
An Extensible Web Tool for the Collection,

Sharing, and Annotation of Audio Documents

by

Yang Yang

Submitted. to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Author
Department of Electricaf Engineering and Computer Science

September 2, 2008

Certified by..........................
Dale Joachim

Visiting Professor
Thesis Supervisor

Accepted by..
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

ARCHIVES

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

NOV 13 2008

LIBRARIES

An Extensible Web Tool for the Collection, Sharing, and

Annotation of Audio Documents

by

Yang Yang

Submitted to the Department of Electrical Engineering and Computer Science
on September 2, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

The growth of the World Wide Web has been accompanied by a proliferation of
rich, time-based media such as audio and video documents. However, the ability to
categorize and index these documents has not improved comparably, a limitation for
humans and machines alike to browsing, retrieving, and making sense of them.

Motivated by a need to collect and annote natural sounds, this thesis proposes
a web-based audio annotation system and describes its design and implementation.
Users upload audio using a browser or via cell phone stream, and add timed annota-
tions in the form of comments, tags, or metadata. Plug-ins allow custom scripts to
parse metadata and add functionality to the user interface.

Finally, applications in the fields of environmental monitoring, oral histories, and
music performance and analysis are described. In particular, the flexibility of cell
phones and adaptability of plug-ins makes the system applicable to other disciplines
and is the main contribution of this work.

Thesis Supervisor: Dale Joachim
Title: Visiting Professor

Acknowledgments

This material is based upon work supported by the National Science Foundation under

Grant No. 0634690. Any opinions, findings, and conclusions or recommendations

expressed in this publication are those of the author and do not necessarily reflect

the views of the National Science Foundation.

Contents

1 Introduction 9

1.1 Goal and motivation 10

1.2 Scope and overview 11

2 Background 13

2.1 An overview of web annotation systems 13

2.1.1 Mosaic web browser 13

2.1.2 Com M entor 14

2.1.3 CoN ote . 14

2.1.4 GrAnT 15

2.1.5 Annotea . 15

2.2 Annotation of non-textual media 16

2.2.1 Image annotation 17

2.2.2 AKTive M edia 17

2.2.3 Tagging and folksonomy 18

2.2.4 Folksonomy and "synnotation" 20

3 Design requirements 21

3.1 Interface accessibility 21

3.1.1 Browser deployment 21

3.1.2 Browser and platform independence 21

3.1.3 Real-time collaboration 22

3.2 Annotation features 22

3

3.2.1

3.2.2

3.2.3

3.2.4

3.3 Data

3.3.1

3.3.2

Synchronized annotations .

Tagging

Structured metadata

Extensible metadata types .

organization

Ownership and permissions

Date and Location

4 Implementation

4.1 Overview

4.2 Browsing interface

4.2.1 Filtering by space and time

4.2.2 Filtering by tagging

4.3 Content contribution

4.3.1 Contributing audio.....

4.3.2 Adding annotations

4.3.3 Child annotations......

4.3.4 Annotation types......

4.3.5 Built-in metadata

4.4 System architecture

4.4.1 Metadata plug-ins

4.4.2

4.4.3

Plug-in applications and examples

Server architecture

5 Applications

5.1 The Owl Project

5.1.1 Citizen science

5.1.2 Environmental monitoring with cell phones .

5.1.3 Annotation of owl responses

5.2 Oral histories and storytelling

5.2.1 Transcribing and annotating oral histories .

. 23

..... 23

. 23

. 24

. 25

. 25

. 25

27

. 27

. 29

. 30

.. 30

. 3 1

. 3 1

. 33

. 34

. 35

. 37

. 38

..... 38

. 39

..... 42

46

... ... 46

... ... 47

. 47

. 48

. 49

. 50

5.2.2 Oral histories in the context of natural stories 51

5.3 Music performance and analysis 52

5.3.1 Live performance 52

5.3.2 M usical analysis 52

6 Conclusion 54

6.1 Sum m ary . 54

6.2 Future work 55

6.2.1 Scalability . 55

6.2.2 Extending live streaming 56

6.2.3 Video annotations 56

6.3 Contribution and perspective 57

List of Figures

2-1 Image annotation in AKTive Media. 18

4-1 Screenshot of the Google Maps object and timeline. 28

4-2 Interface for contributing audio via HTTP upload, server download, or

telephone 32

4-3 Example of adding an annotation synchronized to a point in time. .. 34

4-4 Example of a plug-in displaying temperature metadata........ . 40

4-5 Sample cloud generated by a plug-in, with tag frequency represented

by font size. 41

4-6 Overview of system architecture with client, server, and telephone

m odules . 42

4-7 Flow of data in stream-from-file mode. 44

4-8 Flow of data in live streaming mode. 45

Glossary of acronyms and terms

AJAX Asynchronous JavaScript and XML - the name of a group of techniques

used to create interactive web applications, coined by Jesse James Garrett [1].

