
Optimization of Lyapunov Invariants in Analysis and

Implementation of Safety-Critical Software Systems

by

Mardavij Roozbehani

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author

/ 'iepartment of Aeronautics and Astronautics
25 July 2008

Certified by

Certified by

Certified by

Accepted by.........

MASSACHUSETTS INSTITUTE
OF TECH ,LOGY

OCT 1 5 2008

LIBRARIES

_ ~Alexandre Megretski
Professor of Electrical Engineering and Computer Science

Thesis Supervisor

Eric Feron
Dutton Ducoffe Professor of Aerospace Software Engineering

Thesis Supervisor

Emilio Frazzoli
Associate Professor of Aeronatuics and Astronautics

S- Thesis Supervisor

U Prof. David L. Darmofal
Associate Department Head

Chair, Department Committee on Graduate Students

ARCHIVES

W (V' 4*1-

Optimization of Lyapunov Invariants in Analysis and Implementation of

Safety-Critical Software Systems

by

Mardavij Roozbehani

Submitted to the Department of Aeronautics and Astronautics
on 25 July 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This dissertation contributes to two major research areas in safety-critical software systems,
namely, software analysis, and software implementation. In reference to the software analysis
problem, the main contribution of the dissertation is the development of a novel framework,
based on Lyapunov invariants and convex optimization, for verification of various safety and
performance specifications for software systems. The enabling elements of the framework for
software analysis are: (i) dynamical system interpretation and modeling of computer programs,
(ii) Lyapunov invariants as behavior certificates for computer programs, and (iii) a computa-
tional procedure for finding the Lyapunov invariants.

(i) The view in this dissertation is that software defines a rule for iterative modification
of the operating memory at discrete instances of time. Hence, it can be modeled as a
discrete-time dynamical system with the program variables as the state variables, and the
operating memory as the state space. Three specific modeling languages are introduced
which can represent a broad range of computer programs of interest to the control com-
munity. These are: Mixed Integer-Linear Models, Graph Models, and Linear Models with
Conditional Switching.

(ii) Inspired by the concept of Lyapunov functions in stability analysis of nonlinear dynami-
cal systems, Lyapunov invariants are introduced and proposed for analysis of behavioral
properties, and verification of various safety and performance specifications for computer
programs. In the same spirit as standard Lyapunov functions, a Lyapunov invariant is
an appropriately defined function of the state which satisfies a difference inequality along
the trajectories. It is shown that variations of Lyapunov invariants satisfying certain
technical conditions can be formulated for verification of several common specifications.
These include but are not limited to: absence of overflow, absence of division-by-zero,
termination in finite time, and certain user-specified program assertions.

(iii) A computational procedure based on convex relaxation techniques and numerical opti-
mization is proposed for finding the Lyapunov invariants that prove the specifications.

The framework is complemented by the introduction of a notion of optimality for the graph
models. This notion can be used for constructing efficient graph models that improve the

analysis in a systematic way. It is observed that the application of the framework to (graph
models of) programs that are semantically identical but syntactically different does not produce
identical results. This suggests that the success or failure of the method is contingent on
the choice of the graph model. Based on this observation, the concepts of graph reduction,
irreducible graphs, and minimal and maximal realizations of graph models are introduced.
Several new theorems that compare the performance of the original graph model of a computer
program and its reduced offsprings are presented.

In reference to the software implementation problem for safety-critical systems, the main
contribution of the dissertation is the introduction of an algorithm, based on optimization
of quadratic Lyapunov functions and semidefinite programming, for computing optimal state
space implementations for digital filters. The particular implementation that is considered is a
finite word-length implementation on a fixed-point processor with quantization before or after
multiplication. The objective is to minimize the effects of finite word-length constraints on
performance deviation while respecting the overflow limits. The problem is first formulated
as a special case of controller synthesis where the controller has a specific structure, which is
known to be a hard non-convex problem in general. It is then shown that this special case can be
convexified exactly and the optimal implementation can be computed by solving a semidefinite
optimization problem. It is observed that the optimal state space implementation of a digital
filter on a machine with finite memory, does not necessarily define the same transfer function
as that of an ideal implementation.

Thesis Supervisor: Alexandre Megretski
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Eric Feron
Title: Dutton Ducoffe Professor of Aerospace Software Engineering

Thesis Supervisor: Emilio Frazzoli
Title: Associate Professor of Aeronatuics and Astronautics

To Mitra

Acknowledgements

I would like to take this opportunity to express my deepest appreciations to my advisors

Sasha Megretski, Eric Feron, and Emilio Frazzoli. Sasha generously spent countless hours

teaching me some of his profound technical expertise and provided me with an invaluable

training that I could receive nowhere else. I will be forever grateful for this opportunity. I

cannot thank Eric enough for his constant support, advice, and encouragement, and for teaching

me how to evaluate and pursue great research ideas. I am grateful for all the important skills

that I acquired through him during these years. I am truly thankful to Emilio for his invaluable

support and guidance over the past year.

I am grateful to Prof. John Deyst, and Prof. Hamsa Balakrishnan for kindly serving on

my thesis committee and for providing valuable feedback which improved this work in many

ways. I would like to thank Prof. Pablo Parrilo for many insightful discussions and for his

generosity with his time. I would also like to thank Prof. Munther Dahleh and Prof. Sanjoy

Mitter for their constructive feedback and encouragement, particularly about the chapter on

implementation (chapter 6).

Many thanks to Mehrdad Pakmehr at Georgia Tech who generously read the entire thesis

and his comments and questions helped me improve the clarity of the presentation. I thank my

friends and colleagues at MIT who made these years memorable: Amirali Ahmadi, Ola Ayaso,

Amit Bhatia, Animesh Chakravarthy, Peyman Faratin, Ather Gattami, Lisa Gaumond, Brian

Haines, Sertac Karaman, Patrick Kreidel, Jerome Le Ny, Rodin Lyasof, Mike Rinehart, Philip

Root, Navid Sabbaghi, Keith Santarelli, Sridevi Sarma, Chrsitian Schunk, Tom Schouwenaars,

Danielle Tarraf, and Peng Yu.

A special word of thanks goes to the staff members of the Department of Aeronautics and

Astronautics and of LIDS: Marie Stuppard, Lisa Gaumond, Brian Jones, Doris Inslee, Angela

Olsen, and Jennifer Donovan who were always supportive and helpful beyond expectations.

I am grateful to my mother Manijeh and my father Houshang for their unconditional love,
dedication, and support. I owe everything I have ever achieved to them. I sincerely thank my

sisters Mojgan and Marjan, and my brother Hajir who have always been there for me. Lastly,

I would like to wholeheartedly thank my wife, Mitra for her loving devotion, and her mother,

Mahnaz for her enduring love and support.

Funding Acknowledgement

Funding for this research has been provided in parts by the National Science Foundation,

Awards NSF-0451865-CNS/EHS, NSF-0715025-CNS/EHS, and NSF-0615025-CSR/EHS - Cer-

tification of Safety-Critical Software.

Contents

1 Introduction

1.1 Motivation

1.2 Literature Review

1.2.1 Formal Methods

1.2.2 System Theoretic Methods

1.3 Statement of Contributions and Thesis Outline . .

1.3.1 Software Analysis

1.3.2 Software Implementation

1.4 Notations

2 Dynamical System Interpretation and Modeling

2.1 Generic Representations

of C(

2.1.1 Concrete Representation of Computer Programs

2.1.2 Abstract Representation of Computer Programs

2.2 Specific Models of Computer Programs

2.2.1 Mixed-Integer Linear Models

2.2.2 Graph models

2.3 Specifications

2.3.1 Safety

2.3.2 Program Termination in Finite Time

2.4 The Implications of Abstractions

2.5 Summary

10

. 10

. 14

. 15

. 15

. 18

. 19

omputer Programs 20

. 21

. 2 1

. 27

. 36

. 37

. 45

. 55

. 55

. 59

. 59

. 60

^I -

3 Lyapunov Invariants as Behavior Certificates

3.1 Preliminaries

3.1.1 Lyapunov Invariants for MILMs

3.1.2 Lyapunov Invariants for Graph Models.

3.2 Behavior Certificates

3.2.1 Liveness

3.2.2 Safety

3.3 Summary

62

.................... 62

. 65

.... 65

.................... 68

. 68

. 72

. 81

4 Computation of Lyapunov Invariants

4.1 Preliminaries

4.1.1 Convex Parameterization of Lyapunov Invariants . .

4.1.2 Convex Relaxation Techniques

4.2 Optimization of Lyapunov Invariants for

Mixed-Integer Linear Models

4.2.1 Quadratic Invariants

4.2.2 Linear Invariants

4.3 Optimization of Lyapunov Invariants for Graph Models . .

4.3.1 Node-wise Polynomial Invariants

4.3.2 Node-wise Quadratic Invariants for Linear Graphs .

4.4 Case Study

4.5 Summary

4.6 Appendix

........... . 83

. 83

........... . 85

........... . 89

........... . 89

.. 92

. 96

........... . 97

. 98

•.. 100

. 103

................... 104

5 Optimal Graph Models

5.1 Motivation

5.2 Graph Reduction and Irreducible Graph Models

5.3 Comparison of Irreducible Graph Models

5.3.1 Comparison of Maximal and Minimal Realizations of Ki Graphs

5.3.2 Comparison of Maximal and Minimal Realizations of Kn Graphs

5.4 Summary

106

. 106

. 110

. 117

. 120

. 125

. 135

6 Optimal Implementation of Linear Time-Invariant Systems for Safety-Critical

Applications

6.1 Introduction

6.2 Problem Formulation

6.2.1 Linearization via signal + noise model

6.2.2 Structured Linear Controller Synthesis Formulation

6.3 Optimal State Space Implementation via -'i Optimization

6.3.1 Nonconvex Matrix Inequality Criterion

6.3.2 Convexification of the Matrix Inequality Criterion .

6.4 Numerical Simulations

6.5 Summary

136

........... . 137

..142

.143

.145

. 147

.. 147

. 149

..152

....154

6.6 Appendix

7 Conclusions and Future work

7.1 Summary

7.2 Future Work

S. 156

161

.. 161

.. 163

List of Figures

2-1 Conceptual diagram of evolution of the trajectories of a computer program and

its abstraction

2-2 Graph model of a code fragment (Program 2-5) with time varying arc labels.

The transition labels are shown in boxes and the passport labels are in brackets.

For simplicity, only the non-identity transition labels are shown

3-1 A graph model. There is an invariant set Xi assigned to each node. A

label Tji and a passport label I1ji is assigned to each arc (i, j) from

node j.....................................

3-2 The graph model of an abstraction of Program 3-1...........

4-1 The graph of Program 4-4

transition

node i to

.102

5-1 Graph Models of Programs Pi (left) and P 2 (right). 109

5-2 Minimal (left) and Maximal (right) realizations for program Pi........... 112

5-3 A minimal realization for program P 2. 113

5-4 A Maximal realization for program P2. 114

5-5 With proper labeling of this graph model, a counterexample can be constructed to

prove that an irreducible realization of higher order does not always outperform

an irreducible realization of lower order. 118

5-6 For this graph, it is possible to choose the state transition operators Ai, Bi, Ci, Di

such that the minimal realization outperforms the maximal realization........ 119

5-7 A K3 graph with AJ* = {2, 4, 6}. The minimal order is 3, and the maximal oder

is 6. 126

. 28

. 52

6-1 The error system 142

6-2 The Quantizer F(.): Two's complement rounding with saturation 143

6-3 The error system corresponding to a particular finite-state implementation with

quantization after multiplication xc[k + 1] = F(AcxL[k] + Bcw[k]). Inside the

dashed box is the quantizer. Given H(z), the objective is to find (Ac, Bc, Cc, Dc)

such that the error Ilell is small for some appropriately defined norm. 145

6-4 Numerical simulations: comparison of our results with [83]. 153

6-5 Numerical simulations: comparison of our results with [83]. 155

Chapter 1

Introduction

1.1 Motivation

Software in safety-critical systems is designed to implement intelligent algorithms that con-

trol the interaction of physical devices with their environments, often through sophisticated

feedback laws. Examples of such systems can be found in aerospace, automotive, and medical

applications, as well as many other real-time embedded control systems. Failure of these safety-

critical systems often leads to loss of human life or a huge loss in capital. To guarantee safety,

functionality, and performance of these systems, correctness and reliability of the embedded

software must be established.

While real-time safety-critical software must satisfy various resource allocation, timing,

scheduling, fault tolerance, and performance constraints, the very least to require is that the

software must execute safely, free of run-time errors. For a comprehensive discussion of the

theoretical and practical issues that arise in analysis, design and implementation of real-time

software systems see for instance [49, 87, 69, 42], and the references therein. One of the objec-

tives of this document is to develop a systematic framework for verification of certain safety and

liveness properties of computer programs to rule out run-time errors and guarantee termination

in finite time. Although this was the motivation, the framework is applicable to verification of a

broader range of specifications concerning functionality and performance of numerical software

systems. More details will be provided later in this chapter.

According to Boeing Co. and Honeywell Inc., software development accounts for sixty to

eighty percent of the effort spent on the development of complex control systems, with much of

the effort expended on validation and verification of the software after or during its development

[42]. While extensive simulation and testing account for a large portion of this effort, they can

only help in detecting potential programming or design errors, but they cannot prove safety or

performance properties of these complex systems. In safety-critical applications, it is necessary

to generate and document mathematical proofs of safety and performance of the software.

Formal verification methods aim at generating such proofs by reasoning on mathematical models

of computer programs. Verification by reasoning on a mathematical model of software (or

hardware) is sometimes referred to as model-based verification [68]. An extensive collection

of model-based verification methods developed by computer scientists, as well as several new

results are presented in [75, 72, 2]. The approach adapted in this document falls under the

category of model-based verification methods.

1.2 Literature Review

1.2.1 Formal Methods

In the computer science literature, formal verification methods are described as techniques for

proving (or disproving) that a mathematical model of the software satisfies a given specifica-

tion. What is meant by specification is a set of behavioral properties that need to be proven

to guarantee safety, good performance, or functionality. The specifications might be defined

informally, though they must be expressed in mathematical terms before they can be verified

formally. The underlying mathematical model is often a discrete transition system which can

be deterministic or non-deterministic. The choice of the model, however, is usually not an

independent process and depends on the specifications, as well as the available proof methods.

Hence, iterative refinement of the model and the proof technique may become necessary to

successfully prove the required specifications. In a verification process, this often entails going

from coarse abstractions to refined models that emulate the behavior of the software more accu-

rately. On the other hand, the complexity of the proof method grows with the levels of details

in both the model and the specifications. Therefore, in practice, a compromise must be reached

between the specifications and the complexity of the verification method. The tradeoff between

complexity of the proof methods and level of detail in the specifications/mathematical model

evidently draws the contrast between two well-known formal methods for software verification:

model checking and abstract interpretation.

Model Checking

Formal verification methods have gone under significant development in the past few decades.

Pioneered by Clarke, Emerson and Sifakis, model checking [21, 23] emerged as a means to deal

with the problems of specification, development and verification of sequential or concurrent

finite-state systems. The properties are expressed in terms of temporal logic formulae and the

system is modeled as a state transition system. Symbolic algorithms are then used to perform

an exhaustive exploration of all possible states and check whether or not the specifications

satisfy the properties. Model checking has proven to be a powerful technique for verification

of circuits [22], security and communication protocols [62, 70], and stochastic processes [24, 8].

Several software tools such as SPIN [98], BLAST [95], and NuSMV [96] have been developed

and widely used. For software systems, when applicable, model checking techniques result in

strong statements about the behavior of the system. The trade-off, however, is that verification

of strong properties and increased accuracy is achieved at the cost of increased computational

requirements and limited scalability to large systems. The introduction of Binary Decision

Diagrams (BDDs) [20], which are efficient data structures for representing boolean functions

has improved the scalability of these techniques and model checking of systems with very

large number of states is now possible. Nevertheless, when the number of possible states is

astronomical, such as in programs with non-integer variables, or when the number of possible

states is infinite, such as when the state space is continuous, model checking in its pure form

is not directly applicable. In such cases, combinations of various abstraction techniques and

model checking have been considered for verification [4, 38, 30, 89]; scalability, however, remains

a challenge.

Alternative formal methods can be found in the computer science literature mostly under

deductive verification [60, 61], type inference [76, 65], data flow analysis [43], and abstract

interpretation [26, 27]. Despite their differences, these methods share extensive similarities.

In particular, a notion of program abstraction and symbolic program execution or constraint

propagation is present in all of them. A comparison of advantages and disadvantages of these

methods, as well as a discussion of the challenges that they each face can be found in [28], and

[72]. Here, we review abstract interpretation as it appears to have better scalability properties

and has been used in verification of safety-critical systems [14]. More detailed comparisons with

our work will be provided in the upcoming chapters, as relevant results are presented.

Abstract Interpretation

Initiated by the work of P. Cousot and R. Cousot in the 1970s [26, 27], abstract interpretation

was developed as a theory for formal approximation of the operational semantics of computer

programs in a way that would facilitate systematic reasoning about the behavior of programs.

The operational semantics of a computer program refers to a mathematical characterization

of all possible sequences that can be generated by the program. In verification by abstract

interpretation, first, an abstract model is built by replacing the domain of concrete operational

semantics by a domain of abstract operational semantics defined over semilattices. Construc-

tion of abstract models has two components: abstraction of domains (sets of numbers), and

abstraction of functions. The domain abstractions are typically in the form of sign, interval,

polyhedral, and congruence abstractions of sets of data, or a combination of these. The function

abstractions are highly influenced by the domain abstractions. For instance, for a monotonic

function f : X -+ X, its abstraction f : X - X is defined by f (x) := (a o f o y) (x), where

a : X X is an abstraction map, and y : X - X is a concretization map. If a o f o 7 is not

easily computable, which is often the case, further simplification becomes necessary.

In verification by abstract interpretation, the program analyzer reads the program text and

the specifications and generates a system of fixpoint equations and constraints. Abstraction of

the program semantics and the specifications, along with symbolic forward and/or backward

executions of the abstract model are the enabling components in constructing the system of

fixpoint equations and constraints. The solution to the constrained system of fixpoint equations

results in an inductive assertion which is invariant under all possible executions. The program

invariants are then used by the analyzer for checking the specifications.

A critical phase in this process is solving the constrained system of fixpoint equations. An

iterative equation solving procedure is often used at this phase. However, finite convergence

of the iterates can be guaranteed only for very simple abstractions, e.g. sign and simple con-

gruence abstractions. In practice, to guarantee convergence of the iterates, narrowing (outer

approximation) operators are used to estimate the solution in a finite number of steps, followed

by widening (inner approximation) to improve the estimate [28]. This compromise, often causes

the method to generate weak invariants, resulting in considerable conservatism in analysis [25].

Nevertheless, these methods have shown to be practical for verification of limited properties of

real-time, embedded software of commercial aircraft [14, 94].

1.2.2 System Theoretic Methods

While software analysis has been the subject of a great volume of literature in computer science,

little has appeared on this subject in the systems and control literature. Much of the relevant

results in systems and control literature can be found in the field of hybrid systems [5]. Many

of the proposed techniques for verification of hybrid systems are based on explicit computation

of the reachable sets, either exactly or approximately. These include but are not limited to

techniques based on quantifier elimination [54, 88], Hamilton Jacobi equations [67], ellipsoidal

calculus [51], and mathematical programming [12, 93, 10]. Alternative approaches aim at

establishing properties of hybrid systems by the combined use of bisimulation mechanisms and

Lyapunov techniques. Bisimulations (approximate bisimulations) of a Hybrid system are finite-

state quotients whose reachability properties are equivalent to (over-approximate) those of the

original infinite-state system. A so-called bisimulation function is a function bounding the

distance between the observations of two systems and is non-increasing under their parallel

evolutions. Approximate bisimulation relations can therefore, be characterized by the level

sets of a (bisimulation) function which satisfies Lyapunov-like differential inequalities [35]. The

bisimulation relations can then be used for constructing a finite-state approximation of the

hybrid system which can be subsequently verified via model checking techniques [36, 37, 53, 52,

89, 4]. This approach has particularly had success in reachability analysis of timed automata

and linear hybrid automata.

In principle, many of the methods developed in system and control theory for systems

governed by differential equations, particularly Lyapunov theoretic techniques, have been shown

to be applicable to hybrid systems. Examples include optimal control theory for hybrid systems

[58, 44, 18], computation of Lyapunov functions for hybrid systems [17, 46, 47], reachability

analysis of hybrid systems using bisimulations [53, 36], or verification of hybrid systems using

barrier certificates [78, 77]. While Lyapunov functions and similar concepts have been used

in verification of stability and/or temporal properties of system level descriptions of hybrid

systems, to the best of our knowledge, this dissertation is the first document to present a

systematic framework based on Lyapunov functions and convex optimization for verification

of a broad range of specifications for computer programs. The novelty of our approach is in

the transfer of Lyapunov functions and the associated computational techniques from control

systems analysis to software analysis. As we will see later in the document, our framework

applies to a broad class of numerical programs and is not limited to applications in hybrid

systems or safety-critical control systems. However, this appears to be an area where the

framework is readily applicable. The rationale is that since the embedded control software

essentially implements a control law that is designed via system theoretic tools, such tools are

most viable for verification at the implementation level.

1.3 Statement of Contributions and Thesis Outline

In this dissertation we consider two important problems concerning safety-critical software

systems: software analysis and software implementation.

1.3.1 Software Analysis

In reference to the software analysis problem, the main contribution of the dissertation is the

development of a systematic framework based on Lyapunov invariants and convex optimization

for verification of various safety and performance specifications. Our framework, however,

is not restricted to software applications in safety-critical systems. It is shown by means of

a myriad of examples throughout the thesis, that many numerical computer programs that

may not necessarily appear in safety-critical applications can be modeled and verified in this

framework. The enabling elements of the framework for software analysis are dynamical system

interpretation and modeling of computer programs, Lyapunov invariants as certificates for the

behavior of the programs, and a computational procedure for finding the Lyapunov invariants.

The computational procedure consists of linear parametrization of the search space, convex

relaxation techniques, and convex optimization.

* Dynamical system interpretation and modeling of computer programs: This

is the topic of Chapter 2. The view in this document is that software defines a rule for

iterative modification of the operating memory at discrete instances of time. Hence, it can

be modeled as a discrete-time dynamical system with the program variables as the state

variables, and the operating memory as the state space. We introduce generic dynamical

system representations of computer programs, which can be concrete or abstract. Beyond

the generic representations, we also introduce specific modeling languages. These include:

- Mixed-Integer Linear Models.

- Graph Models.

- Linear Models with Conditional Switching (LMwCS).

While the generic dynamical system representations are suitable for establishing and pre-

senting fundamental results on analysis of software via Lyapunov invariants, the specific

modeling languages are more suitable for explicit computation of the Lyapunov invariants

in an optimization-based framework. It is shown through several examples throughout

the thesis that these models can represent a broad range of computer programs of interest

to the control community, e.g. safety-critical control software of embedded systems.

* Lyapunov invariants as certificates for the behavior of programs: This is the

topic of Chapter 3. Inspired by the concept of Lyapunov 1 functions in stability analysis

of nonlinear dynamical systems, we propose using Lyapunov invariants for analysis of

behavioral properties and verification of safety and performance specifications of computer

programs. In the same spirit as standard Lyapunov functions, a Lyapunov invariant is

an appropriately-defined, real-valued function of the state (the program variables) which

satisfies a difference inequality along the execution trace of a computer program. Hence,

depending on the difference inequality that must be satisfied, a Lyapunov invariant may

1Named after the Russian mathematician Aleksandr Mikhailovich Lyapunov.

or may not monotonically decrease along the execution trace of a computer program.

However, at each increment of time, the value of a Lyapunov invariant cannot increase by

more than a constant multiple of its current value. This notion is formalized and presented

in mathematical terms in Chapter 3. We show that different variations of Lyapunov

invariants satisfying certain technical conditions can be formulated for verification of

several safety and performance specifications of computer programs. A specification can

be verified 2 via our framework if it can be interpreted and expressed in one of the following

terms:

- Safety: The property that a certain subset of the state space will never be reached.

- Liveness: The property that all of'the trajectories will enter a certain subset of the

state space in finite-time.

We will show in Chapter 3, that the framework can be conveniently used for (but is not

restricted to) ruling out the following unsafe situations in computer programs:

- Infinite loops.

- Variable overflow.

- Division-by-zero.

- Out-of-bounds array indexing.

- Taking the square root (even root), or real logarithm of a negative number.

Additional properties that do not necessarily lead to run time errors but can be verified

in this framework are:

- Verification of user-specified program assertions.

- Verification of user-specified program invariants.

Other verification problems such as pointer tracking, and race conditions do not fall within

the scope of this manuscript.

2We would like to stress that the criteria that we present are in general sufficient and not necessary. By "a
specification can be verified" we mean that "sufficient criteria for the specification to hold can be formulated."

* Computational procedure: This is the topic of Chapter 4. Similar to the difficulties

in analysis of nonlinear systems via Lyapunov functions, the main challenge in analysis

of computer programs via Lyapunov invariants is finding them. The procedure that we

use for finding the Lyapunov invariants is standard and consists of the following steps:

- 1. Restricting the search space to a linear subspace.

- 2. Using convex relaxation techniques such as the S-Procedure, or sum-of-squares

relaxation to formulate the search problem as a convex optimization problem.

- 3. Using convex optimization tools to numerically compute the behavior certifi-

cates. Depending on the mathematical model and the convex relaxation method,

the search problem will be formulated as a linear program [13], semidefinite program

[16, 91], or a sum-of-squares program [73]. This is the final stage of the verification

process. If the convex optimization problem has a feasible solution, a certificate for

the specification has been found, otherwise, the result is inconclusive.

* Optimal Graph Models: This is the topic of Chapter 5. The framework is comple-

mented by the introduction of a notion of optimality for the graph models. This notion can

be used for constructing efficient graph models that improve the analysis in a systematic

way. It is observed that the application of the framework to (graph models of) programs

that are semantically identical but syntactically different does not produce identical re-

sults. This suggests that the success or failure of the method is contingent on the choice of

the graph model. Based on this observation, the concepts of graph reduction, irreducible

graphs, and minimal and maximal realizations of graph models are introduced. Several

new theorems that compare the performance of the original graph model of a computer

program and its reduced offsprings are presented.

1.3.2 Software Implementation

Software implementation is discussed in Chapter 6. In reference to the software implementation

problem for safety-critical systems, the main contribution of the dissertation is the introduction

of an algorithm, based on optimization of quadratic Lyapunov functions and semidefinite pro-

gramming, for computation of optimal state space implementations for digital filters and linear

controllers. The particular implementation that is considered is a finite word-length implemen-

tation on a fixed-point processor with quantization after multiplication. The objective is to

minimize the effects of finite word-length constraints on performance deviation, while respect-

ing the overflow limits. The problem is first formulated as a special case of the linear controller

synthesis problem where the controller has a specific structure. This problem is known to be a

hard non-convex problem in general. It is then shown that this special case can be convexified

exactly, and the optimal implementation can be computed by solving a semidefinite optimiza-

tion problem. It is observed that the optimal state space implementation of a digital filter on

a machine with finite memory does not necessarily define the same transfer function as that of

an ideal implementation.

1.4 Notations

In this document, IR denotes the set of real numbers, R+ the set of positive real numbers, R+

the set of nonnegative real numbers, and Rnxm the set of n x m real matrices. Similarly, Z

denotes the set of integers, Z+ (or N) the set of positive integers and Z+ the set of nonnegative

integers: NU {0}. The notation Z (n, m) is used to denote the set of integers: {n, n + 1,..., m} .

The n x n Identity matrix is denoted by In and the n x n Zero matrix is denoted by On. The

transposed of a real matrix P E Rnxm is denoted by pT, and for a square matrix Q E Inxn, we

use He (Q) to denote Q + QT, and Trace(Q) to denote the sum of the diagonal elements of Q.

The set of all real symmetric n x n matrices is denoted by Sn, and the subset of Sn consisting

of all real diagonal matrices of size n is denoted by Dn .For P E Sn, P - 0 means that P is a

positive definite matrix and P >- 0 means that P is a positive semidefinite matrix. A directed

graph with a set of nodes KV and set of arcs £ is denoted by G (K, £). The set of incoming

nodes of node i E KV is denoted by I (i) and the set of outgoing nodes by O (i). For a subset

of nodes N C /, the set U I (i) is denoted by I (JV). The set 0 (N/) is defined analogously.

A simple cycle of length m on a directed graph G (N, £) is denoted by Cm and sometimes by

Cm E G. the subscript m is dropped whenever the length of the cycle is immaterial. The initial

or start node on a graph G (KN, S) is denoted by 0 and the terminal node by w . For a vector

v R' and q E Z+, the q norm is denoted by IIV||q and is defined as jVI q := (i vi|) . The

infinity norm of a vector v E Rn is defined as IlvJ := max vii|.i

Chapter 2

Dynamical System Interpretation

and Modeling of Computer

Programs

In this chapter, we develop the first component of our framework for analysis of software systems,

namely, dynamical system interpretation and modeling. We interpret computer programs as

discrete-time dynamical systems and introduce generic dynamical system representations which

formalize this interpretation. We also introduce specific modeling languages as special cases

of the generic representations'. These include Mixed-Integer Linear Models (MILM), Graph

Models, and Linear Models with Conditional Switching (LMwCS). The generic representations

will be used throughout the document, particularly in Chapter 3, to establish fundamental

results on analysis of computer programs via Lyapunov invariants. These results are indepen-

dent of the specific choice of a modeling language. The specific modeling languages are used

in the document (cf. Chapter 4) for computation of the Lyapunov invariants in a systematic

framework.

The models, whether generic or specific, can be concrete or abstract. Intuitively, a concrete

model is an accurate model of the behavior of a program at the implementation level; while an

In this document, the terms representation and model have identical meanings and can be used
interchangeably.

abstract model is an over-approximation of a concrete model in the sense that every trajectory

of a concrete model is also a trajectory of the corresponding abstract model. The rationale for

exploiting abstract models is clear: we would like to perform analysis on models that formally

carry their properties to the actual programs, yet are easier to analyze than the concrete models.

We will also discuss some minor technical conditions which must hold for an abstract model to

remain faithful to the actual program; meaning that the behavioral properties of the abstract

model must imply those of the concrete model.

2.1 Generic Representations

2.1.1 Concrete Representation of Computer Programs

A computer program can be viewed as a rule for iterative modification of the operating memory,

possibly in response to real-time inputs. Since computers are inherently constrained with finite

memory, computer programs can be accurately modeled as finite-state machines with inputs

drawn from a finite alphabet source. In particular, we will consider generic models defined by a

finite state space set X with selected subsets X0 c X of initial states and X, C X of terminal

states, and by a set-valued function f : X + 2X, such that f(x) C X,, Vx E X,.

Definition 2.1 The dynamical system S(X, f, Xo, X,) is a concrete representation of a com-

puter program 7, if there exists a one-to-one map between the set of all sequences that can be

generated by P, and the set of all sequences X := (x(0), x(1),..., x(t),...) of elements from X,

satisfying

x (O) E Xo C X, x (t + 1) E f (x (t)) Vt E Z+, (2.1)

where

f : X F 2X , s.t. f(x) C X,, Vx E X, C X.

Note that the uncertainty in the definition of x(0) allows for dependence of the program on

different initial conditions, and the uncertainty in the definition of x(t+1) represents dependence

on different parameters as well as the program's ability to respond to real-time inputs. From

a dynamical systems perspective, analysis of software is defined as the task of verifying certain

properties of system (2.1). This is the view adopted in this document.

Remark 2.1 Throughout this document we use the terms "trace" and "trajectory" of a com-

puter program P interchangeably to refer to a sequence X E 7, which is understood in the same

sense as Definition 2.1. Also, we do not differentiate between a computer program P and its

concrete dynamical system representation S(X, f, Xo, X,).

Example 2.1 Integer Division2 : Consider the following program written in the standard C

Language. Its functionality is to compute the result of the integer division of the value of dd

(dividend) by dr (divisor). The quotient is returned in q and the remainder is stored in r.

Program 2-1: The Integer Division Program

Denote by Z the subset of integers that can be represented by 16 bits: 2 = Zn [-32768, 32767].

The state variables of this program are dd, dr, q, and r, and they are all elements of Z. A

concrete representation of this program is defined via the following elements:

X = Z4 , Xo = {(dd, dr, q, r) E X Iq = , r = dd}

X, = {(dd, dr, q, r) EX r < dr}

f (dd, dr, q, r)
(dd, dr, q + 1, r - dr),

(dd, dr, q, r),

(dd, dr, q, r)E X\X,

(dd, dr, q, r)E X

For instance, the sequence X is an element of the program IntegerDivision, where:

10 10 10 10 - - 10 - 10
3 3 3 3 3 3
0 17 1 2 3 3 3

L10 J 7 - -4 J L 1 -1 - I -

2Example adopted from [75]

int IntegerDivision (int dd, int dr)

{int q= {0}; int r = {dd};

while (r >= dr)

{ q=q+1;

r=r- dr;}

return q; }

In this example, f is deterministic and is not set-valued. Note that this program is correct only

if the values of dd and dr are positive. If dd > 0, and dr < 0, then the program never exits the

"while" loop and the value of q keeps increasing, potentially leading to an overflow.

An alternative approach to constructing a dynamical system model of Program 2-1 is to

treat the input variables (dd and dr), which remain constant in the course of an execution, as

symbolic parameters. The result is a model with the following elements:

X = 2, Xo={(q,r) EX q = 0, r=dd}

X, {(q, r) EX Ir < dr}

f (, r) (q + 1, r - d r) , (q, r) E X\X,

(q, r), (q, r) E Xo

In this case, Xo and X, are parametric subsets of X, and f is also a parametric (not set-

valued) function. We will come back to this issue and compare these modeling choices in the

upcoming chapters when we introduce Lyapunov invariants as behavior certificates for computer

programs. For the time being, we just mention that in the latter case, one has to resort to

parameter-dependent Lyapunov invariants for proving behavioral properties of Program 2-1.

It is important to also mention that for the purpose of verification via the framework that is

developed in this document the two models are practically equivalent and neither one presents

particular advantages or disadvantages from a feasibility or computational cost of analysis point

of view.

