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Abstract

Microcontact printing (ptCP) is an emerging technique for patterning micro-scale fea-

tures for electronics, optics, surface modifications, and a variety of other applications.

Its many advantages over traditional techniques like photolithography include lower

cost, ability to pattern on non-planar surfaces, and compatibility with a variety of ma-

terials. Low production rates are one of the major limitations, as the process remains

primarily a lab-scale technique at this point. Commercialization of the process de-

pends on the development of innovative ways of applying the techniques to fast and

flexible process paradigms. This thesis proposes the use of roll-to-roll techniques to

increase the throughput, flexibility, and printable area for tCP, while maintaining high

quality outputs. A three-part literature review is presented comprising microcontact

printing, traditional printing techniques, and roll-to-roll web handling best practices.

The development of a printing machine and continuous etching machine used to ex-

plore the application of pCP in a high-speed roll-to-roll paradigm is then detailed. Fi-

nally, the results of the experimentation carried out are documented including effects

on quality and limitations for high throughputs. It is concluded that roll-to-roll micro-

contact printing can produce high quality results over large areas at rates up to 400

feet per minute and possibly beyond.
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Chapter 1

Introduction

1.1 Motivation

Currently, nanostructures are commonly fabricated using techniques such as photo-

lithography, electron-beam writing and X-ray lithography. Although they are proven

technologies that provide high-quality outputs, there are inherent problems. These

techniques are generally expensive, slow, and the production of large patterns is diffi-

cult. Another technology is required that can enable economical manufacturing of

nanostructures at high production rates and good quality.

Microcontact printing ([CP) is a promising technology in which a patterned elas-

tomeric stamp is used to transfer patterns of self-assembled monolayers (SAMs) onto

a substrate by conformal contact. It has been demonstrated with a resolution of 30nm

and a minimum feature size of 40nm with millisecond deposition times. Currently, the

art remains primarily a research topic, but by adapting the technology to new proc-

esses it is a feasible large scale manufacturing method.

Roll-to-roll printing techniques such as gravure and flexography have been success-

fully used to print components such as antennas in RFID tags and other flexible elec-

tronics. They achieve good results at low costs and high throughput, but the technique



is limited to feature sizes of about 15[tm. This has led to the novel idea that traditional

printing processes can be applied to the fabrication of nano-scale components for

mass manufacturing by applying the techniques and tools to microcontact printing (il-

lustrated in Figure 1-1). In doing so, much higher rates can be achieved and more so-

phisticated structures patterned. The result must be reliable, its output accurate and

repeatable, and its throughput comparable to traditional printing methods.

S 0
z z

Z 0 0

SUPPLY I. / COLLECT

I%^, WI I

Figure 1-1: A schematic approach to the motivation behind this research; tak-

ing a primarily lab-scale technique and applying it to the roll-to-roll paradigm

to make it suitable for high-production manufacturing.

This thesis will discuss our research into the melding of pCP with traditional printing

techniques to produce nano-structures at higher rates than current methods. Included

is a synopsis of the literature regarding soft lithography and traditional printing tech-

niques, a description of the devices we developed to test the method, analysis of the

input factors and effects on quality of the finished product, lessons learned throughout

the project, and opportunities for future work.

Research was funded by and in cooperation with NanoTerra LLC, a Cambridge, Mas-

sachusetts company that specializes in soft lithography. Their resources and wealth of

knowledge in the science of nano-manufacturing has been invaluable and has contrib-

uted greatly to our work.



1.2 Objectives

The primary objective of this project was to expand on knowledge relating to the con-

tinuous processing of flexible substrates using ptCP printing. Specifically, this encom-

passed three key objectives:

1. Develop a set of modular tools to enable continuous pCP to pattern flexible

gold-on-plastic substrates

2. Demonstrate high quality output over large areas at fast processing times

3. Develop a quantitative knowledge base around process input-output causality

Key areas to be addressed by experimentation were the maximization of throughput

and optimization of print quality (global distortions, dimensional variation, and

yield). Originally, a target of 100 feet per minute for throughput was set, however

much higher rates were achieved.

1.3 Summary of Findings

This paper presents the following results and insights into roll-to-roll ptCP

* Printing pressure and speed have little effect on dimensional variation, spatial dis-

tortions, and yield. Dimensional variation is small (COV-.5%) and randomly dis-

tributed.

* 100% pattern transfer is relatively easy to achieve using roll-to-roll techniques.

* It is possible to print a robust etch-resisting SAM at very high speeds (400 ft/min,

unit area contact time - 5ms).

* At very high speeds (400ft/min), some systematic air trapping occurs.

* PDMS is a very durable stamp material that can last for many prints in the roll-to-

roll format (we estimate that the printing cylinder made -20,000 revolutions dur-

ing testing).



1.4 Approach

A number of designs were discussed in the infancy of this project; some that were

very similar to traditional printing methods and others that were quite different. The

roll-to-roll paradigm was the obvious choice as it is a proven robust method used by

many industries for the fast processing of flexible materials. Also, it is perceived by

many in the field of soft lithography to be a key industrial implementation paradigm

for the technique. The perceived challenges to accommodate the unique characteris-

tics associated with microcontact printing included the following:

* Large area stamp fabrication

* Stamp mounting on a cylindrical surface

* Method of applying and measuring printing pressure (impression)

* Inking method

* Control of substrate tension

* Automated material handling

In addition to the printing machine, several additional tools were developed. This in-

cluded a new stamp fabrication method for large area stamps and an etching machine

prototype to experiment with continuous etching of the printed substrate.

1.5 Scope

The scope of our project is limited to printing octadecanethiols on gold substrates us-

ing microcontact printing in a roll-to-roll paradigm. Developing a useful tool, opti-

mizing the quality of the print, and maximizing rate are the key outputs that we

wished to explore.

Byproducts of this project include improvements in large area stamp manufacturing

and demonstration of continuous etching.

Although the machine is primarily intended for microcontact printing, modularity was

a key design goal, and with the proper modifications it could be used in the future for



micromolding, polymeric ink printing, and a host of other processes at NanoTerra's

discretion.

1.6 Task Division

The project was initially divided into three main activities: mechanical de-

sign/execution, electrical & programming design/execution, and experimental de-

sign/execution. Each group member took the lead on one activity and delegated re-

sponsibility for anything that needed to be done in that area. I was primarily responsi-

ble for mechanical design of the printing and etching machine, Shawn Shen was re-

sponsible for electrical design and programming, and Kanika Khanna was in charge of

experimental design. All group members participated in machine assembly, running

experiments, and the myriad of other activities that accompanied the project.



Chapter 2

Soft Lithography and pCP

This section first discusses the general field of soft lithography. Next, the key ele-

ments and inputs to microcontact printing are presented. As it is the focus of this pro-

ject, this chapter emphasizes pCP, rather than other techniques that fall under the um-

brella of soft lithography.

2.1 Soft Lithography

Soft lithography is a collection of technologies that enable the formation of structures

for nanofabrication separate from the photolithographic paradigm. These techniques

are a relatively low-cost and effective method for creating features as small as 10 na-

nometers based on the concept of self assembly and replica molding of molecular lay-

ers. Applications include microelectronics, polarizers, filters, wire grids, surface

acoustic wave devices, surface modifications, aesthetic features for consumer prod-

ucts, and an expanding array of other products.

Projection photolithography tends to be the de-facto technology for producing pat-

terned microstructures down to 250 nm. However, there is an apparent barrier for fea-

tures smaller than 100nm due to optical limitations. Other problems include the in-



ability to pattern non-planar surfaces, lack of control of surface chemistry, patterns

only in two dimensions, and material limitations (can only work on photoresists). The

state-of-the-art also includes emerging technologies such as UV lithography, soft X-

ray lithography, electron beam writing, focused-ion-beam writing, and proximal-

probe lithography. These methods are well suited for the production of extremely

small feature sizes (several nanometers); however cost has limited their feasibility for

wide-scale production.

Soft lithography has many advantages over the photolithography methods in a number

of applications. It can create patterns down to -10nm on a wide range of materials

(Au, Ag, Cu, polymer beads, organic and inorganic salts to name a few), on non-

planar and planar surfaces, and can create 2D and 3D structures. The technology is

also low in capital cost and relatively easy to learn and apply [1].

2.1.1 The Soft Lithography Taxonomy

Soft Lithography encompasses five core techniques. These include: Microcontact

Printing, Near Field Optical Lithography, Replica Molding, Micromolding in Capil-

laries, Microtransfer Molding, and Solvent Assisted Microcontact Molding. In com-

mon to all of these are the three following attributes (also refer to Figure 2-1):

1. A master pattern with desired topography (typically silicone or glass)

2. Fabrication of a molded stamp from the master by the application of a func-

tional organic material (typically Polydymethylsiloxane, PDMS)

3. Generating a replica of the original pattern in a functional material [1]
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Figure 2-1: Overview of soft lithographic technique (pCP, in this example) [2]

Because the whole of soft lithography is out of the scope of this paper, and our project

is focused on only one of these techniques (gCP), further explanation of other tech-

niques will be omitted. There is a plethora of literature that can be referred to if the

reader so desires. A detailed overview of microcontact printing is presented in the fol-

lowing section.

2.2 Microcontact Printing

In gCP, a relief pattern on the surface of a Polydimethylsiloxane (PDMS) stamp is

used to transfer self-assembled monolayers to a substrate by conformal contact. Self-

assembly is the key differentiator from other printing methods.
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This section describes the key characteristics of ptCP technology, the parameters that

affect the output, and the various considerations and limitations for manufacturing

feasibility.

2.2.2 Process

pCP differs from other printing methods primarily in its use of self-assembly (espe-

cially the use of Self-Assembled Monolayers) to form patterns. An elastomeric stamp

with a relief pattern is inked with a molecular ink and brought into contact with a sub-

strate with a small force, forming a monolayer which can be used as a resist layer for

etching or other processes. Because the stamp is flexible, the process is insensitive to

surfaces that are not completely flat or smooth [2].

Self assembly is the spontaneous aggregation and subsequent organization of mole-

cules or meso-scale objects into a stable, well-defined structure via noncovalent inter-

actions (Figure 2-2). They tend to form spontaneously and reject defects because the

assembled structures are close to or at their thermodynamic equilibrium. The subunit

properties determine the final structure by coming to their equilibrium at the lowest

energy form. Self Assembled Monolayers (SAM's) are prepared by immersing a sub-

strate in a solution containing a ligand (Y(CH2)nX); the thickness of the monolayer

can be changed by the number (n) of methylene groups in the alkyl chain. Depositing

SAM's on gold and silver tends to be the easiest compared to other materials, how-

ever it is possible on a number of other metals. SAM's work well in microcontact

printing because they are easy to prepare, have good stability in ambient laboratory

conditions, and exhibit very few defects in the final structures [1].
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Figure 2-2: A schematic of the self-assembly process [14]

2.2.3 Printing Parameters of Interest

The gCP process can be broken down into two steps: inking and printing. There are

several key factors that influence these steps. Those that were of interest to this pro-

ject were selected, namely conformal contact, stamp elasticity, contact time, printing

pressure, ink type and concentration, and inking method. Other factors, such as tem-

perature, humidity, propagation method, and several others were left out for the sake

of brevity.

2.2.3.1 Conformal contact

Printing is generally divided into two logical steps: defining an accurate pattern and

bringing it close enough to the substrate to transfer the pattern. The second step in

this process requires the adaptation of the printing plate to execute the transfer. Con-

formal contact in RCP is the mediator for the intimate contact between ink on the

elastomeric stamp and the substrate. Although it is strongly related to the elasticity

of the stamp, soft backings and other techniques are often used to accomplish the

conformity of the stamp to the substrate. Its definition is twofold: it is 1) the macro-

scopic adaptation to the overall shape of the substrate, and 2) the microscopic adap-

tation of a soft polymer layer to a rough surface [2]. Figure 2-3 depicts these two

functions of conformal contact. Stamp elasticity is one of the key enablers of con-

formal contact and is explained in the following paragraph.

*A-A
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Figure 2-3: Macroscopic and microscopic adaptation to the substrate [2].

