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ABSTRACT

A three-level buck converter is designed and analyzed, and shown to be suitable as a
high-voltage down converter as a pre-regulation stage for a 600 watt DC-to-AC power
inverter. Topology selection for the inverter is examined, and a three-stage system is
chosen to satisfy high voltage (1.1 kV), isolation, size, and efficiency requirements.
Control of the buck converter is discussed in detail, including advanced features that
allow extremely low output voltages in unloaded conditions. Optimization is included
for both magnetics and switching losses. A prototype of the three-level buck converter is
shown to perform as expected and meet all specifications.
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1 Introduction and Background

Many electronic components are unable to operate in very high temperature
applications. In these settings, only a few devices may be available and circuits that will
operate in this environment must be designed around the components’ limitations. In this
thesis, one of these cases will be examined: a high-voltage power inverter for which the
switching devices cannot tolerate the desired input voltage.

A reasonable approach to designing such a system is to first examine the possible
circuit topologies. Chapter two introduces the converter requirements and discusses the
design trade-offs. Topologies such as a neutral-point-clamped (NPC) inverter were
considered; however, a three-stage approach was chosen, starting with a multi-level buck
converter to address the aforementioned high voltage problem, followed by two H-bridge
inverters that provide isolation and deliver the desired output characteristics.

Chapter three goes into further detail on the three-level buck converter. In this
chapter, the experimental prototype is demonstrated, and a control system is
implemented. The section concludes with a discussion of four advanced features that
were included in the control system and shown to work on the prototype.

As with any high-power system, losses can be huge and the system must be
optimized to minimize these losses. Chapter four describes the techniques used to
minimize switching losses and to optimize the magnetic components used in all three
stages of the converter.

The design and analysis of the three-stage inverter was limited to a six-month period.
Due to this time constraint, some unresolved issues remain. Chapter five discusses the
remaining problems and some possible solutions that can be implemented to improve the
converter’s design.

This thesis discusses an inverter capable of handling a high input voltage and
splitting this voltage across multiple devices to reduce switch stresses. Furthermore, it
demonstrates a working prototype of the high-voltage stage, and discusses the methods
used to minimize losses. The applications for this robust design are widespread,
including any high-voltage situation needing DC-to-DC or DC-to-AC power conversion,

regardless of the environment.



2 Design Trade-Off and Feasibility Study

2.1 Background

DC-to-AC converters (inverters) come in many shapes and sizes. The operating
environment, mechanical packaging, and the available control system all help narrow
down the possible topologies for a particular design.

There are three questions that are addressed in this section: How will the correct
output be generated? How will the high input voltage be handled safely, as to not destroy
the switching devices? And how will the converter be controlled?

Simulation was the primary tool used to answer these questions and to see how
different stages would interact. For the converter pertaining to this thesis, important

discriminators were size and efficiency.

2.1.1 Specifications

The specifications for the DC-to-AC inverter are:

¢ Inverter input voltage range: 500-1100 Vpc

e Output voltage range: 0-500 Vs
e Voltage set point accuracy: +/- 10 Vims
e Set point resolution: 2 Vims

e Maximum output current: 1.6 A

e Frequency: 57-63 Hz
e Load regulation: 5%

e Line regulation: 5%

e Output voltage ripple: 5%

e [solation voltage: 2000 Vpc
e Efficiency at full load: 85 %

e Operating temperature: 175 °C









Other methods of inversion are certainly possible. For example, instead of using a
DC-to-DC stage followed by a bridge inverter, the first stage could be left as DC-to-AC,
and then an AC-to-AC converter such as a cycloconverter can be used to create the low
frequency output. Having fewer components and stages, this design may be more
efficient, but it requires very complex, high-bandwidth, phase-dependent control, and is
less efficient with single-phase AC (it was developed for use with three-phase power).
The bipolar full-bridge inverter is a good choice for the output stage of the converter.

Because of the high input voltage specification (up to 1100 volts), a standard bridge
inverter will not work for the isolated DC-to-DC stage. The switching devices that were
available to be used (considering their temperature characteristics) are only rated up to
800 volts. The following sections examine multi-level converters which will limit the
switch stresses to half of the input voltage—safely within the switching devices’

operational range.

2.3 The Neutral-Point-Clamped (NPC) Inverter

2.3.1 The First Stage

Much research has been done on the topic of multi-level power converters [1]-{8]. A
common multi-level inverter is the three-level Neutral-Point-Clamped (NPC) inverter,
first developed by Nabae [5]. Meynard and Foch expanded this to n-level converters [4].
These converters are needed for very high voltage applications such as power distribution
where components would ordinarily breakdown under such high stresses. Dividing these
voltage stresses over multiple switches allows more desirable components—which may
not have high voltage ratings—to be used.

The theory behind the NPC inverter is that with two switches open and two switches
closed, the input voltage will always be divided between the two open switches. This
works in steady state if the switches are identical, but during the commutation periods, it
is impossible to determine what voltage each device will see.

A flying capacitor that always holds half of the input voltage can be added between
the pairs of switches. Figure 2-4 shows that with this capacitor in place, in any state of

the inverter, the voltage across each switch will be at most half of the input voltage. If
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volts (with 1100 volts input) and it could provide the isolated DC-to-DC stage needed

before the bipolar inverting stage.

_| 100

02 5

fHim
R3

—L1m 1c=550
Tez

Figure 2-6: Simulated NPC inverter

Simulations confirmed the expected performance of the NPC inverter (Figure 2-6,

Figure 2-7). The capacitor remained balanced during various phases when shifting

switches 2 and 3, and all switches saw no more than half of the input voltage across them.

Vds, Q2and Q3 V

Vds, Q1 and Q4/V

Capacitor Voltage 1 V

18

time/mSecs

1.82

20uSecs/div

Figure 2-7: Capacitor and switch voltages of simulated NPC inverter

In Simetrix/SIMPLIS—the simulation platform primarily used in this thesis—two

driver controls had to be developed: one for the spice simulator, and one for the SIMPLIS

simulator which only simulates analog components and digital logic gates. Each control

circuit creates a 50% duty cycle, and uses a one-shot multivibrator to delay the pulses for

14



switches 2 and 3. If the delay increases, the effective duty cycle seen by the transformer
decreases. The SIMPLIS one-shot was simulated using logic and passive components, as

seen below in Figure 2-9.
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Figure 2-8: Driver circuit for spice simulator
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Figure 2-9: Driver circuit for SIMPLIS simulator




2.3.2 The Two-Stage DC-to-AC Converter

The simulations showed the NPC inverting stage working as expected. The entire
DC-to-AC converter was then put together as shown in Figure 2-10. Initial simulations
confirmed that this topology was acceptable—the converter was stable, and had the

proper waveforms at each stage.
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Figure 2-10: AC-Aux with NPC inverter

The control system was then designed and simulated to examine the wide input and
output capabilities of the converter. With eight switches in two stages, there are several
control strategies that can be used. Since it is desirable to reduce as many losses as
possible, one approach is to control the DC-to-DC output in order to vary the AC peak
output voltage. This way, when a low output voltage is required, the bipolar inverter
stage sees a low input voltage and component losses in later stages are minimal. An
added benefit is that the control of the inverting output stage can be left open-loop, and
the phase-shifted switch delays can be optimized for zero voltage switching (ZVS) when
applicable.

A potential problem of this control method is achieving an output voltage near zero
volts. For example, if 10 volts is desired at the output, and the input is 1100 volts, the
effective DC-to-DC duty cycle needs to be less than 1 percent. It is very difficult to
control switches for such small time intervals, and it is likely that the floating capacitor
would become unbalanced. A proposed solution is to add an intermediate bucking stage

to the converter before the DC-to-DC filter (Figure 2-11). When the duty cycle
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control loop was added to correct the DC-offset of the AC output signal. ~ The converter

and controller together are shown in Figure 2-13.
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Figure 2-13: Schematic of AC-Aux with NPC stage and full control
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This topology worked except for one node in the circuit. The rectified voltage after
the transformer is a series of PWM pulses. The maximum voltage this node sees is half
of the input voltage times the transformer turns ratio. The DC output voltage needs to be
roughly 700 volts in order to provide the desired 500 Vs output, which dictates a turns
ratio of 1:3.2. At this ratio, a converter input of 500 volts could achieve 760 volts DC
with 95% duty cycle.

