
PreCog: A Robust Machine Learning System to Predict Failure
in a Virtualized Environmen

By

Adam Rogal

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF ENGINEERING
IN ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

AT THE
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2008

©2008 Massachusetts Institute of Technology. All rights reserved.

The author hereby grants to MIT permission to reproduce
and to distribute publicly paper and electronic

copies of this thesis document in whole or in part
in any medium now known or hereafter created.

Signature of Author:
Department of Electrical Engi ering and Computer Science

May 23, 2008

Certified by: -
Sridhar Rajagopal

Staff Engineer, R&D: Virtual Infrastructure Mgmt, VMware
VI-A Thesis Supervisor

Certified by:
Larry Rudolph

Principal ResearchfSeeniyif f Electrical Eirgineering, MIT CS and AI Lab
S ~. / 1f Thesis Supervisor

Accepted by:-
Arthur C. Smith

Professor of Electrical Engineering and Computer Science
Chairman, Department Committee on Graduate Theses

ARCHIVES

MASSACHUSETTS INSTITUTE
OF TECHN(CiOGY

NOV 13 2008

LIBRARIES

I

PreCog: A Robust Machine Learning System to Predict Failure
in a Virtualized Environment

by

Adam Rogal

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008 in partial fulfillment of the

requirements for the Degree of Master of Engineering in
Electrical Engineering and Computer Science

ABSTRACT

The research in this work addresses the need for a warning system to predict future application
failures. PreCog, the predictive and regressional error correlating guide system, aims to aid
administrators by providing a robust future failure warning system statistically induced from past
system behavior. In this work, we show that with the use of machine learning techniques such as
Adaptive Boosting and Correlation-based Feature Selection, PreCog, without any prior

knowledge of its target, can be accurately and reliably trained within a virtual environment using

past system metrics to predict future application in a variety of domains.

VI-A Company Thesis Supervisor: Sridhar Rajagopal
Title: Staff Engineer, R&D: Virtual Infrastructure Mgmt

MIT Thesis Supervisor: Larry Rudolph
Title: Principal Research Scientist of Electrical Engineering,

ACKNOWLEDGEMENTS

As are most projects of this magnitude, I could have not accomplished what I have without the

guidance and support of a number of individuals...

Foremost, I would like to thank the unwavering support of VMware, the company for

which the work of my thesis was done. Through the VI-A program, VMware gave me an

unparalleled experience to any previously of my career. I was given the opportunity to design

and pursue a project of my own. Despite my inexperience and lofty goals, I was given respect,

patience, understanding, and support. Over the last 2 years while working for VMware, this has

truly been a wonderful experience.

Among my colleagues at VMware, I would like to give thanks to those who helped

throughout the project - from the primordial days to the final weeks of result verification and

thesis editing. To Sridhar Rajagopal, you have been a true mentor in every sense of the word.

Your continued guidance and support allowed me to push through even the hardest of times. To

Eddie Ma, thank you for providing every resource I needed to complete my work. To the rest of

my group, thank you for your input and contribution throughout the project. To Christian

Hammond, thank you for giving me access to Review Board. Without your help, I would not

have been able to develop my wok as far as I did.

Although the bulk of my work took place at VMware, my work could not be possible

without the help of those from MIT. To my thesis advisor, Larry Rudolph, you are and have been

an infinite source of wisdom and advice. Thank you for the many hours of guidance and

mentorship. To Kimberle Koile, a mentor in all regards, thank you for the many years of advice,

support, and friendship. Regardless of any future project you may take on, you can count on me

to be there, computer cart in tow. To the VI-A program, I believe VI-A is an amazing program,

unmatched by any other at MIT. I am grateful for the opportunity it has provided me and implore

more students to explore the VI-A program.

To my friends, family and loved ones: A project of this magnitude cannot be done alone.

Thank you to my friends who always supported me. To Steve, Tim, Dan, Sun, Jenna, Monica,

and Aron: these four years could not have been the same without you. To my brother, Justin,

thank you for the occasional reminder that there is more to life than computers. To Jia, thank you

for your love and support. Finally, thank you to my parents. To my father, thank you always for

your pride in me and the many lessons you have taught me, especially that one is never done

learning. Thank you to my mother, who every Sunday, lovingly never let me forget that "you

should probably be working on my thesis right now..." When an individual goes on any journey,

the ones to whom they are connected join them. It is only through their support that one can

succeed at any undertaking. I dedicate this thesis to them. For without them, none of this would

be possible.

We may regard the present state of the universe as the effect of its past and the cause of its

future. An intellect which at a certain moment would know all forces that set nature in motion,

and all positions of all items of which nature is composed, if this intellect were also vast enough

to submit these data to analysis, it would embrace in a single formula the movements of the

greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would

be uncertain and the future just like the past would be present before its eyes.

- Pierre-Simon Laplace, Philosophical Essays on Probability. New York: Springer-Verlag,
1995.

TABLE OF CONTENTS
1 Introduction ... 7

2 Background 7

2.1 M otivation 8

2.2 The Supermarket Dilemma... .. 9

3 Overview ... 10

3.1 Failure .. 10

3.2 Prediction................. ... 11

3.3 PreCog System Design.. 12

3.4 M achine Learning .. 15

3.5 Accuracy...21
3.6 Implementation .. 23

3.7 Experiment Evaluation ... 23

4 Experimentation.................... .. 24

4.1 Experimentation process ... 24

4.2 JPetStore ... 25

4.3 Review Board ... 31

5 Results 34

5.1 Domain Analysis... 34

5.2 Subsampling ... 36

5.3 Feature Selection...41

5.4 Feature Selection M ethod ... 44

5.5 Classifier Selection..44
6 Conclusions ... 47

6.1 Overall Performance ... 47

6.2 Autonomic Computing ... 48

Bibliography ... 49

Appendix A .. 51

Appendix B .. 52

Appendix C .. 55

TABLE OF FIGURES
Figure 1: A layout of the PreCog system ... 13

Figure 2: The three-tiered setup of the JPetStore website.. 25

Figure 3: The JPetStore testbed 26

Figure 4: The daily rhythm workload ... 28

Figure 5: The step w orkload .. 29

Figure 6: The realistic w orkload....................................... ... 30

Figure 7: The Review Board experiment setup 32

Figure 8: Review Board page requests per minute for a single week. 33

Figure 9: Subsampling within the Review Board dataset................................. 36

Figure 10: Daily rhythm workload experiment results 37

Figure 11: Daily rhythm workload classification results 37

Figure 12: Step workload experiment results ... 38

Figure 13: Step workload classification results 38

Figure 14: Realistic workload experiment results. 39

Figure 15: Realistic workload classification results. 39

Figure 16: Review Board experiment results 40

Figure 17: Review Board classification results. 40

Figure 18: Effect of metric number on total cost for daily rhythm cross validation 41

Figure 19: Effect of metric number on balanced accuracy for daily rhythm cross validation......42

Figure 20: Effect of metric number on balanced accuracy for a daily rhythm day-to-day

evaluation.. 42

Figure 21: Effects of number of metrics on balanced accuracy for a step to daily rhythm day-to-

day evaluation....... .. 43

Figure 22: Effects of number of metrics on balanced accuracy for a realistic workload tested with

a foreign VM in a day-to-day evaluation ... 43

Figure 23: The average metric selection method total cost per domain.. 44

Figure 24: The average balanced accuracy of metric selection per domain.. 45

Figure 25: The average classifier balanced accuracy per domain ... 46

Figure 26: The average classifier total cost per domain. 46

1 INTRODUCTION

As networked systems continue to grow in size and complexity, the technologies developed to

manage and facilitate these infrastructures struggle to keep up. Not only do these systems need to

be highly available to users, but also their performance must be accurately tracked and

maintained. Many tools exist to help administrators to this end, but the ability to model these

complex networked systems may be too difficult for any human to accomplish, as the systems'

behaviors depend on not only workload, but also software structure, hardware, and external

variables [1]. We address this challenge through PreCog, the predictive and regressional error

correlating guide system, which aims to aid administrators by providing a robust future warning

system statistically induced from past system behavior. This work shows that with the use of

machine learning techniques such as Adaptive Boosting [2], PreCog, without any prior

knowledge of its target, can be accurately trained using past and current system behavior to

predict future application in a variety of domains.

2 BACKGROUND

Machine learning has been shown to be effective in this domain, specifically in work by Ira

Cohen et al [3]. Their work shows that application failures determined by Service Level

Objectives (SLO) - a metric of application performance in relation to a set threshold - could be

accurately classified by current system behavior, regardless of application or hardware and

without any prior knowledge of the system. Their work achieves accuracies as high as 95% for

failure detection utilizing machine learning algorithms such as the Tree Augment Naive Bayes

(TAN) [4] classifier. Although preliminary work shows that future SLO violations can be

predicted using similar techniques [5], it was still inconclusive as to their adaptability into the

prediction domain. PreCog extends their work by using similar machine learning algorithms to

create a concrete human understandable warning system for future failure.

2.1 MOTIVATION

In most large-scale systems, the downtime incurred is not only brought upon by the

unavailability of applications, but the aftermath that comes with it. When a failure finally has

been diagnosed and repaired, large amounts of data have often already been lost or corrupted in

the process. If an application were developed that could provide an early warning system with an

estimated time until failure, administrators could have a multitude of options at the ready,

including repartitioning resources, shutting down non-vital components, or, in the worst case,

gracefully shutting down the system, thus avoiding any significant data loss.

