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Abstract

The goal of this work is to explore a potential improvement on a visual recognition sys-
tem. The system is a biologically-plausible computational model of the feedforward part
of the ventral stream in the visual cortex and successfully models human performance
on visual recognition tasks for the first 50-100 milliseconds since the presentation of the
visual stimulus.

We make the first steps to a possible augmentation of the system that will account
for both feedforward and feedback processes in the ventral stream. We explore the
plausibility of Bayesian network models for feedback. Our results show that although
the resulting system underperforms the original, it has a better rate of improvement as
more and more training examples are added to it.
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Chapter 1

Introduction

The goal of this Master of Engineering thesis work is to explore a few approaches towards
plausible computational modeling of the feedforward-feedback processes that take place

in the ventral stream of the visual cortex in primates.

1.1 Brief Introduction to the Neocortex

The visual cortex is the part of the neocortex responsible for perceiving and processing
information received from the sight sensors, the eyes. Locating and recognizing objects,
detecting motion, focusing attention, perceiving three dimensional objects, and eye con-
trol are some of its primary functions. The visual cortex consists of interconnected visual
areas, each responsible for a particular function.

In another logical division, we can differentiate information pathways that go through
certain visual areas and ultimately accomplish one of the primary functions mentioned
above. Two such pathways are the ventral and the dorsal streams. [21] The ventral
stream is the processing path that follows V1 (visual area 1), V2, V4, and IT (infer-
otemporal cortex) areas in this order. It is responsible for recognizing objects and forms,

as well as building and storing their high level representations. The dorsal stream, on the
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other hand, starts from the V1 area and goes through V2 and MT (middle temporal)

in order. It is associated with motion processing.

1.2 The Role of Feedback in Neural Activities

It is widely accepted that these pathways are not simply cascades of neural activity
propagating in one direction, for example starting from V1 and going sequentially to
V2 and then to V4, but rather feedback systems in which upstream areas can provide
feedback information to downstream areas. So V4 will provide feedback input back to V2
and V2, in turn, will provide feedback input back to V1. In fact, it is speculated [9] that

there are ten times as many feedback connections as there are feedforward connections.

High-level abstract
representation of a face

Fainted edge located
in high-res. buffer

Figure 1-1: The “occluded face” example of feedback activity. Adapted from Lee and
Mumford, [19].

Let us consider an example for why feedback connections may play an important
role in the visual system. Figure 1-1 shows a person’s face with one part lit and the
other part occluded by a shadow. There is a sharp contrast between the two parts.
Without feedback connections, the brain would have problems discerning the two parts
and identifying them as one face and, much like a digital camera, only capture and pay
attention to the lit part of the face potentially not detecting it as a face at all. In a

feedforward-feedback system, a higher level representation of the lit part will be formed
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as a result of the feedforward sweep of neural activity. At this point, however, higher
layers will be able to put higher prior on the presence of a face on the image. Given this
prior and the fact that faces are oval and have vertical symmetry, the feedback sweep
will prompt lower layers to focus more on the shadowed part of the image and make out
the complete oval and symmetric contour of the face, thus overcoming the problem with
the sharp contrast.

In general, the role of feedback is to fill in missing information. As the example
on Figure 1-2 shows, the three corners of a perceived square are enough to build up a
belief that there is a square in the figure. In this case, feedback provides higher prior on
the whole given the available partial information. In [19], Lee and Mumford show that

monkeys see squares in similar settings.

e
¢

Figure 1-2: An example where the visual cortez fills in missing information. Not only
the edges of the perceived square are missing, but so is one of the corners. Yet, we can
still “see” a square.

1.3 Thesis Statement

In this thesis work we approach the problem of modeling feedback in visual object
recognition tasks. In particular, we evaluate two object recognition systems, one is a

biologically plausible model of the feedforward part of the ventral stream [29]; and the
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other is a speculative model [22, 19] of the feedback paths based on Bayesian networks.
We propose a method to augment the first system using ideas from the second to
test the hypothesis that the new system will account for both feedforward and feedback

processes. We describe in detail the two systems, our approach, and the obtained results.

1.4 Contributions

e An augmentation of a biologically plausible model of the feedforward part of the

ventral stream;
e The use of real-world images with the Bayesian network model;

e An implementation and evaluation of three approaches for generating codebooks

of visual features.

1.5 Overview of the Contents

In the second chapter, we present the two computational systems we base our work on.
This chapter also defines most of the terminology used throughout the paper.

The third chapter presents our experiments on a simple combination of the two
systems. We call this combination a hybrid model. We identify two problems that fork off
our efforts in two separate directions — the susceptibility of the model to good dictionary
of visual prototypes and the numerical instabilities and other parameter estimation
problems arising from the use of large-scale Bayesian networks with lots of parameters.

The following chapter examines in detail the first of these problems, the problem of
finding a good dictionary of visual features. We present three different solutions and
evaluate their relative performance.

The final chapter presents evidence and an in-depth analysis of the experiments

carried on the augmented model on a large database of input images. Additionally, we
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describe several improvements on our initial model.

We conclude with an evaluation of the model’s capability of exploiting feedforward-
feedback connections, it’s general applicability, and whether or not the results we ob-
tained merit further research in this particular approach. We also present some open
problems for which we either did not find acceptable solutions or that represent exten-

sions to the project that can further testify to the validity of the model.
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Chapter 2

Background

2.1 Computer Vision and Machine Learning

Computer vision is a broad field of scientific disciplines devoted to making machines
interpret and make sense of visual input. Biological computer vision is a branch with
the explicit goal of developing computer systems that emulate the processes in the visual
cortex. This approach proves to be invaluable for testing various hypotheses related to
the workings of the cortex.

In general, computer vision research utilizes numerous techniques from artificial intel-
ligence and machine learning that provide the mathematical and computation framework
in which visual systems are developed and quantitatively analyzed.

Supervised learning is the most common machine learning approach used in computer
vision. In its essence it dictates that the parameters of the model are learned based on a
set of inputs for which the desired output is known and is provided to the model (hence
the word supervised). This set of inputs is colloquially known as the training set (also
training data). The model with learned parameters can then be used to predict the
output for any other input.

Different models may provide different predictions for the same input, so comparing

15



how successful they are is important. This is usually done by evaluating a model on
a testing set of input data. The desired output for the testing set is known, but not
provided to the model. Instead the model’s predicted output is compared to the known
desired output and an error/success measure is computed. A common example of a
measure is the fraction of all predictions that match the desired output. Another measure

applicable for numerical outputs is the L, distance.

2.2 Object Recognition

Computer vision is a large field and includes a broad range of problems. Some of
these problems are directly inspired by the tasks the visual cortex performs. Object
localization, object recognition, scene segmentation, and attention are all examples of
such tasks.

This work considers the problem of object recognition. Its simplest formulation is:
given an input stimulus/image, determine if a class of objects is depicted or appears
on the image. This is the binary formulation of the problem that we consider. The
multiclass formulation prompts for recognition of a set of classes of objects and can
either be reduced to a set of binary recognition problems or approached directly with
a multi-class model. From now on, when we refer to object recognition, we understand
binary object recognition.

In reference to the above description of supervised learning, we can point out that
in binary recognition the output is usually binary (”yes” or "no”) or single-dimensional
scalar representing the level of confidence that can be thresholded to produce a binary
answer. Similarly, training and testing data is usually labeled as positive (the class of

object under consideration appears on the image) or negative.
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2.3 Challenges in Object Recognition

According to Riesenhuber and Poggio [26], the biggest challenge in object recognition
and especially in modeling the neurophysical aspect of it is the level of versatility and
variability of the visual cortex. It is truly amazing that a single object can appear
in various orientations, in different positions, under different lightning conditions, with
partial occlusions and we still manage to recognize it in an instant. To achieve such
versatility in recognition, a highly-abstract and invariant description of the input is
necessary.

Coming up with highly-abstract, yet descriptive enough, representations is possibly
the primary challenge for computer vision. Moreover, such representations need to be
position-, orientation-, and scale-tolerant.

A different set of challenges arises from technological point of view. Unlike cortical
pathways, computational systems run on serial or small-scale parallel machines. Thus,
technical feasibility and resource usage are major factors that need also be considered.
Making the right trade-off is an important challenge that will come up several times

during this thesis work.

2.4 Two Object Recognition Systems

Our work combines the ideas of two existing object recognition systems. The first
system is a biologically inspired model of the ventral stream designed and developed
in the Center for Biological and Computational Learning (CBCL) at MIT. The second
system is implemented by Dean in [6] and in essence represents a Bayesian network with
a special topology. The following section contains detailed description of each system
and an introduction to some of the computational tools and terms that we use in our

work.
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2.4.1 Standard Model of the Visual Cortex

Relation to Physiology

In [29] Serre et al. describe a neurophysically-inspired computer model of the ventral
stream. This system, which we colloquially dub “the standard model”, attempts to go
further than the mainstream account of only the V1 and V2 areas of the visual cortex.
In fact, the system successfully models processing stages along the entire ventral stream
starting from the V1 and V2 areas going all the way to the IT area. Empirical results
show that output from the highest processing stages of the system match readouts from
the IT cortical area in monkeys.

It has been shown empirically that the standard model matches the performance of
human subjects on rapid object recognition tasks. Evidence suggests that the system
models reasonably accurately the first 50-100 milliseconds of neural activity after a visual

stimulus is presented.

Detailed Description

The standard model consists of a stack of alternating simple and complex processing
layers. Each layer is composed of cells/units of the same type. Simple layers evaluate
fixed mathematical functions, whereas complex layers perform a pooling operation over
a range of simple units. The set of simple units over which each complex cell pools is
called a receptive field.