However, with an input of 1100 volts, the PWM pulses before the DC filter have a
peak of 3.2*550, or 1760 volts. The rectifier diodes cannot handle such high voltage, and
even if they could it is better to avoid such high voltages for packaging and EMI

considerations.

2.4 The Three-Level Buck Converter

2.4.1 The First Stage

A solution to the problem of the high voltage after the transformer is to use a multi-
level bucking conditioner [8] before an isolated DC-to-DC stage. The multi-level buck
converter works much like the NPC inverter. A flying capacitor between the pairs of
switches keeps the voltage across each switch balanced at a maximum of half of the input
voltage [8]. The primary difference is that the three achievable output levels are zero, half
of the input voltage, and the full input voltage. In the NPC inverter, the three levels of

operation were negative half of the input voltage, zero, and half of the input voltage.
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Figure 2-16: The three-level buck converter
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Figure 2-19: Three-level buck driver circuit

The argument can be made that active switches should be used in place of the diodes
because conduction losses will be lower with MOSFETSs, especially at high temperature.
This was first tested in simulation. With 1100 volts input, 225 volts output, and 0.6 amps

output, the following data was collected:

o Diodes: total losses for 2 MOSFETSs and two diodes = 86 watts
e FETs: total losses for 4 MOSFETs = 130 watts

The diodes are more efficient. Values were gathered from the device data sheets were

analyzed to confirm these results. First the conduction losses at 0.6 amps were examined:

FET |T,=25C | Ryon=-250hMm | Py =009 W
T;=175C | Ryon= 69 Ohm | Py = 0.25 W
Diode | T,=25C |FV=16V Prows = 0.96 W
T,=175C |FV=25V Pross= 1.5 W

As expected, conduction losses are less when using FETs.

Next, the switching losses were looked at. Turn-on and turn-off characteristics for
the MOSFETs were gathered from the device’s data sheet. The switching characteristics
for the diode were not available, so simulation waveforms were used to find rise times
and fall times of the current and voltage. The diode had negligible turn-on switching

losses.
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In simulation, a 4 amp current spike was seen at diode turn-off. This value was used
for the diode current in the simulated case. A 12 amp current spike was seen during FET
turn-on and turn-off. A drain current of 6 amps was used for the analysis of the FETs

using simulated values.
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Figure 2-20: Turn-on and turn-off waveforms for MOSFET

1
Prgron =08V, 1, £ PFET,o[[ = EAt Vily - fo
) 1
PD,on :OW’ PD,Qﬁ' :EAt.Vca'Id'\fsw
FET Pon Poff Psw Ptota]
Theoretical 0.39 W 0.132W | 0552W | 0.772 W
Simulation values 385W 1.3 W 515W 5.4W
Diode
Theoretical oW 0.021W | 0.021W | 1.52W
Simulation values ow 0.168 W | 0.168W | 1.67W

When using values from the simulation, the analytical calculations match the
simulated power loss and show that diodes are more efficient, as can be seen in the table
above. If purely theoretical values are used, the FETs are more efficient; however, this is
not realistic because it does not reflect the interaction between the switches and other

components, nor does it address parasitic reactances in the rest of the circuit. The
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bipolar full-bridge inverter to produce the 60 Hz output (Figure 2-22). Simulations
showed that the three stages work together as expected. Simulated full-load efficiency of
the entire converter is 89%. Further optimization can be done, such as establishing zero-
voltage-switching for both bridge inverters. Efficiency of 90% or greater should be

attainable.
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Figure 2-22: The three-stage converter

There are two categories of control strategies that can be used. The first is to control
just the buck stage to get the desired output voltage, which is the simplest approach and
will increase efficiency in later stages—especially at low desired output voltages. The
second is to control each stage, giving more degrees of freedom which could improve the
transient characteristics of the converter.

Dynamic performance was not a primary concern for this converter, so the strategy
chosen was the first: use the buck stage to achieve a desired output voltage and keep the
full-bridge inverters static in open-loop.

Within this control topology, there are other decisions to be made. For example, if
current-mode control is to be used, any number of currents could be the controlled
variable, such as the buck filter current, the transformer current, the rectified DC filter
current, or even the output current.

These strategies were tested, but the propagation delay from the buck output voltage
to the AC output voltage limited the speed at which the inner current-loop could operate.
Because of this, the simpler voltage-mode control was selected (Figure 2-23). When

using integrating compensators, zero steady-state error was achieved.

25






3 The Three-Level Buck Converter
3.1 Experimental Setup

The three-level buck converter was built in laboratory and controlled using a TI EZ-
DSP {2812 digital signal processor (Figure 3-1 and Figure 3-2). An existing driver board
was used to drive the MOSFET gates. Twelve 225-watt power resistors in a 420 ohm
network served as the test load (R1). Isolated laboratory power supplies provided the
low-voltage power for the controller and drivers. A Universal Voltronics 3 kV, 3.3 amp

power supply served as the high-voltage input.
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Figure 3-1: Schematic of the experimental setup

The 500 pH filter inductor (L1) was made from a Magnetics molypermalloy 55087-
A2 toroidal core with 49 windings (22 AWG). C1 and C2 were high temperature (200
°C) Novacap ceramic capacitors, 20 uF and 4.7 pF respectively. Diodes D1 and D2 were
CREE CSD10120s, silicon carbide and rated at 1200 volts and 20 amps. The MOSFETs
(Q1 and Q2) were 800 volt, 17 amp TO-247 devices rated to 150 °C. Their
characteristics include an Rpgen of .29 ohms, 90 nC gate charge, and the devices are

avalanche energy rated.
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Figure 3-3: (a) Open-loop control with VisSim interface; (b) The MultiLevelBuck PWM block

Due to noise (see section 5.1), the connection between VisSim and the DSP was
interrupted at voltages above 50 volts. To test the operation of the converter at higher
voltages, a potentiometer was added to give the duty cycle command directly to the DSP.
Figure 3-4 shows this VisSim program. An analog channel is read and scaled to give a

fixed-point input of 0 to .99, which is written to the PWM output.

g’-gxx A1'"1g 316 comert %Duty Cycle(1.16)F 28X T1PW
_%J- - » 3. %Duty Cycle(1.16) FR8XCT2PW
M

Figure 3-4: Open-loop control with potentiometer input

Closed-loop control was similar to open-loop control, with either the potentiometer
or VisSim giving the reference value. The internal PID block was used for the
compensator. Figure 3-5 shows a closed-loop control scheme. A reference voltage is
given in VisSim and scaled and converted appropriately. Inside the MultiLevelBuck
block, this input is compared with the converter’s output voltage, read into an analog

channel and scaled. The PID compensator produces the duty cycle output.
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Figure 3-15: Linearized buck converter

After linearizing the switches in Continuous Conduction Mode (CCM) as in Figure
3-15, the voltage transfer function of the buck converter was found to be that of the

output filter:

Vo yLC

4V, _S2+S'%ec+%:c

When the converter enters DCM, the input to output voltage relationship becomes a

nonlinear function of both the input voltage and the duty cycle D:

V2 +V I/inRDzT _ I/lfRDzT =0
out out 2L 2_L

Taking this into account, a control system optimized for the CCM converter will
need to be reduced in bandwidth, or slowed down, in order to remain stable for both
modes of operation and for the transition between them.

A proportional plus integral (PI) compensator was chosen for its zero steady-state-
error and dynamic response. The output voltage of the multi-level buck stage is reflected
across a transformer in the DC-to-DC stage of the converter. This voltage may be near
800 volts during operation, which approaches the breakdown voltage of some switching
devices, so overshoot in the output voltage of the buck stage is unacceptable. Therefore a
step response with no overshoot is desired in the control system. This is a tradeoff, and

will yield worse noise rejection and bandwidth than otherwise possible.
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A MATLAB script [appendix 8.1] was written that takes a transfer function—in this
case the transfer function of the CCM buck converter—and tests all combinations of
given vectors P and I. The compensator has the form k; + ky/s, where k; is the
proportional gain and k; is the integral gain. The script computes the highest possible
bandwidth of the loop transfer function while keeping a phase margin of at least 30
degrees. For the theoretical system, the ideal proportional gain returned was 0 and the

ideal integral gain was 100.

