a host name such as

"voice.mit.edu". If flag is 0, then where is ignored and PVM will select the

most appropriate host.

ntask: Integer specifying the number of copies of the executable to start.

tids: Integer array of length ntask returning the tids of the PVM processes

started by this pvmspawn call.

numt: Integer returning the actual number of tasks started. Values less than

zero indicate a system error. A positive value less than ntask indicates a partial

failure. In this case the user should check the tids array for the error code(s).

Sending Data: Any information that needs to be communicated should

be packed using a group PVM pack functions, pvmpk* commands into an

active send buffer and then pvmsend or pvmmcast should be used to send the

information. pvmsend is used to send the message to a particular task. But,

pvmmcast is used to broadcast the message to a group of n tasks.

If the same information needs to be sent to a group of n tasks, broadcasting the

message would require log n times the time required to send the information

to one task. While sending the information to each of the separately would

require n times the time required to send the information to one task. Hence,
the sequence of commands used to send an integer (for other data types, the

reader is referred to [17]) array would be:



int info = pvm_initsend(int encoding)

int info = pvm_pkint(int *np,int nitem, int stride)

int info = pvm_send(int tid, int msgtag)

or

int info = pvmmcast(int *tids, int ntasks, int msgtag)

where

np: integer array atleast nitem * stride items long

nitem: the total number of items to be packed

stride: the stride to be used when packing the items. For example, if stride = 1,

a contiguous vector is packed, a stride of 2 means every other item is packed,

so on.

tid: integer task identifier of the destination process

msgtag: integer message tag supplied by the user. (msgtag > 0)

tids: integer array of length at least ntasks containing the task IDs of the tasks

to be sent to.

ntask: integer specifying the number of tasks to be sent to.

info: Integer status code returned by the routine. A value less than zero

indicates an error.

encoding: integer specifying the next message's encoding scheme. (for details,

the reader can consult [17])

Receiving data: PVM contains several methods of receiving messages at a

task. We use only the blocking receive routine, pvmrecv, in our parallel im-

plementations. pvmrecv places the message into an active receive buffer that

is created. Then, a group of pvmupk* routines are used to unpack the data

from this buffer. Hence, receiving integer data can be done using the following

statements:

int bufid = pvm.recv(int tid, int msgtag)

int info = pvmunpkint(int *np, int nitem, int stride)



pvmrecv is a blocking receive routine which means that the process will wait

till a message with label msgtag has been received from the task id tid. nitem

is the number of items of the given data type to be unpacked, and stride is the

stride used in packing (see pvmsend for more information).

Using the above commands, we can develop most of the distributed memory ap-

plications. As we have noted, developing PVM programs, is not very different from

the usual sequential C or Fortran programming. All the PVM programs are a group

of sequential codes, with certain communication features embedded in.

Developing multithreaded programs is not as straightforward and needs certain

knowledge about the way tasks are scheduled by the operating system. Hence, the

next section gives a brief introduction to these concepts and then describes the most

common commands required to develop MultiThreaded (MT) programs.

Solaris MultiThreading Library

As mentioned earlier, we develop our shared memory implementations using Solaris

Multithreaded library. In multithreaded programs, each sub task is allotted to a

thread. So the next question: What is a Thread?

Just as multitasking operating system (like UNIX) can work on more than one

task concurrently by running more than one process, a process can do the same

by running more than a single thread. Each thread is a different stream of control

that can execute its instructions independently, allowing a multithreading process to

perform numerous tasks concurrently.

In Solaris operating system, threads are supported using the concept of Light

Weight Process (LWP). A lightweight process can be thought of as a virtual CPU that

is available for executing code. Each LWP is separately dispatched by the kernel. It

can perform independent system calls and incur independent page faults, and multiple

LWPs in the same process can run in parallel on multiple processors.

The Solaris multithreaded model can be considered as a two level model, as illus-

trated in Figure 3.3.
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Figure 3.3: The Solaris Multithreaded Architecture (Courtesy: Berg and Lewis [24])

In this model, threads are the portable application level interface. Programmers

write applications using the threads library. The library schedules the threads onto

LWPs. The LWPs in turn are implemented by kernel threads in the Solaris kernel.

These kernel threads are then scheduled onto the available CPUs by the standard

kernel scheduling routine, completely invisible to the user. Hence, for concurrent

implementation of the threads in multithreaded programs, each thread has to be

scheduled to one LWP.

With this brief introduction to the multithreading architecture, we present some

basic commands in the threads library which are frequently used in MT implementa-

tions.

* Creating threads: There is no parent/child relationship between threads as

there is for processes. Threads can be created or joined by any thread in the

process. In all our MT implementations, we use the master/slave paradigm.

The master thread usually creates the required number of slave threads with

certain features for a specific subtask. Each slave thread completes its subtask



and returns back to the master process.

The following function is used to create threads:

thr_create(void *stackbase, size_t stacksize, void *

(*start .func) (void *arg), void *argument, long flags,

thread_t *nethread);

The life of the thread begins with the successful return of the thrcreate func-

tion. The new thread calls the function defined by startfunc with one argu-

ment, arg. If more than one argument needs to be passed to startfunc, the

arguments can be packed into a structure, and the address of that structure can

be passed to arg. The other important argument to the thr_create function is

argument which specifies the type of thread to be created. To create a thread

bound to a new LWP, the argument argument should be THRNEWLWP.

The thread exits when the startfunc ends or with the call to function threxit.

Once the threads are created, the master process waits for the threads to com-

plete the execution of the startfunction and join it back. This is done using

the following function:

thrjoin(thread_t target_thread, threadt *departed, void

**status);

The thr.join function makes the calling process to wait till the completion of

the targetthread.

* Locking and UnLocking: Any concurrent program usually requires a syn-

chronization between the different threads. Recall that in shared memory sys-

tems all the threads have access to a global memory. Hence, when dealing with

global variables, without synchronization, one thread may start to change some

data just as another thread is reading it. The reader thread will get half old

data and half new data. To avoid this problem, threads must be able to reliably

coordinate their actions.



One of the ways of synchronizing is using the mutual exclusion locks. The

mutual exclusion lock provides a single, absolute owner for the section of code

that it brackets between the calls to mutexlock and mutexunlock. The first

thread that calls lock on the mutex gets the ownership, and any subsequent calls

to the lock will fail, causing the calling thread to sleep. When the owner calls

unlock, one of the sleepers is awakened, made runnable and given the chance to

ownership. Any shared global variables have to be locked before modification.

Lewis and Berg [24] report that it takes approximately 48 microsecond to process

a local mutex lock with contention by a SUN SPARC Station 10. Moreover,

some threads are put to sleep when they do not get the lock. Hence, the

use of the locks, though absolutely essential in some cases (global variables),

compromises the speed of the parallel program. Hence, care should be taken

not to use mutex locks excessively.

Locking and unlocking the code is done using the following functions:

mutexlock(mutext *mp);

mutex.unlock(mutex_t *mp);

* Barriers: In certain parallel implementations, we may require all the threads

to proceed to the next step only if they are all done until a certain point in the

algorithm. This is achieved by using a barrier. A barrier allows a set of threads

to sync up at some point in their code. A barrier has a value associated with

it. This value is initialized to the number of threads using the barrier. Each

thread reaching the barrier decrements barrier's value by 1. The barrier blocks

all the threads calling it until its value reaches zero, at which point it unblocks

them all.

Barriers are not part of the threads library, but can be implemented using

the functions available in the threads library. We implement the barrier using

condition variables.

A condition variable is a synchronization variable that allows the user to specify

arbitrary condition on which to block a thread. Condition variables always have



an associated mutex. A thread obtains the mutex associated with the condition

variable and tests the condition under the protection of the mutex. No other

thread should change the condition without holding the mutex. If the mutex is

true, the thread completes the task, releasing the mutex when appropriate. If

the condition is not true, the mutex is released for the user and the thread goes

to sleep on the condition variable. When some other thread changes some aspect

of the condition, it calls the cond-signal or cond_broadcast and wakes up the

first thread. This thread then reaquires the mutex, reevaluates the condition,

and proceeds if the condition is true.

As mentioned earlier, we implement the barrier using these condition variables.

A barrier is a C++ class with three variables: value, mutex_t mutex and

cond_t cond. The constructor of the class initializes the mutex and cond and

sets the value to the number of threads (to be synchronized). Then, at the

barrier, we use the following code segment:

mutexilock(&barrier. mutex);

barrier.value = barrier.value - 1;

if(barrier.value == 0)

{ % condition satisfied, wake up the sleeping threads

mutex_unlock (kbarrier. mutex);

condbroadcast (&barrier. cond);

}
else

{ % condition not satisfied, sleep on the condition

while(barrier.value > 0)

condwait (&barrier. cond,&barrier. mutex);

mutex unlock (&barrier .mutex);

Multithreaded programs often behave differently in two successive runs given iden-

tical inputs because of the differences in the thread scheduling order. This makes the



development and debugging of multithreaded programs more difficult than PVM pro-

grams or sequential programs.

Hence, the sequence of steps followed by any parallel program described in Chap-

ter 4 can be summed up as: start the master process with the information about

the algorithm, decomposition strategy, data set and number of processors. The mas-

ter process then decomposes the task into different subtasks, starts slaves which are

either processes (in distributed memory implementations) or threads (in shared mem-

ory implementations), allots one subtask to each slave and waits for the slave tasks

to return after completing their subtasks.

Once we have implemented a parallel program, we need certain measures to assess

the performance of this parallel program compared to the serial program. The next

section describes the various measures used to assess the performance of parallel

programs.

3.5 Performance Measures

Chabini et al [9] note that the assessment of a parallel system (a combination of

an algorithm and a parallel platform) can be done by reporting certain performance

measures for different values of the following parameters:

* The size w of the execution: This size represents a measure of the number of

basic operations performed by all processors of the parallel machine.

* Number of processors of the parallel machine used, say p.

Chabini et al [9] also note that definition of performance depends on the reason

behind using the parallel machine. In the context of this thesis, we wish to reduce

the computation time of the dynamic shortest paths algorithms. Hence, we define

the performance measures with respect to the computation time, T(w,p). Let the

time taken by the serial program to execute the same instance of the problem on the

fastest processor of the parallel system T,(w).

The following performance measures are generally used:



* Speedup S(w,p): The speedup is the ratio of the time taken by serial program

to that of the parallel program. Hence,

T,(w)
S(wp) = (3.1)

TS(wp) (w,p)

This measure is not robust, as it fails to predict the performance of the parallel

program for a larger number of processors than those available on the system.

Usually, we are faced with the following questions: What is the maximum

speedup achievable by a given parallel program? or how many processors should

we invest in? To answer these questions we require the next performance mea-

sure, introduced by Chabini et al [7].

* Relative Burden B(w,p): The relative burden measures the deviation from

the ideal improvement in time from a uniprocessor execution to a p-processors

execution normalized by the serial time:

B(w,p) T(w,p) 1 (3.2)
T,(Ww) p

Burden can be used to predict both asymptotic and maximum speedup that can

be obtained by a parallel program. The asymptotic and maximum speedup measures

are obtained in the following manner:

* Asymptotic speedup:

Equation 3.2 can be written as

S(w,p)= 1 (3.3)
1 + B(w,p) *p

For very small p, the term B(w, p) * p is small, because the overhead of par-

allelization is small (therefore, burden is small). Hence, most applications can



show an almost linear speedup for small p. From this speedup for small p, we

can not estimate what the speedup would be for a higher p. As B(w, p) increases

with p, for a large p, equation 3.3 translates to the following equation:

lim S(w, p) = (3.4)
p-+ Boo(w, p)

Thus, we can say that the asymptotic speedup of the given parallel program

is . For instance, if we observe a burden of 0.02 using 8 processors for

a certain parallel implementation, we can predict that the asymptotic speedup

that can be achieved is 1/0.02 = 50. The speedup for this instance would be ~.

7, which does not give any idea of this aymptotic speedup.

* Maximum speedup: Equation 3.2 translates to the following equation when

it is differentiated by p.

OB(w,p) _aS(w, p) 1
= + (3.5)

At maximum speedup, os(wP) O0. Thus maximum speedup can be obtained

by solving the equation ap- _ 

We report on both the above performance measures for all the parallel implemen-

tations developed in Chapter 4.



Chapter 4

Parallel Implementations of

Dynamic Shortest Paths

Algorithms

In Chapter 2, we presented the formulations and sequential algorithms used to solve

two types of dynamic shortest path problems: one-to-all dynamic shortest paths for

one departure time interval, all-to-one dynamic shortest paths for all departure time

intervals. Algorithms DOT and DOT-MinCost are used to solve all-to-one dynamic

fastest paths and all-to-one dynamic min-cost path problems respectively. They are

optimal and therefore, no other algorithm to solve these problems with a better

running time complexity can be found.

Dynamic shortest path problem is a fundamental problem in many Intelligent

Transportation Systems (ITS) models. Faster than real time solutions of dynamic

shortest path problems are critical for the operation and evaluation of Intelligent

Transportation Systems. Optimal algorithms like DOT also do not solve realistic dy-

namic shortest path problems faster than real time. Consider, for instance, the traffic

network of the city of Boston. This network can be modeled as a dynamic network

with 7000 nodes, 20000 links, 100 time intervals and 700 destinations. To solve for

dynamic shortest paths from all nodes to these 700 destinations for all the 100 depar-

ture time intervals, although optimal, algorithm DOT would require 1000 seconds on



a SUN SPARC workstation. Hence, an optimal sequential algorithm does not solve

a realistic dynamic shortest path problem faster than real time.

