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ABSTRACT

This thesis demonstrates the first ever use of F6rster resonance energy transfer

(FRET) to increase the quantum efficiency of a electrically pumped J-aggregate light

emitting device (JLED). J-aggregate thin films are highly absorptive films that have

potential applications in a new class of optoelectronic devices, known as polaritonic

devices. These devices, which utilize strong coupling between light and matter,

include room temperature low power optical switches and low threshold lasers.

Recent work has shown that a J-aggregate strong-coupling device can be powered not

just optically but also electrically. However, since J aggregates are engineered for

their optical and not electrical properties, exciting them electrically is very inefficient.

JLED efficiency can be improved by first exciting phosphors that readily form

excitons and then employing FRET to excite the J aggregates. Attaining high

efficiency can make electrical pumping a viable option to power polaritonic devices.

Thesis Supervisor: Vladimir Bulovid
Title: Associate Professor of Electrical Engineering
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Chapter 1: Introduction

Organic light emitting diodes (OLED) have become an increasingly used

technology. An OLED's unique properties, including high power efficiency, low

manufacturing cost, and color variety at wide viewing angles are making the OLED

technology a strong contender in the display market. Just last year, Sony commercialized

an 11 in. OLED display. However, OLEDs' applications are not limited to display

technology. OLEDs that use aggregates of cyanine dye molecules for emission, called J-

aggregate light emitting devices (JLED), can be used for novel optoelectronics known as

polaritonic devices. This thesis develops a JLED that uses F6rster resonance energy

transfer (FRET) from organic phosphors to J aggregates to increase the device quantum

efficiency. Efficient JLEDs have a strong potential in use for polaritonic devices.

Polaritonic devices are a new class of devices that are based on the coupling of

photons and electron-hole pair eigenstates, a phenomenon known as strong coupling.

Strong-coupling devices generally consist of an optical microcavity with an active

material embedded inside. This active material, which may be an excited gas of

molecules, semiconductor quantum wells, or a film of organic molecules, serves as a

container for electron-hole pairs known as excitons. When the resonant photon energy of

the microcavity is tuned to the energy of the excitons, an energy exchange between the

two states occurs. When the rate of this energy exchange between the two states is faster

than the combined rate of the photon leaving the microcavity and the excitons losing their

phases, a strong coupling limit is said to be reached. The two states are no longer eigen-

states of the system, and the two new eigen-states of the system become linear

combinations of photon state and exciton state, separated in energy by a value referred to



as the Rabi splitting which is a measure of the strength of the coupling'. Applications of

strong coupling in atomic and semiconductor systems have led to one-atom zero

threshold lasers2, high gain parametric amplifiers, 3 and predictions that strong coupling

may play a key role in quantum information processors4

To become a viable technology, polaritonic devices must be powered efficiently.

The primary method for powering them today is optical pumping. Devices are activated

by short laser pulses. The only electrical pumping shown was by Tischler et al. in 2005.

Tischler's device was a microcavity with a JLED embedded inside. He successfully

demonstrated strong coupling with a Rabi splitting of 300meV 5, but the device efficiency

was limited due to the inefficient JLED used'. Achieving high efficiency through

electrical pumping can broaden the application of polaritonic devices and can also

eliminate the use of complicated equipment such as lasers.

This thesis describes the development of a more efficient JLED for the purpose of

making polaritonic devices technologically viable. Using a technique that is shown to

improve OLED efficiencies, the JLED is doped with phosphors that, after being

electrically excited, can FRET to the J-aggregates.

There are three main chapters following this introduction. Chapter two discusses

structures used to experimentally confirm a FRET between J aggregates and Ir(ppy)3, a

widely known organic phosphorescent material, which will be referred to as just

phosphors in the following text. Material incompatibility that arises when making the

structures is discussed and resolved. Chapter three experimentally demonstrates the

FRET using the structures from chapter two. Chapter four employs the energy transfer

structure to make the JLED. The work done in each chapter builds on work done in the



previous chapters. Together, the chapters comprise a recipe to making a JLED that

utilizes Ir(ppy)3 to J aggregate FRET.

1-1: J Aggregates

J aggregates, short for Jelley aggregate, were first reported by Edwin Jelley of

Kodak in 19366 and further studied by G. Scheibe towards the late 1930s7. J aggregation

has been shown using various materials, especially using different types of cyanine dye

molecules, and these J aggregates were primarily used to sensitize silver halides in the

photographic film industry of the 20 th century. A J aggregate generally refers to an

aggregate of monomers that align themselves in such a way that their transition dipoles

enhance each other. The proximity of these monomers, through intermolecular

interactions, results in delocalization of the exciton over many monomers, which would

otherwise be localized to a single monomer. This exciton delocalization exhibited by J

aggregrates is akin to carrier delocalization in crystalline semiconductors, but occurs on a

smaller size. The delocalization couples the transition dipoles of the monomers and their

alignment results in unique optical properties: a fast radiative lifetime, a large oscillator

strength of the aggregate known as superradiance and a very narrow spectral linewidth

known as motional narrowing8. All are properties that are necessary in polaritonic

devices. A cartoon of the aggregation process in solution and its effect on a PDBTC

cyanine dye absorption spectrum is shown in Figure 1-1. The large peak, red-shift and

the narrowing of the spectrum are some of the defining traits of J aggregation.
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Figure 1-1: (a) Cartoon illustration of J aggregation in solution. (b)
Absorption spectrums of PDBTC monomer and their J aggregates.

Recently, there has been a large interest in J aggregates for their application to

polaritonic devices. J aggregates' fast radiative lifetime, small stoke shift and large

oscillator strength make them appealing for use as the active material in these

optoelectronic devices. In 1998, Lidzey et al. used J aggregates to demonstrate the strong

coupling phenomenon 9. The device was a microcavity embedded with a spun-cast film

of porphyrin aggregates and a Rabi splitting of 160 meV was shown, which is an order of
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magnitude larger than the 17.5 meV achieved in semiconductor systemso'0 . Since then,

Rabi splitting of 300 meV has been achieved using cyanine dye J aggregates 1.

Using J aggregates in polaritonic devices does not only achieve strong coupling

with giant Rabi splitting, but it also allows this phenomenon to occur at room temperature

which has not been possible in semiconductor systems. Due to high carrier mobility in

standard semiconductor systems, without cooling to a cryogenic temperature, the effects

of the input signal are quickly lost due to electronic rearrangement, known as dephasing.

For these reasons, an optical microcavity with J-aggregate thin film inside has become a

popular platform for studying strong coupling.