In Example 2.1, the choice of the state space as X = 4 as opposed to X = Z 4 is not

free of subtleties. Strictly speaking, when we define X = 4 we must also prove that the

program variables do not assume any values outside of Z4 . If the operations are done in modulo

arithmetic, then the result of an overflow in 4 (a variable exceeding 32767 or dropping off

below -32768) is a rollover to the same set 4 . Hence, the choice is correct. However, this

complicates the definition of the update rule, and an exception must be added in the definition

of f (.) to reflect these possibilities. Furthermore, if a rollover occurs, extreme deviations from

the desired trajectories will follow and the program will return erroneous results. An alternative

is to assume that the variables do remain within the interval [-32768,32767], and the event

that a variable leaves this interval is characterized by an overflow and the program terminates

with a runtime error. If this can be established, then the choice of the state space as X = _4

is also justified. A third alternative would be to define X = Z 4, which removes the minor

technicality associated with the definition of the state space. However, over the set Z4 \ 4 , f is

undefined, which requires us again to prove that the variables do not leave Z4, and characterize

the event that the variables leave Z 4 (the safe subset of the state space) as an unsafe event

which leads to a runtime error. As it can be observed the latter two approaches are practically

equivalent. In this document, whenever we define a state space set for a computer program, it

is with the understanding that it is either proven or assumed that the definition is correct, in

the sense that the variables cannot leave the state space. The event that the variables leave the

state space is then considered an unsafe event, leading to a runtime error.

In a concrete representation, the elements of the state space X belong to a certain finite

subset of the rational numbers, that is, rational numbers that can be represented by a fixed

number of bits in a specific arithmetic framework. For instance, on a 16-bit processor, these

subsets may consist of unsigned integers between -215 and 215 - 1, or all the rational numbers

that can be represented with 16 bits in fixed-point or floating point arithmetic. Naturally, the

same is true for the subsets X0 and X,. When the elements of X are non-integers, due to the

quantization effects, the set-valued map f often defines very complicated dependencies between

the elements of X, even for simple programs involving only elementary arithmetic operations.

We present an example.

Example 2.2 Square Root. Consider the following program written in the standard C Lan-

guage. Its functionality is to compute the square root of a bounded positive number y up to

a predefined precision e. This value is stored in the variable x and returned. In addition, the

number of iterations for this procedure to be completed is computed and stored in the integer

variable Counter. The program will continue to improve its current estimate of the square root of

y only until this value is needed. It may be the case that the square root of y is no longer needed

because a parallel processor has already computed it, or the feedback control law has changed,

or an external process has determined that the current value of y has become obsolete and the

program ComputeSqrt(must be recalled to compute the square root of the new estimate of y. At

each iteration, the program will determine if the square root of y is still needed by checking the

boolean variable NeedSqrtY which is updated in real-time. This real time input is accessed via a

pointer variable that points to the memory address of RealTimeInput. If the boolean value at the

memory address of RealTimelnput and subsequently NeedSqrtY becomes False, then the program

terminates to avoid expending the resources unnecessarily.3

Program 2-2: Computation of the Square root

Here, we present one possible way to construct a concrete dynamical system representation of

this program. Denote by F, the subset of rational numbers that can be represented in double

precision format on the corresponding processor. Let Z denote the set of integers and B the

set of boolean variables {True, False]. The state variables of this program are (x, y, z) E F 3 ,

Counter E Z, and NeedSqrtY E B. We can define a binary variable v E {-1, 1} to represent

NeedSqrtY E B, and rename the integer variable Counter E Z as c E Z. The state space can thus,

be defined as: X := F3 x Zx {-1, 1} . The set of initial states Xo C X is defined as: Xo :=

3This program is constructed for educational purposes and is meant to represent several real-life scenarios
in one small academic example. In practice, such programs would not necessarily include all the features of
ComputeSqrt as presented above. For instance, there is probably little incentive in keeping track of the number
of iterations in this particular case.

double ComputeSqrt (double y)

//y in the interval [le - 4, le4]

{ double x = {1}; double z={1};

const double e = {0.0001};

int Counter = {0};

bool * PtrTolnput = &RealTimeInput;

bool NeedSqrtY = *PtrToInput;

while (fabs (z) >= e && NeedSqrtY)

{ x = 0.5 * (x + y/x);

z= X * X -y;

Counter = Counter + 1;

NeedSqrtY = *PtrToInput; }

return x; }

{(1, y, 1) 1 ye F n [10-4, 104] } x {0} x {-1, 1} . The set of terminal states X, C X is given

by Xoo := X1,oUX 2 00 where X, := IF3 x Z x {-1} and X 2, := {(x,y,z) E F3 I Iz < 10-4} x

Z x {-1, 1}. Over the set Xo, the map f is simply defined as the identity map, and over the

set X\X,, the set-valued map f is defined in the following way:

x F(O.5(x + yx-1))

f z r F[[r(O.5(x + y- 1))] 2 - y]

c -c+l

v {-1, 1}

where F : R -+ F is the quantization function in double precision format (more about compu-

tations with floating point numbers and the quantization function will be presented in Section

2.1.2). Note that in a similar fashion to Example 2.1, it is possible to treat y as a parameter

and construct a parameter-dependent model of the program ComputeSqrt with x, z, c, v as the

variables and y as the symbolic parameter of the model 4

In Section 2.3, we will present mathematical definitions of several common specifications for

safety-critical software. While defining safety specifications in mathematical terms is necessary

for formalizing the proofs of correctness, the definitions are very intuitive and logical. At this

point, we would like to put this chapter in perspective by engaging in informal discussions

about a few of these specifications in the context of Example 2.2. In Example 2.2, the program

ComputeSqrt can generate different trajectories that depend on the initial value of y, and the

real-time input *PtrTolnput. It is obvious that the program terminates when the "while" loop

terminates, which happens when the condition of the "while" loop is violated. Therefore, the

program ComputeSqrt can be guaranteed to terminate in finite time if it can be shown that

every such trajectory satisfies either v (t) E {-1} (equivalently NeedSqrtY(t) E{False}), or that

(x (t) ,y (t) , z (t)) E {(x, y, z) E F3 z I < 10-4) for some positive integer t. On the other hand,

to prove that an overflow runtime error does not occur during an execution of ComputeSqrt, we

must prove that the variables do not grow in magnitude beyond a pre-specified safe limit. When

4 See [82] for a detailed analysis of a class of programs similar to Program 2-2.

considering overflow runtime errors, boolean variables need not be verified as the only possible

values that they can assume are in {True,False} (i.e. in {-1, 1}). Programming errors arising

from mishandling of boolean variables typically correspond to type mismatching, which can

usually be identified by a regular compiler at compile time. On a 16-bit machine, variables of

the type "double" are stored in 64-bit registers and integers of the type "int" are stored in 16-bit

registers. The overflow region of the program ComputeSqrt can therefore, be characterized by:

X_ := {bE F3 I JIb > 1.7 x 10308 x {cE Z cI Ic > 32767}.

The program ComputeSqrt can be guaranteed to run without an overflow runtime error if it can

be shown that no trajectory can reach the set X_. Finally, a division-by-zero runtime error does

not occur if it can be proven that the value of x never becomes zero. We will show in Chapter 3,

that each of these properties holds if a Lyapunov invariant satisfying certain technical conditions

(adapted to the particular property) exists, and we will show in Chapter 4, how to find such

functions.

2.1.2 Abstract Representation of Computer Programs

As we discussed in the previous section, the true state space of a computer program is a discrete

finite subset of the rational numbers. This subset consists of all the rational numbers that can

be represented by a finite number of bits in binary form, and depends on the operational

arithmetic, e.g. fixed-point or floating-point arithmetic. The finiteness property of the state

space presents advantages and challenges. The advantage is that computer programs can be

accurately modeled as finite-state machines with inputs drawn from a finite alphabet set. Hence,

strictly speaking, verification (e.g. proving or disproving finite-time termination) of programs

running on computers with finite memory (i.e. finite-state machines) is not an undecidable

problem. At least in theory, it can be performed by exploring and verifying all possible state

trajectories by either numeric or symbolic simulation (e.g. in model checking). The challenge,

however, is that the complexity of the finite-state models grow exponentially in the available

number of bits, which renders exact verification of the finite-state models often impractical.

Moreover, when performing calculations with non-integer numbers, a processor represents them

in an approximate binary form, which complicates the definitions of even simple operations such

as addition and scaling (cf. Example 2.2).

In order to overcome these challenges, one often has to resort to a real-valued abstraction

whose set of behavior properties (equivalently all possible trajectories) contains that of the

actual program as a subset. In an abstract model, the state space is not constrained to be a

finite set. An abstract model which deals with non-integer arithmetic can be defined in terms of

real numbers, which has the potential to simplify the analysis dramatically. The drawbacks are

twofold: the first is the obvious conservatism that is introduced by over-approximation of the

set of possible behaviors; the second is undecidability. Nevertheless, abstract models simplify

the task of program analysis and often make it possible to formulate computationally tractable

(sufficient) conditions for a verification problem which would otherwise be intractable.

Definition 2.2 Given a program P and its dynamical system model S(X, f, Xo, X,), we call

the model S(X, f , Xo, X,) an abstraction of P, if X c X, Xo _ Xo, f(x) C f(x) : Vx E X,

and the following condition holds:

X, nX C X, (2.2)

Figure 2-1: Conceptual diagram of evolution of the trajectories of a computer program and its

abstraction.

An abstract representation can be interpreted as a formal over-approximation of the corre-

sponding concrete representation. It follows from the definitions of X 0 and f(x) as supersets of

Xo and f(x) that every trajectory of the actual program is a also a trajectory of the abstract

model, which is convenient for proving certain safety specifications such as absence of overflow

(cf. Section 2.3). The definition of X, is slightly more subtle. We require X. to satisfy (2.2),

so that the finite-time termination property of the concrete representation (equivalently the

actual program) can be inferred from the finite-time termination of the abstract representation.

This issue is discussed in more detail in Section 2.4, where a formal proof is also given. For the

time being, we provide an intuitive justification for (2.2). We would like to be able to infer that

if all the trajectories of the abstract model eventually enter the terminal set X,, then all the

trajectories of the actual program will eventually enter the set X,. It is tempting to require

that X, C X,, however, this may not be possible as X, is often a discrete set of measure

zero in the reals and X, is dense in the reals. The definition of X, as in (2.2) resolves this

issue, while maintaining that the finite-time termination property can be carried over to the

actual program.

Construction of an abstract representation S(X, f, Xo, X,) from a concrete representation

S(X, f, Xo, X,) involves abstraction of each of the elements X, f, Xo, X, in a way that is

consistent with Definition 2.4. Towards this end, abstraction of two types of objects must be

constructed: sets and functions. Abstraction of the state space X is usually the trivial task.

It often involves replacing the domain of floats by reals, or replacing the domain of integers

by reals, or a combination of these. Abstraction of the other sets X 0 and X, often involves

a combination of replacement of the domain of floats or integers by reals and abstraction

of' functions (or functional relations) that define these sets. This will become clearer after

we discuss abstraction of the set-valued function f. The function f usually consists of the

composition of several simpler functions. Let fl : X1 -+ Y1 and f2 : X 2 -+ Y2 be set-valued

functions such that Y C X2. Let fl : X 1 - Y 1 be an abstraction of fl, and 7 2 X 2 -+ Y 2 be

an abstraction of f2 in the sense that fi (x) C f 1 (x), Vx E X1, and f2 (x) C f2 (x), Vx E X2.

Further assume that Y1 C X 2. Then f 2 o fl is an abstraction of f2 o fl. This process can be

repeated for construction of abstraction of a complicated function which can be expressed as

the composition of several simpler functions. In particular when the domains of fi, i = 1, .., m

are the whole state space (e.g. the entire R n) then the conditions Yi C_ Xi+l are automatically

satisfied. The implication of this simple observation is that an abstraction f of the function f

can be constructed by simply replacing every subfunction in the composition of f by its abstract

version.

Abstraction of Common Nonlinearities

In this section, we briefly review abstractions of some frequently-used nonlinear functions. This

section is included to emphasize that our approach to developing abstract models is through

construction of semialgebraic abstractions of nonlinear functions via uncertainty sets.

Trigonometric Functions Abstraction of trigonometric functions can be obtained by first

approximating the function by its Taylor series expansion and then representing the absolute

error by a static bounded uncertainty. For instance, an abstraction of the function sin (.) can

be defined in the following way:

Abstraction of sin(x): x E [-(,] x E [--,]

sin (x) E { aw wE [-1, 1]} a = 0.571 a = 3.142

sin(x) E{x - 3 + aw wE [-1, 1]} a = 0.076 a = 2.027

Abstraction of cos (.) can be done in a similar fashion. It is also possible to obtain piecewise

linear abstractions by first approximating the function by a piecewise linear function and then

representing the absolute error by a bounded uncertainty. For instance, if x E [0, 7r/2] then a

reasonable piecewise linear approximation can be given by:

(x)= 0.9x if x E[0,0.8]

0.4x +0.4 if x E [0.8,1.6]

It can be verified that |sin (x) - s (x)I < 0.06, Vx E [0, 7/2]. Hence, an abstraction of sin (.) can

be constructed in the following way:

sin (x) E {T (x, v, w) (x, v, w) E S}, where: w = (wl, w 2) and (2.3)

T : (x, v, w) -± 0.45 (1 + v) x + (1 - v) (0.2x + 0.2) + 0.06wl

SA {(x, v,w) I x = 0.2[(l+v) (l + 2) + (1 -v) (3 + 2)], (w, v) E [-1, 1]2 x -1,1}}

We refer the reader to Section 2.2 (Mixed-Integer Linear Models) for algorithmic representation

of piecewise linear functions using binary and continuous variables.

The Sign Function (sgn) and the Absolute Value Function (abs) The sgn (.) function:

sgn(x) = { 1, x 0

S-1, X < 0

appears commonly in computer programs, either explicitly or as an interpretation of if-then-

else commands. A semialgebraic abstraction of the sgn (.) function can be constructed in the

following fashion:

sgn(x) E {v I xv > 0, v E {-1, 1}}

Note that sgn (0) = 1, while its abstraction is ambiguous at zero: sgn (0) E {-1, 1} .

The absolute value of a bounded variable x E [-1, 1] can be represented (precisely) in the

following way:

abs(x)= xv I = -V , , ,

Floating-Point or Fixed-Point Arithmetic5 For computations with floating-point num-

bers, the IEEE 754-1985 norm has become the hardware standard in many processors such as

Intel and PowerPC, and is supported by most popular programming languages such as C. In

this standard, a float number is represented by a triplet (s, f, e) , where:

* s E {0, 1} is the sign bit.

* f is the fractional part, represented by a p-bit unsigned integer: fi ... fp, fi E {0, 1}.

* e is the biased exponent, represented by a q-bit unsigned integer: el ... eq, ei E {0, 1}.

5This subsection is based on [66], Chapter 7. We present the material here for completeness. The reader is
referred to [66] for a more comprehensive discussion of computations with floats.

A floating point number z = (s, f, e) is then in one of the following forms:

* z = (-1)s x 2 e-bias x 1.f, when 1 < e < 2q - 2.

* z = (-1)s x 2 1-bias x 0.f, when e = 0, and f # 0.

* z = +0 (when s = 1) and z = -0 (when s = 0) and e = f = 0.

* z = +oo (when s = 1) and z = -oo (when s = 0) and e = 2q- 1, f 0.

* z = NaN when e = 2- , f = 0.

The values of p, q, and bias depend on the specific format:

* If format is 32-bit single precision (f=32), then bias = 127, q = 8, and p = 23.

* If format is 64-bit double precision (f=64), then bias = 1023, q = 11, and p = 52.

Other formatting standards such as long double or quadruple precision also exist. In floating

point computations, the result of performing the arithmetic operation ® E {+, -, x, -} on two

float variables x and y is stored in a float variable z := float (x O y, f) which is a complicated

function of x, y, and the format f. Examples of the format f include the IEEE 754 with 32-

bit single precision, or IEEE 754 with 64-bit double precision. A floating-point operation is

equivalent to performing the operation on the reals followed by rounding the result to a float

[66]. In IEEE 754 the possible rounding modes are rounding towards 0, towards +oo, towards

-oc, and to the nearest (n). The rounding function Ff,m : IR - FU {f} maps a real number to

a float number or to runtime error, depending on the format 'f' and the rounding mode 'm'.

We refer the reader to [66] for more details on the rounding function. For our purposes, it is

sufficient to say that for all rounding modes, the following relation holds:

Vx E [-af, af] : Irf,m (x)- j :Yfj x + /3f

where -yf := 2-P, and af := (2 - 2-p) 22q- bia s - 2 is the largest non-infinite number, and :=

21-bias-p is the smallest non-zero positive number.

Based on the above discussions, an abstraction of the floating-point arithmetic operators

can be constructed in the following way:

X + y E [-af, af] float (x + y) = z E {x + y + Jw I w E [-1, 1], 6 = yf (xj + ly) + f}

x- y E [-Of, f] float(x- y) = z E {x - y + Sw Iw E [-1, 1], 6 = -f(| x] + lyl) + Of}

*x y E [-af, af] float (x y) = z E{z x y + w w E [-1, 1] , 6 = yf(Ix lyj) + Pf}

x+y E [--af,af] float(x-y)= z {x y+Sw I w E [-1,1], = f(xI- lyl)+Of}

where the constants af, /f and yf are defined as before. The above abstractions can still be

complicated as the magnitude of 6 depends on the operands x and y. In practice, for most

computer programs of safety critical systems, the values of the program variables are expected

to be much smaller in magnitude than the very large number af. Assuming that all the program

variables (including the result of the arithmetic operation) reside in [-a, a] where a << af then

a simpler but more conservative abstraction can be constructed in the following way:

x®y E [-a, a] = float (x ® y) = z E {z o y + 6w Iw E [-1, 1], 6 = a7f + f}

For instance, if f=32, a = 106, then 6 = 0.12, and if f=64, a = 1010, then 6 = 2.3 x 10- 6.

Abstractions of arithmetic operations in fixed-point computations is similar to the above. The

magnitude of 6 will depend on the number of bits and the dynamic range. For instance, in the

two's complement format we have: 6 = p (2 b - 1)1, where p is the dynamic range and b is the

number of bits.

Modulo Arithmetic Consider the function mod : Z x Z -- Z defined in the following way:

mod (t, s) = t - ns, where n = [tj.

Abstraction of mod (.,.) for the general case is complicated. However, the following scenario is

not uncommon: assume that it is known that t1 < s and t2 < s. Then:

mod (tl + t2, s) tl 2 - (1 +) I (tl 2 - S)v 0, V - , }.

A common instance of the above scenario is when t2 < s is a constant and tl is a variable that

is initialized to zero and updated according to tl -+ mod (tl + t2 , s) . It is possible to construct

similar abstractions for more complicated scenarios by including more binary variables.

Example 2.3 Abstract model of the program ComputeSqrt: Consider the C program pre-

sented in Example 2.2. The elements of an abstract model can be defined in the following way:

X : = 3 x Z x{-1,1}

Xo : = {(1,y, 1) lye [10-4,104]} x {0} x {-1,1}

X : = Xloo U X 2 c where

Xloo :) = R 3 Z x {-1}, X 2 := (x,y,z) I;3 I z| < e x x {-1,1}

The set valued map f is defined in the following way:

X {0.5(x + y- 1) + 61wi I wi [-1, 1]}

y -y

f z - {0.5(x + yz- 1)2 - y+ + 2W2 I 2 [-1,]}

c -c+1

v * { -1, 1}

where J1 and 62 represent the magnitude of the uncertainties that are introduced by floating-

point roundoff errors. It can be verified that with 64-bit double precision format, assuming that

all the variables remain within [-1010, 1010] , then 61, 62 < 3 := 8 x 10-6.

Example 2.4 Consider the following program:

Program 2-3.

A concrete representation can be defined by S(X, f, Xo, X,) where

X = IF4, Xo = F4n({-1, 1} x [0,1] x {0} x [0, 1]), X, = {(x,y,t,h) E 4 I y > h}

Over the set X,, f is the identity map and over X\X it can be defined in the following way:

f : (x, y, t, h) - I (x + sgn(x) x cos(t), y + sin(t), mod(t + 0.001, 1), h)

Various levels of abstraction can be applied to S(X, f, Xo, X.) to obtain an abstract model. For

the moment, let us assume that the net effect of round-off errors are such that the absolute error

in the computation of x ± sin (t) (or x ± cos (t)) is never larger than a small positive number 6.

We make similar assumptions about y.

X = R4 , XO = {-1, 1} x [0, 1] x {0} x [0, 1], X, = (x,y,t, h) E R4 y > h}

void Accelerated Turn (double x, double y, double h)

//y coordinate initially in the interval [0, 1],

//h initially in the interval [0, 1], is the upper bound for y

//x coordinate initially in {-1, 1}

{ double t = {0}; //t is the turn angle

while (y < h)

{t = mod (t + 0.001, 1);

if x>0 {

x = x - cos(t); y = y + sin(t);

else

x = x + cos(t); y= y + sin(t);

}}

x {x + v x cos(t) + 6w I xvi > 0, wi E [-1, 1], vi E{-1,1}}

y - {y + sin(t) + Sw 2 , W2 E[-1,1]}
f:

t - {t + 0.001 - 0.5 - 0.5v2 I (t + 0.001 - 1)v2 > 0, v2 E {-1, 1}}

h +h

Further abstractions are possible by defining:

X-= I4, Xo = {-1, 1} x [0, 1] x {0} x [0, 1], X, = (x, y, t, h) E R14 I y > h}

x 4 Ix + vi x (1 - 0.5t 2) + 6w -+ 0.01w3 XV1 > O, wi, w E [-1 , vi E {-1,1}}

y -({y+ t - t3/6 + Sw2 + 0.05w4, 2 , 4 [-1, 1]

t -* {t + 0.001 - 0.5 - 0.5v2 I (t + 0.001 - 1)v2 > 0, v2 E {-1, 1}}

h 'h

2.2 Specific Models of Computer Programs

In a verification framework, specific modeling languages are particularly necessary for automat-

ing the proof process. In this section, we propose three specific modeling languages for dynami-

cal system representation of computer programs: Mixed-Integer Linear Models (MILM), Graph

Models, and Linear Models with Conditional Switching (LMwCS). We believe that these models

can represent a broad range of computer programs of interest to the control community. In

comparison with the generic dynamical system representation S(X, f, Xo, X,), in the specific

models, we specify the state space X, and the structure of the corresponding subsets Xo C X,

and X, C X. The same is true for the set-valued map f which is restricted to be a piecewise

affine or piecewise polynomial set-valued map represented in a specific format.

We use the generic representations whenever the details of the model is irrelevant to the

discussion and/or the result. This includes some of the fundamental results in Chapter 3 on

analysis of software via Lyapunov invariants. We also use the generic representations in Section

2.4 to study the consequences of abstractions on proofs of correctness. On the other hand,

the specific models are very convenient models for computation of the Lyapunov invariants via

convex optimization (cf. Chapter 4). They can be conveniently included in a fully automated or

semi-automated verification framework. The choice of the modeling language is influenced by

the specifications and by practical considerations such as availability of an automated parsing

tool to translate the computer code into a particular modeling language, existence of an efficient

convex relaxation technique, and compatibility with a particular numerical engine for convex

optimization. We will discuss some of the advantages and disadvantages that each of these

models offer as we present them in this section.

2.2.1 Mixed-Integer Linear Models

Using mixed-integer linear models for software analysis is motivated by the observation that

these models can provide a relatively compact description of the behavior of programs with

arbitrary piecewise affine dynamics defined over bounded polytopic subsets of the Euclidean

space. In addition, generalization of the model to a specific class of programs with piecewise

affine dynamics defined over parabolic subsets (sets with a second order description) of the

Euclidean space is relatively straightforward. Further generalization to programs with piecewise

polynomial dynamics is also possible. We will discuss these generalizations briefly in the remarks

section after Proposition 2.1. Proposition 2.1 establishes the universality of mixed-integer linear

models, in the sense that they can represent arbitrary piecewise affine functions with closed

graphs. The statement of the proposition was formulated in [41]. Mixed Logical Dynamical

Systems (MLDS) with very similar structure to the models presented in Proposition 2.1 were

considered in [11] for analysis of a class of hybrid systems. Although there are some minor

differences between the MILMs introduced in this section and the MLDS in [11], the main

contributions here are the application of the model to software analysis and presenting a proof

for the statement on the universality of MILMs, which was first formulated in [41].

P'roposition 2.1 Universality of Mixed-Integer Linear Models. Let f : X --+ I' be a

piecewise affine function with a closed graph, defined on a compact state space X C [-1, 1]n ,

which consists of a finite union of compact polytopes. That is:

f (x) = 2Aix + 2Bi, subject to x Xi, i E Z (1, N),

where, each Xi is a compact polytopic set. Then, f can be defined precisely, by imposing linear

equality constraints on a finite number of binary variables and a finite number of continuous

variables ranging over compact intervals. More specifically, there exist matrices F and H, such

that the following two sets are equal:

Gi f (x,f (x)) I X E X}

G (x, y) F[x w v] =y, H[x w v]T =0, (w, v) e [-1,1]q { - 1,1}r

N

Proof. The proof is by construction. Let X = U Xi, where the Xi's are compact polytopic
i=1

sets. Further, assume that each Xi is characterized by a finite set of linear inequality constraints:

Xi:= {- I Six < Si, Si E RNxn , si E RNi}

Let v := [vi ... vy] E {-1, 1} , and consider the following sets:

GxV (x, v) vi = -N + 2, (Six-s)(vi+1) 0, vi {-1,1} : iZ (1, N) ,
i=1

GXY (x, y) (1 + vi) (Aix + Bi) = y, (x, v) EGx

First, we prove that Gxy = G 1 . Define N binary vectors 7r E {-1, 1 }N, j E Z (1, N) according

to the following rule: 7i = 1 - i = j. Also define I (x) := {j E Z (1, N) I x Xj}. Now, let

(xo, f (xo)) e G1. Then:

i=N
xo E U xi, (xo, rj) Gxv : Vj E I (xo) .

i=1

Therefore, (xo,2Ajxo + 2Bj) E Gxy : Vj E I (xo), which by supposition, implies that:

(xo, f (xo)) E Gy

This proves that G1 C Gxy. Now, let (xo, yo) E Gxy. Then, there exists i E {-1, 1}", such that

(xo,i) E Gxv. Hence, there exists j E Z(1, N), such that xo E Xj, and yo = 2Ajx + 2Bj. It

follows from the definition of f that (xo, yo) E G1. This proves that Gxy C G1. We have shown

that G1 = Gxy. It remains to show that Gxy has an equivalent description to G2.

Define new variables ui := xvi E [-1, 1]n . Then:

XI ~ (I) = E~C (Aix + Aiui + B + Biv), Siui + Six - sivi - si < 0

i=1 vi = -N + 2, ui = xvi, vi E {- 1, 1} : i Z (1, N)

By definition, u E [-1, 1]n is the multiplication of a bounded continuous variable x E [-1, 1]',

and a binary scalar variable vi. This (nonlinear) transformation can be represented by an affine

transformation involving auxiliary variables _i E [-1, 1]n, and -i E [-1, 1]n, subject to a set of

linear constraints, in the following way:

Ui = 2 i - x - viln + In, Zi vil, i <_ -Viln Zi = x - -i - In (2.5)

equivalently:

ui = 2Zi - x - (Vi - 1) 1n, = x - i - n.

(i - 1) In + wi i = (-i - 1) In + wi.

where jwi, U E [-1, 1]n . Since by assumption each Xi is bounded, for all i E Z(1, N) and all

j E Z (1, Ni) , the quantities

RiJ := min Sijx - sij (2.6)
xEXi

exist, are finite and can be computed by solving Ni x N linear programs given in (2.6) (Sij and

sij denote the j-th row of Si and si respectively). Define R i := diag {Rij}. Then Gxy as
jEZ(1,Ni)

defined in (2.4) is equivalent to:

Gxy { (x,y) Iy = E J (Aix +Aiui +Bi +Bivi), (x,ui,vi) E H} (2.7)
G~i=

H={ (x, ui, vi) :

S= Siui + Six - sivi -s -R (wi + 1N)

ui = 2zi - x- (vi - 1) 1n

S= (vi -1) In + w i

Zi = X- i - in, Z4,-Z i e [-1, 1]
n (2.8)

Zi (-Vi - 1) In + Ti,

1n vi = -N + 2, vi - , -11

[-1, 1]n l L, i, ,, u, [_-1, 1]N W,

The equality constraints that define the Matrix H are precisely the equalities in (2.8), while

the equality constraint in (2.7) defines the Matrix F. This completes the proof. E

So far, we have established that by imposing linear equality constraints on boolean and con-

tinuous variables defined over a quasicube6 , one can define arbitrary piecewise affine functions

on finite unions of polytopes. This observation serves as the basis for considering the mixed-

integer linear models for software analysis. The motivation is that these models are capable

of providing relatively compact descriptions of complicated dependencies between the program

variables.

A mixed-integer linear model of a computer program is defined via the following elements:

1. The state space X C [-1, 1]n .

2. The state transition function f : X - 2X is defined by two matrices F, and H of dimen-

sions n-by-(n + q + r + 1) and p-by-(n + q + r + 1) respectively, according to:

f(x) E F[x w v]T H[x w v 1]T =0, (w,v) E [- 1 , 1]q x { - 1,1}r}. (2.9)

3. There are two possible ways to define the set of initial conditions for mixed-integer linear

models.

(a) If Xo is finite and its cardinality is not too large, then one can conveniently specify

X 0 by its elements. We will see in Chapter 4 that in this case, per each element

6A quasicube is defined as the Cartesian product of a hypercube and the set of vertices of another hypercube.

where,

of Xo, one additional constraint needs to be added to the set of constraints of an

optimization problem that will be set up for verification of certain properties of the

model.

(b) If Xo is not finite, or IXo| is too large, Xo or an abstraction of it can be specified

by a matrix Ho E RNOx n e which specifies a union of compact polytopes in the state

space in the following way:

Xo = EX : Ho[x w v 1]T = 0, (w,v) E [-1,1]q x { - 1,1}r}. (2.10)

Note that it is possible to choose the matrix Ho such that Xo is finite. In other

words, case (b) covers case (a) as a special case.

4. Finally, the set of terminal states X, is defined by

X,= {x EX : H[x w v I]T / 0, Vw E [-1, 1]', Vv E {-1, 1}r}. (2.11)

Therefore, S(X, f, Xo, X,) is well defined. A compact description of a mixed integer linear

model of a program P is either of the form S (F, H, Ho, n, q, r) , or of the form S (F, H, Xo, n, q, r)

whenever Xo is finite and does not have too many elements.

MILMs can represent a broad range of computer programs of interest to the control commu-

nity. These include but are not limited to single flow programs, and control programs of gain

scheduled linear systems in embedded applications. As we will discuss in Chapter 3, natural

Lyapunov invariant candidates for MILMs are quadratic functionals. Within this class, the

traditional quadratic relaxation techniques, e.g. the S-Procedure, can be used to formulate the

search for the Lyapunov invariants as a semidefinite optimization problem.

Remarks

1. We have defined the MILMs over a quasicube of unit length. In practice, to represent a

computer program in this format, often an appropriate scaling of the variables is needed.

Alternatively, one can consider MILMs over a quasicube of length a. That is, the state

space can be defined as X := [-a, a]n , and (w, v) E [-a, a] q X {-, a}r.

2. It is not uncommon to encounter the following programming situation (displayed on the

left):

if g(x) >= 0

x = fi(x); x ~- fi(x) if g(x) > 0

else Abstrction f2 (x) if g(x) < 0

x = f2 (x); x {fl(x),f2 (x)} if g(x) = 0

end

where fi(x) and f 2(x) are affine expressions such that fi(xo) : f 2(xO) for some x0 sat-

isfying g (xo) = 0. In such situations, the graph of the function f (cf. Proposition 2.1) is

not closed. Nevertheless, a MILM can be constructed using the same procedure in Propo-

sition 2.1 by considering an appropriate abstraction of the program (displayed above on

the right). If the correctness of the program does depend on the accurate definition of

the map at xo (where g (xo) = 0) then the above abstraction is inadequate7 .

3. It can be observed from the proof of Proposition 2.1 that it is possible to consider MILMs

with both equality and inequality constraints. In other words, converting all the inequality

constraints in (2.4) and (2.5) to equality constraints is not essential. The advantage in

converting the inequalities to equalities is that the overall representation is more compact.

It is far more convenient to work with models that include only equality constraints rather

than both equalities and inequalities. The drawback is that more auxiliary slack variables

must be introduced.

4. It is particularly appealing to consider models which include both linear and quadratic

equality constraints (namely, the mixed-integer linear-quadratic models (MILQM)). If

quadratic equality constraints are allowed, then the constraints ui = xvi can be readily

included in the quadratic constraints without the need to introduce the auxiliary variables

7In this case, a remedy exists based on using open (or semi-open) intervals (e.g. [-1, 1)) for defining the slack
variables followed by sum-of-squares relaxation as the convex relaxation technique in the optimization phase.

zi, zi. If semidefinite optimization is the method of choice in the search for (quadratic)

Lyapunov invariants as behavior certificates, then including quadratic constraints in the

model does not complicate the process, as efficient techniques exist for semidefinite pro-

gramming relaxation of quadratic constraints (cf. Chapter 4). However, it is well known

that applying different convex relaxations to equivalent constraints (described in alter-

native but equivalent forms) does not in general, lead to identical results. Hence, it is

hard to predict which model would lead to better results in analysis of the behavioral

properties of the software via semidefinite optimization.

5. It follows from the discussion in item (3), that the MILMs can be conveniently gener-

alized to MILQMs without making the analysis process more complicated, particularly

if semidefinite optimization is used in the search for behavior certificates. If quadratic

constraints (both equalities and inequalities) are allowed, they are not restricted to the

representation of the constraints ui = xvi. More complicated dependencies can be mod-

eled with MILQMs, particularly when the sets Xi are not polytopic, but they have a

second order description, e.g. X 1 := {(xI, x2) I 2+ x2 - XX2 _ 0}.

6. Further generalizations of the MILMs to models with polynomial dynamics is also possible.

The same approach that is used in the proof of Proposition 2.1 (i.e. assigning a binary

variable vi to each Xi) can be used for modeling programs with polynomial or polynomial

fractional dynamics. For instance, consider the following pseudocode for computing the

square root of a positive number:

x, y, e : real

while x 2 -y >e

x = 0.5 (x + y/x);

end

The program can be modeled as: x+ = f (xe), subject to h (xe) = 0, g (Xe) > 0; where

xe = (x, y, e, z, v), and f : xz - 0.5 (x + z), h : xe -- zx - y, g : xe - v 2 - vy - e,

v e {-1,1}.