2.2.3.2 Stamp elasticity

Young's Modulus for the stamp in gCP is one of the key determinants of conformal

contact. It also has a large effect on dimensions of small features; harder stamps are

required for smaller feature sizes. It is primarily determined by the mixing ratio of

the prepolymer and curing agent, as well as the curing time and temperature during

preparation.

Three characteristics of the elasticity are required for good patterning: 1) A low and

defined modulus, as well as high toughness, is required to avoid local overload and

defects from brittle failure; 2) a rubber-elastic behavior allow recovery from signifi-

cant strain; and 3) a low work of adhesion to ease separation of the stamp from the

substrate at low force [2].

2.2.3.3 Contact Time

Thickness of the SAM layer is largely determined by the contact time of the stamp

and substrate. Effects on print width and yield are also influenced by the printing



time (Figure 2-4), both being negatively correlated. Contact times of Ims have been

shown to be feasible [8], but times in the tens of millisecond range are more com-

mon. Vapor transport tends to cause undesired results in the pattern for contact times

greater than 30 seconds.
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Figure 2-4: effect of contact time on width and yield [2].

An interesting point is that it is not the diffusion of the ink that sets a minimum limit

to the formation of a sturdy SAM, but it is the establishment of a conformal contact

that limits it (Figure 2-5). Hence in a continuous printing paradigm, where confor-

mal contact is continuously taking place; it is possible to print even faster [8].
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Figure 2-5: Process window for high speed ItCP from recent literature [8]



2.2.3.4 Print pressure

Some amount of pressure is required to initiate and establish conformal contact be-

tween the stamp and substrate. However, higher pressures may cause the roof of the

stamp to collapse and come in contact with the substrate, printing in areas which are

undesirable. The pressure is concentrated locally based on the inverse of the fill fac-

tor (percentage of area of printed pattern). Figure 2-6 shows the pressures required to

initiate collapse as a function of the fill factor. It shows that the pressure for onset of

collapse is dependant on the fill factor of the stamp and increases with it. Further for

the same fill factor, stamps which have posts of larger diameter tend to collapse at

lower pressures.

The aspect ratio of the features also has an effect on the stamp's stability. Features

with low aspect ratios of less than 0.2 may sag while features with high aspect ratios,

greater than 2, show a tendency to bunch or sag [18].

1) 20() 30 40 )

Fill factor (%)

Figure 2-6: Pressure required for onset of collapse as a function of the fill fac-
tor [19]

2.2.3.5 Ink Type and Concentration

Use of alkanethiols with increasing molecular weights, decreases the surface and

vapor phase transport during printing and consequently results in more precise di-
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mensions. However, extremely long thiols have limited solubility and tend to crys-

tallize on the surface of the stamp [2]. Figure 2-7 shows that the print made with

higher molecular weight inks have better contrast.

DDT HDT ECT

Figure 2-7: Inks of different molecular weights result in better contrast [2]

The concentration of ink has an effect similar to the duration of print. Extremely

high concentrations of the ink lead to larger dimensions due to diffusion of the ink

molecules. However, as can be seen in Figure 2-8, the SAM is not sturdy enough

with low concentrations and there are a large number of defects. Another noteworthy

fact is that the stamp swells at high ink concentrations leading to poor quality.
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Figure 2-8: Contrast Optimization as a function of Ink Concentration [2]

2.2.3.6 Inking method

Three primary methods for inking stamps are commonly used, as well as a host of

variants. Immersive inking, or direct inking, is accomplished by dipping all or part

the stamp in a tray of ink. Variants include spray inking or vapor phase inking. Res-
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ervoir inking (also known as pen-inking), is done by placing the ink on the un-

patterned side of the stamp and allowing it to absorb and travel through the stamp.

This method too impregnates the complete surface with ink molecules. However, in

contrast to wet type inking, it is possible to maintain the concentration of ink in the

stamp over time and subsequent prints. Contact inking is similar to a stamp pad used

for traditional patterning; a piece of PDMS is immersed in ink until fully absorbed.

The pad is then used to transfer thiols to the stamp. The advantage of this technique

is that during printing, there will be no diffusion from the side walls of features be-

cause the ink is present only where it is required. Secondly, the stamp will swell by a

smaller percentage as well [2].

A higher per area amount of ink is available for smaller features with lower fill fac-

tors, as can be seen in Figure 2-9. This results in a non uniform distribution of ink at

the stamp-substrate interface. This situation of pattern-dependant ink delivery is

worsened when the stamp is re-used without inking for several consecutive prints, as

is the case in continuous printing. Standardized printing conditions can be ensured

by continuous re-inking and/or having long waiting times to establish equilibrium.

However, high speed printing has the advantage that the depletion layer is limited to

only the features [8].

Figure 2-9: Depletion layer in stamps after printing A) at low speeds and B) at
high speeds [8]



Chapter 3

Traditional Printing Techniques

This chapter details the techniques and tools used in traditional printing techniques,

namely Gravure and Flexography. A comparison of these techniques and jiCP is then

presented.

3.1 Traditional Methods: Gravure and Flexography

Gravure and flexography are two of the most common methods of large-scale printing

used today. They are very similar in method, but differ mainly in the type of stamp,

applications, setup costs, and quality.

Flexography is commonly used to print corrugated containers, folding cartons, sacks,

plastic bags, milk and beverage cartons, disposable cups and containers, labels, adhe-

sive tapes, envelopes, newspapers, and various applications in electronics. The proc-

ess uses a stamp with raised surfaces to print on the substrate. [17]

Gravure is typically used on packaging, labels, electronics (RFID tags, sensors, etc.),

and magazines. This is the preferred method for printing on flat materials. The stamp

used in gravure is a negative of the print pattern and consists of many tiny cells. Gra-



vure is typically more repeatable than flexography and more suited for long produc-

tion runs due to higher setup costs. [5]

Both can be divided into three sub-processes: prepress, press, and postpress.

3.1.4 Prepress, Flexography

The prepress step involves the manufacture of the relief stamp (Figure 3-1). Typical

materials for flexography include rubber and photopolymers. Stamps can be made via

laser etching and photolithography. Minimum feature size is on the order of 50-75 [tm

with registration repeatability of around 200 plm or better. Costs vary considerably

depending on size, complexity of the pattern, and process used. Typically costs are

approximately $100-150 for a 16"x18" plate of average complexity plus other costs

such as backing materials, mounting materials, and labor for installation of the stamp

onto the machine. [17]

Figure 3-1: A close-up of a relief stamp used in flexographic printing [17]

Typical waste outputs in flexography during plate manufacture include: Film, paper,

developer, fixer, cleaning solutions, scrap plates and materials, plate-processing sol-

vent, and water. [4]



3.1.5 Prepress, Gravure

Stamps for gravure are typically made of copper. The features are comprised of a series

of cells made by laser drilling (Figure 3-2). Minimum feature size is 75 gm with registra-

tion repeatability of 20 pLm or better. Because the cell depth can be controlled, gravure

printing has the added benefit of being able to print variable film thickness. For gravure,
costs scale with size, rather than complexity, as the features are comprised of cells. Costs

for a stamp are higher than flexo, typically costing around several thousand dollars per

plate, making this process more suitable for long runs, where the stamp costs can be am-

ortized across the entire run. [5]

Figure 3-2: A blown-up view of the cells in a gravure printing cylinder [5]

Waste outputs during gravure plate manufacturing include: Waste from laser etching,

cleaning solvents, and water.

3.1.6 Press

This step involves the actual printing of the substrate. Costs are typically driven by

large capital costs for equipment, variable costs for materials (ink and printing mate-

rial), and labor costs for setup and operation. Machine prices vary considerably de-



pending on speed, size capability, color capability, and used vs. new. Larger, full-

featured machines (5' and up width, 6-color, fast) typically are $1 million and up.

Smaller machines with limited features and speeds typically cost around $100,000.

Gravure can typically produce better quality than flexography; both having a mini-

mum feature size of approximately 50 [tm, however gravure has better registration

accuracy and is the preferred method for high quality printing applications such as

magazines. It is well suited for printing high quality metallic and fluorescent inks.

Gravure is also used for microelectronics; 50 [tm conductors of Ag, Au, and Pt are

common. It also excels in printing lightweight films at high speeds with tight regis-

tration control [5]. Roof collapse can occur in flexography due to feature geometry

[17]. In gravure printing however, roof collapse is not an issue because the stamp con-

sists of cells in a metallic plate. Printing plates and inks are the greatest factors in

achieving high quality prints.

Both Gravure and flexo allow for a variety of materials, from plastic films to lami-

nates, however each excels at certain materials. Depending on the machine, widths

from very narrow up to 10' are possible. Color also depends on machine configura-

tion. Some machines also have the flexibility to be retrofitted with additional printing

processes or post-processes such as drying, cutting, creasing, etc.

The printing station on a typical machine is comprised of a plate cylinder, anilox me-

tering cylinder (flexo only), and ink pan; illustrated in Figure 3-3. Gravure uses a

third roller called a fountain roller or a "doctor blade" (for improving ink distribu-

tion).
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Figure 3-3: Roller setup for flexography (left) [17] and gravure (right) [5]

Speeds vary considerably. Lower end machines advertise rates of 150-300 feet per

minute (FPM), while 1000-2000 FPM or more is common on higher end machines.

There are a variety of different configurations; following is an explanation of the most

common:

* Stack

o Vertical stacks with separate printing stations

o Easy to interface other equipment like cutters, creasers, etc.

o Poor registration

* Central impression cylinder (CIC)

o Single central impression cylinder surrounded color printing stations

o Precise registration, good color impressions

* In-line

o Similar to stacked printing press, but horizontal

o Same problems and advantages as stack machine

* Newspaper unit

o Multiple printing stations arranged back to back to allow printing both

sides at once in one pass
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* Dedicated 4-, 5-, or 6-color commercial flexo press

o Typically uses two 4-color units back to back

o Infrared driers

o Compact, high speed, wide web printing possible

Waste outputs during printing are similar for both gravure and flexo and include: Ink,

wasted paper, old/outdated plates, solvents, and water [4].

3.2 A Comparison with Microcontact Printing

3.2.7 Prepress, ItCP

Masters costs about $100 when prepared in the lab including the silicon. However,

one master can be used to produce many stamps, and each stamp can be used about

100 times. PDMS used to prepare the stamp is also inexpensive (-$75/kg.). High

quality HDT (>99% purity) costs $200/g but the technical grade HDT costs only

$10/g. Microcontact printing is still in its experimental lab stage, however, if utilized

in large volume for mass-production these prices have nowhere to go but down.

3.2.8 Press

A variety of methods have been developed for the press operation in microcontact

printing. Machine costs vary greatly as the technology is in its infancy and most ma-

chines are one-off laboratory devices.

Quality is a major issue that is being evaluated and optimized by many companies and

universities. Minimum feature sizes achievable have been found to be about 5 ptm.

While the densities of defects in patterns of inks of alkanethiols formed by ptCP have

been evaluated, the errors in registration of patterns produced by ptCP have not been

determined. There are three primary sources of inaccuracies in pCP: i) in positioning

the elastomeric element relative to the substrate, ii) intrinsic distortions of the element



introduced during its fabrication, and iii) distortions caused by elastic deformation of

the element when it is brought into contact with the substrate [2].

It has been demonstrated that when thin 0.1 mm elastomeric elements are cast against

a rigid backplane and the lithography is controlled with translation stages, absolute

distortions are 500 nm over square areas 1 cm2. When the lithography is performed

by hand, relative distortions of pairs of patterns can be as small as 500 nm over 0.25

cm2 if stiff, thick stamps are used. The distortions in both of these cases are compara-

ble to the limit of sensitivity of the measurements. [7]

At present, [tCP is limited to thiols on metals such as Ag, Au and Cu. However, de-

velopments are being made in printing of alkylsiloxanes on silicon dioxide and glass,

as well as copper and polypyrole on fluoropolymers. Other inks and substrates are

also being developed.

The feasibility of continuous Micro-contact printing has already been demonstrated

by a group at MIT. They demonstrated acceptable results up to 100 FPM [16]. Once

developed this technology may be able to give good quality prints at much higher

speeds.