Traditionally, in active polaritonic devices, J aggregates are used in a thin film

form. The film thickness varies from a few nanometers to hundreds of nanometers

depending on the method of formation. The three common deposition methods are:

Langmuir-Blodgett , spin-casting in a polymer matrixl 3 and Layer-by-Layer deposition

(LBL) 14. Following Tischler's work, LBL is the method of choice in this research.

Highly absorptive thin films (a=1x10 6 cm-') of TDBC J aggregates can be grown using

LBL 5 .

1-2: Layer-by-Layer Deposition

Layer-by-Layer deposition (LBL) is a technique for growth of nanometer scale

films by sequential immersions into polycationic and polyanionic solutions. The method

was first reported by Decher et al. in 199116 and has since been widely used.



LBL starts with the preparation of a starting substrate and two solutions

containing oppositely charged, dissolved ionic molecules that will comprise the resulting

film. One solution contains cations; the other contains anions. The substrate undergoes

sequential immersion into these cationic and anionic solutions (SICAs), adsorbing a

monolayer of cations or anions with each dip. The force that makes this adsorption

possible is the electrostatic attraction between the ions. Every time the film is immersed

in one of the two solutions, the ions adsorbs onto the surface and inverts the surface

charge in the process. This charge inversion then prepares the film for the immersion in

the other solution. The film is rinsed, typically with the same solvent used to prepare the

ionic solutions, after each immersion into either of the solutions to wash off excess ions

that stick onto the film. By repeating the number of SICAs, the film can be grown

monolayer by monolayer.

Although LBL is usually performed with two kinds of strong polyelectrolytes,

which are polymers with charges that are insensitive to pH, it was shown in the 1990s

that one of these polyelectrolytes can be replaced with dye molecules or other small

molecules with the ionic behavior". These small molecules, however, must be able to

sufficiently adsorb onto the film to cause the surface charge reversal. This requirement is

often satisfied if the molecules are multivalent. In 1998, Fukumoto et al. showed that a J-

aggregate thin film can be formed by replacing the polyanion with J-aggregating cyanine

dye molecules in the LBL method 4.

Thorough study of LBL deposited TDBC J-aggregate thin film has been done by

Bradley et al. His study shows the film quality, which is measured by the amount of

aggregates in the film and the roughness of the film, of a 4.5 bilayer (BL) is most suited



for polaritonic devices i s. Therefore, the 4.5 BL TDBC J-aggregate thin films are used in

this research.

1-3: Energy Transfer

There are three primary mechanisms for energy transfer between molecules:

radiative energy transfer via photons, Dexter energy transfer, and F6rster resonance

energy transfer. The first process is a long range energy transfer between molecules

mediated by photons. In other words, an excited donor molecule emits a photon which is

then absorbed by an acceptor molecule. Dexter energy transfer refers to the short range,

non-radiative energy transfer that is caused by the wave-function overlap of the

molecules' 8. This energy transfer only occurs between two adjacent molecules and

intermolecular electron exchange accompanies the transfer. F6rster resonance energy

transfer (FRET), is a long range, non-radiative energy transfer mechanism caused by

dipole-dipole coupling of the donor and acceptor molecules 19. FRET can typically occur

over a few nanometers.

FRET is used in this research because it offers energy transfer over a longer range

than the Dexter energy transfer and it is more efficient than the radiative energy transfer.

Radiative energy transfer is not desirable because the energy is wasted if the photons

emitted from the donor molecules do not propagate in the direction of the acceptor

molecules or do not get absorbed by them. FRET involving phosphorescent donors is

particularly desirable. If phosphorescent donors are used, both the singlet and triplet

exciton energies of the donor can be transferred to the acceptor. When an exciton forms



on a donor molecule, it is a triplet 75% and a singlet 25% of the time due to spin statistics.

Unlike fluorophores that only emit photons from singlet excitons, phosphors have a

heavy transition metal core that allows radiative triplet relaxation through spin-orbital

coupling. Since the J aggregates in this study have a very short luminescence lifetime

(-10 ps) and do not have heavy transition metals in the structure, they are not likely to be

phosphors. Therefore, the J aggregates can not convert triplet excitons into photons and

the luminescence efficiency is limited. Using FRET from phosphorescent donors to

excite singlet excitons on the J aggregates allows for extended excitation of the J

aggregrate.

The rate at which the energy is transferred from the donor to the acceptor, referred

to as the FRET rate, is given by

3 c 4 I I SD (O)a (0)F- 4 6 4 do (Eq. 1-1)
4;" n4 R 6 r W

where c is the speed of light in vacuum, n is the index of refraction of the medium, R is

the distance between the donor and acceptor molecules, -is the luminescence decay time

of the donor molecule, SD(co) is the normalized emission spectrum of the donor, and

aA(co) is the absorption cross-section of the acceptor. Eq. 1-1 is a result of Fermi's

Golden rule applied to a system where one molecule (the acceptor molecule) is perturbed

by the dipole field of a neighboring molecule (the donor molecule). The perturbation

Hamiltonian is proportional to 1/R3 , the dipole field. Fermi's Golden rule states that the

energy transfer rate is proportional to the square of the perturbation Hamiltonian,

resulting in one of the key features of FRET, the 1/R6 dependence. The spectral overlap

is the result of the donor and acceptor molecules having a number of states that can

donate or accept exciton energies.



One of the most important device applications of FRET in the 1990s was its

application to OLEDs. A platinium octaethylporphyrin (PtOEP)

LED that utilizes efficient energy transfer was reported by Baldo et al. in 199820. Today,

PtOEP and phenylpyridine iridium complexes such as Ir(ppy)3 are the most widely used

phosphorescent OLED materials21. Ir(ppy)3 has also been shown to enhance

photoluminescence (PL) of quantum dots via FRET 22 and here it is used to enhance PL of

the J aggregates.



Chapter 2: Growth of the FRET Devices

This chapter is the first of three chapters on the research portion of this thesis.

The first step in this research is demonstrating FRET between the donor, fac tris(2-

phenylpyridine) iridium (Ir(ppy)3), and the acceptor, TDBC J aggregate.