Example 2.5 A MILM of an abstraction of Program 2-1 (Section 2.1), the IntegerDivision

program, with all the integer variables replaced with real variables, is defined by S (F, H, Ho, 4, 3, 0),

where:

Ho

.H

-1

0

0

0

-1

0

0

0

0

i/a

0

1

1 + 1/a

0

Here, a is a parameter used for scaling all the variables within the interval [-1, 1].

Example 2.6 Consider the following program:

Program 2-4.

//xl, x2 initially zero

while x2 < 100

if xl > 0

xl = xl - a* (wl + 2);

else

xl = xl + b * (wl + 2);

end

x2 = x2 + 1;

end

F

where a and b are fixed parameters and wl E [-1, 1] represents real-time input. The MILM of

this program is defined by S (F, H, {(0, 0)} , 2, 8, 1), where

F = 1 0 c2 C 0 0 0 0 0 0 2cl 2c2

0 1 0 0 0 0 0 0 0 0 01/a

1 0 0 0 -0.5 0 0 0 0 0 -0.5 0

01 0 0 Ori 0 000 0 r2

0 0 -1 -1 0 0 2 0 0 0 -1 1

0 0 1 0 0 0 -1 -1 0 0 0 -1

0 0 0 0 0 0 -1 0 1 0 1 -1

0 0 0 0 0 0 0 -1 0 1 -1 -1

c2 = (b - a) /2a, c = - (b + a) /2a, ri = 0.5 + 50/a, r2 = 0.5 - 50/a.

Again a is a scaling factor.

2.2.2 Graph models

In this section we introduce the so-called graph models for analysis of computer programs.

Practical considerations such as universality, expressivity, and strong resemblance to the nat-

ural flow of computer code, which is attractive for automated parsing, render graph models a

convenient and efficient model for analysis of software. Before we proceed to defining graph

models, for convenience, we introduce the following notations:

Notation 2.1 We denote by sl the projection operator sl : (ZU {N}) x IRn - In, defined

according to:

si (i,x)= x : i ZU {}, xE R.

Notation 2.2 Let II denote a semialgebraic set, defined according to:

H := {x IH (x) = 0, F (x) > 0, G (x) # 0}, (2.12)

where H, F, and G, are multivalued polynomial functions mapping Rn to IRnH, nF, and R nG

H

respectively. Equivalently, II can be understood as an operator mapping the set of all polynomial

functions over Rn to a semialgebraic set II : F -+ S, in the following way:

II(T) := I Hk (- (x)) = 0, F (T (X)) > 0, G (T (X)) : 0

where 7 : Rn_ IRn is polynomial. Whenever the argument of H (.) is the identity map, we

simply write H instead of II (I), which is consistent with (2.12).

The definition that we present here for graph models is very intuitive, although the notation

may appear somewhat cumbersome. A graph models is defined on a directed graph G (K, E) .

The elements of this model are:

1. A set of nodes n := {0} U {1, ... , m} U { D }. These nodes are effectively the line numbers

or locations of lines of code. Node 0 is the the starting node and node N is the terminal

node. The only possible transition from node N is the identity transition to node N .

2. A set of arcs S := {(i, j, k) I i E K, j E 0 (i)}, where 0 (i) is the set of all nodes to which

transition from node i is possible in one step. Similarly, Z (i) denotes the set of all nodes

from which transitions to node i is possible in one step. Multiple arcs between nodes are

allowed and the third element in the triplet (i, j, k) is the index of the k-th arc between

nodes i and j. The set Aji := {1,..,-ji} denotes the set of all indices of the arcs from

node i to node j, where ji is the total number of arcs starting from node i, ending at

node j.

3. A set of program variables xq E R, q E Z (1, n). Given A and n, we define the state

space of a graph model as X := K x Rn. The state (i, x) of a graph model has therefore,

two components: The discrete component i E n is the node number (location or line

number) and the continuous component x E Rn corresponds to the program variables.

We sometimes use the notation i := (i, x) to refer to the state of a graph model.

4. A set of transition labels (Tk , S) assigned to every arc (i, j, k) E £, where Tk" : R n -+ 2 n

-k

represents a set-valued function mapping x to the set Tx := {T i (x, w) (x, w) E Sj},

sModels conceptually similar to the graph models proposed in this document have been reported in [75] for
software verification, and in [3, 19] for modeling and verification of hybrid systems.

where i : R + n" - IR is a polynomial function of x and w, and Ski is a semialgebraic

set defined in terms of x E IRn and w E IRn' . If Tk is a deterministic function, we drop

Ski from the transition label and simply write Tk as the transition label.

5. A set of passport labels 1Hi assigned to all the arcs (i, j, k) E S, where HIC represents a

semialgebraic set. State transition along the arc (i, j, k) is possible if and only if x E Ii'

In Chapter 5, where we introduce the concept of graph reduction, we may use the notation

HIIi (T) for the passport label which is understood in the same sense as Definition 2.2.

6. A set of semialgebraic invariant sets Xi C IR, i E nA are assigned to every node on the

graph, such that sz (i, x) E Xi. In other words, every time that location i is reached, the

program variable x is known to be in the set Xi. Equivalently, a state i := (i, x) such

that x Xi is unreachable. Sometimes, we may use the notation Xi (T) for the invariant

sets which is again understood in the same sense as Definition 2.2.

Therefore, a graph model defines a dynamical system model S(X, f, Xo, X.) of a computer

program P, where the state space X is given by:

X := x Rn

the set of initial and terminal states are given by:

Xo := {0} x X,, X := {M} x X,,

and the state transition map f : X - 2X is given by:

f) f (i,)i. (2.13)

According to (2.13), the uncertainty in the definition of Y (t + 1) enters the model in two

ways: one is the uncertainty in the discrete state transition: i -- j E 0 (i), and the other is

the uncertainty associated with the continuous state transition x -+ Tkx which is by definition

a set-valued map.

Remarks

1. In a graph model, node 0 represents a (perhaps fictitious) line of code containing all

the available information about the initial conditions of the continuous variables. This

information is included in the model via the invariant set of node 0 : si (0, x) E X.

2. Multiple arcs between nodes enable modeling of "or" or "xor" type conditional transitions

in computer programs. The passport labels associated with multiple arcs between two

nodes are not necessarily exclusive, that is multiple transitions along different arcs may

be possible at each instant of time. This allows for nondeterministic modeling.

3. The transition label (Tk, S) may represent a simple update rule which depends on

the real-time input. For instance, if T = Ax + Bw, and S = R n x [-1, 1], then

x (_) {Ax + Bw w E [-1, 1]}. In other cases, (Tk , S) may represent an abstraction

of a nonlinear transformation (cf. Section 2.1.2). For instance, an abstraction of the

assignment x -+ sin (x) can be represented by x {T (x, w) I (x, w) E S}, where T

and S are given in Equation 2.3.

4. We have defined the second component of the state space to be a continuous variable

in R'. It may be the case that some of these variables are binary variables residing in

{-1, 1}q, or bounded continuous variables residing in [-1, 1]r , r + q < n. In such cases,

this information can be included in the model by adding the set

Xg := {z E Rn 1- x= 0, 1 - > 0 i Z(1,q), jE Z (q+1,qfr)},

to the invariant set of every node i E A/J. We will reserve the term "discrete component"

of the state space for the first element of the state (i, x) which refers to a line number

or a node on the graph. With a slight abuse of terminology, we will refer to the second

component of the state variable in a graph model as the continuous component even if

some of these variables are known to be binary variables. Alternatively one may choose to

define the state space of a graph model as X := g x IRn x {-1, 1 }q and refer to the binary

variables as the third element of the state (i, x, v) , while the second component represents

a truly continuous variable in RI. The two approaches are practically equivalent and the

choice does not change the outcome or the complexity of the verification process presented

in this thesis.

5. The invariant sets Xi are meaningful elements of the model only if they are strict subsets of

IRn, otherwise they provide no nontrivial information about the behavior of the program.

Note that the invariant sets are not essential elements of the model. They can be included

if they are readily available or easily computable. For instance, the invariant sets may be

generated in the following ways:

(a) They are provided by the programmer and they represent his or her knowledge

about the behavior of the program. The programmer provides these invariants to

the program analyzer to include them in the graph model.

(b) The invariant sets can be constructed from the passport and transition labels of the

graph in the following way: Assume that Tk is affine, deterministic, invertible, and

the inverse is easily computable, then

X := U Hi([T]) (2.14)
jCz(i), kEAij

is an invariant set for node i. Furthermore, assuming that for j E I (i) , the invariant

sets Xj are available, then

Xi := U Hj([T1]-) n Xj([T]-i). (2.15)
jez(i), kEAij

is an invariant set for node i.

(c) An alternative approach which can be helpful when Tk is not invertible is to replace

Hi([T] -1) and X ([Tlk]-) in (2.14) and (2.15) by 1R(T) (the range of T). A

very common case in programming is when T maps certain variables to constants.

When Tk is neither invertible, nor a constant map, a possible approach would be to

exploit convex optimization for computation of (an over-approximation of) R(Tk)

over Xi n Iij.

Graph models with non-smooth state-dependent or time-varying arcs.

In the graph model description that we introduced above, the transition and passport labels

associated with the arcs can be time-varying or non-smooth functions of the state variables. A

very common case is when some parameters (e.g. coefficients) of the transition functions are

drawn from a finite set (e.g. a multidimensional array or data structure). The index variable

that refers to an element from the array can be random (defining a time-varying transitions), or

it can be a function of other state variables (defining a non-smooth state-dependent transition).

For instance, consider the following fragment from a program with two variables: x E R, and

is {1,2}"

L1: x=A[i]x;

L2: expression

Then, the state transition from node 1 to 2 is defined by:

T21 : (x, i) - (A[i]x,i)

where A is an array of size 2. The map T2 1 as presented above is not readily in semialgebraic

form. However, a procedure similar to the one used in construction of MILMs (cf. Proposition

2.1) can be used to construct a valid transition label which conforms with our framework. For

the above example, this can be done in the following way:

T 2 1 (x,i) T 2 1 (x,i, v1, 2) (x, i, l,v 2) E S 2 1}.

T 2 1 (x,i, Vl, v2) A [1] vix + A [2] v 2x.

S21 (, i, Vl, V2) I V1 + V2 = 1, v, v2 E {0, 1} , vi (i - 1) + v2 (i - 2) = 0}.

In light of Proposition 2.1, generalization of the above technique to multidimensional arrays of

arbitrary finite size can be done in a systematic way. However, the number of binary decision

variables grows (linearly) with the number of elements in the array, which can be undesirable

for very large arrays. A conservative alternative would be to abstract the array by the upper

and lower bounds on the magnitude of its elements.

T 2 1 (x,i) : {T 2 1 (x, i, w) I (x, i, w) E S 2 1 }.

T 21 (,i,Vl,V 2) : =wX.

S21 =(x,i,w) min A [i] < w < max A [i]}.
i i

This approach provides a relatively inexpensive abstraction of complicated dependencies be-

tween variables. However, it can be very conservative in some applications. A third approach

to constructing graph models with fixed (time-invariant) labels is to attempt to derive a fixed

map by computing the net effect of several lines of code [31]. When applicable, the result is a

fixed map which is obtained by taking the composition of several functions. This is an instance

of a more general concept in computer science, namely, extracting the higher level semantics.

Higher levels of semantic collection allow one to define more compact models of the software.

However, this task is often very complex when it goes beyond pattern matching as information

must be collected over several lines of code and then linked into a compact model.

For instance, it is not uncommon to encounter coding scenarios like the following:

Program 2-5.

Ll : for (k= 1 ;k==N;k++) {

L2: y[k] =x[k];x[k] =0; }

L3 : for (i = 1; i == N ; i++)

L4: for (j = 1 ;j == N ;j++) {

L5: x[i x[i + y[j] * A[i][j];

L6: }}

k -> k+1

(x, y) F T2[k](x,y)

j -j+1

{k = N} (x, y) - T,5[i,j](x,y)

, x.) - T., kl(x,y)l

3

i < Nj = N (x,y) 7 T., [i, jl(x,y)

i i+1

(x,y) - T,5[i,j](x,y)

Figure 2-2: Graph model of a code fragment (Program 2-5) with time varying arc labels. The

transition labels are shown in boxes and the passport labels are in brackets. For simplicity, only

the non-identity transition labels are shown.

A graph model of this code fragment is shown in Figure 2-2, where:

y = [y [1] ...y [N]] T , x = [x [1]...x [N]] T

T,2 [k] -

T*5 [ii j] Y
X Aijeij I x

where eij is an N x N matrix which is zero everywhere except at the (i, j)-th entry which is 1,

and Aij denotes the (i,j)-th entry of A (Aij - A [i] [j]) which is an N x N array in the code

[31]. The remaining transition labels correspond to the counter variables i, j, k, and have been

specified on the graph in Figure 2-2. From node 1 to node 3, the net effect is:

N 0I1
N T] [k] =

k=l 0 0

and from node 3 to node 6 the net effect is:

NN I 0

H f T5 [i, j] =
i=1 j=1 A 0

In the sequel, in reference to the graph model of a computer program, we will use the concise

notation G (KV, £), with the convention that the nodes and arcs of G are appropriately labeled

to define a valid model S (X, f, Xo, X,). Note that the invariant sets Xi are not essential

elements of the model. However, whenever they can be constructed, they can simplify program

analysis and help us find stronger Lyapunov invariants. As we will see in Chapter 3 Lyapunov

invariant candidates for graph models are in the form of V (Y) - V(i, x) := ai(x), where for

every i E {} U {1,...,m} U {f}, the function ai : Rn - IR is a polynomial, quadratic or an

afilne functional.

The graph model that we have introduced in this section is quite generic. It is worthwhile

to consider and study a subclass of the generic graph models: Linear Models with Conditional

Switching.

Linear Models with Conditional Switching (LMwCS):

Linear Models with Conditional Switching are an important subclass of graph models. LMwCS

are suitable for programs with simple linear flow. In particular, these include programs written

with a combination of while-loop, for-loop, goto, and if-then-else commands with affine condi-

tions and affine assignments. Examples of such programs can be found in embedded systems

controlling real-time interactions between simple logic and gain scheduled linear systems. Sim-

ilar to the generic graph models, in this model too, the state space of the system is the direct

product of a discrete set and an n-dimensional Euclidean space:

X := {0} U {1,2,...,m} U{N} x Rn

The set of initial and terminal states are defined by Xo := { (0, X¢) }, and X", := { (N, X) },

where X 0, X, are selected polyhedral or second order subsets of RIn . The set-valued state

transition map f : X F 2x is defined by matrices Ci, ci, Aik, Bik, Lik, k = 1, 2, where

i E {0,1,...,m}, as well as by functions Ok : {0,1,...,m} H {0,1,...,m) U {N}, k = 1,2,

according to the following rule:

f(i, x) = {(01 (i), Ai 1x + Bilw + Lil) : wE [-1, 1]q

when Cix + ci < 0 and i =#N,

f(i, x) = {(0 2(i), Ai2x Bi2w + Lk2): w E [-1, 1]q}

when Cix + ci > 0 and i # . Finally, f(i, x) = {(N,x)} when i =N.

Similar to generic graph models, Lyapunov invariant candidates for LMwCS are in the form

of V (Y) - V(i, x) := ai(x), where for every i {0} U {1,.., m} U{ } the function oi : In --+ R

is a quadratic or an affine functional.

LMwCS can be regarded as a special case of linear graph models, which are defined as a

special subclass of graph models where all the transformations, sets, and conditions are affine.

The elements of a linear graph model are:

1. A set of nodes N:= {0} U {1,...,m} U {4}.

2. A set of arcs 9 := {(i, j, k) I i c , j E O (i)} .

3. A set of program variables Xq E R , q EZ (1, n) . Given Af, n, the state space is defined

as: X := N x R.

4. A set of transition labels Tk, assigned to every arc (i, j, k) E S, where Tk : Rn -- Rn is

defined in the following way:

T: x + A + w E [-1,1]

5. A set of passport labels II, assigned to every arc (i, j, k) E S:

lit := {x I Cix + cji < O, Dix - d i = 0}

State transition along the arc (i, j, k) is possible if and only if x II ji.

6. A set of polyhedral invariant sets Xi C IR, i E /V, assigned to every node on the graph,

such that sl (i, x) E Xi. The invariant sets are of the form:

Xi:= {x I xTQ i x < 1, Six - si < 0, Hix - hi = 0}.

2.3 Specifications

In this section, we present mathematical definitions for the specification that we consider in

this document. The specifications that can be verified via our framework are:

* Safety: The property that a certain subset of the state space will never be reached.

* Finite-time termination: The property that all of the trajectories will enter a certain

subset of the state space in finite-time. This property is sometimes referred to as the

liveness property.

It will be shown in Chapter 3 that different variations of Lyapunov invariants satisfying

certain technical conditions can be formulated for verification of these specifications.

2.3.1 Safety

Definition 2.3 Consider a program P and its dynamical system representation S(X, f, Xo, Xc).

Program P is said to satisfy the safety property with respect to a certain subset X_ C X, if for

every trajectory X - x(.) of (2.1):

x (0) E Xo C X, x (t + 1) E f (x (t)) Vt E Z+,

and for every t E Z+, z(t) does not belong to X_.

Several critical specifications associated with runtime errors can be defined as special cases

of the safety specification.

Overflow

An overflow runtime error occurs when a variable exceeds its available dynamic range. For

instance, in standard C programs running on 16-bit processors, the type int defines an unsigned

integer that takes integer values between -215 and 215 - 1. For simplicity, we often make this

interval symmetric and assume that the overflow limit of an unsigned integer is given by 215-1 =

32767. Similarly, on a 16-bit machine, the symmetric overflow limits for variables of the type

double and float are 1.7 x 10308 and 3.4x 1038 .As it can be observed, the overflow limits for double

and float variables are extremely large numbers. Our framework exploits convex optimization

tools to find the Lyapunov invariants that certify the specifications. If these extremely large

values are embedded in the optimization problem, they will lead to poorly conditioned matrices

and numerical inaccuracies that render the process either infeasible or erroneous. As a result,

much smaller real numbers (usually not larger than 10s in order of magnitude) must be used

to specify the overflow limit. Although this may seem a very conservative remedy, it has little

if any practical consequence, as the variables in a well-written program in a safety-critical

application are typically not expected to be extremely large numbers.

The absence of overflow specification can be characterized as a special case of the unreach-

ability specification by specifying X_ in Definition 2.3 in the following way:

X_ := xE X Ix > ail,

where ai is the overflow limit for variable xi. Equivalently, we can write:

X_ := {x E X I Ia-CI > 1}.

where a = diag {ai} is a diagonal positive definite matrix specifying the overflow limit.

Remark 2.2 Overflow in modulo arithmetic does not lead to a runtime error, rather, there

will be a rollover into the same set. In safety-critical applications a rollover is an equally

dangerous scenario, as it may lead to an extreme distortion of performance or to an abrupt and

unpredictable change in the behavior of the system. Therefore, we consider a variable overflow

an unsafe event, whether it leads to an actual runtime error or to a rollover.

Out-of-Bounds Array Indexing An out-of-bounds array indexing error occurs when

an integer variable exceeding the length of an array references an element of the array. The

"absence of out-of-bounds array indexing" specification is very similar in nature to the absence

of overflow specification. Assuming that xk is an integer that is used for indexing an array of

length 1, we can define:

X_ := {x E X I xk > 1}.

If it can be proven that X_ is unreachable, then the specification is provably satisfied. Consider

now the safe situation in which Xk can exceed the array length I at other locations in the

program, but never at the locations where it references to the array element. In such situations,

the graph models are more suitable for verification of the specification that Xk does not exceed

1 at location i. Using graph models we can define:

x_ := {(i,x) E X I xk >11

and prove that X_ is unreachable. This is similar to assertion checking which we will discuss

next.

Program Assertions

An assertion is a True-or-False statement that a programmer may insert at certain locations in

the computer code to indicate his or her expectation from the behavior of the program. More

specifically, the type of program assertions that we consider are in the form of (semialgebraic)

set membership (x E Xa) or set exclusion (x Xa), immediately before the execution of a

specific line of code. Since assertions must hold only at certain locations (that is, the property

x E Xa or x Xa is not necessarily invariant throughout the execution of the program) graph

models are most suitable for assertion checking. Using graph models, assertion checking can be

characterized as a special case of the safety (unreachability) specification:

at location i: assert x E Xa = define X_ := {(i,x) E X x E X\Xa}

at locationi: assert x Xa =: define X_ :={(i,x) EX IxEXa}

Division-by-Zero A division-by-zero runtime error occurs when the value of the divisor

variable becomes zero at the exact time when the division instruction is being executed. This

can cause the program to abort, or continue with an unknown value registered as the result of

the division operation. A conservative approach to ruling out this scenario would be to prove

that x = 0 is an invariant property of the program. However, this can be quite conservative

as the value of x could safely be equal to zero at other lines of the code which do not include

a divide-by-x instruction. This problem is therefore, better addressed as an assertion checking

problem over graph models with

X_ := {(i,x) EX I Xa}

where Xa = {0}, and i is the line number containing the divide-by-x instruction.

Square Root or Logarithm of Negative Numbers A variable of questionable sign

should never be passed to a real-valued function that computes the square root (or logarithm,

4t h root, etc...) of nonnegative numbers. Ruling out these unsafe events is very similar to

assertion checking for division-by-zero. For the square root we must define:

X_ := X_ :- {(i, x) E X I x < 0},

and for the logarithm we must define:

X_ := X_ := (i,X) E X x < 0}.

While certain program assertions are defined by the programmer, the safety assertions for

division-by-zero or taking the square root (or logarithm) of negative numbers are standard

assertions that must be automatically specified and verified.

Program Invariants

A program invariant is a property that always holds during the program execution. The prop-

erty is often described as a semialgebraic relation between certain variables of the program.

Equivalently, the program variables must always belong to a certain semialgebraic subset XI

of the state space. In reference to Definition 2.3, this is equivalent to unreachability of X\XI.

Program invariants can be viewed as assertion that hold at all locations rather than one or few

specific locations. Essentially, any method that can be used for verifying unreachability of X_

can be applied for verifying invariance of X 1 by defining X_ := X\XI. Similarly, any method

that can be used for verifying invariance of XI can be used for verifying unreachability of X_

by defining XI := X\X_.

2.3.2 Program Termination in Finite Time

Finite-time termination is the property that all the trajectories will enter the subset X, in

finite time.

Definition 2.4 Consider a program P and its dynamical system representation S(X, f, Xo, X,).

Program P is said to terminate in finite time if every solution X _ x(.) of (2.1):

x (O) E Xo C X, x (t + 1) E f (x (t)) Vt E Z+,

satisfies x(t) E X, for some t E Z+.

2.4 The Implications of Abstractions

So far in this chapter, we have introduced several dynamical system models for computer pro-

grams and we have given mathematical definition of the properties that we would like to prove.

The dynamical system models that we have introduced include both abstract and concrete

models. In practice, however, the verification task is often performed for the abstract models of

computer programs. For mathematical correctness, in this section we prove that if an abstract

model satisfies the safety and liveness specifications then the actual program satisfies those

specification as well.

Proposition 2.2 Consider a program P and its dynamical system model S(X, f, Xo, X,). Let

S(X, f,Xo,X,) be an abstraction of P. Let X_ C X, and X_ C X, representing the unsafe

regions of S and S respectively be such that X_ C X_. Assume that the safety property w.r.t.

X_ has been certified for the abstract model of P. Then, P satisfies the safety property w.r.t.

X_. In addition, if the finite-time termination property has been certified for the abstract model,

then P terminates in finite time.

Proof. First, consider the safety property. Assume the contrary, that is, P does not satisfy

safety w.r.t. X_. Then, there exists a solution X _ x(.) of S(X, f, Xo, X,), and a positive

integer t_ E Z+ such that x (0) E Xo, and x (t) c X_. It follows from Xo C Xo, and

f(x) C f(x) that X zx(.) is also a solution of S(X, f, Xo, X,). Therefore, we have:

aX (t_) E X_,X_ C X_ -- x (t_) E X_.

However, x (t_) E X_ contradicts the fact that S(X, f, Xo, X,) satisfies safety w.r.t. X_.

Proof of the finite time termination property is similar: let X _ x(.) be any solution of

S(X, f, Xo, Xo). Since X = x(.) is also a solution of S(X, f, Xo, Xo), it follows that there

exists tT E Z+ such that x (tT) E Xo,. Since x (tT) is also an element of X, it follows that

x (tT) E X, n X. Since by definition X, n X C X, holds, we must have x (tT) E X,. This

proves that P terminates in finite time. m

2.5 Summary

In this chapter we developed and presented the first element of the software analysis framework

that is introduced in this dissertation. We discussed our interpretation of numerical computer

programs as dynamical systems and introduced generic dynamical system representations that

formalize this interpretation. We also introduced specific modeling languages as special cases

of the generic representations. These include the MILM, the graph models, and the LMwCS.

These models can represent a broad range of computer programs of interest to the control

community. Furthermore, these models provide a convenient platform for analysis of software

via systems and control theoretic tools in an automated or semi-automated framework. The

dynamical system models, whether generic or specific, can be concrete or abstract. We showed

how to construct abstract models for computer programs involving common nonlinearities.

These abstract models have the potential to simplify the analysis significantly. We further

presented mathematical definitions for the liveness, safety, and other performance specifications

that are considered in this document. Finally, we showed that safety and liveness properties

of the abstract model can be carried over to the actual program. In the next chapter, we will

introduce Lyapunov invariants as behavior certificates for the mathematical models of software

that we introduced in this chapter.

Chapter 3

Lyapunov Invariants as Behavior

Certificates

In this Chapter, we introduce Lyapunov invariants as certificates for the behavioral properties of

numerical computer programs. A Lyapunov invariant is a real-valued function of the program

variables that satisfies a difference inequality along the trajectories of a computer program.

We demonstrate that different variations of Lyapunov invariants satisfying certain technical

conditions can be formulated for verification of safety and liveness specifications that were

defined in Section 2.3. We have chosen the terminology Lyapunov invariant instead of Lyapunov

function to convey that the structure of these functions is different from the standard Lyapunov

functions. In particular, the zero level set of a Lyapunov invariant defines an invariant set for the

variables of the computer program. Also, a Lyapunov invariant is not required to be nonnegative

(or bounded from below). In some cases, a Lyapunov invariant may not even be monotonically

decreasing. Moreover, the level sets of a Lyapunov invariant that proves the safety properties

of a dynamical system are not necessarily bounded closed curves. Numerical computation of

the Lyapunov invariants via convex optimization methods is the topic of Chapter 4.

3.1 Preliminaries

A Lyapunov function in its standard form is a function which is non-increasing along the

trajectories of a dynamical systems and is positive everywhere except at the equilibrium point

where it is zero. In mathematical terms, a function V : X -+ R is a Lyapunov function for

the dynamical system J = f (x) if V satisfies:

V (x) > 0 : V E X\ {x*} , V (x*) = 0,

D V(x(t)) < 0 : VxEX\{z*}.
Dt

It can be shown that under some technical conditions, if such function exists, then x = x* is an

asymptotically stable equilibrium point of the dynamical system & = f (x) . Many variations

of the above definition exist (e.g. with non-strict inequalities, or with X = B (x*, e) versus

X = RIn), which can be used to prove different types of stability, e.g. local or global asymptotic

stability, or stability in the sense of Lyapunov. Extensions of this notion to the input-output

stability analysis of nonlinear systems, or to the analysis of systems with parameter and/or

dynamical uncertainties have also been considered. Furthermore, most of the existing results

on the stability analysis of nonlinear systems can be shown to have an interpretation in terms

of Lyapunov functions, even if a Lyapunov function does not appear explicitly in the stabil-

ity criteria. More detailed discussion of Lyapunov functions in stability analysis of nonlinear

systems can be found for instance in [48].

Inspired by the concept of Lyapunov functions in analysis of dynamical systems, we intro-

duce Lyapunov invariants for analysis of computer programs. Analogous ideas have been used

in [77, 80] for safety verification of hybrid systems, and in [17], [47] for stability analysis of

switched hybrid system.

Definition 3.1 A rate 0 Lyapunov invariant for the dynamical system model S(X, f, Xo, X,)

is defined to be a function V : X - I such that

V (x+) - OV (x) < 0 Vx X, x+ E f (x) : x X . (3.1)

where 0 > 0 is a constant. Thus, a rate 0 Lyapunov invariant satisfies a difference inequality

(V (x+) -9V (x) < 0) along the trajectories ofS (as defined in (2.1)) until they reach a terminal

state. Note that according to this definition, depending on the initial conditions and the constant

8', a Lyapunov invariant may or may not monotonically decrease along the trajectories of S. For

instance, while adding the constraint V (x) < 0, Vx E Xo to (3.1) implies that V (x) is negative

along the trajectories of S, V (x) may not be monotonic if 0 is less than 1, and V (x) will be

monotonic along the trajectories of S if 0 is greater than or equal to 1.

The above definition is generic and applies to any software model S(X, f, Xo, X,), in par-

ticular, it applies to MILMs and and to graph models. It is worth exploring the interpretation

of (3.1) for each of these models. Before we proceed, we present the following proposition which

essentially states that if a function is a Lyapunov invariant for an abstract model of a program,

it is also a Lyapunov invariant for the actual program.

Proposition 3.1 Let S(X, f, Xo, X,) be a concrete dynamical system representation of a com-

puter program P. Let S(X, f, X o , X,) be an abstract representation of P, and let V be a

rate 0 Lyapunov invariant for S(X, f, Xo, X,). Then V is a rate 0 Lyapunov invariant for

s(x, f, Xo, X,).

Proof. We are given that:

V (x+) - OV () < O Vx E X, x+ E f (x) : Xo, (3.2)

and we need to show that:

V (x+) - OV (x) < 0 Vx E X, x+ E f (X) :X X,.

First, we show that

X\X, c X\X . (3.3)

Assume for the sake of contradiction that (3.3) is not true. Then there exists x E X such that

x X,, and x E X,. Therefore, x E X n X, and x XO, which contradicts (2.2). Now, let

(x, xz) E (X\Xo) x f (x) . It follows from (3.3) and f (.) C 7 (.) that (x, x+) E (X\X) xf (x).

(3.2) then implies V (x+) - OV (x) < 0. *

If a Lyapunov invariant which proves liveness and/or safety properties for an abstract model

can be found, then by Proposition 2.2 these specifications are valid for the actual code, and

Proposition 3.1 may not be needed. Proposition 3.1, however, validates the Lyapunov invariants

(of the abstract models) on the actual computer code. The importance of this result is that due

to, the finiteness property of the state space of a concrete model, certain Lyapunov invariants

may prove strong properties (such as finite-time termination) for the actual program but not

for the abstract model. Furthermore, in light of Proposition 3.1, we can refer to Lyapunov

invariants for a computer program and its abstract model indifferently, which is important for

mathematical correctness, and convenient for presentation of the material in the remaining

sections of this chapter.

3.1.1 Lyapunov Invariants for MILMs

The following proposition applies Definition 3.1 to MILMs. The proof is straightforward by

inspection.

Proposition 3.2 Consider a program P and its MILM S (F, H, Xo, n, q, r) . The function V :

[-1, 1]n --+ IR is a Lyapunov invariant for P in the sense of Definition 3.1 if V satisfies:

V(Fx) - OV (x)<O V (,) E [-1, 1]n x,

where

= (x,w,v, 1) H[x w v 1] = 0, (w,v)[-1,1]x { - 1,1}r}.

3.1.2 Lyapunov Invariants for Graph Models

Recall that the state space of a graph model is the direct product of a discrete set V and an

n-dimensional Euclidean space I n , and that the state of this model has two components: a

discrete component which is an element of Kn and a continuous component which is an element

of Rn . We define Lyapunov invariants for graph models in the following way:

V (Y) = V (i, 2) := Ui (x) (3.4)

where, for every i E K the function ai : Rn -+ R is a polynomial, quadratic, or an affine

functional. In other words, a Lyapunov function is assigned to every node i E nA on the graph

G (K, $) . The proof of the following proposition is straightforward by inspection.

Proposition 3.3 Consider a computer program P and its graph model G (K,) . The function

V : KNxR n - IR, where V (i,x) := ai (x), is a Lyapunov invariant for 7 in the sense of

Definition 3.1 if

aj(x+) - Oi (x) < 0, V (i, j, k) E S, (x, x+) EH x Tkx. (3.5)

Since all the regions of X\X may not be reachable, strictly speaking, it is not necessary to

require (3.1) to hold on the entire X\X,. However, requiring (3.1) to hold only on the reachable

regions of the state space leads to non-convex conditions on V, unless the reachable regions (or

an over-approximation of them) are known and fixed a priori (this issue is discussed in further

detail in Section 4.1). If the invariant sets corresponding to the nodes of the graph model are

nontrivial subsets of the state space, this information can be included in (3.5), which would

result in less restrictive criteria. Hence, there is a better chance that a Lyapunov invariant

can be found this way. This approach is reflected in Proposition 3.4, which will be presented

shortly.

Strictly speaking, the rate 0 does not have to be a constant and it can be a positive definite

function of x. However, since simultaneously searching for both 0 (x) and V (x) leads to non-

convex conditions, it is generally hard to take advantage of the additional flexibility that a

variable-rate Lyapunov invariant may provide compared to a constant-rate Lyapunov invariant;

unless a good candidate function for 0 (.) is known a priori. A situation in which a non-constant

rate 0 (.) can be logically chosen is in analysis of graph models. By assigning different O's to

different arcs on the graph, we allow 0 (.) to be a specific function of the state. This function is

an explicit function of the discrete component of the state, i.e. node number, and an implicit

function of the continuous component of the state. While computing the optimal value of 0 per

arc is neither possible nor necessary, depending on the state transitions along the arcs, certain

choices of 0 may be more reasonable than others.

We present the following proposition, which summarizes the above two paragraphs.

Proposition 3.4 Consider a computer program P and its graph model G (M, E) . The function

Figure 3-1: A graph model. There is an invariant set Xi assigned to each node. A transition

label Tji and a passport label IIji is assigned to each arc (i, j) from node i to node j.

V : fxR n -+ R defined according to (3.4) is a Lyapunov invariant for 7P in the sense that

V (5+) < 0 (5) V () V E X, + E f (, f := U (i, Xi) (3.6)

if

aj(x+) - 9jiai (x) < 0, V(i,j, k) E S, (x, x+) E (Xi n ii) x T)x (3.7)

Remark 3.1 A non-strict version of (3.1) can also be considered. In particular, if 0 > 1,

replacing the strict inequality in (3.1) with the non-strict version has no theoretical or practical

consequences on the results that will be derived later in this chapter. Some minor technicalities

arise if 0 = 1 and (3.1) is replaced with the non-strict version. We will discuss how the criteria

that we develop for safety and/or finite-time termination must be modified for the non-strict

case as we present them. In particular, for the graph models, it is convenient to allow some of

the strict inequalities in (3.7) or (3.5) be replaced with non-strict versions.