In Chapter 3, we introduced the concept of parallel computation. Parallel com-

putation involves using multiple processors simultaneously to solve a given prob-

lem. Hence, a given problem is divided into subproblems and each processor solves

one subproblem collaborating with other processors. We use this parallel comput-

ing paradigm to develop faster implementations of solution algorithms of dynamic

shortest paths problems.

A parallel implementation requires three components: firstly, a decomposable

solution algorithm for the problem, secondly, a strategy to decompose the operations

of this algorithm and finally, a parallel computing environment to implement the

algorithm. The algorithms we consider for decomposition are those described in

Chapter 2. In this chapter, we present the following:

* Dimensions of dynamic shortest path problems that can be used for their de-

composition

* Parallel implementations for different algorithms, decomposition strategies and

parallel computing platforms combinations.

* Extensive evaluation of all the parallel implementations.

This Chapter is organized as follows: In Section 4.1, we give an overview of all

the parallel implementations developed in this chapter. Sections 4.3 through 4.10

describe the parallel algorithms and experimental evaluation of different parallel im-

plementations. Section 4.11 summarizes this Chapter.

4.1 Parallel Implementations: Overview

In this section, we briefly review the sequential dynamic shortest path algorithms

considered for parallel implementations, then present five strategies that can be used

to decompose them. We will then discuss the issues common to all the parallel



implementations developed. The details of each specific parallel implementation will

be discussed in later sections.

As noted earlier, we use develop parallel implementations of some algorithms

presented in Chapter 2 to develop. These algorithms are:

* is-heap: Label setting algorithm using heaps to compute one-to-all shortest

paths for FIFO networks.

* lc-dequeue: Label correcting algorithm using dequeue for one-to-all shortest

paths for FIFO networks.

* dial-buckets: Dial's implementation of label setting algorithm using buckets,

again for one-to-all shortest paths for FIFO networks.

* IOT: Increasing order of time algorithm to compute one-to-all fastest paths for

non-FIFO networks.

* DOT: Decreasing order of time algorithm to compute all-to-one fastest paths for

all departure times.

Dynamic shortest path problems and and their solution algorithms can be decom-

posed along the following dimensions:

* Destination: The all-to-many dynamic shortest paths problem can be decom-

posed on the destination dimension. The idea is to divide the set of destinations

into subsets. Then, allot one subset to one processor and assign each processor

the computation of all-to-one dynamic shortest paths for its subset of destina-

tions.

* Origin: In many-to-all dynamic shortest path problems, we can use the set

of origins as a decomposition dimension. An idea similar to the one described

above for destination based decomposition strategy can be employed in this case

too.



* Departure Time: This is similar to the earlier decomposition strategies. One

or many-to-all dynamic shortest paths, for many departure time intervals prob-

lems can be decomposed along the set of departure time intervals.

* Network Topology: The network is split into subnetworks. One subnetwork

is allotted to each processor. Each processor updates the labels of only those

nodes, that belong to its subnetwork.

Parallel implementations of static shortest path algorithms using this decom-

position technique have been developed in the literature (see [18], [21]). To

the best of our knowledge, no such implementation of dynamic shortest path

algorithms has been done.

In Section 4.7, we use this technique to decompose the operations of algorithm

DOT, with a little overhead of synchronization of the threads in a shared memory

environment.

* Data Structure used in the solution algorithm: Most shortest path al-

gorithms use certain data structures, such as dequeue, 2-queue or buckets, to

compute shortest paths efficiently. These data structures offer another dimen-

sion of parallelization.

For example, in label correcting algorithms, all the nodes which are capable

of updating the labels of any node in the network are held in a list. This is

called the candidates list. In a label correcting algorithm, one would delete the

first node in the list and update the labels of the outgoing nodes of this node,

then, add the updated nodes to the candidates list. This is called processing

of a node. Next, the second node in the list is deleted and the same procedure

is repeated. In a parallel environment with p processors, upto p nodes can be

removed from the list and processed simultaneously. It is important to note

that processors should be coordinated when a label is being updated, as two

processors should not try to update that label at the same time. Bertsekas et

al [3] have developed parallel asynchronous implementations of static shortest

path algorithms based on the same idea. Ziliaskopoulos et al [30] implement



a similar decomposition technique for a dynamic fastest path algorithm. They

report a speedup of approximately 1.5 using 4 processors for a network having

500 nodes, 1250 arcs and 240 time intervals.

We designed a parallel version of algorithm IOT by decomposing the buckets

used at each time interval in this algorithm (see Section 2.5.2). The implemen-

tation of this parallel algorithm is still under development.

The above decomposition strategies can be classified into two main categories:

Application level and Algorithm level. Application level decomposition strategies are

used to decompose applications of a basic algorithm. The applications considered

here are repetitive extensions of the algorithms. For example, one way to compute

all-to-many dynamic shortest paths is to apply algorithm DOT iteratively for all the

destinations. Hence, the all-to-many shortest paths problem can be solved by an

application of algorithm DOT.

Algorithm level decomposition strategies are used to decompose the operations

of an algorithm. Hence, of the above decomposition strategies, destination, origin

and departure time interval are application level decomposition strategies. Network

topology and data structure used in a solution algorithm are algorithm level decom-

position strategies.

To develop a parallel implementation, we need a parallel computing environment

in addition to the algorithms and decomposition strategies discussed above. We

use two kinds of parallel computing environments: distributed memory and shared

memory. In a distributed memory system, each processor has its own local memory

and communicates with other processors using an interconnection network. In a

shared memory system, there is a global memory and each processor has access to

this global memory. A processor communicates with another processor by writing

into a memory location in the global memory and another processor reads from this

memory location. We studied these parallel platforms in a greater detail in Chapter 3.

A number of parallel implementations can be developed combining the above men-

tioned three components of a parallel program: algorithm, decomposition strategy



and parallel computing environment. Figure 4.1 illustrates the different parallel im-

plementations developed at the application level. Figure 4.2 demonstrates all parallel

implementations developed at the algorithm level.

DYNAMIC SHORTEST PATH PROBLEMS

MANY TO ALL MANY DEPARTURE TIMES ALLTO MANY, ALL DEPARTURE TIMES

IS HEAP(FIFO) LCDEQUEUE BUCXES(IFO) O DOT ALGORITHMS

TIME ORIGIN DESTATION TIME ORIGIN DESTINATION DECOMPOSITION DIMENSIONS

DISTRIBUTED MEMORY (PVM) SHARED MEMORY (M) PARALLEL PLATFORMS

PARALLEL ENVIRONMENTS

Figure 4.1: Application Level Parallel Implementations

All the parallel implementations are developed using a master/slave paradigm.

In this paradigm, the master process knows the whole problem, it decomposes the

problem into subproblems and spawns out slaves to solve subproblems. The slaves are

processes in distributed memory implementations and threads in the shared memory

implementations.

There is an important difference between a distributed and a shared memory im-

plementation. In order to compute shortest paths, every processor needs information

about a part of the network or complete network information, depending on the de-

composition strategy. On a distributed memory platform, each processor has its own

local memory. Hence, the network is replicated and stored in all the local memories.

In a shared memory platform, there exists one shared global memory and all the pro-

cessors have access to this global memory. Therefore, only one copy of the network

is present in the global memory and all the threads work on this copy.

For an application level decomposition strategy, all the processors need complete

network information because all of them run the same algorithm on the whole network
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Figure 4.2: Algorithm Level Parallel Implementations

for different destinations/ origins /departure time intervals. Hence, the whole network

is replicated in a distributed memory implementation. Figure 4.3 illustrates this

idea. In this figure, we illustrate the use of two processors to calculate dynamic

shortest paths from all nodes to two destination nodes, namely, node 1 and node 2.

The letters P1 and P2 denote two different processors and M1 and M2 denote the

memory systems of these processors. Processors P1 and P2 have their own copies of

the network. Processor P1 calculates dynamic shortest paths from all nodes to the

destination node 1 and processor P2 calculates shortest paths from all nodes to the

destination node 2.

Figure 4.4 illustrates the application level decomposition strategy in a shared

memory environment. In this figure, T1 and T2 are two threads calculating dynamic

shortest paths to destinations 1 and 2 respectively. As mentioned earlier, there is only

one copy of the network. It is stored in the global memory to which both threads

have access.

If we decompose by network topology, each processor in a distributed memory

implementation stores its subnetwork. The information about the boundary links

need to be communicated between the processors. While, in a shared memory imple-

mentation, all the subnetworks reside in the same memory, each thread works on its
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Figure 4.4: Illustration of implementation on a shared memory platform of an appli-
cation level (destination-based) decomposition strategy
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portion of the network. Every thread can access the information in another thread's

subnetwork.

Figure 4.5 illustrates the network decomposition technique in distributed and

shared memory environments. In this figure, we show a small test network decom-

posed into two parts. We show that in a distributed memory environment, the sub-

networks reside in two different memory units belonging to different processors. We

also see that there are some links in the network which go from one subnetwork to

the other (these are shown by dotted lines). The labels of the tails and heads of these

links need to be communicated between the two processors. In a shared memory envi-

ronment, both subnetworks are present in the same memory unit. While two different

threads work on the two subnetworks, both these threads have access to all the net-

work information. We will see that this makes the shared memory implementations

much faster than their distributed memory counterparts.

MEMORY 1 PROCESSOR I MEMORY 2 PROCESSOR 2
2 Node

Link

3 ------............-- Boundary Link

I . . Destination

CD

DISTRIBUTED MEMORY ENVIRONMENT

---------------- ,--------------------
THREAD I THREAD

I (

SHARED MEMORY ENVIRONMENT

Figure 4.5: Illustration of Decomposition by Network Topology

After this broad overview about parallel implementations, we discuss the specific



implementations in detail in the rest of this chapter. We present the master algorithm,

slave algorithm and extensive evaluation for the following implementations:

* Distributed memory application level parallel implementations,

* Shared memory application level parallel implementations,

* Distributed memory implementation of algorithm DOT by decomposition of net-

work topology,

* Shared memory implementation of algorithm DOT by decomposition of network

topology and

* Shared memory implementation of algorithm IOT by decomposition of data

structure (buckets) used in algorithm IOT.

4.2 Notation

We use the following

mentations:

G(N, A, C, D)

MP

p

P= {1,... ,p}

H

k

K = {1,... ,k}

Ki

notation in the description of application level parallel imple-

: dynamic network as defined in Section 2.3,

: master Process/ thread,

: number of processors,

: set of slave processes/ threads,

: generic algorithm,

: number of origins/destinations/departure

: set of origins/destinations/departure times
p

: subset of K allotted to slave process i, U Ki = K.
i=1

K is decomposed into Ki using the algorithm DECOMP. Let k = q * p + r, where q

is the quotient of the division of k by p and r is the remainder. Then, the algorithm

DECOMP is:



DECOMP

Set start = 1

for all i E P

if (i < r) then set end = start + q +1

if (i > r) then set end = start + q

Ki = {start,... , end}

end for

The algorithm DECOMP given above divides the set K into almost equal subsets.

But, this kind of decomposition is not efficient for the set of departure time intervals

(when the set of departure time intervals is considered as {0,... , M - 1}). It was

observed in Section 2.10 that the time required to compute the dynamic fastest paths

travel time labels decreases with the departure time interval. Hence, the above decom-

position will lead to difficult time intervals shortest path problems would go to the ear-

lier slave processes and the easier ones will go to the later slave processes. Therefore,

this creates a load imbalance. Thus, we use a round robin method to allot departure

time intervals to the slave tasks. The loads on different slave tasks are more balanced.

With this technique, task 1 computes for (1, p + 1, 2p + 1, 3p + 1,...) departure time

intervals, and task 2 computes for departure time intervals (2, p+ 2, 2p+ 2, 3p+ 2,...)

and so on.

4.3 Distributed Memory Application Level Paral-

lel Implementations

In a distributed memory implementation, the processors do not share the same mem-

ory. Each of them should have its own copy of the network. Therefore, the network

information has to be communicated to all the slave processes by the master process.

Moreover, dynamic shortest path results are stored in different memory systems.

Hence, the master process needs to collect the results from all the slave processes.

In the shared memory environments, all the threads have access to a global memory.

There is only one copy of the network and all the threads work on this network. The



results are also available in the same memory system, and collection of results is not

required. We will see that the collection of results requires some communication time

that may hinder the performance of distributed memory implementations. These may

not be as efficient as shared memory implementations.

The collection of the results by the master process can be done in two ways: One,

the slave process sends the results as soon as the computation for one value of the

decomposition dimension, say j is done. Hence, while the slave process computes

for the next value of the dimension, j + 1, the master process receives the data for

j. Two, slave process computes for all the values of the decomposition dimension

and then sends all the results once, at the end. We can see that the second strategy

leads to some idle time of the master process and the slave processes. Hence it is a

inefficient strategy. We use the first strategy to collect the results.

The algorithm used to develop a distributed memory implementation of an appli-

cation level decomposition strategy will be presented in two parts, namely, the master

process algorithm and the slave process algorithm.

4.3.1 Master process algorithm

The master process algorithm is:



Master Process (Application level parallel implementation)

1. Read the dynamic network G(N, A, C, D).

2. Decompose K into subsets Ki using algorithm DECOMP.

3. Spawn child process i,V i E P

4. Broadcast network G to all i E P.

5. For alli E P, send Ki to i.

6. While (K # k)

For all i E P

If (Ki # q) then

• Receive the dynamic shortest path labels for

dimension j E Ki from processor i.