Waste outputs in tCP include: chemicals used in photolithography for master manu-

facture, PDMS waste, thiol inks, etchants, water, etc.

Table 3-1 offers a side-by-side comparison of the three processes discussed in this

chapter.



Table 3-1: A side-by-side comparison of the three printing techniques detailed

in this chapter.

Flexography Micro-contact Printing

Setup-costs High

Stamp Costs Scales linearly with sizes

Lower than gravure

Increases with com-
plexity and size

Production

Production Rate Typically -500 m/min

Runs Preferred for long runs

Similar to gravure

Used mainly for me-
dium to long runs.

Existing Flexography machines can be
modified. Still in experimental stages

If applied to mass production, the cost
of the master can be amortized over
many stamps making them cost effec-
tive.

Rates of 30.5 m/min have been dem-
onstrated. However, it is possible to
achieve higher rates.

Continuous micro-contact printing is
being developed which can be used for
long runs.

Quality

Layer Thickness

Minimum Fea-
ture Size

Registration

Flexibility

< 0.1-8 m. Can give
prints with variable film
thickness.

75 pm

0.04-2.5 gm. Con-
stant film thickness.

80 jtm

< 200> 20

Single monolayer thickness

Feature sizes as small as 5 pim are pos-
sible.

Variety of inks and substrates are possible.

Health & Environmental Impacts

Variety of waste outputs including chemicals for
stamp production, inks, paper, etc.

Mainly for printing thiols on Au, Ag
and Cu. Alkylsiloxanes on glass; of
copper and polypyrrole on fluoro-
polymers has also been demonstrated.

Alkanethiols and dialkyl sulfides are
irritants and have a strong odor. Health
rating:2
Most etchants used are toxic

Cost
Gravure



Chapter 4

Basic Principles of Web Handling

Web handling is a general term referring to the art and science of moving a web, i.e. a

length of sheet or film, through a machine, typically at a fast rate, with minimal wast-

age. The handling of a web is considered a separate entity from that of converting or

manufacturing. Web converting entails those activities which change the properties of

the web such as printing, coating, laminating, etc. Web manufacturing typically refers

to forming the web and includes such activities as extrusion, paper making, etc. The

purpose of web handling is rather to preserve the properties of the web.

This chapter will cover the basic principles of web handling in typical roll-to-roll ap-

plications including roller design, web tension, nip interfaces, winding methods, and

web guidance. The subject is vast and applied across many industries, from newspa-

per printing to electronics manufacturers to packaging companies and more. A great

deal of research and knowledge is available to anyone concerned with this topic. This

is by no means a comprehensive collection of web handling information; rather it

covers the areas we found most useful to the design of our printing machine.

4.1 Rollers

Essentially, web handling is composed of rollers and the span of material between

these rollers; they constitute the foundation of all web handling, converting, and



manufacturing. Rollers control many aspects of a machine's performance as well as

many quality factors in the web: they change the tension, change the path, cause wrin-

kles and other defects, are a source of heat, and are oftentimes the foundation for con-

verting processes (calendaring, coating, laminating, printing, etc.).

They are several key areas of interest in roller design and application. Following are

the basic laws and rules-of-thumb.

4.1.9 Number of Rollers and Mounting Considerations

Deciding on the number of rollers in a machine is often a subjective matter. It is typi-

cally prudent to minimize the number of rollers; they cost money, take up space, in-

crease maintenance responsibilities, make threading the web more difficult, can in-

duce web defects like wrinkling or denting, and can increase tension due to bearing

drag or inertia.

One key factor in deciding the number of rollers has to do with the unsupported span

of material in between rollers. The optimum span is largely dependent on the width

and thickness of the web. If it is too short, web alignment can be over-sensitive (see

details of the Normal Entry Law in the following section), and if it is too long the web

will tend to sag, flutter, or vibrate, causing interference with tensioning and/or guid-

ance systems. At worst, these conditions can also lead to wrinkling and other defects.

[22]

There are two general configurations for roller mounting, and several variants thereof.

A live shaft consists of a roller with fixed ends that ride on a bearing fixed to the ma-

chine foundation. They are most often used where a drive motor must be attached. A

dead shaft has bearings fixed to the roller itself and the shaft is mounted rigidly to the

machine foundation. The shaft can be supported at each end, supported only at one

end (cantilevered), or supported at several places along its width (for especially wide

webs). Cantilever rolls are considered a more risky option and should only be used for

narrow webs; typically less than 18". They must be designed with especially

stout/precise bearing supports to resist excessive deflection. [23]



4.1.10 Alignment, Deflection, and Roundness

There are three key measurements of roller quality that affect the creation of a high

quality, "flat" web. Rollers should be aligned, not bend excessively under normal ma-

chine conditions, and the diameter should not vary greatly [24].

Alignment is critical to minimize problems with web tracking, web contraction, and

wrinkling. Out-of-plane alignment errors, when the centerlines of rollers are not par-

allel, are considered the most serious. According to the Normal Entry Law, a web en-

ters a tracking roller at a right angle (see Figure 4-1). Therefore, a misaligned roller

will steer a web in traction according to this law [23]. It is generally accepted that

alignment on larger machines cannot be done with simple shop tools and must be

aligned via optical or laser transit if accurate results are desired.

C

Traction
------------e

Figure 4-1: The web enters each roller at a right angle according to the Normal

Entry Law [22]

Deflection is caused by external forces, namely tension, nip loads, and gravity. A gen-

eral rule-of-thumb for deflection used by machine builders is to design rollers such

that under the effects of gravity, nip load, and/or tension load, the roller should not

deflect more than .00015 per inch of width. This is considered best practice to mini-

mize the effects mentioned above [23].
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Roundness (as well as balance, which is related) is the last key factors in roller per-

formance. Out of round or unbalanced rollers cause tension variations, machine/web

vibration, excessive nip loads, web wandering, bearing wear, noise, etc. Rollers

should be designed and manufactured to minimize diameter variation and eccentricity

[22]. Diameter variation is easy to check with a micrometer by measuring the roller at

several places and noting the measurements. Runout can be done dynamically with a

dial indicator to determine the Total Indicator Runout (TIR).

4.1.11 Substrate and Roller Interactions

The interaction between substrate and rollers is one of the key issues in web handling.

Consideration for such factors as traction, slip and float are crucial for optimum ma-

chine performance.

4.1.11.1 Traction and Slip

Traction is the friction force that a roller can exert on a web. Without adequate trac-

tion, the web will tend to slip over the roller, and the machine will not be able to con-

trol its behavior. Traction is a function of wrap angle, web tension, and the friction

coefficient of the roller and web (See Figure 4-2). If a web begins to slip on a roller, it

is generally a sign that traction needs to be increased. This can be done by increasing

tension, applying a high-friction surface coating to the roller, adding annular grooves,

or by increasing the wrap angle [22].
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Figure 4-2: A schematic of wrap angle and tension of substrate on a roller

Increasing tension may not be the best option as the web may not respond well to the

additional strain. Surface coatings tend to be less than ideal as they require additional

costs both initially and for maintenance. Grooving only has an effect at low speeds.

Increasing the wrap angle however, has no ill effects on the web or machine and pro-

vides a large increase in available traction [22]. According to belt friction theory, the

opposing tension increases exponentially with contact angle (equation 4.1). This

equation can then be reconfigured to calculate the minimum wrap angle to avoid slip

(equation 4.2). The traction zone approaches its maximum as this ratio approaches 1.

T2 = T 1 * eP (4.1)

T 2 /T 1 < eo (4.2)

4.1.11.2 Float

Web floatation is caused by the shear force between the substrate and the air. The ef-

fect tends to happen at faster line speeds in excess of 100 FPM and must be consid-

ered in high speed machinery. It effects tend to be especially noticeable with speeds in

excess of 1000 FPM. Air entrapment is a function of roller radius, roller speed, sub-

strate speed, tension, and kinematic viscosity by the relationship in Equation 4.3. [22]

T I



H = .643r[6 p(V, + V,)/T]2/3  (4.3)

Where,

H = air film height

r := radius of roller

p = kinematic viscosity

Vr = roller speed

Vw = web speed

T = tension

4.2 Web Tension

In web handling, tension is defined as the average machine direction (MD) web force

expressed in force per unit web width (in the English system it is expressed as pounds

per inch or PLI for short). Maintaining control over tension in web handling is essen-

tial for several reasons: to minimize bagginess and curl; maintain length, width, and

thickness; maintain web path and registration; achieve good roll quality; avoid web

breakage and/or wrinkling [22]. Web tension is affected by a variety of noise sources

such as roller eccentricity, motor speed accuracy, substrate quality, roller drag caused

by bearing friction, and others [23]. Therefore, it is imperative in web handling that

tension is monitored and controlled in some way.

4.2.12 Tension Zones

Machines are typically broken up into tension "zones" (Figure 4-3). A tension zone is

defined as the section of web between any two tensioning elements (typically motors,

clutches, or brakes). One element in the system must act to control speed rather than

tension. All other elements will control a tension zone either upstream or downstream

from the master speed reference. The number of tension zones required in a given

machine is a difficult question; too few will inhibit process optimization, while too



many will result in unnecessary cost and complexity. Steps to evaluate the number

required include: evaluating process steps for tension sensitivity and group compati-

ble processes; determining the driven elements; determining components such as un-

driven rollers that may affect tension by drag [13].
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Figure 4-3: An example of a machine broken down into three tension zones [11]

4.2.13 Methods of Controlling Tension

There are three primary methods of setting tension. These are by no means the only

ways of achieving tension, however they are the most basic and useful models. There

are many hybrid solutions as well as advanced methods of controlling tension beyond

the scope of this paper. Table 4-1 provides a description of each.



Table 4-1: an explanation of the basic tension control paradigms.

Type Best suited for Description

* Applications where ten- * Load cell measures the tension in the zone of
sion is high enough to be concern and feeds back to the controller.
measured with a load * Controller compares value to the setpoint and
cell. adjusts the output torque of the unwind brake

* Control within 10% of (typically pneumatic or magnetic particle) or
the setpoint is required. intermediate driven roller.

* Idler roller mounted on a stage or pivot and
* Applications where ten- counterbalanced by an adjustable air cylin-

sion does not need to be der.
maintained within a nar- * The position is detected by a potentiometer

Dancer row band or encoder and fed back to the controller to
* Tension errors around adjust unwind torque.

50% are not uncommon. * Setpoint is not displayed as engineering
units.

* Stretchy, extensible ma-
terials.

* Tension is achieved by driving an upstream
* Tight speed tolerance roller faster than a downstream roller.

Draw req'd for inextensible
materials * Strain increases proportionally as the web

* Applications where ten- passes over the downstream roller.

sion or strain is known.

4.2.14 Load Cells

Load cells are the preferred method of measuring and controlling tension because

their output can be converted directly into engineering units by calibration. In web

handling, the load cell typically consists of an idler roll supported on one (cantile-

vered roller) or both ends by a bendable element with a strain gage that changes resis-

tance as it is flexed [23]. The output can be calibrated to read out the normal force

applied by the web by: 1) zeroing out the load cell amplifier with no load to offset the

weight of the idler roll (analogous to hitting 'tare' on a scale); and 2) running a string

through the web path and hanging a weight of known value and adjusting the output

value (typically 0-10V or 0-20 mA) to correlate to this value. Because the normal

force is determined by the orientation of the load cell and the wrap angle of the sub-



strate, vector mathematics must be used to determine the force seen by the sensor. The

net force can be calculated using the following formula [11]:

N = 4Tsin(B/2) - Wcos(A) ,

Where:

T = Tension,

N = Net Force,

B = Substrate wrap angle,

A = angle of normal force LOA from vertical

WEB

Figure 4-4: The critical dimensions for determining net force [11].
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4.3 Nips

In terms of web handling, a nip is simply defined as a pinching force between two

rollers. Nips are typically used to isolate tension zones, control wound-in tension in

winders, apply pressure for printing, and a variety of other applications.