Even if a warning system could be developed, the adaptability given the almost infinite

permutations of system and software components that exist in even the most simple of

environments is unknown. Although PreCog has the potential to be applied to physical machine

environments, a virtual environment is leveraged such that each system shares a common

architecture. It is often difficult, and perhaps impossible, to expect a human to take the correct

evasive action in any environment. We believe that PreCog is more useful in a system that can

perform such actions automatically, such as a virtual environment in which each system shares a

common architecture and supports virtual machine migration. To this end, a warning system can

be trained, and acted upon, regardless of specific underlying hardware or software

implementations.

2.2 THE SUPERMARKET DILEMMA

To understand the need for PreCog, we can model the virtual infrastructure and the prediction

engine as a supermarket and its manager directing cashiers and baggers. In this analogy, we

model the available resources of the supermarket as the available resources of a virtualized

environment. A virtualized system of a typical 3-tier e-commerce website, for example, may

consist of separate virtual machines including a web server, an application server, and a

database, all hosted on the same ESX sever. Each one of these virtual machines competes for an

equal share of resources much as customers compete for a limited number of cashiers and

checkout lines.

With only so many resources available, management systems are a necessity. In the

supermarket, the manager lays out a detailed plan for the baggers and cashiers. It may be a trivial

plan such as "each checkout lane will always just have one cashier and one bagger" or more

complex such as "each checkout lane will have one cashier and as many baggers as needed to

maximize efficiency." Likewise, many current system management suites offer similar tools to

create such rules. VMware's current resource management system (DRS) repartitions resources

based on rules defined by system administrators, such as minimum resource values or VM

resource priority. These naive systems can cover a large range of use scenarios; yet, they are still

limited by the foresight of the administrator (be it system administrator or store manager) that

defines these rules. PreCog offers an intelligent foundation for a potential resource management

system by learning behavior from analysis of previous failures. In the real world, a manager who

notices and remembers patterns is able to adapt his plans using past experience. In essence,

PreCog aims to capture and mimic that behavior in order to predict when a failure may occur.

We now consider a manager who has been in the business for his entire life. He

recognizes key traits in both the flow and the character of the shoppers, and has an uncanny

ability to predict how many cashiers and baggers he will need. More importantly, he has learned

that the time to recognize these traits is not while the customers are in line, but as soon as soon as

they enter the store. By the time the customer has entered the line it is too late - the manager can

only guess if this congestion will continue, a risky decision at best.

We return to the source of our analogy. If we were to use the traditional method of

monitoring application workload, we would be acting much like the naive manager. If only the

number of visits to a web page per minute were monitored, for example, it would be impossible

to learn from previous failures; what might seem a rush of customers one minute could just as

well die down the next. Continuing this analogy, even after costumers have entered the store,

many of them might linger down aisles or hold up aisles. In other words, by not using the vast

amounts of information contained within the character of the load (or the type of customers, not

just the number of them), naive systems can only guess at future load, by which time it may

already be too late.

3 OVERVIEW

3.1 FAILURE

Before being able to predict when failures may occur, one must first define what is meant by

"failure." Failure can mean anything from a hardware crash, software fault, or missing deadlines.

One can strengthen the definition to include any event in which the system is not performing at

its expected level. Even this definition may be too vague; yet, it rules out many of the failures

that should not be included in the scope of PreCog. A plug being pulled, for example, or an

employee accidently stopping a vital program are failures. These failures are too extreme to fit

our definition; not only is the system not performing at its expected level, but also not

performing at all.

PreCog leaves the definition of failure up to the user, although is mostly concerned with

"soft" failures. In particular, a failure is defined as not meeting Service Level Objectives (SLO).

SLOs may gauge the performance of, for example, a database by the response time of a certain

SQL request, or any SQL request for that matter. SLOs may also be applied to the resources of a

system - gauging over-utilization based on expected levels. Many high availability solutions, in

fact, cater to strictly monitoring SLOs and reporting failures to system administrators based on

these values. For example, a popular product Hyperic utilizes an open source plug-in architecture

that allows the author to create SLOs for any different number applications and operating

systems. Another example, VMware offers high availability rule management via SLOs in the

form of available system resources and server response to gauge proper management of virtual

machines. SLOs, though simple, offer an elegant way of tracking and gauging system

performance and failure.

3.2 PREDICTION

The ultimate goal of a highly accurate prediction system is to be able to give as input the current

system behavior and receive a real number indicating the amount left until failure and the

probability associated with that failure occurring. Generating this function, however, through

machine learning is intractable. Although linear regression can be used along the metric by

which the SLO is defined, it is likely to perform poorly when given sharp spikes in user load.

PreCog, instead, aims to produce as output a descretized range of warning levels that can not

only be accurately classified, but be human readable as well. Thus, we define a warning system

as follows:

* Level 1: 0-5 minutes until first occurrence of failure

* Level 2: 5-15 minutes until first occurrence of failure

* Level 3: 15-30 minutes until first occurrence of failure

* Level 4: 30-60 minutes until first occurrence of failure

* Level 5: 60+ minutes until first occurrence of failure

Not only does this warning system give a time range in which the system may enter a fail state,

but also gives a likelihood that the system may enter a fail state at any given moment. If, for

instance, PreCog outputs a level 5 warning, it is much more unlikely that it will begin to fail than

if it were a level 2 or 1 warning. The further definition of likely is explained in context of

specific classifiers in Section 5.5.

3.3 PRECOG SYSTEM DESIGN

The PreCog system design, shown in Figure 1, is a set of components that allows for application

of failure prediction within a virtual environment. The virtual environment, the shaded region in

this example diagram, consists of a set of servers, the large bounding boxes, each running a

multitude of virtual machines (VM), the smaller bounded boxes. Of these virtual machines, at

least one hosts an application that is the target of PreCog's warning system. In Figure 1, this VM

is in bold and being polled by the SLO monitor. The PreCog system consists of the following

components:

Figure 1: A layout of the PreCog system. The shaded region represents the virtual environment and the bold square

represents the virtual machine that is being monitored for failure. The bold lines represent a query made to predict a

failure after the initial training stage.

* SLO monitor: The SLO monitor poles all monitored virtual machines for failures. The

failures are domain specific and defined by their SLOs. In the experiments completed in

this work, the monitored virtual machine is an Apache web server and the SLO is defined

by the average response time per page. This SLO is monitored by scraping the Apache

HTTP server log.

* Physical and virtual metric monitor: The metric monitor poles all virtual entities

within the virtual infrastructure (shaded in the diagram above) for all available metrics.

These metrics are collected in timestamped five-minute intervals and averaged. From a

normal virtual machine, 50 or so metrics can be scraped. These range from the absolute

value usage of a virtual CPU, to the percent change in memory usage over the last 5

13

Y,
~LS/

minutes. A full listing of all metrics scraped from the JPetStore testbed can be viewed in

Appendix B. From the hosts in the virtual infrastructure, the metrics that are scraped are

similar to the virtual machine's. There are, however, superfluous and often misleading

metrics such as system uptime. If the same experiment were performed a number of

times, and these metrics were left in during training, the utility of these metrics might be

over-emphasized in the learning stage as each experiment has a planned time of failure.

* Statistical database: This database serves two functions: First, it stores the structure of

the virtual environment per timestamp. That is, as VMs are powered down or moved

from our virtual environment, the overall structure changes. The models induced over a

set of metrics from the past may no longer apply. Therefore, the virtual environment must

be tracked such that PreCog can adapt to these changes. Second, it stores both the

timestamped metrics from all polled hosts and VMs correlated with SLO violations.

These paired metrics and SLO violations serve as training data for the learning engine.

* Learning agent: This component gathers data from the statistical database for a given

virtual environment structure and produces a classifier that is trained for a specific SLO

and set of warning levels. When queried with a set of system metrics from the virtual

environment, the classifier chooses the most likely warning level.

* Warning generator: The warning generator produces a warning level for a given virtual

environment, set of metrics values, and SLO by polling the learning agent. This warning

is generated only after an adequate amount of data has been collected for the classifier to

be trained accurately.

3.4 MACHINE LEARNING

The core of the PreCog system is a machine-learning engine that correlates system level metrics

produced from any of the virtual machines and hosts in the virtual environment, with application

SLO failures to forecast future events, the internals of which are built upon the open source

WEKA library [6]. Building on previous research [7], PreCog determines not only if supervised

machine learning algorithms are a viable choice, but also how these algorithms must be applied

to retrieve accurate and efficient failure predictions. That is to say, in the scope of this research,

accuracy and efficiency are defined as to provide valuable and concrete evaluations.

PROBLEM FORMALIZATION

The formalization for each classifier follows the general approach of pattern classification [8].

We define the feature set, the input, and the classes to which an input may belong. Each

classifier, in general terms, uses a supervised machine learning algorithm to train itself on system

metrics collected from virtual machines and hosts, and correlates them with the failure class.

Feature set

The feature set is all available system-level metrics. That is, each virtual machine and host,

internally, keeps track of metrics such as CPU, memory, network, and disk usage. Furthermore,

the absolute value, first order change, minimum, and maximum are also collected. A full list of

the 214 metrics collected from the JPetStore testbed may be found in Appendix B.

Input

Let Mt be a vector of real numbers for a set of n collected metrics < mo, mi, ... , mn > for

time t. We may consider each vector Mt at a given time as the input. In other words, the

classifiers goal is to label this set with a classification determined by the warning level system.

Classification

The goal of PreCog is, given a vector of metrics Mt representing the current system state, output

a range of time until a failure occurs. As defined earlier, the ranges that PreCog may output can

be considered a warning level system. The warning system is defined by a range until a failure

state may occur such as 0-5, 5-15, 15-30, 30-60, and 60+ minutes. We define the set of offsets

ip as Po = 0, p, = 5, P2 = 15, etc..., and define a valid range as Pi = (pi, pi+,}. Given that there

are n offsets, the catchall range extending beyond the last offset (represented in the example

above as 60+), is Pn-,oo = P. All valid ranges form the set P. The final output is one of the

elements of P.