* Ki= K- {j}, K= K-{j}.

7. Broadcast the message "quit" to all i E P.

8. Stop.

4.3.2 Slave process algorithm

The slave process algorithm is:



Slave Process (Application level parallel implementation):

/*i E P denotes a slave process */

1. Receive the network G from the master process MP.

2. Receive subset Ki from the master process MP.

3. For all jE Ki

- Run Algorithm H.

- Send the dynamic shortest path labels for dimension j

to the master process MP.

4. Wait for the message "quit" from the master process MP.

5. Stop.

4.3.3 Run Time Analysis

Let us denote by c, the average time required to communicate one unit of data between

two processors. Let O(H) denote the worst run time complexity of algorithm H.

Then, the worst case run time complexity can be given by the following proposi-

tion.

Proposition 19 The worst case run time complexity of the distributed memory ap-

plication level parallel implementation is given by:

k k
O(m M * c *logp+ Max(* n * M * c, - * O(H))) (4.1)

p p

Proof: The first term (O(m * M * c * logp)) in the worst case run time complexity

denotes the amount of time required to communicate the network to all the processors

by the master process. The amount of information to be communicated is in the order

of mM. This corresponds to the links travel times for all the time intervals. As we

broadcast the information instead of sending it to each processor, the communication

time required to send all link travel times to all the processes is O(mMc * logp).



The second term denotes the time that the slave processes take to compute the

dynamic shortest path labels and to communicate these labels to the master process.

We have noted earlier that we interleave the computation of dynamic shortest paths

and the communication of results. The total time taken to compute the dynamic

shortest paths for k dimensions by p processors using algorithm H is O( * O(H)).

The taken to communicate the results is O(knM * c). This corresponds to as nM

labels for k dimensions. As these procedures are interleaved. The worst case run

time complexity is the maximum of complexities of worst case run time complexities

of both procedures. M

In the next section, we discuss the shared memory implementation of application

level decomposition strategies.

4.4 Shared Memory Application Level Parallel Im-

plementations

In shared memory implementations, each slave task is allotted to a different thread.

In these implementations, only one copy of the network is maintained in the global

memory (see figure 4.4). As all the threads have access to all the data and results,

the master task need not collect the results from the slave processes.

4.4.1 Master thread algorithm

The master thread algorithm is:



Master Thread (Application level parallel implementation):

1. Read the network G(N, A, C, D).

2. Decompose K into subsets Ki.

3. Create child threads i, Vi E P

4. Wait for the slave threads to join.

5. Stop.

4.4.2 Slave thread algorithm

The slave thread algorithm is:

Slave Thread (Application level parallel implementation):

/*i E P denotes a slave process */

1. For all jE Ki

- Run Algorithm H for j on network G.

2. Exit

It can be seen from the above algorithms that there is no explicit communication

required in the shared memory implementations. But, the "equivalent" to commu-

nication is the contention of the threads to access the same memory location. This

increases the memory access time, and hence the running time of the parallel program.

This will be noticed in the experimental results presented in the next section.

4.4.3 Run Time Analysis

To obtain the worst case run time complexity of the above shared memory imple-

mentation, we denote the percentage of computation time lost due to contention of

threads to access a memory location by p. We assume that lp is a constant. Then,

the worst case run time complexity is given by the following proposition.



Proposition 20 The worst case run time complexity of an application level shared

memory implementation is:

0(k * O(H) * (1 + p)) (4.2)
p

Proof: The computation time required by each thread is equal to O * O(H). From

the definition of 1L, the worst case run time complexity is equal to the above result.0

4.5 Experimental Evaluation of Application Level

Parallel Implementations

4.5.1 Numerical tests and results

We have done an extensive evaluation of the above parallel implementations to un-

derstand the performance of each algorithm and to compare the performance of

the different parallel implementations of the same dynamic shortest path algorithm.

The results of the experimental evaluation and the conclusions of this evaluation

are presented below. We use two different computer systems for our evaluation:

a distributed network of Silicon Graphics Indy (SGI) workstations and a

cluster of SUN Symmetric Multiprocessors called Xolas. These aredescribed

in Section 3.2. As mentioned earlier, we use the PVM library to develop the dis-

tributed memory implementations. The Solaris MultiThreading (MT) library is used

to develop the shared memory implementations. In the plots and tables, PVM-Xolas

refers to a distributed memory implementation and MT-Xolas refers to a shared mem-

ory implementation on the Xolas system. PVM-SGI refers to a distributed memory

implementation on the network of SGI workstations. For all the parallel implemen-

tations, we show both the speedup and burden measures as a function of the number

of processors.

The evaluations done are presented below:

o Evaluation of PVM-Xolas, PVM-SGI and MT-Xolas implementations for
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all-to-many dynamic fastest path problem using algorithm DOT and

destination based decomposition strategy for a network of 1000 nodes,

3000 links and 100 time intervals: Figure 4.7a shows the speedup curves of

PVM-Xolas, PVM-SGI and MT-Xolas implementations of algorithm DOT for a net-

work of 1000 nodes, 3000 links and 100 time intervals. In Figure 4.7a, we note

that PVM-SGI implementation shows little speedup. This is due to high commu-

nication time on a distributed memory platform. PVM-Xolas implementation,

however, shows a good speedup. This is due to the faster communication speed

on a Xolas system and also to the interleaving approach used for communica-

tion of results. As expected, the MT-Xolas implementation shows significant

speedups.

Figure 4.7b shows the burden curves of PVM-Xolas, PVM-SGI and MT-Xolas

implementations of algorithm DOT for a network of 1000 nodes, 3000 links and

100 time intervals. The burden measure can be used to estimate the asymp-

totic speedup of these implementations (see Section 3.5. Figure 4.7b shows the

asymptotic speedup of PVM-SGI implementation is e 1/0.25 = 4. The estimated

asymptotic speedup of the PVM-Xolas implementation is a 1/0.01 = 100.

Evaluation of the performance of PVM-Xolas implementation for all-

to-many dynamic fastest paths problems using algorithm DOT and

destination based decomposition strategy with respect to the net-

work parameters: We have seen in the previous evaluation that the PVM

implementation on a Xolas machine shows significant speedups for a network

of 1000 nodes, 3000 links and 100 time intervals. We have also noticed earlier

that the execution time of such an implementation is a function of network

parameters (see proposition 19). Hence, we would like to see how the speedup

of PVM-Xolas implementation changes with the following network parameters:

number of nodes, number of links and number of time intervals. This evalua-

tion would help us estimate the asymptotic speedup attainable by a distributed

memory implementation on such computer systems for different sizes of net-
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works.

- Number of nodes (n): Figure 4.8 shows the variation of speedup and burden

with respect to the number of nodes in the network. Figure 4.8a shows

that the speedup decreases as the number of nodes increases. Figure 4.8b

shows that the burden increases with the number of nodes. Recall that

the time required to communicate the results to the master process is in

the order of nM. Hence, the time required for communication of results

increases with number of nodes. This explains the reduction in speedup

and increase in burden with the number of nodes.

- Number of links (m): Figure 4.9 shows the variation of speedup and burden

with respect to the number of links in the network. Figure 4.9a may lead us

to conclude that the number of links has very little impact on the speedup

achieved. We see that the speedup curves are not very sensitive to number

of links. Figure 4.9b shows significant differences in the burden values.

This figure provides us more insight on performance of this implementation

with respect to number of links, which the speedup curves do not provide.

Notice that when m is increased from 2000 to 4000, burden decreases from

0.04 to 0.02.

When m increases, the computation time increases (see Proposition 10).

We have noted earlier that the communication time is in the order of

nM. It does not depend highly on m. Recall that the burden is propor-

tional to ratio of communication time to the computation time of a par-

allel implementation. As computation time increases and communication

time remains almost the same for this implementation, burden decreases.

From the burden values, we can conclude that an estimate of asymptotic

speedups of this parallel implementation would be 50 for 4000 links.

- Number of time intervals (M): Figure 4.10 shows the variation of speedup

and burden with respect to number of time intervals. Figure 4.10a shows

that the speedup slightly decreases with the number of time intervals. As
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the number of processors we consider is small, we see an almost linear

speedup for all time intervals.

Figure 4.10b shows the burden curve for different time intervals. In this

figure, we notice that when M is increases from 100 to 300, the burden

values increase from 0.02 to 0.035. This is due to the increase in commu-

nication time with M. The estimated asymptotic speedup would be 50 for

M = 100.

* Comparison of the PVM-Xolas (without collection of results), PVM-SGI

(without the collection of results), MT-Xolas implementations for

many-to-all dynamic fastest path problems using algorithm DOT and

destination based decomposition strategy We have noticed in the ear-

lier evaluations that the communication of results back to the master process

slows down the PVM implementations. This evaluation concerns the perfor-

mance of distributed memory implementations without the collection of results

by the master process. This comparison can be useful in those network prob-

lems, where the results need not be communicated back to the master pro-

cess. Figure 4.11a and Figure 4.11b show the variation of speedup and bur-

den for PVM-Xolas (without collection of results), PVM-SGI (without

the collection of results), MT-Xolas implementations of algorithm DOT

using decomposition by destination, respectively. Figure 4.11a shows that the

speedups shown by PVM-SGI implementation are smaller than the speedups of

PVM-Xolas and MT-Xolas.This is due to the high communication latency of

the distributed network of SGI workstations. MT-Xolas implementation shows

better speedups than both PVM-SGI and PVM-Xolas implementations. This is

due to the communication requirement in the PVM implementations. Recall

that the master process needs to send the network information to all the slave

processes in a distributed memory implementation.

Figure 4.11b shows that the burden for the PVM-SGI implementation is approx-

imately 0.1. Hence, the estimated asymptotic speedup of this implementation
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is 10. Figure 4.11b also shows that the burden of PVM-Xolas implementation

is approximately 0.01. Thus, the estimated asymptotic speedup of this imple-

mentation is 100.

From the above evaluations, we conclude that PVM-SGI implementations do not

show significant speedups. Hence, these implementations are not considered

in further evaluations. With the above evaluations, we have also noted the

difference between the PVM implementations with and without the commu-

nication of results back to the master process. PVM-Xolas(with collection

of results) implementations do not show significant speedups. Hence, in the

future evaluations, only PVM-Xolas (without collection of results) imple-

mentations are considered. Also note that, from now on, PVM-Xolas implemen-

tation will stand for a PVM implementation on the Xolas machine, without the

collection of results by the master process.

e Comparison of the performance of PVM-Xolas and MT-Xolas imple-

mentations for many-to-all dynamic fastest paths problems in FIFO

networks using algorithm lc-dequeue and origin based decomposition

strategy

We have noted earlier that both distributed and shared memory implementa-

tions of many-to-all dynamic fastest paths problems can be developed by de-

composing the set of origins. Algorithm lc-dequeue has been experimentally

proved to be the best sequential dynamic shortest path algorithm to compute

one-to-all dynamic fastest paths in FIFO networks. Hence, parallel implemen-

tations of many-to-all dynamic fastest paths problems in FIFO networks have

been developed using this algorithm and a decomposition by set of origins. Fig-

ure 4.12 shows the speedup and burden curves for PVM-Xolas and MT-Xolas

implementations of many-to-all dynamic fastest paths problems in FIFO net-

works using algorithm lc-dequeue and origin-based decomposition strategy.

Figure 4.12a shows that both PVM-Xolas and MT-Xolas implementations show

almost linear speedups. Figure 4.12b shows that the burden is low for these
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parallel implementations. The asymptotic speedup is estimated to be 1/0.005

= 200.

" Comparison of the performance of PVM-Xolas and MT-Xolas implemen-

tations for many-to-all dynamic fastest paths problems in non-FIFO

networks using algorithm IOT and origin based decomposition strat-

egy

We have noted earlier that both distributed and shared memory implementa-

tions of many-to-all dynamic fastest paths problems can be developed by de-

composing the set of origins. Algorithm IOT is used to compute the one-to-all

dynamic fastest paths in non-FIFO networks. Hence, parallel implementations

of many-to-all dynamic fastest paths problems in non-FIFO networks have been

developed using this algorithm and decomposition of set of origins. Figure 4.13

shows the speedup and burden curves for PVM-Xolas and MT-Xolas implemen-

tations of many-to-all dynamic fastest paths problems in non-FIFO networks

using algorithm IOT and origin-based decomposition strategy. Figure 4.13a

shows that both PVM-Xolas and MT-Xolas implementations show almost simi-

lar speedups. Figure 4.13b shows that the burden for these implementations is

approximately 0.02. Hence, the estimated asymptotic speedup of these imple-

mentations is 50.

* Comparison of the performance of PVM-Xolas and MT-Xolas implemen-

tations for one-to-all dynamic fastest paths problems for many depar-

ture time intervals in FIFO networks using algorithm 1c-dequeue and

departure time based decomposition strategy

We have noted earlier that both distributed and shared memory implementa-

tions of one or many-to-all dynamic fastest paths problems, for many departure

time intervals can be developed by decomposing the set of departure times.

We have developed PVM-Xolas and MT-Xolas implementations of one-to-all dy-

namic fastest paths problems for many departure time intervals in FIFO net-

works by using algorithm 1c-dequeue and by decomposing the set of departure
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time intervals. Figure 4.14 shows the speedup and burden curves for these

implementations. Figure 4.14a shows that speedups of MT-Xolas imp.ementa-

tions are smaller than speedups of PVM-Xolas implementations. Proposition 20

shows that the worst case run time complexity of an application level shared

memory implementation depends on p, where p is the factor indicating the

contention of threads. In the MT-Xolas, different threads compute one-to-all

dynamic fastest paths for different time intervals, for the same origin. So, the

threads may simultaneously require the same network information. This results

in contention of threads to read the same memory location. This increases the

run time of the MT-Xolas implementation. Thus, we see lesser speedups for this

implementation. This is also seen by the very different burden curves shown in

Figure 4.14b.