2-1: Device Structure

The device structure and materials used to demonstrate FRET are shown in Figure

3-1. The structure consists of three organic layers on a glass substrate as shown. The

bottom layer is the acceptor layer, a 5nm J-aggregate thin film grown on glass using the

LBL method. The experimental details of the J aggregate growth process are given in

Appendix A. The middle layer is a thermally evaporated spacer layer, which consisted of

either 0, 4, or 8 nm ofp-bis(triphenylsilyl)benzene (UGH2). UGH2 is a wide bandgap

material (Eg = 4.4 eV) that does not absorb in the visible spectrum. It was used as the

host material to make blue LEDs by Ren et al. in 200423. UGH2 was chosen out of many

wide bandgap materials available (such as TAZ and CBP) for its stability. Thermally

evaporated films are amorphous and often times unstable, resulting in crystallization or

other morphological changes. Since the spacer layer thickness needs to be uniform and

well controlled for this experiment, a stable material such as UGH2 was chosen. The top

layer is the thermally co-evaporated donor layer, 5 nm Ir(ppy)3 (Eg = 3 eV) doped into

UGH2 (~10% by volume). The chemical structure of each material is shown in Figure 3-

2.



Figure 2-1: Device structure consists of 5 nm Ir(ppy)3 doped in UGH2

(donor), 4, 8 or 12nm UGH2 (spacer), and 5 nm J-aggregate thin film

(acceptor).

Phosphorescent Donor Acceptor Host/Spacer

Ir(ppy) 3  J aggregates

Figure 2-2: Materials used in the device

The device structure shown in Figure 3-1 is very similar to the one used by

Andrew et al. to measure the Firster radius between a europium complex and a different

kind of cyanine dye molecule 24. However, unlike the structure used by Andrew, the

structure used here does not use LB to form monolayer acceptor and donor layers. The

thermal evaporation and LBL result in more than a monolayer of molecules. Although

thicker acceptor and donor layers in the device presented here complicate the modeling of



the structure, they yield more signal, increasing the signal to noise ratio when measuring

the PL.

Structures were grown with three different spacer layer thicknesses to

demonstrate that quenching of the donor photoluminescence (PL) is strongly dependent

on the distance between the donor and acceptor layers. If donor and acceptor layers are

in direct contact, the dipole coupling of the molecules is so strong that the FRET rate is

much faster than the exciton decay rate of the donor molecules alone. This fast FRET rate

results in large portion of the donor energy getting quenched by the acceptor, and PL

comes only from the acceptor. If the two layers are far apart, the dipole coupling is very

weak and only PL from the donor is observed. At the F6rster radius, where the FRET

rate is equal to the PL decay rate, PL is expected to be observed from both the donor and

acceptor layers. The theoretical F6rster radius, calculated from the emission spectrum of

Ir(ppy)3 and the absorption spectrum of TDBC J aggregate, is 3.8 nm. The calculation

details are given in Appendix B. From this theoretical value for F6rster radius, spacer

layer thicknesses of 0, 4, and 8 nm were chosen to observe progressive quenching of

donor luminescence..

Having three thickenesses is also important in order to show that FRET - and not

simply radiative energy transfer - is occurring. Since the J-aggregate thin film is highly

absorptive, some radiative energy transfer can occur with the J aggregates absorbing

photons given off by Ir(ppy)3. With three different thicknesses, the FRET rate can be

shown to be dependent on the spacer distance by comparing the PL life times of these

devices. As will be shown in chapter three, the occurrence of FRET will be reflected by



accelerated lifetimes of the donor PL. Radiative energy transfer, on the other hand, does

not modify the PL life times.

2-2: Problem of Material Incompatibility

The FRET rate from a single donor molecule to a film of acceptor molecules is

given in Eq. 2-1 (derivation is given in chapter three). The equation is used to simulate

the dependence of the fraction of donor PL that is quenched due to the presence of an

acceptor on the spacer thickness. Figure 2-3 plots the dependence when the acceptor

layer is 5.1 nm and the RF is 4 nm.

(Eq. 2-1)K FRET = 0K D--plane (R + z)dz - 6 3 (R dA)3

100

80

60

40

20

0
0 2 4

spacer thickness [nm]

Figure 2-3: The fraction of donor PL quenched by

6 8

an accepter layer.



The figure suggests the spacer layers need to be grown with nanometer scale control,

especially for the 4 nm spacer layer sample. To test if this precise control was achieved,

5 nm of UGH2 was thermally evaporated on top of the J-aggregate film and the film

morphology was measured using the atomic force microscope (AFM). The AFM image

of this sample and that of the underlying J-aggregate film are shown in Figure 2-4. The

quality of the films is characterized by their Z ranges and roughness root-mean-squares

(RMS). The Z range is the distance between the lowest and the highest point of the film

and the roughness RMS is the standard deviation of the height of the film. In the images,

UGH2 film has a Z range of 88.8 nm and a roughness RMS of 12.5 nm while the

underlying J-aggregate film has a Z range of 10.8 nm and a RMS of 1.0 nm. Both the Z

range and the RMS have increased after depositing UGH2 and the precise control of the

film thickness is not achieved. From their chemical structures, it can be seen that UGH2

is a non-polar molecule while J aggregates are polar. The two materials repel akin to

water and oil, making uniform evaporation of UGH2 difficult. This material

incompatibility issue must be solved in order to make the desired structures.



20nm a. J-aaareaate film b) 5nm of UGH2 on
1- -I --

unm

Figure 2-4: (a) AFM image of 4.5 BL J-aggregate thin film. (b) AFM image of 5

nm of UGH2 thermally evaporated on the J-aggregate film.

2-3: Solution to the Material Incompatibility

The solution to the material incompatibility demonstrated here resolves the

delamination of UGH2 from the J-aggregate film and allows incorporation of J-aggregate

thin films in device structures with non-polar small molecules.

Just as soap is used to bring water and oil together, a surfactant is used to bring

together polar J aggregates and non-polar UGH2. A surfactant molecule is a molecule

that is hydrophilic on one end and hydrophobic on the other end. The hydrophilic end

can be a polar molecule or an ion. The hydrophobic end is generally a hydrocarbon

chain(s). By aligning the surfactant molecules between the J aggregates and UGH2 so

the hydrophilic ends face the J aggregates and the hydrophobic ends face UGH2, the two

materials can be placed in proximity.

. . .



There are three steps to the surface treatment recipe to make the hydrophilic

surface hydrophobic, outlined below. It will be followed by an analysis of the film. A

discussion of alternative methods and materials that were tried is provided in Appendix C.

While they did not provide the desired results, they revealed some important properties of

the J-aggregate film.

2-3a: Surface Treatment

Step 1: The 4.5 BL J-aggregate thin film is immersed in 0.03M solution of Sodium

Polystyrene Sulfonate (SPS) for 1 minute and then rinsed off with de-ionized (DI) water.