Training

The goal of the training stage is to label all input data points, all vectors of Mt in a specific data

set, with the soonest range in P during which a failure occurred. Let St be an indicator variable

representing the state of failure for time t defined by an SLO. The random variable St takes on

the values of (0,1}, representing compliance or violation, respectively, of a SLO. A fail state is

defined by an indicator variable Ftl,t2 as true if there exists any failures within a given time

period. In other words, let F,2 = (tl St) > 0. Or, if we let the range Po = (Po, Pl}, the

notation Ft,Powould be equivalent to Ft+po,t+,. For each Mt and each available class in ?, the

minimum range for which F,t is true is the label for the data point. Thus, each classifier

conducts supervised training based upon sets in the form of (Mt, P) .

CLASSIFIERS

Most likely, there is no single best machine-learning algorithm that performs both accurately and

efficiently over all possible domains. Given this, we explore a multitude of algorithms for

supervised machine learning and feature selection to determine one that is likely to perform on

average best in an unknown domain. The parameters and explanation of each are listed in

Appendix C.

* J48 Decision Tree: The J48 [6] decision tree is the WEKA toolkit's implementation of

the C4.5 decision tree [9]. The C4.5 decision tree builds upon the ID3 decision tree [10]

algorithm with accuracy and speed improvements. The tree is built with the basic process

of partitioning sets of data down a tree according to the information gain made by each

split. In other words, each branch is made in hopes of partitioning the set into the most

predictive correlating ranges of features. In the scope of our feature set, each split is on

the value of a system metric such as CPU usage. The leaves of the tree are the most likely

warning level P, the class, given the path to that leaf. To classify a new set of metrics, we

simply follow the value of each metric down the tree until a leaf is reached. The warning

level associated with that leaf is the class for the queried set of metrics.

* Naive Bayes: The naive Bayes classifier [11] estimates the probability distribution of

warning levels given a set of system metrics, p(P IM), by making strong independence

assumptions on each metric. Because it is very unlikely that all metrics are independent

from each other, this is considered the naive approach. Given the probability distribution

p(PIMt), to classify a new set of metrics, we determine the probability for each warning

level given these metrics and choose the warning level with the highest probability. The

probability distribution, during the training stage, over all warning levels is calculated in

the form of p(PIMt) = p(P) H= p(M ,iIP). That is, the conditional probability of

each warning level given the current set of metrics is the normalized product of the prior

probabilities of each warning level and all likelihood probabilities of each metric value

given the warning level. In the case of continuous variables, such as metric values in the

scope of this work, descretization is performed to increase accuracy of the overall

classifier. Thus, p(M ,i P) represents the likelihood probability that Mti falls within a

given range. Most likely, the naive Bayes classifier perform well on data sets where there

is no dependence between metrics. That is not to say that the metrics derived from a CPU

do not depend on the metrics derived from the network card. The naive Bayes algorithm

merely capitalizes on the notion that more accurate results may be achieved by assuming

that there is no dependence.

* Tree Augmented NaYve Bayes (TAN): The TAN classifier [3] works much in the same

way the Naive Bayesian classifier does, except that two dependencies are allowed per

metric between metrics. That is, the likelihood probability of a metric Mt,i that depends

on Mt,j and Mt,k is determined by the conditional probability of p(Mt,i Mtj, Mt,k). In

context, this states that, for example, the probability that the range in which the current

usage metric of the CPU from one virtual machine may depend on the range in which the

current usage metric of the network card and CPU from the host server are. As it is

naturally likely for this to occur, allowing dependence between metrics has been proven

to increase accuracies [5] in domains such as PreCog. The same goal of the TAN's

training is to determine p(P it). Training is performed similarly to Naive Bayes except

that we recursively determine the probabilities for each metric until we backtrack back to

18

the root node. Classification is performed as it is in the Naive Bayes classifier: Given the

probability distribution p(P Mi), to classify a new set of metrics, we determine the

probability for each warning level given these metrics and choose the warning level with

the highest probability.

* Naive Bayes Decision Tree (NBTree): The NBTree classifier [12] is a hybrid of the

C4.5 decision tree and the Naive Bayes classifier. It has been shown to be an effective

classifier for maintaining large-scale models, performing better than both a C4.5 and a

NB classifier separately. The outer structure of the NBTree is a decision tree that is

trained using the C4.5 algorithm. Where it differs from a full decision tree is that, while

training, at a threshold number of metrics and classification gain, the decision tree creates

a leaf which is a trained a Naive Bayes classifier of all data points partitioned by the path

to that leaf instead of a deterministic class label. That is, each leaf now has a probabilistic

choice of warning level determined by the NB classifier at the leaf. To classify a set of

metrics, a path is followed down the tree given a set of metrics. When a leaf is reached,

the NB model is queried and the warning level with the most likely probability is chosen.

* Tree Augmented Naive Bayes Tree (TANTreee): The TANTree is similar to the

NBTree except that its NB leaves are replaced with TAN models. Much in the same way

that the NBTree improved accuracies over the C4.5 decision tree and the NB classifier,

the TANTree hopes to perform better than either the J48 decision tree (which is trained

using C4.5) or the TAN classifier.

* Adaptive Boosting (AdaBoost): The AdaBoost classifier [2] is a meta-classifier that

attempts to maximize accuracy for a classifier through analysis of and close attention to

misclassifications over several iterations of training. After each trial, the elements in the

dataset are weighted according to how much they contributed to error; the weights of

incorrectly classified examples are weighted higher. That is, the interesting data points

gain more attention than to those that do not add to an increase of classification accuracy.

In the following experiments, we use the AdaBoosting algorithm on the J48 decision tree.

Although the AdaBoost classifier is susceptible to noise and outliers, it is resilient against

overfitting datasets. Therefore, we should see an increase in performance over the J48

decision tree without boosting.

FEATURE SELECTION

Given the large dimensionality of the feature set within the virtual environment, a goal of the

PreCog system is to reduce the feature set to a tractable subset. The benefits of this are twofold:

Not only are the results more accurate and resilient to overfitting, but also we receive a

substantial decrease in training time. In our analysis of metric selection we evaluate the three

methods listed below combined with the choice of maximum number of metrics:

* Number of metrics: The range of the number of metrics over which to permute is

empirically determined through analysis of classification. We find that at 25 metrics,

accuracy no longer significantly increases. Furthermore, training times for datasets that

include over 25 metrics take far too long for realistic experimentation purposes (an hour

to two hours). Experiments are conducted over the choices of {0, 1, 5, 10, 15, 25}

metrics.

* Information Gain (IG): Information Gain feature selection [13] deduces which metrics

are most valuable to classification by first measuring the entropy for the data partitioned

by labeled class as well as on whole, and then determining which metrics offer the

highest discrimination. Metrics with a high variance that correlate well with class are

favored most.

* Gain Ratio (GR): Gain Ratio feature selection [14], much like IG, deduces which

features are most relevant to the data through analysis of a specific feature's entropy in

relation to each class. Unlike IG, however, GR favors features that have fewer values.

* Correlation-based Feature Selection (CFS): CFS [15] determines the worth of a

feature by a correlation-based heuristic that aims to select features that are highly

predictive of the class and are not correlated with each other. CFS tends to select a core

subset of features that has low redundancy and is strongly predictive of the class.

SUBSAMPLING

Large datasets are subsampled to reduce redundancy before evaluation to provide more efficient

approximations to true data evaluation. In large datasets, there will most likely be many more

instances of the class "no error predicted to occur" than others. In practice, we find that these

classes outnumbered others 100:1. Most of these data points are redundant as well. Large

datasets are, thus, subsampled by limiting the number of data points to each class to a certain

percentage of the "no error" class. As the results section shows, not only does this improve

training and evaluation times, but also the results are more accurate in most cases.

3.5 ACCURACY

As previous researchers have shown [3], accuracy can be a hard metric to judge. While one can

make the argument that simply the percentage of correctly classified data points should be a

suitable enough indicator, it falls vastly short of a rigorous and thorough tool for analysis. We,

therefore, develop two separate metrics, balanced accuracy and false positive cost analysis,

which can be used independently to gauge the accuracy for a choice of classifier, attribute

selection, and sampling of data.

Balanced Accuracy

Balanced accuracy is an averaging of the true positive rate for each class. If we use the warning

system outlined at the beginning of this section, for example, the balanced accuracy of the results

is the average of the percentage of correctly classified data points for each period. As a baseline,

if a classifier simply guessed the class for each classifier, it would have a 1/n chance, where n is

the number of classes, of choosing the correct class. This naive classifier would thus have a

balanced accuracy of 1/n. Furthermore, if a classifier is able to guess one specific class very

well, but falls short in the remaining classes, given that the baseline is 1/n, the shortcomings of

the worst performing classes will be amplified.

False Positive Cost Analysis

For a domain, such as PreCog, that estimates a time until failure with discrete ranges, a

misclassification cannot simply be regarded as incorrect; there are varying degrees of

incorrectness that must be examined. If a data point, for example, is classified as the level

indicating an error will occur in 0-5 minutes, but in fact, the real error did not occur until 5-15

minutes, this should not be counted the same as if that same data point were classified as the

level indicating an error will occur in 60+ minutes. Thus, the process of false positive cost

analysis adds weight to misclassifications that were further from their true class.

The total cost for a dataset is calculated as the sum of each cost for every classification.