Figure 4.14b shows that the burden for the MT-Xolas implementation is .

0.02. Thus, the estimated asymptotic speedup of this implementation is 50.

The estimated asymptotic speedup of PVM-Xolas implementation is 200.

e Comparison of the performance of PVM-Xolas and MT-Xolas implemen-

tations for one-to-all dynamic fastest paths problems for many depar-

ture time intervals in non-FIFO networks using algorithm IOT and the

departure-time based decomposition strategy

This evaluation is similar to the previous evaluation. In this case, we do the

evaluation for non-FIFO networks using algorithm IOT. Figure 4.15 shows the

speedup and burden curves for PVM-Xolas and MT-Xolas implementations of

one-to-all dynamic fastest paths problems for many departure time intervals in

non-FIFO networks using algorithm IOT and departure-time based decomposi-

tion strategy.

Figure 4.15a shows that MT-Xolas shows significantly smaller speedups that

PVM-Xolas implementations. This is due to the same reason described in the

previous evaluation. Figure 4.15b shows that the burden of MT-Xolas imple-

mentation is about 0.15. Hence, the estimated asymptotic speedup of this
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implementation is as low as 6.

* Evaluation of the performance of all the parallel implementations for

different algorithms, decomposition strategies combinations with re-

spect to the following network parameters: In the earlier evaluation, we

have compared the performance of PVM-Xolas and MT-Xolas implementations

for different sequential algorithms and decomposition strategies combinations.

Propositions 19 and 20 prove that the run time complexity of each parallel im-

plementation depends on many network parameters. Hence, we evaluate each

parallel implementation with respect to the following network parameters: num-

ber of nodes, number of links and number of time intervals. The conclusions of

these evaluations are not different from earlier evaluations. Hence, we present

the speedup and burden curves for all the parallel implementations for all net-

work parameters, but, do not discuss them individually. The following is the

list of figures for evaluations with respect to different network parameters.

- Number of nodes (n) (Figures 4.16, 4.19, 4.22, 4.25, 4.28, 4.31, 4.34, 4.37,

4.40, and 4.43)

- Number of Links (m) (Figures 4.17, 4.20, 4.23, 4.26, 4.29, 4.32, 4.35, 4.38,

4.41, and 4.44)

- Number of time intervals (M) (Figures 4.18, 4.21, 4.24, 4.27, 4.30, 4.33,

4.36, 4.39, 4.42, and 4.45)

4.5.2 Conclusions

The experimental evaluation of application level parallel implementations can be sum-

marized as :

* A distributed memory parallel implementation on a network of workstations

does not lead to significant speedups. This is due to the high communication

latency on a distributed network of workstations.
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* Shared memory platforms lead to significant speedups. However, care should

be taken so that there is not much contention between the threads (e.g., the

decomposition by departure time implementation, see Figure 4.15).

* Asymptotic speedups of the application level parallel implementations on shared

memory platforms for network sizes comparable to the ones evaluated varies and

is in the range 50-100.

We mentioned in section 4.1 that we consider the following dynamic shortest paths

problems, One-to-all dynamic shortest paths, for one departure time and All-to-one

dynamic shortest paths, for all departure times as basic problems. In sections 4.3 and

4.4, we discussed how the applications of these basic problems can be parallelized

on both distributed and shared memory platforms. In the rest of this chapter, we

describe the various ways in which the solution algorithms of these basic problems

can be decomposed. It is important to note that the applications of basic problems

are naturally parallel problems. Hence, they require less communication between the

subtasks. The algorithm level decomposition requires greater coordination between

the subtasks. This coordination increases the communication requirements between

the processes in distributed memory environments, which slows down such parallel

implementations. We will see that for these decomposition strategies, shared memory

platforms perform better than distributed memory platforms.

Not all the decomposition strategies can be studied under the same umbrella as the

logic behind coordination of tasks is different for different decomposition strategies.

For each of these implementations, we present the notation used in the algorithms,

the master process/ thread algorithm and the slave process/ thread algorithm.
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4.6 Distributed Memory Implementation of Algo-

rithm DOT by Decomposition of Network Top-

ology

Most shortest paths algorithms would require that the links in a network be processed

along the forward star of the origin node or the backward star of the destination

node. Algorithm DOT does not require that the links in a network to be processed in

any particular order at each time interval, hence, using the network decomposition

technique on the algorithm DOT will lead to better speedups, compared to similar

decomposition techniques on other dynamic shortest path solution algorithms.

4.6.1 Notation

More notation than the notation described in Section 4.2 is required to describe the

master and slave process algorithms. This additional notation is presented next.
p

Let N be split into Ni, such that U Ni = N. Let Pi denote the subnetwork
i=1

to which node i belongs. Hence, if a node i E Nj, then Pi = j. Let Sij be the

set of links between subnetwork i and subnetwork j, i.e., Sij = {(a, b)la e Ni,b E

Nj}. Let SD2j stand for the set of travel times of the arcs belonging to Si. Hence

SD2 = {dab(t)(a,b) e Sij, O < t < M - 1}. Therefore, the set Sii contains the

arcs in the subnetwork of slave process i. Let 7ri(t) denote the minimum travel time

from node i to the destination node q departing at time t. Let S'rm denote the set

of start nodes of all the arcs belonging to set Sij. Hence, Sirm = {al(a, b) E Sij}.

Similarly, let S]tj denote the set of end-nodes of all the arcs belonging to set Sij, hence,

Stj = {b (a, b) E Sij}. We can see that SI'r C Ni and StI C Nj.

4.6.2 Master process algorithm

The algorithm used for computing the fastest paths from all the nodes to a given

destination by the master process is:
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Master Process

1. Read the n

2.

etwork G(N, A, C, D).

Compute rir (M - 1) = StaticShortestPath(N, A, D), Vi E N.

Divide N into p subsets Ni, Vi e P.

For all (i, j) E A

set 1 = Pi and m = Pj

Sim = Sim U (i, j)

4. Spawn p slave processes.

6. For all ieP

Send Sij to slave process i for all j E P.

Send Sji to slave process i for all j E P.

Send Dij to slave process i for all j E P.

Send to slave process i, destination q

Send to slave process i, r,(M- i), Vs E Ni

7. For all iEP

Receive Irj(t), Vj E Ni, Vt, 0 < t < M- 2

8. Broadcast the message "quit" to all slave processes.

9. Stop.

4.6.3 Slave process algorithm

The algorithm used for computing the fastest paths from all the nodes to the desti-

nation by a slave process is:
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Slave Process (DOT-Fastest Paths)

Let the Slave Process id be i, iE P

1. For all jEP

Receive Sij, Sji and Dij from the master process MP.

2. Receive destination q from the master process MP

3. Receive 7r,(M - 1) for all s E Ni from the master process MP

4. Set r,(t) =oo Vt, O < t < M - 1, sE N - {q}

5. For t = M-2 downto 0

5.1 For all (a, b) E Sii

Set T = t + db(t)

7 = min(T, M - 1)

7ra(t) = min(ra(t), db (t) + rb(T))

5.2 For all jE P,j i

Send ar(t), Va e Sf to process j

5.3 For all jEP,j7i

Receive 7r(t), Va E So, from process j

For all (a,b) E Sij

Set = t+d db(t)

7 = min(T, M - 1)

7r(t) = min(ra(t), da(t) + rb(T))

6. Send ra(t),VaE Ei, Vt, 0 5<t <5M-2

7. Wait for message "quit" from MP.

8. Stop.
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The performance of the above algorithms depends on how the network is decom-

posed. We use the graph partitioning software package called METIS developed at Uni-

versity of Minnesota to decompose the network. For more information on this pack-

age, please refer to the URL http.//www-users.cs. umn.edu/karypis/metis/metis.html.

This software is used to partition the network with n nodes into p parts, each of them

having equal number of nodes.

Following are statistics of results obtained using METIS. To decompose a network

of 3000 nodes and 9000 arcs into 2 parts. The first part has 3504 links and the second

part has 3518 links. There are 1020 links going from sub network 1 to subnetwork

2, and 958 going from subnetwork 2 to subnetwork 1. For the algorithms above, at

every time interval, the slave process needs to send and receive information about the

boundary links from or to all the other processes. Hence, in the above example, at

every time interval, process 1 needs to send labels of 958 nodes to process 2 and receive

information about 1020 nodes from process 2, and vice-versa for process 2. Moreover,

the information about the network needs to be sent by the master process to all the

slave processes and all the slave processes need to send the computed labels back to

the master process. Hence, a great amount of communication is required between

the slave processes and the master process. This makes the distributed memory

implementation slow. It may even be slower than sequential computation. Note

that an MT shared memory implementation would suffer less from this coordination

requirement.

4.6.4 Run Time Analysis

Let us by c denote the average time taken to communicate one unit of data between

two processors. Then, the worst case run time complexity of the parallel implemen-

tation presented in the previous section is given by the following proposition.

Proposition 21 The worst case run time complexity of the distributed memory im-
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plementation of algorithm DOT by decomposition of network topology is given by:

n m n c,(p- 1)
O(mM * c + O(SSP) + (- + -- + + n * c) * M), (4.3)

p p p

where O(SSP) is the worst case run time complexity of the static shortest path algo-

rithm used.

Proof: The master process should communicate the subnetwork to each slave

processor and compute static shortest paths for time interval t = M - 1 (O(SSP)).

The total amount of information to be sent to all the processors is in O(mM). From

the definition of c, the time taken to communicate the network information is O(mM

c). The slave process should initialize labels (m), process M links, communicate the

labels of the boundary nodes (nC) to other processors(p - 1) for each time interval

and send the labels of its nodes for all time intervals (n * c * p). Hence, the worst

case run time complexity of the distributed memory implementation is O(mM * c +

O(SSP) + (!I +M + nc,(p-1) + *c) * M).

4.7 Shared Memory Implementation of Algorithm

DOT by Decomposition of Network Topology

In the shared memory implementations, the network is stored in one global mem-

ory. Hence, the shared memory implementations lead to a significant speedup of the

algorithm DOT.

4.7.1 Notation

We use the same notation as used for the distributed memory implementation (see

Section 4.6.1). It is important to note that all the threads need to be synchronized for

every time interval. In a decreasing order of time algorithm, the labels of nodes for

time interval t should be set before computing labels for time interval lesser than t.

For this synchronization, we use a synchronization barrier as described in page 79. Let
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us denote by SYNCRONIZATIONBARRIER(x), the function that synchronizes

x threads.

4.7.2 Master thread algorithm

The algorithm of the master process is:

Master Thread

1. Read the network G(N,A,C,D).

2. Compute r(M - 1) = StaticShortestPath(N, A, D), Vi E N.

3. Initialize labels : 7ri(t) = oo, Vi E N - {q}, Vt E [0,..., M - 2],

rq(t) =, Vt, 0 < t < M- 2

Divide N into p subsets

For all (i,j) E A

set l= Pi , m = P

Sim = Sim, u (i, j)

Create p slave threads

N, Vi EP.

7. Wait for all the threads to join back.

8. Stop.

4.7.3 Slave thread algorithm

The sequence of steps used by the slave process is :
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Slave Thread

/* i E P is the slave process *I

1. For t = M-2 downto 0

1.1 For all (a, b) Sj

* Set 7r=t+dab(t)

* 7 = min(r, M - 1)

* ra(t) = min(ra (t), dej(t) + 7rb(T))

1.2 For all jE P, j #i

* For all (a,b) E Sij

* Set T=t+dab (t)

* 7 = min(r, M - 1)

. 7ra(t) = min(ira(t), dab(t) + rb(r))

1.3 SYNCHRONIZATION_BARRIER(p)

2. Exit

From the above algorithms, it is clear that the only overhead of parallelization in a

shared memory implementation is the synchronization barrier at every time interval.

If the load on each thread is balanced, the lost time at the barrier is minimum. Hence,

it will be seen that the shared memory implementation shows significant speedups.

4.7.4 Run Time Analysis

Let us denote the average time lost at the synchronization barrier for every time

interval by r. Let us denote the percentage of computation time lost due to contention

of threads to access the same information from the global memory by it. Hence, the

worst case run time complexity of the above implementation is given by the following

proposition.
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Proposition 22 The worst case run time complexity of shared memory implemen-

tation of algorithm DOT by decomposition of network topology is:

O(nM + SSP + (( + q) * M)(1 + p)) (4.4)

Proof: The time taken by the master process to initialize labels and to compute

static shortest paths for time interval t = M - 1 is O(nM + SSP). The time taken

by the threads to compute the dynamic shortest path labels is ' * M as the numberp
of links to be processed by each thread is equal to the m. The time taken at the

synchronization barrier for all the time intervals is O(,q*M). Then, from the definition

of p, it follows that the time taken to compute dynamic shortest path labels by each

thread is O(((2 + r) * M)(1 + ip)).

Two more points need to be noted about the parallel implementations based

on network topology decomposition. First, the static shortest path computation

for time interval t = M - 1 is not done in parallel. Any parallel implementation

of static shortest path algorithms available in the literature can be used for this

purpose. Second, an ideal network partitioning algorithm should split the network

into balanced subnetworks. That is, for each subnetwork, the sum of number of

links within the subnetwork and the number of its boundary outgoing links should

be equal. The problem of partitioning the network satisfying this condition is an

NP-Hard problem. Hence, we use an existing graph partitioning software (METIS)

to decompose the network. Note that any other network partitioning algorithm can

be used to decompose the network, and the results obtained may be different from

those presented in this chapter.