Let a (G) := IAjiI denote the total number of arcs on G (A, £) , excluding the arc

(N, m, 1). Then, according to Proposition 3.4 ,the Lyapunov condition (3.6) is equivalent to

a (G) constraints imposed on 1JPI functions ai (.) corresponding to the nodes of G.

Example 3.1 Consider the graph model G (A, S) in Figure (3-1), and suppose that for all

(i,j) E S, Tij : Rn -+ Rn is an affine function. Let ai : Rn - R, i E J be a collection of

functions. Then (3.6) holds if:

(1) a, (x) < go (X), Vx E X

(2) U2 (T 21x) < 92101 (x), Vx e X 1 n 1121

(3) U3 (T 32 x) < 03202 (x), Vx E X2 n I32

(4) U4 (T 42 x) < e42U2 () , Vx E X 2 n 1142

(5) 7m (Tm3x) < Ow3U3 (x) , Vx E X3 n 1 .3

(6) a 3 (T 33 x) < 8333 () , Vx E X3 n 1133

(7) a4 (T 44 x) < 04404 (x), Vx E X 4 n 144

(8) ~i (T14x) < 014U4 (x) , Vx E X 4 n1114

(9) . (Tlx) < e101 (x), Vx E X, n f 1m

3.2 Behavior Certificates

In this section, we show that different variations of Lyapunov invariants satisfying certain

technical conditions can be formulated to prove liveness and safety specifications.

3.2.1 Liveness

Models with Finite State-Space

Proposition 3.5 Consider a program P, and its dynamical system model S(X, f, Xo, X,).

Suppose that the function V : X -R, is a rate 1 Lyapunov invariant for S, that is:

V (x+) - V () < 0 Vx E X\X,, x+ E f (x) .

If the state space X is a finite set, then P terminates in finite time.

Proof. Since X is a finite set, the function V can take only finitely many values. In

particular, V can take only finitely many values over the set X\X,. The rest of the proof

proceeds by contradiction: assume that P does not terminate in finite time. Then there exists

a sequence X - (x(0), x(1),..., x(t),...) E S with the following property:

Vt E Z+, x (t) E X\X (3.9)

(3.8)

Now, consider the sequence {V (x (t))} , t = 0, 1, 2, ... According to (3.9) and (3.8), {V (x (t))} is

a strictly monotonically decreasing sequence. Therefore, it must take infinitely many different

values. This contradicts the fact that V can take values only within a finite set. *

Remark 3.2 The above proof relies on the fact that V : X - IR can take only finitely many

values. As long as this condition holds, Proposition 3.5 remains valid even if the entire state

space is not finite. For instance, if a rate 1 Lyapunov invariant V happens to be only a function

of a subset of the program variables that take values in a finite set, then V is a certificate for

finite time termination, even though the whole state space may be infinite. This is useful for

proving termination of loops where the iterations are controlled by integer counters, while other

variables in the program (or the abstraction of them) may be real variables.

The result of Proposition 3.5 holds whether the dynamical system model S(X, f, Xo, X0)

is concrete or abstract (see Proposition 3.7). Although the proof of the Proposition relies on

the finiteness property of the state space, in light of Proposition 3.1, the result remains valid

even if S(X, f, Xo, X,) is an abstract model, perhaps with an infinite state space.

Example 3.2 Consider the IntegerDivision program presented in Example 2.1. The Function

V : X -+ IR, defined according to:

V : (dd, dr, q,r) -+ r

is a rate 1 Lyapunov invariant for IntegerDivision; at every step, V decreases by dr > 0. Since X

is finite, the program IntegerDivision terminates in finite time. This, however, does not prove that

the termination is safe. It only proves absence of infinite loops. The program could terminate

with an overflow.

Models with Infinite State-Space

In the following proposition, we present a finite-termination criterion which is applicable to

both finite and infinite state space cases.

Proposition 3.6 Consider a program ', and its dynamical system model S(X, f, Xo, X,),

and assume that 0 > 1. If there exists a rate 0 Lyapunov invariant V : X R, uniformly

bounded on X, satisfying

V(x) < 0 Vx E Xo (3.10a)

V (x+) - OV (x) < 0 Vx E X\XO, x+ E f (x) , (3.10b)

then P terminates in finite time.

Proof. Note that (3.10a) and (3.10b) imply that V is negative-definite along the trajectories

of S. Let X be any solution of S. Since V is uniformly bounded on X, we have:

3 Me R+, s.t. - M < V (x (t)) < O, VW (t) E X.

Now, assume that there exists a sequence X - (x(0),x(1),... , x(t),...) of elements from X

satisfying (3.10) that does not reach a terminal state in finite time. That is, x (t) X,,

Vt E Z+. Then, if

log M - log IV (x (0))1 (3.11)t> (3.11)
log 0

there must hold V (x (t)) < -M, which contradicts bounded-ness of V. m

Remark 3.3 In Proposition 3.6, the inequalities in either (3.10a) or (3.10b) (but not both)

can be replaced by the non-strict versions.

While the state space of a computer program is always finite, we often search for Lyapunov

invariants for real-valued abstractions of computer programs since working with exact models

in discrete state spaces is more difficult. The following proposition is interesting as it states that

a rate 1 Lyapunov invariant for an abstract model is a certificate for finite-time termination

of the actual program, although it may not be a certificate for finite-time termination of the

abstract model.

Proposition 3.7 Let P be a computer program and let S(X, f, Xo, X") and S(X, f, Xo, X,)

be an exact and an abstract representation of P respectively. Suppose that X is a finite set and

that the function V : X -+ R is a rate 1 Lyapunov invariant for S(X, f, Xo, Xo). Then V is

a certificate for finite-time termination of P.

Proof. Proposition 3.1 implies that V is also a rate 1 Lyapunov invariant for the exact

model S(X, f, Xo, Xo). Since the exact model has a finite state space, Proposition 3.5 implies

that P terminates in finite time. m

Note that when X is not a finite set, existence of V : X - R satisfying conditions of

Proposition 3.7 does not prove finite-time termination property of the abstract model.

Liveness Analysis of Graph Models

In this section we study variations of Propositions 3.5 and 3.6 for liveness analysis with variable-

rate Lyapunov invariants defined on graph models. Before we proceed, we present the following

definition.

Definition 3.2 A cycle Cm on a graph G (N, 5) is an ordered list of m triplets (ni, n2, k) ,

(n2, n 3 , k 2) ,..., (nm, nm+l, km) , where nm+l = ni, and Vj E Z (1, m) we have (nj, nj+l, kj) E E.

A simple cycle is a cycle that does not visit any node more than once, except for the first and

the last nodes. Thus, a simple cycle is a cycle with the following property:

If (ni, ni+, ki)E Cm and (nj,nj+l, kj) E Cm then

nj+l = ni =# i = 1 and j = m

Proposition 3.8 Consider a program P and its graph model G (N, S) . Let V (i, x) := ai (x)

be a variable-rate Lyapunov invariant defined on G, satisfying

Ua (x) < 0, Vx E X0 (3.12a)

gj(x) - Ofii (x) < 0, V (i,j, k) E 9, (x, x+) E (Xi n Hji) x T/x (3.12b)

In addition, assume that V is bounded from below. Then, (3.12) proves that P terminates in

finite time if and only if for every simple cycle C E G, we have:

H O > 1, Ce (3.13)
(i,j,k)EC

Proof. Proof of sufficiency proceeds by contradiction. Assume that (3.12) and (3.13) hold,

but P does not terminate in finite time. Then, there exists a sequence X - (Y(0), Y(1), ..., a(t), ...)

of elements from X satisfying (2.1) that does not reach a terminal state in finite time. Let

SI : X -+ N" be a projection operator mapping every element Y from X, to the discrete com-

ponent of Y. The sequence SX (0, 1,...) is then a sequence of infinite length that takes

only finitely many different values. Therefore, there exists at least one element which repeats

infinitely often in X. Let w E N/\ {0, N } be an element that repeats infinitely often in S1X and

let C [w] denote the set of all cycles on G (Af, S) that begin and end at w. Define

0 = min H Ok
CCC[w] (i,j,k)EC

Note that (3.13) implies that 0 > 1. Let W be a subsequence of X consisting of all the elements

from X that satisfy Sle = w, and rename the analog component of Y at the k-th appearance

of w in S1X by Xk to obtain the sequence W := ((, xl), (w, x2),..., (, xt), ...). Then we have

V, (xi) < 0, and V, (xi+l) < OV, (xi), and 0 > 1. The result then follows from Proposition

3.6. It is easy to construct a counterexample to prove necessity. For instance, consider a graph

model defined via the following elements:

G (K:= {0 1, ,N} , := {(0, 1),(1,1),(1, m)})

X := {0, 1, } x IR, Xo := {1}

Tn := 0.9x + 1, II11 := IR, i} := {0}.

Then ji (x) := 2 2 - 10, i E {0, 1, N } is a rate 1 Lyapunov invariant. However, the process does

not terminate in finite time. 0

Remark 3.4 In Proposition 3.8, the inequalities in either (3.12a) or (3.12b) (but not both)

can be replaced by the non-strict versions. Moreover, similar to Proposition 3.5, a variation

of Proposition 3.8 can be formulated for finite state modes, where the expression in (3.13) is

replaced by an equality or a non-strict inequality instead of the strict inequality:

S(j >,1, CeG
(ij,k)cc

In this case, existence of a Lyapunov invariant satisfying the conditions of Proposition 3.8

guarantees termination if the continuous component of the state belongs to a finite set.

3.2.2 Safety

As it was discussed in Section 2.3.1, safety in software systems is the property that an unsafe

subset X_ of the state space X can never be reached. Consider a rate 0 Lyapunov invariant

V, defined according to (3.1), with rate 0 = 1. The level sets tr(V) of V, are defined by:

£r(V) := {x E X : V(x) < r}. These level sets are invariant with respect to (2.1), in the

sense that x(t + 1) E 4r(V) whenever x(t) E 4r(V). We can use this fact, along with the

monotonicity property of V, to establish a separating manifold between the reachable set and

the unsafe region of the state space (cf. Theorem 3.1). Note that for r = 0, the level sets 4,(V)

remain invariant with respect to (2.1) for any positive 0. Using this fact, we prove in the next

theorem, that under some technical assumptions, 0 = 1 is not necessary for establishing the

separation between the unsafe region and the reachable set.

Theorem 3.1 Consider a program P, and its dynamical system model S(X, f, Xo, X,). Let V

denote the set of all rate 0 Lyapunov invariants for S. An unsafe subset X_ of the state space

X can never be reached along the trajectories of P, if there exists V E V satisfying

sup V(x) < inf V(x) (3.14)
xXo xCX_

V (x+) - OV (x) < 0 Vx E X\X,, x+ E f (x). (3.15)

and at least one of the following three conditions hold:

() 0 = 1. (3.16)

(I) 0 < 0 <1, and inf V(x) > 0. (3.17)
XEX_

(I11) 0 < 0, and sup V(x) < 0. (3.18)
xEXo

Proof. First, consider case (I) . Assume that S has a solution X=(x (0) , (1), ... , (t) , ...),

where x (0) E Xo and x (t-) E X_. Since V (x) is strictly monotonically decreasing along any

solution of S, we must have:

inf V(x) < V (x (t)) < V (x (0)) < sup V(x) (3.19)
xCX_ xCXo

which contradicts (3.14). Next, consider case (II), for which V may not be monotonic along

the trajectories. Partition Xo into two subsets Xo and X 0 (one of which could be empty) such

that X 0 = Xo U X 0 and

V (x)< 0 Vz E X 0, and V (x) > 0 Vx E Xo

Now, assume that S has a solution X=((0),5(1),...,5(t_),...), where T(0) E Xo and

5 (t_) E X_. Note that (3.17) implies that V (Y (t)) > 0 and thus: V (Y (t)) > 0, Vt < t_.

Therefore, V (5 (t)) is strictly monotonically decreasing over the sequence Y (0) to Y (t_) . There-

fore,

inf V(x) < V ((t_)) < V (Y (0)) < sup V (x)
xcX_ xEXo

which contradicts (3.14). Finally, assume that S has a solution X= (x (0) , (1), ... ,x(t_), ...),

where x (0) e X 0 and x (t_) E X_. In this case, regardless of the value of 0, we must have

V (x (t)) < 0, Vt. This implies that V (x (t_)) < 0, which contradicts (3.17). The proof for case

(III) is similar to the proof for case (II) with x (0) E X 0. m

Remark 3.5 In Theorem 3.1, if (3.14) is replaced by the strict version of the inequality, then

(3.15) can be replaced by the non-strict version and the results of the theorem remain valid.

Among several properties of safety-critical software, absence of overflow and finite-time

termination are expected in most applications. In the following corollary, we provide the criteria

for establishing finite-time termination and absence of overflow simultaneously via one Lyapunov

invariant. In addition, the criteria for the Lyapunov invariants as presented in Corollary 3.1,

are more convenient for carrying out numerical computations (cf. Chapter 4) than the more

generic criteria in Theorem 3.1.

Corollary 3.1 Consider a program P, and its dynamical system model S(X, f, Xo, Xoo). Sup-

pose that the overflow limit is specified by a diagonal positive definite matrix a, > 0, that is,

X_ := {x EX I a~-1lxjjK > 1}. Let q E N U {oo} , and let the function V :X - IR be a rate 0

Lyapunov invariant for S, satisfying the following constraints:

v (x)< 0 Vx E X 0 .

V(x) > a- 1xq -1 Vx E X_.

V (x+) - OV (x) < 0 Vx E X\Xo, x+ E f (x) .

Then, an overflow runtime error will not occur during any execution of P. In addition, if 0 > 1

then, P terminates in at most T steps where:

log sup
XEX\{X-UX}

|V(x) -log inf
xEXo

log 0

Proof. It follows from (3.21) and the definition of X_ that:

Vxz E X_. (3.23)

It then follows from (3.23) and (3.20) that:

inf V(x) > 0 > sup V(x)
xEX- xzXo

Hence, the first statement of the Corollary follows from Theorem 3.1. Since X\X_ is a bounded

set, supXEX\{x_UX, } |V (x) is a finite real number, and is a lower bound for V (x). Finite-time

termination in at most T steps then follows from Proposition 3.6. m

Remarks

1. If (3.21) is replaced by:

V (x) > a-1 x - 1 Vx E X,

or by

V(x) > Ia-1x - 1

(3.20)

(3.21)

(3.22)

(3.24)

V (x) > Ia-ix - 1 > a-Ixoo - 1 > 0,

Vx E X\X,

then supX.x\x_ V (x) < 1, and an upper bound for T is given by:

log infxExo V (x)T=
log 0

(assuming that X, n X_ = 0 the result remains valid and the proof does not change).

Now, if Xo is a small finite set, then T is easy to compute. The drawback is that satisfying

the conditions of Corollary 3.1 is typically harder when (3.21) is replaced by (3.24). This

is due to the fact that requiring V (x) > a-1 x q -1 over the whole state space, as in

(3.24), is more restrictive than the case where it has hold only over a subset of the state

space, as in (3.21).

2. In Corollary 3.1, the results hold for an arbitrary choice of the q-norm: I. IIq, q > 0.

In practice, however, there is little incentive for choices other than q = 2 or q = oc.

When V : X IR is a quadratic function of its argument, the 2-norm is the viable

choice; since with q = 2, the search for a function V satisfying the criteria of Corollary

3.1 can be formulated as a semidefinite optimization problem. When V : X - IR is a

linear or piecewise linear function of its argument, the oc-norm is the viable choice; since

with q = oc, the search for a function V satisfying the criteria of Corollary 3.1 can be

formulated as a linear optimization problem (cf. Chapter 4).

3. Corollary 3.1 can be used for checking against "out-of-bounds array indexing" errors. If

the k-th variable Xk is an array index for an array of size s, then with ak = s, existence of

a function satisfying the criteria of the corollary guarantees that an out-of-bounds array

indexing error will not occur.

4. It can be observed from the proof of Corollary 3.1 that one potential source of conser-

vatism in the formulation of the safety criteria is the over-approximation of the unsafe

set X_ := {x E X Ila- 1 > 1} with the set X_ := {x E X I I a - l llq 1 If

the actual values of the program variables do get very close to the overflow limit a (e.g.

for array indices), this conservatism may lead to infeasibility. A potential remedy is to

replace (3.21) by n constraints in the following way:

V(x) > a Xkl -1 Vx E Xk_, k E (1, n) (3.25)

where ak is the overflow limit for scalar variable xk, and Xk- := {z E X ca-x k > 1}.

Since axk 1 is a scalar quantity, ac 1kX k 00 1 kl and (3.25) can be used in conjunc-

tion with quadratic Lyapunov invariants and the S-Procedure to formulate a semidefinite

optimization problem (cf. Chapter 4). However, (3.25) is obviously computationally more

expensive than (3.21), as it increases the number of constraints. An even less conserv-

ative but computationally more demanding approach would be to construct a different

Lyapunov invariant for each variable and rewrite (3.25), (3.21), (3.20) along with (3.1),

for n different functions Vk (.). For instance:

Vk () < 0, Vx E Xo.

Vk (x) > a 1Xk - 1 k V Xk--

Safety Analysis of Graph Models

The main results of the previous section, namely Theorem 3.1 and Corollary 3.1 are readily

applicable to MILMs. We will use these results in Chapter 4, to formulate a convex optimization

problem, the solution of which provides the certificates for safety specifications of the MILMs.

In this section we study variations of Theorem 3.1 and Corollary 3.1 for safety analysis of graph

models. The reinterpretation of the results of the previous section in terms of graph models is

theoretically interesting and practically necessary for formulating convex programming criteria

(cf. Chapter 4).

Corollary 3.2 Consider a program P and its graph model G (P., S) . Suppose that the unsafe

region associated with node i is given by Xi-. Let V (i, x) := ai (x) be a Lyapunov invariant for

G (A, 8) , satisfying the following constraints:

ao() < 0 VxEX X (3.26)

o-i (x) > 0 Vx E Xi n Xj_, i E Af\ {0} (3.27)

uj (mx) - kjioi (x) < 0 V (i, j, k) E 8, (x, x+) E (Xi n IIj) x Tx (3.28)

Then, P satisfies the safety property w.r.t. the collection of sets Xi-, i E PJ\ {0}. In addition,

if (3.13) holds, then P terminates in at most T steps, where

T=E
CEG

log max sup I0i (x) - log inf I U (x) I
(i,.,.)EC xEXXi_ zeXC k

logO(C) (C):= I O, .
g 8 (C) (i,j,k)CC

Proof. The safety property follows directly from Theorem 3.1. The finite-time termination

property also follows from Proposition 3.6 and Proposition 3.8. The bound on the number of

steps is the sum of the maximum number of iterations around every simple cycle. *

Overflow

Corollary 3.3 Consider a program P and its graph model G (NA,) . Suppose that the overflow

limit is specified by a diagonal positive definite matrix a > 0. That is:

X_ := {Ix E ~Rn I o -lxRc > 1}.

Let V (i, x) := ai (x) be a Lyapunov invariant for G satisfying the following conditions:

o (x) < 0 Vx E XO,

7i () > xla - 1 V E Xi E Xi-, iE\{0},

aj(x+) - OUio (x) < 0

Then, an overflow runtime error will not occur during any execution of P. In addition, if (3.13)

holds, then P terminates in at most T steps, where

log inf o0 (x)
XEX 0 j a.

CEG log (C) (i,j,k)EC

Proof. Follows from Corollary 3.2 as a special case. m

V(i, j, k) 6 4, (x, x+) E (xi n IIt) xTx

Program Assertions Verification of user-specified assertions in computer code, or other

standard safety specifications such as absence of division-by-zero can be performed using Corol-

lary 3.2. The results are summarized in the following table:

Table 3.1: Application of Corollary 3.2 to the verification of various safety specifications.

The command line:

involves: assert x E Xa

involves: assert x (Xa

involves: (expr.)/xo

involves: 2{ /

involves: log (Xo)

apply Corollary 3.2 with:

Xi_ :={x (E Rn IxE R\X}

Xi- := {Z E R I x Xa}

Xi-_ := {x E Rn l = 0}

X_ :={x E Rn I xo <0}

Xi- := {x E Rn I Xo < 0}

following program

Program 3-1.

Proving that x $ 0 throughout the program is not possible, as indeed x can be zero right after the

assignment x = (5sin(y) + 1)/3. However, at location L6, x cannot be zero and division-by-zero

loc i

loc i

loc i

loc i

loc i

Example 3.3 Consider the

void ComputeTurnRate (void)

LO: {double x = {0}; double y = {*PtrToY};

L1 : while (1)

L2: { y = *PtrToY;

L3: x = (5 * sin(y) + 1)/3;

L4: if x > -1 {

L5 : x = x + 1.0472;

L6 : TurnRate = y/x; }

L7: else {

L8 : TurnRate = 100 * y/3.1416 }}

T65

Figure 3-2: The graph model of an abstraction of Program 3-1.

will not occur. The graph model of an abstraction of Program 3-1 is shown in Figure 3-2 and

is defined by the following elements: T 65 : x -+ x + 1.0472, and T4 1 : x -+ [-4/3, 2]. The rest of

the transition labels are identity. The only non-universal passport labels correspond to 1154 and

1184. These are shown in Figure 3-2. Define:

U6 (x) = 2, 5 (X) = -2 + 10 0 - 99, 4() = 21

S(x) = -2 - 0.5, 8s (x) = -x 2 - 2, Uo (X) = -_ - 0.5

It can be verified that V (x) = ai (x) is a Lyapunov invariant for Program 3-1 with variable

rates: 054 = 0.001, 041 = 018 = 0, 065 = 016 = 084 = 1. Since

inf o6 (x) = 0 > sup co (x) = -0.5
EX_ :={0} zEXo:

the state (6,x = 0) cannot be reached. Hence a division by zero will never occur. This example

is chosen for its simplicity and is presented here to demonstrate applicability of the techniques.

We will discuss in the next chapter how to find such functions in general.

Unreachability of Discrete Locations Assume that we want to verify that a discrete

location i E fi\ {0} in a graph model G (Ar, £) is unreachable. Consider again Corollary 3.2,

and define Xi_ = Xi, where Xi is the invariant set of node i (Xi = R if no specific information

is available about the variables at location i). The constraint (3.27) then becomes:

0 (X) > 0 Vx X, i \ {0}.

If a Lyapunov invariant satisfying the criteria of Corollary 3.2 with Xi- = Xi can be found,

then location i can never be reached along any trajectory of G (PA, 5). This observation can be

used for identifying dead-code.

3.3 Summary

In this chapter we introduced Lyapunov invariants as certificates for the behavior of mathemat-

ical models of computer programs. We formulated several theorems that establish criteria for

verification of safety, liveness and other performance properties of software systems. We showed

that different variations of Lyapunov invariants satisfying certain technical conditions can be

formulated for proving absence of runtime errors and termination in finite time. The runtime

errors that can be ruled out in this framework include overflow, out-of-bounds array indexing,

division-by-zero, taking the square root or logarithm of a negative number, and various user-

defined program assertions. Moreover, when finite-time termination can be guaranteed, the

Lyapunov invariants provide an explicit upper bound on the maximum number of iterations.

In the next chapter, we will present a computational procedure based on convex relaxations

and numerical optimization for computation of the Lyapunov certificates.

Chapter 4

Computation of Lyapunov Invariants

In this Chapter, we present the details of a computational procedure based on convex optimiza-

tion, for numerical computation of the Lyapunov invariants that prove the desired properties

of computer programs. It is well known that the main difficulty in using Lyapunov functions

in system analysis is finding them. However, the recent advances in the numerical optimization

software technology, e.g. semi-definite programming software [33, 90, 86], or linear program-

ming software [59, 34], along with the increased computational power that advances in hardware

technology offer, provide a viable platform for computation of Lyapunov functions via numer-

ical optimization tools. Hence, we propose exploiting convex optimization tools in analysis

of software via Lyapunov invariants. The procedure is as follows: First, the search for V is

restricted to a finite-dimensional linear subspace of the vector space of all real-valued functions

V : X IR. This subspace is specified by its basis which consists of a fixed finite set of ap-

propriately selected (usually polynomial) functions. The basis is then used for constructing a

finite-dimensional linear parameterization of a set of Lyapunov function candidates. The linear

parameterization, along with various convex relaxation techniques make it possible to search

for the Lyapunov invariants via convex optimization. If the convex optimization phase ends

with a feasible solution, the result is a certificate for the properties of the computer program.

4.1 Preliminaries

4.1.1 Convex Parameterization of Lyapunov Invariants

As we mentioned earlier, the main difficulty in using Lyapunov functions in analysis of dynam-

ical systems is finding them. Naturally, using Lyapunov invariants in software analysis inherits

the same difficulties. The chances of finding a Lyapunov invariant successfully are increased

when (3.1) is only required on a subset of X\X,. It is tempting to replace (3.1) with

V (x+) - OV (x) < 0, Vz E X\X, : V (x) < 1, x+ E f (x), (4.1)

while adding the constraint

V(x)< 1, Vx E Xo.

In this formulation, V is not required to decrease monotonically for some of the states which

cannot be reached from X0. Unfortunately, the set of all functions V : X -+ R satisfying

(4.1) is not a convex set. Therefore, in contrast with (3.1), formulation (4.1) has a significant

disadvantage as finding a solution of (4.1) is typically much harder than finding a solution

of (3.1). While several numerical optimization software that can handle non-convex problems

currently exist (e.g. [50, 45]), for the most part, these software are not as reliable and well-

behaved as the convex optimization software. They generally rely on a combination of heuristics

and gradient methods to find a local extrema of the non-convex optimization problem. While

they can be useful for solving specific non-convex optimization problems on a case-to-case

basis, they cannot constitute the optimization engine of a software analysis framework as they

can show unexpected behavior. In addition, these algorithms may easily get trapped in a

local minima which is far from being globally optimal. Hence, there is no guarantee that a

Lyapunov invariant satisfying (4.1) would be found even if a Lyapunov invariant satisfying

the more restrictive condition (3.1) does exist. Therefore, we would like to avoid non-convex

formulations like (4.1).

An alternative approach for improving the chances of finding Lyapunov invariants is to

replace (3.1) by

Vi(x+) - OV4(x) < 0 Vx E X, x+ E f(x) : Xvi, (4.2)

where X,, is a fixed subset of X which does not contain any terminal points. Since V does

not enter into any conditioning of x here, the set of all functions V : X -* R satisfying (4.2) is

convex. This technique, along with partitioning of the state space into appropriate subspaces

of smaller size, and assigning different functions V to each subspace X,, leads to systematic

improvement of analysis.

The first practical step in the search for a Lyapunov invariant satisfying (3.1) is selecting a

finite-dimensional linear parameterization of a Lyapunov invariant candidate V:

n

V(x) = V (x) = E TkVk () , T (k)=1, Tk E R, (4.3)
k=1

where Vk : X I R are fixed functions, used as a basis for a finite-dimensional linear subspace

of the (infinite-dimensional) vector space of all real-valued functions V : X R~. For instance,

standard quadratic Lyapunov functions for linear time-invariant systems with n states are of

the form:

n n N n(n+1)
(X) = E Tij Vi (X), = (Tkk= N = 2

i=1 j=i 2

where the functions Vj : x zxixj form a basis for the N-dimensional (N = n (n + 1) /2)

vector space of all real-valued quadratic forms in n variables. Next, for every 7 = (Tk)N=1 let

(T) = max Vr(x+) - OV (x),
XEX\Xoc, X+Ef(x)

(assuming for simplicity that the maximum does exist). Since 4 (.) is a maximum of a family

of linear functions (for every fixed x, V,(x+) - V- (x) is a linear function of 7), q (.) is a convex

function of its argument (T). Therefore, minimization of 0 (.) over the unit disk {7 : ITII 1}<

is a well-defined convex optimization problem. If minimizing q (.) over the unit disk yields a

negative minimum (if 4 (T) can be made negative for some T E RN , it can be made negative

for some T* inside the unit disk by a simple scaling), the optimal T* defines a valid Lyapunov

invariant V*(x) in the sense of (3.1). Otherwise, no linear combination (4.3) yields a valid

Lyapunov invariant for (2.1).

The success and efficiency of the proposed convex optimization approach depend highly on

computability of ¢ (.) and its subgradients. While 4 (.) is convex with respect to its argument,

the same does not necessarily hold for V,(x+) - 9OV(x). It is easy to see that even very simple

computer programs lead to non-convex optimization in the problem of calculating the maximum

of V,(x+) - V,(x). In fact, if X\X, is non-convex, computation of q (.) becomes a non-convex

optimization problem even if V(x+) - V,(x) is a nice (e.g. linear or concave and smooth)

function of x. Hence, in order to formulate the search for the parameters of the Lyapunov

invariants as a convex optimization problem, a compromise has to be made. We propose using

convex relaxation techniques which essentially lead to computing a convex upper bound for

0 (T). We briefly review a few of these techniques in the next section.

4.1.2 Convex Relaxation Techniques

We refer to convex relaxation techniques as a broad class of techniques commonly used to con-

struct finite-dimensional, convex counterparts for hard non-convex optimization problems. In

some cases the relaxations can be exact, in the sense that the optimal solution of the con-

vex counterpart equals that of the original non-convex problem. In general, however, convex

relaxations are understood as approximate convexification techniques that result in upper or

lower bounds for the original non-convex optimization problem. See for instance [63], where

operator theoretic methods are used to provide error bounds for certain relaxation techniques

commonly used in analysis of dynamical systems. However, quantifying the gap induced by

a specific relaxation technique is often a mathematically challenging task and providing good

error bounds may not always be possible.

Various convex relaxation techniques exist for both combinatorial and non combinatorial

optimization problems. See for instance the results of Lovasz and Schrijver [57] for SDP re-

laxation of binary integer programs, Goemans and Williamson [39] or Laurent [55] for SDP

relaxation of the max-cut problem, Megretski [63] and Nesterov [71], for SDP relaxations of

quadratic programs, Yakubovic [92] for S-Procedure losslessness in robustness analysis, and

Parrilo [73, 74] for sum-of-squares relaxation in polynomial non-negativity verification. Here,

we briefly review the S-Procedure and the sum-of-squares relaxation techniques.

The S-Procedure

The S-Procedure is a convex relaxation method concerned with verification of positivity of a

quadratic function subject to other quadratic or linear constraints. It was first introduced by

Aizerman and Gantmakher [1] in the context of construction of Lyapunov functions for nonlinear

systems [40], and has been ever since used frequently in analysis of dynamical systems. Let

0i : X -+ R, i E Z (0, m) , and bj : X -+ R, j E Z (1, n) be real-valued functions defined on a

vector space X, and suppose that we want to evaluate the following assertions:

(I): 00 (x) > 0, Vxz E (x EX i() > 0, j (x) = 0, i E Z(1, m), j E Z(1, n)} (4.4)

m n

(II): B-i E +, B j e R, such that ¢o (x) > TE ji i (x) + E pj j (x) . (4.5)
i=1 j=1

It is obvious that (I) is implied by (II). The process of replacing assertion (I) by its relaxed

version (II) is called the S-Procedure. Note that condition (II) is convex in decision variables

Ti and yj. Moreover, if 4i and Oj are quadratic functionals then condition (II) is a semidefinite

optimization problem in the decision variables which can be solved efficiently. The implication

(I) - (II) is not always true and hence the S-Procedure in its general form provides only a

sufficient condition for (I). The S-Procedure is called lossless if (I) -+ (II). For instance, a

well-known case where the S-Procedure is necessary and sufficient is when m = 1, n = 0,

and o0, q1 are quadratic functionals. A comprehensive discussion of the available results on

S-Procedure losslessness can be found in [40]. Other variations of the S-Procedure involving

non-strict inequalities exist and are used frequently.

Sum-of-Squares Relaxation

The sum-of-squares (SOS) relaxation technique can be interpreted as the generalized version

of the S-Procedure. Suppose that we are concerned with the answer to the following question:

Given the index sets J = Z (1, s) , K = Z (1, t) , L = Z (1, u) , and polynomials f, g, h, when is

it true that the following conditions:

fj (x) > 0, Vj E J, and gk (x) = 0, Vk E K, and hi (x) = 0, V E L (4.6)

imply that:

-fo (x) _ 0 ? (4.7)

Note that (4.7) is implied by (4.6) if and only if the following semialgebraic set is empty:

fo (x) = 0, gk (x) O 0, k E K, hi(x) = 0, E L.

Similar questions can be formulated concerning a polynomial vanishing or being nonzero on

a semialgebraic set. That is, we can ask when does (4.6) imply that go (x) = 0, or that

ho (x) = 0 ? In a similar fashion, all these questions can be reformulated in terms of emptiness

of semialgebraic sets. The sum-of-squares relaxation technique can in turn, be applied to

formulate sufficient criteria for emptiness of semialgebraic sets. Before we proceed, for clarity

of the exposition, we introduce some definitions.

Definition 4.1 Let RJ [zx, ..., xn] denote the polynomial ring of n variables with real coefficients,

and E [zi, ..., xn] denote the subset of sum of squares polynomials in R x[l, ..., Xn], that is, the
t

set of polynomials that can be represented as p = pi E R [Xi, ..., Xn]. Given (gk)kcK E
i=1

R [x, ..., X], the multiplicative monoid generated by gk is the set:

M (gk) :={g I ak E U {0}} .

Given (hl)leL E [xi, ... , Xn], the Ideal generated by hi is the set:

I (h):= {E hi, I 1 E R [xi, ..., Xn]}.

Given (fj)jie E R [xi, ... , n], the cone generated by fj is the set:

P (fj) := {To + t Tibi I Ti E E[xi, , .n], bi E M (fj)}.

The Positivstellensatz Theorem [15] provides a necessary and sufficient criterion for empti-

ness of semialgebraic sets.

Theorem 4.1 ([15]) The following assertions are equivalent:

(I). The set

S x E R In fj (x) > O, j E J, gk (X) 0, k E K,
i) hi(x) =0, lCL J

is empty.

(II). There exist f E P (fj), g E M (gk) , h E I (h) such that f + h + g2 = 0.

Note that the implication (II) -+ (I) is trivial. Although Theorem 4.1 provides a necessary

and sufficient condition for emptiness of the set S, a systematic method for determining the

minimal degrees of the polynomials f, g, and h is not known to this date, neither is known

a systematic method for providing bounds on the maximum degrees of these polynomials in

general settings. Hence, taking advantage of the implication (I) - (II) is practically difficult.