In a simplified model, there are 4 layers, 2 of each type. They are the S1, C1, S2, and
C2 layers in order from the lowest to the highest in the hierarchy. The visual stimulus is
a two-dimensional intensity or gray-valued map (we discard the entire color information)
that enters the S1 layer and its abstract representation is the output of the C2 layer.

The S1 layer corresponds in function to the simple cells in the primary visual cortex,

the V1 cortical area. It has been shown in [15] that the S1 layer (V1 cells respectively)
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evaluates a set of spatial Gabor filters of the form:

B 27
fG(x>y|07 )‘373 ¢)7 X) =€ 20 COos ')\_1‘0+X
Zo = T COS ¢+ ysin ¢ Yo = —xsin @ + ycos ¢

As evident from the formula, the Gabor filter is an exponential with a particular
scale(c) superimposed on a sine wave a given wavelength()\) and orientation (¢). The
S1 units are the responses of the visual stimulus for a set of Gabor filters with varying
orientation, wavelength, and scale. In effect, Gabor filters respond to edges and bars of
different orientation and scale.

The C1 processing layer collects the output of the S1 units and groups them by scale
bands which are pairs of neighboring scales. C1 cells compute a max operator across the
pool of all S1 units in the group.This operator is computed acroés all spatial positions
and orientations resulting in one C1 unit (we also refer to this as a C'1 map) for each
scale band. Note that the C1 unit contains the entire orientation information as a third,
non-spatial dimension. This is in addition to the 2 spatial dimensions that result from
computing the max operator across all positions. Figure 2-1 shows an example of a C1
map in all four orientations for a given scale.

Finally, C1 maps are downsampled in order to increase the computational speed of
the system. After the max operator is computed for all locations, only each z-th location
is considered in the downsampled image. z is called the sampling step. Downsampling,
however, can have undesirable effects if performed naively because the sampled location
may fall at a local minimum. Instead, the value of the maximum response in a window
around the sampled location is taken.

The S2 stage computes a radial basis function (RBF) of the form S2(z,y) =
e~ AlIC1zy)=Xill* between the C1 maps and a set, X, of precomputed prototypes. The

entire computation is done across positions in a sliding window manner: a window of
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Figure 2-1: Ezample of C1 maps in 4 orientations. To the left is the original image. The
right part of the figure shows the C'1 maps in all four orientations: horizontal (top-left),
vertical (top-right), slanted (bottom left and right).

size N x N, the size of the prototypes, is moved across the C1 map and C1(z,y) is the
part of the map beneath the window. This is equivalent to having units of the same
type at each location, see Masquelier et al. [20]. The RBF function treats C1(z,y) and
X; as linear vectors of dimensionality N?r, where r is the number of orientations. The
resulting S2 map contains two spatial dimensions resulting from the sliding window,
but no orientation dimension because all orientation information was absorbed in the
process.

The prototypes play the role of a codebook of features against which the C1 units are
compared for similarity. This is also known as a dictionary of visual features, see Serre
[28]. In a sense, the codebook defines the building blocks to which we can compose or

decompose the input and the radial basis function provides a distance metric as to how
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similar a given part of the image is to a particular building block.

In the standard model, the codebook is built by random sampling the C'1 maps.

Finally, the C2 stage applies a max operator on S2 maps across all positions and
scales to produce a set of values, one for each prototype, that together make the C'2 map.
Therefore, each value in the map is the maximum RBF response from the stimulus to
each of the corresponding prototypes. Because of the relation between RBF and L
distance, C2 maps can be considered as a scale- and position-invariant closeness metric
between the input and a set of visual building blocks, the prototypes.

The final stage is the classification stage. During supervised learning we produce one
C2 map for each training image and we associate it with its class (positive or negative).
The result is then fed to a linear support vector machine (SVM) [3] classifier that builds
the final model. The classification model can then be used to evaluate the performance

on the testing set.

Feedforward Processing

As mentioned earlier, the standard model is biologically inspired. S1 and C1 stages
correspond to computations that take place in the V1 area, while S2 and C2 units
resemble the V4/IT area in functionality. Note, however, that the entire computational
process is serial and the system lacks any feedback mechanisms or pathways. In the
previous chapter we discussed that this is not how the cortex works. Yet, the model
is empirically observed to matches human behavior during the first 50-100 milliseconds
before feedback is activated [29]. After that, humans start to outperform it. This is
likely due to the feedback paths the standard model does not account for.

It is reasonable to assume that introduction of feedback mechanisms to the model
will improve the accuracy of the model allowing it to match that of humans for exposures
longer than 100 milliseconds. This is what motivates this thesis work. In particular, we

focus our attention on modeling feedback using Bayesian networks. The second system
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that we examine is one of the pioneers of (non-trivial) Bayesian networks in object

recognition.

2.4.2 Pyramidal Bayesian Network Approach

In 1992, Mumford [22] proposed a hierarchical Bayesian model to address the problem
of modeling feedback mechanisms in the cortex. He suggests the use of conditional
probability dependencies between computational structures responsible for neighboring
visual areas to allow higher layers to modify the prior distributions of lower layers, much
like in the “occluded face” example from Chapter 1. Figure 2-2 illustrates the idea.
The suggestion by Lee and Mumford[19] to use Bayesian networks as graphical models
follows naturally from the inherent ability of Bayesian networks to encode conditional

probability information.

vl V2 va IT

Figure 2-2: An illustration of the feedback paths in the visual cortex. The feedback paths
that provide the object priors are the dotted lines. Adapted from Dean, [6].

However, Lee and Mumford did not provide a working implementation of their idea.
In 2005, Dean [6] first proposed a working model to follow the suggestions outlined by
Lee and Mumford. In particular, his approach uses a Pyramidal Bayesian network model
(PBN) to account for feedback.

Pyramidal Bayesian networks play the role of the final classification stage, which,
in the standard model, is performed by the linear SVM classifier. Although Bayesian
networks as classifiers can be used as a simple drop-in replacement for linear SVMs, we
take the approach one step further by introducing the classifier at the C'1 stage and

also provide a method of turning the non-probabilistic nature of the standard model
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into beliefs that can be used with the PBN. This allows us to draw parallel between the
layered structure of the Bayesian network and the pathways in the visual areas of the

ventral stream.

Bayesian Networks

A Bayesian network [14, 25] is a graph in which nodes represent random variables and (di-
rected) edges encode conditional dependencies between the variables. The entire network
implicitly stores the joint probability distribution of all variables as conditional distribu-
tions between dependent variables. In the example network on Figure 2-3, the total prob-
ability distribution can be computed as P(z,y, z,t,v) = P(z).P(y|z).P(2).P(t|z, 2). P(v]t).
If in the example we assume all variables to be independent then explicitly describing
the total probability distribution will require 2° = 32 parameters. If we instead use the
Bayesian network on Figure 2-3, we only need 2 + 22 + 2 + 2° + 2 = 18 parameters to
describe the distribution. Effectively, Bayesian networks exploit conditional dependen-
cies between the variables to provide a way of storing the joint probability distribution
using far less memory than if we were to store it explicitly.

The most common operation in Bayesian networks is to marginalize the distribu-
tion given the values of some variables. This is called inference and is implemented
by algorithms called inference engines. Examples of inference engines are the Junc-
tion Tree engine[17] for exact inference, the loopy belief propagation[24] and the Gibbs
sampling[12] engine for approximate inference.

Learning engines, on the other hand, are algorithms for supervised learning of the
probability distributions for a set of training data points.

Computer libraries implementing Bayesian networks provide implementation of var-
ious inference and learning engines. Following Dean’s implementation, we use the Junc-

tion Tree Inference engine and the popular Expectation Maximization learning engine

[8]-
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Figure 2-3: A simple ezample of a Bayesian network with five nodes. Here nodes repre-
sent random variables and edges represent conditional probabilities.

Pyramidal Bayesian Networks (PBN)

In [6, 7], Dean uses Bayesian networks of special pyramidal topology. PBNs are hi-
erarchical graphs in which each layer (or level) of the hierarchy is a rectangular mesh
of nodes. Each node in the mesh has children nodes in the layer immediately below.
Conversely, all nodes (except the one at the top) have parents in the layer above. For
each node, its children form a receptive field. The fact that units and their receptive
fields are of pyramidal shape is where the model takes its name. The receptive fields
of the nodes on any given layer (except the last) form the mesh of the next layer. The
uppermost level contains only one node without any parents, the root, while the layer
at the bottom is the one that receives the input. Figure 2-4 shows an example of a PBN
where all nodes, but those on the bottom, has a receptive field of size 3 x 3.

We allow for the receptive fields of two neighboring nodes on one level to overlap.

Figure 2-5 shows an example of such network in which the receptive fields of the nodes
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Figure 2-4: A pyramidal Bayesian network with 3 layers and receptive fields of size 3 x 3.
Note that nodes in each layer of the network are arranged in a rectangular grid.

in the middle layer overlap by 1 unit.

PBN Inputs

In this model, all random variables in the network are discrete. In particular, the variable
for the root node is binary as it encodes the probability of the input being positive or
negative. The input itself is also over a discrete domain.

Because the input layer is a rectangular mesh, we can maintain the notion of a
2-dimensional visual stimulus.

In the original implementation, Dean proposes the use of Gaussian mixtures (5] to
filter the visual stimulus and produce a rectangular matrix of discrete values suitable

for use as input to a PBN. The Gaussian mixture filter works as follows:
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Figure 2-5: An ezample of a pyramidal Bayesian network where receptive fields overlap
by one location.

. Consider each stimulus from the training dataset as a gray-valued image (the usual

computer representation of an image).
. For each image, take crops of size W x W. Consider each crop a vector in RY?.

. Learn the parameters of a Gaussian Mixture Model (GMM) for a set of M Gaus-

sians. For more details see [5].