4.8 Experimental Evaluation of Algorithm Level

Parallel Implementations

The distributed and shared memory implementations of the network decomposition

strategy have been extensively evaluated. We discuss the evaluation procedure and
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the conclusions of this evaluation in this section. We use the same notation for imple-

mentations as discussed in the Section 4.5. As the static shortest path computation

for the time interval t = M - 1 is not done in parallel, the execution time used to de-

rive the performance measures in the following implementations is the total execution

time minus the time required for static shortest path computation.

4.8.1 Numerical tests

Following are the evaluations that were conducted:

" Comparison of the performance of PVM-SGI, PVM-Xolas and MT-Xolas

implementations of algorithm DOT using network decomposition for

a network of size n = 1000, m = 3000, M = 100 : Figure 4.46 shows the

speedup and the burden for all parallel implementations of algorithm DOT us-

ing network decomposition. Figure 4.46a shows that the distributed memory

parallel implementations are slower than the sequential implementations. This

is due to the high communication requirements of the distributed memory im-

plementations. Figure 4.46a also shows that MT-Xolas implementation leads to

good speedups. Figure 4.46b show that burden of MT-Xolas implementation is

0 0.05. Hence, the estimated asymptotic speedup of this implementation is 20.

* Evaluation of the performance of the MT-Xolas implementation of al-

gorithm DOT using network decomposition, with respect to different

network parameters : Proposition 22 proves that the shared memory imple-

mentation of algorithm DOT is dependent on the following network parameters:

number of nodes, number of links and number of time intervals. We evaluate

the performance of the MT-Xolas with respect to these network parameters.

- Number of Nodes (n): Figure 4.47 shows the speedup and burden curves

for the MT-Xolas implementation of algorithm DOT using network decom-

position with respect to the number of nodes. Figure 4.47a shows that

the performance of the MT-Xolas implementation is not highly sensitive to

this parameter.
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- Number of Links (m): Figure 4.48 shows the speedup and burden curves

for the MT-Xolas implementation of algorithm DOT using network decompo-

sition. Figure 4.48a shows the speedup decreases slightly with the increase

in the number of links.

- Number of Time Intervals (M) Figure 4.49 shows the speedup and burden

curves for different time intervals. Figure 4.49a shows the speedup de-

creases with number of time intervals. The time taken for synchronization

of threads is given by r * M, where 77 is the average time lost at the syn-

chronization barrier for every time interval. Hence, as M increases, this

time loss increases. Thus, as M increases, speedup shown by MT-Xolas

implementation decreases.

4.8.2 Conclusions

The above experimental evaluation can be summarized as :

* Distributed memory implementations on both the network of SGI workstations

and a SMP machine are slower than the sequential implementations due to high

communication requirements of this decomposition strategy.

* Shared memory implementations lead to a speedup of e 4.5 for a network

similar to a traffic network, for 6 processors. Hence, this implementation has

an asymptotic speedup of about 20 . Only algorithm DOT leads to such a high

speedup with this decomposition technique.

In the above sections, we have discussed the different ways algorithm DOT and its

applications may be parallelized. Extensive evaluation of the parallel implementations

of algorithm DOT shows promising results.

Let us assume that we have as many number of processors as we want. Then, is

there an efficient massively parallel implementation of algorithm DOT. Hence, we would

like to find out the idealized maximum speedup that can be obtained for algorithm

DOT on a "ideal parallel computer" which will be defined in the next section.
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Hence, in the next section, we first define an "ideal parallel computer" and then

develop a parallel implementation for algorithm DOT suitable to such a parallel com-

puter.

4.9 Idealized Parallel Implementation of Algorithm

DOT

We define an ideal parallel computer as a shared memory parallel computer having

as many processors as required by the parallel algorithm and with the memory ac-

cess time as a constant regardless of the number of processors in use. In the next

subsection, we discuss the notation used to describe the parallel DOT algorithm.

4.9.1 Notation

In describing the parallel algorithm designed for this ideal parallel computer, we use

statements of the general form given in expression 4.5

for x E S in parallel do statement(x) (4.5)

This parallel statement means that we assign a processor to each element x of set S,

and then carry out in parallel the instructions in statement(x) for every such element,

using x as the data.

The ideally parallel DOT algorithm is referred to as DOT-parallel. In DOT-parallel,

we use a technique similar to the network decomposition technique. We use m pro-

cessors to run the main loop of algorithm DOT. Each link in the network is allot-

ted to one processor. We use nM processors to initialize the labels for all nodes

at all time intervals. We assume a parallel static shortest path algorithm called

StaticShortestParallel(7r, q) which returns the all-to-one static shortest paths in the

minimum time possible. The input 7r to this algorithm denotes the link costs while q

denotes the destination.
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4.9.2 Algorithm DOT-parallel

The algorithm DOT-parallel is:

Step 0 (Initialization):

V(i $ q) V(t < M - 1) in parallel do ri(t) = oo

V(t < M - 1) in parallel do irq(t) = 0 (4.6)

i(M- 1) = StaticShortest(dij (M - 1), q, p) Vi

Step 1 (Main Loop):

For t = M- 2 down to 0 do

For (i, j) E A in parallel do

ij = dij (t) + rj (t + dij (t)) (4.7)

For i E N in parallel do

(ri(t) = min ij
jEA(i)

In algorithm DOT-parallel, the maximum number of processors required at any

instant of time is nM (to initialize the labels of all nodes for all time intervals). All

threads first compute label (dji(t) +ir(t+dii(t))) and store it in a temporary variable,

5Oi. Then, the minimum label for all the nodes is computed in parallel.

Brassard and Bratley [5] show that the minimum of n numbers can be computed

using log n operations. They use a maximum of n/2 processors and a binary tree

representation to compute the minimum. For completeness, we describe this proce-

dure to compute minimum in the next section. The same procedure can be used to

compute the minimum label of each node in algorithm DOT-parallel.

4.9.3 Computing the minimum using a complete binary tree

This technique to compute the minimum is illustrated by an example. Suppose we

want to compute the minimum of n integers. Assume that n is a power of 2. If it is

not, the required number of very large integers can be added to the data set. The n
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elements are placed at the leaves of a complete binary tree, as illustrated in Figure 4.6.

In the first step, the minimum of the elements lying beneath each internal node at

level 1 are calculated in parallel. In the second step, the minimum of elements lying

beneath each internal node at level 2 are calculated in parallel; and so on, until at

the (log n)th step, the value obtained at the root gives the minimum of all n integers.

LEVEL 2 4 SEP 2

LEVEL 1 4 6 2 STEP 1

9 4 12 6 1 14 2 3

Figure 4.6: Computing Minimum with a Complete Binary Tree

4.9.4 Run time analysis of algorithm DOT-parallel

We use the binary tree technique described in the previous subsection to compute

the minimum for each node at every time interval in algorithm DOT-parallel. The

worst case run time complexity of algorithm DOT-parallel is given by the following

proposition.

Proposition 23 The worst case run time complexity of algorithm DOT-para IleL is

O(PSSP+M*log k), where PSSP is the best possible worst case run time complexity

of a parallel static shortest path algorithm and k is the maximum out-degree of the

network (i.e., the out-degree of a node if the number of outgoing links of a node).

Proof: The complexity can be computed in a straightforward manner by counting

the number of operations. As the initialization of labels is done in parallel using

nM processors, this step takes constant time. By the definition of PSSP, the static

shortest path computation for time interval t = M - 1 is in O(PSSP). In the

main loop, computing the labels (0ij) requires constant time as m processors are
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used on a ideal parallel computer. The maximum number of operations required

to computes the minimum for each node is log(max(IA(i)l)). Recall that we use
iEN

the procedure described in Section 4.9.3 to compute the minimum. The maximum

number of outgoing links of a node in the network is in the order of the maximum

out-degree of the network (k). Hence, the complexity of the main loop is O(M, log k).

Thus, the worst time complexity of algorithm DOT-parallel is O(PSSP+ M * log k).

O]

Note that the maximum value of k is n - 1 as the maximum possible number

of links in the network is n(n - 1). Thus, the order of algorithm DOT-parallel is

O(PSSP + M * log n).

For a traffic network, the maximum degree is usually 3. Hence, the worst case run

time complexity of algorithm DOT-parallel for such networks will be O(PSSP +

M). The idealized maximum speedup for algorithm DOT is given by the following

proposition.

Proposition 24 The algorithm DOT-paralle is approximately 1  times faster

that algorithm DOT. Hence, the idealized maximum speedup of algorithm DOT is .

Proof: The worst case run time complexity of algorithm DOT is O(nM+mM+SSP),

where SSP is the worst case run time complexity of the static shortest path algorithm

(see Proposition 10). In Proposition 23, we proved that the worst time complexity of

algorithm DOT-parallel is O(PSSP + M * log k), where PSSP is the order of best

parallel static shortest path algorithm. Assuming that the time required to compute

the static shortest paths is an order of magnitude lesser than the computation time

of the main loop in algorithm DOT and DOT-parallel, we can see that algorithm

DOT-parallel is ' times faster than the sequential algorithm DOT. Hence, the

speedup of algorithm DOT-parallel is. .

We have noted earlier that a data structure used in the solution algorithm of the

problem can be used as a decomposition dimension. In the section, we describe a way

of parallelizing algorithm IOT by decomposing the buckets used at each time interval

in algorithm IOT.
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4.10 Shared Memory Implementation of Algorithm

IOT by Decomposition of Data Structure

Algorithm IOT is used to compute one-to-all dynamic fastest paths for one departure

time interval(see Section 2.5.2). Recall that in algorithm IOT, we maintain a list of

nodes that have been reached for each time interval and process only those nodes at

each time interval. These lists of nodes were called buckets. In this parallel implemen-

tation, we decompose the computation for buckets. In the sequential implementation,

one node from the bucket is removed and processed. In the parallel implementation

using p processors, at most p nodes are removed and processed simultaneously. The

processing of nodes requires synchronization between the processes. In this section,

we present the master thread and slave thread algorithms for this parallelization strat-

egy. Parallel implementation of this algorithm is under development at the time of

writing of this thesis., We do not discuss its experimental evaluation in this thesis.

4.10.1 Notation

We use the same notation used to describe algorithm IOT in Section 2.5.2. Let x

denote a mutex lock(see Section 3.1 for information on mutex locks). Then, we

assume that function lock(x) obtains a mutex lock x. Also, let function unlock(x)

unlock the mutex lock x. The thread that obtains the lock x first is the sole owner

of the code segment between the calls to functions lock(x) and unlock(x). Another

thread requesting the lock will be made to sleep till the first thread unlocks the lock

x. One lock is associated with each global variable. Hence, if a global array variable

X has x elements, lock X(i) denotes the lock associated with the ith element of X.

Thus, if one thread tries to change the variable X(i), it should request the mutex

lock X(i) using the function call lock(X(i)).

Note that in algorithm IOT, all the threads should complete computation for one

time interval t before proceeding to the next time interval. We use a synchronization

barrier to synchronize all the threads at the end of every time interval. Thus, we as-
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sume a function SYNCHRONIZATIONJ3ARRIER(x) that does this syncronization.

This function is similar to the one described in Section 4.7.1. The variable x denotes

the number of threads that need to be synchronized at the barrier.

The decomposition dimension in this implementation is the bucket Q(t). Hence,

let us assume that we have a function ithPartO f (X, i, p), which runs algorithm DE-

COMP(see Section 4.2) to decompose the set X into p parts and returns its ith part.

The master thread and the slave thread algorithms are described using this nota-

tion in the next two subsections.

4.10.2 Master thread algorithm

In this parallel implementation, the master thread needs to initialize variables, create

slave threads, wait for the slave threads to return and compute static shortest paths

for time interval t = M - 1, if necessary. The master thread algorithm is:
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Master Thread Step 0 (Initialization):

fi=oo, Vi EN - {s}

wi(t) = oo, Vi E N and to. t < M

v,(t.) = 0

f, =O0

Q(to) = {s}
S= {s}

Step 1 (Creating and Waiting for Threads):

Create p slave threads

Wait for p threads to join back

Step 2 (Static Shortest Path Computation for t > M - 1):

if (ISI < n)
a = SSP(G, d(M - 1),w i(M - 1), s)

for all i V S

fi = oi

4.10.3 Slave thread algorithm

The slave thread starts running the function IOTthread(i), where i is the id number

of the slave thread. The slave thread algorithm is:
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/* i E P be a slave process */

For t=to...M-1

Qi(t) = itPartOf(Q(t), i)

For all iEQi(t)

if (i V S) then

lock(S)

S = SU {i)

unlock(S)

if (ISI = n) then

Wake threads sleeping at the SYNCHRONIZATION BARRIER

RETURN.

For all je A(i)

r = min(M - 1, t + dij (t)) (4.8)

lock(wj ())

if (wj (r) = oo) then

lock(Q(T))

Q(7) = Q(7) U {j}
unlock(Q(7))

Wj(7) = r - to

lock(fj)

fj = min(fj, r)

unlock(fj)

unlock(wj (7))

if (1SI < n)

SYNCHRONIZATION_BARRIER(p)

The speedup of the above algorithm is highly dependent on the number of elements

present in the bucket at any time interval. This number depends on the network

topology and also on the values of link travel times. As noted earlier, this algorithm

is still under development. Hence, an evaluation of this algorithm for test networks
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is not presented in this thesis.