DOM Document Object Model - an object model specified by the W3C for rep-

resenting and rendering webpages. Many programming languages implement DOM,

including JavaScript, and thus are able to modify webpage layouts dynamically.

ECMA European Computer Manufacturers Association - the non-profit standards

organization that publishes language specifications for ECMAScript, of which JavaScript

is a dialect.

HTTP Hypertext Transfer Protocol - a network protocol used for transmitting

webpage documents over the Web.

JavaScript - a programming language (properly, a dialect of ECMAScript) that is

commonly used for client-side processing and interaction with web applications in a

browser.

MIME Multipurpose Internet Mail Extensions - an Internet standard used to de-

scribe the content type of data transmitted via e-mail and other networked applica-

tions.

NCSA National Center for Supercomputing Applications - a research center at the

University of Illinois at Urbana-Champaign', where Marc Andreessen and Eric Bina

wrote the Mosaic web browser.

RDF Resource Description Framework - a group of specifications published by the

W3C to describe and structure machine-readable metadata.

'Website URL: http://ncsa.uiuc.edu

VoIP Voice over Internet Protocol - a network protocol used for the transmission

of voice audio through the Internet and implementation of digital telephony.

W3C World Wide Web Consortium - an organization, founded in 1994 by World

Wide Web creator Tim Berners-Lee, that creates standards and publishes specifica-

tions for the Web2 .

XMLHttpRequest - a JavaScript object that provides support for asynchronous

HTTP requests, thus allowing a script to communicate with a server without inter-

rupting the user's interaction with a web application.

2Website URL: http://w3.org

Chapter 1

Introduction

Since its humble beginning in 1989 as a pet project of Tim Berners-Lee at CERN', the

web has in recent years exploded in size, diversity, and visibility [2]. People connect

to it to read popular news items, listen to internet radio, and share photographs of

their families and videos of their eccentricities. They buy books, learn about obscure

topics, tell their friends, who in turn tell their other friends. They connect with one

another.

In addition to web traffic, connectivity and bandwidth have also increased, re-

sulting in an increase in the amount and variety of web media to which people are

exposed. Gone are the days when plain-text and HTML documents were average-

sized downloads sprinkled with patience-demanding images; today, time-based media

like audio and video take on those roles, their download times made bearable by the

possibility of streaming, or playing while loading.

Search engines have honed their skill at indexing and searching for text documents

and, to a lesser extent, images. However, audio and video documents are generally

not as well-treated. While a significant body of work has been done in the area

of using speech and language processing techniques to index audio documents [3, 4],

generally the best heuristics of machine processing are comprised of techniques such as

examining a speaker's vocabulary to estimate the content of speech [5]. Additionally,

10Originally the Conseil Europden pour la Recherche Nucldaire, CERN has been renamed the
European Organization for Nuclear Research

these techniques are difficult to apply to audio documents that do not contain speech.

Thus, there is little support for searching general audio and video documents based

on higher-level metadata, and audio and video sharing services are content to make

note of the media's author, title, and perhaps a short description, a depth comparable

to the first few lines of a webpage's HTML code2 . Given this lack of metadata, how

can we make sense of the rich audio and video content now on the web?

Granted, it is much easier for a search engine to index an HTML page than to index

an audio or video document. The latter would require a substantial effort in signal

processing and image recognization. Even if a machine knows what it is listening to

or watching, the task still remains of describing it in a way that is understandable by

humans. These are very difficult tasks, and may remain so for a long time.

1.1 Goal and motivation

The solution, at least in the interim until machines become "smarter," is to enlist

the help of humans in annotating the media. Annotations can be seen as a form of

metadata, or supplementary information that helps describe the primary data, in this

case audio and video. Metadata also provides a way to attach semantics to media, so

that meaning (possibly subjective meaning) that is not inherent to the media can be

interpreted and used by humans and computers alike [6].