SPS is a strong polyanionic electrolyte that is commonly used for LBL method to make

novel, nano-structured thin films2 5. Since our J-aggregate film ends with a PDAC

deposition, the surface is positively charged. Immersion into SPS solution adds a

monolayer of SPS molecules on the surface, via electrostatic attraction, while inverting

the surface charge from positive to negative. A cartoon illustration of step 1 is shown in

Figure 2-5.

SO3-
n

Sodium Polystyrene Sulfonate (SPS)

Na
+  Na

+

Na
+

Na
+

Na+

Ma

Na

hhM

Figure 2-5: Immersion of the J-aggregate film into a SPS solution.
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Step 2: The resulting film is immersed in 0.01M solution of cetyl trimethylammonium

bromide (CTAB) for 10min and then rinsed off with DI water. CTAB is a cationic

surfactant that performs as the glue between the SPS surface and UGH2. The

concentration of CTAB was chosen to be much higher than the concentration needed to

form aggregates of CTAB (1.0mM), known as the critical micelle concentration (CMC).

The high concentration ensures CTAB's complete coverage of the film. A cartoon

illustration of step 2 is shown in Figure 2-6.

Br

N

(
Br"

Cetyl ammonium bromide (CTAB)

Figure 2-6: Immersion of the film into a CTAB solution.

Step 3: The resulting film is rinsed off in chloroform for 5 seconds. This step washes off

all the CTAB molecules except a single monolayer that is electrostatically bound to the

SPS molecules. Chloroform is used instead of DI water here because it is a small

molecule and is an organic solvent. Washing off with DI water likely leaves the film

surface hydrophilic, resulting in a CTAB bilayer similar to the lipid bilayers found in cell

membranes. The small size of chloroform allows it to penetrate through the outer layer

of this bilayer and its organic-like property allows it to break off the outer layer. Blow



drying the film with nitrogen gas leaves the hydrocarbon chains of CTAB pointing

outwards, making the film surface hydrophobic. A cartoon illustration of the step 3 is

shown in Figure 2-7.

S O 3  
S O 3  

S 3 S 03

SO3 SO 3 S 3 SO3

so ,, so, so'

S3 3iii

Figure 2-7: Film after the surface treatment.

2-3b: Contact Angle Measurements

The effect of the surface treatment is measured by conducting a contact angle

measurement. A droplet of DI water is dropped on the film from a syringe placed -5mm

above the film. The angle the droplet makes with the surface is measured. Schematic of

this measurement is shown in Figure 2-8.

Deionized waterY

Figure 2-8: Contact angle measurement



A large contact angle indicates that the surface is hydrophobic. Contact angles for a glass

substrate, the J-aggregate film, and the film with the surface treatment are given in Table

2-1. The contact angle of untreated J-aggregate film is -170, which is only slightly more

hydrophobic than glass. The surface treatment boosts this contact angle of the J-

aggregate film to -800, indicating the success of making the surface hydrophobic.

Table 2-1: Contact angle measurements on various substrates

2-3c: Thermally Evaporated UGH2 on Surface Treated J-Aggregate Thin Film

Our hypothesis that a hydrophobic surface allows for more uniform growth of

UGH2 is investigated by comparing the AFM-measured RMS roughness of (a) an

untreated J-aggregate film, (b) a surface treated J-aggregate film, (c) 5 nm of UGH2

thermally evaporated on an untreated J-aggregate film, and (d) 5 nm of UGH2 on a

surface treated J-aggregate film (See Figure 2-9). Surface treatment of the J-aggregate

film increases the RMS from 1.0 nm to 1.8 nm. This may be due to the adsorbed CTAB

not forming a complete monolayer. However, comparing the AFMs in (c) and (d) clearly

shows that surface treatment improved the uniformity of UGH2 on J-aggregate. The

RMS roughness is reduced from 12.5 nm to 1.9 nm because the pillar-like aggregates of

Material Contact Angle, 0

Glass (oxygen plasma treated) -5

J-aggregate film -170

Surface Treated J-aggregate film -80 °



UGH2 are not present with the surface treated structure. Elimination of these pillars is

important because they are likely to cause shorts or instability in a JLED. The surface

treatment developed here is therefore crucial not only for the energy transfer experiments

but also for device fabrication. Indeed, the same treatment will be applied to building

JLEDs in chapter four.

a) J-aggregate film b) Surface treated

20nm

c) 5nm of UG H2 on d) 5nm of UGH2 on surface

Onm

Figure 2-9: AFM images of (a) 4.5 BL J-aggregate thin film. (b) surface
treated J-aggregate film. (c) 5 nm UGH2 on untreated J-aggregate film.
(d) 5 nm UGH2 on surface treated J-aggregate film.

For use in potential devices and to test the robustness of the surface treatment, 5

nm of N,N'-Bis(3-methylphenyl)-N,N'-bis-(phenyl)-9,9-spiro-bifluorenes (spiro-TPD),

another wide bandgap material, was thermally evaporated on untreated and surface

W M M



treated J-aggregate films. Their AFM images are shown in Figure 2-10. Without the

surface treatment, spiro-TPD forms tall pillars and barely covers the surface of the J-

aggregate film. The RMS of the spiro-TPD film is reduced from 8.25 nm to 2.28 nm

after the surface treatment. Although the effect is not as drastic as the effect observed

with UGH2, the surface treatment proves to be effective.

a) 5nm of spiro-TPD on b) 5nm of spiro-TPD on
surface treated J-aaareaate film

20nm

Onm

Figure 2-10: AFM images of (a) 5 nm spiro-TPD on untreated J-aggregate
film. (b) 5 nm spiro-TPD on surface treated J-aggregate film

2-3d: Surface Treatment Thickness

The thickness of the layer adsorbed by the surface treatment was determined

using the Gaertner Scientific 3-Wavelength Variable Angle Ellipsometer. An 830 nm

light source was used to avoid absorption by the J aggregates. First, the thickness of a J-

aggregate film was measured with the ellipsometer. The thickness of the same film was

measured again after the surface treatment. The difference in the thicknesses was

determined to be the thickness of the surface treatment. Since the resolution of the



ellipsometer does not permit the use of 4.5 BL J-aggregate thin film (corresponds to -5

nm), 8.5BL J-aggregate film (-10 nm) was used instead. After averaging five

measurements, the thickness of the film adsorbed by the surface treatment (SPS and

CTAB layers) was determined to be 1.74 nm.