4.11 Summary

The discussion in this chapter can be summarized as:

* Dynamic shortest path problems may be decomposed for parallel implementa-

tios along five dimensions: (1) destination, (2) origin, (3) departure time inter-

val, (4) network topology and (5) data structure used in the solution algorithm

of the problem. We identified two levels of parallel implementations:

- Application level: Destination, origin and departure time are the applica-

tion level decomposition strategies.

- Algorithm level: Network topology and data structure are algorithm level

parallel implementations.

* Both applications level and algorithms level parallel implementations for algo-

rithms is-heap, lc-dequeue, dial-buckets, IOT and DOT are developed for

both shared and distributed memory platforms.

* Extensive testing of the parallel implementations on random networks indicate

that shared memory platforms lead to significant speedup of optimal sequential

dynamic shortest path algorithms.

* The shared memory parallel implementation of algorithm DOT using network

decomposition leads to better speedups than the parallel implementations of

other dynamic shortest path algorithms using the same decomposition strategy.

* The idealized maximum speedup of algorithm DOT is proved to be approximately

equal to m, where m is the number of links and k is the maximum out-degree

of a node in the network.
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Figure 4.7: Decomposition by Destination(with collection of results by the master
process in PVM implementations)
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Figure 4.11: Decomposition by Destination(without collection of results by the master
process in PVM implementations)

130

5PVMSGI
PVMT-Xolam

, , , - ols

^--I'
4.5 5 55 5 55



3 35 4 4.5 5 55
NuMberSt P0m0M

1000 0e4 3000 In s, 100 Time S'W4l # 100 Ongin

(a) Speedup (b) Burden
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Figure 4.18: Performance of (PVM (without collection of results by the master pro-

cess), Destination, DOT) Implementation: varying number of time intervals
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Figure 4.19: Performance of (MT, Destination, DOT) Implementation: varying number
of nodes
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Figure 4.20: Performance of (MT, Destination, DOT) Implementation: varying number
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Figure 4.21: Performance of (MT, Destination, DOT) Implementation: varying number
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Figure 4.24: Performance of (PVM, origin, 1c-dequeue) Implementation: varying
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Figure 4.25: Performance of (PVM, origin, IOT) Implementation: varying number of
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Figure 4.26: Performance of (PVM, origin, IOT) Implementation: varying number of
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Figure 4.27: Performance of (PVM, origin, IOT) Implementation: varying number of
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Figure 4.29: Performance of (MT, origin, lc-dequeue) Implementation: varying num-
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Figure 4.30: Performance of (MT, origin, lc-dequeue) Implementation: varying num-

ber of time intervals
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Figure 4.31: Performance of (MT, origin, IOT) Implementation: varying number of
nodes
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Figure 4.32: Performance of (MT, origin, IOT) Implementation: varying number of

links
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Figure 4.33: Performance of (MT, origin, IOT) Implementation: varying number of
time intervals
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Figure 4.34: Performance of (PVM, Departure Time, lc-dequeue) Implementation:
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Figure 4.35: Performance of (PVM, Departure Time, Ic-dequeue) Implementation:
varying number of links
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Figure 4.36: Performance of (PVM, Departure Time, ic-dequeue) Implementation:
varying number of time intervals
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Figure 4.37: Performance of (PVM, Departure Time, IOT) Implementation: varying
number of nodes
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Figure 4.39: Performance of (PVM, Departure Time, IOT) Implementation: varying
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Figure 4.41: Performance of (MT, Departure Time, Ic-dequeue) Implementation:
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Figure 4.42: Performance of (MT, Departure Time, 1c-dequeue) Implementation:
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Figure 4.43: Performance of (MT, Departure Time, IOT) Implementation: varying
number of nodes
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Figure 4.44: Performance of (MT, Departure Time, IOT) Implementation: varying
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Figure 4.45: Performance of (MT, Departure Time, IOT) Implementation: varying
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Chapter 5

Application of Dynamic Shortest

Paths Algorithms to the Solution

of Dynamic Traffic Assignment

Models

5.1 Introduction

In the recent years, there has been an increasing interest in Intelligent Transporta-

tion systems (ITS) concepts and applications. The goal of ITS is to improve mobility,

safety, air quality and productivity. This is achieved by using traffic control and man-

agement strategies such as pre-trip or en-route route guidance, signal optimization

and ramp metering.

Advanced Traffic Management Systems (ATMS) and Advanced Traveler Informa-

tion Systems (ATIS) are the two building blocks of ITS. One of the integral parts of

ATMS/ATIS is its capability of routing vehicles in response to changing traffic condi-

tions. To support the evaluation and operation of ATMS/ATIS, models that predict

future traffic conditions are required. Dynamic Traffic Assignment (DTA) models are

used for this purpose. Dynamic traffic assignment models are developed using two
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main approaches: analytical( [8], [27]) and simulation( [2], [20]). In this chapter, we

apply the optimal dynamic shortest path algorithms developed in Chapter 2 to the

solution of analytical dynamic traffic assignment models. For this application, we use

the DTA framework, solution algorithms and computer implementations developed

by Chabini and He [8].

For efficient solutions, the DTA model proposed by Chabini and He [8] works on

only on a subset of paths in the network. The DTA model uses a time-dependent

path generation component to change this subset of paths by adding a new path to

the subset when the new path becomes competitive. The eligibility of the new path

can be decided based upon a variety of criteria.

The existing implementation of the DTA software in Chabini and He [8] and

He [19] does not integrate the time dependent path generation component. In this

implementation, the subset of paths is assumed to be fixed and is not altered. We

develop one way of implementing time dependent path generation component. Algo-

rithm DOT is used to generate dynamic fastest paths for each OD pair and each time

interval. These paths are added to the subset of paths, if they are not already present.

In this chapter, we describe the implementation of time-dependent path generation

component in detail. We conclude that the existing array representation of the paths

storage data structure is not suitable when a dynamic set of paths is required. Hence,

we design a new representation of this data structure which is more suitable for this

purpose.

This chapter is organized as follows: Section 5.2 describes the conceptual frame-

work for analytical dynamic traffic assignment problem developed by Chabini and

He [8]. Section 5.3 describes the data structures used to store paths in the existing

implementation of the DTA model. Section 5.4 describes the integration of the dy-

namic shortest path algorithms into this DTA framework. We also present details of

computer implementation of this integration. Section 5.5 presents the experimental

evaluation of this computer implementation. Section 5.6 presents the new representa-

tion of the paths storage data structure Finally, Section 5.7 summarizes this chapter.
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5.2 A Conceptual Framework for Dynamic Traffic

Assignment Problem

A modeling framework for the dynamic traffic assignment problem, as given by

Chabini and He [8], is shown in Figure 5.1. This framework contains:

* Users' Behavior Model Component : This component takes as input the

dynamic Origin-Destination(O-D) trips and the subset of paths between each

O-D pair. The dynamic O-D trips are the time-dependent traffic demand for

each O-D pair. The users' behavior model component then assigns the dynamic

O-D trips among the subset of paths according to users' route choice behaviors.

Chabini and He [8] model three classes of users' route choice behaviors. They

are:

- Class 1: This class of users are those who either do not have real-time

traffic information and use their habitual routes, or those who disregard

the information and continue to use their habitual routes. Therefore, the

departure flow of each path is known.

- Class 2: This class of users can be used to describe users who receive

or have partial traffic information about the network conditions and de-

termine their routes based on their "perceived" rather than actual travel

times. Thus, each users' perceived travel time is a random variable with

certain distribution.

- Class 3: This class of users are those who choose routes with minimum

travel time. These users have access to real-time traffic information and

fully comply with the route guidance. Therefore, the routes used by this

type of users have minimum actual travel time.

* Dynamic Network Loading Model Component : The path flows obtained

from the users' behavior model and the link performance models are used as

input to the network loading model. This generates the link-based network
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conditions, which are then used to compute the path-based network conditions

such as path travel times. These path travel times can be used for two purposes,

First, they are used as an input to the users' behavior model to assign O-D trips.

Second, which is more relevant in this thesis, they are used by the dynamic

shortest paths algorithm to generate the paths that need to be added to the

original subset of paths. There are two approaches to solve the network loading

model : simulation models [29] and analytical models [8]. Chabini and He [8]

use analytical models.

* Link Performance Model Component: This component is used by the

network loading component to generate the link performance measures, such as

link travel time, generalized cost etc.

* Time-Dependent Path Generation Model Component: This is the com-

ponent which dynamically generates the subset of paths based on certain crite-

ria. As mentioned earlier, the computer implementation developed in Chabini

and He [19] does not include this component. In the rest of the chapter, we

demonstrate one way of incorporating this component in the solution of analyt-

ical DTA models.

The implementations in Chabini and He [8] achieve computational efficiency by

using certain efficient data structures. A good understanding of these data structures

is needed to incorporate the time dependent path generation component. Hence, the

data structures relevant to the path generation component are discussed in the next

section.

5.3 Subpath Data structure

One of the major challenges in the computer implementation of the solution algorithm

of DTA models is the representation of paths. There are a large number of paths in

a network. Hence, storing and processing them should be as efficient as possible.
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Figure 5.1: A Framework for Dynamic Traffic Assignment Models

A path is a sequence of links. One approach to store a path is to store its sequence

of links in a array. In such a representation, paths are independent from each other.

This representation is not efficient because it may lead to multiple storing of the same

link, as many paths may share that link. For example, the network in Figure 5.2 has

two O-D pairs (1, 5) and (2, 5) with one path between each of them. An independent

array representation of paths would be [1,3,4] for OD pair (1,5) and [2,3,4] for OD

pair (2,5). In this example, links 3 and 4 are shared by both paths and are repeated

in this array representation of paths.

Chabini and He [8] develop a new data structure called subpath data structure

to represent paths. The main idea behind this data structure is not to repeat the

shared part of paths in the representation of paths. This idea is explained using an

example. Table 5.1 shows the subpath table for the network in Figure 5.2.

Each of the original paths in the network is given an id number. In Table 5.1,

the path [1,3,4] is given id 0. The sequence of links in this path can be obtained

by going through the subpath table. As the subpath number of [1,3,4] is 0, the first

link is at position 0 in the subpath table. The next link of this subpath is 1 and its

next subpath number is 2. The subpath number 2 gives the next link as 3. The next
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subpath number of the subpath 2 is 3. The subpath number 3 gives the next link

as 4. For this subrpath, the next subpath number is -1, which indicates the end of

the path. Notice that links 3 and 4 are stored only once in the subpath table. The

subpath table avoids link repetitions when two or more paths to a destination node

share the same subpath to that destination node.

1r Link Number

3 3 4

2

2

Figure 5.2: A simple network to illustrate the subpath table data structure

subpath number next-link next-subpath

0 1 2
1 2 2
2 3 3
3 4 -1

Table 5.1: The subpath table for the network shown in Figure 5.2

A subpath data structure can be represented in a computer memory as a two

dimensional array or as a tree. In the computer implementation developed by Chabini

and He [8], the subpath data structure is stored as a two dimensional array and it

is called as sub path table. We will see that the two-dimensional array is not

efficient when the set of paths is dynamic. This is due to the static nature of an array

representation. Adding an entry to the subpath table requires O(p) operations, using

this representation, where p is the size of the subpath table.

Hence, we then designed the tree representation of the sub path data struture in

Section 5.6.
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5.4 Integration of Dynamic Shortest Path Algo-

rithms into Analytical Dynamic Traffic Assign-

ment Model Framework

It was noted that considering all the paths in the network by a DTA solution algorithm

is not efficient. Hence, an efficient algorithm would first start with a subset of paths

and then use a time dependent path generation component to update its subset of

paths. The time dependent path generation component generates new paths. These

paths may be added if certain criteria are satisfied.

In the implementation presented in this chapter, a new path is added between one

OD pair if it is faster than the existing paths between that OD pair. This condition is

chosen because equipped users (such as class 3 users described in Section 5.2) usually

request for shortest paths in the network. We use algorithm DOT to compute the

fastest paths because this algorithm is proved to be optimal (see Chapter 2)

To integrate dynamic shortest path algorithms into the existing DTA framework,

we need two algorithms. First, an algorithm to update the subset of paths. Second,

an algorithm to incorporate the time dependent path generation component into the

existing DTA framework. The algorithm used to update the subset of paths is called

UPDATE. The algorithm used to integrate the time dependent path generation compo-

nent into the existing DTA framework is called INTEGRATE. We present the notation

used in the algorithms, and the statements of algorithms UPDATE and INTEGRATE

algorithms in the rest of this section.

5.4.1 Notation

Let us denote the dynamic network by G(N, A, D, C) as discussed in Section 2.3.

Recall that N is the set of nodes in the network, A is the set of arcs, D is the set

of time dependent link travel times and C is the set of link costs. Also, recall that

dij(t) denote the travel time on link (i, j) during time interval t. The number of time

intervals is denoted by M. So t belongs to {0,... , M - 1}. Let RS denote the set of
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OD pairs. The ordered pair (r, s) denotes an OD pair, where the index r is an origin

node and s is a destination node. Let us denote the set of destinations in the network

by S, S = {sl(r, s) E RS}. Let us denote by K,, the subset of paths between OD

pair (r, s). Denote by krs(t) the fastest path in the subset Kr,, between OD pair (r, s)

departing node r at time interval t.