In practice, one must always resort to sufficient conditions that can be formulated by imposing

degree bounds on f, g, h. A sufficient condition can be formulated as follows: The set S is

empty if there exist polynomials f E P (fj) , g E M (gk), h E I (hl) of degrees less than or equal

to d such that f + h + g2 - 0. The following procedure or similar variations of it are often used

for verifying emptiness of the set S while imposing degree bounds on f, g, h.

1. Fix a subset of M (gk), such as H gk.

2. Fix a subset of P (fj) , such as To + - fi + j if ij rijfifj.

3. The set S is empty if there exist sum-of-squares polynomials, 70, T1, ...- s, 11..., , Tss E

E [x1, ..., xn] and polynomials 1 E IR [x, ..., xn], such that To + -i rifi + -]i,j 7ijfifj +

E1 ijhj + (H 9gk) 2 = 0.

A good strategy is to choose the degrees of the SOS multipliers 7, Tij, and the polynomial

multipliers pl such that all the expressions in f + h + g2 have the same degree. The problem of

finding the multipliers is then an SOS optimization problem. The Matlab toolboxes SOSTOOLS

[79], or YALMIP [56] automate the process of converting an SOS optimization problem to a

semidefinite programming problem (SDP). The SDP is then subsequently solved by available

software packages such as LMILAB [33], SDPT3 [90], or SeDumi [86]. Interested readers are

referred to [73, 64, 74, 79] for more detailed information about the SOS optimization procedure.

4.2 Optimization of Lyapunov Invariants for

Mixed-Integer Linear Models

We introduced the mixed-integer linear models for analysis of software in Chapter 2. In this

section, we demonstrate in detail, the procedure for computation of Lyapunov invariants for

these models. As we discussed in the previous section, the search for a Lyapunov invariant

begins with a finite-dimensional linear parameterization of the search space. Natural Lyapunov

invariant candidates for MILMs are quadratic functionals.

4.2.1 Quadratic Invariants

The linear parameterization of the space of quadratic functionals mapping Rn to R can be

represented as:

S V : R -+ R I V(x) X] T [X (n+l)x(n+l) (4.9)
1 1

where, P is a symmetric matrix and the super-index 2 in V2 indicates the polynomial degree

bound on the functional V. An attempt at finding a Lyapunov invariant in this linear subspace

can be made by solving a convex optimization problem in which the elements of P appear as

the decision variables (along with the multipliers from convex relaxations).

Before proceeding to the next lemma, recall from the S-Procedure (cf. Section 4.1.2) that

the assertion

a (y) < 0, Vy E [-1, I]n

holds if there exists nonnegative constants Ti > O, i = 1, ... , n, such that

S(y) < Ti (7Y - 1) = yTy - Trace () ,

where T = diag (Ti) is a positive semidefinite diagonal matrix. Similarly, the assertion

a (y) < 0, Vy E {-1, 1}n holds if there exists a diagonal matrix p (p is not sign-definite) such

that a (y) < E pi (y - 1) = YTpy - Trace (p) . These convex relaxations are exploited in the

formulation of the following lemma.

Lemma 4.1 Consider a computer program P and its Mixed-Integer Linear dynamical system

model S (F, H, Xo, n, q, r), where F E R n xn e , H E R m
xne, n is the number of state variables,

q, and r, represent the number of continuous and binary auxiliary variables respectively, and

ne = n + q + r +1. There exists a rate 0 Lyapunov invariant for P in the class V2 , if there exists

a matrix Y E Rnexm, a diagonal matrix Dv E Rrxr, a positive semidefinite diagonal matrix

Dxw E R(n+q)x(n+q), and a symmetric matrix P E S(n+ l) x(n+l), satisfying the following Linear

Matrix Inequalities:

LTPL 1 - OL PL 2 - He (YH) + L TDxwL 3 + L D,L 4 - ALTL 5 (4.10a)

0 _ Dxw (4.10b)

A = Trace D + Trace Dv (4.10c)

where

F In Onx(ne-n)
L1 :=- , L2 :

L5 Oix(ne-1) 1

L := In+q 0(n+q)x(r+1)], L4 [Orx(n+q) r Orxl , := Olx(ne-1) 1

Proof. Define xe = (x, w, v, 1)T, where x E [-1, 1]n , w ,]n , 1] , v E {-1, 1}r . Recall that

(x, 1)T = L 2 e, and that for all xe satisfying Hx, = 0, there holds: (x+, 1) = (Fxe, 1) = Lix,.

It follows from Proposition 3.2 that the Lyapunov condition (3.1) holds if:

xLTPLixe - OxT LPL 2xe < 0, s.t. Hxe = 0, L 3 xe E [-1, 1]n + q , L 4 xe E {-1, 1} r . (4.11)

Using the S-Procedure to relax each of the constraints in (4.11), we obtain a sufficient condition

for (4.11) to hold:

4LTPLixe _ OxT LPL 2xe < x T (YH + HTYT) xe + xL D xwL 3 e

- Trace Dxw + x L DvL4xe - Trace D,

0 Dxw

The first inequality can be rewritten as:

T [LTPL1 - oLTPL2 e - x [(YH + yTHT) + LT DxL 3 + LT DL 4 - AL L5 Xe

A = Trace Dxw + Trace D,

Together with 0 _ Dxw, the above conditions are equivalent to the LMIs in (4.10). U

The following theorem summarizes our results for verification of absence of overflow and/or

finite-time termination for MILMs.

Theorem 4.2 Consider a computer program P and its Mixed-Integer Linear dynamical system

model S (F, H, Xo, n, q, r) . Suppose that the overflow limit is specified by a diagonal positive

definite matrix 0 -< a In. An overflow runtime error does not occur during any execution of

P if there exist matrices Yi C Rnexm, and diagonal matrices Div E jrxr, i E {1, 2}, positive

semidefinite diagonal matrices Di,, c I(n+q)x(n+q), i E {1, 2}, and a symmetric matrix P E

S(n+l)x(n+l) satisfying the following conditions:

[x 1]P[zo 1]T < 0, Vo E Xo (4.12a)

LTPL1 - OLT PL 2 -< He (YiH) + LD 1 xL 3 + LID1iL 4 - X1LTL 5 (4.12b)

L AL 2 - p 2 He (Y 2 H) + L3 D 2 wL 3 + L4 2 L(4.12c)

0 Dixw, i = 1,2 (4.12d)

Ai = Trace Dix,, + Trace Di, i = 1, 2. (4.12e)

where A := diag {a - 2 , -1}. In addition, if 0 > 1, then P terminates in a most T steps where

log mm [xo 1]P[o 1]T
xeXo

log 0

Proof. The Theorem can be proven by applying a proof method similar to that of Lemma

4.1 to Corollary 3.1 with q = 2. m

Remark 4.1 The first condition in Theorem 4.2 guarantees that V (x) < 0, Vx E Xo, which

conforms with Condition 3.20 of Corollary 3.1. If the set Xo is a finite set of cardinality no, then

(4.12a) is equivalent to no affine constraints on P, one for each xo in Xo. However, if Xo is not

a finite set, or if no is too large, we need to consider an over-approximation of Xo by Xo 2 Xo.

Convenient choices for Xo are sets of the form: Xo := {zo E [-1, 1]n I xTQxo < 1, Q E Sn}

or of the form X o :={xo [-1, 1]n I Ho[x o w v 1]T = 0, (w,v) E [-1, 1] x { - 1, 1}r}. In

either case, similar convex relaxation techniques can be applied to formulate the constraints on

the initial conditions (4.12a) as an LMI.

Example 4.1 Consider Program 2-4. The MILM of the program was given in Chapter 2.

Suppose that the overflow limit is specified as a = 1000. By application of Theorem 4.2 with

0 = 1.001 to Program 2-4 with a = 24, and b = 21 (chosen arbitrarily) absence of overflow, and

finite-time termination is certified. The function

xz/a 0.9350 -0.0000 0.0069 Xl/a

V (x1 ,x 2) z2/a -0.0000 -3.1599 -4.6014 x2/a

1 0.0069 -4.6014 -0.0001 1

is the certificate for finite-time termination and absence of overflow. The upper bound on the

number of iterations provided by this certificate is T = 1.8 x 103 .

4.2.2 Linear Invariants

Linear invariants can be helpful in proving certain properties of computer programs. For in-

stance, it is possible that the first attempt at proving strong properties (e.g. finite-time ter-

mination or absence of overflow) at one shot (e.g. via Theorem 4.2) would be a failure, while

providing additional information about the behavior of the program in the form of linear invari-

ants that constrain the evolution of certain variables would make the process a success. Once

a linear invariant is found, it can be added to the set of constraints (e.g. the matrix H in a

MILM model) that define the program's dynamics.

The search for linear invariants starts with a linear parameterization of the subspace of

linear functionals mapping RIn to R. This subspace can be represented as:

V= V : R'n -- RIV(x) = K []T, K Rn+1 (4.13)

where the super-index 1 in V1 represents the degree bound on the polynomial function V. Here,

K is a matrix whose elements define the linear parameterization of the search space. It is

possible to search for the linear invariants via semidefinite programming.

Lemma 4.2 Consider a computer program P and its Mixed-Integer Linear dynamical system

model S (F, H, Xo, n, q, r) . There exists a (linear) rate 0 Lyapunov invariant for P in the class

Vx, if there exists a matrix Y E RIneXm, a diagonal matrix D, E I rxr, a positive semidefinite

diagonal matrix Dx,, E R (n +q)x(n+q), and a matrix K E IRn +1 satisfying the following Linear

Matrix Inequalities:

He(LTKL 5 - LTK T L 2) - He(YH) +L DxwL 3 +L DL 4 - ALL 5

0 Dxw

A= Trace Dxw + Trace D,

Proof. Proof is similar to the proof of Lemma 4.1. m

Lemma 4.2 provides a criterion for computation of linear invariants via semidefinite pro-

gramming. In the sequel, we present a method for computation of linear invariants via linear

programming. The advantage of using Lemma 4.2 (semidefinite programming in general) for

computation of linear invariants is that an efficient relaxation technique for treatment of the

binary variables vi E { -1, 1} exists. Compared with linear programming methods, Lemma

4.2 is at a disadvantage in terms of computational costs since solving semidefinite programs is

generally more expensive than linear programs. However, linear programming relaxations of

the binary constraints vi E {-1, 1} are more involved than the corresponding semidefinite pro-

gramming relaxations. Therefore, the same relaxation techniques that were used for treatment

of the binary variables in the semidefinite programming formulation are not readily applicable

to the linear programming version. See for instance the results of Sherali et. al. [84], [85]

on construction of a hierarchy of linear relaxations of binary integer programs. Note that we

do not face the same difficulties in linear programming relaxation of the constraints for the

continuous variables wi E [-1, 1] (equivalently: -1 < wi, and wi < 1). Here we propose two

possible remedies. The first is to relax the binary constraints and treat them as continuous vari-

ables vi E [-1, 1] instead of vi E {-1, 1}, which is a conservative over-approximation approach.

The second approach is to consider each of the 2r different possibilities (one for each vertex

of {-1, 1}r) separately. This approach can be useful if r is small, and is otherwise impracti-

cal. More sophisticated schemes can be developed based on hierarchical linear programming

relaxations of binary integer programs [84], [85].

Lemma 4.3 Consider a computer program P and its Mixed-Integer Linear dynamical system

model P (F, H, Xo, n, q, r) . There exists a (linear) rate 0 Lyapunov invariant for P in the class

Vx, if there exists a scalar D1 E R, a matrix Y E Rlxm, and nonnegative matrices D, D, E

Rlxr, Dxw Dxw E Rlx(n+q) , and a matrix K E Rn+1 satisfying the following conditions:

KTL 1 - OKTL 2 - YH - (Dx, - Dxw)L 3 - (Dv - Dv)L 4 - D 1L 5 = 0

D + (Dv + v) lr, (Dxw + xw) ln+q > 0

D, D , D, Dw > 0

In the following lemma we present sufficient conditions that are less conservative than the

conditions of Lemma 4.3, that is, if a linear invariant can be found using Lemma 4.3, then it

can be found using Lemma 4.4. The converse is not true. The trade off is that the number of

constraints in Lemma 4.4 grows exponentially with respect to the number of binary variables.

However, since linear programming software can typically handle very large optimization prob-

lems with thousands of constraints, it is feasible to use Lemma 4.4 for programs with about 20

binary variables.

Lemma 4.4 Consider a computer program P and its Mixed-Integer Linear dynamical system

model P (F, H, Xo, n, q, r) . There exists a (linear) rate 0 Lyapunov invariant for P in the class

Vx, if there exists a scalar D1 E IR, a matrix Y E Rxm, nonnegative matrices DXw, Dzw E

R1x (n + q) and 2r matrices Di, E R 1x, i E Z(1, 2) , and a matrix K E Rn+l satisfying the

following conditions:

KTL 1 - OKTL 2 - YH - (Dw - Dxw)L3 - (Di,)L 4 - D1 L5 = 0, i CZ (1, 2r)

Di + (Di) biv + (+ x) ln+q > 0, i C Z (1, 2r)

D > 0

where biv represents the ith vertex of {-1, 1 }r

Remark 4.2 It follows from Lemma 4.3 that a subset of all the linear invariants can be char-

acterized as the set of all solutions of the following system of linear equations:

KTL 1 - OKTL 2 - YH - DIL 5 = 0, D 1 E {0, , -1}

which is obtained by selecting D = Dv = (1,)T, and Dxw = _xw = (ln+q)T as the multiplier

vectors. Similarly, using Lemma 4.2 we can characterize a subset of the linear invariants as

the set of solutions to the following linear program:

max y

s.t. He(LTKL5 - OLTKTL 2) = He(YH) + LDxwL 3 + LTDL 4 - ALTL 5

7 Dxw

A = Trace Dw + Trace Dv

If the optimal solution y* of the above linear program is nonnegative: 7* > 0, then a linear

invariant has been found. Similar reformulations for the criteria presented in Lemma 4.4 are

possible.

Example 4.2 Consider Program 2-4. Application of Lemma 4.3 results in the following linear

invariant:

X2 > 0.

After adding this invariant to the matrix H of the MILM, we reapply Theorem 4.2. This

improves the analysis as absence of overflow can now be certified w.r.t. the more restricted

overflow limit a = 750. Moreover, the upper bound on the number of iterations improves:

Tnew = 8.7 x 102.

4.3 Optimization of Lyapunov Invariants for Graph Models

In Chapter 2, we introduced the graph models for analysis of computer programs. Lyapunov

invariants as behavior certificates for the graph models were introduced in Section 3.1.2. In this

section, we describe in detail, the numerical procedure for computation of Lyapunov invariants

for graph models. Following the same standard procedure that was applied to MILMs, the

search for a Lyapunov invariant begins with a finite-dimensional linear parameterization of the

search space. Recall that the state in this model is defined by Y := (i, x) where i is the discrete

component representing a node on the graph, or a line number in the actual code. Further,

recall from Section 3.1.2 that we defined Lyapunov invariants for graph models in the following

way:

v (Y) -V (i, x) := oi (x)

where for every i E KN, the function ai : Rn -+ R can be a polynomial, quadratic, or an affine

functional. The computational procedure begins with a linear parameterization of the subspace

of polynomial functionals of total degree less than or equal to d, mapping Rn to IR:

vd := V R: - RIlV() : KTZ (X) , KERN", N= (n+d (4.14)

where Z (x) is the vector of all monomials of degree less than or equal d in n variables xl,..., xn.

The length of such vector is N := (n d). For instance, the linear parameterization of all poly-

nomial functions in two variables with degree less than or equal to three is given by:

v3 V: Rn -R I V(x) = KZ (x) , K E RI1 0

Z (x) 2 3 X2X x2 X 2 x X2
XX2 X 2 X 1

Therefore, a linear parametrization of Lyapunov invariants for graph models is given by

V (3) E V (i, x) := ai (x) (4.15)

where for every i EN, the function ai (.) E Vd(i), and d (i) is an appropriately chosen degree

bound for the Lyapunov invariant at node i. Note that we do not require that the degree bounds

d (i) to be equal for all i. We will refer to Lyapunov invariants defined according to (4.15) as

node-wise Lyapunov invariants. We will explain in the sequel, how convex relaxation methods

can be used to formulate the search for a Lyapunov invariant for a graph model as a convex

optimization problem. Depending on the dynamics of the model, the degree bounds d (i) , and

the convex relaxation technique, the optimization problem will become a linear, semidefinite,

or a sum-of-squares optimization problem.

4.3.1 Node-wise Polynomial Invariants

For graph models, we present the conditions for existence of polynomial Lyapunov invariants

in their generic form in terms of emptiness of semialgebraic sets. The following theorem follows

from Corollary 3.2.

Theorem 4.3 Consider a program P, and its graph model G (A, £) . Let V : I n -> R, be

defined according to (4.15), where (oi (.) C 9d(i). Then, the functions ai (.), i EN define a

Lyapunov invariant for P, if and only if the following semialgebraic sets are empty:

{(x, x+) E x Rn x o n aj(x+) - Ooi (x) > 0, x EXi II, x+ E Tx}, (i, j, k) E S. (4.16)

In addition, if Tlx {T (x,ww)I(x,) E S} then, (4.16) can be alternatively described as:

{(x n) 1E R' x R | i(x(T) (, w)) - i Xi n II, (x, w) E S}, (i, j, k) E S.

(4.17)

Furthermore, P satisfies the safety property w.r.t. the collection of sets Xi-, i E \ {0} , if the

following additional conditions are satisfied:

{x I (x) > 0, E X0} = 0 (4.18)

{x I - ai (x) > 0, x E Xi n X_} = 0, i E \ {0} (4.19)

100

As we discussed in Section 4.1.2, the sum-of-squares relaxation technique can be used for

verification of conditions of Theorem 4.3. We do not present the sum-of-squares conditions

involving the polynomial multipliers and the SOS multipliers as the notation can become cum-

bersome.

If oi (.) , i E are quadratic functionals (d (i) = 2), the transition operators T are affine,

and the invariant sets Xi and the passport sets II 4 have a second order description, then the

conditions of Theorem 4.3 are equivalent to nonnegativity of several quadratic functionals sub-

ject to quadratic/linear inequalities and/or equalities. In this case, the standard S-Procedure

can be used as the convex relaxation method and the search for a Lyapunov invariant simplifies

to a semidefinite optimization problem.

4.3.2 Node-wise Quadratic Invariants for Linear Graphs

Recall from Section 2.2.2 that linear graph models are graph models for which all the transition

and passport labels are affine. The only nonlinear constraints are the invariant set constraints

which are allowed to be quadratic. In this section, we present a theorem for verification of

absence of overflow and finite-time termination for linear graph models via semidefinite opti-

mization of quadratic Lyapunov invariants.

Assume for convenience in notation that for all i E M, and for all (i, j, k) E 5, a compact

description of the set Xi n IIft is available:

X(nl :i x E R Qx < 1, xT i x=1: ,= G -g < 0, Hjkx --hk=0 .

Furthermore, assume that for all (i, j, k) E 8, the row dimensions of the matrices Hi are equal.

We denote this dimension by rH. The same assumption is made for the matrices G k, and the

row dimension is denoted by nG. Lastly, recall that the transition labels of the arcs are of the

form Tkx = Ak x + BkIw + Eki, where w E [-1, 1]q .We now present the following theorem:

Theorem 4.4 Consider a program P and its linear graph model G (K, 8) . Suppose that the

overflow limit is specified by a positive definite diagonal matrix 0 -4 a. An overflow runtime error

does not occur during any execution of P if there exist symmetric matrices P, E S(n+l)x(n+l)

101

i Eg, matrices Y E R (n+q+1)xnH, Z E R (n +q+ l)xnG, a diagonal matrix T E Rqxq, and scalars

p, 7 E R, such that the following Linear Matrix Inequalities are satisfied:

[Xo 1]Po[xo 1]T 0, Vxo E Xo

Aa- Pi _ 0,

-T -<0

Vi E /

-Z < 0, - 7 < 0,

and for all (F, 9, 7t, 0) E { (T, 9kWk Oj) I (ijk) E S}

.FTpjy - OPi - LT TL, - Tr (T) LTL1 + He ((Y-+ZG) Lxl) + A

A = L T QiLxi + pLT RiLxi

where

B. E

02 xq

Olq 1J

Qi = [Qi

l 01xn

Iq Oqxl], L 1 = [01xn Lx = [InOlxq Onxq OnXl]

= diag {a - 2, -1}

In addition, if (3.13) holds, then P terminates in at most T steps, where

I[xo 1]Po[x 0

log 0 (C)

1]T

0(C):= i .e
(i,j,k)EC

Proof. The theorem can be proven by direct application of the S-Procedure relaxation

102

(4.20a)

(4.20b)

(4.20c)

(4.20d)

(4.21a)

Ak

7 xn
LOlxn

Onxl

-1

Lw = [Oqxn

Olxn

L A

-L 1

- log min
xX

CCG

3= z t i 9 i]

technique to Corollary 3.2, in a similar fashion to the proof of Lemma 4.10. *

Remarks

1. In Theorem 4.4, the multipliers are fixed across all the arcs. That is, one set of multipliers

is used for relaxations of analogous constraints corresponding to different arcs. Less

conservative but more complicated versions can be formulated by allowing the multipliers

to be functions of the arcs. In that case, a different set of multipliers must be defined for

each arc (i, j, k) E 9. This is equivalent to replacing the decision parameters T, , r7, Z,

Y in Theorem 4.4 by Ti, Pj, 7i, Z. Yk.
ji , , ji*

2. The constraints As - Pi -_ 0, Vi E JN can be replaced by their relaxed versions. Assume

for instance that

Xi := {x E Rn I xTQix < 1, TRix = 1}

Then, (4.20b) can be replaced by:

where ji E R+, and /i E R are decision parameters, and Qi and Ri are defined as before.

4.4 Case Study

Program 4-1 (see next page) has been adapted with some minor modifications from a similar

program available at the ASTREE website. The only feature that we have added is the real-

time input w E [-1, 1] at line L4. In Program 4-1, the function saturate(.) is a user-defined

function inserted for safety reasons. The purpose of the function is to truncate the real-time

input *PtrToInput so that w E [-1, 1] is guaranteed. We first build a dynamical system model

of this program and then analyze its properties. The variables of the program are:

Z, Y, E[0], E[1], S[O], S[1], INIT.

INIT is Boolean which we model by v E {-1, 1}. That is:

INIT = True * v = 1, and INIT = False # v = -1.

103

/* filter.c */

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float Y={0}, Z={0};

FO : void filter () {

F1 : static float E[2], S[2];

F2 : if (INIT) {

F3 : S[0] = Z;

F4: Y = Z;

F5: E[0] = Z;

F6 : } else {

F7: Y= (((((0.5*Z) - (E[0]*0.7)) + (E[1]*0.4)) + (S[0]*1.5)) - (S[1]*0.7));

F8: }

F9 : E[1] = E[0];

F10 : E[0] = Z;

F11 : S[1] = S[0];

F12: S[0] = Y;

F13: }

LO: void main () {

L1 : Z = 0.2 * Z + 5;

L2 : INIT = TRUE;

L3 : while (1) {

wait (0.001); w = saturate(*PtrToInput); /*updates real-time input*/

L4: Z = 0.9 * Z + 35+20*w;

L5 : filter ();

L6 : INIT = FALSE;

L7: }

LN: }

Program 4-1: Safety-critical software

Example adapted from Reference [941 with minor modifications.

104

Figure 4-1: The graph of Program 4-4.

The remaining variables are floats. To simplify the exposition let us model them as reals

and assume that the computations are exact. The graph model of this program is shown in

Figure 4-1.

In order to construct a more compact model, several lines of code corresponding to consecu-

tive linear assignments have been combined, and only the first line corresponding to a series of

consecutive linear transformations is assigned a node on the graph. Specifically, the combined

lines are: {L1, L2}, and {F3, F4, F5}, and {F9, F10, F11, F12}. The net effect of the elimi-

nated lines will be captured in the transition labels by taking the composition of the functions

that are coded at these lines.

Let us define x = [Z, Y, E[0], E[1], S[0], S[1], INIT]T. The state space of this program is

then gV x R7, where N is the the set of nodes shown in Figure 4-1. The initial condition is

fixed: Xo := {0} x xo where xo = [0, 0, 0, 0, 0, 0, 1]T . Also, since INIT E {-1, 1}, we add the

invariant set Xg := {x E 7 I = 1} to every node i E K.

The transitions associated with the arcs are all affine and are as follows (w E [-1, 1] is the

real-time input):

TL3L1 : x -+ [0.2Z + 5, Y, E[0], E[1], S[0], S[1], 1]

105

TL5L4 : X - [0.9Z + 35 + 20w, Y, E[0O], E[1], S[0], S[1], INIT]

TL3L6 : : - [Z, Y, E[0], E[1], S[0], S[1], -1]

TF9F3 : x - [Z, Z, Z, E[1], Z, S[1], INIT]

TF9F7 : X-+ [Z, 0.5Z - 0.7E[O] + 0.4E[1] + 1.5S[O] - 0.7S[1], E[O], E[1], S[0], S[1], INIT]

TF13F9 : X [Z, Y, Z, E[0], Y, S[0], INIT]

The remaining transitions are identity. Furthermore, there are only two branches on the

graph. The first one is at node L3. However, since IIL4L3 :- R7, 1 ILmL3 := 0, the only

possible transition is from L3 to L4. The second branch is at node F2, with 1 IF6F2 :=

{x E R 7 X7 = -1}, and HF3F2 := {x E R 7 X7 = 1}. The remaining passport labels are uni-

versal (II = R 7). For computational purposes, it is convenient to represent all the transfor-

mations and sets with matrices. For instance, each transition label is of the form: Tji :=

Ajix + Bjiw + Eji. The corresponding matrices are given in the Appendix section at the end of

this chapter.

The graph model is linear and we can apply Theorem 4.4 to verify absence of overflow in the

program via nodewise quadratic Lyapunov invariants. Since the program does not terminate in

finite time, only absence of overflow can be verified. By applying Theorem 4.4 with 0 ji = 0.985

for all i, j, and a = 1000 as the overflow limit, absence of overflow is verified.

4.5 Summary

In this chapter, we presented a computational procedure based on convex relaxation techniques

and convex, numerical optimization for computation of the Lyapunov invariants that we pro-

posed in Chapter 3. We showed that sufficient criteria for verification of safety, liveness and

critical performance properties of computer programs can be formulated as a semidefinite pro-

gram, or a sum-of-squares program. We formulated these results for both the mixed-integer

linear models and the graph models. The convex optimization phase is the final step in our

software analysis framework. If the optimization problem is feasible, the result is a certificate

106

for safety and/or finite-time termination of the computer program, otherwise, the analysis in in-

conclusive. We also showed that the same techniques can be applied for numerical computation

of linear invariants. While linear invariants are often insufficient for proving safety and liveness

properties of computer programs of safety-critical systems, including the linear invariants in

the model can improve the results of analysis via stronger (quadratic or polynomial) invariants.

4.6 Appendix

Each transition label is of the form: Tji := Ajix + Bjiw + Eji. The matrices corresponding to

the non-identity transition labels are:

AL3L1 =

AL5L4 [

AF9F3 =

all =

0.2

05x1

0

0.9

06x1l

all

a21

0 1x5

15

0 1x5

01x6

16

03x6

a22

0

0 5x1

0

EL3L1 =

5

05xl

1

, BL3L1 = 0 7x1

20
BL5L4

06x1

35
, EL5L4 -

, EF9F3 = 07xl, BF9F3 = 07x1

a21 =

107

a22

16
0 1x6

06x1 , LL3L6 =

0

_ all 03x5
a21 a22

0

1

0

a21 =

all a12
05x2 15

06x1

-1
, L3L6 = 0 7x1

, EF13F9 = 0 7x1, BF13F9 = 0 7x1

0 0

0 1

0 0

0 0

100

a 2 2

00

0000

0100

0001

, EF13F9 = 0 7x, BF13F9 = 0 7x1

0
a12 -

-0.7

0 0 0 O0

0.4 1.5 -0.7 0

The invariant set Xgr := {x CE I 7 x 2 = 1} is represented in matrix form by: X :

{ x R7 I xT Qx = 1}, where

0 6x6

01 x6

06x1

1

Finally, the non-universal passport labels are IIF6F2 := {x E R 7 I eTx = -1}, and IIF3F2

{x ER 7 I eTx = 1} , where

e7 = [Olx6 1] T

108

AL3L6

AFi3F9

all

AF9F7

all =
1

0.5

0

0

Chapter 5

Optimal Graph Models

In the previous chapters, we focused on developing a systematic framework for analysis of

dynamical system models of software. In particular, we presented several results for analysis of

graph models of software via Lyapunov invariants and convex optimization techniques. In this

chapter, we introduce a notion of optimality for graph models. First, we motivate the discussion

by comparing the results of application of the framework to two programs that are semantically

identical but syntactically different. We observe that the results of node-wise Lyapunov analysis

of graph models of these programs are not identical. This suggests that the success or failure

of the method is contingent on the choice of the graph model. Based on these observations,

we introduce the concepts of graph reduction, irreducible graphs, and minimal and maximal

realizations of graph models. We present several new theorems that compare the original graph

model of a computer program and its reduced offsprings in terms of existence and computability

of the Lyapunov invariants. These results can be used for constructing efficient graph models

that improve the analysis in a systematic way.

5.1 Motivation

We begin this section by presenting an example that motivates several discussions and concepts

that will be introduced in the upcoming sections. The example is built based on the observation

that a dynamical system or an algorithm can be implemented using a variety of different syn-

taxes that programming languages provide. However, the graph model interpretations of the

109

(syntactically) different programs that implement the same dynamical system are not identical.

This leads to surprising results when analysis of the graph models via node-wise Lyapunov

invariants is undertaken.

Consider the following two programs Pl, and 2, which have identical functionality. They

both implement a switched dynamical system in two variables xl and x2, with bounded initial

conditions.

Program 5-1: 'Pi Program 5-2: P 2

Remark 5.1 To avoid distracting details, we have eliminated the buffer variables from these

programs. We assume that the assignments corresponding to the two consecutive lines at loca-

tions 3 and 5 execute simultaneously.

These programs are semantically identical, but they are written in a slightly different way. In

other words, if we define x (t) := (xl (t) , x2 (t)) , X := R 2 , Xo := [-100, 100]2 c R2 , and X, :=

{ x E R 2 x 2 + x 2 < 10-3} , then the set of all sequences Xp1 := (x(0), x(1), . . , x(t),...) cor-

responding to S1 (X, f, Xo, X,) (the dynamical system model of program PI), and the set of all

110

LO: % pre: Xl, X2 E [-100, 100]

L : while x + z > 0.001,

L2: if x - x22 < 0

x1 = 0.99x1 + 0.01x2;
L3:

X2 = -0.05x 1 + 0.99x2;

else

Xl = 0.99xi + 0.05x2;
L5:

X2 = -0.01Xl + 0.99x2;

end

Lx: end

LO: % pre: X1,X2 E [-100,100]

L1 : while x2 + x > 0.001,

L2: while x - x < 0

X1 = 0.99x1 + 0.01x2;
L3:

X2 = -0.05xi + 0.99x2;

end

L4: while x2 - > 0

Xl = 0.99xl + 0.05x 2;
L5:

X2 = -0.01x 1 + 0.99x2;

end

Lx: end

sequences Xp2 := ((0), x(1), .. .,(t),...) corresponding to S 2(X, f, Xo, X,) (the dynamical

system model of P2) are identical. Therefore, program Pi is correct if and only if program P2

is correct. Indeed, they are both correct in the sense of absence of overflow and termination

in finite time. The graph models of P1 and P2 , which are of order 4 and 5 respectively1 , are

shown in Figure 5-1. For the graph of Pi, the non-universal passport labels are:

1112 := E{ 2 X~ + X2 > 10-1}, H1 i:= {I E R2 I X2 + < 10- 3}

II23 = 2 x - X2 < 0}, I25 :- 2 - 2 > 0}1123 :={XI 2 I RO1 212s:={xEI 2 -Ix15-x >R 1}

and the non-identity transition labels are T3 , and Ts where:

T3. FX 1 [0.99 0.01 i 1 andTx[X [0.99 0.05 x1

X2 -0.05 0.99 X2 x2 -0.01 0.99 x2

The remaining passport labels are universal, meaning that they represent the entire state space

R2. Also, the remaining transition labels represent the identity map. For clarity, only the non-

identity transitions and non-universal passport labels are shown in Figure 5-1. For the graph

of P2, the passport labels 112, 1l, and 1123 are the same as the ones defined above for Pi.

Furthermore,

H24 = n45 = 1125 := I (I 2 - 2 > 0}, 41 = 1123 := {I E IR2 X - X2 < 0}.

The remaining passport labels represent the entire state space R2. The non-identity transition

labels are T3x and T5s, which correspond to the arcs (3, 2) and (5,4) respectively. These are

defined as before. The remaining transition labels are identity.

We now consider the problem of finding a node-wise Lyapunov invariant for these models.

For simplicity, let us consider the node-wise quadratic case with constant rate 0 = 1 across all

the arcs. As discussed earlier, we assign a quadratic function ai (x) := xTPiz to every node on

the graph and impose the Lyapunov conditions according to Proposition 3.4. At this point, we

are only concerned with finding a Lyapunov invariant which satisfies (3.6). We are not imposing

1Recall that the order of a graph model is defined as the number of nodes on the graph not counting nodes 0
and N .

111

Figure 5-1: Graph Models of Programs Pi (left) and P 2 (right).

the additional constraints for proving stronger properties. For these programs we have:

Lyapunov conditions for program P 1

al (x) < og (x) s.t. x E [-102, 102]

U2 (x) < U1 (x) s.t. x2 + x2 10-3

U3 (x) < U2 () s.t. x - < 0

as (x) < 2 () s.t. X2 - x > 0

a (T 3x) < U3 (X)

"1 (Txs5) < U5 (x)

Ua (x) < 1 (x) s.t. x2 + x2 < 10-3

Lyapunov conditions for program P 2

1 (X) < UO (x) s.t. x E [-102, 102]

T2 () < 1 (x) s.t. x~ + x2 > 10 - 3

U3 () < 2 (x) s.t. x - 2 0

U4 (x) < U2 (x) s.t. x - 2 > 0

2 (T32x) < U3 (2)

as (x) < "4 (x) s.t. 2 -
2 > 0

U4 (Tx52) < U5 (x)

ai (x) < U4 () S.t. x1 - x < 0

Ux (x) < al (x) s.t. x2 + x2 < 10 - 3

112

We then apply the S-Procedure to formulate these conditions as convex constraints and

solve for the parameters of Pi via semidefinite programming. The result of this experiment

is somewhat surprising. Although the two programs define the exact same trajectories for the

state variables x1 and x2 , the LMI optimization problem corresponding to the graph model of P2

is feasible, while the LMI optimization problem corresponding to P1 is infeasible. Interestingly,

this phenomenon is not due to the fact that the graph model of P2 is of higher order and the

corresponding Lyapunov invariant has more parameters. To understand this situation better, we

introduce the notions of graph reduction, irreducible graph models, and minimal and maximal

realizations of graphs.