. For each training image and for each location, consider the patch of size W x W
centered at that location. The W2-dimensional vector x can be expressed as a
linear combination of the M multivariate Gaussian functions, z = Zfil 0;G;.

Consider the index of the Gaussian with the highest weight, J = arg max ;.

. Finding the index of the “closest” Gaussian for each training image for each lo-
cation gives us a map or matrix with the same size as the image and with values

between 1 and M. This map is then used as an input to the PBN.

Essentially Gaussian mixtures learn a codebook of visual features in which each

Gaussian represents one feature. This is very similar to how the standard model produces

52 maps using stored prototypes of visual features.
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Lateral Connections

Another distinction of the PBN is the option of having lateral connections at some of
the levels of the network. Lateral connections are additional conditional dependencies
imposed on neighboring nodes in the mesh. They are applicable only to hidden layers
(those other than the root node and the input layer). During learning, lateral connections
help in the learning of spatial dependencies. During testing, they effectively force those
dependencies on the input. We study the role of lateral connection in the model, but
overall we expect that their presence favors inputs that are smooth, which real images
are.

Figure 2-6 shows a mesh grid with lateral connections. A consideration when adding
lateral connections is to avoid introducing directed cycles in the network graph became
some inference engines, the Junction Tree engine in particular, cannot work with such

graphs.

Dealing with Computational Complexity

In addition to introducing the idea of a pyramidal Bayesian network, Dean also provided
an implementation that exploits the structure to speed up the learning process. To
illustrate why this is important, consider an input of size 27 x 27 to a PBN with 4 levels
where each node has a receptive field of size 3 x 3. (Figure 2-4) This results in a total
of 820 variables. If we further assume each variable has domain size of roughly 30, the
total number of parameters that have to be learned is over 100000. Lateral connection
will increase this further. Learning such a network could take months.

Instead, Dean’s code decomposes the Bayesian network into subnetworks, with each
subnetwork roughly consisting of a node and its receptive field. The algorithm then
proceeds to evaluate the parameters of the network by evaluating entire subnetworks
starting from the bottom of the hierarchy. For more details on this approach, refer to

the hierarchical expectation refinement algorithm in [6, 7).
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Figure 2-6: Lateral connection in a pyramidal Bayesian network. In order to keep the
graph associated with the network acyclic, edges can only go in a fixed direction.

The bottom line is that the approach greatly speeds up the process of learning the
network parameters when compared to learning the full network directly. It is important
to note that this approach is exclusively for optimization and is orthogonal to the entire
object recognition problem that PBNs try to solve. In fact, results in [7] suggest a
trade-off between speed of computations and performance.

On the other hand, this approach can be parallelized on a large-scale and subsequent

implementations of the PBN model do indeed provide support for multiprocessing.

Relation to the Standard Model

Unlike the standard model, the PBN approach has no direct mapping to cortical mecha-
nisms. The PBN classifier cannot be used as a simple replacement of the SVM at the C2
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stage because C2 maps are not probabilistic in nature. However, the layered approach
combined with the natural ability of Bayesian networks to encode feedback information
make PBNs good candidates for a framework in which to model feedforward-feedback
connections. What this framework needs is a way to recast the standard model. We
propose a few ways to modify the standard model such that it encodes belief and is,

therefore, compatible with the probabilistic nature of the PBN model.

2.5 The Pedestrian and Car Datasets

For evaluating our models, we consider two datasets. The first one is the car database
gathered at MIT [29, 2]. This database contains approximately 800 positive images of
cars taken from photos of cars from actual street scenes. The cars appear under various
illumination conditions, orientations, and occlusions. Some positive examples from the
dataset are shown on Figure 2-7. Each image is composed of 128 x 128, 8-bit, gray-
valued pixels. All positive samples have been resized so that the cars are roughly the
same scale.

The dataset does not offer negative examples explicitly. To produce those, we took
large photos of non-car scenes and from each image extracted numerous random crops
of size 128 x 128. In total, we took about 8000 random samples.

To further separate the data into training and testing, we chose approximately 1/3
of the samples uniformly at random from the positive and negative pools respectively.
We use this part for testing, and other 2/3 for training. This dataset is used exclusively
in Chapter 3.

For Chapters 4 and 5, we use the pedestrian dataset constructed from images taken
from both the street scene [29] and the LabelMe [27] databases. The pedestrian examples
were manually extracted and the negative examples were randomly cropped from those

images. Care was taken during extraction that none of the negative examples overlaps
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Figure 2-7: Samples from the car database. The top row contains positive samples and
the bottom row contains negative samples.

with a positive example. In total about 2600 positive and 13500 negative examples were

extracted. All examples were subsequently split into training and testing with 2000

positive and 12000 negative training examples. The split was random, but fixed.
Images in the pedestrian dataset are 8-bit, gray-valued images of size 64 x 128.

Examples of images are shown on Figure 2-8.

Figure 2-8: Samples from the pedestrian database. All of these samples are positive. The
negatives look similar to the negatives on the car database on Figure 2-7.
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2.6 Performance Measures

2.6.1 Accuracy

Throughout this work, we evaluate performance in two ways. The first one is the frac-
tion of correctly recognized testing examples, the accuracy. Although a straightforward

metric, it is not always descriptive because of the following problems:

e A large discrepancy in the number of positive and negative examples or a bug may
lead to a case where all examples are predicted as the same class, yet the accuracy

is high.

e Most classifiers including the SVM and the Bayesian network provide more infor-
mation than just a binary output. Such classifiers usually evaluate a measure of
confidence and threshold it to determine the class. Not only is this information
discarded in the accuracy measure, but the accuracy is also affected by the choice

of the threshold.

2.6.2 Receiver Operator Curve (ROC)

The two problems above are alleviated to some extend by the use of Receiver Operator
Curves or ROC curves. In essence, these curves represent the fraction of false positives
(negative examples erroneously recognized as positive) and true positives (correctly rec-
ognized positive examples) for all possible thresholds. Intuitively, as we increase the
threshold we will correctly recognize more examples as positive, but we may also get
negative examples with high weights. A sample ROC curve is shown on figure 2-9.

A perfect classifier will always add true positives as the threshold increases up to the
point when there are no more positive examples. After that it will always add negative
examples. A “classifier” that makes random guesses will add an equal fraction of true

positives and false positives as the threshold is increased. Such classifiers look like a
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Figure 2-9: Three examples of ROC curves. The dashed curve is typical for a fair-coin-
toss “classifier”. The curve on top is the one for a perfect classifier, whereas the one
in the middle shows a middleground classifier. Note also that the area under the ROC
curve is also correlated with performance, though we do not use it as a measure in this
work.

straight line. Therefore, the shape of the curve is indicative of the overall performance
of the classifier.

The point for which the fraction of false negatives (positive examples recognized as
negative) is equal to the fraction of false positives is called the equal-error rate(EER).
Sometimes instead of plain accuracy, we provide the accuracy at the equal error rate as

a measure. Figure 2-10 shows an example of how to read ROC curves.

2.7 Computational Tools

Both of the two systems described in this chapter are written in the MATLAB pro-
gramming language and use third party libraries to implement SVM classification and
Bayesian network inference, also written in MATLAB. Our implementation is based
on the standard model codebase and uses the PBN code as a library. It inherits the

third-party dependencies of the systems. In particular, we use Kevin Murphy’s Bayesian
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Figure 2-10: Example of an equal-error rate in ROC curves. The point indicates the
point at equal error rate. The horizontal and vertical dashed lines indicate the true
positive and false positive rates respectively.

network toolbox [23] and the open source OSU SVM toolbox for MATLAB.

Additionally, we experimented with Intel’s open source probabilistic network library
(OpenPNL) [1], the C++ analogue of Kevin Murphy’s toolbox.

All experiments were done on the CBCL’s computing cluster and the computing
cluster at the Computer Science and Artificial Intelligence Laboratory (CSAIL) at MIT.
We have empirically determined that we can regard the work nodes of the two clusters as
being of equivalent computational power, especially given that the scale of the running
time of our experiments is on the order of hours. Thus, we do not differentiate between
work nodes for all quotations on running time. Indeed, running time is of secondary

priority for us.
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Chapter 3

Hybrid Model

Henceforth, the work we describe is our own attempt in providing a Hybrid model
that combines the two approaches from Chapter 2. In particular, the Hybrid model
is based on the pyramidal Bayesian network from the PBN model, but replaces the
Gaussian Mixture Model (GMM) filtering stage to use C'1 maps instead of gray-level
inputs. This chapter is intended as a preliminary evaluation of the combination and to
identify potential problems. The following chapters consider the consequent replacement
of GMM with other input filters and modifications to how the Pyramidal Bayesian

network is used.

3.1 Initial Evaluation

We start by evaluating the two models out-of-the-box. The goal is to quantify their per-
formance in a similar setting such that we can make comparisons and draw conclusions
for their relative performance.

We compare the two models on the car dataset. We also evaluate the standard model

on the pedestrian database.
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3.1.1 Evaluating the Standard Model

Choosing a Regime of Parameters

In the last chapter we described in detail the workings of the standard model. Here we

briefly comment on the parameters of the model.

e Scale bands. The parameters of the Gabor filters at the S1 stage include the num-
ber of orientations, wavelengths, and scales. The number of scales is of particular
importance because it determines how susceptible the model is to variations in
scale. Because the PBN model does provide scale-invariance, we choose only one

band in our experiments.

e Number of Orientations As evident from their response, Gabor filters are sensitive
to edges at a given orientation. However, images usually have edges of varying
orientations at different locations, therefore, it is important for the model to tol-
erate this variation in orientation. In the standard model C'1 units carry response
information from each of a set of orientations. The number of orientations is a
trade-off decision between model performance and computational resource require-
ments. For this experiment, we use a set of four orientations: vertical, horizontal,

and the two slanted orientations at +45 degrees.

e Prototype Size. The model relies on a precomputed set of visual prototypes called
a codebook. These prototypes can be of different size. A prototype of size 16 x 16
pixels will represent a visual feature of significantly higher level than a prototype
of size 8 x 8. For example, a prototype of size 16 x 16 could describe a significantly
large part of a car, whereas a prototype of size 8 x 8, or 1/4 of that area, can only
match small parts such as a mirror, a tire, etc. A comprehensive model should
consider both, but for compatibility with the PBN model, which does not provide

a way to recombine prototypes of different size, we only use prototypes of size 8 x 8.