We assume avaialble an implementation algorithm DOT such that 7riq(t) = DOT(dij(t), q), Vi E

N, Vt, 0 < t < M, where q is the destination node and iriq(t) denotes the fastest path

between node i and node q departing node i at time interval t. We also assume

that cost(r) returns the travel time on path 7r. In the next section, we present the

algorithm UPDATE.

5.4.2 Algorithm UPDATE

As mentioned earlier, algorithm UPDATE is used to update the subset of paths. This

algorithm takes as input the link travel times. The algorithm UPDATE is:

Algorithm UPDATE

For all s E S

ri,(t) = DOT (d2 (t), s)

For all r such that (r,s) E RS

For t = 0,..., M - 1

if (cost(k,,(t)) > cost(ir , (t))) then

K,(t) = Kr,(t) U 7r,(t)

krs(t) = 7rrs(t)

Run time analysis of algorithm UPDATE

The worst case run time complexity of algorithm UPDATE is given by the following

proposition.

Proposition 25 The worst case run time complexity of the algorithm UPDATE is

O(]S I *O(DOT) + IRSI * M p), where p is the number of entries in the subpath table

and O(DOT) is the exact complexity of algorithm DOT.
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Proof: The complexity can be obtained by counting the number of operations in the

algorithm UPDATE. We require to compute algorithm DOT for all the destinations in the

network (O(IS I * O(DOT)). We find at most one new path for each OD pair at each

time interval. Hence, the maximum number of new paths found is in O(IRSI * M).

We have noted earlier that the number of operations required to add a new element

in an array requires O(p) operations. Hence, the order of the algorithm UPDATE is

O(IS I * O(DOT) + IRSI * M * p). C]

5.4.3 Algorithm INTEGRATE

The algorithm INTEGRATE is used to incorporate the path generation component into

the existing DTA framework. In this algorithm the DTA implementation described

in Chabini and He [8] is considered as a black box. Figure 5.3 presents the algorithm

INTEGRATE.

5.5 Experimental Evaluation

The path generation component was incorporated into the software system developed

by Chabini and He [8] and He [19]). We evaluate its performance by using two

different networks. One is a small test network with 9 nodes and 12 links. It is

the same network used by Chabini and He [8] and He [19] to verify the models and

solution algorithms of the DTA software system. We use this network to illustrate

the validity of the integration og path generation component into the existing DTA

software system. This network is shown in Figure 5.4. Recall that class 3 users always

have perfect information and choose a fast path. These users are affected by adding

a faster path to the subset of paths. Below is a scenario such that all the users are

class 3 users.

For this test, the fastest path between one OD pair is not included in the subset

of paths, and this path is generated back using algorithm UPDATE. Then, the changes

in the flows and travel times of class 3 users with and without having the fastest path

in the sub path table are shown. Also, the impact of adding a shortest path on the
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INTIAL SUBSET OF
PATHS

Figure 5.3: Algorithm INTEGRATE
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convergence rate is shown.

Second, we use the Amsterdam A10 beltway network shown in Figure 5.5 to

demonstrate the computation speed of the above algorithms for a realistic network.

LINK NUMBER

NODE
0 1

2 4 5
3 6

7 8 9
10 11

Figure 5.4: Test Network

Small Test Network

The test network is shown in Figure 5.4. The shortest path between origin node

1 and destination node 9 was obtained by running the DTA code on the complete

set of paths. This shortest path is computed as sequence of links 2-3-6-9. For the

evaluation of algorithms UPDATE and INTEGRATE, this shortest path is removed from

the set of paths. The initial subpath table was constructed without the shortest path

between origin node 1 and destination node 9 in it. Table 5.2 shows this subpath

table. Then, using algorithms DOT and UPDATE, the path 2-3-6-9 is generated back.

The current implementation of algorithm UPDATE does not recognize the fact that

the subpath 3-6-9 already exists in the subpath table. It adds the whole path to the

subpath table. The updated subpath table is shown in Figure 5.3. The added rows

in the subpath table are shown in boldface.
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The differences in the travel times and flows on different paths with and without

the new faster path are noted. The Table 5.4 shows the travel times without the

addition of the new faster path. Table 5.5 shows the path travel times after updating

the subpath table. We can see from the table that there are initially 5 paths between

the OD pair (1,9). A new path is added to this list of paths. Also, this added path

is faster than the rest of the paths for earlier time intervals.

Table 5.6 and Table 5.7 show the flows on different paths before and after adding

the new fater path.

We run ten iterations of network loading algorithm with and with out the fastest

path between OD pair (1,9). The measure of consistency [8] is reported in Table 5.8.

We notice that the measure of consistency is lesser with the addition of the new path.

At convergence, this measure is equal to zero.

Amsterdam Beltway Network

The Amsterdam A10 beltway consists of two 32-km freeway loops which intersect with

five major freeways and have 20 interchanges of various sizes (75 ramp intersections).

This network is shown in Figure 5.5. The network serves local and regional traffic

and acts as a hub for traffic entering and exiting Holland. Chabini and He [8] and

He [19] uses this network to demonstrate the computational performance of the DTA

software system on a realistic network.

We have verified the validity of the algorithm UPDATE using a small test network

in the previous evaluation. We are now interested in the running time complexity of

the path generation module.

Amsterdam Beltway network has 213 nodes, 310 links and time frame is divided

into 2215 time intervals. There are 1134 OD pairs and approximately 1400 paths

to start with. The subpath table has 27080 entries. We run the DTA code and

then use the algorithm UPDATE to update the subset of paths. After one iteration of

algorithm UPDATE, 321 new paths are added. The subpath table size is increased to

32000. The computation time taken by the different components is given in Table 5.9.

Table 5.9 shows that updating the subpath table requires a lot of computation time.
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Next Link Sub Path Index
0 20 0
0 21 1
0 22 2
2 25 5
0 18 6
2 19 7
6 14 8
8 16 9
2 17 10

10 16 11
0 15 12
5 14 13
9 -1 14
1 -1 15

11 -1 16
7 -1 17
4 -1 18
3 -1 19
1 13 20
4 8 21
4 9 22
3 8 23
3 9 24
7 11 25

Table 5.2: Initial subpath table for the network in Figure 5.4
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Next Link Sub Path f Index
0 23 0
0 24 1
0 25 2
0 27 3
0 28 4
2 6 5
3 7 6
6 8 7
9 -1 8
0 21 9
2 22 10
6 17 11
8 19 12
2 20 13

10 19 14
0 18 15
5 17 16
9 -1 17
1 -1 18
11 -1 19
7 -1 20
4 -1 21
3 -1 22
1 14 23
4 11 24
4 12 25
3 11 26
3 12 27
7 14 28

Table 5.3: Updated subpath table for the network in Figure 5.4
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time(t) Path-1 Path-2 Path-3 Path-4 Path-5)

7.250000 10.733 8.710 8.721 8.460 8.582
7.255000 10.611 8.807 8.797 8.606 8.667
7.260000 10.712 9.033 8.873 8.829 8.840
7.265000 10.562 9.176 9.060 9.131 9.046
7.270000 10.468 9.483 9.330 9.347 9.365
7.275000 10.455 9.860 9.792 9.691 9.676
7.280000 10.437 10.194 10.522 9.908 9.968
7.285000 10.560 10.268 11.064 10.403 10.407
7.290000 10.919 10.802 10.756 10.705 10.722
7.295000 11.539 11.356 11.962 10.716 10.748
7.300000 12.092 11.846 12.518 11.446 11.500
7.305000 12.924 12.659 13.182 12.229 12.148
7.310000 12.698 12.537 13.019 13.417 13.531
7.315000 13.586 13.109 13.649 13.955 13.984
7.320000 12.852 12.327 12.747 15.298 15.399
7.325000 13.332 12.909 13.438 14.252 14.268

Table 5.4: Path Travel Times (minutes) for OD pair (1,9) before the path generation

time(t) I Path-1 Path-2 I Path-3 I Path-4 I Path-5 I Path-6

7.250000 10.770 8.709 8.720 8.463 8.584 8.521
7.255000 10.642 8.805 8.787 8.616 8.675 8.611
7.260000 10.747 9.040 8.835 8.836 8.852 9.042
7.265000 10.637 9.275 9.024 9.060 9.009 9.348
7.270000 10.474 9.532 9.298 9.318 9.337 9.547
7.275000 10.459 9.843 9.714 9.695 9.687 9.804
7.280000 10.449 10.158 10.410 9.967 9.987 9.878
7.285000 10.634 10.298 10.856 10.652 10.581 10.293
7.290000 10.795 10.655 11.077 10.851 10.805 10.573
7.295000 11.271 11.015 11.359 11.284 11.123 10.812
7.300000 11.805 11.663 11.765 12.125 11.947 12.056
7.305000 12.819 12.631 12.366 12.215 12.195 12.428
7.310000 12.858 13.026 12.644 13.407 13.494 13.678
7.315000 13.843 13.618 13.553 13.341 13.339 13.490
7.320000 13.318 13.095 12.855 14.655 14.596 14.588
7.325000 14.043 13.683 13.497 13.401 13.422 13.570

Table 5.5: Path Travel Times (minutes) for OD pair (1,9) after the path generation
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time(t) Path-1 Path-2 Path-3 Path-4 Path-5
Flow Flow Flow Flow Flow

7.250000 0.0000 4.3319 0.0000 38.9867 0.0000
7.255000 0.0000 8.6637 0.0000 34.6548 0.0000
7.260000 0.0000 24.3793 0.0000 85.3274 12.1896
7.265000 0.0000 37.6770 18.838 18.8385 113.0311
7.270000 0.0000 24.2785 145.67 24.2785 48.5570
7.275000 0.0000 85.5289 85.528 28.5096 85.5289
7.280000 0.0000 94.5956 63.063 126.127 31.5319
7.285000 0.0000 200.071 33.345 66.6904 33.3452
7.290000 0.0000 169.748 33.949 33.9496 101.8489
7.295000 0.0000 133.380 33.345 133.380 33.3452
7.300000 0.0000 133.380 0.0000 166.726 33.3452
7.305000 0.0000 94.5956 31.531 94.5956 94.5956
7.310000 0.0000 114.038 28.509 114.038 28.5096
7.315000 0.0000 121.392 0.0000 72.8356 48.5571
7.320000 0.0000 94.1926 0.0000 56.5156 37.6770
7.325000 0.0000 60.9482 0.0000 48.7585 12.1896

Table 5.6: Path Flows for OD pair (1,9) before the path generation

We will demonstrate in the next section that by using a different representation of

the subpath data structure, the time required to update the existing subset of paths

can be considerably reduced.

5.5.1 Conclusions

The experimental evaluation can be summarized as:

* The correctness of algorithms UPDATE and INTEGRATE is demonstrated.

* The current implementation of algorithm UPDATE is slow. This hinders the real

time solution capability of the analytical DTA software system.

* The speed of a dynamic shortest path algorithm is very crucial to the real time

solution of DTA problems.

The current computer implementation of the process of updating the set of paths is

slow due to the following reasons:
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time(t) Path-1 Path-2 Path-3 Path-4 Path-5 Path-6
Flow Flow Flow Flow Flow Flow

7.250000 0.0000 0.0000 0.0000 34.6548 0.0000 8.6637
7.255000 0.0000 0.0000 0.0000 12.9956 0.0000 30.3230
7.260000 0.0000 0.0000 24.3793 48.7585 24.3793 24.3793
7.265000 0.0000 18.8385 56.515 0.0000 94.1926 18.8385
7.270000 0.0000 0.0000 145.67 24.2785 48.5570 24.2785
7.275000 0.0000 28.5096 114.03 28.5096 85.5289 28.5096
7.280000 0.0000 94.5956 63.0637 63.0637 31.5319 63.0637
7.285000 0.0000 66.6904 66.6904 33.3452 33.3452 133.3808
7.290000 0.0000 67.8993 67.8993 33.9496 33.9496 135.7985
7.295000 0.0000 100.03 33.3452 33.3452 33.3452 133.3808
7.300000 0.0000 166.72 33.3452 0.0000 0.0000 133.3808
7.305000 0.0000 126.12 31.5319 0.0000 31.5319 126.1274
7.310000 0.0000 114.0 57.0193 28.5096 0.0000 85.5289
7.315000 24.2785 72.8356 24.2785 24.2785 24.2785 72.8356
7.320000 0.0000 37.6770 75.3541 37.6770 18.8385 18.8385
7.325000 0.0000 24.3793 36.5689 24.3793 12.1896 24.3793

Table 5.7: Path Flows for OD pair (1,9) after the path generation

Measure of Consistency for class 3 before path generation 464.4902
Measure of Consistency for class 3 after path generation 299.00

Table 5.8: Performance measures before and after the path generation

Procedure CPU time (sec)

Network Loading 208.55
Algorithm DOT for 39 destinations 60.59
Inserting subpath entries into the subpath table 721.20

Table 5.9: Performance of the time dependent path generation component on the
Amsterdam Network
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Figure 5.5: Amsterdam Beltway Network

167



* The two-dimensional array representation of the subpath data structure is static

in nature. Hence, inserting an element into the array requires O(p) operations,

where p is the size of the array.

* Algorithm UPDATE does not minimize the number of subpaths in the subpath

table. When a new path is added to the subpath data structure, the existing

subpath of the new path in the subpath table is not identified. This will lead

to repetitious storage of the same subpaths.

To overcome these disadvantages of the existing array implementation of the subpath

data structure, we design a new implementation of the same subpath data structure,

called sub path tree. This is presented in the next section.