Given a cost matrix C and a classification matrix M, where Mi,J may be interpreted as "the

number of times class i was classified as class j" and Ci, may be interpreted as "the cost of

classifying i as j", the total cost is T = -i, C,j * Mi,

RESULT ANALYSIS

Both balanced accuracy and total cost paint different pictures of how choices of classifiers and

other parameters affect classification. While balanced accuracy gives an indication of how well a

classifier may do, total cost determines how a classifier may perform when expectations are

relaxed. These two indicators can be likened to multidimensional versions of average true

positive weighting and false positive analysis, which are widely used in similar works.

3.6 IMPLEMENTATION

The classifiers and data analysis tools are implemented with the open source toolkit WEKA [6].

This choice was made as it is a highly extensible, highly customizable interface that allows for

quick and thorough experimentations. All classifiers but the TANTree were package with the

WEKA toolkit. The TANTree was developed as a combination of the implementation of the

NBTree and TAN classifiers. Furthermore, WEKA implements a robust data mining API such

that many forms of input are valid. In this work, arff files are used to store datasets.

3.7 EXPERIMENT EVALUATION

To garner a better understanding of the classification results, for each coupling of experiment

and testbed, we perform two separate types of evaluation - 10-fold-cross validation of all

acquired data and single week-to-week or day-to-day train and test classification. While the

week-to-week evaluation gives a reasonable baseline of performance, the 10-fold-cross

validation evaluation delivers a projected accuracy given enough datasets. Furthermore, by

examining the shortcomings in one evaluation compared to the other, we shall derive an estimate

for how much data one would need to collect to produce accurate and robust results.

4 EXPERIMENTATION

The goal of this work is not only to determine what types of failures can be predictable, but also

how the randomness of the real world affects PreCog's accuracy. To explore both of these goals,

two testbeds are used: The controlled environment, JPetStore, gives us a glass box understanding

of potential failures and methods to predict them. The independent testbed, Review Board, an

up-and-coming server within VMware's network used for code peer review, delivers a black box

method to explore PreCog's potential to adapt to new domains.

4.1 EXPERIMENTATION PROCESS

The same process for experimentation is conducted for both testbeds: The testbed runs for a set

time with either simulated or real workloads. During this time, the metric collector inserts time-

stamped metrics for all available entities. When the experiment is over, the Apache server's log

are scraped to insert time-stamped failures into the statistical database. The requests per minute

are also recorded for future analysis.

FAIL URE

Failure for the experiments is defined by the average response time per page; the SLO for the

experiment is defined by the minimum time it would take for the page to load, i.e. the sum of

response time for every request per page visits. This metric is calculated by scraping the Apache

HTTP server's log, summing the response time for each line, and dividing the sum by the

number of pages per average interval. The SLO takes into account server failure codes as well. If

24

more than 20% of the requests were denied or returned codes other than 200, or any other "OK"

code, the server should be considered in a fail state. For both testbeds, the average is calculated

over five minute intervals.

The threshold for the SLO is defined by typical user behavior to a website; if a user visits

a web page, he will give up after 10 seconds if it has not loaded yet. Although the user may wait

longer if parts begin to load, we may still use 10 seconds as hard upper bound on the time we are

willing to allow the server to load the entire page. The SLO threshold for JPetStore experiment is

thus set at 10 seconds. Review Board, however, sees far fewer long wait times, even for modest

definitions such as four seconds. This may be either because coders are impatient and close their

browser as soon as they receive any hint that the server is stalling, or there is simply not enough

load on the Review Board servers to warrant a large page request time. Thus, the SLO threshold

for Review Board is set at 2.5 seconds

4.2 JPETSTORE

A controlled environment was paramount for providing the rigorous and well-understood

experimentation necessary for understanding the limitations of any approach. We use a typical 3-

tier setup of an ecommerce website, called JPetStore, as the basis of this control testbed. The

load was simulated to induce failures arising from varying requests per minute and tasks.

Apache HTTP t
Server JPetStore MySQL I

SifII I
H i'
jall

(VM-1 VM-2 VM-3 "
S-- =- = = = '0 9

Figure 2: The three-tiered setup of the JPetStore website. The monitored application is the Apache HTTP server hosted

on VM-1. When the average response time per page has surpassed 10 seconds, the SLO is violated.

w
a ii
r
r

ii

I~
I
wI

u IIs

EXPERIMENT SETUP

Figure 3: The JPetStore testbed augmented to include a workload generator as well as an experiment analyzer

implemented in WEKA. The workload generator perturbs the JPetStore testbed over a set time to generate data. The

experiment analyzer performs offline assessment of all classifiers, feature selection methods, and number of features.

* System configuration: The JPetStore testbed consists of three virtual machines hosted

on a single ESX server. The ESX server is a quad-core 2 GHz AMD Opteron with 4

Gigabytes of available ram running version 3.0.2 of ESX. The Apache HTTP server is

version 2.2 running on Linux and configured to optimal performance for high loads. The

Tomcat server is version 6.0 running on Windows Server 2003. The MySQL database is

version 5.0 on Windows 2003. Each virtual machine is given an equal share of resources.

* Workload generator: The workload generator runs on a separate computer, generating

load against the JPetStore website. This machine simulates user load by running a Perl

script wrapper for httperf [16]. The workload generator combines two parameters every

five minutes to create a trial: First, a script for simulated users is created, which is

eventually fed to httperf. To recreate realistic code coverage and load, each individual

26

Workload
generator

(httperf)

user within the script performs a logical set of actions generated from the flow chart

shown in Appendix A. The workload generator as well uses httperf's ability to create

unique cookies such that each user may add items to their shopping cart and check out

successfully. The second parameter of the workload generator is the average requests per

minute that is put on the server over each period of 5 minutes. This load is a function of

the specific workload type - daily rhythm, step, and realistic. Each type is discussed

further in the next section.

* Apache log scraper: The Apache log scraper is a Perl script, which, given an Apache

log, runs through the log and determines, for a given time period, if the SLO has been

violated. As mentioned earlier, this is done by summing the total request time for all lines

in a given five minute interval, and dividing by the number of page requests to give the

average page request time per minute. As performing offline analysis of these logs entails

that these logs may be several Gigabytes in size, the scraper works by buffering sections

of the log into a lightweight database such as PostgreSQL and determining the SLO by

querying this database. In practice, we found the time for offline analysis dropped from

24 hours to three using this multiple stage method.

* Physical and virtual metric monitor: The physical and virtual metric monitor polls all

entities in the virtual environment for available system metrics, a typical set of which is

listed in Appendix B. In the JPetStore testbed, four sets of metrics were received every

five minutes - those from the three virtual machines and one from the ESX host. The

monitor, written in Python, utilizes public APIs to request real-time metrics from the

entities. This method is used so that PreCog, in its experimental stages, can be plugged in

to any VMware virtualized environment in a secure read-only manner, such as we did for

Review Board. The collected real-time stats are averaged into five minute period values.

Experiment analyzer: The experiment analyzer performs statistical induction on the

data retrieved from the statistical database using WEKA. As discussed in the Machine

Learning section, the metrics and SLOs were retrieved from the statistical database and

combined form arff files that could be read by the WEKA toolkit. All permutations of

metric selection, number of metrics, classifiers, and SLO thresholds were tested in the

evaluation process, the results of which were recorded for later analysis.

WORKLOADS

Three workloads test various conditions a typical e-commerce website might endure. Each

workload would run over a 24-hour period. Regardless of which workload is chosen, during each

five minute interval, noise is added with uniform probability for {-1000, -500, 0, 500, 1000}

requests per minute. In each of the figures that follow, a tick mark indicates 30 minutes.

Daily Rhythm Workload

SUUU

7000
6000
5a

4000
3000

0 2000
S1000

96 0

Time

Figure 4: The daily rhythm workload page requests per minute. This workload is considered the easiest to predict.

I

* Daily Rhythm: The daily rhythm workload, shown in Figure 4, simulates a slow rise to a

peak of 7000 requests per minute over the course of 24 hours. On top of the outer

sinusoid, there is a higher frequency sinusoid to simulate the randomness of typical

usage. In analyzing the experiment, we would like to see that an hour before the load

reaches its critical amount (empirically this number was found to be around 6000

requests per minute), a gradual escalation of warning levels begins. Furthermore, in an

accurately functioning system, we would not like to see warnings after the failure, even

though the requests per minute may be at similar levels before a failure occurred. As we

show in the results section, it was imperative to include metrics such as first degree

derivates of metrics that would differentiate negative instead of positive slope of metric

changes.

Step Workload
8000

S7000 -

6000
" 5000

4000

3000
2000

1000
0

Time

Figure 5: The step workload page requests per minute. This workload is considered harder than the daily

rhythm workload because of its sharp steps.

* Step: The step workload's overall structure, shown in Figure 5, is very similar to the

daily rhythm workload. The major difference is that there is no longer any gradual

v

increase of requests per minute. Every 30 minutes, the workload switches from 1000

requests per minute to what it would be if it were performing the daily rhythm workload.

These large steps are meant to jar the system and test sudden increases in user load. The

step workload serves two purposes: Firstly, training and testing with just step workloads

should reveal that although PreCog is not able to predict these sudden changes, it still

accurately identifies failure as it occurs. Secondly, training with daily rhythm workloads

and testing with step workloads should show that training across domains is possible.

That is, although user load may be different across different weeks, the system should

still be trainable with an amalgamated input.

* Realistic: The realistic workload, shown in Figure 6, represents a load that a website may

see if website users are in two distinct time zones. This workload proved very reliable for

testing false positives, i.e. this workload allows us to examine if PreCog generates any

warning levels along the first large hump, as it does not quite reach failure.

Figure 6: The realistic workload page requests per minute. This workload represents the load a typical website may see if

its users were in two separate time zones. The shorter first hump allows for testing of false positives.