35



o Number of Prototypes. This parameter is important as it determines the variety of
visual features in the codebook. Because prototypes are randomly extracted from
C'1 maps of positive images, having more increases the chance of coming up upon
discriminative prototypes. There is no straightforward mapping between number
of prototypes in the standard model and number of Gaussians in the Gaussian
Mixture Model because the latter are learned and the former are random. Thus,
we use a default value of 50 prototypes, but we also provide experiments that vary

this parameter.

Empirical Results

Initially, we tried to tap the full potential of the model by testing it on a parameter set

similar to the provided examples:

o A total of 14 scales starting from 7 x 7 to 33 x 33 in increments of 2. The scales

are pairwise grouped in 7 scale bands.
e 4 orientations: at 0,90, and £45 degrees.
e 4 prototype sizes: 4 x 4, 8 x §, 12 x 12, 16 x 16
e 250 prototypes for each prototype size.

The resulting classifier has an accuracy of 92.75% on the car dataset and 91.2% on
the pedestrian dataset. |

The following experiments each try to see how different scale bands and prototype
sizes contributed to the result by examining the performance of the model when restricted
to those particular scale bands or patch sizes. The results are shown on Tables 3.1 and
3.2. Overall, there does not seem to be a significant difference in using any particular

combination of scaleband and patch size. In order to be compatible with the PBN model,
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Band  Gabor filter size (scales) | Accuracy(car) | Accuracy(pedestrian)
Band 1 7TX7,9%9 92.21% 82.67%
Band 2 11 x 11,13 x 13 92.35% 84.57%
Band 3 15 x 15, 17 x 17 91.57% 85.59%
Band 4 19 x 19, 21 x 21 93.81% 85.40%
Band 5 23 x 23, 25 x 25 93.31% 84.52%
Band 6 27 x 27,29 x 29 92.92% 84.57%
Band 7 31 x 31,33 x 33 93.10% 85.03%

Table 3.1: Comparison of indiwidual scale bands on the standard model. Here we use
only patches of size 8 x 8. There are a total of 7 scale bands starting from the smallest
to the largest. Recall that each scale band is assembled from two neighboring scales at
the C1 level.

Patch size | Accuracy(car)
4 x4 93.95%
8 x 8 92.92%
12 x 12 91.93%
16 x 16 92.64%

Table 3.2: Comparison of individual patch sizes on the standard model, car dataset. We
only use scale band 1.

we will use scale band 1 and patch size of 8 x 8. (Recall that the PBN model cannot
pool across different patch sizes or scale bands)
For the final set of experiments, we try to establish a relation between the number

of prototypes and the performance.

3.1.2 Evaluating the PBN Model

Parameter Setup

The source code distribution of the PBN model provides an example setup for the MNIST
database of handwritten digits[18]. We will not go into the details of that dataset since it

is not relevant to our research, but we base our parameter setup on the MNIST example.

o A Gaussian Mixture with n = 16 is trained on patches of input images of size 8 x 8.
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Figure 3-1: Recognition accuracy of the standard model (band 1) at the EER on Pedes-
trian and Car datasets. This shows the EER performance on C2 maps. Note that
because of the random extraction, the proper procedure requires providing error mea-
sures which we omit here.

e The patches are treated as 64-dimensional vectors. The Gaussian functions in the

mixture are themselves 64-variate.

e All input examples are filtered by an argmax filter that finds the index of the
“closest” Gaussian to a given patch. (Here closeness is defined as the maximum
response of the multivariate function evaluated on the patch). The filter is applied
at every 18-th location yielding a 7 x 7 map over the integers 1...16. This serves

as the input to the Bayesian network classifier.

e The Bayesian network consists of three layers. The top layer is the root node

which is a Bernoulli random variable representing the probability of each of the
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two classes. The root node has a receptive field of 3 x 3. Each of the child nodes
is again a random variable over the domain 1...10. Their receptive fields are also
of size 3 x 3, but they overlap by one node, thus the bottom, input layer is of size

7 x 7 instead of 9 x 9. A diagram of the network is shown on Figure 2-4.

e Finally, the GMM learns n multivariate Gaussians which are described by a set of
mean vectors and covariance matrices, one pair per Gaussian. Since the covariance
matrix is larger than the mean vector by a power of 2, learning it takes significant
effort and is likely to be incomplete for the small number of samples. To solve this,
GMM offers two modes of learning. In the first mode, the entire matrix is learned,
but in the second mode, the matrix is assumed to be diagonal (the dimensions of
the Gaussians have independent variances) and only the diagonal is learned. We
did not notice any significant difference in results. The results shown are for the

case where the entire matrix is learned.

Although these parameters were directly adapted from the ones used with the MNIST
dataset, that dataset is of size 28 x 28. The car dataset is of size 128 x 128 and it is not
appropriate to downsample the input map to 7 X 7 input because the sampling step of
128/7 ~ 18 is twice as large as the size of the prototype, 8. A Bayesian network trained
this way will learn relations between neighboring visual features that are 18 pixels apart.
Obviously, this problem does not exist with the MNIST database, because 28/7 = 4.

One solution is to downscale in advance the entire dataset to 28 x 28. This intro-
duces another discrepancy, however. A patch of size 8 x 8 will capture visual feature
of significantly higher level than a patch of the same size used in the standard model,
because the standard model does not downscale the dataset. Effectively, this will make
the two results incomparable.

A better solution is to downscale the dataset such that the sampling step is man-
agable, but upscale the patch size for the standard model. For example, if we rescale the

input to 64 x 64 yielding a sampling step of 9 with a patch size of 4, this will correspond
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to a prototype of size 8 for the standard model. A variation on this approach is to
combine downsampling with cropping the central part of the image. Cropping presents
the trade-off of reducing the sampling step but at the cost of discarding data from the
input proportional to the square of the reduction ratio.

We show results for different experiments and variations in the parameter space. The

goal is to present a comprehensive evaluation of what may work and what may not.

Results

Input size Patch size Number of Gaussians Accuracy

128 x 128 8 x 8 16 30% (1)
64 x 64 8 x 8 16 30% (!)
64 x 64 4 x4 16 67.13%
64 x 64 4 x4 32 68.38%
64 x 64 4 x4 50 68.87%
64 x 64 4 x4 100 69.12%
64 x 64 4x4 200 67.87%

Table 3.3: Empirical results from the PBN system on the car dataset. The presence of
(!) next to the performance measure indicates a problem with the setup. Below we
provide explanation of these problems.

Table 3.3 presents the results from the evaluation of the PBN system on the car
dataset. We have marked some of the experiments that produce likely erroneous results.
On close inspection, we notice the primary problem of GMM: the large dimensionality
(64, in the case of 8 x 8 patches) leads to numerical instabilities. Appendix A explains
in more detail why this occurs. At this point, however, we observe that patches of size

4 x 4 do not exhibit this problem, while patches of size 8 x 8 do.

3.2 Description of the Hybrid Model

The Hybrid model we propose combines the best aspects from the two paradigm models:

the C1 maps from the standard model and the hierarchical structure of the Bayesian
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networks in the PBN model.

In this chapter, the only change we made to Dean’s model is that we train the GMM
on crops of C'1 maps instead of gray-valued patches.

We now proceed to examine the changes necessitated by this decision. Recall from
the previous chapter, that C1 maps are the peak responses of Gabor filters for each
combination of scale band, orientation, and spatial position. As we elaborated earlier,
we only use one scale band as we completely disregard the problem of scale by assuming
that recognition objects appear at the same scale throughout the input images.

As for the orientations, we use the default number from the standard model of 4
orientations. Because GMM uses crops of C'1 maps the dimensionality of each crop is
increased by a factor of 4 to 64 for patches of size 4, and 256 for patches of size 8. This
is already in the range where we observe numerical instabilities. (See Table 3.3 and
Appendix A)

Instead, we propose a solution that reduces the dimensionality at the expense of
losing some information. The method is called principle component analysis (PCA) and
involves projecting the d-dimensional input space to a k-dimensional subspace in a way
that selects the k basis vectors to be the directions with the greatest variance in value. In
other words, the information from the other d — k dimensions is discarded. The success
of this method depends on whether the d — k discarded dimensions contain potentially

useful information or have low variance.

Results from PCA

The PCA method finds a covariance matrix that describes the variance of data along
each dimension. The eigenvalues and eigenvectors of this matrix are the directions with
the greatest variance. Figure 3-2 shows the “amount” of variance explained by including
each subsequent dimensions starting with the one with the greatest variance.

There is little sense in trying different values for £. Reducing the number of di-

41



25 T T T T T T T T

% Variance Accounted for

5 10 15 20 25 30 35 40 45 50
PCA Dimensionality

Figure 3-2: The amount of variance that each subsequent dimension from PCA explains.

mensions will only deteriorate the performance. The best choice for k£ is the highest
value that does not exhibit the problem which necessitated PCA, the numerical over-
flow/underflow due to the exponential dependence on the number of dimensions. Our
choice of value is 16, because it is already known to work and because adding more
dimensions does not increase the explained variance significantly (see Figure 3-2).