Chapter 3: Demonstration of FRET

This chapter provides the result of the experiment to verify Firster energy transfer

between Ir(ppy)3 molecules and the J aggregates. The devices prepared in the previous

chapter (Figure 2-1) are optically excited, from the donor layer side, with 150 fs laser

pulses tuned at 395 nm. The opitcal source used is a Ti-sapphire laser.

Photoluminescence from the donor side of the samples is collected using a lens and

detected with a streak camera with a 1 gs time window. A schematic of the setup is

shown in Figure 3-1.

Sample

Lens

Figure 3-1: Schematic of the time-resolved PL experiment setup.

Prior to exciting the samples, each sample was packaged to prevent degradation

of the organic materials. For packaging, glass microscope cover slips were glued onto

the samples using UV-curable epoxy in a nitrogen environment.



3-1: Result

Figure 3-2 compares the streak camera photoluminescence of five different

samples consisting of: (1) 4 nm thermally evaporated Ir(ppy)3:UGH2, (2) 4.5 BL of

surface-treated J-aggregate film, (3) 4.5 BL of surface-treated J-aggregate film, an 8 nm

UGH2 spacer layer, and 5 nm Ir(ppy) 3:UGH2, (4) 4.5 BL of surface-treated J-aggregate

film, a 4 nm UGH2 spacer layer, and 5 nm Ir(ppy)3:UGH2, and (5) 4.5 BL of surface-

treated J-aggregate film, and 5 nm Ir(ppy)3:UGH2. The Ir(ppy)3 sample exhibits a PL

lifetime of 520 ns. This lifetime is short for a phosphor, but it is consistent with previous

measurements made by Baldo et al.26. The Ir(ppy)3 emission peak is at 515 nm. The J-

aggregate film has a lifetime shorter than what can be resolved in the measurement setup.

A lifetime of 10 ps was attained from a pump probe experiment by Zhang et al.27. The

emission peak of the J aggregates is observed at 590 nm. The three samples with

different spacer layer thicknesses show emission from both the donor (Ir(ppy)3 ) and the

acceptor (J-aggregate). A thick spacer layer results in higher fraction of PL from the

Ir(ppy)3 while a thin spacer results in PL spectrum dominated by the J aggregates. A

change in the lifetime from device to device is also apparent, indicating the presence of

FRET.
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Figure 3-2: Streak camera pictures of PL from (a) Ir(ppy)3 (b) J aggregates
(c) J aggregates-8 nm UGH2- Ir(ppy)3 (d) J aggregates-4 nm UGH2-
Ir(ppy)3 (e) J aggregates-0 nm UGH2- Ir(ppy)3

The streak camera data is integrated over time to obtain the distribution of photon

wavelengths emitted from the samples. This integration gives the graph shown in Figure

3-3. Again, J-aggregate PL is stronger when the spacer layer is thinner. The device with

8 nm of UGH2 still exhibits J-aggregate PL despite the acceptor layer being located much

farther than the F6rster radius away from the donor layer. Most of this J-aggregate PL is

attributed to the direct excitation of the J-aggregate layer by the laser pulse. Although

some of this PL maybe be due to radiative energy transfer between the Ir(ppy) 3 and the J

aggregates, it is considered to be negligible because the J-aggregate layer is very thin and

the internal quantum efficiency of the J-aggregate film is assumed to be low. The 0 nm

UGH2 sample still shows PL from Ir(ppy)3. This PL is attributed to the thick donor layer,

I



resulting in some Ir(ppy)3 molecules being farther away from the acceptor layer than the

F6rster radius. The 1.74 nm layer from the surface treatment also adds to this effect.

PL Quenching
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Figure 3-3: PL spectrum of the 4 samples.

Although the change in the quenching ratio is suggestive of FRET, it alone is not

definitive. As discussed in chapter two, a more direct confirmation of FRET is observing

the change in radiative lifetime of the samples as a function of the spacer layer thickness.

Effective radiative lifetime, rejf, of an exciton can be given by:

1  1- F=ad o+ on-rad + = - KFRET (Eq. 3-1)

Frad is the rate that an exciton turns into a photon without any other loss processes. Fnon-

rad is the rate that an exciton loses its energy via a non-radiative mechanism. This process

includes excitons turning into phonons through interactions with phonons. The two rates

combined gives the natural lifetime of the exciton, 1/r. KFRET is the FRET rate of the

donors in the presence of an acceptor molecule(s). Hence, presence of acceptor

molecules shortens the lifetime of the excitons. As predicted, Figure 3-4 shows



accelerated PL for samples with the donor layers; the samples with thinner spacer layer

show more acceleration. This confirms the presence of FRET in the samples.

PL Decay
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Figure 3-4: PL decay plots of the 4 samples in a semi-log scale.

3-2: Measured Forster Radius

From the PL quenching graphs, the F6rster radius can be experimentally obtained.

The device structure is shown again in Figure 3-5.

UGH2
(0, 4, 8nm)

bP a

r

Figure 3-5: Energy transfer device structure.
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The FRET rate, KFRET, can be related to the donor PL by:

# Ir(ppy)3 photons A rad + ,,nonrad 1
= = (Eq. 3-2)

#Ir(ppy) 3 photonsD Trad + no,-rad +K 1 + zKFRET

# Ir(ppy)3 photonsDA is the number of photons from Ir(ppy)3 in presence of acceptors and

# Ir(ppy)3 photonsD is the number of photons from Ir(ppy)3 without any acceptors present.

Since the donor layer has a finite thickness, Eq. 3-2 is averaged over its thickness, do.

The averaging is done under the assumption that the exciton population in the donor layer

is uniform upon excitation. This assumption can be made because Ir(ppy)3 excitons have

a relatively slow diffusion rate22 . If the diffusion is negligible, then the donor film can be

modeled as a stack of many thin donor layers.

# Ir ( ppy) photons 1R=do#Ir(ppy)3photonsDA R= 1_ _1 dR (Eq. 3-3)
#Ir(ppy) 3 photons dD 1+ R= D-filn, (R)

KD-,ffl is the FRET rate from a single donor molecule to a film of acceptor molecules.

This rate is calculated by first integrating over a plane the FRET rate from a single donor

molecule to a single acceptor molecule, KD--A. The result is the FRET rate from a single

donor molecule to a plane of acceptor molecules, KD--,plane. KDo-.pane is integrated over the

thickness of the acceptor film to obtain KDo--fm.