Realistic Workload

8000
~ 7000 - -- ;- --- - - --

6000
a 5000

4000
3000
2000
1000

J 0
Time

EXTERNAL VARIABLES

One of the paramount goals of PreCog is to determine how well classification works given

variables external to the system. One such variable that we have already discussed is noise. As

VMs do move to and from hosts in typical large environments, it is critical to determine how

these moves affect classifications. If a new VM were to appear on an already fully utilized host,

performance of the remaining VMs will drastically decrease. Obviously, there is no way to

predict such a sudden of a change, but we can use experiments that mimic this scenario to ensure

that we may still accurately detect if any machines have violated their SLOs.

* Realistic and hog experiment: The realistic and hog experiment explores the scenario

that an unknown virtual machine moves onto the same host server running JPetStore. The

hog VM is given an equal share of resources as the other VMs. We simulate random

behavior by having the hog VM run one of four different tasks periodically for 30

minutes every two hours. These tasks are chosen to simulate random loads a new VM

may put on the system. They include maximizing CPU usage, copying large amounts of

data over the network, creating a large amount of disk read/writes, and ballooning use of

memory. In the results we hope to see that although the sudden change of the system to a

fail state could not be predicted, while the failure occurred, PreCog is able to determine

that the SLO had been violated.

4.3 REVIEW BOARD

To explore PreCog's ability to perform in a variety of domains, we evaluated its accuracy on a

real world server in a black box manner. The Review Board experiment is very similar to the

JPetStore experiment in that the same offline analysis is performed. Instead of generating a

workload, Review Board is monitored in one-week intervals, during which time it was used

internally within the VMware network.

EXPERIMENT SETUP

Figure 7: The Review Board experiment setup. The Review Board testbed is much simpler than the JPetStore testbed as it

only has one host and virtual machine. It was used day-to-day internally within VMware to collect data for analysis.

* Review Board: Review Board is a peer code-review website designed to allow

management of code differentiations and bugs. In its initial stages, Review Board was

very responsive to user input. As more users discovered Review Board, however, the

server slowed to unacceptable levels during peak usage times. Furthermore, the authors

of Review Board determined that SLO violations occur not only when the load of Review

Board increased to levels near 300 requests per minute, but also when those users began

committing large code differentiations. It was not merely enough to monitor the user load

to determine when a failure might occur. A sample of a typical week of usage can be seen

in Figure 8.

* System configuration: To maintain a black box nature of the testbed, not much is known

about the configuration of the Review Board setup. Although it is known that the virtual

environment only consists of a single host and VM running Linux, the specifications of

the host are unknown.

* Experiment analyzer: The experiment analyzer is used much in the same way it was for

the JPetStore testbed for offline analysis of PreCog. Because far fewer encounters of

failure occur, however, the data must be subsampled to increase accuracy. The effects of

this process, as described in the Machine Learning section, are discussed further in the

Results section.

Figure 8: Review Board page requests per minute for a single week beginning on a Wednesday and ending on the

following Tuesday.

Review Board
600

500

400

on 300

200

100

Time

5 RESULTS

The purpose of the experiment evaluation is to determine which machine learning techniques are

most useful in each of our testbeds. Our results show that, indeed, classification accuracy is

domain-specific; parameters that worked well for JPetStore did not fare as well when evaluating

Review Board. We examine the results of classification over the parameters of metric selection,

number of metrics chosen, classifier, and, in the case of Review Board, the amount of

subsampling.

5.1 DOMAIN ANALYSIS

The results of classification showed that overall accuracy of the PreCog system is very

dependent on domain; i.e., a scheme that works well for one testbed may not work for another.

We may gain insight into the dependence on domain by first analyzing the effects each workload

had on the classification of warning levels. In each of the figures below, pairs of dashed lines

represent periods of failure. A system that classifies these failures accurately outputs a warning

level of 4 during these periods as well as the correct levels leading up to the point of failure.

* Daily Rhythm: The daily rhythm workload is the most predictable workload of the three.

When the system violates the SLO, the average response time per page being greater than

10 seconds, it remains in violation until the load has subsided. The classification of this

workload is very accurate. As shown in Figure 10, the SLO violation is accurately

predicted around an hour before the first failure period. Furthermore, there are few false

positives on the downward slope of the hump, indicating that first order derivates of

metrics came into play.

* Step: The step workload is the least predictable of the three; its sharp rise and falls work

against any strong correlation of first order derivative metrics. Furthermore, as shown in

Figure 11, the SLO violation period is not stable; in the figure, black bars represent the

short noncontiguous periods. Although the system may reject all requests immediately

following a failure, and as such violate its SLO, no requests are being made to the system

during this off period. We see in Figure 12 that while classification still identifies failure

while it is occurring, the classifier is much more prone to false positives.

* Realistic: The realistic workload showed that although false positives were rare in this

domain, they most likely could not be avoided and could even offer valuable information

to an administrator. As seen in Figure 13, although the only failure period occurred

during the second large hump, the first hump produces a slight rise in the average

response time. During classification, shown in Figure 14, this rise was represented by a

sudden level 2 warning. Although no error occurs 15 to 30 minutes from this point,

instead, the warning level is correctly indicating the health of the system. In other words,

given the current system state, it is likely that within the next 15 minutes the system will

fall into an SLO violation given the current type of load.

* Review Board: The Review Board testbed offered the most varied domain. Of the three

weeks in which data was collected, only one week offered a significant number of

failures, defined by the average response time per page exceeding 2.5 seconds, an

example of a single day is shown in Figure 15. Although, classification, shown in Figure

16, was accurate, the SLO seemed to move rapidly across the threshold, which may cause

future classification to not be as accurate.

5.2 SUBSAMPLING

As mentioned, subsampling the data to reduce the number of level 0 classes improves accuracy

as shown in Figure 9. By reducing the number of data points labeled as level 0, we still maintain

high accuracies within that class, but also normalize the prior probabilities such that it would

reduce the threshold to move from the more probable level 0 class to any other class. As well,

empirical testing showed no difference for values larger than 20%. It is still unknown, however,

why there is a significant dip at subsampling by 20%. This data point may be due to reaching

threshold, past which, the subsampling procedure begins to improve accuracy. Nevertheless,

from examining the results of subsampling, one can determine that for datasets of several weeks,

subsampling must occur; and to what degree will depend on classification technique and domain.

Figure 9: Subsampling within the Review Board dataset causes an increase in balanced accuracy. That is, by reducing the

overwhelming number of level 0 labeled data points, more emphasis can be added to other key classifications points.

Balanced Accuracy Average

P 0.6

0 0.5

0.4

0.3

S0.2

1% 5% 10% 20% 100%

Subsampling

Failure Periods for Daily Rhythm Workload
IUUU

6000

5000 :

4000

3000

2000

1000

0
I I I --- I

Failure Time Failure

Figure 10: Daily rhythm workload experiment results showing the average response time per page in the shaded region

and the load induced on the system in the background. The dashed lines represent the beginnings and ends of the failure

periods where the average response time per page has crossed the 10 second threshold.

Predictions for Daily Rhythm Workload
IUUU

6000

5000

4000

3000

2000

1000

0

Failure 'lime ! Failure

Figure 11: Daily rhythm workload classification results showing the predictive warning level in the shaded region and the

load induced on the system in the background. Notice as we move along time to a failure period, the warning system

escalates. It begins with a level 1 warning approximately 60 minutes before the first failure and continues to increase until

it has reached a level 4 warning, which corresponds with the failure depicted in the shaded region of Figure 10.

3U

25

20

015

10

5

0

3

4

2

1

0

- ~- I - I-- c i , -- -L- ---- - I - - -

- ' --~~---~-- '--~---~---

Figure 12: Step workload experiment results showing the average response time per page in the shaded region and the

load induced on the system in the background. Each set of dashed lines with corresponding horizontal bar represents a

failure period. Notice the sharp transitions to and from failures.

Predictions for Step Workload
Predictive Warning Level

- Page Requests per Minute

II II I I
l l II I I

I I l II I I I

A1111

- 7000

- 6000

- 5000

- 4000

- 3000

- 2000

1000

- 0

Figure 13: Step workload classification results showing the predictive warning level in the shaded region and the load

induced on the system in the background. Although many of the failure periods are correctly classified, many false

positives occur. The quick transitions most likely worked against any correlation made using first degree changes in

metrics.

ii

-- ~--I

-

- --

I II I I Itime I I I i I

Figure 14: Realistic workload experiment results showing the average response time per page in the shaded region and

the load induced on the system in the background. Although there are many dips above and below the 10 second

threshold in our failure period marked by the dashed lines, we shall consider this a single period.

Predictions for Realistic Workload
5

4

S3

1

0

/UUU

6000

5000

4000

3000

2000

1000

0

I I
Time i i

Figure 15: Realistic workload classification results showing the predictive warning level in the shaded region and the load

induced on the system in the background. Notice that approximately and hour before the first failure, we correctly

classify the level 1 failure and proceed to escalate until a level 4 error is reached during the actual fail period.

Furthermore, the false positive in the first hump is not a strict misclassification if we few it as a warning that given the

current state, it would have been likely the system would have entered a fail period had it not died down.

Failure Periods for Review Board
ouut
OUu

500

400

300 ,

200

100

Time H Hu -
II 11 1II

Figure 16: Review Board experiment results showing the average response time per page in the shaded region and the

load induced on the system in the background for a single day. Notices how there are no prolonged periods of failure. This

sporadic behavior is hard to classify perfectly. Thus, total cost may shed a better light on these results.

Predictions for Review Board
6Ouu

500

400 .

300 ,

200

100

0
n n n

Time I I 111

Figure 17: Review Board classification results showing the predictive warning level in the shaded region and the load

induced on the system in the background. Notice that because of the sporadic behavior, not directly due to load on the

system, the warning level was more difficult to classify correctly. Although SLO violations were accurately detected, there

are many false positives up to those points.