If we compare results from Tables 3.3 and 3.4, we see a slight improvement by using
C1 maps in the GMM. The results, however, are still significantly below the standard

model.
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Input size Patch size Number of Gaussians | Accuracy at the EER
64 x 64 8 x 8 x4 8 77.34%
64 x 64 8x 8x4 16 77.22%
64 x 64 8§ x 8 x4 32 72.99%
64 x 64 8 x8x4 50 65.59%
64x64 8x8x4 100 40.9% (1)
64x64 8x8x4 200 37.5% (1)
64 x64 4x4x4 16 70.81%

Table 3.4: Empirical results from the Hybrid system using PCA. Evaluated on the car
dataset. Results marked with (!) indicate problems.

3.3 Identifying the Problems

3.3.1 The Need for Better Codebooks

We already mentioned the numerical instabilities that occur during GMM filtering. (see
Appendix A for more technical explanation) Instead of working around the problem, we
make the decision to abandon Gaussian Mixture Models altogether. With that, we also
acknowledge the need for a codebook replacement.

To justify our decision, we mention that in computer vision other approaches such
as AdaBoost selection or random sampling are usually preferred to GMM. The next

chapter examines these and other approaches for generating codebooks.

3.3.2 Problems with Learning the PBN

Switching from the MNIST to the car dataset does not only change the size of the input,
but also the number of samples. While the MNIST database contains upwards of 50000
training examples, the car dataset only has 800. It is clear that a model trained in this
way will not receive enough diversity in the input to exercise all of its parameters and
will only remember the few samples it has seen during training. The model will only rule
a positive class for inputs that are very close if not matching one of the examples seen

during training. This is referred to as overfitting and is considered a serious problem.
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The evidence for this is the near zero elements in the condition probability tables for
the nodes in the network. Having priors that are practically indistinguishable from zero
makes it impossible for the model to influence this prior in any way.

Lack of training examples is only one source for this problem. The domain size of the
input layer is what expands the size of the probability tables. We already saw evidence
in Table 3.4 of poor results when the domain size is increased.

Luckily, there are many opportunities that may lead to solutions. In particular, the
vast space of settings for the network layout of the PBN model is appealing. With these
opportunities comes a set of challenges in actually finding ideas that work and produce
solutions. Even if all ideas fail, switching to a dataset with lots of examplés is another

alternative. Chapter 5 is devoted to exploring these ideas.
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Chapter 4

Finding Good Codebooks

In this chapter we examine three algorithms for generating codebooks and filtering the
input stimuli. We also propose a scheme to quantitatively evaluate each method inde-

pendently of the Bayesian network.

4.1 Overview

Ultimately, the goal of this processing stage is to provide a function that transforms C'1
maps into matrices over the [n] domain ([z] = {1,...,z}). We call such function a filter.
For example, GMM is the defining example of a filter in our particular problem. For
the purposes of the Bayesian network, we consider the outputs of this function to be
observations of a random variable over a discrete distribution, [n].

The use of a library of visual features (the codebook) introduces a type of random
variables which domain is over the prototypes in the codebook. The probability mass
function of such variables denote how close the patch it represents is to each prototype in
the codebook. The PBN input layer (filtered with a GMM) is composed of exactly this
type of random variables. The observed value of this variable is the “closest” Gaussian

to the patch at each location.
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Providing a working definition for codebook and filter is possible once we adopt this
framework. A codebook is the set of visual prototypes/features that defines the domain
of the random variables in the input layer of the Bayesian network. Conversely, in the
context of a codebook, a filter is a function that assigns a value (an observation) to these
variables given a codebook and a patch.

To better illustrate the parallel, we will now show how to recast the S2 units in this
framework. S2 units are spatial maps of the responses of the patches at each location for
each prototype. Consider the index of the prototype with the maximum RBF response at
each spatial location, Figure 4-1. It is not difficult to observe that the resulting map fits
in our framework. The codebook is the set of prototypes which are randomly sampled
from C'1 maps of positive training examples. The filtering method is the application of
the RBF function at each location and the subsequent selection of the prototype with

the maximum response, the arg max operator.
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Figure 4-1: An ezample showing how to transform S2 maps into index S2 input. To
the right are the S2 maps, one map per codebook prototype. All S2 maps are RBF
responses. To the right is the index S2 map where each location represents an index of
the codebook with maximum response.
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It is important to mention that the S2 map computed this way can now serve as
input to a Bayesian network, but is no longer applicable for use with the SVM classifier.
The reason is that its values no longer define a metric space. Indeed, there is no way

to compare two values that represent the indices of two prototypes. The prototypes
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themselves are in no special relation. To emphasize the difference, we call this type of

maps index maps.

4.2 Input Filters

We present two filtering algorithms. The first one is a straightforward transformation
of C1 maps into index input without the use of codebooks. The second algorithm is the
example from above: the application of arg max on the S2 maps over the prototypes in
the codebook.

Given the parallel with C'1 and S2 units, we refer to these as the index C1 and 52

maps, respectively.

4.2.1 Index C1 Maps

This filter does not require codebooks because the random variables are not over code-
books, but over the domain of possible orientations at the C1 stage. Since the C'1 map is
a spatial map of Gabor filter responses for each orientation, we can choose the observed
value of this variable to be the orientation with the maximum response. Effectively,
the random variable encodes the probability of an edge of a given orientation at each
location.

This is one of the simplest filters and has the added benefit that the domain is of
small size. For our tests we used 4, 8, and 16 orientations. All orientations are encoded
as directional angles of the form km/n, where n is the number of orientations and & € [n]

is the k-th orientation. Note that directions z and x + 7 represent the same orientation.

4.2.2 Index S2 Maps

Recall the computations at the S2 stage. Given an input stimulus and a prototype,

the windowed patch distance is the squared L, distance at each location between the
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prototype and an image crop at each location. It is the result of sliding a window with
the size of the prototype over the input map and only considering the patch below the
window.

The RBF function is of the form f(z,y) = e~ lIP~! @wllf and can be computed directly
from the windowed patch distance, which is g(z,y) = ||p — I(z,y)||3. Usually, explicit
computation of the RBF is not necessary because substituting g(z,y) for f(z,y) only
changes the pooling operator from (arg) min to (arg) max. Therefore, we can argue
equally well about maximum response to an RBF or minimum L, distance.

Often the filter output has to be downsampled to fit the layout of the input layer of
the Bayesian network. This downsampling uses the same procedure as the downsampling

of C'1 maps.

4.3 Evaluating Codebooks

The primary goal of this chapter is to evaluate codebook algorithms independently
from the Bayesian network. We do this using a linear SVM classifier on the S2 units.
As mentioned earlier, SVM classifiers cannot work with index maps so we compute
separately both the index (Bayesian net compatible) and the distance (SVM-compatible)
maps. We always use the appropriate one for each experiment.

For this chapter we show experiments done exclusively on the pedestrian dataset.

4.4 Codebook Algorithms

Here we present three approaches of generating codebooks. All of them work on C'1
maps. Although they can just as easily work on graylevel inputs, we explained why
adhering to the neurobiological plausibility of the project requires the use of C1 units.

Throughout this section we assume that n denotes the number of visual features in
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the codebook and p denotes both the width and height of the feature. We assume that
visual features are square, of dimensionality f-p?, where f is the number of orientations
in the input C1 map. Obviously, prototypes in the resulting codebook need to retain
the orientation information kept as an extra non-spatial dimension in C'1 maps. Hence,
the prototypes are themselves C1 maps. This is what makes possible the computation
of the RBF response: the patch underneath the window and the prototype must be of

the same shape.

4.4.1 Random Sampling

Random sampling is the most intuitive approach. Given a set of C'l maps, one map per
input stimulus, the algorithm picks n patches of size p x p such that all patches from
all images have an equal probability of being selected. Only positive training examples
are used in the process. Random sampling is effectively what the standard model uses
to select the visual prototypes.

The benefit of this approach is that it is very fast. Additionally, the visual features
in the codebook are guaranteed to be “proper” in the sense that their values were not
generated, but represent parts of real images.

On the downside, selecting patches at random reduces the quality of the codebook.
Indeed, the chance of picking out a feature that is well-represented for positive images
and uncommon in negative images is very small. This problem is alleviated to some
extend for large values of n. |

Figure 4-2 shows the accuracy of the algorithm for different values of n. Because of
the random nature, results vary from run to run. We collected the results from 5 runs
and took the average accuracy. The standard deviation is shown as error bars.

Because of the similarity between randomly-sampled codebooks evaluated on the
SVM classifier and the standard model a comparison between the two is possible. Es-

sentially, the difference in the two approaches is that the standard model uses C2 maps
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Figure 4-2: Performance of random sampling as a function of the codebook size. This
plot show the accuracy on the testing set evaluated on S2 maps using an SVM classifier.

as input to the classifier whereas S2 maps are used for evaluating the codebooks in this
chapter. Figure 4-3 clearly shows that using S2 maps produces better results. However,
this is not an indication that the standard model’s performance is poor. Recall that 52
maps have position information which C2 maps do not have. This effectively increases
the number of features available to SVM by a factor, the size of the S2 maps. Addi-
tionally, the standard model is scale-invariant, but our datasets do not offer scale- or

position- invariance, so in this case C2 do not have real advantage.

4.4.2 GentleBoost Selection

Boosting is a popular machine learning technique that improves the performance of
simple classifiers, called weak learners, by creating a linear combination of them. In

their simplest form, weak learners are thresholding classifiers of the form X; > th or
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Figure 4-3: Comparing the performance of S2 and C2 maps. Here we show the accuracy
at the EER of both S2 and C2 units evaluated on codebooks of varying size. Note that
the combination of an SVM classifier, random codebook selection, and the use of C2
units is exactly what the standard model uses.