KD>A(R)=- = (Eq. 3-4a)

01 R_ 6  R6
KDoplane(R) = i(R2 r x2PA dr = R F (Eq. 3-4b)

or (R2 2) 2z R4

Sn t 0 s6k eh R3  (R+dA)3  (Eq. 3-4c)
Here, dA is the thickness of the acceptor layer and pA is the density of the acceptor

molecules in the film. R is taken to be the sum of the 1.74 nm from the surface treatment



and the UGH2 spacer layer thickness (i.e. 0, 4, or 8 nm). RF is calculated from relating

Eq. 3-3 and Eq. 3-4c. The result is given in Table 3-1.

Sample Calculated RF [nm]
Onm UGH2 3.81 ± 0.13
4nm UGH2 4.46 ± 0.29
8nm UGH2 3.81 ± 0.99

Predicted RF 3.8

Table 3-1: Calculated and predicted F6rster radius.

Table 3-1 shows that the calculated F6rster Radii are in good agreement with the

value predicted from the Ir(ppy)3 and J aggregate spectral overlap. The error bars are

large due to the inherent roughness of the films.

The results presented in this chapter confirm FRET between Ir(ppy)3 molecules

and J aggregates.



Chapter 4: Application of FRET to a J-aggregate
Light Emitting Device

The chapter applies the FRET between Ir(ppy)3 molecules and J aggregates to

make a J-aggregate light emitting device (JLED) that is more efficient than the same

JLED without FRET. Efficient JLEDs can lead to electrically pumped polaritonic

devices in the future. Here we report the first JLED that incorporates p-type metal oxide

and utilizes FRET from a phosphor. Peak efficiency of the device is -0.001%.

4-1: JLED

Four different device structures were grown in this experiment. Their device

structures and their band diagrams are shown in Figure 4-1. All devices are grown on lin.

x 1 in. indium tin oxide (ITO) substrates, which serve as the anodes. The cathodes are

thermally evaporated 20 nm of magnesium and silver alloy capped with 100 nm of pure

silver. The electron transporting layer (ETL) is 1,3,5-tris(2-N-

phenylbenzimidazolyl)benzene (TPBi) which was chosen for its relatively wide bandgap

and the alignment of the LUMO band with UGH2's LUMO band. The hole transporting

layer (HTL) is 20 nm of sputtered nickel oxide (NiO). NiO HTL is motivated by its

successful use to make quantum dot LED by Caruge et al. in 200628. While NiO is

normally an insulating metal oxide, it can be made p-type by controlling the oxygen

partial pressure during the oxide growth. Sputtering with a surplus of oxygen fills

oxygen vacancies, leaving two holes that contribute to the p-type conduction. This

process can be expressed using the Kroger-Vink notation29:



1-02 + V -- Oo + 2h' (Eq. 4-1)
2

Material properties and the growth conditions of NiO are investigated and reported by

Wood30 . Use of metal oxides is one of the improvements suggested in Tischler's work on

JLEDs. Metal oxides are promising material for JLEDs because they are not only

transparent and offer tunable conductivity, but are also relatively stable in water".

Growth of J aggregates out of solution requires the underlying substrate to be dipped in

water, which causes rapid degradation of most organics. Metal oxides offer a stable

charge transport layer for J aggregate deposition.

Device 1 is the test structure that uses TPBi as both the ETL and the emissive

layer. Device 2 is the Ir(ppy)3 LED that incorporates Ir(ppy)3 and UGH2. Ir(ppy)3 and

UGH2 are thermally co-evaporated (-10% by volume) for 4 nm as was done in chapter

two. An additional 6 nm of UGH2 is evaporated on top. While UGH2 is a good host

material for Ir(ppy)3, UGH2 also serves as a hole blocking layer that blocks holes from

NiO layer and prevents exciton recombination in the TPBi layer. Device 3 is the JLED

that utilizes FRET from Ir(ppy)3. The device is identical to Device 2 except the 4.5 BL J-

aggregate film is grown on NiO. The J-aggregate deposition is followed by the surface

treatment developed in chapter two. The growth procedure of the J-aggregate film is

same as that described in Appendix A, but the initial oxygen plasma step is omitted. The

step was omitted because the oxygen plasma may modify the sputtered NiO layer and

therefore change its properties, such as its conductivity. The values of the lowest

unoccupied molecular orbital (LUMO) and the highest occupied molecular orbital

(HOMO) bands of the J-aggregate film are not known but the film is assumed to not

substantially effect the conduction of electrons and holes through the device due to the J-



aggregate layer thinness. Device 3 is compared with Device 4, a same structure as

Device 3 but without the Ir(ppy)3 doping.
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Figure 4-1: Device structures and their band diagrams of (a)

TPBi LED (b) Device 2: Ir(ppy) 3 LED (c) Device 3: JLED
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The four devices were tested unpackaged at room temperature and in ambient air.

Figure 4-2 shows EL of the devices under forward bias. The luminescences were

pictured from the substrate side of the devices. The substrates were covered with a

shadow mask before evaporation of the cathodes, which defines 16 identical devices on

each substrate. Only one device is turned on in each picture. The EL spectra for each of

the four different structures are shown in Figure 4-3.

a) Device 1 b) Device 2

c) Device 3 d) Device 4

Figure 4-2: Device photos of (a) Device 1 at 8 volts (b) Device 2 at 19
volts (c) Device 3 at 9 volts (d) Device 4 at 10 volts.



Device EL Spectrums
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Figure 4-3: Normalized electroluminescence spectrums (EL) of the four
devices

As expected, Device 1 shows a strong emission from TPBi. This emission is only

observed from Device 1, indicating the effectiveness of UGH2 as the hole blocking layer

in the other devices. Device 2 shows only weak EL, but its spectrum matches that of

Ir(ppy)3. Device 3 and Device 4 both show the narrow J-aggregate emission at 595nm.

Device 3 is slightly blue shifted and has a small shoulder on the high energy side

compared to Device 4. This is likely due to the unquenched Ir(ppy)3 emission familiar

from the energy transfer experiments in chapter two.

The external quantum efficiencies (EQE) of the devices are plotted in Figure 4-4.

Each device is measured three times. These plots show instability in the film for all four

devices, especially in Device 3 and 4. The efficiencies tend to decrease with the number

of measurements performed. However, after the drastic decrease in efficiency from the

first measurement, the films tend to be relatively stable. This is not a surprising result as

the devices are composed of very different materials. Applying voltage across the device

may rearrange the molecules into a more favorable configuration during the first

measurement and hence change the morphology of the film. The maximum EQE of



Device 1, 2, 3 and 4 after the first measurement are 9E-4%, 1E-3%, 1E-3% and 6E-4%

respectively. Device 3's EQE is -1.7 times higher than Device 4's EQE, and although it

is not definitive, we attribute the boost to the FRET.

a) Device 1: EQE b) Device 2: EQE

c) Device 3: EQE d) Device 4: EQE
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Figure 4-4: EQE curves of the four LEDs. Each device is measured three
times consecutively.