Bode Diagram
Gm=12.035 dB (at 437.43 Hz), Pm=94.924 deg (at 14.404 Hz)
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Figure 3-16: Theoretical Bode plot of loop gain

Figure 3-16 shows the Bode plot of the compensated three-level buck converter. The
phase margin was near 90° at the crossover frequency of 14 Hz, which was as high as it
could be before pushing the resonant peak above zero, at which point the converter would
have become unstable. The stability of the converter was verified by the root locus

diagram shown in Figure 3-17.
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Figure 3-17: Theoretical root-locus plet of loop gain

Figure 3-18 shows that the step response of the closed loop system is nearly first-
order; the crossover frequency occurs in a region dominated by one pole. However, due
to the narrow margin by which the resonant peak is below 0dB gain, there is some

second-order ringing occurring at the resonant frequency.

Step Response
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Figure 3-18: Theoretical step response of closed loop system
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The Bode plot in Figure 3-20 shows a crossover frequency of 17 Hz with a phase
margin of 83°. 14 Hz and 90° were expected from the theoretical analysis. Similarly,
there was an expected resonant peak at 440 Hz. The simulation showed a peak at 400 Hz
before the 2nd-order roll-off. Note the high frequency behavior in the simulated Bode
plot. There were some higher order poles and zeros in the circuit devices that were not
accounted for in the theoretical analysis.

The phase of the simulated circuit showed an important difference from the analysis.
The expected phase had a bump before the resonant frequency and then dropped to a
constant -180°. The bump did not appear in the simulation’s phase, and although the
high frequency magnitude remained nearly 2nd order, the phase continued to drop. This
is indicative of delays in the control circuit, which take the form ¢’ in a transfer
function—a linearly increasing, frequency-dependant phase-shift. This delay limits how

high the bandwidth can be pushed before the converter becomes unstable.
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Figure 3-21: Simulated step response of closed loop system
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The step response of the simulation was slightly faster than that of the theoretical
analysis. This was expected with the higher crossover frequency. Also, the 2nd order
ringing was less pronounced, due to parasitic damping and a larger margin between the

resonant peak and 0dB.

3.2.3 Experimental

The control strategy was experimentally executed on a TI-F2812 series digital signal
processor (DSP). Visual Solution’s VisSim, a graphical development tool, was used to
program the DSP as described in section 3.1. The PID block was set with P =0, 1 =1
and D = 0. Note that the values are scaled from the theoretical PI values by 1/100. This
is because the conversion back to continuous time requires multiplying by the sampling
rate of the DSP (100 Hz).

An AP Instruments AP200 network analyzer was used to measure the frequency
response of the control system (Figure 3-22). This measurement closely matched the
simulated and expected frequency response. Open loop gain crossover occurred at
around 40 Hz, which was higher than in simulation and is the result of the scaling of the
integral term value. This Bode plot shows a phase margin of around 90 degrees at
crossover, as expected. The 400 Hz peak in the gain is not pronounced in the
experimental setup. This could be due to damping that occurs in wires and in the filter
components themselves.

Note that a buffer circuit was needed to properly measure the loop gain with the
network analyzer. Figure 3-23 shows the recommended circuit from the AP Instruments

application notes.
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4 Minimizing System Losses

Before the three-stage converter could be built, it was necessary to address
optimization. Both switching losses and magnetic losses can be optimized in order to

achieve higher efficiency. This chapter will address those optimizations.
4.1 The Bipolar Bridge Inverter

4.1.1 Capacitive Divider

atg DJ:;%‘“ Q4g &_,t:jkm
Q1 Q4

Qs [ }—= Qis [J—m= 10m

660 .
= Vin L2 1 10u ézso

D3 ‘
Q3g Q2g D—*': 2
Q2!

Q3

Figure 4-1: Bipolar full-bridge inverter

The final stage of the DC-to-AC inverter is a bipolar full-bridge inverter (Figure
4-1). Switches Q1 and Q3 operate in complementary fashion, as do Q2 and Q4. Figure
4-2 shows a simulated implementation of a controller for this inverter. A sine wave is
compared to a sawtooth to create the duty cycle command. A dead-time is added so the
complementary pairs do not commutate at the same time. The gate signals for Q3 and Q4
are a constant phase shift from Q1 and Q2, which allows the freewheeling inductor
current to turn on the MOSFET’s body diode before the MOSFET channel is enabled
(Zero Voltage Switching). The output of the inverter is a sine wave with the same

frequency as the controller’s sinusoid (Figure 4-3).
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Figure 4-2: Bipolar inverter control
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Figure 4-3: Bipolar inverter output voltage

The MOSFETs were chosen for their high temperature characteristics, but the
internal body diodes have poor transient characteristics, resulting in high switching
losses. Because of these losses, the converter cannot run at full power without burning
out the FETs. A potential solution to aid the turn-on transitions was found by adding
additional blocking and anti-parallel diodes (Figure 4-4 a). This allowed an external
diode with better transient performance to handle the freewheeling current when current
was flowing in the source-to-drain direction.

A problem remained that the drain to source voltage of the MOSFET did not fall to

zero as expected during the dead time between switches. It held a high-voltage which
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resulted in a large current spike in the blocking diode at turn-on. Adding a 10 nF
capacitor solved this problem (Figure 4-4 b). This solution had to be analyzed in order to

figure out the cause of the problem and to explain the solution.

R

Figure 4-4: (a) FET with blocking and anti-parallel diodes; (b) with added capacitor

4.1.1.1 Simulations

Transim’s Simetrix circuit simulator was used to better understand the circuit.
Figure 4-5 shows a test circuit that recreates the problem. Switch S1 is closed, thus
charging the inductor. It is then opened, allowing the anti-parallel diode D1 to conduct
the freewheeling current. Finally, Q3 is turned-on as it would be after a short dead-time.
Figure 4-6 shows that this circuit accurately portrays the current-spike and intermediate
voltage problems. The top graph shows the current through the anti-parallel diode and
the current through the FET. The bottom graph shows how the drain-to-source voltage of
the FET plateaus at 400 volts until the FET is turned-on.
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Figure 4-S: Isolated switch test circuit
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Figure 4-6: Waveforms from isolated switch test circuit

As S1 turns off, the inductor current must come from the FET/Diode leg. During
this initial stage before the anti-parallel diode conducts, the current is drawn from the
junction capacitance of the two diodes and from the drain-to-source capacitance of the
MOSFET. In other words, there is a capacitive current divider for a short period of time.
In theory, this would cause the drain-to-source voltage to change until the anti-parallel
diode starts to conduct. This voltage would drop to zero as the switch turns on. The
simulated results matched this scenario.

Figure 4-7 and Figure 4-8 show a simulation of this capacitive divider with a current
source extracting current. The waveforms give the correct response. There is a current
spike, and the mid-point voltage drops and levels out to an intermediate value. However,
in this simplified model, there is nothing regulating the voltage levels of any of the

devices.
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Figure 4-7: Capacitive divider of blocking diode and MOSFET
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Figure 4-8: Waveforms of capacitive divider circuit

Figure 4-9 and Figure 4-10 show the same capacitive divider with extra circuitry
added to regulate the voltage to 500 volts and to incorporate the anti-parallel diode. The
voltage and current behave as expected with the appropriate values; the mid-point voltage
drops to roughly 400 volts while the anti-parallel diode is commutating, and there is a

current spike through the capacitive leg.
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Figure 4-9: Capacitive divider with voltage regulation
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Figure 4-10: Waveforms of capacitive divider with voltage regulation

4.1.1.2 Results

Knowing the cause of the intermediate voltage, it is clear how adding a capacitor can
help. By changing the capacitive current divider’s values, the mid-point voltage can be
controlled. Adding the 10 nF capacitor allowed the mid-point voltage to plateau much
closer to zero, reducing the turn-on stresses of the switch. Figure 4-11 shows the
dramatic difference of the mid-point voltage with and without a 10 nF capacitor around

the blocking diode.
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Figure 4-11: Drain-source voltage with and without capacitor
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4.1.2 Switch Losses

The primary goal in designing the bipolar bridge inverter was to maximize
efficiency. Because of the poor transient characteristics of the MOSFET devices, these
losses were looked at first [appendix 8.2]. In order to get an accurate power loss
estimate, the area under the power loss curve (total energy) needed to be known.
Simetrix could not do this calculation, so a MATLAB function was written to calculate
the losses based on the simulation waveforms [appendix 8.3]. An example is provided

below for the first calculation.
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Figure 4-12: Current during source-to-drain half of the AC cycle

First, the section of time was looked at in the 60 Hz AC cycle when the current is
flowing in the source-to-drain direction through a switch, as shown in Figure 4-12. The
voltage and current data from the MOSFET were exported to a file to be analyzed in
MATLAB.