4.3.15 Hertzian contact

Nip stresses were first studied and modeled by Hertz in 1882 in response to spalling

failure of railroad wheels. Hertz design equations for two parallel, elastic, isotropic

cylinders can be used to calculate peak stresses, however it is not general enough to

be applied to most web handling applications due to friction, anisotropic qualities,

and the use of covers [23]. However, the model is useful for illustrating key concepts.

Additional work has been done in the study of nip interfaces. For example, G.J. Parish

developed a number of equations to model the behavior of rubber covered rollers

[26]. Although of interest to theorists, the application of these equations by them-

selves does not give a great deal of insight for the machine designer looking to ex-

pand his intuition. Instead, there are many empirical methods that provide sufficient

results. One of the most useful is that of nip impressions and flexible sensors.

4.3.16 Nip Impression

Nip impression can be done both statically and dynamically. It is a good indicator of

roller alignment, pressure distribution, roller geometry compatibility, and roller wear.

Static impression is typically done with carbon-paper or similar material pressed in

the nip at a predetermined load. Dynamic impression is more sophisticated and typi-

cally requires the use of flexible sensors that can pass through the nip while the ma-

chine is moving. These sensors can also be used for static impression. Figure 4-5 pro-

rides some basic diagnoses from static nip impressions.



Good

I I

Crown too low for load

Crown too high for load

Unbalanced load or misaligned

Binding, roller wear, grinding

Figure 4-5: Typical shapes of nip impressions and their causes [22].

4.4 Other Topics in Web Handling

There are a plethora of other issues and considerations involved in web handling de-

sign that are beyond the scope of this paper. However, two further issues that deserve

mention are winding and web guidance. Winding is a vast topic consisting of the me-

chanics behind winding substrates onto a spool at the last station of a roll-to-roll ma-

chine. Guidance is another important topic that refers to the maintenance of the web

path while the machine is running.

4.4.17 Winding

Winding is generally accomplished by one of three methods. The simplest, called a

center-wind, drives the roll completely by the core of the roll typically using a speed

controlled motor. This method has the least amount of control over wound-in tension,

and can only adjust within a narrow band. The next method, the surface wind, uses a



driven metal roller (termed the lay-on roller in industry) nipped against the outer sur-

face of the winding roller (the drum roll). Either the lay-on roller or the drum roll

moves as the roll grows, typically the former on larger machinery. By maintaining the

nip load via pneumatic or hydraulics and web tension, this method has a good deal of

control over wound-in hardness. The last method, the center-surface winder, differs

only by the drum roll being driven as well. This provides control over nip load, ten-

sion, and torque differential. This gives even more control over wound-in hardness

and is typically used for applications requiring very hard or very loose winds. [23]

4.4.18 Guiding

Web guidance is the act of centering and maintaining alignment of the web and roll-

ers. It is especially important for registration, traction, and the reduction of defects

such as wrinkling. It is accomplished either passively or actively.

In passive guidance systems, the rollers typically have geometry that either steers the

web or prohibits it from wandering. Concave rollers cause the web to slip and slide

into the low spot. Convex rollers, on the other hand, apply pressure to the center of

the web and guide it on the high spot. End plates on a roller can also be used to re-

strict the web from wandering out of a specified region; however this method can lead

to edge damage [22].

Active guidance uses sensors to feedback position info to a controller that can change

the web position using an actuator. Sensors vary from mechanical switches to photo-

eyes. There are a variety of mechanisms to guide the web, the most common being a

roller that can pivot about an axis perpendicular to its centerline. There are a variety

of variants of the pivoting roller, for example, the displacement guide. This system

uses four rollers, where the two middle rollers that can pivot as a unit in the plane of

the web run about the middle of the upstream roller and downstream fixed rollers.

This displacement guide tends to stress the web less than the pivoting roller. [23]



Chapter 5

Machine Design

In its current state, microcontact printing is limited to lab scale testing with very low

production rates. In 2007, a group of MIT engineers demonstrated that microcontact

printing was feasible in a roll-to-roll continuous format [16].. Their machine demon-

strated the feasibility of much higher production rates than the state of the art and

made observations regarding key parameters necessary for a quality end product. This

project expands on the knowledge gained from this group and further applies tech-

nologies borrowed from traditional roll-to-roll processes as well as creating new tools

especially tailored to microcontact printing. In order to realize this, a prototype print-

ing machine, continuous etching machine, and additional hardware were designed and

built in order to further experiment with this new technology. The design process and

details of the finished hardware are laid out in this chapter.

We will attempt to provide the reader with the concept generation and selection proc-

ess, as well as a reasonable amount of details regarding the components of the various

systems and subsystems in the tools we built.



5.1 Design Methodology

The design phase was critical in order to deliver a robust tool and optimize the quality

of the output. It also needed to demonstrate the feasibility of manufacturing in a high-

production environment. On the other hand, it was critical to build it in a timely fash-

ion at minimum cost. As these goals were at odds of one another, a design strategy

was developed to maximize utility and minimize time and cost. Following are the key

points used to address these issues during the design phase:

* Modularity

o Ability to adjust parameters quickly and easily

o Flexibility for testing and optimization

o Subassemblies can be built and tested outside the top-level system

o Additional modules can be added or subtracted easily

* Use of existing subsystems and controls

o Purchase of fully designed and tested units from manufacturers is much

faster than developing new subsystems. For example, there are several

manufacturers of tension control systems which have been used widely

in industry.

o Decreases design time, testing, and troubleshooting.

o Cost offset by time saved in development

o Support is available from applications engineers at the company.

* Design by part family

o Similar parts are faster and cheaper to produce

o Encourages modularity



5.2 Basic specifications

It was decided early on that the roll-to-roll paradigm was most suitable for fast pro-

duction rates. This method has been proven to be extremely efficient for the majority

of flexible substrate processing from printed goods, film coating, foil manufacturing,

and a plethora of other techniques. The target specifications were that it be able to

process up to 8" wide coated substrates up to 100 FPM. More specifically, the follow-

ing concepts were decided as being the most critical in the design:

1. Synchronous drive system

2. Web tension control

3. Print pressure control and feedback

4. Robust stamp interface

5. Semi-automated inking of print roller

6. Process automation

In addition to the printing apparatus, it was also necessary to develop a new tool for

manufacturing large area stamps. This was a critical path as the system relies heavily

on the quality of the stamp to produce the end product. The stamp had to be able to be

wrapped around a 5" diameter by 10" wide cylinder with minimal unprinted region. It

was to be cast on a stainless steel backing using .005" sheetmetal.

Lastly, we were tasked to build a prototype rig for continuous etching. The key char-

acteristic of this system was a solution to the low production rates inherent in the

etching process. Because the etching process requires a variety of steps (etching, rins-

ing, drying), it needed to be somewhat modular in nature and had to be able to deliver

variable process times at each step while still being a continuous process. It was also

crucial that the process not affect the printed region in a negative way, such as by

abrasion or smearing.

Solidworks 3D Computer Aided Design (CAD) software was used as the primary de-

sign tool. The ability to model individual components as well as assemble them in a

virtual environment is extremely powerful in a complex machine. A great deal of



other data can also be embedded in the files, such as engineering drawings and speci-

fications, manufacturing tolerances, part numbering and revisions, vendor part num-

bers, Bills of Material (BOM's), etc.

5.3 Microcontact Printing Machine

Final concept selection was made after several iterations. The final design was a fu-

sion of open loop and closed loop tension control using clutches as well as motor

draw (Figure 5-1).

DRIVE ROLLER
TENSION SENSOR IMPRESSION CYLINDER

With load cels to monitor print presstre VARIABLE TORQUE BRAKI
S/ (PM or magnetic particle)

STAMP CYLINDER
(Driven) INKING CYLINDER

/ (removable)

Figure 5-1: The proposed concept for the R2R jpCP device

The design separates the three critical systems into modules (Figure 5-2), called the

Supply Module (material handling for unwinding substrate from spool), the Print

Module (inking, printing, and pressure application), and the Collect Module (material

handling for rewinding substrate onto spool). Each system is discussed in the sections

to follow.
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Supply Module

Figure 5-2: The three modules and path of the substrate.

The components of each module are mounted to a baseplate made from precision

ground aluminum to ensure alignment of all components within the subassembly and

with other modules. The three modules are mounted horizontally to a frame made

from an extruded aluminum T-slot framing system; the material flows left to right.

Cantilevered rollers allow easy access to the components. Similar components were

used in each module to simplify design, assembly, part procurement, and mainte-

nance. The control system uses a Programmable Logic Controller (PLC) to synchro-

nize all movements, adjust parameters, and send data to a PC. Specifications for off-



the-shelf parts, engineering drawings of all custom components, as well as an overall

Bill of Materials are included in Appendix A. Figure 5-3 shows the 3D model of the

design with basic dimensions.

Figure 5-3: The 3D Solidworks model of the design.

5.3.19 Overview of Machine Functions

The machine uses a variety of mechanisms to achieve the primary parameters related

to microcontact printing. Table 5-lexplains how these are set and altered, as well as

DO



the interactions with other settings. For further details, please see the following sec-

tions about the "Related Subassembly" listed in the table.

Table 5-1: An explanation of how each printing parameter is achieved by the
settings on the machine.

Parameter Related Subassembly Interactions Description of Mechanism

Printing Print Module Noise (step pulse Motor speeds are referenced fiom the printing
Speed variations, EML motor roller speed, which is determned via a setting in

characteristics) the PLC prograim.

Web Tension Supply Module, Noise (roller diameter Achieved via a friction clutch and a permanent
Collect Module variations, substrate maglet clutch in the first and second zone,

defects, etc.) respectively, The third and fourth zone are
controlled by draw; changing the motor speeds
from the referenc e speed (printing roller).

Wrap Angle Print Module Noise (roller dianleter Changed by moving the print mnodule vertically
variations) relative to the supply and collect modules.

Print Impression Assembly Speed, Wrap angle (only The micrometer at the top of the assembly
Pressure wien negative), Contact moves the roller vertically. compressing the

width roller covering. The displacement of the roller
covering causes a force opposite the weight of
the moving assembly. A load cell measures the
force. Resultant force = mg - kx. Pressure is a
function of force and contact area: P = FA.

hlere A = contact width * roller length

Contact Stamp Roller Print pressure, Stamp As the impression roller is lowered, the roller
Width Assembly, Impression elasticity, hupression roll covering is compressed and the contact width

Assebly covering increases (graph of force vs. width vs. pressure)

Contact Stamp Roller Print pressure, Wrap angle, Dependent on the substrate speed. the width of
Time Assembly, Inpression Speed the contact, and the wrap angle around the

Asseanbly stamp (for negative wvrap angles).

5.3.20 Supply module

The supply module (Figure 5-4) consists of the substrate unwinding and tension con-

trol functions. As with all the modules, the main component is a base-plate machined

from Mic-6 precision ground aluminum. The flatness specification of .005" (over 4' x

8' stock) of this plate ensures that all components are well aligned, roller centerlines

parallel, and other modules aligned to this assembly. There are no powered rollers in

this module; all tension control and handling is done passively.

The spool of substrate is placed on the spool roll using the adapters that fit a 6" core.

Tension in the first zone is maintained using a custom made friction clutch that uses a

plastic pressure plate with a spring washer. A basic clutch of this nature was chosen



because the tension in this zone is not critical and did not justify the use of a hystere-

sis clutch, or other high-cost component. However, a permanent magnet clutch

(Figure 5-5) is used in the next zone. This type of clutch uses high energy, multi-pole

magnets to establish lines of magnetic force that retard the motion of the center rotat-

ing disc. They are ideal for precise torque in relatively low tension applications (.14 -

50 lbs). It is run open loop; all adjustments are made by adjusting the position of the

internal magnets. The roller in this position is covered with 1/16" neoprene to provide

traction and prevent slip. In addition, a nip roller is engaged tangentially that provides

radial force to avoid slipping.

U0 DESCRIP7ON OTY.

MODULE PLATE, SUPPLY 1
:2 EARNG BLOCK ASSY 4
3 IDLER ROLLER
4 IDLER ROLlER i
5 SONE ROLLER
6 SPOOL ROLLER I
7 KNOB i
8 PM CLUTCH 1
9 MOTOR STAN'OFF 2
10 SUBSTRATE SPOOL END 2
11 SUBSTRATE
12 WASHER. SPOOL

13 MOTOR MQOUNT LATE

14 CLUTCH SHAFT

15 FRCT1N C.J7 ASSY
16 COJ:o. kG

Figure 5-4: An exploded view of the Supply Module.