X < th that predict positive class when the value of a certain feature, f, is above (resp.
below) the threshold th. It is not difficult to show that for each training data vector,
there exists a weak learner with at least 50% accuracy on the data. The power of boosting
is that it incrementally adds to classifier weak learners with at least 50% accuracy and
assigns voting weight to each learner, the coefficient in the linear combination. It also
reweights training examples in such a way as to put more emphasis on examples that
were miscategorized by the current set of weak learners. Thus, each subsequent weak
learner is good on the examples that previous learners miscategorized. More detailed
description of boosting is available in [10, 11].

Different implementations of boosting vary in the details. The two most commonly
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used implementations are AdaBoost[10] and GentleBoost[11]. For our experiments we
choose the GentleBoost algorithm.

We use boosting to augment our random sampling method. As we mentioned above,
selecting more random patches diversifies the codebook and increases the chance of
coming upon good visual features. However, having a lot of patches just for the few good
ones is not desirable — it increases the computational complexity and, more importantly,
the size of the parameter space of the Bayesian network at the next stage.

We use GentleBoost to select the best n patches from a big pool of N(N >> n)
randomly select patches. In particular, we use the C2 maps generated on the N patches
on the training set. In our experiments we use N = 1500.

The selection process exploits the fact that GentleBoost assigns weights to weak
learners and since each learner operates on one feature, the weight of the learner indicates
the importance of the feature. This gives us a direct mapping between weak learner
weights and patch importance. In the end, the top n patches are selected for the final
codebook.

Note that while it makes sense to extract patches only from positive training exam-
ples, evaluating the quality of those patches needs to be done on both the positive and
negative training set — boosting is a classifier itself and needs at least two classes to work

with.

4.4.3 Jurie-Triggs Codebooks

The final method for generation of codebooks was presented by Jurie and Triggs [16].
It combines ideas from all of the methods presented here and tries to overcome some of
their limitations.

In explaining the idea of the algorithm it is useful to refer to the k-means problem.
The k-means problem can be formulated this way: given a set of points, z; € R¢, i =

1,...,m, find their disjoint partition in k clusters, z; € S;,7 = 1,...,k, such that the
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Figure 4-4: Performance of GentleBoost codebooks as a function of the number of pro-

totypes. This plot show the accuracy on the testing set evaluated on S2 maps using an
SVM classifier.

sum of the L, distances from each point to the mean of its assigned cluster is minimized.
That is, minimize the function } ;e 3; .es, 11T — wil|%, where p; = D i mes; Ti- Lhis
problem is known to be NP-hard, so in practice the cost function is approximated.
What relates k-means to our work is that the GMM is a generalization of it in some
respect. Consider the distance function. In k-means the distance function, L, distance,
is symmetric in all directions around the cluster center, i.e. all points at a given distance
form a high-dimensional sphere. In GMM, all points “equidistant” from the center form
an ellipse and its semi-axes are determined by the covariance matrix.

What is common between k-means and GMM is that both spread out to infinity. In
case there is a point far from the rest, it will affect the center of the cluster it is assigned
to. Worse, it may be assigned an individual cluster. This is what Jurie and Triggs try

to solve by limiting the radius of the cluster to a fixed value 7. Their algorithm works

53



as follows:

1. The input images are densely sampled. In our implementation we consider all

possible crops of the given patch size.

2. At each iteration N patches are randomly selected from the pool. A mean shift

algorithm (described below) is performed on them and a cluster center is found.

3. Once the algorithm finds one cluster center, it never changes it. All unassigned
patches that are within radius 7 from the center are assigned to the cluster and
removed from the pool. After that no new members can join the cluster because

of the limit on its radius. The algorithm proceeds to the next cluster.

4. After k iterations or until there are no more patches in the pool, the cluster finding
process stops. Usually, k is chosen to be larger than the number of patches. This

requires a selection process to pick the best n patches.

5. The authors suggest several approaches. The simplest one is to train an SVM
classifier on the C2 maps and use the weighted sum of the support vectors to find
which patches are important. Our suggestion is to use GentleBoost. Figure 4-5

shows there is a slight gain in using GentleBoost selection.

The Jurie-Triggs (JT) algorithm is incremental in nature and once a cluster center
is selected it and its cluster are never changed afterwards. The process can continue for
as long as there are input patches left. In practice, though, we set a predefined limit &

to use for the pool size.
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Figure 4-5: ROC curve comparison between GentleBoost and SVM weights in the selec-
tion step of the Jurie-Triggs algorithm.
Mean Shift Clustering

The mean shift procedure by Comaniciu and Meer [4] is a density estimator that given

a kernel K (z) and set of datapoints z; € R,i =1,..., N computes the density function:

A 1 & T—T;
fz) = W;K( ; 1)

In loose terms, the value of the function is a good indicator of how “populated” the
region around the point z is. Overall, the peak of the function is the place with the
maximum density and is the best candidate for a cluster center.

The algorithm we use for finding the maximum of f(z) is a hill climbing along the
gradient vector [4, 13]. This is the algorithm that we use. Figure 4-6 shows a mean shift
iteration done by this algorithm.

There are two paramaters that need to be selected: the bandwidth parameter, h and
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Figure 4-6: An illustration of a mean shift iteration..

the kernel function. While the bandwidth is a true parameter, Comaniciu and Meer
suggest the use of radially symmetric kernel. The kernel that Jurie and Trigs use and

that we adopt is the multivariate Gaussian (normal) kernel:

K(a) = ey exp (5ol

Evaluation

The main four parameters of the algorithm are r, the cluster radius; N the number of
patches sampled from the pool; h, the mean shift bandwidth; and k, the pool size.

The paper [16] suggests setting h = r. In one of the examples, Jurie and Triggs use
h =r=0.8, N = 1000,k = 2500. We use a very similar setup, but we decrease k to
about 1500 because instances with larger values for & occasionally ran out of computer
mMemory.

We also decided to change the mean shift bandwidth to A = 0.1. In our experiments
using h = r = 0.8 proved to produce poor codebooks because the Gaussian kernel has
very high spread for h = 0.8. This yielded cluster centers that captured the entire set

of N vectors resulting in the same patch being selected over and over again.
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Figure 4-7: Performance of JT codebooks. This plot show the accuracy on the testing
set evaluated on S2 maps using an SVM classifier.

4.5 Comparison of Codebooks

What is left at the end is to compare the three algorithms and decide on which one to
use.

Figure 4-9 show how performance improves with the number of prototypes and with
the algorithm. As expected, the random sampled codebooks underperformed the other

two learned codebooks, though, not by a large margin as one would have expected.

Selection method | Training time Accuracy (at EER)

Random Sampling < 1 min 80.7% (averaged)
GentleBoost ~ 15 minutes 83.5%
JT codebooks ~ 330 minutes 84.2%

Table 4.1: Running time in constructing the codebooks. The table also shows the ac-
curacy at the EER. Comparison is done on 300 prototypes to exhibit the steady-state
performance of the codebook learning algorithm.
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Figure 4-8: JT codebook training for different values of r. This figure shows the size of
the pool with the number of iterations for different values of 7.

As for the other two methods, it is a bit disappointing that JT codebooks, being one
level more sophisticated, do not outperform GentleBoost selected codebooks for higher
number of prototypes. It is expected, though, that with small number of prototypes JT
codebooks outperform GentleBoost because of the extra computational effort put into
finding each prototype. Evidently, after about 50 prototypes the amount of effort put
in the pool selection process has diminishing returns.

To conclude this chapter and our analysis of codebook algorithms, we can claim that
overall GentleBoost is the better method for codebook selection given its performance

and running time.
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Figure 4-10: ROC curves to compare GentleBoost and JT codebooks evaluated with S2
maps on a linear SVM classifier. The number of prototypes in both cases is 50.
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lection algorithms: random sampling (top), GentleBoost

selection (middle), JT codebooks (bottom). Appendix B contains a more detailed version

showing the actual patches.
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Chapter 5

Tuning the Pyramidal Bayesian
Network

This chapter advances our work from Chapter 4 where we reached to a decision for a
codebook selection algorithm. Here we examine the use of this codebook algorithm in

the Bayesian network model.

5.1 Bayesian Network Layout Design

All experiments in this chapter use one of the two Bayesian network layouts presented
here. This is because the number of degrees of freedom in choosing the network layout
is substantial and is beyond the scope of this thesis work.

The first layout, Layout A , was directly adapted from the car dataset experiments
in Chapter 3. Ultimately it traces back to Dean’s MNIST example. The second layout,
Layout B , is the one we designed with the goal of overcoming some of the problems of
the first layout.

The three main considerations in designing the layouts are the width of the receptive

field, the total size of the parameter space of the probability distribution, and the shape
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of the dataset images. These problems are explained in the next few paragraphs.

5.1.1 Receptive Field Size

The Pyramidal Bayesian network takes its name from the pyramidal shape of the re-
ceptive fields. Each layer of the network except the input one at the bottom consists
of units with receptive fields in the layer below. Units respond based on the response
patterns in their receptive fields. The number of possible response combinations each
unit has to learn is directly affected by the receptive field size. However, this is not
the only variable here. In the PBN model nodes /units are probability distributions over
a finite domain. The size of the domain is the second direct factor in the number of
combinations. For a receptive field of size W x W and domain size n, the total number

of combinations for the receptive field is n"?,

5.1.2 Parameter Space Estimation

The total size of all probability mass tables in the network is what we call the parameter
space of the network. This is because the network has to learn all of these values in order
to be able to perform inference. This number, however, is not the straightforward sum
of the domain sizes of each variable because of the complex conditional dependencies
among the nodes of the network with each conditional dependence increasing the size
of the probability table by a factor of the domain size of the conditioned variable. For
example, while two random variables z,y over the domain [10] require 10 values each
to describe their probability mass functions (in fact only 9 values are required, because
all probabilities must sum up to 1), describing their conditional dependence x|y requires
a table of size 100, the values of p(z|y) for each z and y. This does not imply that
conditional dependencies have negative impact because they increase the parameter
space. As we saw in Chapter 2, Figure 2-3 the parameter space of the joint probability

distribution is orders of magnitudes larger than the parameter space of the network with
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conditional dependencies.