5.2 Graph Reduction and Irreducible Graph Models

Definition 5.1 A node i E n\ {0, x} is called a focal node if there exists an arc from node i

to itself, that is:

Sk, s.t. (i,i,k) E S.

A node i E A/\ f{0, x} is called a transient node if it is not a focal node. A graph model is called

irreducible if every node i E K\ {0, wx} is a focal node.

In reference to the graph models of programs P1 and P 2 (shown in Figure 5-1), every node

i E N\ {0, x} on those graphs is a transient node. Hence, the graphs are not irreducible. Now,

we introduce the concept of reduction of graph models.

Algorithm 5.1 Consider a graph G(K, S) and let a E K\ {0, } be a transient node. A

reduced graph Gr (Nr, Sr) can be obtained from G according to the following procedure:

1. Remove the transient node a, and all the pertinent incoming and outgoing arcs.

2. For every pair of arcs {(i, a, r), (a, j, s)} where i E Z(a) and j E O (a), add a new arc
(i, j, k) with the transition label T:= TaT i and passport label r, := I (T:) In i.

If Gr (Nr, Er) is a reduced graph model obtained from G (N, E) , we call it an offspring of

G and write Gr E G. An irreducible offspring of a connected graph G (K, 5) can be obtained

by repeating the above process until every transient node is eliminated.

113

Remarks

1. If a and i are transient nodes such that i E I (a), and i E 0 (a) then by removing node a

according to Algorithm 5.1, a loop will be added to node i. Hence, node i will be converted

into a focal node after this reduction step.

2. A reduced offspring of a connected graph is connected.

3. Suppose that Gr (KrV, £r) is obtained from G (R, S) by removing node a in a reduction

step. For i E N, let { (i)}G and {((i)}G denote the set of incoming and outgoing nodes

corresponding to node i on graph G, that is:

{(i)}G {j (J, i, -) EE E {0 (i)}G:=D I (ij,.) E }.

Similarly, define:

{1(i)}G :={J (j,i,.) r}, {()}Gr, :={j I (ij,.)Er}-

Then, for j C Nr, we have

{O (j)}AlG = {O(j)}G if (,a,.)

{$(J{)}Gr (J)} if (aj,.)

4. The set of all reduced offsprings of G do not form an ordered set, in the sense that if

Gri, G and G2 - G, neither Gr, C G2 nor Gr2 E Gr, has to hold. However, _ defines

a partial order on the set of all offsprings of G.

Note that the irreducible offspring of G is not unique, neither is its order (number of nodes).

Among all the irreducible offsprings of G, we call the one(s) with minimal order a minimal

realization of G. Similarly, among all the irreducible offsprings of G, we call the one(s) with

maximal order a maximal realization of G. If G is reducible, the minimal or maximal realizations

of G may not be unique either. The order of a minimal realization of G is called the minimal

order of G and the order of a maximal realization of G is called the maximal order of G. The

maximal order of G is equal to the order of G if and only if G is irreducible. The same is true

114

for the minimal order of G : the minimal order of G is equal to the order of G if and only if G

is irreducible.

Figure 5-2: Minimal (left) and Maximal (right) realizations for program Pi.

The graph model of Program P1 is of minimal order 1 and maximal order 2. A particular

minimal and a particular maximal realization are shown in Figure 5-2. An alternative minimal

realization could have been obtained by eliminating nodes 3,5, and 1, which would have left

node 2 as the only remaining focal node. It happens that in this case, the maximal realization

of Pi (Figure 5-2) is unique. It can be verified that the graph model of P 2 is of minimal order 2,

and maximal order 3. A minimal realization of P 2 can be obtained through a reduction process

that eliminates nodes 3, 5, and 1 (Figure 5-3). A maximal realization of P 2 can be obtained

via a reduction process that eliminates nodes 2, and 4 (Figure 5-4).

We learned in Section 5.1 that a node-wise quadratic Lyapunov invariant which is valid for

the graph model of P2 does exist, while for the graph model of Pi such function could not be

found. The following theorem states that existence of a node-wise Lyapunov invariant within

a specific class of functions for a reduced offspring Gr (NAf, ,F) _; G (.N, E) is a necessary but

not sufficient condition for existence of a node-wise Lyapunov invariant within the same class

of functions for the original graph G (A, g).

115

Figure 5-3: A minimal realization for program P 2 .

Theorem 5.1 Consider a computer program P and its graph model G (A, 8) . Let Gr (Ar, r) K

G (/, 8) be a reduced offspring of G. If the function

V (i, 2) := oi (2) , ei (x) E Vx, i E N

is a node-wise polynomial Lyapunov invariant of maximum degree d for the graph G (A, C) ,

then there exists a node-wise polynomial Lyapunov invariant Vr (i, x) of maximum degree d, that

is valid for Gr (Ar, cr). However, if

Vr (i, x) := i (x), Ui (x) E V, iC N

is a node-wise polynomial Lyapunov invariant of maximum degree d for the graph Gr (Kr, r),

a node-wise polynomial Lyapunov invariant of maximum degree d that is valid for G (A, C) does

not necessarily exist.

Proof. If Gr C G, then there exists a sequence of reduced graph models Gi (/i, Si),

i = 1...q, where G 1 = G, Gi+z g Gi, and Gq = Gr, with the property that ±i+lI = KNfi - 1.

That is, Gi+l is obtained from Gi by removing one transient node. Furthermore, assume that V

is a Lyapunov invariant for Gi and that Gi+l is derived from Gi by eliminating node n. Then:

n (x+) - Oum (x) < 0, (x, x+) e Ilm x Thmx, m E (n), r E Anm, (5.1)

71 (x+) - on (x) < 0, (x, x+) E 11' x TlSnx , l E 0(n), s E A1n. (5.2)

116

H41T

(124 Nn4)(>Tx)

Figure 5-4: A Maximal realization for program P 2.

Let y E TnmX, and let y+ E TlSy. Then if y E HII, the pair (y, y+) must satisfy (5.2). Therefore,

a necessary condition for (5.2) to hold is that:

aU (X+) - Oan (x) < 0, (x, x+) E Hn (Tnm) X TnTnrmX,

1 EO (n), s E Ain, m E (n), r E Anm. (5.3)

Now, for a

followed by

inequalities

and adding

fixed quadruplet (m, 1, r, s) (representing a transition from m to n along arc r,

a transition from n to I along arc s), if x E Hirm fl Hi (Tnm) then the corresponding

in both (5.3) and (5.1) hold. Thus, by multiplying the inequalities in (5.1) by 0

them to (5.3) we obtain:

oa (x+) - 02m (x) < 0, (x, x+) ((HIIm n In (Tm)) x (Tjnrmx), r E Anm, S E Ain.

By definition, this implies that al and am satisfy the Lyapunov conditions along all the arcs that

were added between I (n) and 0 (n) in the reduction process (there are exactly IAnml I I AinI

such arcs). Since al and am satisfy the Lyapunov conditions along any and all the existing

117

arcs (before reduction), we conclude that V satisfies the Lyapunov conditions for the reduced

model. It follows by induction that the function

V, (i,) := ai (x), ie Nr,

is a valid Lyapunov invariant on G,. This completes the proof of the first statement. To prove

the second statement of the theorem, it is sufficient to present a counterexample. Indeed, the

original graph of P (Figure 5-1) does not admit a nodewise quadratic Lyapunov invariant, while

the maximal realization of P1 (Figure 5-2) admits a node-wise quadratic Lyapunov invariant

(an explicit description of the invariant function is presented in the sequel). 0

In analysis of computer programs via Lyapunov invariants, an important issue is to deter-

mine whether a program admits a certain type of Lyapunov invariant, e.g. quartic polynomial,

piece-wise quadratic, etc. For instance, consider program P1, which does not admit a quadratic

Lyapunov invariant as we are about to show. Recall that the graph model of this program is of

order 4 (nodes 0, and x are not counted), of minimal order 1, and maximal order 2. Lyapunov

analysis of the minimal graph of Pm leads to the following LMI problem: Find a symmetric

matrix P1 E S2x2 such that

(T3 xx)T P1 (T 3xx) - x Tpx < 0, Vx E I112 n I23, (5.4a)

(T5x)T P1 (T 5.x) - xTP1x O, Vx E 1112 n 1125. (5.4b)

Since T3x and T5 are homogeneous, the constraint x E I1112 := {x CE 2 I x + x 2 > 10-3}

becomes irrelevant. Therefore, a symmetric matrix satisfying (5.4) exists, if and only if there

exists P1 E S2x2 such that

(T 3Xz)T P1 (T 3xx) - xTp 1 x < 0, s.t. XTQx 0 (5.5a)

(T5sx)T Pl (T 5 xX) - xTP 1 x < 0, s.t. xTQx > 0 (5.5b)

where Q = diag {1, -1}. This is a case in constrained optimization where using the S-Procedure

for convexification is lossless. Therefore, (5.5) holds if and only if the following LMI problem is

118

feasible:

(T 3x)T P 1 (T3x) - Pl - 7FQ i 0 (5.6a)

(TX)TPl(T 5) - Pl + 2 Q _ 0 (5.6b)

T1, T2 > 0 (5.6c)

However, these LMIs turn out to be infeasible and a node-wise quadratic Lyapunov invariant

for the minimal graph model of Pi cannot be found. Note that an important implication of the

first statement of Theorem 5.1 is that as far as existence of Lyapunov invariants is concerned,

assigning many Lyapunov functions to the original graph model of a program is only as good as

assigning fewer functions to its minimal realization. Therefore, it follows from Theorem 5.1 and

the infeasibility of (5.6), that a Lyapunov invariant cannot be found by assigning four different

quadratic functions to the four nodes on the original graph of P l .

The second statement of Theorem 5.1 is also very interesting since it states that performing

analysis on the reduced graph models may be advantageous. This is indeed the case for program

PI: a Lyapunov invariant is found by assigning two Lyapunov functions to the two nodes (3

and 5) on its maximal realization. On the other hand, since the minimal graph of P 2 is of order

2, the optimization problem arising from nodewise quadratic Lyapunov analysis of the original

graph of P 2 is likely to be feasible. This is indeed the case and a Lyapunov invariant is found

for the original graph. The same is true for analysis of minimal and maximal realization of P 2.

Nodewise quadratic Lyapunov invariants with fewer nodes can be found for the minimal and

maximal realizations of the graph model of P2.

Before we proceed to the next section, for convenience and clarity in presentation of the

materials, we introduce the following definition.

Definition 5.2 Given a graph model G and two offsprings GI E G and G2 E G, we say that

G2 outperforms G1 and write £ (GI) £L (G 2) if existence of a nodewise Lyapunov invariant

within a specific class of functions for G2 is a necessary condition for existence of a nodewise

Lyapunov invariant within the same class of functions for G1.

Informally speaking, if G2 outperforms G1 then Lyapunov analysis of G2 has a better

chance of success than GI1. It follows from Theorem 5.1, that a reduced offspring GI C G

119

always outperforms the original graph G.

5.3 Comparison of Irreducible Graph Models

In the previous section we established that searching for Lyapunov invariants within a specific

class of functions over an irreducible graph model Gi has a better chance of success than

any reducible graph Gr _] Gi. We also observed that among the two irreducible offsprings of

program Pi, Lyapunov analysis of the maximal realization resulted in a feasible LMI problem,

while Lyapunov analysis of the minimal realization led to an infeasible set of LMIs. Here,

several interesting questions arise concerning the comparison of different irreducible offsprings

of a graph. For instance:

1. Is it always true that an irreducible offspring of a graph G outperforms all other irreducible

graphs of lower order? That is:

VGI, G2 : GI G, G2 E G, ord (G 2) > ord (G 1) L # (G1) _ £ (G2)

2. It is always true that a maximal realization of a graph outperforms a minimal realization?

3. How do we compute the minimal and maximal orders and the corresponding realizations?

For an arbitrary graph the answer to the first question is negative. A counterexample can

be constructed in the following way: Consider the graph model G ({1,...,15} U {0,wX},),

shown in Figure 5-5. This graph can be viewed as the interconnection of two subgraphs

GL ({9, ..., 15}, SL) (which includes all the nodes to the left of node 1) and GR ({1,..., 8} , R)

(which includes all the nodes to the right of node 1). For the moment, let us focus on the sub-

graph GR. An irreducible realization of GR can be obtained by eliminating nodes 4, 5, 3, and 2,

which leaves nodes 1, 6, 7, and 8 as the remaining focal nodes. This indeed produces a maximal

realization of GR (which is of order 4). Now, let us focus on GL, the subgraph to the left of node

1. An irreducible realization of GL can be obtained by eliminating nodes 15, 14, 13, 11, 12, and

10, which leaves node 9 as the only remaining focal node. This produces a minimal realization

of GL (which has order 1). The overall result is an irreducible graph Girr L G with the following

120

9*.,
99L--

Figure 5-5: With proper labeling of this graph model, a counterexample can be constructed to

prove that an irreducible realization of higher order does not always outperform an irreducible

realization of lower order.

set of focal nodes: .A = {9, 1, 6, 7, 8} U {0,}. The order of this irreducible model is 5. Now, if

the transition labels are such that the dynamics defined over GL is complicated enough, this re-

alization (which is minimal for GL) cannot support existence of a nodewise quadratic Lyapunov

function. Therefore, the result of nodewise Lyapunov analysis over the Girr would be infeasibil-

ity. On the other hand, if the transition labels are such that the dynamics defined over GR is

simple enough, even the minimal realization for GR may be sufficient for existence of nodewise

Lyapunov invariant with fewer many nodes. An alternative irreducible realization of G can be

obtained by eliminating nodes 6, 7, 8, 4, 5, 3 from GR, and nodes 15, 14, 13, 10, 9 from GL.

The resulting irreducible graph dirr _ G would be of order 4, with R = {1, 2, 11, 12} U {0,} .

As we already discussed, if the dynamics on GL is complicated and the dynamics on GR is

simple, Girr is a better model for nodewise Lyapunov analysis. In conclusion, we are able to

make the following statement: It is not necessarily the case that an irreducible model of higher

order outperforms an irreducible model of lower order.

The answer to the second question is trickier. Note that the argument that we made to

answer the first question does not apply here as Girr is not a maximal realization of G, nor is

Girr a minimal realization of G. For an arbitrary graph G the answer to the second question is

also negative.

Figure 5-6: For this graph, it is possible to choose the state transition operators Ai, Bi, Ci, Di

such that the minimal realization outperforms the maximal realization.

For an arbitrary graph model, a maximal realization does not always outperform a min-

imal realization. For a counterexample, consider the graph model in Figure 5-6. The arc

labels shown in the figure correspond to transition labels. For simplicity, there are no passport

labels, which means that the discrete transitions are non-deterministic. Hence, a state tran-

sition along any outgoing arc is possible at any moment of time. The minimal realization of

this graph is obtained by eliminating nodes 2 and 3, which leaves node 1 with 6 focal arcs:

{BIA1, B 1 A 2 , D 1C1 , D 2C 1 , D 1C2, D 2 C 2 }. The maximal realization is obtained by eliminating

node 1, which leaves nodes 2 and 3. In the maximal realization, there are two loops from node

2 to itself: {AIBi, B 1A 2}, and four loops from node 3 to itself: {CID 1, C2D 1, C1D2, C2D2}.

Finally, there are two arcs from node 2 to 3 : {CIBi, C2B 1}, and four arcs from node 3 to

2 : {AIDi, A 2D1, AID 2, A 2D2}. If the linear operators Ai, Bi, Ci, Di are chosen accord-

ing to (5.7), then the minimal realization outperforms the maximal realization, in the sense

that a single quadratic function V (x) = xTPlx which is valid for the minimal graph can be

found, however, a pair of symmetric matrices Pi, i = 2, 3 such that the quadratic function-

als V (x) = xTPix, i = 2,3, form a nodewise quadratic Lyapunov invariant for the maximal

realization cannot be found. The following matrices were found through randomized search.

Simpler examples (corresponding to simpler graph structures) may exist.

122

0.5 0.51 0.5 0.51 0.63 0.05

[0.5 0 0.25 0.51 -0.12 -0.19

0.4 0.5 0 0.25 1.01 -1.71 -0.02 0.88
C , C2 = , DI= , D2 =

0 0.5 0.5 0.5 0.35 -0.34 0.68 0.85

A more detailed discussion concerning the answers to the second and third questions posed

at the beginning of Section 5.3 is presented in the following subsections.

5.3.1 Comparison of Maximal and Minimal Realizations of K1 Graphs

Positive statements can be formulated regarding comparison of the performance of maximal

and minimal realizations of certain graph models with a specific structure: the so-called Kn

graphs. Before we proceed, we present the following proposition, which will be used in the proof

of several theorems and lemmas in the remainder of this section.

Proposition 5.1 The following statements are true for any connected graph G (Ar, S):

1. Given il E A, it is possible to obtain an irreducible offspring G, (.As, 4s) with i1 E /s, if

and only if there exists a simple cycle C E G that passes through il and does not include any

focal nodes.

2. Given i1 , i2 E K, it is possible to obtain an irreducible offspring G, (As, £s) with il, i2 E s,

if and only if there exists simple cycles C1, C2 E G, such that C1 passes through ii and not

through i2, and C2 passes through i2 and not through il and the subgraph2 C1\ {il U C2\ {i 2}

does not include any cycles.

3. Given ij, ... , ik E J, it is possible to obtain an irreducible offspring G, (As, Es) with iI, ..., ik E

Ns, if and only if there exists simple cycles C1, ..., Ck E G, such that Cj passes through ij and

not through iq, q E Z (1, k) \ {j} and the subgraph U Cq\ {iq} does not include any cycles.
qEZ(1,k)

What it takes to convert a transient node in a reducible graph to a focal node in an offspring

is to eliminate (according to Algorithm 5.1) all the other nodes in at least one of the simple

2 Recall that a subgraph of a graph G (N, 8) is a graph G (9, f) such that A C N, and S is the restriction of

8 to M. Hence, to precisely specify a subgraph of a graph G, it is sufficient to specify the subset of nodes.

123

cycles that pass through that node. For instance, if there is only one cycle passing through

node i, and that cycle passes through node j as well, it is impossible to obtain an irreducible

realization that contains both i and j. The problems of computing the minimal and maximal

orders as well as the corresponding realizations are hard combinatorial problems in the general

case. We study certain graphs with specific structures that allow us to compute the minimal

and maximal realizations and compare their performance.

Definition 5.3 A graph G (A, S) is called a K1 Graph if it satisfies the following properties:

L The graph G (N, £) is connected, that is, for every pair of nodes jl,j2 E A\ {0, j} there

exists a path from jli to j2

II. There exists a subset of nodes AN* c K satisfying the following properties:

Ha. Every simple cycle C E G passes through every node i* E K*.

IIb. For every i* E A*, and for every j E I (i*) , we have 10 (j) = 1. This implies in particular,

that there is only one path from j to i*.

The graph model of program Pi (Figure 5-1) is a K1 graph. There are two simple cycles

on the graph of P : {1 -+ 2 -+ 3 - 1} and {1 -+ 2 - 5 - 1} . The set K* := {1, 2} satisfies

both properties IIa and IIb of Definition 5.3. The graph model of program P 2 is not a Ki

graph. There are three simple cycles on the graph of P 2 : {1 - 2 -+ 4 - 1}, {2 -+ 3 -+ 2},

and {4 --+ 5 -- 4}, which do not share a common node. Note that it follows from Definition

5.3 that if G (A, S) is a K1 graph then every node iE A\ {0, x} is a transient node, unless

IN\ {0, x} I = 1, in which case nA* = {i*} = KV\ {0, x} and i* is a focal node.

Theorem 5.2 Let G (A, 8) be a Ki graph. Then the minimal order of G is 1, and the maximal

order of G is dmax > k, where

k = max IZ(i*)l (5.8)
i* EAr*

Furthermore, if G (N/, 8) is a linear graph model, then there exists an irreducible realization of

order k that outperforms the minimal realization(s).

To make the presentation clearer, we first present Lemma 5.1 and Lemma 5.2, in which we

prove the first and the second statement of Theorem 5.2 respectively.

124

Lemma 5.1 The minimal order of a K1 graph is 1.

Proof. Let G (NA, S) be a K1 graph. If IAf\ {0, j} = 1 the result is trivial. We prove the

result for the case where IAN\ {0,j I > 1. Since the graph is connected, it contains at least

one cycle. Hence, the order of the minimal realization is at least 1 and it is sufficient to show

that an irreducible realization with order 1 can be achieved. Let i* e NA* and assume for the

moment that 0 (i*) \T(i*) is non-empty, and let j E 0 (i*) \Z(i*). Since the graph is K1,

j is a transient node, otherwise, the simple cycle j -+ j does not pass through i* which is a

contradiction. Next, perform the following reduction step: remove node j and let G1 (NAr, SI) be

the corresponding reduced graph. We claim that Gi (Ar, 1i) is also a K1 graph. Connectivity

is trivial. We prove that AN*\{j} still satisfies properties IIa and IIb of Definition 5.3. Suppose

that i* E AN*\{j} and z E 1 (i*) . Since (z,j) £ (which follows from IIb and j 4 i*), we have3

IO(z)G = 1(Z)IG = 1. Hence, IIb holds for G1. To establish that IIa holds, it is sufficient to

prove that removing j cannot add a cycle that does not go through i*. Suppose on the contrary

that G1 includes a cycle C1 := izi2...imil that does not pass through i*. Since such cycle cannot

exist on G, at least one of the arcs on this cycle must have been added in the reduction step.

Without loss of generality, assume that this arc is (il, i 2) . If (il, i 2) E and (il, i 2) E S1, then

we must have (ii,j) E & and (j, i2) E S. But this implies that C1 := ilji2...imil is a simple

cycle in G that does not pass through i* which contradicts IIa. Therefore, G1 (A1 I, 1) is also

a K1 graph. By induction, this process can be repeated until 0 (i*) \1 (i*) = 0, in which case

the only remaining nodes are i* and {jl, ..., jk } E (i*) n (i*) . For this graph, each ji can be

removed without converting any of the other ones into a focal node, which leaves i* as the only

remaining node. Proof is complete. m

Lemma 5.2 The maximal order of a K1 graph is at least k, where:

k = max IZ(i*)1 (5.9)
i*EAr*

Proof. It is sufficient to show that an irreducible realization of order k exists. Let k be

defined as in (5.9) and let i* be such that IZ(i*)I = k. Let {jl,...,jk} be the set of nodes in

3 See item 3 of the remarks after Algorithm 5.1 in Section 5.2.

125

I (i*). Since the graph is connected, for every j E I (i*) there exists a simple cycle that passes

through j. We first prove that there does not exist a simple cycle C E G that includes a pair

of nodes jkl and jk 2 in I (i*). Assume for the sake of contradiction that there exists a simple

cycle C E G that starts at jk E I (i*) and passes through k2 c I (i*). Since the graph is K1,

property IIb implies that there is only one arc leaving jk, and that goes to i*. Hence, cycle C

must include a path from i* to k2,. For the cycle C to close at jk 1 , there must be a path from

jk2 to jkl. But property IIb implies that there is only one arc leaving jk 2 and that goes to i*.

Therefore, C visits i* at least twice which contradicts the fact that C is a simple cycle. Hence,

for every j E {jl, ... , jk } there exists a simple cycle Cj that passes through j and not through

I (i*) \ {j}. Furthermore, the subgraph U Ci\ {ji} does not include any cycles. To see this,
iEZ(1,k)

note that every simple cycle passes through i*. Since the subgraph U ci\ {ji} excludes all
ieZ(1,k)

the nodes in I (i*) it cannot include any cycles. It then follows from Proposition 5.1 that an

irreducible realization with {ji,..., jk} as the set of focal nodes is achievable. This proves that

the maximal order is at least k. *

In Lemma 5.2 we proved that the maximal order of a K1 graph is at least k, where k is

defined in (5.9). In the following algorithm, we present a procedure to obtain a realization with

order k.

Algorithm 5.2 To construct an irreducible realization of order k (k given in (5.9)) for a Ki

graph, let i* E .A* be such that 1 (i*) = k and let {jl,..., jk} be the set of nodes in I (i*) . For

ji E (i*) let {nl,..., n,(j) } be the set of nodes in I (ji). Then, perform the following set of

reduction steps:

0. Let i = 1, 1 = 1, t= 1, Gt = G.

1. Consider node nl E (ji) . It follows from property IIb that nl {jil, ..., jk} .

2. If nl = i* and I < v (ji) then I -- 1 + 1 and go to 1.

3. If n1 = i* and 1 = v (ji) and i < k then i - i + 1 and 1 -+ 1 and go to 1.

4. If ni = i* and I = v (ji) and i = k then goto 8.

5. Remove ni from Gt (jft, t) and let Gt+l (Pjt+l, St+l) be the corresponding reduced graph.

Since the graph Gt (f/t, ,t) is K1, every nl E I (ji) is a transient node before this reduction step

and can be removed. It can be shown using an argument similar to that in the proof of Lemma

126

5.1 that Gt+1 (NJt+l, St+i) is also a KI graph.

6. If < v (ji) then l -+ 1 + 1, and t -+ t + 1, and go to 1.

7. If 1 = v (ji) and i < k then i -+ i + 1, and t --+ t + 1, and 1 -4 1 and go to 1.

8. Remove node i*.

Step 8 will immediately convert every node in {jl, ... ,jk} into a focal node.

We are now in a position to complete the proof of Theorem 5.2. To simplify the notation

and avoid distracting details, we present the proof for the case where 0 = 1 across all the arcs

and there are no passport labels, that is, the discrete transitions are non-deterministic. The

proof at the presence of passport labels (or invariant sets Xi, i G n), and/or when the rate 0

is variable across the arcs is similar.

Proof of Theorem 5.2. The first statement of the theorem was proven in Lemma

5.1. The existence of an irreducible realization of order k follows from Lemma 5.2. We prove

that the irreducible realization which consists of I (i*) (constructed according to Algorithm

5.2) always outperforms all the minimal realizations. Assume without loss of generality that

Gmin({1} , Smin) is the minimal realization in consideration and that 11(1)| = k. Consider the

set I(1) of the incoming nodes of node 1 on the original graph G (KN, S). Let us denote the

elements of this set by {jl, ..., jk} . For j E I (1) let 7 (j) denote the set of all simple paths from

node 1 to node j on G (N, S) . Furthermore, for j E 1(1), let T (j) denote the set of transition

labels obtained by taking the composition of the transition labels along all the simple paths

from 1 to j, that is:

T(j) := {Tl I Tji = Tjji,*...Ti2ilTill, ir (ji...i 2,il,1) E 7r (j)}

Let V (1, x) = al (x) be a Lyapunov invariant for Gmin({1} , £min). Then we have:

Ui (TljTjlz) - ai (x) < 0, Vj E {jl, ... , jk , Tjil ET (j) . (5.10)

127

Recall (from Algorithm 5.2) that by construction, the set Z (1) := {jl,..., jk} is exactly the set

of focal nodes in the irreducible realization of order k : G((jl, ... , j} ,). Define:

uj (x) = a, (TljX) , Vj E jli, ... ,jk}. (5.11)

Since the graph is linear, the functions aj (.) belong to the same class of functions as ai (.).

Our claim is that the functions aj (.) define a valid Lyapunov invariant for G. What needs to

be proven is that:

j (Tjix) - (x) < 0, V(i,j, r) E &, where i,j E jl, ...,jk }. (5.12)

Note that by construction we have:

V(i, j,r) E E, 3T E 7T(j), s.t. Ti = TTi = TjlTi.

Therefore, (5.12) holds if and only if

aj(TjlTix) - ai (x) < O, V(i,j,.) E $, Tjl E 7(j).

Equivalently:

al (TljTjiTlix) - -1 (Tiix) < 0, V (i, j,.) E 8, Tji E T (j).

which follows immediately form 5.10 with x replaced by Tlix. Proof is complete. *

5.3.2 Comparison of Maximal and Minimal Realizations of Kn Graphs

In this section, we generalize the results of the previous section from K1 graphs to the so-called

Kn graphs.

Definition 5.4 A graph G (.N, 8) is called a Kn Graph if it satisfies the following properties:

I. The graph G (N, 8) is connected, that is, for every pair of nodes jl, j2 E A\ { , X}, there

exists a path from jli to j2.

II. There exists a subset .A* C KN, with cardinality * = n, satisfying the following properties:

Ha. Every simple cycle C E G passes through at least one node i* E A/*.

128

Figure 5-7: A K3 graph with A/* = {2, 4, 6}. The minimal order is 3, and the maximal oder is

6.

IHb. For every i* E A*, and for every j E Z(i*) \A*, we have 10 (j)j = 1. This implies in

particular, that there is only one path from j to i*.

IIc. There does not exist a simple cycle that passes through a pair of nodes jl, j2 E Z (*f*) \g*.

III. The subgraph G (fV*, S*) does not include any cycles.

Remark 5.2 Note that the set A[* may not be unique, its cardinality, however, is fixed. In

other words, a smaller set with cardinality strictly less than n, satisfying the same properties

does not exist.

For instance, the graph model of P 2 (Figure 5-1) is a K2 graph with A[* = {2, 4}. All simple

cycles pass through either node 2 or node 4, and a smaller set satisfying this property cannot

be found. It is easy to verify that properties IIb, IIc, and III also holds. Another example is

shown in Figure 5-7. The graph in Figure 5-7 is a K3 graph.

Theorem 5.3 Let G (h/, £) be a Kn graph. Then the minimal order of G is n, and the maximal

129

order of G is dmax > k, where:

k = max IZ(i*)\I,
i* E.N*

Furthermore, if G (N, S) is a linear graph model, then there exists an irreducible realization of

order k that always outperforms the minimal realization(s).

In a similar fashion to the proof of Theorem 5.2, we prove Theorem 5.3 in multiple steps to

make the presentation clearer.

Lemma 5.3 The minimal order of a Kn graph is n.

Proof. Let G (K, S) be a Kn graph. Since a smaller set satisfying property IIa cannot

exist, the order of the minimal realization is at least n. Hence, it is sufficient to show that an

irreducible realization with order n can be achieved. Strictly speaking, only properties I, IIa,

and IIb of Definition 5.4 are needed for the proof presented here. Let n* C / be a set of nodes

satisfying these properties. Let i* E IV* and assume for the moment that {O (i*) \ (i*)} \A/*

is non-empty, and let j E {O (i*) \ (i*)i*)} \A/*. Note that j is a transient node, otherwise, the

simple cycle j -+ j does not pass through any node in /* which is a contradiction. Next,

perform the following reduction step: remove node j and let G1 (Ni, S1) be the corresponding

reduced graph. It is true that G1 (i, £1) is also a Kn graph, however, we focus only on the

properties that we use in the proof. Connectivity is trivial. We prove that n/* C K1 still

satisfies properties IIa and IIb w.r.t. G1. If z E I(i*), then (z,j) . (which follows from

IIb and j = i*), and there holds 1O(z)G 1 = I(z)IG = 1. Hence, IIb holds for G1. To show

that IIa holds, we prove that removing j cannot add a cycle that does not go through /*.

Suppose on the contrary that G1 includes a cycle C1 := ili2...iil that does not pass through

A/*. Since such cycle cannot exist on G, at least one of the arcs on this cycle must have been

added in the reduction step. Without loss of generality assume that this arc is (i1 , i2). If

(i 1, i2) S and (il, i2) E S1, then we must have (il,j) E S and (j, i2) E S. But this implies

that C := ilji 2... imil is a simple cycle on G that does not pass through /* which contradicts

IIa. Therefore, G1 (I, S1) also satisfies properties I, IIa, IIb. By induction, this process can

130

be repeated until:

{O (i*) \1 (i*)} \Af* = 0, Vi* E Ar*,

in which case the only remaining nodes are the ones in A* and sets of nodes {jl, ... , jk(i*) E

0 (i*) nZ (i*), Vi* Ec *. Since the elements of 0 (i*) nI (i*) do not share a common simple

cycle (which follows from IIb), removing each ji E 0 (i*) n (i*) converts i*, and only i*, into

a focal node. Since this is true for every i* E A*, a minimal realization of order n = AP*I is

achieved. m

Lemma 5.4 The maximal order of a Kn graph is at least k, where

k = max Z (i*)\Af*I (5.13)
i* Er*

Proof. We show that an irreducible realization of order k exists. Let k be defined as in

(5.13) and let N* be such that

|E I(i*)\NA* = k.
i* Ecn*

Recall that by definition:

Iz(N*)= U z(i*).
i* cE*

It follows from property IIb that I(iT) n I(i*) c A*, Vi*, i* E nA*. Therefore, the sets

I(i*) \n*, i* E f* are disjoint and I(A/*) * I = k. Let {jl,...,jk} be the set of nodes in

I (Af*) \/*. Since the graph is connected, for every j E I (AR*) \nA* there exists a simple cycle

that passes through j. Property IIc then implies that there does not exist a simple cycle C E G

that includes a pair of nodes jk and jk 2 in I (fJ*) \AN*. Therefore, for every j E I (nV*) \Af*,

there exists a simple cycle Cj that passes through j, and does not pass through any other node

in {I (Af*) \'*} \ {j} . Furthermore, the subgraph

Gc := U Ci\ {ji}
iCZ(1,k)

does not include any cycles. To see this, note that every simple cycle passes through n/*. Since

the subgraph Gc excludes all the nodes in I (AF*) \Af*, the only cycles it can contain are the

131

ones that are a subgraph of K*. However, property III implies that such cycle cannot exist. It

then follows from Proposition 5.1 that an irreducible realization with {jl, ..., jk} as the set of

focal nodes is achievable. This proves that the maximal order is at least k. N

We are now in a position to complete the proof of Theorem 5.3. In this case too, to simplify

the notation and avoid distracting details, we present the proof for the case where 0 = 1 across

all the arcs and there are no passport labels. The proof at the presence of passport labels

and/or when the rate 0 is variable across the arcs is similar.