6

5

m4

S3

2

1

0

5

4

c3

2

0

- - I-~----~ -- "-~ I----- " -- --

I--- --"I- ----

5.3 FEATURE SELECTION

Varying the parameters of feature selection method and the optimal number of features, i.e.

metrics, to select, showed that although feature selection was domain specific, there did exist

general trends that promote a higher average balanced accuracy.

NUMBER OF METRICS

In stable workloads with a large training dataset, we find that increasing the number of metrics

used in classification increases the overall accuracy of the system. For a full data cross validation

of the daily rhythm workload, shown in Figures 18 and 19, we see drastic improvements by

increasing the number of metrics up to 10, at which point we no longer see any significant gains.

For a smaller datasets, such as training and testing a daily rhythm workload with only one day of

data shown in Figure 20, however, we find that effects of the number metrics to be positive but

not as significant.

Figure 18: Effect of metric number on total cost for daily rhythm cross validation. As the number metrics increases, the

total cost of misclassification goes down, indicating an increase in accuracy. After 10 metrics, there are no longer any

significant gains being made.

Effect of Number of Metrics on Total Cost

60UUU

o 5000

" 4000

E 3000

c 2000

1000

0

1 2 5 10 15 25

Number of metrics

Effect of Number of Metrics on Balanced Accuracy

Figure 19: Effect of metric number on balanced accuracy for daily rhythm cross validation. As the number of metrics

goes up, the IG and CFS feature selection algorithms perform better, but do not increase much after 10 metrics. The GR

feature selection method is unaffected by the number metrics selected.

Figure 20: Effect of metric number on balanced accuracy for a daily rhythm day-to-day evaluation. We notice that in

testing smaller datasets, there is a loss of stability of the general pattern seen in Figure 19. We also notice that IG and CFS

perform poorly in this experiment, leading us to believe that CFS and IG will perform better on larger datasets.

We also find that in domains that have a tendency to be unpredictable, such as the step

workload, increasing the number of metrics will reveal performance limitations specific to that

domain. In one such experiment of training PreCog with a daily rhythm workload and testing

with a step, shown in Figure 21, an increase of the number metrics causes a convergence of the

0.75
0.7

0.65
0.6

0.55
0.5

0.45
0.4

0.35

1 2 5 10 15 25
Number of metrics

Effect of Number of Metrics on Balanced Accuracy

0.6

0.5

0.4

0.3

0.2

0.1

0

1 2 5 10 15 25
Number of metrics

0.35

0

balanced accuracy, indicating that choosing optimal metrics only plays a single part in the

classification system as a whole.

Effect of Number of Metrics on Balanced Accuracy
S 0.6

0.4

S0.2 CF S
- GR

0 IG

1 2 5 10 15 25
Number of metrics

Figure 21: Effects of number of metrics on balanced accuracy for a step to daily rhythm day-to-day evaluation. Notice

that a onvergence of balanced accuracy indicates that choosing optimal metrics only plays a single part in the

classification system as a whole.

Furthermore, when examining a domain that is truly unpredictable, such as training a system

with a real workload and testing with the same workload, but with a foreign VM competing for

resources, shown in Figure 22, we again reach an upper-bound on how well metric selection will

improve accuracy. Although we cannot predict the future in this environment, the correct choice

of metric number and selection method ensures that the potential accuracy will be maximized.

Figure 22: Effects of number of metrics on balanced accuracy for a realistic workload tested with a foreign VM in a day-

to-day evaluation. Although there is a slight increase in accuracy for 5 metrics, we are limited by the lack of information

inherent in the unpredictable domain.

Effect of Number of Metrics on Balanced Accuracy

0.4

"1 0.3

0.2

0.1

0

-J CFS
-I-GR
-IG

255 10
Number of metrics

-
r

5.4 FEATURE SELECTION METHOD

Through analysis of the average total costs and balanced accuracies in all experiments, we found

that no single feature selection method proved best for all domains. The GR selection method,

shown in Figures 23 and 24, ranked lowest among domains when cross validation evaluation was

used. The IG and CFS selection methods ranked highest in cross validation experiments, with

CFS ranking just slightly higher than IG in most domains. In examining all results, it appears that

CFS is the preferred metric selection method.

Average Metric Selection Total Cost

4000

3500

3000

2500

2000

1500

1000

500

0
Realistic Hog Daily Rhythm / Step Review BoardRealistic XvalDaily Rhythm Xval Step Xval

Figure 23: The average metric selection method total cost per domain. CFS across all domains has a smaller total cost

when used for feature selection for a classifier. Given a random domain, CFS would be the safest choice to use as a feature

selection method.

-4*-GR

-1-IG

-*-CFS

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Average Metric Selection Balanced Accuracy

+#GR

-- IG

-de- CFS

'J 1 II,

Daily Rhythm Xval Step Xval Realistic Xval Realistic Hog Daily Rhythm / Step Review Board

Figure 24: The average balanced accuracy of metric selection per domain. We see here that CFS again has a higher

accuracy than IG and GR. We also notice however that as where GR overtook IG in some domains within Figure 23,
there is now an ordering of CFS, IG and GR. That is, in some domains, GR was able to bring more missclassifications

closer to their true values than IG was.

5.5 CLASSIFIER SELECTION

Through analysis of each classifier over all permutations of parameters in each domain, we see

two significant results: AdaBoost generates a higher balanced accuracy and lower total cost over

almost all domains and since NB performs poorly in most domains, we may deduce that the

metrics are not independent. From examining Figure 25, we see that in all experiments but the

train with daily rhythm and test on step, AdaBoost generates a higher balanced accuracy than all

other classifiers. Most likely, AdaBoost's tendency to focus on boosting misclassifications

worked against itself for a domain in which there is a high variance of data. The NB classifier on

the other hand performed poorly on all but the daily rhythm/step experiment. As the NB

classifier assumes that all features are independent, it follows that in an environment where

features are likely to have dependencies (a sharp spike in CPU usage will see a large spike in

network usage on a web server) NB would perform poorly, such as we see in Figure 26.

Furthermore, the assumption that system metrics were independent proved to help in the daily

45

c -

rhythm/step experiment where it was likely that large variances in system metric values

prevented any dependence being induced.

Figure 25: The average classifier balanced accuracy per domain. In all domains but the train on daily rhythm and test on

step, AdaBoost does significantly better. Furthermore, NB's poor accuracy in the daily rhythm cross validation domain

validates the claim that there exist dependencies between metrics.

Figure 26: The average classifier total cost per domain. In all domains, the NB classifier has a higher average total cost.

NB especially does poorly in the Review Board domain where there would be significant dependencies since there exists

only one VM and host.

Average Classifier Balanced Accuracy
0.8

0.7 -+NB -4ONBTree
0.75 TAN - TANTree

0.7 -+--J48 - Ada

S0.65

0.6

.o 0.55

0.5

S0.45

0.4

0.35

0.3
Daily Rhythm Xval Step Xval Realistic Xval Realistic Hog Daily Rhythm / Step Review Board

Average Classifier Total Cost
7000

6000 - Ada -U-J48
50NB --)(-NBTree

5000 - TAN 4- TANTree

4000

3000

2000

1000

0

Daily Rhythm Xval Step Xval Realistic Xval Realistic Hog Daily Rhythm / Step Review Board

6 CONCLUSIONS

In this work, we have shown that a reliable and accurate system may be developed by correlating

system metrics with application failures using statistical induction. Using statistical induction,

namely AdaBoost with CFS metric selection, PreCog is able to induce a behavioral model of the

system without any prior knowledge of the domain. Furthermore, by leveraging a virtual

environment, any domain can be adapted to the PreCog system given a proper SLO.

6.1 OVERALL PERFORMANCE

We have shown that, although PreCog system is reliable and efficient at determining future

application failure, it is very much dependent on domain. That is, we often find that we are not

limited by the classifier, metric selection method, or number of metrics we choose, but by the

information that the domain can provide. The daily rhythm workload on the JPetStore testbed,

for example, had many clearly labeled instances of failure from which an accurate classifier

could be induced. When applying this classifier to a separate workload however, in this case the

step workload, accuracy drastically diminished.

Although each domain presented its own difficulties in classification, AdaBoost tended to

outperform all other classifiers in terms of balanced accuracy and total cost. Coupled with the IG

or CFS metric selection methods, one would expect to achieve 85% balanced accuracy in

workloads similar to daily rhythm and realistic. Furthermore, even in systems that are highly

unpredictable, such as the realistic/hog, AdaBoost maintains accuracies well above 50%, mostly

due to maintaining accuracy of at-time failure.

6.2 AUTONOMIC COMPUTING

Although PreCog has proven itself useful as a strong foundation, there are still many directions

in which to explore. For one, there exists the problem of maintain adaptable system models. If

PreCog successfully models system behavior such that an autonomic computing agent, an agent

that aims to diagnose and repair failures autonomously [17], may act on this failure so as to avoid

it, then fewer failures will occur. If, however, the workload to the system changes, and a new

failure arises, it is unclear how the system should adapt to this change. Using the system we have

developed in this work, a new statistical model may be induced using the data that produced the

SLO violations. Following this training session, PreCog would now rely on this statistical model

to predict future application failure. Although we have now successfully replaced the model, our

old failure may go undetected. If there are stable workloads such as Review Board, then this

should not be an issue as training sessions may be rare. If PreCog is implemented, however, in an

environment that has a high amount of VM movement, as seen in the realistic/hog experiment,

accuracies and reliability will likely decrease.