Returning to the context of the web, having metadata attached to an audio or

video document increases the ability and likelihood of it being categorized and in-

dexed effectively. The benefit is that these media will then be just as browsable and

retrievable as text documents. Consider the possibilities of browsing a set of musical

pieces by instrumentation, or searching through a set of home videos by the date they

were shot, not the date they were created or uploaded to a website.

The original motivation for this work was to provide a convenient and flexible

way for the Owl Project, to be described in further detail in section 5.1, to collect

2The music service Pandora (http://pandora.com) does seem to be aware of certain musical
properties such as mood or instrumentation. However, this information is used solely as approximate
metrics for recommendation, not categorization or retrieval.

and annotate recordings of natural sounds. Participants in the Owl Project must be

able to make recordings in forests where computer access may not be available. In

additional, the project seeks to involve an online community of bird enthusiasts to

contribute their knowledge in making sense of the collected recordings. As a result, a

number of features in this work were designed with the intent of being leveraged by

the Owl Project.

In this context, recordings of owl vocalizations are treated as audio documents

containing natural stories gathered from the environment, just as other audio docu-

ments may contain stories originating from humans. Examples of the latter include

oral histories and musical performances. However, the contribution of this work is

not limited to its existing applications, but rather the flexible and extensible way

in which users collect, annotate, and explore audio documents. As will be seen in

chapter 5, the generality with which the collection and annotation of various kinds of

stories are performed makes this work applicable to many disciplines.

1.2 Scope and overview

In order to address these shortcomings, the objective of this thesis is to design and

build a web-based shared annotation system for audio documents. Note that this

objective explicitly does not attempt to deal with video documents. The rational

for this decision is twofold. Due to the fact that video almost always implies an

audio track, audio annotation can be considered a stripped-down version of video

annotation, for the sake of tackling a simpler problem first. Furthermore, many of

the considerations and insight related to building a system for audio can be directly

applied to the video counterpart. In the context of the web, it is their time-based

nature and opaqueness to machine interpreters that are key, after all.

The remainder of this thesis is organized as follows:

* Chapter 2 is a brief survey of annotations systems, noting their advantages and

the aspects that need to change in order to accommodate audio annotations.

* Chapter 3 integrates the findings of the background survey and provides a set

of design requirements for the annotation system.

* Chapter 4 describes Krik Krak, a prototype system that addresses the previously

stated design requirements.

* Chapter 5 explores a number of possible applications for an audio annotation

system, emphasizing aspects of the design that may be especially suitable to

the area of the application.

* Chapter 6 concludes the thesis with a summary, an evaluation of the system for

future work, and a brief perspective on the project as a whole.

Chapter 2

Background

2.1 An overview of web annotation systems

Before examining the task of annotating time-based media, this section will first

navigate a brief history of general annotation systems. The concept of a knowledge-

sharing "memex" in which users could collaboratively build "trails" of ideas linked to

documents was famously envisioned by Vannevar Bush in 1945 [7]. It was the World

Wide Web that supplied the networking capacity to implement Bush's concept. Due

to the bandwidth available during the early days of the Web, it was text documents

and images that first started being annotated.

2.1.1 Mosaic web browser

Web-based annotation systems have existed since 1993, when Andreessen and Bina

wrote Mosaic, the browser that popularized the World Wide Web [8, 9]. Developed

at the National Center for Supercomputing Applications (NCSA), the initial version

of Mosaic was designed with asynchronous collaboration functionality in mind, in

the form of the Mosaic group annotations [10]. This approach consisted of attaching

text and voice annotations to documents located on the web, and included an access

control scheme that allowed for private, group, or public annotations.

Mosaic's default implementation provided only one centralized annotation server,

which did not allow users to customize the view to the annotations or filter them

based on search queries. The annotations interface, being integrated into the Mosaic

client, was not available to users of other web browsers, and as such its usage ceased

by the time NCSA discontinued development and support for the browser in 1997.

2.1.2 ComMentor

Shortly after the release of Mosaic, R6scheisen et al. [11] leveraged the work done by

NCSA to build the ComMentor system at Stanford University in 1994. The Com-

Mentor system was built on NCSA's HTTP server and Mosaic browser as an imple-

mentation of a general architecture for shared "meta-information" on the web. While

the architecture is designed to be browser-agnostic, it does involve the transferring

of non-standard meta-information to the browser and relies on the browser's ability

to recognize the meta-information; the ComMentor implementation uses a custom

MIME type to transport meta-information and requires augmenting the basic Mosaic

browser to handle it.