A graph of the current and voltage, as well as the power loss (absolute value of the
product of the two) is displayed after running the MATLAB function. For this half of the
cycle, an average of 4.79 watts of power is dissipated in the MOSFET.
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Figure 4-13: MATLAB loss function output

Repeating this for the other half of the AC cycle, the average power loss was found
to be 10.3 watts for a full AC cycle. Thus, the greatest power loss occurs when the
freewheeling current travels only in the MOSFET channel, not when the body diode can
carry the current. This is because the MOSFET must hard-switch during this interval.

Breaking this loss down further, it was found that over 50% of the power loss occurs
during turn-on. Due to this dominating factor, efforts were concentrated on reducing the

turn-on losses.

4.1.2.1 Simulations

A circuit was designed to simulate this hard-switched turn-on of the MOSFET
(Figure 4-14). The test circuit is a half-bridge that keeps a constant current in the load.
When the switch Q1 is turned on, the load current flows through the MOSFET channel.

Switch Q2 is kept off, acting like a freewheeling diode. Several combinations of loss
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prevention techniques were tried using the blocking and anti-parallel diodes as well as

turn-on inductive snubbers {19]. Results are discussed in section 4.1.2.3.

D17 D14
D16 D15
{1c == — E
—lp
10
R7 100
150n riz *
L8 s JE
10m 100
40 LIRS L
—=Vin R1
B
.
16.3u 100
28 ,__; Q4s
100
o cs R12
500n o 1(@4s)
VTCS P1 L at
. 1 .
AT
R nlMk—

Figure 4-14: FET loss simulated test circuit with parasitics and gate drive

4.1.2.2 Experimental Data

This circuit was also built in the laboratory (Figure 4-15 and Figure 4-16). The left
side of the test circuit was a gate driver. The labeled wires on the rest of the circuit could
be jumpered together to form the different combinations of snubbers and diode circuits
around each FET. The free Magnetics inductor design program was used to compute the
windings and cores needed to make the snubber inductors. The 3.4 pH inductors were
made with Magnetics 55381-A2 powdered ferrite cores with 9 turns of 22 AWG wire.
The 6.8 pH inductors were made with Magnetics 55381-A2 powdered ferrite cores with
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efficient. The snubber configurations reduce the FET losses, but at the price of lower
efficiency.

A more important conclusion was the strong correlation between simulated and
experimental data. Looking closely at the graph shapes and values, it is clear that the
simulation accurately showed how the circuit would work experimentally. Efficiency
calculations were simulated at full power with the entire bipolar bridge inverter.

With the FETs alone, the measured efficiency was around 92%. With the additional
diodes and capacitor, the efficiency increased substantially so that it could not be
accurately measured. This large discrepancy is because the diodes have much better
transient characteristics.

The final bipolar inverting stage of the converter will use the topology as shown in

Figure 4-24 to minimize MOSFET and overall losses.
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T Tcn R12

10n - D21 10n

L p23
c22 t——§ c23 T———§Z
’ - D22 I i D24
Q8g - Q7¢g —

Qs Q7

Figure 4-24: Bipolar full-bridge inverter with blocking and anti-parallel diodes
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high voltage, high temperature 9 uF capacitor, as can be found in the Novacap line of

ceramic capacitors.

, or in this case: L = I = 2814uH

27-1000)* -9E~¢
(

7= 1
274 LC

An inductance of 2 mH gives a maximum output voltage ripple of 3.6% (Figure 4-26 and
Figure 4-27) and current ripple of 5 mA. From simulation, the maximum current through
the inductor is 6.3 A. The RMS current is 2.6 Ay (Figure 4-28).

Other input parameters include the resistance of copper (1.724x10° Q-cm), the ideal
copper power loss (1 watt), the saturation flux density of the core material (0.5 T) and K,

the packing factor of the windings (typically 0.4).

/N BERVARN
VA BAN N I
/L N/

10 % 2 25 0 ' 35

Vo2V

Time/mSecs SmSecs/div

Figure 4-26: Inverter output with 9uF and 2000 uH filter
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4.2.2.1 Process

Specifications. XW\, Ktk AT

Select Material B, p. K,

Calculate B, {34)

o,

Caloulate A {40}

A Calcutate A, _ (39§
W,

3 A:

MLT Select A, W

m MLT

MOt
Calculate Tums {41) I
l Calculate J (42) I
‘ Select Wires I > /Mm@ 20°C
! Calculate Copper Losses (44) I
Caleutate Core Losses (13) I

Calculaie High Frequency
Losses (48), (48)

Caiculate A, (

28 "

]

m

Caicuiate Efficiency. n

Figure 4-33: Transformer optimization process [11]

The transformer specifications and turns ratio are needed to start the process. The

DC-DC stage of the converter has the following specifications:

e Maximum input voltage: 400 V
e Maximum output voltage: 700 V
e Maximum power: 700 W

e Switching frequency: 20 kHz
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L c B Dnom F. Munom ~_Anem 2'Bnem
09652 1905 279908 179324 19177 17145 72771 559816

Figure 4-35: Original transformer E-core (units in cm)

Alpha, beta, and Kc were not provided, but power loss curves were given. The

following equation holds:

PW-m7]= p, Ko feB? =kf“B?

Using this, the values for alpha, beta, and Kc can be found from the power loss graph in
the data sheet. Another MATLAB script [appendix 8.6] was used to find these numbers
by performing an iterative least-mean-square error calculation (Figure 4-36). Once k was
known, Kc could be computed since the density of the core was known. Ke = 3.96x10™.
These material parameters, along with core dimensions, were entered into the script

(Figure 4-37).
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Finally, this program does not compute whether the windings will fit into the core
window. This must be checked before a core selection is finalized. Smaller wire can be

used at the cost of more copper losses.

Another approach is to design the transformer core to meet the desired flux operating
point. Ap was used as a independent variable, which is the product of the window area
(Wa) and area of the core (Ac) to ensure the transformer operates at the correct point.

A MATLAB script was written that finds possible core sizes [appendix 8.7]. It uses
the same optimization procedure as described above. The same converter parameters are
specified, as well as the core properties. However, there are additional constraints that
are used when finding the optimum core.

Nmax sets the maximum allowable turns to avoid unrealistically high numbers.
Cmin, Cmax, Amin, Amax, B2min, and B2max are the allowable size ranges of the core
(depth, height, and width). ApTol sets a tolerance range of allowable deviation from the
optimal Ap—for example, a value of .65 will give all cores that meet the other
requirements and are within +/- 65% of the optimum Ap.

The parameter n sets the number of sizes within each dimension to try. If n =20, 20°
or 8000 cores will be tried. The additional core dimensions are computed in even ratios.
For example, L = C and F = 2L, using the naming conventions shown in Figure 4-35.
Each core is run through the optimization process, and it is only kept as a possibility if it
is within all of the allowances and tolerances. At the end of the computation, a list is

generated in the MATLAB window (Figure 4-40).
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TRANSFORMER OPTIMIZATION

RN RN R RN A AR RN R N R AN R RN RO R AR RRAN
NN R R NN RN NN R R RN AR R R AR R RN RR NN RN

Index

1.0000

2.0000

3.0000

4.0000

5.0000

6.0000

7.0000

8.0000

9.0000
10. 0000
11.0000
12.0000
13.0000
14,0000
15.0000
16.0000
17.0000
18. 0000
15.0000
20.0000
21.0000
22.0000
23.0000
24.0000
25.0000
26.0000
27.0000
28.0000
29.0000
30.0000
31.0000
32.0000
33.0000
34.0000

Index

Cores tried:
Within range:

The output is sorted from lowest to highest error in the flux operating point, with the

assumption that lower operating point error implies a closer match to predicted

Bo err

40.
43.
43.
46.
a6.
46.
.7301
L7301
.0029
. 0029
. 9557
.1034
.1034
. 5507
. 5507
. 4267
. 4267
.7497
. 7497
. 4056
. 4056
.0036
.1793
.1793
L7121
L7121
.6202
L6202
.8712
.8712
.2577
. 2577
.0447
. 0447