5.1.3 Dataset Shape Consideration

Finally, the network should not change the aspect ratio of the input significantly. The
pedestrian database has an aspect ratio of 2 : 1. The C1 maps, apart from having an
extra dimension for the orientations, are downsampled to size 30 x 14 for an aspect ratio

of =~ 2.14. This is the ratio we try to maintain.

5.1.4 Network Layouts

The two network layouts that we describe consist of three layers each: one root/output,
one hidden, and one input layer. The presence of lateral connections is a separate
parameter of the experiment. With the input layer containing independent (for the
Bayesian network) units and the root layer consisting of only one node, the hidden layer
is the only appropriate place for lateral connections.

Following is a description of the layouts along with a table that summarizes their

properties.

Layout A

This layout is inherited from the original layout for the MNIST database in Dean’s PBN
code and from the very similar layout used in Chapter 3 for the car dataset. The original
layout features a 7 x 7 input layer divided into receptive fields of 3 x 3 overlapping by 1
unit in each dimension (see Figure 2-5). The hidden layer has a size of 3 x 3 and is the
receptive field for the root node in the input layer.

To keep the aspect ratio close to that of the C1 maps that serve as input for the
filtering stage, we modify the above network by removing 2/3 of the units in the hidden

layer. This makes the size of the input layer 3 x 7 (still keeping the overlap along the
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Network Lateral Codebook || Parameter RF combinations
connections size space size | Hidden Layer Root node
Layout A No 16 12062 16° = 2% 10° ~ 210
Layout A No 50 37562 509 ~ 250 10% = 210
Layout A Yes 16 12422 169 = 236 103 =~ 210
Layout A Yes 50 37922 50° =~ 250 103 ~ 210
Layout B No 16 2642 16% =216 410 = 920
Layout B No 50 8082 50% ~ 222 410 = 220
Layout B Yes 16 4778 164 = 216 410 = 220
Layout B Yes 50 10218 50% & 222 410 = 920

Table 5.1: Description of all layouts and their parameters.. Parameter space size is
the size of the probability distribution tables, the actual number of free parameters the
Bayesian network has to learn. Receptive field (RF) combinations refers to the number
of different input configurations the units in each layer can observer from their receptive
fields.

longer dimension) and the size of the hidden layer 1 x 3, Figure 5-1. The aspect ratio is
~ 2.33.
For the domain size of the hidden layer we choose 10, we tried smaller values such

as 2 and 4 without success.

Layout B

One problem with Layout A is the high number of parameters. It turns out that the
overlap region quadruples the number of parameters. Another problem with Layout A is
the enormous number of receptive field combinations for the hidden layer. We designed
Layout B to address these two problems.

In this layout, the input layer is a rectangle of size 4 x 10 that is visualized as a grid
of 2 x 5 receptive fields of size 2 x 2 tiled without overlap as shown on Figure 5-2. This
yields a hidden layer of size 2 x 5, which is also the receptive field for the root node.

We choose to use random variable with domain size of 4 for the nodes in the hidden
layer. This balances the number of combinations for the receptive field in both the

hidden and the root layer in addition to decreasing it well below the corresponding
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Figure 5-1: Schematic of network Layout A . Note the overlap of the receptive fields in
the input layer.

figures for Layout A .
The aspect ration of the input layer is 2.5.
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Figure 5-2: Schematic of network Layout B .
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5.2 Software Systems

5.2.1 Bayesian Network Toolbox for MATLAB

Murphy’s Bayesian network toolbox[23] (BNT) is a plug-in module written in MATLAB
that implements a variety of graphical model techniques and algorithms including learn-
ing and inference of Bayesian networks. This is the library Dean uses in his PBN code.
In order to increase the speed of the computations he augments it slightly with the idea

of hierarchical expectation refinement (or subnetworks) that we discussed earlier.

5.2.2 OpenPNL Library by Intel

The OpenPNL library is a C++ analog of Murphy’s toolbox with a very similar set
of functionality. Unlike MATLAB, which is a script language, C++ is compiled and
compiler-optimized. In the most cases this means

OpenPNL was released under an open source license by Intel and has since been
supported by the open source community. Although its active development has ceased,

the library is in mature state and supports the functionality that we need for this project.

5.2.3 Comparison

Our experiments showed a significant performance improvement using the OpenPNL
library. Table 5.2 summarizes the results on some experiments used to help us with our
choice. Based on this data, we decided to use the OpenPNL library for all our tests. We
also decided not to run the data-parallel version of the library, but to provide parallelism

through multiple problem instances running concurrently.
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Description | Implementation Resource Usage Accuracy
Running time | Memory usage

Test 1 OpenPNL 18 MB 2 min 64.8%

Test 1 BNT 1750 MB > 250 min 66.4%

Test 2 OpenPNL 20 MB 2 min 67.8%

Test 2 BNT 1560 MB 90 min 69.9%

Table 5.2: Benchmarking the OpenPNL and Murphy’s BNT toolbox implementations.
We have taken various samples from our experiments to benchmark the two systems
both in terms of accuracy, but also of running time. Evaluations are performed on a
single processor on similar settings.

5.3 Experiments Performed

5.3.1 Evaluation on Index 52 Maps

We first start by applying our results from the previous chapter to the PBN. Recall that
we chose GentleBoost as the codebook of choice.

In Table 5.3 we show comparison results for different regime of parameters. There
does not seem to be clear-cut setting that achieves optimal results, therefore, for sub-
sequent experiments we use only codebooks of size 16 and networks with no lateral
connections.

Figure 5-3 shows a comparison to the standard model as a function of the number of
training examples. We see that the performance of our model increases, but we cannot
see more of the trend because the dataset contains only 14000 examples. In Appendix C
we describe a workaround for this limitation. The results on a larger dataset are shown

on Figure 5-6 and described in the last part of this section.

5.3.2 Separate Codebook at Each Location

On Figure 5-4 we show the relative frequency of appearance of each prototype index
in the dataset for two particular location: a corner of the image, and the center. As

expected there is not much activity in the corner and the histogram is dominated by a
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(a) Layout A

Lateral | 16 Prototypes 50 Prototypes
Yes 71.06% 71.61%
No 71.43% 71.06%

(b) Layout B

Lateral | 16 Prototypes 50 Prototypes
Yes 71.61% 71.72%
No 71.43% 71.25%

Table 5.3: Summary of results on index S2 maps under different regimes of parameters.
Experiments conducted on 2000 positive and 6000 negative examples. Results show the
accuracy at the EER.

single patch. In the center, however, we can see at least ten prototypes that play equal
role and none of them is the one that peaked in the corner. This suggests that the
total number of prototypes may not be enough to capture the variety at all locations
especially when the predominant prototypes for each location are disjoint. To test this
hypothesis we propose a new paradigm in which a separate codebook is trained for each
location. To justify the validity of this setup, note that prototype indexes at different
location are independent. They do not even have to belong to the same codebook.

Our experiments, however, do not show any significant improvement over a unified

codebook. (see Figure 5-5)

5.3.3 Evaluation on Index C'1 Maps
Augmenting the Domain of Random Variables

So far in our experiments we have considered filtering methods that for each location
assign the index of the prototype with the strongest response. This scheme, however,
has a drawback. It assumes there exists a prototype that can describe the input data at
each location. This assumption does not necessarily hold true. One argument for this

is that prototypes are 8 x 8 x 4 = 256 dimensional vectors, but they are very few in
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Figure 5-3: Performance of indez S2 maps with the number of training ezamples. Perfor-
mance is evaluated on Layout B on a codebook of size 16 produced by the GentleBoost
approach.

Network Lateral Orientations | Accuracy at EER
Layout A No 4+1 70.88%
Layout A No 8+1 76.74%
Layout A No 16+1 77.66%
Layout B No 4+1 72.53%
Layout B No 8+1 75.27%
Layout B No 16+1 73.81%

Table 5.4: Summary of results on index C1 maps. Note that the “+ 17 in the Orienta-
tions field indicates an augmented domain. Evaluated on the complete original dataset
of 2000 + 12000 images.

number. The immense volume of the 256-dimensional space, even when restricted to a
cube of small side, cannot be captured by so few prototypes.

The solution we propose is to augment the domain size of each random variable in
the input with a value which signifies that the strongest response is too weak for the
prototype to be considered close to the input at that location. In other words, none of

the prototypes is close enough.
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Figure 5-4: Histograms of prototype frequency at two locations. Shown is the relative
occurrence(%) of each prototype at a location in the bottom-left corner (left) and in the
center (right). The codebook is of size 50.

This method is applicable for both the index C'1 and S2 maps. For C'1 maps a
threshold value is picked in advance and an extra “orientation” layer is created with
values equal to the threshold. Therefore, at each location the argmax operator will
automatically select the dummy orientation when the responses at the other orientations
are below the threshold.

For S2 maps it is not feasible to set a threshold because the prototypes are indepen-
dent of each other and may require different threshold values. Instead, we implement
a scheme that automatically sets the threshold at twice the standard deviation of the
peak responses for the prototype. In this implementation, all locations with patches too
far from their closest prototype, as determined by the standard deviation criterion, are
assigned the special value that augments the domain of the random variable. Effectively,
this marks the patch under the location as not being close to any prototype. Note that
in this particular paragraph we consider the response to be the L, distance and not the

RBF value. Recall the inverse relationship between the two.
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Figure 5-5: ROC curves comparing single/unified codebook performance and separate
codebook per location. Comparison is done on a GentleBoost generated codebook with
16 prototypes and a Layout A network.