Figure 5-5: The Magpowr permanent magnet clutch used for tensioning the
substrate in the tension zone before printing [13]

5.3.20.1 Bearing Block Assembly

One of the other critical subassemblies used in this module, as well as the others, is

the bearing block assembly (Figure 5-6). All rollers in the machine, with the excep-

tion of the impression roller and tension sensors, ride on this assembly. It consists of a

set of preloaded deep-groove Conrad bearings, spaced 2" apart by an aluminum

sleeve, and mounted in an aluminum housing. Bearing preload is an important factor

as it affects all aspects of bearing performance, especially stiffness. It is accomplished

by forcing all the elements into contact by displacing one race axially with respect to

the other. It results in greater accuracy, repeatability, and stiffness; however, at the

cost of increased friction [9]. A light preload was chosen as it is a good compromise

between axial stiffness and friction; it is achieved by a nut that engages two spring

washers. Preloading was done primarily by feel; however I estimated the preload

force to be about 51bs based on the spring constant stated by the manufacturer and the

compression from the nut. The factor of safety for the loading capacity was approxi-

mately 2.5 based on C10 load life calculations (for 5000 hrs and 1000RPM) and the

dynamic load capacity stated by the bearing manufacturer. If anything, this was a con-

servative estimate because such high speeds were used in the calculation. Runout was



measured at several points along the printing roller; maximum runout was approxi-

mately .0015" TIR at the end farthest from the bearing block.

A DESCRIPTION OTY.

1 BEARNG BLOCK 1
2 BALL BEARING, IDD 2
3 WAVE WASHER I
4 BEARING LOCKNUT I

5 BEARING SPACER 1
6 IDLER ROLLER I

Figure 5-6: An exploded view of the bearing block assembly

5.3.21 Printing module

The printing module (Figure 5-7) is the most critical assembly of this system. It en-

compasses all of the most important functions: stamp mounting, printing speed, print-

ing load, substrate-stamp wrap angle, and inking. Our system consists of several sub-

assemblies. The print roller subassembly includes the main stepper-motor-powered

roller that drives the stamp against the substrate. A novel method for mounting steel

backed stamps to cylinders is employed. A PDMS covered roller below the stamp

roller can be lifted and engaged to ink the stamp and an air-knife used to blow nitro-
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gen on the rotating cylinder. The impression roller assembly consists of a stage that

the impression roller rides on. The impression roller is a foam covered roller that ap-

plies pressure to the substrate as it rides over the Stamp Roller. A pair of load cells is

used to measure the force applied.

Figure 5-7: An exploded view
tailed in the following sections.

of the Printing Module. Subassemblies are de-

!TEM NO. DESCRIPTION OTY.
I MODULE PLATE. PRINT 1
2 BEARING BLOCK ASSY 2
3 INKING ROLLER 1
4 STAMP ROLLER ASSY 1
5 IMRESSION ROLLER ASS 1
6 8020 STANDOFF 2
7 3EARING PLATE, PRNT 1
8 BSAL BEARING I V 2' OD 1

9 AIR KNIFE VTG PATE 1

10 AR KNIFE 1
1i MOTOR STAND-OFF 2

12 STEPPER MOTOR NEMA34 1

13 .OTOR MOUiT PLATE I

14 COUPING 1



5.3.21.1 Stamp Roller Assembly

This assembly consists of all the parts that comprise the stamp mounting and rotating

components (Figure 5-8). It rides on a bearing block as well as an additional front

bearing (See Figure 5-7) to minimize deflection and vibration. The accuracy and re-

peatability of this assembly has a huge affect on the printing quality as all the most

critical processes occur at this station. Stamp mounting flatness, shaft eccentricity,

vibration, and a number of other factors contribute greatly to the performance of the

machine.
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Figure 5-8: An exploded view of the Stamp Roller Assembly.

S DESCR PTIO QY.
NO.

1 PRINT ROLLER
2 STAMP TJBE I
3 HOSE CLAMP 2
4 STAMNP ETAtNER BAR
5 STEEi M*OUNT'ED STAMP 1
6 -32 X .375 SHCS 5

/I

W

'i.



There is an inherent risk of distortion with wrapping a stamp around a cylinder. While

an infinitely large diameter cylinder is the ideal solution, it is obviously not practical

or possible. We chose the largest stamp cylinder that could be accommodated by the

machine (while also accounting for feasibility for stamp manufacturing) to minimize

the arc that the stamp must be stretched around. We planned to study the effects of

this in the experimentation stage, and hypothesized that the distortion effect would be

isotropic.

The stamp is mounted to the Stamp Tube and slid onto the Print Roller and secured

with two bolts. This composite design makes the removal and exchange of tooling

very fast, an essential characteristic for a production environment. The PDMS stamp

is cast on a .005" thick 302 stainless steel backplane of dimension 9.25" x 15.35".

This is then wrapped around the Stamp Tube and the ends inserted into a groove in

the Retainer Bar (Figure 5-9). The groove is machined such that the ends of the steel

stamp backplane enter it tangentially. The .020" left protruding from the inscribed cir-

cle of the backing is below the surface of stamp's inscribed circle (providing that a

thick enough stamp is being used). Two large hose clamps are then installed to pro-

vide additional radial and axial clamping. This method does not take up a substantial

area of printable space (approximately 15 degrees) and holds the stamp and backing

in very close contact with the outer surface of the roller. It requires that the stamp be

cast in a rectangle smaller than that of the stamp to allow clamping to the tube. The

bolts that secure the Retainer Bar fit through a radial relief in the Print Roller.
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Figure 5-9: A section view of the stamp-roller interface.

Stepper motors were chosen to drive all powered rollers due to their simplicity, low-

cost, and ease-of-setup. Although they do not provide the most ideal smooth motion

5.3.21.2 Drive Motors



and response, the benefit of quick and easy setup far outweighed their weaknesses.

The identical motor was used on all three powered rollers. It is a NEMA 34 frame mo-

tor, with peak holding torque of 406 oz-in (Figure 5-10). These particular motors can

be powered on 120VAC and only require step and direction signals from a controller;

they have a built in power supply and driver. The driver is capable of 20 different mi-

crostep settings with a maximum microstep/step of 256. Torque requirements were

calculated based on roller diameter and target system speed. Maximum speed is an

important factor in any motor application, but is especially important in a stepper sys-

tem due to the relationship between speed and torque. Step motors lose torque with

increasing speed due to limitations caused by winding inductance; therefore a speed-

torque curve (supplied by the manufacturer) must be consulted when selecting a mo-

tor (Figure 5-11). With a target line speed of 300 feet per minute, our maximum fore-

casted speed was 240 RPM for the print roller and 400 RPM for the drive roller. At

this speed, the motor still has approximately 400 oz-in of torque (25 in-lbs), which is

enough to tension the PET to more than 10 lbs; more than sufficient for our system.

Figure 5-10 The IMS NEMA 34 stepper motor with integrated power supply

and driver was used to drive the print roller, drive roller, and collect roller.

This model only required the user to attach 120VAC power and IO; both which

were supplied via cables from the manufacturer.
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Figure 5-11: The speed-torque relationship for the stepper motor
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In order to attach the motor to the shaft of each roller, an Oldham flexible coupling

was selected (Figure 5-12). This style of coupling uses a nylon disc in between two

aluminum hubs. The compliant nylon compensates for any misalignment between the

shafts and also acts to dampen motor vibrations. The damping properties are espe-

cially beneficial to this system as vibration could translate into printing defects. It

also makes for a quieter, smoother system.

Di

Hub

Figure 5-12: An Oldham style coupling used to interface the motors and clutch

with various rollers [12]
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5.3.21.3 Impression assembly

The impression assembly (Figure 5-13) consists of a stage that can be adjusted up and

down to vary printing load. The roller is covered in 1/8" of cellular silicone foam to

create a compliant layer. Micrometers on top are used to compress the foam to create

a spring force. 0-10 lb load cells under the micrometers monitor how much weight is

resting on the print roller. Early on, these load cells were accidentally broken by ex-

ceeding their capacity and a single cantilever load cell was used in their place. Also, it

should be noted that the load cells only provide information about force, not the ac-

tual pressure distribution at the print-impression interface.

ITEMNO. DESCRIPTION QTY.NO._
I IDLER ROLLER ASSY 1

2 8020 STANDOFF 2

3 IMPRESSION FIXED PLATE 1

4 SHAFT MOUNT 2
5 SHAFT SUPPORT PLATE 1

6 LINEAR BALL BEARING 2

7 LOAD CELL 2
8 PRESSURE PLATE 1
9 LINEAR SHAFT, .7590 2
10 MICROMETER 2

Figure 5-13: An exploded view of the Impression Assembly. Modifications were
later made to this assembly to accommodate another type of load cell. Details
are in the following chapter.



The printing load is determined by the spring constant of the foam and the weight of

the moving assembly depending on the setting of the micrometers. A schematic of the

interface is provided in Figure 5-14 the relationship graphed in Figure 5-15. The pres-

sure distribution about the contacted arc of the stamp is determined by:

* applied force

* stamp compliance

* foam compliance

* position of the micrometer (translates into center-to-center distance for rollers)

* tension of the substrate

* roller runout (noise)

* vibration (noise)

* alignment of the impression roller to the printing roller (noise)

on Roller
rw/
.25")

)n Roller
(3.0")

splacement (x)

Printing Roller
Diameter w/ stamp
and backing
(5.125")

Figure 5-14: Critical dimensions at the Impression-Print roller interface.
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Figure 5-15: The relationship between the impression roller displacement and
the force, determined empirically.

5.3.21.4 Inking method

Ink is applied by one of two methods. The first is by removing the stamp from the

cylinder and wet inking it with octadecanethiols. The thiols last for many prints, so

this method was used for testing purposes, but it is more labor-intensive because the

stamp must be removed. The other method uses an inking roller with a layer of PDMS

on its surface that can be raised into contact with the stamp roller and transfer thiols

directly. This same roller can be reconfigured to serve as a cleaning roller by attach-

ing double-sided tape to it to clean the surface of the stamp during printing. Because

we did not have enough time to perfect the method of applying a layer of PDMS to

the roller, we were not able to adequately test this system.

!



5.3.21.5 Wrap angle adjustment

The entire Print Module can be slid up and down via the T-slots it is mounted to on

the machine frame. The angle (a) that the substrate contacts the stamp roller at can be

varied both positively (wrap angle around the impression cylinder) and negatively

(wrap angle around the print roller) or left to contact the roller tangentially, as illus-

trated in Figure 5-16. This characteristic was especially useful during initial testing of

the machine.

i llqj

T -

te with
e wrap
gle

Figure 5-16: A schematic showing the critical dimensions for wrap angle ad-
justment.

5.3.22 Collect module

Substrate winding and tension control are the main functions of the Collect Module

(Figure 5-17). There are two powered rollers in this system, one to drive the substrate

from the printing area, and another to wind printed substrate. Differential speeds of

these motors are used to control tension, while a load-cell based tension sensor

(Figure 5-18) is employed in each zone to feedback tension information. Cantilevered

tension rollers were selected based on performance and form factors. They were laid

out in the design to have the maximum amount of wrap angle (and thus the strongest

signal) while still fitting in the confines of the module. Idler rollers were also placed

to ensure that the sensor wrap angle did not change. Inserts had to be added to the



second sensor to allow the printed side to run on the roller without contacting the

middle of the print (similar to the "Bone Roller" used for nips) and causing defects;

this was a compromise to save space. The inserts were two 1.5" long Teflon thin-

walled tubes, which slid over the roller and were secured at the front and back with

approximately 6" between them (not included in the assembly drawing).

view of the Collect Module

ITEM NO. DESCRIPTION QTY.