8214
6692
6692
5950
7204
7204

Bo err

8000
34

Figure 4-40: Possible cores output in MATLAB

Efficiency Turns

99.1434
99.1496
99.1496
99.1541
99.1541
99.1541
$99.1615
99.1615
99.1615
99.1615
99,1693
99.1693
99.1693
$9.1694
99.1694
99.1774
99.1774
99.1775
99.1775
99.1779
98.1779
99.1831
99.1852
99.1852
99.1856
99.1856
99.1891
99.1891
95.1913
99.1913
99.1944
99.1944
99.1954
99.1954

186.0000
184.0000
184. 0000
183.0000
183.0000
183.0000
181.0000
181.0000
181.0000
181. 0000
179.0000
179.0000
179.0000
179.0000
179.0000
177.0000
177.0000
177.0000
177.0000
177.0000
177.0000
176.0000
175.0008
175.0000
175.0000
175.0000
174. 0000
174.0000
174.0000
174.0000
173.0000
173.0000
173.0000
173.0000

Efficiency Turns

C (cm)

1.7105
1.7105
1.7105
1.7105
1.7105
1.7105
1.7105
1.7105
1.7105
1.7108
1.7105
1.7105
1.7108
1.7105
1.7108
1.7105
1.7108
1.7105
1.7105
1.7105
1,7105
1.7105
1.7108
1.7108
1.7105
1.7108
1.7108
1.7108
1.7105
1.7105
1.7105
1.7105
1.7108
1.7105

€ {cm)

(cm)

.0000
.0000
. 5263
.5263
.0000
.0526
.5263
.0526
.0000
.5789
.0526
.5263
.5789
.0000
.1053
.0526
.5789
.5263
.1053
. 0000
.6316
.5789
.0526
.1053
. 5263
.6316
. 0000
L1579
.5789
.1053
.0526
L6316
. 5263
.1579

(cm)

ZB {cm)

6.0000
5.7632
6. 0000
5.7632
5.5263
6.0000
5.5263
5.7632
5.2895
6.0000
5.5263
5.2895
5.7632
5.0526
6.0000
5.2895
5.5263
5.0526
5.7632
4.8158
6.0000
5.2895
5.0526
5.5263
4.8158
5.7632
4.5789
6.0000
5.0526
5.2885
4.8158
5.5263
4.5789
5.7632

2B (cm)

Dwire (mm)

1.1827
1.1805
1.1805
1.1783
1.1787
1.1787
1.1766
1.1766
1.1775
1.1775
1.1750
1.1758
1.1785
1.1771
1.1771
1.1741
1.1741
1.1753
1.1753
1.1778
1.1778
1.1733
1.1740
1.1740
1.1762
1.1762
1.1801
1.1801
1.1734
1.1734
1.1751
1.1751
1.1787
1.1787

Dwire (mm}

efficiency. In order to calculate the turns, wire sizes, etc, the core parameters of the

desired selection needed to be known. A custom MATLAB function [appendix 8.8] was

used to find these parameters from hidden data produced during the constrained core

selection script. An example is below.
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>> CoreData(results(l,:)}:

Results Index: 1
Efficiency: 99.1434%
Turns: 186

Duty: 0.%2105

D 2.1447 cm

L: 0.85526 cm

M:  4.2895 cn

C: 1.7105 cm

A: 12 cm

2B: 6 cm

Ap: 26.9177 cw*4
Ac: 2.9259 cm*2

Wa: 9.1%98 cm*2

Ve: 60.2119 cm*3
Bo: 0.081798 Tesla
Dwire,p: 1.1827 mm
Dwire,s: 0.70965 mm
Pfe: 2.666% B
Pcup: 1.4722 W
Pcus: 1.9265 W

Figure 4-41: Output of CoreData in MATLAB

The function can be useful to quickly evaluate several core possibilities before
choosing a suitable one to optimize. These numbers can then be entered back into the
optimization script to calculate the number of turns and to save the sizes and results for

future use.

4.2.2.2 Results

Due to the size constraints of the final design, a true optimized core could not be
found. However, a core that is roughly twice the size of the original core—closer to the
optimal size—was used.

Using this optimization method, two transformers were designed: one for the
existing E-core and one for the newer, larger, more optimal core. The wire sizes were
reduced in order to fit into the window area of each transformer, so copper losses will be

slightly higher than calculated. The winding and core size data can be seen in Figure
4-42.
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5.2 Balancing the Capacitor

The floating capacitor is the key component in multi-level converters. If it does not
remain balanced at half of the input voltage, the voltage seen by some devices will be too
high, causing system failure. In theory, the capacitor will stay perfectly balanced,
regardless of load, as long as the duty cycles for each FET are identical (Figure 5-5).

kv

time/mSecs 20mSecs/div

Figure 5-5: Floating capacitor voltage with no load and D, =D, = 70%

This worked in practice to a certain degree. The DSP ran at a high enough frequency
to provide good resolution so the gate drive signals were approximately equal. Like in
the theoretical case, if one duty cycle was changed slightly, the capacitor voltage would

rise or fall to a new steady-state value as seen in Figure 5-6.

0 o - 30 100

time/mSecs 20mSecsidiv

Figure 5-6: Capacitor voltage with one FET duty cycle change <+/- 10%
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Although the parallel resistor solution is acceptable for prototype testing, a final
design should not rely on the individual device characteristics and passive balancing.
Active balancing can be achieved by measuring the input voltage and the capacitor
voltage. An integral controller can be used with these measurements to slowly add to or
subtract from one of the duty-cycle commands to ensure that the capacitor remains

balanced (Figure 5-9).

Nominat Duty
Cycle Input P »- —{Duty Cycle(1.16)F 28X T1PW |
M
0.5@fx4.16 4.16 l——ﬁcmims) PIO, ou1 16) %Duty Cycle(1.16)F28X0¢T2PW |
Vcap P - gl 1.16)1) M

Figure 5-9: Active capacitor balancing implementation

It was also found that if a single FET was turned on and off slowly (1 Hz), the
capacitor would remain balanced. The voltage drift occurred over roughly 30 seconds
since the RC time constant is very high with no load. Turning on and off a FET
periodically discharges the FET’s parasitic capacitance, providing enough current to
operate the converter for a brief moment. This is enough to re-balance the capacitor
voltage. This low frequency switching could easily be implemented in an active
balancing control scheme.

The inductor value had an effect on how well-balanced the capacitor remained. With
a small inductance (500 uH), the capacitor remained perfectly balanced in loaded
operation, but with a large inductance (20 mH), the capacitor exhibited abnormal
behavior. Sometimes it was perfectly balanced; sometimes it was extremely unbalanced
(5% or 10% of the input voltage); and sometimes it would snap back and forth as the
input voltage is changed. Active balancing may resolve this issue as well.

Analysis, simulations, and testing have shown that the three-level buck converter is
efficient and can provide the high-voltage power conversion required for the three-stage
DC-to-AC converter. Once the i1ssues discussed in this chapter are resolved, the three-

level buck converter should be stable and reliable over a breadth of conditions.
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6 Conclusion

Environmental requirements are often a limiting factor in engineering. In the case of
very high temperatures, electrical components need to be selected carefully. The options
for these components that remain may impose other design constraints, as was the case
with the DC-to-AC converter discussed in this thesis. The high input voltage had to be
split over multiple devices, calling for a multi-level converter.

Topology selection was discussed, and two stages of full-bridge inverters were
chosen to provide isolation and the inverted output. A three-level buck converter was
chosen over a neutral-point clamped (NPC) inverter because it is more controllable and
the maximum voltage seen in the rest of the circuit is reduced. Simulations showed that
the entire converter should be able to achieve efficiencies greater than ninety percent.

The three-level buck converter was analyzed in detail. A prototype was made and
tested thoroughly. Results confirmed the simulation data: the multi-level buck converter
is feasible as an efficient conditioning stage for the high input voltage the converter. A
proper controller was designed and then tested both in simulation and in lab. Advanced
control features such as hysteresis and bursting were looked at and shown to add crucial
capabilities such as achieving a very low output with no load.

Optimization of the converter was examined, and two major areas of the converter
were improved upon. First, switching losses in the full-bridge inverter stages were
reduced by adding a capacitor and an anti-parallel diode around each switch. This was
shown to be the most efficient solution compared to snubber circuits. Second, all
magnetic components were optimized using known algorithms and MATLAB scripts.
These optimizations will help maximize the converter’s overall efficiency.

Finally, future work was discussed. Noise—especially EMI—needs to be reduced
before finalizing the design of the three-level buck converter. Actively balancing the
floating capacitor will also improve performance and provide more reliability.