An indication of FRET in Device 3 can also be seen in the I-V curves of the

devices plotted in Figure 4-5. Again, each device is measured three times consecutively

and the devices show stability after the first measurement. The similarity in the I-V

characteristics between Device 3 and Device 2 rather than between Device 3 and Device

4 suggests that the J aggregate emission is mediated by exciton formation on Ir(ppy)3.
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Again, though it is not conclusive, FRET seems to play a major role in Device 3 as

designed.

a) Device 1: I-V curve b) Device 2: I-V curve
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Figure 4-5: I-V curves of the four devices. Each device is measured three
times consecutively.

4-2: Future Work

A novel JLED that incorporates metal oxide HTL was successfully demonstrated

and the addition of the phosphor doping enhancing the EQE was shown. We attribute

this enhancement to FRET between the phosphor and the J aggregates. These JLEDs,

however, have very low quantum yield. Without changing the device structure, some

ways to likely improve the efficiency are listed here.

I| I

)



1) Film uniformity is a crucial issue in making an efficient OLED because pillars in

rough films may become sources of shortage in the device or aggregation of the materials.

The surface treatment described in chapter two of this thesis was a successful attempt to

abide by this rule when we brought two very different materials together. However, the

roughness issue is also present in the interface between the NiO and the J aggregates.

AFM images of 20nm of NiO grown on an ITO substrate and 4.5 BL J-aggregate film

grown on the NiO is shown in Figure 4-6.

a) 20nm NO sputtered b) 4.6SL J-aggregat film grown
on an ITO substrate on 20nm sputtered NiO

20nm

Onm

Figure 4-6: AFM images of (a) 20nm of sputtered NiO (b) 4.5 BL J-

aggregate film grown on the sputtered NiO.

The AFM images cleary indicate that the J-aggregate film does not grow as

uniformly on NiO substrate as it does on glass. This may limit device efficiency and

cause some of the device instability. One possible solution to the problem is to grow

fewer bi-layers of J-aggregate film. Another avenue of investigation is to grow the J-

aggregate film at a different pH, as the J-aggregate dye solutions may etch the NiO.

2) Work by Jun Mei has shown sputtered SnO2 can quench nearby tris-(8-

hydroxyquinoline) aluminum (Alq 3) PL emission through FRET 32 . A similar quenching

effect can be expected by our JLED device, for our emissive layer is placed adjacent to



NiO. A possible solution to the problem is to space the J-aggregate layer a few

nanometers from the NiO which places the layer outside of the F6rster radius. Another

solution is, as discussed by Mei, to change the conductivity of NiO by adjusting the

oxygen concentration while sputtering. This modifies the conductivity of the NiO, which

in turn changes the F6rster radius between the NiO and the J aggregates. By making the

F6rster radius small, the quenching effect can be minimized.

3) Despite UGH2's many useful properties for our energy transfer devices, UGH2 is not

the best host for Ir(ppy)3 when it comes to LEDs. UGH2's compatibility with the J-

aggregate film after the surface treatment combined with its stability made it an excellent

material choice in chapter two. UGH2 also serves as a good hole blocker when used in

LEDs. However, as shown in Figure 4-1, the LUMO band of Ir(ppy)3 is 0.3 eV higher

than the LUMO band of UGH2. Despite holes getting captured by Ir(ppy)3, the LUMO

band offset makes the excitons hard to recombine on the Ir(ppy)3 molecules. This band

offset may explain some of the inefficiencies in Device 2. Since the efficiency of Device

3 relies on the J aggregates efficiently harvesting energy from Ir(ppy)3 excitons, making

Device 2 efficient will maximize the benefit from FRET. A solution may be to look for a

different host material that still has the useful properties of UGH and also has the LUMO

band higher than that of Ir(ppy)3. Efficient exciton formations on the phosphor may also

be achieved by choosing a different kind of phosphor that has its LUMO and HOMO

bands lying between those of UGH2 and also permits FRET to J aggregates.



Chapter 5: Conclusion

This thesis demonstrated three main achievements: changing the surface

chemistry of the TDBC J-aggregate thin films, confirming experimentally the F6rster

resonance energy transfer between Ir(ppy)3 and the J aggregates, and building the J-

aggregate light emitting devices that utilize the FRET. Each achievement is built on the

achievement before.

The surface treatment in chapter two allows the J-aggregate films to be

compatible with the evaporation of non-polar small molecules on top by making the

hydrophilic surface of the film hydrophobic. This compatibility broadens the films'

applications to not just LBL deposited devices but also to thermally evaporated devices.

The FRET experiment in chapter three confirms the PL quenching and PL lifetime

acceleration of Ir(ppy)3 as predicted. Furthermore, the F6rster radii calculated from the

measurements were in good agreement with the theoretical RF calculated from the

spectral overlap. The JLED built in chapter four utilizes the FRET to enhance efficiency.

The quantum efficiency and the I-V curves of the device suggest the presence of FRET.

Although the efficiency remains an issue, the JLED developed here can be readily

incorporated into electrically pumped polaritonic devices.
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Appendix A: Growth of a 5nm J-aggregate Thin
Film

This section goes over the experimental details in making the TDBC J-aggregate

thin film, which is used through out this research. It is one of the corner stones of the

work and this research would not have been possible without it. The procedure given

here was inspired by Fukumoto'4 , tested and standardized with TDBC dye by Tischler'

and further studied by Bradley 5 .

The J-aggregate thin film was formed using the LBL method with a

polyelectrolyte solution and a dye solution on a lxl inch glass substrate. The

polyelectrolyte solution is poly(diallyldimethylammonium chloride) (PDAC), 20% by

weight in water, Mw=400,000-500,000, obtained from Sigma-Aldrich (CAS 26062-79-3)

and diluted to 3x10-2 M with deionized (DI) water. The dye used is 5,6-dichloro-2-[3-

[5,6-dichloro- I-ethyl-3-(3-sulfopropyl)-2(3H)-benzimidazolidene]- 1-propenyl]- 1-ethyl-

3-(3-sulfopropyl) benzimidazolium hydroxide, inner salt, sodium salt (TDBC) obtained

from Nippon Kankoh Shikiso Kenkyusho Co., Ltd. (CAS 28272-54-0). 5x10 -2 M

solution of TDBC is made using DI water. PDAC and TDBC solutions are cationic and

anionic solutions respectively and 400 mL of each are made in glass beakers. The

solutions are prepared for LBL use by a recipe summarized in Table A-1. "Sonicate"

refers to ultrasonic cleaning and "Stir" refers to stirring the solution using a one-inch

magnetic spin bar. Care was taken so the TDBC solution did not get exposed to light.