1 MODULE PLATE, COLLECT 1
2 BEAR NG BLOCK ASSY 4
3 SPOOL ROLLER I
4 IDLER ROLLER I
5 IlER ROLLER
6 BONE ROLLER

7 TRANSDUCER ROLL 2

8 WASHER, .7JUD 2

9 SHOULDER BOLT. .625' 2

10 KNOB

11 STEPPER MOTOR NEMA34 2

12 MO'OCR STANDOFF 4

13 WASHER, SPOOL
14 SBTRATE SPOOL END 2
15 SUBSTRATE
16 t,,jOTOR MCUNT PLATE 2

17 COUPLING 2

Figure 5-17: An exploded



Figure 5-18: The cantilevered "Narrow Web" transducer from Dover Flexo
Electronics [10]

5.3.23 Electrical and Control System

The electrical system consists of high voltage distribution (110VAC), a 24V power

supply and distribution, a Programmable Logic Controller (PLC), several buttons, an

Emergency Stop relay (a motor contactor), sensor amplifiers for the load cells and

tension amplifiers, and stepper motors (described in previous section). The whole sys-

tem is assembled in an electrical enclosure to prevent harm to man and machine. A

schematic is provided in Figure 5-19.

High voltage enters the system and is current limited to 20A by a circuit breaker.

Ground and neutral are distributed via a terminal block. Power for the motors goes

through a contactor which is engaged via a button on the enclosure and disengaged

via an Emergency Stop button mounted on the front of the machine. In the case of an

emergency stop, all power is removed from the stepper motors. The PLC, PLC In-

put/Output (IO), sensor amplifiers, and Emergency Stop system are powered by 24V.

All analog signals are 0-10VDC and are fed into an expansion module in the PLC.

The earth ground is connected to machine ground in one point only to prevent ground

loops that may cause disturbances in the analog signals. 24V Return is also grounded



to prevent noise and ease machine troubleshooting (a multimeter's negative probe can

be touched to bare metal anywhere on the machine frame).

Figure 5-19: A basic schematic of the electrical system.

The main controller in this system is an Automation Direct PLC, programmed with

ladder logic using DirectSoft 5.0. Three expansion modules were added: an analog IO

unit and two high speed IO (HSIO) modules. The HSIO is used to provide step and

direction signals to the drive and print stepper motors up to 25 KHz. The PLC has the

ability to output at 10 KHz on the base unit, but is limited to only one signal. The col-

lect motor runs on this output (and must be microstepped to a more coarse resolution

to achieve the desired speed).

The program makes decisions based on tension data, programmed schemes and equa-

tions, and inputs from buttons. It outputs motor instructions (step and direction), dis-

crete operator alerts, and ascii text for data collection. Two PID loops are used in the



program to control the tension of the substrate. Figure 5-20 provides a basic flowchart

of the program. More details regarding the control scheme can be found in Shawn

Shen's thesis [25].

I

Figure 5-20: Control system flowchart.

Tension, load, and speed data is sent out the PLC serial port to a remote laptop every

1/32 of a revolution of the printing cylinder. Hyperterminal, a Windows communica-

tion program is used to capture incoming text. The PLC program formats the data into

a string of the form "Tensionl, Tension2, Force, Adjusted_force, command_speed,

PID_adjusted_speed". The "Capture text" function in Hyperterminal allows a text file

to be created from any incoming data. This data can then be opened in Excel by using

the commas in the string as delimiters.
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5.4 Stamp Fabrication Fixtures

5.4.24 Scope and purpose

This part of the project was essential to the success of the printing process. Making

large area PDMS stamps is not a trivial task. In previous research at NanoTerra, small

stamps were made with no backing and attached directly to a roller by hand. This re-

sulted in a large number of problems in the process and end product including distor-

tions, thickness non-uniformity caused by stretching, and problems with adherence to

the backing. Our challenge was to create a stamp with a printable region of 6" wide

minimum by 15" long. Critical parameters include flatness of the stamp, flatness of

the steel backing, uniformity of features, and minimization of defects (particulate

matter, bubbles caused by air trapping).

5.4.25 Concept selection

There are a variety of ways to realize these goals. The old method of gluing pre-made

stamps to a backing was discarded due to the problems mentioned before. We decided

to try two methods, one that has been used before and another which has been used

before but not at this scale. The method that NanoTerra had in its tool library was a

very basic injection mold with a 12" wafer as the master. The wafer sits under a

square border and a vacuum plate with the backing attached is bolted to the bottom

part of the mold. PDMS is injected into a port until it comes out a port at the opposite

side. This method worked well in the past and results in stamps with little or no air

trapping. However, we were limited to only a 12" long region, which would result in

wasted space on our print roller. This was not ideal, but was considered as a backup if

the other method did not work.

The other method (Figure 5-21) was to pour PDMS over a tray with a 2 x 6 array of

square wafers (cut from 6" wafers). A vacuum chuck above holds the substrate flat



and is lowered onto the PDMS. Spacers at the corners determine stamp thickness. The

ability to place an array of wafers in the tray has benefits for research, because a vari-

ety of patterns can be tested using one stamp. This idea can be scaled up, by placing

larger wafers in the tray. We chose 6" wafers because the MTL shop at MIT only had

the capability to process this size.

O0

DESCRIPTION QTY

I STAMP FIXTURE BASE 1
2 WAFER T RAY 1
3 BEARING SHAFT 2

4 UNEAR BEARING BLOCK 2

5 VAC PLATE I

6 VAC BACKING PLATE I

Figure 5-21: An exploded view of the stamp making jig. The Wafer Tray ac-

commodates an array of six wafers, allowing a variety of patterns to be printed

at once.



5.4.26 Stamp Fabrication

The fixture was used to fabricate a number of stamps. Unfortunately, air trapping oc-

curred under all conditions tried, and we decided to forego this method. Instead, the

injection-molding fixture at NanoTerra was used to fabricate stamps. The fixture was

based on a 12" wafer and could make stamps with an area of 8" by 8" by injecting

PDMS into a cavity covered by the steel backing and supported with a vacuum plate.

Although this did not optimize the stamp area on our cylinder, the stamps produced

were of good quality.

5.5 Continuous Etching machine

5.5.27 Scope and Purpose

We were also tasked with creating a system that could etch substrate continuously in

order to keep up with the speed of printing. This is essential in industry, because etch-

ing would be the obvious bottleneck in the process. Our task was to create a scalable

prototype that could be used to do basic testing of the principle operation. As this sub-

project was largely outside the main scope of our project, it received less of our ener-

gies and is mentioned only briefly in this paper.

5.5.28 Specifications

There were essentially three main concept specifications. First, the machine should be

able to operate at a line speed capable of keeping pace with printing while not taking

up an unreasonable amount of space. Second, if there is multiple stations in the proc-

ess (as in some Nanoterra proprietary techniques, where there is a total of three dip-

ping steps and two drying steps), each process time should be alterable without affect-

ing the line speed. Third, it should not create additional defects compared to the state

of the art (etching by hand is the most common method at NanoTerra).



5.5.29 Concept selection

We chose a modular approach to this problem. Figure 5-22 shows the 3D model of the

finished design. The substrate is run through a variety of rollers that allow it to pass

into tanks with the appropriate chemicals. Effectively the material is batched into a

smaller tank rather than having to have very long or deep tanks. Modules can be

added simply by bolting another one on and running the substrate through both

(Figure 5-23). Additional wheels can be added to guide the substrate vertically or

horizontally, depending on the desired configuration of the machine. The printed side

is guided only by the outermost 1" strip on each side by individual wheels to avoid

contacting the printed pattern. The rollers that guide the substrate into the tank are on

linear bearings, which allow them to move up and down, making it possible to change

the process time of each station.

Figure 5-22: A Solidworks model of the Etching Module.
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Figure 5-23: A schematic of the modular nature of the design. Additional proc-

essing steps can be added by attaching more modules.

In order to run the system at speeds comparable to that of printing, which would be

necessary in a manufacturing environment, this concept can be scaled. This can be

accomplished by adding more rollers and making the tank longer or allowing the bot-

tom rollers to be adjusted farther down and making the tank deeper. We wrote a

spreadsheet that calculates these parameters based on line speed. The user inputs the

line speed, roller diameters, individual process times, and tank depth; the spreadsheet

outputs the required number of rollers (Figure 5-24).
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Figure 5-24: A design spreadsheet used to calculate the number of rollers.
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5.6 Hardware Manufacturing and Assembly

Most custom components were manufactured by a local machinist or by one of our

team at the MIT LMP machine shop. Figure 5-25 is a typical drawing used to have the

parts manufactured. Electronic components were generally off-the-shelf components,

with some exceptions like custom made cables. Most components only needed basic

power and logic wiring. Figure 5-26 thru Figure 5-28 show the completed machines.
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Figure 5-25: A typical engineering drawing used in this project for communi-
cating part dimensions to machinists. Geometric and linear tolerancing was

used to communicate critical dimensions and characteristics. The rest of the

part drawings can be found in Appendix B.
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Figure 5-26: The assembled printing machine and electronics enclosure. The

majority of custom components were manufactured by a local machinist and

assembled by us at the NanoTerra facility.
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Figure 5-27: The assembled stamp jig. The large plates were manufactured by

a local machinist from MIC-6 precision ground aluminum.

Figure 5-28: The assembled etching machine prototype with some minor modi-

fications to reduce etchant volume. Most of the parts for were manufactured at

the MIT LMP shop using a CNC waterjet cutter, milling machines, and lathes.



Chapter 6

Experimental Methodology

This chapter discusses the methodology for experimentation including the overall

process model, characteristic measurements, design of experiments (DOE), measure-

ment techniques, as well as preliminary experimentation. For more detailed informa-

tion, please refer to Kanika Khanna's thesis [15].

6.1 Process Model for Roll-to-Roll pCP

Following is a brief explanation of the process model for control of roll-to-roll tCP

(Figure 6-1) developed by Kanika Khanna [15] based on research by Dr. David Hardt

[20]. It is especially of interest for experimental design and analysis of manufacturing

systems.
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Figure 6-1: A process model of roll-to-roll MCP inputs and outputs [15]

The outputs of primary interest in gCP are: 1) yield or percentage of area printed; 2)

the dimensions of local features typically represented as lengths, widths, diameters,

etc.; and 3) the location of features with respect to a fixed point and generally referred

to as spatial distortion.

Material parameters of interest comprise the properties of the Au-PET substrate, espe-

cially its modulus of elasticity. The primary equipment parameters of interest are the

states and properties of the stamp and machine tool. Of key importance is the stamp

wrapping method on the printing cylinder and the impression roller cover.

The controllable inputs are listed in Figure 6-1. Mechanical and program-driven con-

trols are detailed in Chapter 5. Ink content is controlled via frequent inking to ensure

that the amount in the stamp is kept fairly constant. Finally, geometrical properties of

the stamp also affect the output and are determined via the stamp fabrication process.



Determining the type of interaction for a continuous process is interesting. When

viewing the process perpendicular to the MD (i.e. along the contact length), the proc-

ess would be considered parallel. Therefore, contact width and pressure distribution

are of primary interest. However, when viewed along the MD (i.e. along the direction

of printing), the process would be considered to be serial. Viewed like this, printing

speed as a function of time and printing pressure as a function of time are of primary

interest.

6.2 Quality Measurements

We chose yield, dimensional variation, and spatial distortion as our key quality meas-

ures are they are considered the fundamental measures of printing quality; NanoTerra

uses these frequently in their research. The pattern is an alternating array of rectangu-

lar and triangular pixel arrays with a 1.5mm pitch. The rectangular pixels were chosen

for measurements as they are easier to define and measure and are affected less by

etching. Also, they are composed of more pixels on the screen, so a greater accuracy

can be achieved when measured. The critical dimensions are shown in Figure 6-2.

Figure 6-2: Critical pixel dimensions. Note: the area in green is the etched re-
gion and the darker area the printed resist region.