The three-level buck converter, presented in this thesis as the front end to a DC-to-
AC inverter, is an efficient, controllable, and feasible solution to reduce voltage stresses

on switching devices and on other stages of a power circuit.
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8 Appendix: Code

8.1 Compensator

function [params] = compensator(sys)

% Takes a transfer function of the form (as+b)/(cs"2-+ds)
% and returns what R1, C1, R2, C2, and R3 should be

% for a compensator of the form: inverting integrator -->
% lead network --> inverting amplifier

[num den] = tfdata(sys);
num = num{1};
den =den{l};

a = num(2);
b = num(3);
¢ =den(1);
d = den(2);

R1 =1000;

R3=b;

R2 = a*d/c-b;

C2 = a/(R2*R3);

C1 = ¢/(R1*R2*R3*C2),

output = tf({C2*R2*R3 R3],[R1*R2*R3*C1*C2 C1*R1*(R2+R3) 0]);
params = [R1 C1 R2 C2 R3];

sys

output

disp(['R1 =" num2str(R1)]);
disp(['C1 =" num2str(C1)]);
disp(['R2 ="' num2str(R2)});
disp(['C2 =" num2str{C2)]);
disp(I'R3 =" num2str(R3)]);

8.2 MOSFET SPICE Model

07/04 >——----

* d ok ok ok ok koK ok ok

*SRC=17N80BC3;17N80BC3;MOSFETs N;Power >100V;APT 800V 17A 0.29%9chm TO-
247

* SYM=POWMOSN

.SUBCKT 17N80BC3 10 20 30

* TERMINALS: D G S

M1 1 2 3 3 DMOS L=1U W=1U
RD 10 1 0.137

RS 40 3 8.25M

RG 20 2 8.82

CGs 2 3 2.2N

EGD 12 0 2 1 1

VEB 14 0 O

FFB 2 1 VFB 1



CGD 13 14 706pP

R1 13 0 1

Dl 12 13 DLIM

DDG 15 14 DCGD

Rz 12 15 1

D2 15 0 DLIM

DSD 3 10 DSUB

LS 30 40 7.5N

.MODEL DMOS NMOS (LEVEL=1 LAMBDA=882U VTO=3 KP=8.24)
.MODEL DCGD D (CJO=706P VJ=0.6 M=0.68)

.MODEL DSUB D (IS=70.6N N=1.5 RS=26.5M BV=800 CJO=4.26N VJ=0.8 M=0.42
TT=550N)

.MODEL DLIM D (IS=100U)

.ENDS

* Kk Kk ok Kk ok ok ok ok ok

8.3 Compute Loss

function [P,W _tot,P sw] = ComputeLoss (fname,varargin)
% ComputelLoss takes in a SIMetrix vector data file of the

voltage and current of a switching device, then plots and

computes the switching loss. P(t), total power in 1 cycle, and the
otal

switching loss are returned.

o

o° o° (T oe

o

NOTE: fname is the location of input data file, which must be column
vectors in the tab-delimited format with one line of header in the
following order: Time Voltage Current and must contain only
data

from the switching period.

ex: 'D:\Documents\DCAC\Data\filename.txt';

de

e

o

o

o\

Ken Schrock
Schlumberger
2006.06.29

o°

o\°

oe

%% Script Variables

if nargin ==

f sw = 20e3; % switch frequency
else

f sw = varargin{l};
end

%$%% Read and initialize data

data = dlmread (fname, '\t',1,0);

t = data(:,1); % time vector
V = data(:,2); % voltage vector
I = data(:,3); % current vector

oe
o0
oe

Compute power loss
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P = abs (V) .*abs (I); % power loss P (t)
W_tot = (P(2)-P(1))*(t(2)-t(1))/2; %
for i = 2:length(t)

W tot = W _tot + (abs(P(i)-P(i-1))/2+min(P(i),P(1i-1)))*(t(i)-t(i-
1))
end
P_sw = W_tot*f sw;

energy loss due to switching

$%% Plot and display results

figure(l);

clf;

subplot{2,1,1);

[AX,H1,H2] = plotyy(t,V,t,I);

title('Power Loss'):

xlabel ('time (s)');

set (get (AX (1), 'Ylabel'),'String', 'Voltage (V) '");
set (get (AX(2), 'Ylabel'), 'String', 'Current (A)');
set (AX (1), 'XLim', [t (1) t(end)]):

set (AX (2), 'XLim', [t (1) t{(end)]);

subplot(2,1,2);

P(1) = 0;

P(end) = 0;

fill(t,P,'k");

set (gca, 'XLim', [t (1) t(end)]):
xlabel ('time (s)');

ylabel ('Power (W)');

fprintf ('\n');

fprintf ('Total power loss at ');
fprintf ([num2str(f sw) ' Hz: ']);
fprintf ([num2str (P _sw) ' Watts\n']);
fprintf ("\n');

8.4 InductorDesign_AuxOut

Inductor Design
Ken Schrock

ol

&

% Input Parameters

Imax = 6.3; % [A] Inductor current from simulation
Irms = 2.6; % [A] Inductor current form simulation
p = 1.72e~-6; % [ohm-cm] resistivity of copper

L = 2000e-6; % [H] Inductor size

Pcu = 1; % [W] Ideal copper loss
uo = 1.256633706e-6; % [m kg s”-2 A"-2] permeability of free space

% Core Parameters
Ku = 0.4; % packing factor
Bmax = 0.5; % [T] maximum flux density of material

kga = 1.38; % [cm”5] actual core geometrical constant
Ac = 2.47; % [cm”2] cross sectional area
Wa = 2.89; % [cm™2] bobbin winding area



MLT = 12.8; % [cm] mean length per turn

% Wire
Awa = 16.51e-3; % [cm™2] actual wire area

% Calculations

R = Pcu/Irms"2;

kg = p*L*"2*Imax~2*1e8/ (Bmax"2*R*Ku); % [cm”5] ideal core geometrical
constant

lg = uwo*L*Imax"2*led/ (Bmax"2*Ac); % [m] length of air gap

n = round(L*Imax*led/ (Bmax*Ac)); % number of turns

Awmax = Ku*Wa/n; % [cm"2] maximum ideal wire area

Awmin = p*n*MLT/R; % [cm”2] minimum ideal wire area

Ra = p*n*MLT/Awa; % [ohms] actual winding resistance

Pcua = Irms”2*Ra; % [W] copper loss

% Output

fprintf ('\n\n');

disp(['INDUCTOR DESIGN using Kg method']);
fprintf ('\n’);

disp(['Imax = ' num2str(Imax) ' A'l);

disp({'Irms = ' num2str(Irms) ' A'}l);

disp(['L = ' num2str(L*le6) ' uH']);

fprintf('\n');

disp(['Ideal R <= ' num2str(R) ' ohms']);
disp(['Ideal Kg >= ' num2str(kg) ' cm”5'});
disp(['Ideal 1lg = ' numZ2str(lg*le3) ' mm']);
disp(['Ideal N = ' numZ2str(n) ' turns'l);
disp(['Ideal Aw <= ' numZstr (Awmax*le3) 'e-3 cm"2']);
disp(['Ideal Aw >= ' num2str (Awmin*1le3) 'e-3 cm”™2']);
fprintf('\n'});

disp(['Actual Kg = ' numZ2str(kga) ' cm”*5']);
disp(['Actual Aw = ' num2str (Awa*le3) 'e-3 cm”2']);
disp(['Actual R = ' numZstr(Ra) ' ohms']);
disp({'Actual Pcu = ' num2str(Pcua) ' W']);

fprintf ('\n"');

8.5 XfrmOptAux_NewCore

Transformer Optimization
Ken Schrock
Single core specification

o® oe

[

% Converter Parameters

Vi = 400; % Input Voltage

Vo = 700; % Output Voltage

1; % Output Current

eta = 0.95; % Efficiency

f = 20e3; % Switching frequency

T = 25; % Temperature rise (C)

Ta = 175; % Ambient temperature (C)

!
o
i

turnsratio = 1.9; % l:turnsratio
diodedrop = 1.0; % volts

[

% Magnetic Material



Bsat = 2500; % saturation flux density
alpha = 1.4;

beta = 1.54;

Kc = 3.91le-4;

pm = 4800; % core density {(kg/m"3)

% Core Parameters (cm)

Dc = 2.14;

L = .85;

M= 4.3;

C = 2*L;

F = 2*L;

B = Dc+L;

Wa = Dc*M;

Ac = 4*L"2;

Lc = 4*Dc+4*L+2*M;
Vc = Lc*Ac;

Ap = Wa*Ac;

% Wire

% Primary winding

AwpW = 20.82; % cm”2

RdcpW = 1.72e-8/(AwpW/10072)/100; % Resistance of wire
% Secondary winding

AwsW = 20.82; % cm"2

RdcsW = 1.72e-8/ (AwsW/10072)/100; % Resistance of wire

% Conversions
Ap = Ap/10074;
Ac = Ac/100"72;
= Vc/100"3;
Wa Wa/100"2;
AwWpW = AwpW/10072;
RdcpW = RdcpW*100;
AwsW = AwsW/100"2;
RdcsW = RdcsW*100;

<
Q
!