Proof of Theorem 5.3. The first statement of the theorem was proven in Lemma 5.3.

The existence of an irreducible realization of order k follows from Lemma 5.4. We prove that the

irreducible realization consisting of I (/*) \A* always outperforms the minimal realizations.

The proof is similar to the proof of Theorem 5.2. Consider the set I (N/*) \A* of the incoming

nodes of the set N/* on the original graph G (N, 5) . For j E I ('*) \N* and i* E N* let i* (j)

denote the set of all simple paths from i* to j on G (V, 5) . Furthermore, for j E Z (NA*) \NA*, let

7* (j) denote the set of transition labels obtained by taking the composition of the transition

labels along all the simple paths from i* to j, that is:

T* (j) := {Tji Tji = Tji...Ti2ilTili* (j, ir...i2, ii, i*) E 7i* (j)}

Assume that the functions aui (x), i* E '* define a Lyapunov invariant for Gmin(J*, Smin).

Then we have:

oUi* (Ti jTji x) - oi* (x) < 0, Vi*, i* EA *, j e I (i) , Ti 7 * (j) . (5.14)

Recall that by construction, the set I (N*) \K* := {jl, ..., jk} is exactly the set of focal nodes

in the irreducible realization of order k : G({jl,..., jk} ,). Define:

aj (x) = ai. (T*j), Vi* E *, j (i*) *. (5.15)

(Since for every i* E KN* there is only one path from j E i (i*) to i*, aj (.) is well-defined). Since

the graph is linear, the functions aj (.), j e Z (K/*) \Kf* belong to the same class of functions

132

as i. (.), i* E N*. Our claim is that the functions aj (.) define a valid Lyapunov invariant for

G. What needs to be proven is that:

3j (Tjix) - ai (x) < O, V (i, j, r) E £, where i, j E {jl,..., jk} . (5.16)

Note that by construction we have:

V(i,j,r) E , 3 i EN*, T E 7Ti (j), s.t. Tjr= TTii = Tji Tii, i GI(i*).

Therefore, (5.16) holds if and only if:

aj(Tji*Tiix) - ai (x) < 0, V (i, j, .) E L, Tji* c 7i- (j). (5.17)

Moreover, it follows from the definition of a (.) that there exist i* such that (5.17) is equivalent

to:

S(TTTx - u* (Tiix) < 0, V (i,) E 7, T E 7i (j).

which follows immediately form 5.14 with x replaced by Titix. Proof is complete. *

The Effects of Convex Relaxations

So far in this chapter, we have established that from the theoretical viewpoint of existence

of node-wise Lyapunov invariants within a specific class of functions, it is advantageous to

search for these functions over the reduced graph models rather than the original graph models

of computer programs. The result of Theorem 5.1 can be interpreted in terms of comparing

two generally non-convex optimization problems. The theorem states that if the non-convex

optimization problem associated with the original graph model is feasible, then so is the non-

convex optimization problem associated with any reduced graph model. An interesting question

that arises here is about the computational procedure that will be used to compute the Lya-

punov invariants for the two graph models. More specifically, the effects of convex relaxations

on the computation of these functions for the original and the reduced models must be in-

vestigated. It is interesting that the statement of Theorem 5.1 can be extended to the case

where convex relaxation techniques are exploited for computation of the Lyapunov invariants.

133

For instance, if application of the S-Procedure renders the computation of V (i, x) , i E /V,

(for the original model) a feasible semidefinite optimization problem, then application of the

S-Procedure renders the computation of V (i, x) , i E NV (for the reduced model) a feasible

semidefinite optimization problem. To make this concept clearer, let us consider a specific

example. Consider a graph G, and assume that Gr is obtained from G by eliminating node

2, where, 1(2) := {1}, ({2} := {3,5} (e.g. as in the graph of program Pi, Figure 5-1).

Assume that each transition label Tji represents a finite-dimensional linear operator, and that

each passport label is defined by a single quadratic constraint: Iji = {x xTQjix < 0}. The

Lyapunov conditions for state transitions on the original graph are:

02 (T 2 1x) - Ou1 (x) < 0, s.t. xTQ 2 1x < 0, (5.18a)

U3 (T 32 x) - O82 (x) < 0, s.t. xTQ 32 x < 0, (5.18b)

5a (T 52 x) - Oa2 (x) < 0, s.t. xTQ 52 x < 0. (5.18c)

Eliminating node 2, we write the Lyapunov conditions for the reduced model G, in the following

way:

U3 (T 32 T2 1x) - u1 (x) < 0, s.t. xTQ 2 1x _ 0, T2T1Q3 2T21x < 0, (5.19a)

a5 (T 52 T2 1x) - 0U1 (x) < 0, s.t. XTQ 2 1x < 0, xTTQ 52T21x < 0. (5.19b)

Now, let each ai (.) E V, be a quadratic functional: ai (x) := xT P i x. Using the S-Procedure,

(5.18) can be converted to Linear Matrix Inequalities in the following way:

T P2 T21 - OP1 - 2 1 Q 2 1 < 0, 721 > 0, (5.20a)

TTP 3 T 32 - OP2 - 7 32 Q 32 < 0, T32 > 0, (5.20b)

TsTP 5 T 52 - OP2 - T 52 Q 52 < 0, T52 > 0, (5.20c)

134

while (5.19) becomes:

T2T T3T2P 3 T3 2T2 1 - OP1 - 21Q21 - 32T2TQ 32T21 < 0, T21 > 0, 732 > 0, (5.21a)

TTT5T2 5 T5 2T 21 - OP1 - T21Q21 - T52TQ 52 T2 1 < 0, 721 > 0, 752 > 0. (5.21b)

It is now easy to verify that if Pi, P2 , P3 , P5 , 721, T32, 752 are a feasible solution to the set of

LMIs in (5.20), then P1, OP3 , OP5, T21, T832, 0852 are a feasible solution to the set of LMIs is

(5.21). To obtain (5.21a) from (5.20), multiply (5.20b) on both sides by T2 V and T 2 1 v/ ,

and add it to (5.20a). Inequality (5.21b) can be obtained similarly.

So far we have shown for a special case, that numerical computation of the Lyapunov

invariants for the reduced graph is not more complicated than the original graph. As we will

show in the sequel, the result remains true in general as long as the convex relaxation technique

that is applied is the standard S-Procedure (cf. Section 4.1.2). The same cannot be said if

the sum-of-squares relaxation technique in its most general form (cf. Section 4.1.2) is used

for computation of V (i, x), i E .A over the original graph. However, under some reasonable

assumptions, we are able to extend the results to mildly restricted versions of the SOS relaxation

technique. The only restriction that we impose in the SOS relaxation is that those expressions

that consist of the multiplication of aj (x+) - Ooi (x) and other inequality constraints do not

appear in the P-Satz polynomial. We summarize the above discussion in Theorem 5.4. To make

the presentation clearer, we first introduce a new definition.

Definition 5.5 Let S be a semialgebraic set:

S x E R n fj (2) > O, j E J,
I gk (x)O 0, k E K, hi (x) = 0, 1 E L.

The P-Satz polynomial Ps := f + h + g2, f E P (fj), g E M (gk), h E I (h1) is said to be

strongly linear w.r.t. fj., j* E J, if the coefficient of fj* in Ps is 1. We say that the certificate

for emptiness of S can be generated by solving a sum-of-squares optimization problem that is

strongly linear w.r.t. the collection of functions {fi (x) i E J C J} if f E P (fj) , g E M (gk),

h E I (hi) can be found by solving a SOS optimization problem such that Ps A f + h + g2 = 0

135

and Ps is strongly linear w.r.t. each fi, i E J.

Theorem 5.4 Consider a graph model G (AN, S) and let Gr (Nf, Sr) be a reduced offspring of

G. Consider the following two statements:

L The function

v -3) = V (i,) := (x) , i (x) G Vd, i E JV

satisfying V (Y+) - OV (i) < 0 w.r.t. the original graph model G can be found by solving a

sum-of-squares optimization problem that is strongly linear w.r.t. the collection of functions

{aj (x+) - ai () (ij, .) E }.

II. The function

V, (i) _ V (i, x)"= o (x), ai (x) E IVx, i E JV,

satisfying Vr (Y+) - OVr (Y) < 0 w.r.t. the reduced graph model Gr can be found by solving a

sum-of-squares optimization problem that is strongly linear w.r.t. the collection of functions

{j (x+) - ai (ij, .) E l}.

Then (I)-+ (II). The converse is not true. Moreover, if all the transition labels of G (NA, 8) are

linear transformations, then the sum-of-squares optimization problem corresponding to (II) has

the same complexity as the one corresponding to (I), in the sense that the polynomial multipliers

in both problems have identical degrees.

Remark 5.3 Theorem 5.4 is presented for the case where the sum-of-squares relaxation tech-

nique is used for computation of V. The case where the standard S-Procedure is used is a special

case of Theorem 5.4, and the statements of the theorem remain valid.

Proof of Theorem 5.4. We present the proof for the constant rate case. The proof

for the variable rate case is similar. If Gr E G, then there exists a sequence of reduced graph

models Gi (AVi, i) , i = 1...q, where G1 = G, Gi+l E Gi, and Gq = Gr, with the property

that Afi+ 1 = Afij - 1. That is, Gi+l is obtained from Gi by removing one transient node.

Furthermore, assume that the functions ai (x) E Vd, i E AV define a Lyapunov invariant for

Gi and that Gi+l is derived from Gi by eliminating node n. For every arc (m, n, r) E 8, let

136

Fnm (.) denote the vector of polynomial multipliers (and/or SOS multipliers) used in the SOS

relaxation, and let I denote the corresponding P-Satz polynomial. Then:

XF1 (an (Trmx) - OUm (x) , Inm Im (x)) = 0, m E Z (n), r C Anm (5.22)

FJ2 (al (Tnsx) - e7an (x),11n, n (x)) = 0, 1 E 0 (n), s E A17n (5.23)

A necessary condition for (5.23) to hold is that:

T2 (al (TlsnTrnmX) - OUn (Trmx) ,II' (Trm) ,F7n (TnmX)) = O, m E Z (n), r E Anm

1 E O(n), s E Ai (5.24)

Now, for a fixed quadruplet (m, 1, r, s) (representing a transition from m to n along arc r,

followed by a transition from n to I along arc s), if x E IIIm n IIS (Trm) then the corresponding

equalities in both (5.24) and (5.22) hold. Since I is strongly linear w.r.t. {i (.)}, by multiplying

(5.22) by 0 and adding it to (5.24) we obtain:

I! (a, (T, TnX) - 2 (x) () , [n m(T)) = 0,

r E Anm, SE Aln.

In a similar fashion to the procedure described earlier in this section (equations (5.18)-(5.21)),

a simple rescaling of the decision variables (coefficients of the polynomials) can be applied to

convert the Lyapunov invariant rate (02) to 0. By definition, this implies that al and a m satisfy

the Lyapunov conditions along all the |Am I x Ai4nI arcs that were added between I (n) and

0 (n) in the reduction process. Since ai and am satisfy the Lyapunov conditions along any

and all the existing arcs (before reduction) between m and 1, we conclude that V satisfies the

Lyapunov conditions for the reduced model. It follows by induction that

V (i, z) := ai (x), i E N

can be computed for Gr by solving a strongly linear (w.r.t. {ai (.)}) SOS problem. Finally,

if the transition labels of G (N', 5) are linear transformations, the new vector of multipliers

137

([rm (x) , F (Trmx)]) has the same degree as the vector of multipliers for the original graph:

([Im (x) , F (x)]). Proof is complete. m

In light of Theorem 5.1, the conclusion of the above discussion is that analysis of the reduced

models are always beneficial, regardless of the convex relaxations that are used at the numerical

optimization phase.

5.4 Summary

In this chapter, we presented several results that complement the software analysis framework

that we presented in the previous chapters of this dissertation. We showed via an example that

the application of the framework to graph models of programs that are semantically identical

but syntactically different does not produce identical results, which suggests that the success or

failure of the method is contingent on the choice of the graph model. Based on this observation,

we introduced the concepts of graph reduction, irreducible graphs, and minimal and maximal

realizations of graph models. Several new theorems that compare the performance of the original

graph model of a computer program and its reduced offsprings were presented. In particular the

so-called K1 graphs and their extension, the Kn graphs, were studied in great detail. While it

is not true in general that an irreducible realization of higher order outperforms an irreducible

realization of lower order, we showed that for the Kn graphs, the minimal realizations are

always outperformed by a specific realization of higher order. The importance of the study of

Kn graphs is that an arbitrary (connected) graph can be converted to a Kn graph by removing

and adding auxiliary nodes. The results of this chapter therefore, can be used for construction of

efficient graph models that systematically improve analysis of computer code via the framework

that has been presented in this dissertation.

138

Chapter 6

Optimal Implementation of Linear

Time-Invariant Systems for

Safety-Critical Applications

In the previous chapters, we presented a framework based on convex optimization of Lyapunov

invariants for verification of safety and liveness properties of computer programs, particularly

those of safety-critical control systems. In this chapter, we take a dual approach to providing

guarantees of safety and good performance for these systems. The approach is applicable to a

specific but very important problem in safety-critical system design and implementation. We

show that for the problem of code-level implementation of discrete-time linear time-invariant

systems in digital processors, quadratic Lyapunov functions and semidefinite programming can

be used for finding an implementation that not only is safe by design, but also is optimized to

minimize loss of performance due to quantization effects.

The particular implementation that is considered is a finite word-length implementation

with quantization after multiplication. The objective is to minimize the effects of finite word-

length constraints on deviation from ideal performance, while respecting the overflow limits.

The problem is first formulated as a special case of the linear controller synthesis problem

where the controller has a particular structure. This problem is known to be a hard non-convex

problem in general. We show that this special case can be convexified exactly, and the optimal

139

implementation can be computed by solving a set of linear matrix inequalities. It is observed

that the transfer function corresponding to the optimal finite word-length implementation of a

discrete-time linear system is not necessarily identical to that of an ideal implementation with

infinite-precision arithmetic.

6.1 Introduction

An important problem that arises in software-enabled control applications as well as in open

loop estimation and filtering applications, is the problem of implementation of a discrete-time

linear time-invariant system in a digital processor [6, 7]. The system to be implemented is

specified by its real-rational transfer matrix H (z) which could be, for instance, the outcome of

a multivariable controller design process or a Kalman filter design process. The current practice

for the implementation problem generally involves the following two steps:

1. First, a state space realization of H (z) is computed. That is, matrices A, B, C, and

D are calculated such that H (z) = C (zI - A) - ' B + D. This process is standard and

several algorithms exist for computing a state space realization of a transfer function based

on the numerator and denominator coefficients. For instance, the MATLAB Real-Time

Workshop [97] uses a canonical state-space realization for the code-level implementation

of linear systems specified by transfer matrices, which can be inefficient and unsafe for

safety-critical systems.

2. Second, computer code is generated (either manually or automatically) to implement the

state space equations:

x[k + 1] = Ax[k]+Bw[k] (6.1a)

y[k] = Cx[k]+Dw[k] (6.1b)

For instance, a particular pseudocode implementation of the state space equations (6.1) is

given in Program 6-1. The pseudocode in Program 6-1 is very close to an actual implementation

of (6.1) with a high-level programming language such as C.

140

//A: array [n,n]; B&C: array [n,1]; D: scalar;

while (true) {

wait for the clock (.)

w = *PtrTolnput;

y = 0;

for (i= 1 ;i == N ;i++) {

q[i] = x[i];

x[i] = 0;

for (i= 1;i==N;i++) {

for (j = 1;j ==N ;j++) {

x[i] = x[i] +q[j]*A[i[j];

x[i] = x[i] + B[i] *w;

y=y+C[i] *q[i];

}
y =y +D * w;

*PtrToOutput = y; }

// state-space matrices data

// wait for the next sampling time, t=k

// read the input signal from the memory

// reset the output. begin the update

// fill in the buffer variables q

// reset the state variables

// start updating the state variables

// state update for time t=k completed

// output update for time t=k completed

// write the output signal to the memory

Program 6-1: Pseudocode for state space implementation of a SISO linear

system with state space matrices (A, B, C, D)

As it was already mentioned, the state space realization (A, B, C, D) corresponding to a

transfer matrix H (z) is not unique. In particular, if (A, B, C, D) is a state space realization of

H (z), then for any non-singular matrix T of appropriate dimension, (T-1AT, T-1 B, CT, D)

is also a state space realization of H (z). Furthermore, the set of all state space realizations of

H (z) can be completely characterized by (A, B, C, D) , in the sense that if (controllable and

observable) matrices (a, b, c, d) satisfy H (z) = c (zI - a) - ' b+d, then there exists a non-singular

141

matrix T such that (a, b, c, d) = (T - 1AT, T - 1 B, CT, D) (see [9] for more details). Therefore, in

theory, there are infinitely many ways (which are in practice not equivalent) to implement (e.g.

via Program 6-1) a given transfer matrix on a digital processor. For the time being, we would

like to emphasize that the approach that we will present in this chapter is different than the

current practice, in the sense that it does not assume that matrices A, B, C, and D necessarily

satisfy H (z) = C (zI - A) - B + D. More details will be provided as we proceed.

If arithmetic operations could be performed with infinite precision, any two implementations

corresponding to different minimal realizations of H(z) would be equivalent, in the sense that

they would produce identical output signals in response to any given input (assuming they start

from identical initial conditions). However, since computers are finite-state machines, (6.1)

can only be implemented with finite precision arithmetic. Hence, in practice, the following

compromises must be made to satisfy the finite precision constraints: First, the coefficients of

the matrices (A, B, C, D) must be quantized before implementation in the system to satisfy

the word-length constraints. Second, the internal signals must be quantized in real time to the

nearest available quantization level.

Program 6-2 illustrates the quantization of the internal signals at the implementation level.

The program represents a particular finite-precision implementation on a fixed-point processor,

where the so-called quantization after multiplication is used for implementation. Program 6-2 is

essentially a translation of the Program 6-1 into Assembly language for the Texas Instruments

Inc.'s TMS320C5x DSP processor. The processor has a 32-bit two's complement ALU, a 16-

bit x 16-bit multiplier, a 32-bit accumulator (ACC), a 32-bit product register (PREG), 16-

bit auxiliary registers (ARO-7), and 16-bit data memory [99]. Quantization occurs when the

updated value of the state, currently stored at the 32-bit accumulator, is saved to the 16-bit

memory location of X_state. The instruction "SACH" saves the 16 MSBs of the ACC into the

data memory address of X_state, and hence, the 16 LSBs are lost.

The consequence is that the behavioral properties of different implementations correspond-

ing to different state-space realizations are not identical. Indeed, the system response to the

same input could vary drastically within a class of different state-space implementations. The

extent of the deviation from the ideal response depends on the particular realization used in

(6.1), the finite precision format for computations, and the pole/zero structure of H (z) [83].

142

RPTB

include

SPLK

RPTB

INFINITEWHILELOOP

WAIT FOR CLOCK.asm

#N-1, BRCR

END LOOP

MAR *,AR1

LMMR *0+, A_MTRX

RPTZ #N-1

MAC X_state, *+

MAR *,AR2

LMMAR *+,B MTRX

MAC W_input,*+

APAC

SACH X_state,*

END LOOP

OPL #1, PMST

INFINITE WHILE LOOP

; wait for the next sampling time

; loop N times

; for j=0; j<=BRCR;j++

; modify auxiliary register (AR)

; load memory value A_MTRX into AR1

;AR1 = A_MTRX(j*INDX), INDX = N

; clear ACC and PREG; for (i = 0 ; i <= N-1 ; i++)

;(1) ACC = ACC + PREG

;(2) PREG = X_state(i)*AR1

; modify auxiliary register (AR)

;AR2 = BMTRX(j)

;(1) ACC = ACC + PREG

;(2) PREG = W_state(j)*AR2

; ACC = ACC + PREG; ACC contains the next X(j)

; save 16 MSBs of ACC into X_state; 16 LSBs lost.

; (Quantization After Multiplication.)

; set BRAF to continue loop indefinately

Program 6-2: Fixed-point implementation with quantization after multiplication (QAM) for

a SISO linear system with state space matrices A_MTRX, and B_MTRX. The processor is

a TMS320C5x DSP processor by Texas Instruments Inc. It has a 16-bit x 16-bit multiplier,

a 32-bit two's complement ALU, a 32-bit accumulator (ACC), and a 32-bit product register

(PREG). Note that the instructions for the computation of the output are not included in

the code. Quantization of the internal variables occurs when the updated value of the state

X state is removed from the 32-bit accumulator and saved to the 16-bit memory location of

X_state (instruction: SACH X_state,*).

143

As a very simple example of the effects of different state space realizations on performance,

let us compare two state space realizations R1(A, B, C, D) and R2(A, aB, a- 1 C, D), where a

is a scalar. Although these realizations define the same transfer matrix, the internal state

variables (the x[i] variables in Program 6-1, or X_state in Program 6-2) corresponding to the

implementation of R2 could become very large (for the same input) if a is a large number.

However, a finite-state implementation is inherently restricted with a finite dynamic range,

that is, the variables cannot exceed in magnitude a certain limit that is specified by the word-

length and the format. If a variable exceeds the dynamic range then an arithmetic overflow will

occur, the result of which is either a rollover to the smallest number in the range or saturation

(clipping) to the largest number in the range. Although the consequences of an overflow may

be less dramatic when saturation arithmetic is used, if occurred, it can still cause significant

performance distortion or even worse, instability.

The problem of finding a state space realization of H (z) that minimizes the performance

degradation due to fixed-point roundoff quantization of the internal variables subject to over-

flow constraints was studied to a great extent by M. Rotea and D. Williamson in [83]. Other

important references on the subject include [6] and [7]. In [83], the authors start with an

arbitrary state space realization of H (z) , namely (A, B, C, D) , and search for an optimal simi-

larity transformation matrix T such that the realization defined by T : (T-1AT, T-1 B, CT, D)

does not lead to an overflow, and is optimal in the sense that some measure of performance

degradation is minimal compared to all other realizations of H (z). While we have learned

and greatly benefitted from the problem formulation of Rotea and Williamson, our problem

formulation is different; we do not assume that the optimal state space implementation is nec-

essarily within the class of state space realizations that are related to an arbitrary realization

of H (z) by a similarity transformation. In other words, we search for optimal implementation

matrices (Ac, Bc, Cc, Dc) and do not assume that Cc (zI - A) - 1 B + Dc, the transfer matrix of

(Ac, B,, Cc, Dc), is necessarily identical to H (z). This formulation is more generic and includes

the formulation of [83] as a special case, and hence, is expected to lead to a better design.

This intuition is confirmed by the numerical simulations presented in Section 6.4. The problem

formulation is stated mathematically in the next section.

144

Figure 6-1: The error system

6.2 Problem Formulation

Given a strictly stable transfer matrix H (z) , we are interested in finding an optimal finite-state

implementation of H (z), such that the output of the error system (Figure 6-1), defined as the

difference between H (z) and the finite-state implementation, is small in some sense.

In this document, we focus on a particular F.S.M. (Finite-State Machine) implementation,

which is a state-space implementation with quantization after multiplication1 :

= F (Acxc [k] + Bw [k]),

= CcXc [k] + Dcw [k]

w [k] E [-1, 1]

where, the quantization operator F (.) is a b-bit regular two's complement quantizer with sat-

uration limits (Figure 6-2). We ignore the quantization error induced with the calculation of

the output yc [k] = Ccxc [k] + Dcw [k] . The error system in Figure 6-1 is then defined by the

following equations:

= F (Acxc [k] + Bw [k]),

= Ax [k] + Bw [k]

= Ccxc [k] + DcW [k]

SCx [k] + Dw [k]

= y[k]-y[k]

w [k] E [-1, 1]

1The results of this chapter can be conveniently extended to at least two other finite state implementation
schemes, namely, quantization before multiplication and quantization with integer residue feedback [83]. For clarity
and convenience in notation, we only present the quantization after multiplication case.

145

Xc [k + 1]

Yc [k]

(6.2a)

(6.2b)

Xc [k + 1]

x [k + 1]

Yc [k]

y [k]

e [k]

(6.3a)

(6.3b)

(6.3c)

(6.3d)

(6.3e)

Figure 6-2: The Quantizer F(.): Two's complement rounding with saturation

In terms of equation (6.3), the objective is to find matrices (Ac, Bc, Cc, Dc) that minimize

the measure of performance Ilell, where 11.11 is an appropriately defined norm, and (A, B, C, D)

is an arbitrary state space realization of H (z). As it was mentioned in the introduction,

Rotea et. al. [83] studied a very similar formulation of this problem with the additional

assumption that Cc (zI - A) - 1 Bc+D = H (z) . Hence, they start with an arbitrary state space

realization (A, B, C, D) and search for an optimal similarity transformation such the realization

(T- 1AT, T- 1B, CT, D) meets the objectives. We search for the parameters of the optimal

implementation without restricting ourselves to implementing the same transfer function. The

formulation that we consider is more generic and covers that of Rotea et. al. as a special

case, and is evidently much harder to solve. If the quantization levels are small relative to the

dynamic range (i.e. high-bit quantizer), then, intuitively, we would expect that the coefficients

of the transfer matrix of H (z) and C, (zI - A) - 1 B1 + D, be very close. On the other hand,

if the quantizer is coarse (i.e. low-bit quantizer), then we would expect that the difference

between H (z) and Cc (zI - A,) - B + D, be larger. This intuition is confirmed by numerical

simulations as we will see later in this chapter.

6.2.1 Linearization via signal + noise model

Since quantization is a nonlinear operation, the equations (6.2) and (6.3) define highly nonlinear

systems. The problem of finding the optimal state-space matrices (Ar, Bc, C, D,) for this

highly nonlinear system is an intractable problem in many aspects. In order to simplify the

146

problem to some extent, we first apply a linearization technique that is commonly used in

signal processing applications. Consider again the nonlinear quantization function F : R -+ R,

which corresponds to the b-bit two's complement uniform quantizer with saturation as shown in

Figure 6-2. Let p represent the dynamic range and 6 the height of the quantization levels. Then,

6 := p (2b - 1)- 1 , where b is the number of bits (equivalently the number of different levels in

the quantizer). Define the nonlinear operator N IR -+ according to N (q) := F (r) - q. The

error system equation (6.3) can then be rewritten in the following way:

x[k-+l] = Ax[k]+fBw[k], w [k] [-1, 1] (6.4a)

xC[k+l] = E[k]+ 77 [k], (6.4b)

q [k] = A zx [k] + Bew [k] (6.4c)

e [k] = N(77 [k]), (6.4d)

y [k] = Cx[k] +Dw[k], (6.4e)

Yc [k] = Ccc [k] + Dcw [k], (6.4f)

e [k] = y [k] - yc [k] (6.4g)

The block diagram interpretation of these equations is shown in Figure 6-3. It follows from

the definitions of F (.) and N (.) that if 17 < p, then N (I) I < 6. This observation serves

as the basis for construction of a linearized model. In many signal processing applications the

standard procedure is to remove the nonlinear operator N (.), and assume that the quantization

error e is an uncorrelated exogenous input. This is the so-called signal+noise model of the

quantization process. The main assumption behind this model is that the internal variables do

not overflow and that the properties of the exogenous input e are independent of the particular

implementation, that is, matrices Ac, Bc, C,, Dc. We assume that these assumptions hold

and remove the nonlinear operator N (.) and represent its output by an external (uncorrelated)

noise e [k], where, subject to the constraint 1177 [k] I < p, the signal e [k] satisfies: ||E [k] II, 6.

This simplification allows us to formulate the problem of finding the optimal realization as

a constrained linear model matching problem subject to external noise. This formulation is

presented next.

147

Figure 6-3: The error system corresponding to a particular finite-state implementation with

quantization after multiplication xc[k + 1] = F(Acxc[k] + Bw[k]). Inside the dashed box is the
quantizer. Given H(z), the objective is to find (Ar, Bc, Cc, D,) such that the error Ilell is small
for some appropriately defined norm.

6.2.2 Structured Linear Controller Synthesis Formulation

In the previous section, we constructed a linearized model of the error system (6.3). The

linearized model was obtained by removing the nonlinear operator N (.) and representing its

output E [k] as an exogenous noise with bounded L, norm: ||E [k] 11 , 6 = p (2 b - 1) - 1 . We

argued that subject to the overflow constraint IJ [k] ll I p, the assumption Ije [k]jll I 6 is

valid. In this section, we show that the problem of finding the optimal implementation can be

formulated as a special case of the linear £1 controller synthesis problem where the controller

has a specific structure.

Let G,, (z), Ge, (z), Gwye (z), and GeYc (z), denote the transfer functions from w and e to

q and Yc respectively. Then, the linearized system can be described in the frequency domain

by the following equations:

KI = ,c0 (Z) [
148

S (H (z) - Gwy, (z)) -uGe (z) (
Ge (z)= (6.5)S p- 1G, (z) p- 1 Ge, (z)

where p and 6 are the parameters of the quantizer, 2 := 6-13 is the normalized vector of E,

such that ||(w,)II <_ 1, and F := ue and := p-lr1 are the scaled versions of e and 17 such

that < (, 4) _ 1. Under this formulation, the problem of finding the optimal implementation

is equivalent to finding an implementation that would maximize o subject to the following

constraint:

IG.1 (z)I < 1 (6.6)

For convenience in notation define:

Yl := ,Y2 ul : U2 YU:

Then, (6.6) can be viewed as a non-standard robust controller synthesis problem in the following

way: Find K (z), such that the closed loop system T (K (z) , P (z)) defined by:

[Y] =P(z)

U2 = K (z) y 2

satisfies IIF (K (z) , P (z)) K < 1, where:

uH (z) 0 -o 0

0 0 0 p-lIn

1 0 0 0

0 6In 0 0

and K (z) has the specific structure:

Ac

K (z) cc O

Ae

Bc I

Dc 0

Bc 0

149

The problem that we have formulated is a particular instance of a more general problem which

is unsolved in many aspects; a state space characterization which is convenient for synthesis

under L11 norm constraints is not known to date [29], and furthermore, the problem of controller

synthesis under structure constraints on the controller is also known to be a hard non-convex

problem. In an attempt to simplify the problem we replace the constraint ||Gd 1 < 1 by the

constraint Gcd | < 7, where y is a positive constant to be determined (perhaps via iterative

design) such that ||Gc |1 < 1 holds. A suitable value of 7 can be found by a line search. First,

y is fixed to a positive number and the maximal u is found. It is then checked if ||G 1| 1 < 1.

If ||Gc lJ1 > 1, the process must be repeated with a smaller *y. If |G < 1 the process can

be repeated by a larger -y. Although, we have modified and in some sense relaxed the original

problem, we do not consider this modification significant in terms of affecting the optimal

solution. The rest of this chapter focuses on solving the following problem:

max u, subject to lGd llo < -y (6.7)

Due to the specific structure imposed on the controller, this problem is still a hard problem

for which the application of standard synthesis algorithms leads to non-convex criteria. In the

next section, we first formulate an equivalent (non-convex) matrix inequality version of (6.7).

We then show that despite the structure imposed on the controller, due to the sparsity of the

plant, this problem can be convexified exactly. We then present an LMI criterion which solves

problem (6.7).

6.3 Optimal State Space Implementation via W" Optimization

6.3.1 Nonconvex Matrix Inequality Criterion

We have so far established our interest in finding matrices Ac, Bc, C,, Dc, such that the system

Gd defined in (6.5), satisfies IG,1 I .< y. In the following theorem, we present a necessary and

sufficient condition for existence of such matrices. For convenience in notation, we have defined

a := 7p 2
- y- 1 62 .

Theorem 6.1 Given u > 0, there exist matrices Ac, Bc, Cc, D, s.t. IGc 11 < -, if and only

150

if there exist symmetric positive definite matrices X = XT > 0, Y = YT > 0, M = MT > 0,

V = VT >- 0 and matrices N E Rnxn, and U E RInxn, such that the following conditions hold:

X - AXAT

BT

UT

B U

ly 0 -

0 al +V

aC
T

0

-ATN

0

_Y6- 2 1 - M

I 0

P : YNT

In addition, if matrices Y, N, M and X,

can be obtained by solving the following

[

N

MJ

U, V satisfy the above conditions, then Ac, Bc, Cc, Dc

LMI problem:

where,

0 11

X

UT

AT

0

U

V

0

AT

7

0

a (D - D,)

p-1B c

A

0

Y

NT

0

-In

0

0

a(D - Dc)T p-BcT

0 0

7 0

0 /In

Proof. The proof in presented in the Appendix. m

151

Hi:1

12 :=

(6.8)

Y - ATYA

aC

-NTA

(6.9)

-- 1

X U

U T V
(6.10)

012
1 0

022

(6.11)

0

0

UCT

-aC T

0

0

0

p-1AT

Due to the inverse matrix condition (6.10), the constraints of Theorem 6.1 are non-convex

with respect to the decision parameters X, U, V, and Y, N, M. We will show that these

constraints can be convexified via a series of suitably defined change of variables and congruence

transformations. The result is a convex criterion in the form of Linear Matrix Inequalities.

6.3.2 Convexification of the Matrix Inequality Criterion

The following theorem is the most important contribution of this chapter.