Nevertheless, ComMentor introduced a useful concept that improves on Mosaic's

built-in model of group annotations. Rather than merely attaching annotations to

the document in question, ComMentor users are able to place annotations at any

position in the document. Furthermore, these positions may be shared between users

as "landmark" reference positions. As a result, this model represents each document

not as an indivisible quantity but a continuum, a metaphor well-suited for time-based

documents.

2.1.3 CoNote

The CoNote annotation system, developed in 1995 by Davis and Huttenlocher [12]

at Cornell University, provides a similar mechanism for the placement of annotations

at specific points of a document, with the restriction that the allowable points must

be chosen ahead of time by the document's author or submitter. In contrast to

the browser-centric implementations of Mosaic and ComMentor, however, CoNote's

architecture involves inserting the annotations directly into the HTML stream. This

approach is supported by all web browsers, thus decoupling the interface from the

browser.

2.1.4 GrAnT

It was the Open Software Foundation's Group Annotation Transducer ("GrAnT"),

however, that addressed many of the limitations of Mosaic, ComMentor, and CoNote

[13]. Developed by Schickler et al. in 1996, GrAnT synthesizes the advantages

of many of these approaches while introducing a number of distinguishing features.

As with the CoNote system, GrAnT provides a browser-independent interface by

merging annotations into the document stream and avoiding the need for special

browser support.

Moreover, annotations in GrAnT are attachable not only to the document as

a whole or arbitrary points in the document, but also specific selections of text.

The ability to annotate sections of the document builds upon the metaphor of the

document as a continuous stream that can be arbitrarily segmented.

GrAnT also introduces the model of annotation sets, in which each annotation

is associated with an annotation set, and each set resides on an annotation server.

Administrators are expected to define sets to represent topics, and annotators are

expected to add annotations to the relevant set, though neither practice is required

by design. In conjunction with annotation sets, GrAnT allows users to query for

annotations according to inclusion or exclusion from a particular set, thus providing

a basic mechanism by which users can create filtered views of annotations.

2.1.5 Annotea

As a step toward building a Semantic Web [15], the more modern Annotea system

was created in 2001 by Kahan et al. at the W3C [14]. The aim of Annotea was

to leverage the Resource Description Framework (RDF) infrastructure in order to

formalize the information stored in annotations. Annotations themselves are typed,

allowing users to classify the annotations as well as the documents.

Annotea uses RDF schema to describe annotation types, and moreover users may

create custom annotation types according to the RDF specification. Thus, a typed

annotation is treated not merely as text; it may be classified, for example, as a

typographical correction, an editorial response, or even a more specialized statement

about a poem's rhyme scheme.

In addition to classification, the semantic-richness of annotations are useful for

customizing client-side views of annotations. The client prototype of Annotea, built

on the W3C test-bed browser Amayal, is equipped with a filter that allows users to

show or hide annotations based on the author, type, or server location. The client

also allows users to hide annotations manually, providing a flexible way to show only

annotations relevant to the user.

While so far only a handful of shared web annotation systems have been considered

out of the many that exist [16], it is sufficient to note the advantages and drawbacks

of each in order to draw a better picture of what can make an annotation system

effective and helpful.

Generally speaking, the flexibility of being able to annotate certain points or long

passages in a document is important, and even more so when dealing with time-based

media such as audio. In shared web annotation it is moreover crucial for a user to be

able to filter out non-relevant annotations and show only those of interest. And in

particular the requirement of Annotea that annotations be typed appears to increase

the semantic value of annotating.

2.2 Annotation of non-textual media

So far text documents have been the focus of shared web annotation. While most of

the insights pertinent to the annotation of text can be applied directly to the anno-

1Website URL: http://w3.org/Amaya

tation of non-textual media, the latter does require some additional consideration.

2.2.1 Image annotation

The group annotations system built into NCSA's Mosaic browser in fact allowed

both text documents and images to be annotated. Of course, there was no feature for

positioning annotations within the target document, as users could only attach them

to the document as a whole. Even as later annotation systems such as ComMentor

and CoNote added this feature by treating the document as a continuum, either

support for image annotation was nonexistent altogether or images continued to be

treated as single units.

However, it is clear that an image exists as a spatial continuum, and that for

an image annotation system to be on par with the more mature text annotation

systems, spatial posititoning at a more granular level must be possible. Consider, for

example, the task of using annotations to label an image that is a geographical map;

certainly attaching the visible cities to the image as a whole is not nearly as useful

as pinpointing their location on the map.