Step TIME [minutes] TDBC PDAC
1 20 Sonicate Stir

2 10 Stir Sonicate
3 20 Sonicate Stir
4 5 Stir Sonicate
5 5 Sonicate Stir

Table Al: Recipe for preparing TDBC and PDAC solutions

The glass substrates were cleaned using the MIT LOOE standardized recipe

summarized in Table A-2. The substrates were rinsed with DI water after Steps 1 and 2.

After the 7 th step, the substrates were treated with oxygen plasma for six minutes with a

Plasma Preen system.

Step Time [minutes] Description
1 5 Sonicate in detergent (Micro-90)
2 5 Sonicate in DI water
3 5 Sonicate in DI water (different water)
4 2 Sonicate in acetone
5 2 Sonicate in acetone
6 2 Sit in boiling isopropynal (IsoP)
7 2 Sit in boiling isopropynal (different

IsoP)

Table A-2: Recipe for cleaning the glass substrates

After the substrates were cleaned and the solutions were prepared, LBL was

performed using an automated Leica Autostainer XL. The dipping steps for one SICA of

LBL are summarized in Figure A-1. The process is repeated 4.5 times to form 4.5 bi-

layer (BL) J-aggregate thin films. The last 0.5 times refers to immersion into the PDAC

solution followed by the three rinses. Analysis by Bradley shows that 4.5 BL film is 5.1

nm thick.



Figure A-i: Dipping procedure for J-aggregate thin film LBL growth

After the films were fished out of the stainer, they were blown dry with nitrogen

gas. Since the film forms on both sides of the substrate, one of the sides was wiped off

clean using TexWipe soaked with methanol. The absorption and emission spectrums of a

4.5 BL J-aggregate film are shown in Figure A-2.
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Figure A-2: The absorption and emission spectrums of a 4.5 BL J-

aggregate film.

The absorption spectrum was obtained by subtracting reflection and transmission

spectrums of 4.5 BL J-aggregate film from 100%. The reflection and transmission

spectrums were measured using Cary 500i and Cary 5E spectrometer respectively. The

PL spectrum was obtained by exciting the film at 500nm and using a detector to collect

the emission. The high absorption peak and the narrow linewidth are the characteristics

of J-aggregation.



Appendix B: Theoretical Forster Radius Between
an Ir(ppy) 3 Molecule and a TDBC J Aggregate

The F6rster radius, RF, between an Ir(ppy)3 molecule and a J aggregate is given

by:

, 3c 4  SD(w)aA(w)
R = 4  J f 4  dco (Eq. B-1)

where c is the speed of light in vacuum and n is the index of refraction of the

medium between the donor and acceptor molecules. The index of the medium used here,

UGH2, is 1.7. The value, which is typical for organics, was obtained from ellipsometry

of 50 nm of UGH2 on a crystalline silicon substrate. riD is the internal quantum

efficiency of the donor and 0.15 is used for Ir(ppy)3 22. SD(tO) is the donor emission

spectrum normalized over angular frequency, co. GA is the acceptor absorption cross-

section of the acceptor. oA is found from applying the Beer-Lambert Law to the

absorption measurements of the 4.5 BL J-aggregate film (5.1 nm). The Beer-Lambert

Law is

I() = I, (c)e ' ( '')NI  (Eq. B-2)

where It(w) is the intensity of transmitted light through a film, l(w) is the intensity of the

light before entering the film, N is the density of the J aggregates in the film, and I is the

thickness of the film. From the pump probe experiment at Brown University by the Arto

Nurmikko group and absorption experiments of TDBC monomers in solution by Tischler

and Bradley, Nis estimated to be 0.5 aggregates/nm3 .



As obvious from Eq. B-1, one of the important factors that determine the F6rster

radius is the spectral overlap of the donor emission and the acceptor absorption spectrums.

The normalized emission spectrum of Ir(ppy)3 and the absorption cross-section of TDBC

J aggregates are shown in Figure B-1. Although the two spectrums have their peaks at

different wavelengths, they show relatively good overlap otherwise. From Eq. B-1 the

Firster radius is calculated to be 3.84 nm
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Figure B-1: The emission spectrum of the donor, Ir(ppy)3, and the

absorption spectrum of the acceptor, J aggregates.

There are many other kinds of cyanine dye molecules that form J aggregates with

absorption peaks at different wavelengths and they were considered as well for the

experiment. However, a simulation shows that shifting the TDBC J-aggregate absorption

spectrum does not improve the overlap by more than two folds. Since the F6rster radius

is proportional to the sixth root of the spectral overlap, the two-fold increase does not

have a considerable effect on the radius. The negligible difference makes TDBC as good

a candidate for the FRET experiment as any other kind of cyanine dye.



Appendix C: Different Attempts to Surface Treat
the J-aggregate film

In the attempt to make the J-aggregate film surface hydrophobic, there were two

alternative methods that were experimented. These methods seemed as logically sound

as the method presented in chapter two but they did not produce the desired outcome.

One method is to apply anionic surfactant such as sodium dodecyl sulfate (SDS) directly

on the positively charged surface of the 4.5 BL J-aggregate film. Another method is to

end the J-aggregate film growth with 4 BL to charge the surface negative and then use the

cationic surfactant.

The first method does succeed in making the surface hydrophobic. When the film

is immersed in 0.01 M SDS solution for 1 minute, the contact angle is increased to ~40' .

However, aside from the treatment not being as effective as the CTAB treatment, the

immersion "kills" the J-aggregate film. The color of the film dims significantly. From

experience, this is attributed to the SDS molecules replacing the TDBC molecules which

are only weakly bonded to the PDAC polymers.

The second method only yields a contact angle of- 18' which is practically the

same as that of an untreated 4.5 BL J-aggregate film. This is attributed to 4 BL films not

having many charged sites for CTABs to bond to. Since TDBC molecules only have two

bonding sites per molecule, the next layer in LBL does not adsorb unless it is polymers

with multi-valent sites. For this reason, CTAB, which only has one bonding site per

molecule, does not adsorb well.
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