Theorem 6.2 Assume that all the internal variables in the state space implementation (6.2)

are allocated an equal number of bits, that is, the diagonal matrices p and 6 are scalar multiples

of the identity matrix. Then, given a > 0, there exist matrices Ac, Bc, Cc, D, s.t. IIGIll <7

if and only if there exist matrices Z = ZT - 0, T = TT > 0, and W = WT >- 0, such that:

Z + T- A(Z +T)AT

rT := BT

-T

(6.12)

-T

0 +0

T + aW

and

Z + T - AZAT

T

-aoCZAT

T -aAZCT

T - 62-1W 0 0

0 - .2CZC
T

Proof. It is sufficient to prove that the conditions (6.8), (6.9), and (6.10) of Theorem 6.1

hold if and only if (6.12) and (6.13) hold. First, recall the generic matrix inversion formulae:

y 1

= , then:if NT M UT V

X U y-1 +y-1NVNTy-1 -Y-1NV

UT V _VNTy-1 V

152

(6.13)T 2 :

Now, define:
Z = Y- 1

T = Y-1NVNTy-1

W = Y-1NNTy - l

(6.15a)

(6.15b)

(6.15c)

Note that with this change of variables we have X = Z + T. Using (6.14) and (6.15), substitute

for X and U in HI1 of (6.8) to obtain:

(Z + T) - A (Z + T) A T

BT

-VNTY - 1

Let El := diag {In+,

where:

B -Y- 1 NV

7 0 0

0 aI +V

NTY-1}, then the condition T >- 0 is equivalent to Ti := ETTE1 >- 0,

(Z + T) - A (Z + T) A T

T1 := BT

-T 0 aV

-T

0

W+T

which is exactly (6.12). Now, we focus on 112.It can be shown via the Schur complement and

switching the rows and columns of 112 that the condition II2 >- 0 is equivalent to

X U A 0

UT V - j 2y - 1 0 0
2 := 0

AT 0 Y oC T

0 0 UC y

Let E2 := diag {In, Y- 1, Y-1, In}, then, II2 >- 0 is equivalent to T 2 := E 2T11 2E 2 > 0, where:

Z+T

T

ZAT

0

T

T - j2 3-1W

0

0

AZ

0

Z

-CZ

0

0

oZCT

-Y

153

Again, switching rows and columns and using Schur complement yields T 2 >- 0 where

(Z + T) - AZA T T -aAZCT

T2 := T T - 62 7-1W 0

-oCZAT 0 7 - o2CZCT

which is exactly (6.13). Finally, by the Schur Complement, (6.10) is equivalent to X >- 0,

and X - UV-1UT > 0. These are in turn equivalent to Z + T >- 0, and Z >- 0, which hold

automatically. *

Remarks

1. After solving the above system of linear matrix inequalities, X, U, V, N, Y, M can be

recovered exactly in the following order:

(1) Y = Z- 1

(2) N = chol(YWY)

(3) V = N-1YTYN T - 1

(4) M = V + NTY-1N

(5) X = Y-1 + y-1NVNTy-l

(6) U =-Y-1NV

2. We use Theorem 6.2, to find the Lyapunov matrices Y, N, M that satisfy the constraints

of Theorem 6.1. Once we have found these matrices, the optimal implementation matrices

(Ac, B, C, Dc) are found by solving the LMI problem (6.11).

3. The quantity p6-1 is only a function of the number of bits allocated to register each state

variable:

p6-1 = 2b - 1

Define W := 62W. Then, the conditions (6.12) and (6.13) depend only on T, Z, W, and

the quantity a6-2 which is equal to y (2 - 1)2 - - 1. Therefore, the LMIs in Theorem 6.2

are only a function of the number of bits. This observation conforms with our intuition

154

since the performance should not depend on p and 6 independently, but only on the

number of bits. In other words, the performance is independent of scaling the quantizer.

4. We assume that an equal amount of memory is allocated to register each state variable,

which is the common case in standard processors. Under this assumption, the variables 6

and p are scalar multiples of the identity matrix. An interesting case where a non-uniform

number of bits is allocated to register different state variables may also be considered.

In this case 6 and p are positive definite diagonal matrices. Unfortunately, this case

cannot be formulated as a convex optimization problem. It would be still interesting

to investigate the sub-optimal distribution of bits between the states and its effect on

improving performance. This may be accomplished by employing an iterative algorithm

to solve the (non-convex) conditions of Theorem 6.1.

6.4 Numerical Simulations

Example 6.1 Let y = 1, p = 1, b = 5, i.e. 6 = 2- 5 , and let H (z) be given by

2z + 1
H (z)x = 2 i

z2 + z + 5/6

Applying our method we obtain am,,x = 0.2493, with

-0.5545 -0.6701

= 0.8323 -0.420z

CcD-1.3489 16.7983

which implements the transfer function

0.00136z 2 + 1.12z + 2.212
H (z) :=0.9749zz 2 + 0.9749z + 0.7909

155

3 q
_.

0 50 100 150 200
Time Time

10

V 0 .111

-10

0 50 100 150 200
Time

10

-10
0 50 100 150 200

Time Time

Figure 6-4: Numerical simulations: comparison of our results with [83].

We compare our design with that of Rotea et. al. [83]. Their result gives

Ac, B,=

Cc, Dcr

which implements the same transfer function as H (z) .

Figure 6-4 shows the numerical simulation of the performance of the two designs in response to

two different Inputs (wl and w2). The comparison shows that our design is better in the sense

that the error is smaller.

Example 6.2 Let -y = 1.5, p = 1, b = 6, i.e. 6 = 2- 6 , and let H (z) be given by

1
H (z) = .8 .9

z2 + 0.8z + 0.9

156

Ti e

DO

Once again, by applying our method we obtain ama = 0.2984, with

Ac Bc

Cc DC

which implements the transfer functi

He (z) :=
-0.0487z 2 + 0.009582z + 1.235

z 2 + 0.7768z + 0.8494

We compare our design with that of Rotea et al [83]. Their result gives

Acr Bcr

Ccr Dc

-0.4336

0.8922

-8.1807

-0.8307

-0.3664

18.5500]

0.0498

0.0219

[0]

which implements the same transfer function as H (z) .

Figure 6-5 shows the numerical simulation of the performance

two different Inputs (wl and w2) . The comparison shows that

that the error is smaller.

of the two designs in response to

our design is better in the sense

6.5 Summary

We presented an algorithm based on optimization of quadratic Lyapunov functions for finding

optimal finite-state implementations for discrete-time strictly stable linear time-invariant sys-

tems. The particular finite-state implementation that we considered consists of quantization of

the state variables after multiplication, that is:

x [k + 1]

y [k]

= F (Acx [k] + Bcw [k])

= Cx [k] + Dcw [k]

157

~

'

CCC

0 100 200
Time

o 11 000 0O 0-2

0 100 200 0 100 200
Time Time

I n

a)

-10
0 100 200

a)

0
Time Time

Figure 6-5: Numerical simulations: comparison of our results with [83].

where F is the quantizer. We defined the optimal implementation problem as the problem of

finding matrices (Ac, Bc, Cc, De) such that the internal variables do not saturate the quantizer

and the loss of performance due to quantization effects is minimal. We showed that after

linearization of the quantization process via the so-called signal+noise model, the problem

of finding the optimal implementation can be formulated as a special case of an £1 optimal

synthesis problem where the controller has a specific structure. We relaxed the £1 synthesis

problem and replaced it with an 7-(synthesis problem. The 7" controller synthesis problem

is still in non-standard form due to the special structure of the controller. We showed that

this problem can be convexified via a series of congruent transformations and appropriate

parameterizations. We presented a linear matrix inequality criterion, the solution of which

provides the optimal state space implementation. We compared our results with the results of

Rotea et. al. [83]. Since our formulation is less constrained and allows more freedom in the

search parameters, intuitively, we expect better performance from our results. This intuition

was confirmed by numerical simulations. The results of this chapter can be used for software

implementation in safety-critical applications.

158

6.6 Appendix

Proof of Theorem 6.1. The proof of the theorem lies along the same lines as the standard

proofs of W,, controller synthesis via LMIs (see for instance [32]). The closed loop system is

the feedback interconnection of a plant P (z) , and a structured controller K (z) , where

UC

0

0

0

SBO] [O 0]

o-D 0 -- 0

0 0 0 p-lln

0 6In 0 0[~ ~] [:]
and

Ac Bc In

K(z):= Cc D 0

Ac Bc 0

The state space equations of the system are given by:

x [k + 1] A 0 x [k] B 0 w [k]

x, [k + 1 0 Ac x [k] Bc I [k]

[k] UC -oCc x [k] + D - uDc 0 w [k]

L[k] 0 p-lAc xc [k] p-1Bc 0 [[k]

Let us introduce the following notation:

A A On]
On On

[OC 01xn

On On

S On X1 On
D21:=

1 01xn

On B 61On
31 := [I

C2 : On In

Olxn Olxn

01xn -"]
D)12 : P-ln OnXl

B32 [2 Onxl]
In Onx1

D11 D 0
0 0

159

Now, define IK to be

Ac Bc

It can then be verified that the closed loop matrices are given by:

Ad LA + B2CC 2

Bcd a 1B + B2K) 2 1

Cd C1 + D 121CC2

Dc A 11 +- D12 D21

The original structure of the controller has been captured in the (non-standard) structure of

B1 and D12. In a standard design situation, the matrices B1 and D12 are of the form:

B:= B and 12 := 0 D 12
0

whereas here, the second row block of B1 or the first column block of D12 are defined by nonzero

matrices. Next , recall the discrete-time version of the bounded real lemma: The system

G (z) := Ac Bct

satisfies

|cGd (z)i, <

if and only if 3P = pT >_ 0 (of compatible dimensions), such that:

H:=

P- 1 Act Bci 0

A P 0 CT
0 l cl

BT0 Cd l)Tcl cl
0 Cc, D, -I

160

> 0.

Using the projection lemma ([32]), it can be shown that H >- 0 holds if and only if:

A'Oe T

A'E)A T

where F, A, E are defined by:

, AT := [0 (n+l)x2n C 2 D21 On+1]

P-1 A B1 0

AT P 0 cT

B3 0 I D1 7
0 C1 D 11 I

L C, il yY'

(F' and A' represent the left annihilator of F and A respectively). Now, define

Y

NT

N

M
and P- 1 - Q

X

UT

and expand the matrix E

X U A On B On Onx 0

UT V On On Onxl 6In Onxl

AT On Y N 0 0 JC
T On

On On NT

BT Olxn 0 0

0 0 Onx 0

y 0 uDT 0

On 61n 0 0 0 yIn 0 0

Olxn On aC Olxn uD 0 7 0

On On On 0 0 0 0 yIn

B 2

0 2nx(n+1)

On+1

D12

and

The matrix A (defined in (6.16)) has rank n + 1 and its left annihilator AL can be defined by:

On Onxl1

On Onxl

Onxl

Onxl

1

On Onxl

0 (n+1)xn 0 (n+1)xl

A-L :=-

In On

0 In

0 0

0 On

0 0

In 0 Onx1

0 0 0 0 0

0 0 0 0 0

0o o o0 0 0o o o o In

Thus, AEOA ±T
>- 0 is equivalent to

x

UT

AT

On

I

Apply the Schur complement:

Y - ATYA -ATN6 -CT 0

-6NTA -"In - 62M 0 0

aC 0 7 0

0 0 0 "/In

Finally, eliminate the last row and column and then switch the second rows and columns to

obtain (6.8):

Y - ATYA

aC

-6NTA

UC
T

0 -Y

-ATN61

0 K 0.

In - 6M6

162

Onx 1

0 nx1

0 0 0

000

0 0 0

In 0 0

0 1 0

(6.16)

U A On OnxI

V On 61n Onx 1

On Y 0 o-C T

61n 0 7In 0
> 0.

l1xn Ulxn U~C U 7

On On On 0 0

On

0

0

YIn

>- 0.

In

Now, we focus on the second condition, i.e. FOF ± T >- 0. The matrix F and its left annihilator

are defined as:

0

In

On

0

0 0 0 In On

0 0 0 0 In

0 0 0 0 0

0 0 0

0 0 0 0

0 0

0 0

1 0

0 In 0 0 0 0 0 -Inp

Thus, FO LT > 0 is equivalent to:

A 0 B 0 U

Y N 0

MO 0

0 0 7 In

0 0 0

0 0 0 6

0 0

0 0

0 0

In VyIn

'In V + 7 p2In

Now, switch rows and columns and apply the Schur complement:

X - AXAT

BT

0 U

0 0

0 0 yI 61n

UT 0 61n V + p2 YIn

Again, switch rows and columns and apply the Schur complement one more time:

X - AXA T

B T

U
T

7 0

0 V + (p 2 -_ 27-1) In

which is exactly (6.9). Proof is complete. m

163

On

In

03nxn

Olxn

Olxn

0 nxl

Onxl

Onx 1

0

-0o

Onx1

F -L := (6.17)

NT

X

AT

0

BT

0

UT

>- 0.

I -0.

In

Chapter 7

Conclusions and Future work

7.1 Summary

In this dissertation, we presented a systematic framework based on convex optimization of

Lyapunov invariants for verification of various critical properties of software systems. The

principal elements of this software analysis framework are:

1. Dynamical system interpretation and modeling of computer programs.

2. Lyapunov invariants as certificates for the behavior of computer programs.

3. A computational procedure for finding the Lyapunov invariants.

In Chapter 2 we introduced generic dynamical system representations that formalize our

interpretation of numerical computer programs as dynamical systems. We also introduced the

Mixed-Integer Linear Models (MILM), the graph models, and the Linear Models with Con-

ditional Switching (LMwCS) as special cases of the generic representations. These modeling

languages can represent a broad range of computer programs of interest to the control commu-

nity and provide a convenient platform for analysis of software via systems and control theoretic

tools in an automated or semi-automated framework.

In Chapter 3 we presented several theorems that establish criteria for verification of safety,

liveness, and other performance properties of software systems via Lyapunov invariants. The

164

safety specifications that can be verified in this framework include but are not limited to over-

flow, out-of-bounds array indexing, division-by-zero, taking the square root or logarithm of

a negative number, and various user-defined program assertions. Moreover, when finite-time

termination can be guaranteed, the Lyapunov invariants provide an explicit upper bound on

the maximum number of iterations.

In Chapter 4 we presented a computational procedure based on linear parametrization of

the search space followed by Lagrangian relaxation techniques and convex optimization for

computation of the Lyapunov invariants. We showed that sufficient criteria for verification of

safety, liveness and certain critical performance properties of computer programs can be formu-

lated as a semidefinite program, a sum-of-squares program, or a linear program. The convex

optimization phase is the final step in our software analysis framework. If the optimization

problem is feasible, the result is a certificate for safety and/or finite-time termination of the

computer program, otherwise, the analysis in inconclusive.

In Chapter 5 we presented several results that complement our software analysis framework.

We introduced the concepts of graph reduction, irreducible graphs, and minimal and maximal

realizations of graph models. Several new theorems that compare the performance of the

original graph model of a computer program and its reduced offsprings were presented. In

particular the so-called K1 graphs and their extension, the Kn graphs, were studied in great

detail. These results can be used for construction of efficient graph models that systematically

improve analysis of computer programs via the framework that has been presented in this

dissertation.

In Chapter 6 the framework was further extended to the implementation problem. We in-

troduced an algorithm based on optimization of quadratic Lyapunov functions and semidefinite

programming for computation of optimal state space implementations of linear time-invariant

systems in digital processors. While respecting the overflow limits, the algorithm minimizes the

effects of finite word-length constraints on performance deviation. It was shown that the optimal

implementation can be computed by solving a semidefinite optimization problem. It is observed

that the optimal state space implementation of a digital filter on a machine with finite memory

does not necessarily define the same transfer function as that of an ideal implementation.

165

7.2 Future Work

The work that we have developed in this dissertation can be extended in several important

directions. Herein, we present some ideas that we feel are most interesting for future research.

* Modular analysis: Modular analysis is an approach for reducing the computational costs

and improving the scalability of the proposed framework as analysis of large size computer

programs is undertaken. The idea is to model large size software as the interconnection of

smaller size dynamical systems which are referred to as modules. These modules interact

via a subset of the program variables, namely, the global variables. Modular analysis

starts with abstraction of the dynamics of the building blocks of the computer code, that

is, the modules, with Input/Output behavioral models. These models typically constitute

equalities and/or inequalities relating the input and the output variables. The correctness

of each module must be established separately. Correctness of the entire program will be

established by verifying safety w.r.t. the global variables, as well as verifying that a

terminal global state will be reached in finite-time. This way, the variables that are local

to each module are eliminated from the global model, which has the potential to simplify

the analysis significantly. Some preliminary results are reported in [81].

* The complexity tradeoff in graph reduction (symbolic calculations) versus numerical op-

timization: The concepts of reduction of graph models and irreducible graphs were intro-

duced and discussed in detail in chapter 5. It was shown that reducing a graph model to

an irreducible model is advantageous in the sense that the optimization problem arising

from analysis of the reduced graph has fewer decision variables and yet, Lyapunov analy-

sis of the reduced graph is less conservative than the original graph. However, there is

a cost associated with the symbolic computations that are performed in the process of

graph reduction and building irreducible graph models. A very interesting research di-

rection would be to compare and contrast the added computational costs of the symbolic

operations in building irreducible models and the reduced computational costs (due to

fewer decision variables) in the convex optimization phase.

* Perturbation analysis of the Lyapunov Certificates: The approach presented in this dis-

sertation for taking into account the effects of floating point operations is to include the

166

roundoff errors in the model as additional noise. The inclusion of roundoff errors as addi-

tional noise in the model is similar in nature to the approach taken by many of the existing

methods, e.g. abstract interpretation. An interesting alternative to explore would be to

assume that the variables are real and computations are ideal, and find Lyapunov invari-

ants for the ideal system. A perturbation analysis of the Lyapunov certificates can then

determine how much noise the system can tolerate without invalidating the Lyapunov cer-

tificates. If the roundoff errors are within acceptable ranges, then the Lyapunov invariant

for the nominal system would provide a certificate for the properties of the perturbed

system (with floating point computations) as well.

* Extension to systems with software in closed loop with hardware: In this dissertation we

focused on verification of computer programs as stand alone dynamical systems. It would

be interesting to study extensions of the framework to verification of closed loop systems

consisting of the feedback interconnection of analog, continuous-time plants and digital,

discrete-time computer programs. Since our framework is built on systems and control

theoretic tools, it appears that the framework is readily extendable to such systems;

however, this extension does not seem to be as straightforward for some of the existing

methods such as abstract interpretation.

* Extension of the implementation results to nonlinear systems: As presented, the approach

developed in chapter 6 for optimal software implementation in digital processors is ap-

plicable to LTI systems. An interesting and important direction for future research would

be to investigate extension of the results to systems involving common nonlinearities such

as saturation, time-varying uncertainties, or monotonic odd nonlinearities. It appears

that integral quadratic constraints can be exploited for partial or full extension of the

results of chapter 6 to such systems.

* Adaptation of the framework to specific classes of software: The framework that is pro-

posed in this dissertation is generic. An interesting direction for future research would

be to adapt the framework to specific classes of software, e.g. those of adaptive control

systems, or gain-scheduled systems. Adaptation to specific classes of software can improve

the efficiency and applicability of the method and further reduce the computational costs.

167

Bibliography

[1] M. A. Aizerman, and F. R. Gantmakher. Absolyutnaya ustoichivost' reguliruemykh sistem

(Absolute Stability of the Control Systems), Moscow: Akad. Nauk SSSR, 1963.

[2] R. Alur. Techniques for Automatic Verification of Real-time Systems. PhD Thesis, Stanford

University, 1991.

[3] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho X. Nicollin, A. Oliviero,

J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems, Theoretical Computer

Science, vol. 138, pp. 3-34, 1995.

[4] R. Alur, T. Dang, and F. Ivancic. Reachability analysis of hybrid systems via predicate

abstraction. In Hybrid Systems: Computation and Control. Lecture Notes in Computer

Science v. 2289, pp. 35-48. Springer Verlag, 2002.

[5] R. Alur, and G. J. Pappas (Eds.). In Hybrid Systems: Computation and Control. Lecture

Notes in Computer Science, v. 2993, Springer-Verlag, 2004.

[6] K. J. Astrom, and B. Wittenmark. Computer Controlled Systems: Theory and Design.

Prentice Hall Information and System Sciences Series, 1996.

[7] D. Auslander, J. R. Ridgely, and J. D. Ringgenberg. Control Software for Mechanical

Systems, Object-Oriented Design in a Real-Time World. Prentice-Hall, 2002.

[8] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for

continuous-time Markov chains. IEEE Transactions on Software Engineering, 29(6):524-

541, 2003.

168

[9] J. S. Bay. Fundamentals of Linear State Space Systems. McGraw-Hill, 1999.

[10] A. Bemporad, D. Mignone, and M. Morari. Moving horizon estimation for hybrid systems

and fault detection. In Proc. American Control Conference, Pages 2471-2475, 1999.

[11] A. Bemporad, and M. Morari. Control of systems integrating logic, dynamics, and con-

straints. Automatica, 35(3):407-427, 1999.

[12] A. Bemporad, F. D. Torrisi, and M. Morari. Optimization-based verification and stability

characterization of piecewise affine and hybrid systems. In Hybrid Systems: Computation

and Control, Lecture Notes in Computer Science v. 1790, pp. 45-58. Springer-Verlag, 2000.

[13] D. Bertsimas, and J. Tsitsikilis. Introduction to Linear Optimization. Athena Scientific,

1997.

[14] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Min6, D. Monniaux, and

X. Rival. Design and implementation of a special-purpose static program analyzer for

safety-critical real-time embedded software. In The Essence of Computation: Complex-

ity, Analysis, Transformation. Lecture Notes in Computer Science v. 2566, pp. 85-108,

Springer-Verlag, 2002.

[15] J. Bochnak, M. Coste, and M. F. Roy. Real Algebraic Geometry. Springer, 1998.

[16] S. Boyd, L.E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in Systems

and Control Theory. Studies in Applied Mathematics, v. 15, SIAM, 1994.

[17] M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and

hybrid systems. IEEE Transactions on Automatic Control, 43(4):475-482, 1998.

[18] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for hybrid control:

model and optimal control theory. IEEE Transactions on Automatic Control, 43(1):31-45,

1998.

[19] R. W. Brockett. Hybrid models for motion control systems. In Essays in Control: Perspec-

tives in the Theory and its Applications, pp 20-53, Birkhauser, 1994.

169

[20] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transac-

tions on Computers, 35(8):677-691, 1986.

[21] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state con-

current systems using temporal logic specifications. ACM Transactions on Programming

Languages and Systems, 8(2):244-263, 1986.

[22] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D.E. Long, K.L. McMillan, and L.A. Ness.

Verification of the Future-bus+cache coherence protocol. In Formal Methods in System

Design, 6(2):217-232, 1995.

[23] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[24] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Sym-

bolic model checking for probabilistic processes. In Automata, Languages and Program-

ming. Lecture Notes in Computer Science v. 1256, pp 430-437, Springer-Verlag, 1997.

[25] M. A. Colon, S. Sankaranarayanan, and H. B. Sipma. Linear invariant generation using

non-linear constraint solving. In Computer Aided Verification. Lecture Notes in Computer

Science, v. 2725, pp. 420-433, Springer-Verlag, 2003.

[26] P. Cousot, and R. Cousot. Abstract interpretation: a unified lattice model for static analy-

sis of programs by construction or approximation of fixpoints. In Conference Record of the

4th A CM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages

238-252, 1977.

[27] P. Cousot, and R. Cousot. Systematic design of program analysis frameworks. In Confer-

ence Record of the 6th A CM SIGPLAN-SIGA CT Symposium on Principles of Programming

Languages, pages 269-282, 1979.

[28] P. Cousot. Abstract interpretation based formal methods and future challenges. In Infor-

matics: 10 Years Back, 10 Years Ahead. Lecture Notes in Computer Science, v. 2000, pp.

138 - 143, Springer-Verlag, 2001.

[29] M. A. Dahleh, and I. J. Diaz-Bobillo. Control of Uncertain Systems: a Linear Programming

Approach. Prentice-Hall, 1995.

170

[30] D. Dams. Abstract Interpretation and Partition Refinement for Model Checking. Ph.D.

Thesis, Eindhoven University of Technology, 1996.

[31] E. Feron, and M. Roozbehani. Certifying controls and systems software. In Proc. of the

AIAA Guidance, Navigation and Control Conference, Hilton Head, South Carolina, August

2007.

[32] P. Gahinet, and P. Apkarian. A linear matrix inequality approach to W-i control. Interna-

tional Journal of Robust and Nonlinear Control, 4(4):421-448, 1994.

[33] P. Gahinet, A. Nemirovskii, and A. Laub. LMILAB: A Package for Manipulating and

Solving LMIs. South Natick, MA: The Mathworks, 1994.

[34] ILOG Inc. ILOG CPLEX 9.0 User's guide. Mountain View, CA, 2003.

[35] A. Girard, and G. J. Pappas. Approximate bisimulation relations for constrained linear

systems. Automatica, 43(8):1307-1317, 2007.

[36] A. Girard, A. A. Julius, and G. J. Pappas. Approximate simulation relations for hybrid

systems. In Proc. of the 2nd IFAC Conference on Analysis and Design of Hybrid Systems,

pages 106-111, 2006.

[37] A. Girard, and G. J. Pappas. Verification using simulation. Hybrid Systems : Computation

and Control. Lecture Notes in Computer Science, v. 3927, pp. 272-286 , Springer-Verlag,

2006.

[38] S. Graf, and H. Saidi. Construction of abstract state graphs with PVS. In Proc. 9th Inter-

national Conference on Computer Aided Verification, Lecture Notes in Computer Science

v. 1254, pages 72-83. Springer Verlag, 1997.

[39] M. X. Goemans, and D. P. Williamson, Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. Journal of the Association

for Computing Machinery (ACM), 42(6):1115-1145, 1995.

[40] S. V. Gusev, and A. L. Likhtarnikov. Kalman-Popov-Yakubovich Lemma and the S-

procedure: A historical essay. Journal of Automation and Remote Control, 67(11):1768-

1810, 2006.

171

[41] J. Harper, and A. Megretski. Personal communication, 2000.

[42] B. S. Heck, L. M. Wills, and G. J. Vachtsevanos. Software technology for implementing

reusable, distributed control systems. IEEE Control Systems Magazine, 23(1):21-35, 2003.

[43] M. S. Hecht. Flow Analysis of Computer Programs. Elsevier Science, 1977.

[44] S. Hedlund, and A. Rantzer. Optimal control of hybrid systems. In Proc. 38th IEEE Con-

ference on Decision and Control, pages 3972-3977, 1999.

[45] K. Holmstrm. The TOMLAB Optimization Environment in Matlab. Advanced Modeling

and Optimization, 1(1):47-69, 1999.

[46] M. Johansson, and A. Rantzer. On the computation of piecewise quadratic Lyapunov

functions. In Proc. 36th IEEE Conference on Decision and Control, pages 3515-3520,

1997.

[47] M. Johansson, and A. Rantzer. Computation of piecewise quadratic Lyapunov functions

for hybrid systems. IEEE Transactions on Automatic Control. 43(4):555-559, 1998.

[48] H. K. Khalil. Nonlinear Systems. Prentice Hall, 2002.

[49] H. Kopetz. Real-Time Systems Design Principles for Distributed Embedded Applications.

Kluwer, 2001.

[50] M. Kocvara, M. Stingl. PENBMI User's Guide, Version 2.1, 2006. A free developer version

available at www.penopt.com.

[51] A. B. Kurzhanski, and I. Valyi. Ellipsoidal Calculus for Estimation and Control.

Birkhauser, 1996.

[52] G. Lafferriere, G. J. Pappas, and S. Sastry. Hybrid systems with finite bisimulations. In

Hybrid Systems V. Lecture Notes in Computer Science, v. 1567, pp. 186-203, Springer-

Verlag, 1999.

[53] G. Lafferriere, G. J. Pappas, and S. Sastry. Reachability analysis of hybrid systems using

bisimulations. In Proc. 37th IEEE Conference on Decision and Control, pages 1623-1628,

1998.

172

[54] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability computations for families

of linear vector fields. Journal of Symbolic Computation, 32(3):231-253, 2001.

[55] M. Laurent. Tighter linear and semidefinite relaxations for max-cut based on the Lovasz-

Schrijver Lift-and-Project procedure. SIAM Journal on Optimization, 12(2):345-375, 2002.

[56] J. L6fberg. YALMIP : A Toolbox for Modeling and Optimization in MATLAB. In Proc.

of the CACSD Conference, 2004. URL: http://control.ee.ethz.ch/- joloef/yalmip.php

[57] L. Lovasz, and A. Schrijver. Cones of matrices and set-functions and 0-1 optimization.

SIAM Journal on Optimization, 1(2):166-190, 1991.

[58] J. Lygeros, C. Tomlin, and S. Sastry. Controllers for reachability specifications for hybrid

systems. Automatica, 35(3):349-370, 1999.

[59] A. Makhorin. GLPK (GNU Linear Programming Kit). Available at

http://www.gnu.org/software/glpk/glpk.html.

[60] Z. Manna, and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems: Spec-

ification. Springer-Verlag, 1992.

[61] Z. Manna, and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-

Verlag, 1995.

[62] W. Marrero, E. Clarke, and S. Jha. Model checking for security protocols. In Proc. DI-

MACS Workshop on Design and Formal Verification of Security Protocols, 1997. Prelimi-

nary version appears as Technical Report TR-CMU-CS-97-139, Carnegie Mellon Univer-

sity, May 1997.

[63] A. Megretski. Relaxations of quadratic programs in operator theory and system analysis.

In Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux,

2000). Operator Theory: Advances and Applications, v. 129, pp. 365-392. Birkhauser

-Verlag, 2001.

[64] A. Megretski. Positivity of trigonometric polynomials. In Proc. 42nd IEEE Conference on

Decision and Control, pages 3814-3817, 2003.

173

[65] R. Milner. A theory of type polymorphism in programming. Journal of Computer and

System Sciences, 17(3):48-375, 1978.

[66] A. Mine. Weakly Relational Numerical Abstract Domains. Ph.D. Thesis. 'Ecole Normale

Sup'erieure, December 2004.

[67] I. Mitchell, A. Bayen, and C. Tomlin. Validating a Hamilton-Jacobi approximation to

hybrid system reachable sets. In Hybrid Systems: Computation and Control. Lecture Notes

in Computer Science v. 2034, pp. 418-432, Springer-Verlag, 2001.

[68] S. Mitra. A Verification Framework for Hybrid Systems. Ph.D. Thesis. Massachusetts In-

stitute of Technology, September 2007.

[69] C. S. R. Murthy, and G. Manimaran. Resource Management in Real-Time Systems and

Networks. MIT Press, 2001.

[70] G. Naumovich, L. A. Clarke, and L. J. Osterweil. Verification of communication protocols

using data flow analysis. In Proc. 4-th ACM SIGSOFT Symposium on the Foundation of

Software Engineering, pages 93-105, 1996.

[71] Y.E. Nesterov, H. Wolkowicz, and Y. Ye. Semidefinite programming relaxations of non-

convex quadratic optimization. In Handbook of Semidefinite Programming: Theory, Algo-

rithms, and Applications. Dordrecht, Kluwer Academic Press, pp. 361-419, 2000.

[72] F. Nielson, H. Nielson, and C. Hank. Principles of Program Analysis. Springer, 2004.

[73] P. A. Parrilo. Minimizing polynomial functions. In Algorithmic and Quantitative Real Al-

gebraic Geometry. DIMACS Series in Discrete Mathematics and Theoretical Computer

Science, v. 60, pp. 83-100, American Mathematical Society, 2003.

[74] P. A. Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in

Robustness and Optimization. Ph.D. Thesis, California Institute of Technology, 2000.

[75] D. A. Peled. Software Reliability Methods. Springer-Verlag, 2001.

[76] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

174

[77] S. Prajna. Optimization-Based Methods for Nonlinear and Hybrid Systems Verification.

Ph.D. Thesis, California Institute of Technology, 2005.

[78] S. Prajna, and A. Jadbabaie. Safety verification of hybrid systems using barrier certificates.

In Hybrid Systems: Computation and Control. Lecture Notes in Computer Science, v. 2993,

pp. 477-492, Springer-Verlag, 2004.

[79] S. Prajna, A. Papachristodoulou, P. Seiler, and P. A. Parrilo, SOSTOOLS: Sum of squares

optimization toolbox for MATLAB, 2004. http://www.mit.edu/-parrilo/sostools.

[80] S. Prajna, and A. Rantzer, Convex programs for temporal verification of nonlinear dynam-

ical systems, SIAM Journal on Control and Optimization, 46(3):999-1021, 2007.

[81] M. Roozbehani, IE. Feron, and A. Megretski. Modeling, optimization and computation

for software verification. In Hybrid Systems: Computation and Control. Lecture Notes in

Computer Science, v. 3414, pp. 606-622, Springer-Verlag 2005.

[82] M. Roozbehani, A. Megretski, E. Feron. Safety verification of iterative algorithms over

polynomial vector fields. In Proc. 45th IEEE Conference on Decision and Control, pages

6061-6067, 2006.

[83] M. A. Rotea, and D. Williamson. Optimal realizations of finite wordlength digital filters

and controllers. IEEE Transactions on Circuits and Systems, 42(2):61-72, 1995.

[84] H. D. Sherali, and W. P. Adams. A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems. SIAM Journal on Discrete

Mathematics, 3(3):411-430, 1990.

[85] H. D. Sherali, and W. P. Adams. A hierarchy of relaxations and convex hull characteri-

zations for mixed-integer zero-one programming problems. Discrete Applied Mathematics,

52(1):83-106, 1994.

[86] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over

symmetric cones. Optimization Methods and Software, 11-12:625-653, 1999. URL:

http://sedumi.mcmaster.ca

175

[87] A. M. van Tilborg, and G. M. Koob. Foundations of Real-Time Computing: Scheduling

and Resource Management. Kluwer, 1991.

[88] A. Tiwari. Approximate reachability for linear systems. In Hybrid Systems: Computation

and Control, Lecture Notes in Computer Science, v. 2623, pp. 514-525. Springer Verlag,

2003.

[89] A. Tiwari, and G. Khanna. Series of abstractions for hybrid automata. In Hybrid Sys-

tems: Computation and Control, Lecture Notes in Computer Science, v. 2289, pp. 465-478.

Springer Verlag, 2002.

[90] K. C. Toh, R. H. Tutuncu, and M. J. Todd. SDPT3 - a MAT-

LAB software package for semidefinite-quadratic-linear programming. URL:

http://www.math.nus.edu.sg/-mattohkc/sdpt3.html.

[91] L. Vandenberghe, and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49-95,

1996.

[92] V. A. Yakubovic. S-procedure in nonlinear control theory. Vestnik Leningrad University,

4(1):73-93, 1977. English translation; original Russian publication in Vestnik Leningrad-

skogo Universiteta, Seriya Matematika, pp. 62-77, Leningrad, Russia, 1971.

[93] H. Yazarel, and G. Pappas. Geometric programming relaxations for linear systems reach-

ability. In Proc. American Control Conference, pages 553-559, 2004.

[94] ASTRtE: Static Software Analyzer. http://www.astree.ens.fr/

[95] BLAST: Berkeley Lazy Abstraction Software Verification Tool.

http://mtc.epfl.ch/software-tools/blast/

[96] NuSMV: Symbolic Model Checker. http://nusmv.irst.itc.it/

[97] Real-Time Workshop, MATLAB Toolbox, The Mathworks Inc., Natick, MA.

[98] SPIN: Model Checking Software Tool. http://spinroot.com/spin/whatispin.html

[99] Texas Instruments TMS320C5x User's Guide (Rev. D). Available at

http: //focus.ti.com/general/docs/techdocsabstract.tsp?abstractName=spru05
6d

176