2.2.2 AKTive Media

As an effort to expand the task of annotation beyond text, in 2006 the AKTive

Media tool was built by Chakravarthy et al. at the University of Sheffield to support

annotation of cross-media documents [17]. In this case, HTML pages containing both

text and images may be annotated. In the image annotation modality, AKTive Media

users identify a portion of the image by dragging a rectangular area using the mouse.

A minor drawback of this user interface is that only rectangular and elliptical areas

may be selected, not points, lines, or other more complex shapes.

In conjunction with allowing annotations on parts of images, AKTive Media allows

its annotations to be either highly structured and typed, as with the RDF-defined

annotations of Annotea, or informal as with the free text method of earlier systems.

Information in structured form, including resource metadata such as document author

Ewe Annoain me Fa
Poniu~ti u~ o)Es -11e sew5 wach We wsearchjjoSlrortaut

ll m m

Z4 hasOperationOutput

1 hasOperationlnput

NASA astrounaut

Dispaying Phototuff type capabiI
Ites for annotating multimedia co
ntent

Annolations of different shapes n
ow possible. Look at the

n LgI K
Figure 2-1: Image annotation in AKTive Media. @2005 Ajay Chakravarthy.

or creation time, can be treated as an instance of typed annotations. On the other

hand, the free text mode may be used to store comments about the document, as

basic text annotations have previously been used.

The authors of AKTive Media submit, however, that free text annotations may

also be used to implement folksonomies. As will be explored in the following section,

folksonomies are closely related to the use of non-hierarchical keywords, called "tags,"

a practice which is largely exclusive of longer, full-sentence comments.

2.2.3 Tagging and folksonomy

The term folksonomy was likely coined in 2004 by information architect Thomas

Vander Wal as a reference to the social phenomenon that occurs when many people

collaboratively use tags to classify documents [18]. Generally, folksonomies exist as

a large collection of taggable resources, equipped with navigation mechanisms that

display, for example, the most commonly used tags. The social bookmarking web-

AK liv Medi Vorin 1,

: - : ' :

1
I I I I-- --

sites Delicious2 (formerly "del.icio.us") and Furl3 are salient examples of folksonomic

systems where users submit and tag content, in this case bookmarked URLs.

Flickr

Tagging also plays a central role in Flickr4 , a photograph sharing service and reposi-

tory. In addition, photographs on Flickr can be annotated with author descriptions,

commented upon by other users (at both the whole-image and mouse-selected sub-

image granularities), and organized into groups of photographs called "sets." As

photographs can belong to more than one set, in reality set membership is a form of

categorical metadata which is a more specialized instance of tagging, with the cursory

distinction that in practice sets tend to be organized by theme rather than keyword.

There are a number of drawbacks to a classification system that relies purely on

tagging, generally stemming from the lack of a controlled vocabulary [19]. As users

are free to submit whichever tags they choose, they may use different tags to mean the

same thing, or the same tags to mean different things. Synonyms such as "sea" and

"ocean" or plurals such as "tree" and "trees" are often interchangeable, and a naive

attempt to include all foreseeable variations leads to over-tagging. Conversely, tags

that denote different things, either through vagueness or having multiple meanings,

can incorrectly conflate disparate ideas.

While there is debate over whether folksonomy, even with a controlled vocabulary,

is superior to hierarchical taxonomy in many situations [20, 21], it is clear that the

former offers valuable flexibility and ease of adaptability in areas where a rigid hier-

archy is insufficient. Furthermore, the low barrier to entry for individuals untrained

in classification and the social aspect inherent in sharing documents and tags gives

many users the opportunity and incentive to contribute. As a result, folksonomies

that include some sort of social networking aspect, such as Flickr, are able to leverage

the significant power of a large group of people.

2Website URL: http://delicious.com
3Website URL: http://furl.net
4Website URL: http://flickr.com

2.2.4 Folksonomy and "synnotation"

The term "Synnotations" was introduced in 2008 by Wald et al. [22] at the Univer-

sity of Southampton to describe folksonomic annotations that are synchronized to

time-based media, that is, annotations that are given a temporal position within an

audio or video stream. Much as sub-image annotations in AKTive Media or Flickr

provide a significant degree of control over location in an image's spatial continuum,

synchronized annotations allow for the same precision of location in a time-based con-

tinuum. A couple applications of synnotations include providing a table of contents

accompanying a long recording or subtitles for individuals with a hearing impairment.