PreCog shows a large potential to be utilized as part of a universal autonomic computing

environment. It can provide the much needed preparation time for avoiding or mitigating failure,

while also providing an accurate assessment of the current system health. Although PreCog has

shown itself to be reliable when faced with high levels of noise, highly unpredictable domains

still prove to be a problem for this system. Finding reason within the randomness may one day

help PreCog, and predictive systems in general, achieve higher levels of accuracy and usefulness

in the ever-changing environments in which they are deployed. PreCog is an important step in

that direction.

BIBLIOGRAPHY
1. Combining statistical monitoring and predictable recovery for self-management. Fox, Armando,

Kiciman, Emre and Patterson, David. New York, NY, USA: ACM Press, 2004. WOSS '04:

Proceedings of the 1st ACM SIGSOFT workshop on Self-managed systems. pp. 49-53.

2. A decision-theoretic generalization of on-line learning and an application to boosting. Freund, Yoav

and Schapire, Robert E. 1995. European Conference on Computational Learning Theory. pp. 23-37.

3. Correlating instrumentation data to system states: a building block for automated diagnosis and

control. Cohen, Ira, et al. Berkeley, CA, USA: USENIX Association, 2004. OSDI'04: Proceedings of

the 6th conference on Symposium on Opearting Systems Design & Implementation. pp. 16-16.

4. Bayesian Network Classifiers. Friedman, Nir, Geiger, Dan and Goldszmidt, Moises. 2-3, Hingham,

MA, USA : Kluwer Academic Publishers, 1997, Mach. Learn., Vol. 29, pp. 131-163.

5. Short term performance forecasting in enterprise systems. Powers, Rob, Goldszmidt, Moises and

Cohen, Ira. New York, NY, USA : ACM Press, 2005. KDD '05: Proceeding of the eleventh ACM

SIGKDD international conference on Knowledge discovery in data mining. pp. 801-807.

6. Witten, Ian H and Frank, Eibe. Data Mining: Practical Machine Learning Tools and Techniques,

Second Edition (Morgan Kaufmann Series in Data Management Systems). s.l. : Morgan Kaufmann, 2005.

7. Three research challenges at the intersection of machine learning, statistical induction, and systems.

Goldszmidt, Moises, et al. Berkeley, CA, USA : USENIX Association, 2005. HOTOS'05: Proceedings

of the 10th conference on Hot Topics in Operating Systems. pp. 10-10.

8. Duda, R O and Hart, P E. Pattern classification and scene analysis. s.l. : A Wiley-Interscience

Publication, New York: Wiley, 1973, 1973.

9. Quinlan, J Ross. C4.5: programs for machine learning. San Francisco, CA, USA : Morgan Kaufmann

Publishers Inc., 1993.

10. Mitchell, Thomas M. Machine Learning. s.l. : McGraw-Hill Higher Education, 1997.

11. Estimating Continuous Distributions in Bayesian Classifiers. John, George H and Langley, Pat. pp.

338-345.

12. Scaling Up the Accuracy ofNaive-Bayes Classifiers: a Decision-Tree Hybrid. Kohavi, Ron. 1996.

Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. pp. 202-

207.

13. Ayan, Necip Fazil. Using Information Gain as Feature Weight.

14. Hall, M and Smith, L. Practical feature subset selection for Machine Learning. 1996.

15. Hall, M. Correlation-based Feature Selection for Machine Learning. 1998.

16. httperf- A tool for measuring web server performance. Mosberger, David and Jin, Tai. 3, New

York, NY, USA: ACM Press, 1998, SIGMETRICS Perform. Eval. Rev., Vol. 26, pp. 31-37.

17. Failure Diagnosis Using Decision Trees. Zheng, Alice X, Lloyd, Jim and Brewer, Eric.

Washington, DC, USA: IEEE Computer Society, 2004. ICAC '04: Proceedings of the First International

Conference on Autonomic Computing (ICAC'04). pp. 36-43.

18. Ensembles of Models for Automated Diagnosis of System Performance Problems. Zhang, Steve, et al.

Washington, DC, USA: IEEE Computer Society, 2005. DSN '05: Proceedings of the 2005 International

Conference on Dependable Systems and Networks (DSN'05). pp. 644-653.

19. On the Use of Fuzzy Modeling in Virtualized Data Center Management. Xu, Jing, et al. s.l. : IEEE

Computer Society, 2007. ICAC. p. 25.

20. Critical event prediction for proactive management in large-scale computer clusters. Sahoo, R K, et

al. New York, NY, USA : ACM Press, 2003. KDD '03: Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining. pp. 426-435.

21. Using computers to diagnose computer problems. Redstone, Joshua A, Swift, Michael M and

Bershad, Brian N. Berkeley, CA, USA: USENIX Association, 2003. HOTOS'03: Proceedings of the

9th conference on Hot Topics in Operating Systems. pp. 16-16.

22. The Vision of Autonomic Computing. Kephart, Jeffrey O and Chess, David M. 1, Los Alamitos,

CA, USA: IEEE Computer Society Press, 2003, Computer, Vol. 36, pp. 41-50.

23. Detecting performance anomalies in global applications. Kelly, Terence. Berkeley, CA, USA:

USENIX Association, 2005. WORLDS'05: Proceedings of the 2nd conference on Real, Large Distributed

Systems. pp. 8-8.

24. Eigenspace-based anomaly detection in computer systems. IDE, Tsuyoshi and KASHIMA, Hisashi.

New York, NY, USA: ACM Press, 2004. KDD '04: Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining. pp. 440-449.

25. Using runtime paths for macroanalysis. Chen, Mike, et al. Berkeley, CA, USA : USENIX

Association, 2003. HOTOS'03: Proceedings of the 9th conference on Hot Topics in Operating Systems.

pp. 14-14.

26. Pinpoint: Problem Determination in Large, Dynamic Internet Services. Chen, Mike Y, et al.

Washington, DC, USA : IEEE Computer Society, 2002. DSN '02: Proceedings of the 2002 International

Conference on Dependable Systems and Networks. pp. 595-604.

27. Path-basedfaliure and evolution management. Chen, Mike Y, et al. Berkeley, CA, USA : USENIX

Association, 2004. NSDI'04: Proceedings of the 1st conference on Symposium on Networked Systems

Design and Implementation. pp. 23-23.

28. Magpie: online modelling andperformance-aware systems. Barham, Paul, et al. Berkeley, CA,

USA : USENIX Association, 2003. HOTOS'03: Proceedings of the 9th conference on Hot Topics in

Operating Systems. pp. 15-15.

APPENDIX A

Based on previous operation, select next operation

APPENDIX B
Table 1: All 214 metrics scraped from the JPetStore environment from the performance monitor API of VMware Virtual

Center.

ESX Host cpu usage average rate ESX Host cpu usagemhz average rate

ESXHost mem usage average absolute ESXHost mem granted average absolute

ESX Host mem active average absolute ESXHost mem shared average absolute

ESX Host mem zero average absolute ESX_Host mem unreserved average absolute

ESX_Host mem swapused average absolute ESX Host mem sharedcommon average absolute

ESX Host mem heap average absolute ESX_Host mem heapfree average absolute

ESX Host mem state latest absolute ESX Host mem swapin average absolute

ESX Host mem swapout average absolute ESX Host mem vmmemctl average absolute

ESX Host mem overhead average absolute ESX Host disk usage average rate

ESX Host disk numberRead summation delta ESX Host disk numberWrite summation delta

ESX Host disk read average rate ESX Host disk write average rate

ESX_ Host net usage average rate ESX_Host net packetsRx summation delta

ESX_Host net packetsTx summation delta ESX_Host net received average rate

ESXHost net transmitted average rate ESX Host sys uptime latest absolute

ESX Host cpu reservedCapacity average absolute ESX Host cpu used summation delta

ESX Host cpu idle summation delta ESX_Host disk commands summation delta

ESX Host disk commandsAborted summation ESXHost disk busResets summation delta

delta

ESX Host sys resourceCpuUsage average rate ESX_Host rescpu actavl latest absolute

ESX Host rescpu actpkl latest absolute ESX_Host rescpu runavl latest absolute

ESX_Host rescpu actav5 latest absolute ESX_Host mem reservedCapacity average

absolute

ESX_Host rescpu actpk5 latest absolute ESX Host rescpu runav5 latest absolute

ESX_Host rescpu actavl 5 latest absolute ESX_Host rescpu actpkl 5 latest absolute

ESX_Host rescpu runavi 5 latest absolute ESX_Host rescpu runpkl latest absolute

ESX_Host rescpu maxLimitedl latest absolute ESXHost rescpu runpk5 latest absolute

ESX_Host rescpu maxLimited5 latest absolute ESXHost rescpu runpkl 5 latest absolute

ESX Host rescpu maxLimitedl5 latest absolute ESXHost rescpu sampleCount latest absolute

ESXHost rescpu samplePeriod latest absolute ESX_Host mem consumed average absolute

ESX Host mem sysUsage average absolute Tomcat cpu usage average rate

Tomcat cpu usagemhz average rate Tomcat cpu system summation delta

Tomcat cpu wait summation delta Tomcat cpu ready summation delta

Tomcat cpu extra summation delta Tomcat cpu guaranteed latest absolute

Tomcat mem usage average absolute Tomcat mem granted average absolute

Tomcat mem active average absolute Tomcat mem shared average absolute

Tomcat mem zero average absolute Tomcat mem swapped average absolute

Tomcat mem swaptarget average absolute Tomcat mem swapin average absolute

Tomcat mem swapout average absolute Tomcat mem vmmemctl average absolute

Tomcat mem vmmemctltarget average absolute Tomcat mem overhead average absolute

Tomcat disk usage average rate Tomcat disk numberRead summation delta

Tomcat disk numberWrite summation delta Tomcat disk read average rate

Tomcat disk write average rate Tomcat net usage average rate

Tomcat net packetsRx summation delta Tomcat net packetsTx summation delta

Tomcat net received average rate Tomcat net transmitted average rate

Tomcat sys uptime latest absolute Tomcat sys heartbeat summation delta

Tomcat cpu used summation delta Tomcat disk commands summation delta

Tomcat disk commandsAborted summation delta Tomcat disk busResets summation delta