5.6 Subpath Tree - A New Implementation of the

Subpath Data Structure

An important requirement of the new representation of paths is the flexibility to add

a new path. The data structure should also provide a simple way to find the existing

subpath of the new path.

In the subpath tree data structure, subpaths are stored as a tree. The root of the

tree indicates all the destinations in the network. Its value is -1. The nodes of the

tree are the links in the path and each of them points to the next link on the path

and so on. For the small network shown in Figure 5.4, the subpath tree is given by

Figure 5.6. Let us consider two paths between the OD pair (1,9) having sequence

of links [0,4,8,11] and [2,3,8,11], sharing the same sub path [8,11] to the destination

node 9. Both these paths merge into one subpath in the subpath tree data structure.

5.6.1 Adding a new path to the subpath tree

To demonstrate the procedure used to add a new path to the subpath tree, the fastest

path between OD pair (1,9) is not included in Figure 5.6. We delete it from the list of
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paths to generate it back using the path generation component. The fastest path is the

sequence of links [2,3,6,9]. To add this new path into the subpath tree, we start with

the last link in the path and iteratively traverse the tree to find the longest subpath

of the new path. The longest path of the new path [2,3,6,9] is [3,6,9]. Hence, link 2

is added as a branch to node 3. The updated subpath tree is shown in Figure 5.7.

Next Link of the Sub Path

Figure 5.6: Sub Path Tree for the network in Figure 5.4

Proposition 26 The worst case run time complexity of adding a new path to the

sub path tree is O(L * k), where L is the maximum number of links in a path in the

network and k is the degree of the network.

Proof: Adding a new path to the subpath tree is proportional to the height of the

sub path tree and the number of children to be scanned at each level. The height of

the subpath tree is equal to the maximum number of links in a path in the network

(L). A node in this subpath tree indicates a link, say 1, in the network. The number

of children of this node are at most equal to the number of incoming links of the

upstream node of this link, 1. Hence, the worst case run time complexity of adding a

new path to this data structure is O(k * L). The number of incoming links at a node
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New Sub Path

Figure 5.7: Updated Sub Path Tree for the network in Figure 5.4
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is proportional to the degree of the network (k). For a traffic network, this degree is

usually 3. Hence the worst time complexity for traffic networks is equal to O(L). []

It is proved that the tree representation is much faster than the array represen-

tation. One of the major requirements of any data structure used to represent paths

is to be able to provide the number and the list of paths between a certain OD pair

(r, s). This can be easily obtained in the case of subpath table data structure by

storing the array indices of the paths between the OD pair (r, s) in a list. Something

similar can be implemented in the tree representation too. A list of pointers to all the

first links of the paths should be maintained. For example, for the network shown in

Figure 5.4, to keep track of the paths between the OD pair (1,9), a list of pointers to

its paths in the subpath tree as shown in Figure 5.8 may be used.

The computer implementation of this data structure in the DTA system is under

development.

ofpaths

Figure 5.8: An extended sub path tree
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5.7 Summary

The application of dynamic shortest path algorithms to the solution of analytical

dynamic traffic assignment is discussed. Algorithm DOT was applied to the solution of

analytical dynamic traffic assignment models developed by Chabini and He [8]. For

efficient solutions, the DTA model in Chabini and He [8] optimizes on only a subset

of paths. Algorithms DOT was used to dynamically update this subset of paths.

Algorithms required to update the subset of paths (UPDATE) and to integrate the

path generation component into the DTA model (called INTEGRATE) were developed.

The validity of these algorithms was proved for a small test network. Experimental

results on a realistic network suggest that algorithm UPDATE requires high amount

of computation time. This is due to the data strcuture used to store paths in a

network. We designed a new representation of the subpath data structure. In the

new representation, the subpath data structure is represented as a tree. This new data

structure is called subpath tree. This would constitute an afficient representation

of dynamic set of paths.
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Chapter 6

Summary and Future Directions

6.1 Summary

Intelligent Transportation Systems (ITS) promise to improve the efficiency of the

transportation networks by using advanced processing, control and communication

technologies. The analysis and operation of these systems require a variety of models

and algorithms. Dynamic shortest paths problems are fundamental problems in the

solution of most of these models. ITS solution algorithms should run faster than real

time in order for these systems to operate in real time. Optimal sequential dynamic

shortest paths algorithms do not meet this requirement for real size networks. High

performance computing offers an opportunity to speedup the computation of dynamic

shortest path solution algorithms.

The main objectives of this thesis are: (1) To review of efficient sequential dynamic

shortest paths algorithms, (2) Efficient parallel implementations for shared memory

and distributed memory platforms and (3) Application of dynamic shortest path

algorithms to the solution of dynamic traffic assignment models.

To develop parallel implementations, a systematic study of the formulations and

efficient sequential algorithms for dynamic fastest paths and dynamic minimum cost

paths problems is presented. For each class of dynamic shortest path problems,

two kinds of shortest path questions were answered: the computation of one-to-all

dynamic shortest paths for one departure time and the computation of all-to-one
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dynamic shortest paths for all departure time intervals. We have demonstrated that

algorithm DOT developed by Chabini [10] is the most efficient algorithm to compute all-

to-many dynamic shortest paths for all departure time intervals. No better algorithm

can be discovered to solve all-to-many dynamic shortest paths for all departure time

intervals.

Although algorithm DOT is optimal, experimental results show that DOT does not

compute dynamic fastest paths fast enough in order for ITS applications. High per-

formance computing provides an opportunity to improve the computation speed of

these dynamic shortest path algorithms.

In this thesis, we develop parallel implementations for the two types of coarse

grained parallel platforms: (1) Distributed Memory and (2) Shared Memory. PVM

library was used to develop distributed memory implementations. Solaris Multi-

threading library was used to develop shared memory implementations. Distributed

memory implementations are tested on a network of SGI workstations and on a clus-

ter of Symmetric Multiprocessor called Xolas. Shared memory implementations are

tested on Xolas.

In order to develop parallel implementations, we exploit five decomposition dimen-

sions present in dynamic shortest path algorithms: (1) destination, (2) origin , (3)

departure time, (4) network topology and (5) data structure. Parallel implementa-

tions of 22 triples of (algorithm, decomposition strategy, parallel computing environ-

ment) are developed, analyzed and evaluated. An extensive experimental evaluation

demonstrates that shared memory platforms perform better than distributed memory

platforms in the implementations of dynamic shortest path algorithms.

Algorithm DOT was applied to the solution of analytical dynamic traffic assignment

models developed by Chabini and He [8]. Algorithms required to update the subset

of paths and to integrate the path generation component into the DTA model were

developed. An improved data structure to store paths is designed. This data structure

promises to support the development of improved computer implementations of DTA

algorithms.
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6.2 Future Directions

This research can be extended in several directions. These directions are given below

6.2.1 Hybrid Parallel Implementations

This is a straightforward extension of the parallel implementations developed in this

thesis. In this thesis, we looked at distributed memory implementations and shared

memory implementations. One can also consider a hybrid implementation combining

both types of implementations. For example, if we need to compute dynamic shortest

paths from all nodes to 100 destinations in a network. Assume we have with us 4

SMP machines with 8 processors each. Then, we could decompose the problem based

on destination. Hence, allotting 25 destinations to each machine. Each of these tasks

can then be implemented as a multithreaded implementation. Any decomposition

strategy, either by destination or by network topology can be used.

6.2.2 Network Decomposition Techniques

We have seen that a decomposition based on network topology also leads to good

speedups for algorithm DOT. We mentioned that we use a graph partitioning algorithm

called METIS to decompose the network. This program partitions the network into

sub networks with approximately equal number of nodes. The performance of the

parallel implementation highly depends on the way the network is partitioned. Hence,

other network decomposition strategies may lead to better speedups. These need to

be implemented, analyzed and evaluated.

6.2.3 More decomposition strategies

Other dimensions of problems can be used to develop parallel implementations. For

example, we have seen that the main loop in algorithm DOT is a nested loop with

one sub loop on departure time and another on the links in the network. So, if the

minimum travel time on the links is known, a parallel implementation based on the
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departure time interval can be developed.

6.2.4 Implementation and evaluation of the subpath tree data

structure

This is one of the major research directions that can stem from the work of this thesis.

A new representation of paths called subpath tree has been designed, but has not

been implemented. Hence, the path generation component and the DTA software

system can be developed using the subpath tree as an underlying data structure.

This implementation should lead to very efficient solution algorithms for analytical

dynamic traffic assignment models.

6.2.5 Parallel implementation of the DTA software system

The conceptual framework proposed for a Dynamic Traffic Assignment problem is

modular in nature. Hence, it offers many parallelization avenues. The decomposition

strategies developed in this thesis or functional decomposition can be used to decom-

pose the operations of the DTA problem. Therefore, this and more parallellisation

strategies can be researched and implemented.
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Appendix A

Parallel Implementations

In this appendix, we discuss certain features of the PVM and MT programs developed

that the reader needs to be familiar with to understand the parallel programs and to

use them. We first present the directory structure and then discuss the implementa-

tions.

All the implementations are present in the root directory called parallel. Fig-

ure A.1 describes the directory tree. For the one-to-all implementations, both the

decomposition techniques i.e., origin and departure time interval are given by the

same executable. Hence, the specific decomposition technique is chosen in the com-

mand line argument. A general help for all these implementations:

* The codes are written using C++. The compiler used is g++.

* The executable name without any arguments will written the list of command

line arguments that need to be used.

A.1 PVM Implementations

In all the PVM implementations, the files makemaster and makechild are used to the

build the master and slave executables respectively. Each of the parallel implemen-

tations has its makemaster and makechild in its directory. The following should be

noted before running any PVM program:
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Figure A.1: Directory Structure

* All the PVM implementations were developed using the PVM version 3.0

* PVM Installation: PVM software can be downloaded from the URL: http://

www.netlib.org. PVM should be installed following the instructions given at

the time of download. Then, the PVM installation creates two environment

variables, PVM_ROOT and PVMARCH. And the libpvm3.a is in the di-

rectory PVM_ROOT/bin/PVM.ARCH. This library should be used for linking

any PVM executable.

* .rhosts and .pvmhosts files: To use PVM, one should have available in the

home directory, the .rhosts file listing all the hosts available on the virtual

machine. An example .rhosts file used on the xolas machine is given in page 178.

.rhosts file
# hostname login name
xolas0 sridevi
xolasl.lcs.mit.edu sridevi
xolas3.lcs.mit.edu sridevi
xolas4.lcs.mit.edu sridevi
xolas-wf sridevi

Another important file is .pvm_hosts file. This file tells the PVM daemon where

to look for the slave process executable. Each of our PVM implementations has
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a .pvmhosts file in its sub directory. The example .pvmhosts used for the

decomposition by destination of algorithm DOT is given in page 179.

.pvmyrhosts file

# Configuration file used for starting PVM programs
xolas0 ep=$HOME/parallel/alltoone/PVM/destination

wd=$HOME/parallel/alltoone/PVM/destination
xolas-wf ep=$HOME/parallel/alltoone/PVM/destination

wd=$HOME/parallel/alltoone/PVM/destination

Adding a PVM job to the Load Sharing Facility(LSF) queue: LSF queuing

system is used on the xolas machines. To have all the resources of a host

available to you or if the job is too big, we need to submit the job to the

LSF queue. More information about this queuing system is found at the URL:

http://zolas.lcs.mit.edu/LSF/index.html. This URL has the LSF user guide and

programmers' guide. A PVM job can be added to the queue using a pvmjob

script file. More information on these script files is available in page 134 of the

LSF users guide. Each of our PVM implementation has a pvmjob script file in

its own subdirectory. The command to be used to submit the pvm job to a

queue is:

bsub -q <queuename> pvmjob <executablename> <command line

arguments >

There are many queues available on the xolas system. The information about

each queue is present in the file /etc/queues. The script file pvmjob writes the

.pvmhosts file and starts the pvm daemon using this file.

A.2 MT implementations

MT implementations are much easier to run than the PVM implementations. The

compiling and running is like any sequential C++ programs. Again, the make files
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are present in the respective directories. The g++ compiler is used with the linker

-1thread. An important point to note about the MT implementations is that all the

computation times are measured in terms of wall clock time, as any other function

returning the time taken returns the CPU time used by the process, which is the total

time taken by all the threads in the process.
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Appendix B

Time-Dependent Path Generation

Module in Dynamic Traffic

Assignment

The path generation module is incorporated into the DTA software system developed

by He [19]. The information about the DTA software system should be obtained

from He [19]. In this appendix, we describe the additions/ changes made to this DTA

software to incorporate the time-dependent path generation module.

The following points should be noted before using the DTA software with the path

generation module:

* The DTA software system is coded in C++. The various input files required by

this software system are described by He [19]. The same input files are required

even by the modified DTA software.

* One extra input called the number of updates is required by the DTA software

system. This input indicates the number of times the sub path table has to be

updated. This input is given in a interactive mode, i.e., when the dta software

is run, the user is prompted for this input.

* We added a new function to this software, which is used to add an entry into
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the path table. This function is called InsertEntries and is part of the main. cpp

file.

* Note that in algorithm DOT, we assumed that the travel times are positive inte-

gers. But, in DTA models, the travel times take real values. Hence, algorithm

DOT was extended to take real travel time values. The C++ codes for this ex-

tended DOT are present in the DTA directory. The changes required to change

algorithm DOT are minor.

* Figure B.1 shows the sequence of steps used to incorporate the path generation

module in the DTA software system in the form of a flow chart.

Figure B.1: Flowchart of the Integration of Path Generation Module into Dynamic
Traffic Assignment Software
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