5.3.4 Improving the Index S2 Maps

The final set of experiments accounts for all our observations we have made so far. The

model includes the following:

A codebooks of size 16, generated by GentleBoost.

No lateral connections.

An augmented domain.

Up to 48,000 training samples (24,000 positive and 24,000 negative). We gen-
erated additional virtual ezamples to increase the size of the dataset. For more

information about virtual examples refer to Appendix C.
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Network  Number of samples Accuracy at EER

Non-augmented | Augmented
Layout A 2000 67.56% 68.86%
Layout A 4000 68.86% 70.88%
Layout A 8000 71.25% 71.06%

Table 5.5: Comparison between augmented and non-augmented domains on index S2
maps.

e Both positive and negative samples were split in 5 equal parts. Five instances of

the model were ran, each trained on 4 parts of the data and tested on the fifth.

Figure 5-6 shows the performance of this method when compared to the standard
model. In this case both the integrated model and the standard model used the same
codebooks generated by GentleBoost. The standard model uses only one scale band

(band 1), 4 orientations, and a patch size of 8 x 8.

5.4 Discussion

It is unfortunate that the integrated model underperforms the standard model on the
tests we conducted.

An important advantage of the standard model is that its performance builds up as
more scales, more orientations, and more patch sizes are added. But even when reduced
to its bare minimum, the standard model is still better than a system with complex
and sophisticated codebook evaluation and multilayered mesh of variables, which the
PBN system is. The difference between the two is that in the standard model C2
maps measure the amount of relevant visual information present in the image, whereas
Bayesian networks try to learn relationships between the visual features.

On the other hand, we admit that due to the very large parameter space in the
configuration of the model, we may not necessarily be operating the PBN model at the

regime of parameters that extracts the most value out of it. In particular, we left the

72



~
2]
T

~
N
T

S
T

Accuracy(%) at the equal-error-rate

o bbb
Hybrid model
: : : : : =~ = = Standard model
68_.. ...... SRR SRR R e . . .-
66 i i ; i i i i i i
0 0.5 1 15 2 25 3 35 4 45
Number of training examples x 10°

Figure 5-6: Comparison between the standard model and the Bayesian network using
index S2 maps on GentleBoost selected codebooks. Evaluation is done on Layout B with
random splits of training and testing data in 4 : 1 ratio. The two models use the same
codebook of size 16. The error bars represent the standard deviation across the 5 splits.

space of possible network layouts largely unexplored. Yet, a comprehensive research of
the network structure is beyond the scope of this Master’s thesis.

Finally, Figure 5-6 shows the promise of the model to be in the number of training
samples. As we increase the size of the dataset, the performance of the model improves
consistently, while that of the standard model flattens out. We believe that with even
larger datasets, with hundreds of thousands of examples, the model will show its true
performance. Our argument is that the number of possible combinations in the receptive
field require substantial amount of training data that we do not have available as of this

time.
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Chapter 6

Conclusion and Future Work

6.1 Future Work

In conclusion, we suggest two ideas that expand on this work.

6.1.1 Training on Larger Datasets

In our view, training the Bayesian network on very large datasets is the logical next step
in this project. Evidence from performance measures suggests that the performance of
the model continues to improve as more training examples are added to the system.
Ultimately, we expect to achieve better performance, for training sets with millions of
examples. Unfortunately, we are not presently aware of a suitable dataset of real-world
images with this many examples. One suggestion is the replacement of huge datasets
with sets of short videos as a bulk source of still images. These images, however, need

to have the variety required for the comprehensive training of the model.
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6.1.2 Exploring the Network Layout

Another idea for future work is the exploration of the parameter space of network layouts.
In this thesis we present experiments done on just two of the numerous possible layouts.
We did not observe any significant difference in performance between the two layouts
and so we do not wish to speculate as to how important the layout is for the performance.

In attempting various layouts it may be helpful to consider the biological point of
view. It is believed that units at different levels behave in a similar manner and have
receptive fields of similar size. This consideration alone will drastically reduce the size

of the search space.

6.2 Conclusion

In this thesis work we explored one approach towards augmenting an existing biologically
plausible system with feedback processing using Bayesian networks. We started with
a simplistic model and we sequentially improved its components. First, we proposed
three algorithms for generating visual codebooks for the model. Two of the algorithms
improved upon the corresponding version in the initial model. Next, we proposed several
suggestions for improvements on the Bayesian network component. In the end, we
compared the resulting system back to the original.

Our model underperforms the initial system by a small margin, but as we increased
the training data we noticed a trend of improvement which surpasses that of the original
model. Unfortunately, we hit a limitation on the amount of available data we have.

Our belief is that the model has potential for improvement and we conclude with the

two suggestions for future work outlined above.
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Appendix A

Problems with GMM

Empirical evidence from the PBN model in Chapter 3 suggests numerical instability
problems in the Gaussian mixture model for high-dimensional spaces. In particular,
using C'1 maps with patch size of 8 x 8, yields 256-dimensional patches. From our
evidence, we know that 16-dimensional vectors do not trigger the problem, while 64-
dimensional do. The next paragraphs try to explain why this is the case.

By definition, the GMM tries to learn n d-variate Gaussian functions of the form:

1 exp — (z — )" (@ — )
(2m)42 /1% 2

where p; are the mean vectors and ¥; are the covariance matrices, each of size d x d.

i

The error function for a given set of points, X = {z;|¢ = 1,...,m}, may vary from
implementation to implementation, but we can assume a working definition that is as

good as any other in practical terms:

2
> |l max Gi(z;)l]

je€l..m

In other words, this is the sum of the squared value of the “closest” Gaussian for each
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point. Note the similarity between this definition and the error measure for the k-means
problem. In GMM, the goa is to select the parameters for G;, the covariance matrix
-, and the mean vector p;, in such a way as to minimize the error. The size of the
parameter space is then O(nd?).

Let us examine the scalability of the model in terms of its two main variables: the
number of Gaussians, n, and their dimension, d. The number of Gaussians is essentially
the size of the codebooks since each Gaussian represents one visual prototype. In the
GMM approach, the n Gaussians have to be selected in such a way as to account for as
many of the d-dimensional patches as possible. This is easy if there are n distinguishable
clusters of points in the space. If, however, the pattern of points/patches in R? is
more complex and spread out, the Gaussians have to stretch to cover more points, thus
becoming overly general. However, there is no cut-off range in the Gaussian exponential
function which stretches to infinity, so spread-out Gaussians are influential on a lot of
points. This trouble is avoided by increasing n. But the total number of parameters is
linearly proportional to n and to learn all of them we need proportionally more training
examples. From a technical standpoint, this indicates at least quadratic running time
dependence on 7.

On the other hand, increasing d poses a purely technical problem — a numerical under-
or overflows in machine words. The learning process involves numerous evaluations of
Gaussian functions, G;, and those in turn involve the computation of the determinant
of ¥;. ¥; is a d-dimensional vector and in the simplest case of a diagonal matrix, its
determinant is the product of all d elements across the diagonal. (Diagonal elements are
important even for non-diagonal covariance matrices as they represent the non-correlated
component of the variance along each dimension.) However, storing a product of d
numbers can easily lead to overflows or underflows. The reason being that all numbers
represent variances and are of similar order of magnitude, which in turn is proportional

to the dynamic range of the input images. Consider 8-bit images with pixel values in
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the range 0...255. Taking the product of d such numbers may lead to an overflow.
If, however, the dynamic range of the input is shifted to the interval [0, 1] the product
may lead to an underflow. This is especially true for large enough values of d and is
precisely what was observed during some of the experiments with values of d > 100.
Unfortunately, there is no simple workaround that guarantees absolute avoidance of the
problems. To make it even worse, underflows or overflows are not detectable by a machine
method during the process of learning, at least not without serious modifications to the

code.
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Appendix B

Codebook Prototypes and Their

Relative Occurrence

These three figures each show the relative frequency of occurrence of prototypes from
corresponding codebooks on positive and negative examples. The frequencies are taken
from the index S2 maps built on the training set. The figures also show the actual C1
prototypes in all four orientations.

This is the expanded version of Figure 4-11.
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Figure B-1: Frequency of occurrence of 50 randomly sampled prototypes. Each pair
of bars shows the relative frequency of occurrence of the corresponding prototype in
positive(left, dark-colored) and negative(right, light-colored) examples.
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Figure B-2: Frequency of occurrence of each GentleBoost prototype. Each pair of bars
shows the relative frequency of occurrence of the corresponding prototype in positive(left,
dark-colored) and negative(right, light-colored) examples.
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Figure B-3: Frequency of occurrence of each JT prototype. Each pair of bars shows the
relative frequency of occurrence of the corresponding prototype in positive(left, dark-
colored) and negative(right, light-colored) examples.
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Appendix C

Virtual Examples

Virtual ezamples are training input samples that are not part of the original dataset,
but are subsequently generated in order to reduce the variety of the training data or the
total number of training examples.

Eleven virtual examples were generated for each positive training image, thereby
increasing their number by a factor of 12, to 24000 images. A combination of the

following procedures were used to generate the images:
e Flipping the image left-to-right.
e Rotating the image to +2 degrees around its center.

e Equalizing the intensity histogram of the image. This procedure effectively remaps

the intensity values.

Given the relatively large pool of negative examples, only one virtual example was
generated for each negative image by flipping the image left-to-right.

Figure C-1 shows a set of generated virtual examples on a single input image.
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Figure C-1: Ezample of virtual training samples generated from the pedestrian database..
The top left image is the original image. The bottom row contains the histogram adjuste

images from the top row.
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