Tomcat rescpu actavl latest absolute Tomcat rescpu actpkl latest absolute

Tomcat rescpu runavl latest absolute Tomcat rescpu actav5 latest absolute

Tomcat rescpu actpk5 latest absolute Tomcat rescpu runav5 latest absolute

Tomcat rescpu actavl 5 latest absolute Tomcat rescpu actpkl5 latest absolute

Tomcat rescpu runavl 5 latest absolute Tomcat rescpu runpkl latest absolute

Tomcat rescpu maxLimitedl latest absolute Tomcat rescpu runpk5 latest absolute

Tomcat rescpu maxLimited5 latest absolute Tomcat rescpu runpkl 5 latest absolute

Tomcat rescpu maxLimitedl5 latest absolute Tomcat rescpu sampleCount latest absolute

Tomcat rescpu samplePeriod latest absolute Tomcat mem consumed average absolute

Apache Ubuntu cpu usage average rate Apache Ubuntu cpu usagemhz average rate

Apache Ubuntu cpu system summation delta Apache Ubuntu cpu wait summation delta

Apache Ubuntu cpu ready summation delta Apache Ubuntu cpu extra summation delta

Apache Ubuntu cpu guaranteed latest absolute Apache Ubuntu mem usage average absolute

Apache Ubuntu mem granted average absolute Apache Ubuntu mem active average absolute

Apache Ubuntu mem shared average absolute Apache Ubuntu mem zero average absolute

Apache Ubuntu mem swapped average absolute Apache Ubuntu mem swaptarget average absolute

Apache Ubuntu mem swapin average absolute Apache Ubuntu mem swapout average absolute

Apache Ubuntu mem vmmemctl average absolute Apache Ubuntu mem vmmemctltarget average

absolute

Apache Ubuntu mem overhead average absolute Apache Ubuntu disk usage average rate

Apache Ubuntu disk numberRead summation delta Apache Ubuntu disk numberWrite summation

delta

Apache Ubuntu disk read average rate Apache Ubuntu disk write average rate

Apache Ubuntu net usage average rate Apache Ubuntu net packetsRx summation delta

Apache Ubuntu net packetsTx summation delta Apache Ubuntu net received average rate

Apache Ubuntu net transmitted average rate Apache Ubuntu sys uptime latest absolute

Apache Ubuntu sys heartbeat summation delta Apache Ubuntu cpu used summation delta

Apache Ubuntu disk commands summation delta Apache Ubuntu disk commandsAborted

summation delta

Apache Ubuntu disk busResets summation delta Apache Ubuntu rescpu actavl latest absolute

Apache Ubuntu rescpu actpkl latest absolute Apache Ubuntu rescpu runavl latest absolute

Apache Ubuntu rescpu actav5 latest absolute Apache Ubuntu rescpu actpk5 latest absolute

Apache Ubuntu rescpu runav5 latest absolute Apache Ubuntu rescpu actavl 5 latest absolute

Apache Ubuntu rescpu actpkl 5 latest absolute Apache Ubuntu rescpu runavi 5 latest absolute

Apache Ubuntu rescpu runpkl latest absolute Apache Ubuntu rescpu maxLimitedl latest

Apache Ubuntu rescpu runpk5 latest absolute

Apache Ubuntu rescpu runpkl 5 latest absolute

Apache Ubuntu rescpu sampleCount latest

absolute

Apache Ubuntu mem consumed average absolute

MySQL cpu usagemhz average rate

MySQL cpu wait summation delta

MySQL cpu extra summation delta

MySQL mem usage average absolute

MySQL mem active average absolute

MySQL mem zero average absolute

MySQL mem swaptarget average absolute

MySQL mem swapout average absolute

MySQL mem vmmemctltarget average absolute

MySQL disk usage average rate

MySQL disk numberWrite summation delta

MySQL disk write average rate

MySQL net packetsRx summation delta

MySQL net received average rate

MySQL sys uptime latest absolute

MySQL cpu used summation delta

MySQL disk commandsAborted summation delta

MySQL rescpu actavl latest absolute

MySQL rescpu runavl latest absolute

MySQL rescpu actpk5 latest absolute

MySQL rescpu actav15 latest absolute

MySQL rescpu runavl 5 latest absolute

MySQL rescpu maxLimitedl latest absolute

MySQL rescpu maxLimited5 latest absolute

MySQL rescpu maxLimitedl5 latest absolute

MySQL rescpu samplePeriod latest absolute

absolute
Apache Ubuntu rescpu maxLimited5 latest

absolute
Apache Ubuntu rescpu maxLimitedl5 latest

absolute
Apache Ubuntu rescpu samplePeriod latest

absolute

MySQL cpu usage average rate

MySQL cpu system summation delta

MySQL cpu ready summation delta

MySQL cpu guaranteed latest absolute

MySQL mem granted average absolute

MySQL mem shared average absolute

MySQL mem swapped average absolute

MySQL mem swapin average absolute

MySQL mem vmmemctl average absolute

MySQL mem overhead average absolute

MySQL disk numberRead summation delta

MySQL disk read average rate

MySQL net usage average rate

MySQL net packetsTx summation delta

MySQL net transmitted average rate

MySQL sys heartbeat summation delta

MySQL disk commands summation delta

MySQL disk busResets summation delta

MySQL rescpu actpkl latest absolute

MySQL rescpu actav5 latest absolute

MySQL rescpu runav5 latest absolute

MySQL rescpu actpkl5 latest absolute

MySQL rescpu runpkl latest absolute

MySQL rescpu runpk5 latest absolute

MySQL rescpu runpkl 5 latest absolute

MySQL rescpu sampleCount latest absolute

MySQL mem consumed average absolute

APPENDIX C

J48
binarySplits - Whether to use binary splits on nominal attributes when building the

trees.

confidenceFactor - The confidence factor used for pruning (smaller values incur more

pruning).

debug - If set to true, classifier may output additional info to the console.

minNumObj - The minimum number of instances per leaf.

numFolds - Determines the amount of data used for reduced-error pruning. One fold is

used for rruning, the rest for growing the tree.

reducedErrorPruning - Whether reduced-error pruning is used instead of C.4.5

pruning.

savelnstanceData - Whether to save the training data for visualization.

seed - The seed used for randomizing the data when reduced-error pruning is used.

subtreeRaising - Whether to consider the subtree raising operation when pruning.

unpruned - Whether pruning is performed.

useLaplace - Whether counts at leaves are smoothed based on Laplace.

PARAMETERS

binarySplits - False

confidenceFactor - 0.25

debug - False

minNumObj - 2

numFolds - 3

reducedErrorPruning - False

savelnstanceData - False

seed - 1

subtreeRaising - True

unpruned - False

useLaplace - False

NAMVE BAYES

debug - If set to true, classifier may output additional info to the console.

useKernelEstimator - Use a kernel estimator for numeric attributes rather than a normal
distribution.

useSupervisedDiscretization - Use supervised
attributes to nominal ones.

discretization to convert numeric

PARAMETERS

debug - False

useKernelEstimator - False

useSupervisedDiscretization - False

TREE AUGMENTED NAVE BAYES (TAN)

markovBlanketClassifier - When set to true (default is false), after a network structure
is learned a Markov Blanket correction is applied to the network structure. This ensures
that all nodes in the network are part of the Markov blanket of the classifier node.

scoreType - The score type determines the measure used to judge the quality of a
network structure. It can be one of Bayes, BDeu, Minimum Description Length (MDL),
Akaike Information Criterion (AIC), and Entropy.

PARAMETERS

markovBlanketClassifier - False

scoreType - BA YES

NAVE BAYES TREE (NBTREE)

debug - If set to true, classifier may output additional info to the console.

PARAMETERS

debug - False

TREE AUGMENTED NAiVE BAYES TREE (TANTREE)

debug - If set to true, classifier may output additional info to the console.

PARAMETERS

debug - False

ADAPTIVE BOOSTING (ADABOOST)

classifier - The base classifier to be used.

debug - If set to true, classifier may output additional info to the console.

numIterations - The number of iterations to be performed.

seed - The random number seed to be used.

useResampling - Whether resampling is used instead of reweighting.

weightThreshold - Weight threshold for weight pruning.

PARAMETERS

classifier - J48 - Decision Stump

debug - False

numIterations - 10

seed - 1

useResampling - False

weightThreshold - 100

INFORMATION GAIN (IG)

binarizeNumericAttributes - Just binarize numeric attributes instead of properly
discretizing them.

missingMerge - Distribute counts for missing values. Counts are distributed across other

values in proportion to their frequency. Otherwise, missing is treated as a separate value.

57

PARAMETERS

binarizeNumericAttributes - False

missingMerge - True

GAIN RATIO (GR)

missingMerge - Distribute counts for missing values. Counts are distributed across other

values in proportion to their frequency. Otherwise, missing is treated as a separate value.

PARAMETERS

missingMerge - True

CORRELATION-BASED FEATURE SELECTION (CFS)

locallyPredictive -- Identify locally predictive attributes. Iteratively adds attributes with
the highest correlation with the class as long as there is not already an attribute in the
subset that has a higher correlation with the attribute in question

missingSeperate - Treat missing as a separate value. Otherwise, counts for missing
values are distributed across other values in proportion to their frequency.

PARAMETERS

locallyPredictive - True

missingSeperate - False