6.3 Design of Experiments

Two sets of experiments were designed. The first is a 22 full factorial (Figure 6-3) to

test the effects of printing force (pressure is indirectly controlled and discussed in a

following section) and printing speed on yield, dimensional variation, and spatial dis-

tortion. Tension was minimized and kept constant as it tends to stretch the substrate

and cause distortion. From this we wished to extract information regarding how the

process outputs responded to changes in these two inputs. The second experiment is a

1-dimensional scan (Figure 6-4) of the effect of speed, especially the effects of speeds

in excess of 100 fpm. Printing force and tension are kept constant.
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PRINTING FORCE (Ibs)

Figure 6-3: The 22 full factorial design with printing force and speed. [15]

SPEED (fpm) 30 60 120 240 400
CONTACT
TIME (ms) 63 32 16 8 5

Figure 6-4: Conditions for the 1-D scan of speed effects. [15]

10mM octodecanethiol was used as the ink in all experimentation. It was applied to

the stamp off the machine by dripping ink on the patterned surface and allowing 10

minutes for the thiols to diffuse into the stamp (essentially the same as immersive ink-
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ing). A blast of nitrogen was then used to remove any excess alcohol. 3M Scotch tape

was used before and after inking to remove any particles.

Etching was done using thiourea ferric nitrate. The etchant comprised 1.14 grams of

thiourea and 4 grams of ferric nitrate added to 500ml of water at about 40 degree C

and mixed vigorously. The print was then cut into 8" x 8" squares, submerged in the

etchant bath, and manually agitated. The unprinted gold was etched in 3-4 minutes

and rinsed using deionized water. Etchant typically lasted about a half hour before it

had to be replaced. The etching module mentioned before was only used for one long

print in order to prove its usefulness.

6.4 Measurement Techniques

Measurement was done using high-powered microscopes that had the ability to cap-

ture digital images. These images could then be manipulated via a MATLAB program.

Local dimensions were measured at 50X. An image of a pixel (refer to Figure 6-2)

was captured at 25 regions on the print, and the length and width measured using a

MATLAB program.

Distortions are the general large scale change in the printed pattern as compared to the

stamp. The amount by which a single pixel is distorted is the distance between the po-

sition where it was intended to be and the position where it actually is printed. Distor-

tions are quantified by fixing one point and pivoting the reference grid at that point

and then calculating the relative displacements of pixels from their intended positions

in the grid [7]. A Nikon Veritas microscope with an XY stage was used to capture a

grid of images for distortion analysis. MATLAB was used to measure and fit the data.

Refer to Kanika Khanna's thesis for a detailed explanation of measurement techniques

[15].

The accuracy of each measurement is as follows (established by NanoTerra):

* Distortions: Standard NT technique, accuracy: _ 4 tm. (42 points per print).

* Dimensions: Optical measurements, accuracy: _ 250 nm. (25 points per print).



6.5 Preliminary Experimentation

In order to get a sense of the machine, the effects of input parameters, and to deter-

mine sampling sizes, a variety of preliminary experiments were carried out.

The first task was to get the machine running properly; especially the tension control

system. Plain PET was used to tune the PID parameters and get a sense of the me-

chanics of the machine. The first problem encountered was that the substrate tended

to stick and slip off the stamp and subsequently wreak havoc on the tension control

loop as the wrap angle on the tension sensor changed with respect to time. This re-

sulted in the first set of load cells being overloaded due to the substrate being jerked

through the system and the impression stage jumping up and down. Our first solution

was to add idler rollers after the printing process to keep the wrap angle on the ten-

sion roller constant (see Figure 6-5). These were later removed when the PID loop

was further tuned; however, we believe it is a good improvement for further work to

avoid programming difficulties.

Figure 6-5: Idler rollers were added after the printing cylinder to maintain the

wrap angle on the tension sensor.

Our first round of prints was printed on AU-PET using 10mM octadecanethiols,

etched with thiourea ferric nitrate, and analyzed according to NanoTerra's standard



procedures. We observed a diamond-shaped distortion pattern (Figure 6-6) in all the

prints that we attributed to misalignment of the stamp along the print direction cou-

pled with wrapping around a cylinder. Because it was found to be a systematic effect

attributable to a known cause, a MATLAB program was written that accounted for it

in all subsequent tests.

Figure 6-6: The recurring diamond-shaped distortion pattern observed in all of
our prints. The black dots represent the reference grid and the red lines are the
feature shift from the reference grid scaled by a factor of 300. Note: the dia-
mond shapes were added for emphasis.

In order to determine the optimum sample size for dimensional variation, we sampled

a large number of pixels from our initial prints and calculated the relevant statistics

for length and width (Table 6-1).



Table 6-1: A summary of the initial dimensional results [15]

Sample size= 70
Length Width

Average 132.57 40.04
Standard
Deviation 0.57 0.36
COV 0.00 0.01
Standard
Error 0.07 0.04

For a 100(1-a) % confidence interval:

x - ta/2,n-1 S/In < I < X + ta/2,n-1 s/4n (6.1)

where x is the mean and s is the standard deviation of the sample, lt is the mean of the

population and n is the sample size. Thus for the population mean to lie within a

maximum of +/-d microns of the sample mean with 100(1- a) % confidence, the sam-

ple size is determined by:

n = (ta/2,n-1 S / d)2  (6.2)

Therefore, with a sample size of 25, the mean and width should lie within +/-.26 mi-

crons and +/-.16 microns of the population mean with 95% confidence, respectively.

A sampling size of 25 was therefore a fair compromise between accuracy and effort

(the measurement process is quite time consuming). For the remainder of measure-

ments, a 5 x 5 grid was used to determine measurement regions.

6.5.30 Determination of Contact Width and Pressure

Values for the printing force and speed were determined after initial experiments to

determine an acceptable range. The contact areas were determined at different forces

using a piece of gold substrate and an inked stamp. The force was set, impression

roller lifted, and the gold advanced between the stamp-impression interface. The im-

pression roller was then set down (light tension was maintained by hand) for ap-



proximately 5 sec to allow thiols to transfer and the substrate was subsequently

etched. The print was then measured with a caliper and the approximate area calcu-

lated based on the shape of the impression. The nip impressions are shown in Figure

6-7. From these numbers, the average pressure can then be calculated and used as a

rough reference. Because we were unsure of the actual pressure distribution at the nip,

we used the applied force as our parameter for experimentation. See Table 6-2 and

Figure 6-8 for the relationship between force and contact width, as well as force and

pressure.

Figure 6-7: Nip Impressions demonstrating the change in contact width with
varying load. The corresponding load (in lbs) is shown at the bottom of each
print. Their shape implies that there is some misalignment in the system (shims
under the roller mounts could improve the alignment); however no systematic
effects attributable to this were observed in our results.



Table 6-2: Printing pressure and contact area calculated from nip impressions.

Note: the "calculated width" is the width back-calculated from the area and 8"

stamp length and represents the ideal width if the contact was perfectly uni-

form.

0.5 -

0.3 -

0.2

0.1

Force W1 W2 Contact Pressure
(lbs) (in) (in) Area (in2) (psi) (Kpa)

3 0.09 0.23 1.52 2.0 13.6

5 0.14 0.25 1.75 2.9 19.7

9 0.27 0.35 2.62 3.4 23.7

18 0.46 0.52 4.02 4.5 30.9

27 0.49 0.59 4.49 6.0 41.4

--- Contact widt
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Figure 6-8: This graph depicts the relationship between force and pressure and

force and average contact width. Because the contact width increases with

force, the pressure is not proportional to force, nor does it increase linearly. It

should be noted that the pressure depicted here is only theoretical and repre-

sents the average pressure over contact area. The actual pressure distribution

may be quite different. The area was calculated using nip impressions, Figure

6-7.
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6.5.31 Stamp Dimensions

The dimensions of the stamp were measured to determine their effect on the finished

print. Because we did not have the equipment to measure the stamp while mounted to

the cylinder, we measured it while flat using a vacuum chuck on the Veritas measur-

ing machine. Note: the measurements were based on the Veritas images, which are

less accurate than the Nikon microscope images. The results are as follows:

Table 6-3: Results from stamp measurement

Mean (pm) Max (pm) 95th percentile (pm)

Distortions 5.7 13.7 10.7
Dims (width) 39.1 ± .27

Dims (length) 129.7 + .21



Chapter 7

Results

This chapter reports the results from our designed experiments and machine/process

performance. Both qualitative and quantitative results are presented.

7.1 Summary of Results

The experiments we conducted revealed a variety of new insight into continuous mi-

crocontact printing. Those results of the greatest interest are:

* Neither printing pressure nor speed was found to have a significant effect on spa-

tial distortions and pattern dimensions in the range of settings we used.

* The variation in pattern dimensions was small (C.O.V -0. 5%) and randomly dis-

tributed across the prints.

* Achieved -100% pattern transfer (yield) on all prints without double-printing or

smudging.

* It is possible to print a robust etch-resisting SAM at very high speeds (400 ft/min,

unit area contact time - 5ms).

* At very high speeds (400ft/min), some systematic air trapping was observed

* Confirmed that PDMS is a very durable stamp material (all prints were made with

the same stamp as well as run over plain PET for -20,000 revolutions).



* The alignment of the stamp on the backing may have a significant effect on distor-

tion patterns.

7.2 Results from 22 full factorial DOE

7.2.32 Analysis of dimensional variation

We used a program in MATLAB to compute the overall dimensional variation from

the microscope images (Figure 7-3). The results are as follows in Table 7-1:

Table 7-1: Dimensional results from full factorial experiments.

Dimensions, Length

MI-

120

133.17

............... ...34 ................
133.85

132.76

0.23

133.27

Speed (fpm)

133.03

133.65

133 .13

0.37

134.04

133.09

............... 0. ...............

133.85

133.22

0.29

133.85

Mean

StDev E

Max ~
r

Mean ,

StDev

Max

Dimensions, Width
Speed (fpm)

120 60 30

40.39 40.27 40.40 Mean

LD 0.29 0.26 0.24 StDev E

40.96 40.58 40.77 Max

S40.21 40.38 40.43 Mean

0.30 0.28 0.32 StDev

40.77 40.77 40.96 Max

Dimensional variation was found to be small and similar for all the conditions we

tested under. The coefficient of Variation was less than .35% under all conditions. The

average length and width was larger than the stamp dimensions, which was expected

due to stamp stretching and minor over-etching. There also appeared to be no system-
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atic effects; the size was evenly distributed throughout the print, as can be seen in the

colorbar chart in Figure 7-1 and Figure 7-2.

Colorbar Map for Width(um) Colorbar Map for Length(um)
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Figure 7-1: A colorbar of the feature length (left) and width (right) at 30fps

and 51bs. The feature size seems to be evenly distributed throughout the print;
no systematic effects appear to exist.
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Figure 7-2: Colorbar for 120 fpm, 18 lbs.
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Figure 7-3: Typical images taken on the Nikon microscope. The print on the
bottom left was taken later in the experimentation and has various defects that
we attributed to stamp deterioration.

An ANOVA analysis was also performed to quantify the effects from printing force

(load) and speed (Table 7-2). No significant effects on dimensions or distortions were

found in the operating region we tested in as the F-value was found to be less than F-

critical. Although, this was somewhat surprising, it is proof that this process is very

robust. It would be useful to confirm this in future work by testing under a wider op-

erating range.

Table 7-2: ANOVA results for dimensions (Two-factor without replication)

Mean Pixel Length
ou3rce of Varmia~iw SS df MS F F crL P.,valu

Speed 0.037537 2 0.018768
Load 0005086 1 0.005086

19.00003 0.709753
18.51276 0.77087

Error u.ul t 1 2 0U.0U4U68

Total 0.134414 5

Mean Pixel Width
Sorc' nf Variti~nr S dA. F cr j Dlum

Speed 0.014568 2 0007284
Width 0.000247 1 0.00024
trror 0.023959 2 0 01198

Total 0.038774 5

1900003 0,621887
1851276 0.898896



7.2.33 Analysis of spatial distortions

Distortion analysis was carried out using the Veritas microscope. MATLAB was used

to measure and assemble a vector map and other statistics. The results at each setting

are summarized in the following table:

Table 7-3: Distortion results from full factorial experiments

Distortions

LL,

ci)
C)

120

21

51

49

11

30

37

60

26

65

60

19

64

47

13

32

28

15

37

45

Mean

Max E

95%ile
.E

Mean 7

Max

95%ile

As was mentioned before, a diamond shaped pattern was observed in all prints. Be-

cause the effect was found in all prints and believed to be caused by stamp misalign-

ment, an algorithm was written in MATLAB to ignore this effect when fitting the

grid. The vector map before and after fitting is shown in Figure 7-4.
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Figure 7-4: The vector map before and after fitting to ignore the effects of
stamp misalignment.
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An ANOVA analysis was also performed to determine the effects of load and speed on

spatial distortion. Like the analysis for dimensional variation, no effect was found on

spatial distortion at the operating range we used, indicated by the F-statistic being

smaller than F-critical (See Table 7-4). Again, this was a surprise, but was more proof

that the process is robust to variations in operating parameters. It is also further sup-

port for high-speed microcontact printing.