% Computation

D = (Vo/turnsratio)/Vi;
Vp = sqgrt (D) *Vi;

Po = (Vo+diodedrop) *Io;
kps 1;

kpp = 1;

VAsum = Po/ (eta*kpp)+Po/kps;

K = 4/sqrt(D);

Ku = 0.4;

10%40/sqgrt (1.72e-8*10*%5.6) *sqgrt (2*beta) / (2+beta) ;
Kt = sqgrt (beta/ (beta+2)*10*40/(1.72e-8*10));

Bo =

(Ko/Kt™ (6/7)*Ku” (1/14) /sqrt (pm*Kc*f~alpha) *T* (4/7) * (K*f/VAsum) ~(1/7)) "~ (
1/ (beta/2-1/7));

Ap opt = (VAsum/ (K*f*Bo*Kt))"(8/7)*1/ (T*Ku)"(4/7)*100"4;
fprintf (' \nTRANSFORMER OPTIMIZATION\n\n');
disp(['Optimal Ap = ' numZstr(Ap opt) ' cm™4']);

=
o]
i
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disp(['Actual BAp = ' num2str (Ap*10074) ' cm™4']);

disp(['Bo = " num2str(Bo*led) ' Gauss']);
Bm = ((Ko/Kt)"2*T/(pm*Kc*f~alpha*Ap”.25))"(1l/beta);
disp(['Bm = ' num2str (Bm*led4) ' Gauss']);

Nmin = ceil (Vi*1/(2*f)/ ((2* (Bsat/led-Bm}) *Ac));

Np = floor (Vp/ (K*f*Bm*Ac)) ;

Ns = round(turnsratio*Np);

disp(['Np = ' num2str(Np) '; Ns = ' num2str(Ns) '; (Nmin = '
num2str (Nmin) ")'1);

MLT = pi*sqrt (C"2+F"~2)/100;

Tmax = Ta + T;

pw = 1.72e~-8*(1+.00393* (Tmax-20));

J = sqgrt ((400*sgrt (Ap) *T-pm*Vc*Kc*f*alpha*Bm"beta) / (pw*MLT*Ku*Wa) ) ;
Ip = Po/(eta*kpp*Vp);

Awp = Ip/J*100"2;

disp(['Optimal Aw, primary = ' num2str (Awp*100) ' mm"2'}]);
Is = Io/2*sqrt(1+D);

Aws = Is/J*100"2;

I

disp(['Optimal Aw, secondary = ' num2str (Aws*100) ' mm"2']);
disp(['Optimal Dw, primary = ' num2str (2*sqrt (Awp/pi)*10) ' mm']);
disp(['Optimal Dw, secondary = ' num2str (2*sqgrt (Aws/pi)*10) ' mm']);
Awp = AwpW*100"2;

Aws = AwsW*100"2;

Rdcp = RdcpW;

Rdcs = RdcsW;

disp(['Actual Aw, primary = ' numZ2str (Awp*1072) ' mm"2']);
disp(['Actual Aw, secondary = ' num2str (Aws*1072) ' mm"2']);
disp(['Actual Dw, primary = ' num2str (2*sqrt (Awp/pi)*10) ' mm']);
disp(['Actual Dw, secondary = ' num2str(2*sqrt (Aws/pi)*10) ' mm']);

sigma = 66/sqrt(f);
rop = sqrt (Awp/pi)*10;
if rop/sigma <= 1.7
Ksp = 1+ (rop/sigma) "4/ (48+0.8* (rop/sigma)"4);
else
Ksp = .25+0.5* (rop/sigma)+3/32* (sigma/rop) ;
end;
ros = sqrt(Aws/pi)*10;
if ros/sigma <= 1.7
Kss = l+(ros/sigma) "4/ (48+0.8* (ros/sigma) "4);
else
Kss = .25+0.5* (ros/sigma)+3/32* (sigma/ros);
end;
Racp = Ksp*Rdcp;
Racs = Kss*Rdcs;
Rp = MLT*Np*Racp* (1+.00393* (Tmax-20)) ;
Pcup = Rp*Ip"2;
Rs = MLT*Ns*Racs* (1+.00393* (Tmax-20));
Pcus = Rs*Is"2*2;
Pfe = pm*Vc*Kc*f*alpha*Bm~beta;
Ploss = Pcup + Pcus + Pfe;

Bo2 = (VAsum”"2*pw*MLT*Wa/ (K"2*f£"2*Ku*Ap"2*pm*Vc*Kc*f~alpha))".25;
A = F+2*M+2*L;

B2 = 2*B;

disp({'Bo2 = ' num2str (Bo2*le4d) ' Gauss']l);

disp(['A = ' num2str(A) ' cm']);

disp(['2B = ' num2str(B2) ' cm']);

fprintf('\n');
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disp(['Total Power Loss = ' num2str(Ploss) ' W']);
eff = Po/(Po+Ploss)*100;

disp(['Efficiency: ' num2str(eff) '%$']);
fprintf('\n")

8.6 AlphaBetaPlot2

Plots the Power Loss graph for a given set of parameters
Finds best alpha and beta

o°

o

(1 2 31/10;
f = logspace(4,6,1000);

x = [10 20 50 100 30 60 20 40]*le3;
y [22 59 205 530 310 780 320 800];

bestalpha = 0;
bestbeta = 0;

bestk = 0;

besterr = inf;

for alpha = 1.4:.1:1.6

for beta = 1 05 3
for k = .01:3

Pl = x(1:4) .%alpha*.1"beta;
P2 = (5 6) “alpha*.2"beta;
P3 = x (7 ~alpha*.3"beta;

y2 = [Pl P2 p3]*1000/100A3;
err = mean((y2-y)."2);

if err < besterr
disp({'alpha = ' num2str(alpha) '; beta = '
numZstr (beta) '; k = ' num2str(k)]);
bestalpha = alpha;
bestbeta = beta;
bestk = k;
besterr = err;
end
end
end
end

alpha = bestalpha;
beta = bestbeta;

k = bestk;
disp('done');

PL = [1;
for 1 = 1:1length(B);
Bi = B(1);
P1(i,:) = k*f.”alpha*Bi“beta*1000/100"3;
end
testx = logspace(loglO(x(1l)),logl0(x(4)),10000);
testy = logspace(loglO(y(1)),logl0O(y(4)),10000);
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testx2 = logspace (1ogl0(x(5)),1logl0(x(6)),10000);
testy2 = logspace (logl0(y(5)),logl0(y(6)),10000);
testx3 = logspace (logl0O(x(7)),1logl0(x(8)),10000);
testy3 = logspace (loglO(y(7)),logl0(y(8)),10000);
figure(1l);

clf;

% loglog(testx,testy);

% hold on;

o\

loglog (testx2, testy2);
loglog (testx3, testy3);
loglog (f,P1(1,:));
hold on;
for 1 = 2:length(B);

loglog (f,P1(i,:));
end
loglog(x,y, 'ro', 'markersize',5);
grid on;
axis([led le6 1lel 3000]);
xlabel ('f (Hz)'"):
ylabel ('P_loss (mW/cm”3)"'");
title(['\alpha = ' num2str(alpha) ', \beta = ' num2str (beta)
num2str(k)]1);

o

8.7 XfrmOptFitAPAux

Transformer Optimization with Multiple Cores
Ken Schrock
Same as XfrmOpFitAp but for AC/Aux instead of AC/Main

e oe

oe

% Converter Parameters

Vi = 400; % Input Voltage

Vo = 700; % Output Voltage

TIo 1; % Output Current

eta = 0.95; % Efficiency

f = 20e3; % Switching frequency

T = 25; % Temperature rise (C)

Ta = 175; % Ambient temperature (C)

[l

turnsratio = 1.9;
diodedrop = 2.0; % volts
Nmax = 400;

% Magnetic Material
Bsat = 2500;

alpha = 1.4;

beta = 1.54;

Kc = 3.96e-4;

pm = 4800;

% Core Parameters
Cmin = 1; % cm
Cmax = 1.9; % cm
Amin = 6; % cm
Amax = 12; % cm
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B2min =
B2max = 6; % cm
ApTol =

|
[e)]
w
~

i

n 20;

% Computation

D = (Vo/turnsratio)/Vi;
Vp = sqrt (D) *Vi;

Po = (Vo+diodedrop) *Io;

kps = 1;
kpp = 1;
VAsum = Po/ (eta*kpp) +Po/kps;

K = 4/sqrt(D);

Ku = 0.4;

Ko 10*%40/sqrt (1.72e-8*10*5.6) *sqrt (2*beta) / (2+beta) ;
Kt = sqrt(beta/(beta+2)*10*40/(1.72e-8*10));

Bo =

(Ko/Kt™(6/7) *Ku” (1/14) /sqgrt (pm*Kc*f~alpha) *T" (4/7) * (K*£/VAsum) ~ (1/7)) " (

1/ (beta/2-1/7));
Ap opt = (VAsum/ (K*f*Bo*Kt) )" (8/7)*1/ (T*Ku) "~ (4/7) *100"4;
fprintf('\nTRANSFORMER OPTIMIZATION\N\n');

o©

Di = linspace (Cmin/4, (B2max-Cmin)/2,n);

Li linspace (Cmin/2,min (B2max/2-Cmin/4,Amax/4-Cmin/8),n) ;
Mi linspace (Cmin/2,Amax/2-Cmin,n) ;

DLM = [];

i

for i=1:50

fprintf('.");
end
fprintf('\n');
step = n*3/50;
prog = step;

for i = 1:n
for 7 = 1:n
for m = 1:n
if (i-1)*n"2+(j-1) *n+m == round(prog);
prog = prog+step;
fprintf('|"');
end
DIM(n"2* (i-1)+n*(j-1)+m, :) = [Di(1) Li(j) Mi(m)];
end
end
end

fprintf('\n"');

I

Ci 2*DLM(:,2);
Fi = 2*DLM(:,2);

Wai = DLM(:,1).*DLM(:,3);

Aci = 4*DLM(:,2)."2;
Lci = 4*DLM(:,1)+4*DLM(:,2)+2*DLM(:, 3);
Vci = Leci.*Aci;

Api = Wail.*Aci;
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results = [];
k = 1;
prog = step;
for i=1:length(DLM(:,1))
if i == round(proqg);
prog = prog+step;
fprintf('|");

end

Dc = DLM(i,1);

L = DLM(i,2);

M = DLM(i,3);

C = Ci(i);

F = Fi(i);

Wa = Wai(i)./100"2;
Ac = Aci(i)./10072;
Vc = Veci(i)./100"3;

Ap = Api(i)./100"4;
if abs (Ap*100"4-Ap opt)/Ap opt < ApTol

Bm = ((Ko/Kt)"2*T/ (pm*Kc*f~alpha*Ap”.25))" (1/beta);
Np = floor (Vp/ (K*f*Bm*Ac)) ;
Ns round (turnsratio*Np) ;
MLT = pi*sqrt (C*2+F"~2)/100;
Tmax = Ta + T;
pw = 1.72e-8*(1+.00393* (Tmax-20)) ;
J = abs(sqrt ((400*sqrt (Ap) *T-
pm*Vc*Kc*f~alpha*Bm"beta) / (pw*MLT*Ku*Wa) ) ) ;
Ip = Po/(eta*kpp*Vp):
Awp = Ip/J*100"2;
Is = Io/2*sqrt (1+D);
Aws = Is/J*100"2;
Rdcp = 1.72e-8/ (Awp/100°2);
Rdcs = 1.72e-8/(Aws/100"2);
sigma = 66/sqrt(f);
rop = sqrt(Awp/pi)*10;
if rop/sigma <= 1.7
Ksp = 1+(rop/sigma)~4/(48+0.8* (rop/sigma) ~4);
else
Ksp = .25+0.5* (rop/sigma)+3/32* (sigma/rop);
end;
ros = sqgrt(Aws/pi)*10;
if ros/sigma <= 1.7
Kss = 1+(ros/sigma)”4/(48+0.8* (ros/sigma)"4);
else
Kss = .25+0.5* (ros/sigma)+3/32* (sigma/ros);
end;
Racp = Ksp*Rdcp;
Racs = Kss*Rdcs;
Rp = MLT*Np*Racp* (1+.00393* (Tmax-20)) ;
% Pcup = Rp*Ip"2*2;
Pcup = Rp*Ip"2;
Rs = MLT*Ns*Racs* (1+.00393* (Tmax~20)) ;
Pcus = Rs*Is"2*2;
Pfe = pm*Vc*Kc*f”alpha*Bm” beta;
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Ploss = Pcup + Pcus + Pfe;
eff = Po/(Po+Ploss) *100;

Bo2 = (VAsum"2*pw*MLT*Wa/ (K"2*£"2*Ku*Ap"2*pm*Vc*Kc*f~alpha))".25;
Nmin = ceil (Vi*1/(2*f)/ ((2* (Bsat/led4-Bm)) *Ac));

A = 2*M+4*L;

B2 = 2*(Dc+L);

WireAp = Np* (2*rop/10)"2;

WireAs = 2*Ns*(2*ros/10)"2;

if and(min ([

Np >= Nmin
Np >= 4;
Np <= Nmax
Ns >= Nmin
Ns >= 4;
Ns <= Nmax
A >= Amin
A <= Amax

B2 >= B2min

B2 <= B2max

C >= Cmin

C <= Cmax

Wa*led >= WireApt+WireAs
1), 1)

results(k,:) = [(Bo2-Bo)/Bo*100 eff Np C A B2 max(2*rop, 2*ros) Dc
L M Ap Ac Wa Vc Bo 2*rop 2*ros D Pfe Pcup Pcus];
k = k+1;
end
end
end

fprintf ("\n\n');
if not(isempty(results))
fprintf ("\tIndex\t Bo err Efficiency Turns\tC (cm)\t A (cm)
2B (cm)\t Dwire (mm)\n\n');
results = [[l:1:size(results,1)]' sortrows(results,1)];
disp(results(:,1:8));
fprintf (*\tIndex\t Bo err Efficiency Turns\tC (cm)\t A (cm)
2B (cm)\t Dwire (mm)\n\n'");

end
disp(['Cores tried: ' num2str(step*50)]);
disp(['Within range: ' num2str(size(results,1))]);

fprintf('\n'});

8.8 CoreData

function [} = CoreData(row);
% Takes a row from the results of XfrmOptTest.m
And displays the relevant data for XfrmOpt.m

o\°

fprintf ('\n');

disp(['Results Index: ' numZstr(row(l))]);
disp(['Efficiency: ' num2str(row(3)) '%'1l);:
disp({'Turns: ' num2str(row(4))1});
disp(['Duty: ' num2str(row(l9))]);

fprintf('\n'});
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disp(['D: ' num2str(row(9)) ' cm']);
disp(['L: ' numZ2str(row(10)) ' cm']);
disp(['M: ' num2str(row(11l)) ' cm']);
disp(['C: ' num2str(row(5)) " cm'l);
disp(['A: ' numZ2str(row(6)) ' cm']);
disp{(['2B: ' num2str(row(7)) ' cm']);
disp(['Ap: " num2str(row(12)*100%4) ' cm™4']);
disp(['Ac: ' num2str(row(13)*10072) ' cm™2']);
disp(['Wa: ' num2str(row(14)*10072) ' cm"2']);
disp(['Vc: ' num2str(row(15)*10073) ' cm"3']);
disp(['Bo: ' numZ2str(row(l6)) ' Tesla']);
disp(['Dwire,p: ' num2str(row(l7)) ' mm']);
disp(['Dwire,s: ' num2str(row(18)) ' mm']);
disp(['Pfe: ' num2str(row(20)) ' W']):
disp(['Pcup: ' numZstr(row(21)) ' W']);
disp(['Pcus: ' num2str(row(22)) ' W']);

fprintf ('\n');
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