Table 7-4: ANOVA results for distortion (Two-factor without replication)

95%ile Distortions
Source of Variation SS df MS F F crit P-value

Speed 547.7158 2 273.8579
Load 44.75454 1 44.75454

19.00003 0.274513
18.51276 0.578578

Error 207.2471 2 103.6235

Total 799.7174 5

7.3 Results from 1-D scan of speed

Even at high speeds up to 400fpm, we observed almost 100% pattern transfer with the

exception of some systematic air trapping. The pixel dimensions were found to be

tightly distributed and did not follow a systematic trend based on increasing speed

(Figure 7-5 and Figure 7-6). Distortion results were slightly different, however. We

were only able to measure distortions at 240fpm and found the maximum value to be

66 i m and the 95 percentile of 65.77 gim. These larger distortions could be attribut-

able to the tension being more difficult to control or perhaps a magnification of the

alignment effects observed before. The vector map (Figure 7-7) seems to show that

the edges are being tensed differently than the middle of the web, perhaps due to the

use of "bone rollers" at the drive roller and clutch roller nips.



Figure 7-5: 95% confidence
of printing speed
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Figure 7-6: Colorbar for 400fpm and 181bs.
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Figure 7-7: Vector map of 240fpm, 181bs. There appears to be different effects

at play at higher speeds from what we observed in previous tests.

The only significant effect we observed at high speed was a very consistent pattern of

dots under the triangular pixels (Figure 7-8). They were also observed at 240fpm, but

its effects were especially apparent at 400 feet per minute (Figure 7-9). We believe

this problem is due to air being trapped between the stamp and substrate in larger ar-

eas. Because the contact time is so short (see Table 7-5) the air does not have time to

escape and causes a small bubble that inhibits the transfer of thiols in that region.

Higher printing forces may be able to alleviate the problem; however we did not have

enough time to test that theory. If no other solution can be found, design rules for high

speed printing may also have to be applied to limit large print areas where air trapping

is most likely to occur.
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Table 7-5: The effective contact times for each run calculated from speed and

contact width (average contact width determined empirically, see Section

6.5.30).

Speed (fpm)

30
60
120
200
400

Force (lbs)

18

18

18
18
18

7.4 Continuous Etching Results

A 48" print was made with the printing machine and attached to a leader and follower

of plain PET. The web was fed through a tank of thiourea ferric nitrate at approxi-

mately 2 fpm (it could be run faster by increasing the number of rollers or depth of

tank). Agitation was done manually by moving the tank. The print was etched satis-

factorily and proved that continuous etching is possible even with a slow etchant such

as thiourea. By scaling the size of the modules up and using faster etchants, it is fea-

sible that etching could be done at rates comparable to printing.

7.5 Machine Performance Results

Several aspects were used to determine the overall performance of the machine:

* Printing force accuracy and precision: load cell data from the PLC was collected

from the serial port during each run and analyzed to verify that printing force did

not vary greatly during the print. By observing patterns in the data, we extracted

the regions from the actual print (Figure 7-10) and confirmed that printing force

varied little during most prints (-1.5% COV).
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Figure 7-10: Load cell data from one print, extracted from the overall data set
from the entire run.

Tension control precision: tension data from the first sensor was collected from

the PLC via the serial port during each run and analyzed to verify that it was in

control (Figure 7-11). It typically never varied more than 0.50 pounds during most

runs. There was a settling period after each seam, however, that caused most of

this variation. By covering the seam with foam or PDMS, the effect could proba-

bly be reduced. Nevertheless, the tension control system worked quite well and

was able to maintain a very light tension, even at high speeds. More information

regarding the control system performance can be found in Shawn Shen's thesis

[25].

Tension during one Print
4

,,-- 3.515,,,
S3

.0 2.5

* 2
I-

115
1 2 3 4 5 6 7 8 9 10 11 12 13 Time

Actual printing time

Figure 7-11: Tension data (from the first sensor) from one print, extracted
from the overall data set from the entire run.
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* Control system robustness: the control program on the PLC and PLC hardware

worked very well. Even under varying conditions, the PID parameters only needed

moderate tuning.

* Appearance of the web: with proper alignment of the substrate, the web flowed

through the machine very smoothly, with no bagginess or wrinkling. Nip pressure

at the drive roller and clutch roller also proved to be critical. By attaching foam

around the bone roller, we were able to make this setting less sensitive.

* E-stop function: the emergency stop relay worked well and cut off power to the

motor drives quickly. Fortunately, it was never needed, but is an important feature

of any automated system.

* Effectiveness of stamp mounting: mounting the stamp was fast and effective; how-

ever it took some experimentation to perfect the technique. The best method was

to loosen the Stamp Retainer Bar (SRB); stand the Stamp Tube on end; insert one

end of the stamp and temporarily tape it in place to the SRB; carefully wrap the

stamp around and insert the other end into the groove on the SRB; loosely place

the hose clamps on each end; tighten down the SRB; and finally tighten the hose

clamps slightly. Tightening the hose clamps too much tends to cause bulges. Bet-

ter hose clamps that can exert pressure all the way around would be ideal.
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Chapter 8

Conclusions and Future Work

A working roll-to-roll machine was developed that demonstrated the ability to per-

form microcontact printing at high speeds and sufficient quality. The machine demon-

strates that the integration of traditional printing hardware and techniques with micro-

contact printing is feasible. Also, it is a step in a positive direction for a technology

that has been done primarily in a manual fashion in a laboratory setting.

Two sets of experiments were designed to assess quality based on input factors. In the

first, printing pressure and speed were varied and the quantitative effects on dimen-

sional variation and distortion were evaluated. In the other experiment a 1-

dimensional scan of the effect of high speed was evaluated. The following conclu-

sions were reached based on these experiments:

* 100% pattern transfer occurred at all settings used. Double-printing and/or slip

was never observed.

* Neither printing pressure nor speed was found to have a significant effect on spa-

tial distortions and pattern dimensions. The variation in pattern dimensions was

small (C.O.V -0. 5%) and randomly distributed across the prints.

* Producing a high-quality, etch resistant SAM is possible even at high speeds (400

fpm). Air trapping does tend to occur after about 200 fpm, however. It appears that

high speeds are mainly limited by contact time, mechanical constraints, and aero-

dynamics.
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* PDMS is a highly durable stamp material. The stamp was used for 1000's of prints

during machine testing and during experimentation. It imprinted on plain PET

many 1000's of times while the machine was first being tested.

* Injection molding is the preferred method of producing large area stamps. We

were not able to achieve good results by other methods.

* Our method and apparatus for wrapping stamps around cylinders appeared to be a

robust solution that could be used in a production environment.

* The machine that we developed is robust, easy to operate, and produces good re-

sults, both in terms of printing and web handling.

There is a great deal of additional work to be done to gain further insight into roll-to-

roll pCP for mass production. Following is a list of the areas we think are most criti-

cal:

* SEM analysis of edge roughness: This metric was not used during analysis, but

could provide further insight.

* Standardized 1-d scan on printing speed: because our method was not fully stan-

dardized during this test, we had some results that we believe could have been bet-

ter, had a stricter protocol been followed. This could include: a more consistent

inking process, using fresh etchant of the same temperature and time for each

print, as well as other factors.

* Effect of stamp thickness and alignment: these may be a key factor in distortion.

* High speeds at larger wrap angles: Wrap angle could help the transfer of SAM's

during high-speed printing and perhaps reduce the effects of air trapping.

* Reduction of pinholes caused by dust particles: Higher quality prints can be made

if dust can be eliminated from the environment. Static caused by the PET was a

major issue that seemed to attract large amounts of dust.

* Better estimation of stamp life and durability: Although we observed long stamp

life, it was never measured. A quantitative analysis would be valuable.
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* Continuous Inking: As we did not have enough time to test this system and it

would contribute greatly to commercialization of continuous [CP, this may be an

area of great interest.

* Printing Pressure: Actual printing pressure should be measured to evaluate effects

and machine performance. A flexible sensor or other similar method should be

used.

* Impression Assembly Improvements: the load cells should be placed directly above

the pillow blocks. A lower friction bearing system should also be in place; perhaps

using a flexure or a pivot/counterbalance system.

* New Stamp Manufacturing Methods: The injection molding technique seemed to

work very well, however other methods should be developed to produce high-

quality stamps. A larger injection mold with two large wafers could be made that

can maximize stamp area on the printing cylinder. The stamp is truly the heart of

the machine and it needs more attention.
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Appendix A

Engineering Drawings
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Bill of Materials, Printing Machine

nanoterra
Project #: Pxxx
Project
Name: IgCP Machine

Item Description Qty MFG Vendor Part #

1 MODULE PLATE, SUPPLY 1 NT-MIT MD Belanger P100

3 MODULE PLATE, COLLECT 1 NT-MIT MD Belanger P102

5 IDLER ROLLER 4 NT-MIT Dynatech P105

7 SPOOL ROLLER 2 NT-MIT Dynatech P107

9 INKING ROLLER 1 NT-MIT Dynatech P109

11 BEARING PLATE, PRINT 1 NT-MIT MD Belanger P111

13 AIR KNIFE MTG PLATE 1 NT-MIT Dynatech P113

15 PRESSURE PLATE 1 NT-MIT MD Belanger P115

17 SUBSTRATE SPOOL END 4 NT-MIT Dynatech P117

19 ADAPTER SHAFT 1 NT-MIT MIT P202

21 24VDC POWER SUPPLY, 360W 1 A-D PSM24-360S

23 ANALOG INPUT MODULE 1 A-D FO-08ADH-2

5 CIRCIIIT RRFAKER SA 3 EATON A-D WMS1 D05

117

Z7i STARH I/S I UOP BU I I UN bUX 2 A-U t-22Abbt2U4

29 IDLER ROLLER ASSY 1 DFE DFE IR3-8-45



31 TENSION TRANSDUCER AMPLI- 2 DFE DFE TI201L
FIER

33 AIR KNIFE 1 EXAIR EXAIR 110009

35 CORDSET-PROTO DEV 3 IMS IMS MD-CS100-000

37 PARAMETER SETUP CABLE 1 IMS IMS MD-CC300-000

39 PM CLUTCH 2 MAGPOWR MAGPOWR HC5-58

41 WAVE WASHER 10 M-C 9714K650

43 HOSE CLAMP, 4.75-5.5 ID (PKG 1 M-C 5076K27

45 LINEAR BEARING ASSY 2 THOMPSON M-C 64825K36

47 SHAFT MOUNT 2 M-C 6068K27

49 WASHER, .750" ID 2 M-C 98029A036

51 WASHER, SPOOL 2 M-C 92303A103

53 ALUM EXTRUSION, 1.5" X 3.0" X 3 80/20 M-C 47065T81
8'

ALUM EXTRUSION, 1.5" X 1.5" X M-C 47065T23

8'

57 CORNER CONNECTORS 4 80/20 M-C 47065T51

59 PUSHBUTTON (ILLUMINATED), 2 BACO M-C 6749K365
YEL

61 CORD GRIPS 6 M-C 7529K171

63 ROTARY ON/OFF SWITCH, 25A 1 M-C 6759K231

S FI1 I.q Nlnl nFR 4 M-C 7641 K351

67 TERMINAL BLOCK, 3 TERMINAL 10 WECO M-C 947318

69 END STOP 10 WECO M-C 9473T144

71 FEP SHRINK TUBING 1 M-C 8703K86

73 CORD GRIP, NYLON 2 M-C 7529K173
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