At the time of writing, an implementation to be called Synote is under develop-

ment, with the goal of combining existing speech recognition software, which outputs

synchronized text captions, with the ability for users to add annotations by inputting

their own tags and comments. Thus Synote is essentially an audio annotation tool

equipped with speech recognition software playing the role of a first-pass machine

annotator.

In this chapter, a number of historical and landmark shared web annotation systems,

primarily dealing with text annotations, were discussed. An emphasis was placed

on features that would be useful and drawbacks to be addressed when building a

web-based audio annotation system.

A few non-web-based systems geared toward non-text annotations were also ex-

plored, as well as the general concept of folksonomy, a relatively new mode of an-

notation that relies on the power of tagging and social collaboration. With this

background material it is now possible to formulate the criteria for the design of a

web-based audio annotation tool.

Chapter 3

Design requirements

In this chapter the design requirements for a web-based audio annotation tool are

described. A few basic conditions on the usability of the interface are stated first,

followed by the actual features of annotation tool and the implications thereof on the

organization of data.

3.1 Interface accessibility

3.1.1 Browser deployment

In order to minimize barriers to entry and encourage user involvement, the annotation

application should be deployed within a web browser. This means that the possibly

lengthy process of downloading and installing a desktop application is avoided. Conse-

quently, deployment on multiple machines does not necessitate multiple installations;

as a web service, the annotation tool can be used from any computer.

3.1.2 Browser and platform independence

The annotation interface should be accessible to any web browser, so that it is avail-

able to as wide a population of users as possible. Likewise, dependence on custom

browser modifications, as with ComMentor and Annotea, or non-standard browser

extensions is also to be avoided.

Thus, only an internet connection should be strictly necessary for access to the

annotation system. This appears to be reasonable given the ubiquity of internet

access in industrialized countries and, arguably, the United Nations' current push

toward universal internet access [24].

As an added benefit, this design requirement implies that the annotation tool

will be accessible to future web browsers as well (as long as the basic client-side

web application technologies such as HTML and CSS remain, of course) - contrast

this with the Mosaic group annotations system, which necessarily ended when NCSA

ceased support for the Mosaic browser.

3.1.3 Real-time collaboration

In addition to being accessible to users of a wide range of browsers and platforms,

the annotation system should be usable by groups of individuals, who wish to submit

and annotate shared audio resources simultaneously. This requirement allows multiple

users to collaborate in real-time.

Collaboration should be free to occur either between annotators adding responses

to each other, or even between annotators and submitters of audio content. In the

latter case, imagine an interview being conducted and uploaded to the annotation

server in real-time, with listeners immediately commenting and possibly steering the

course of the conversation.

3.2 Annotation features

The general aim of the following requirements is to make annotations expressive and

semantic-rich while preserving the flexibility of allowing users to input informal free

text.

3.2.1 Synchronized annotations

It should be possible for users to attach an annotation to a particular temporal posi-

tion in an audio document. As described in section 2.2.4, synchronized annotations

allow users to annotate time-based media with a high level of precision. In particular,

the system should support annotations at a single point in time, over a duration of

time, or on the document as a whole.

3.2.2 Tagging

The annotation system should support categorization by tagging. As discussed exten-

sively in section 2.2.3, tagging can be used to implement folksonomies, a form of social

collaboration that categorizes data non-hierarchically. The possibility of tagging is

already inherent in any text annotation system, as tags are just short annotations.

The system should also be able to distinguish tags from other annotations, and pro-

vide aggregation mechanisms such as viewing the most popular tags or the frequency

of two related tags being used together.

3.2.3 Structured metadata

Annotations have generally been used in previous web annotation systems to add

remarks to an existing document (refer to section 2.1). Even the design of the Annotea

system, which supports typed annotations, treats them as an instance of metadata.

Thus the type of an annotation may classify it as commentary or errata, but typically

not a machine-parsable statement about the author or creation time of a document,

for example.

In this system, annotations should be flexible enough to allow the inputting of

both structured metadata and informal text; that is, structured metadata is merely a

type of annotation. The system should be able to parse the metadata where relevant

and ignore the rest, much as a compiler would ignore documentary comments in a

piece of code.

A consequence of this design is that the annotation system may not be able to

perform as many validation checks on the user-submitted metadata. For instance, a

document may semantically have multiple authors but not multiple creation times.

Because the metadata for creation time is now a generic annotation, however, both

cases would be acceptable. The design places this responsibility in the hands of the

user or users annotating the document.

3.2.4 Extensible metadata types

The Annotea system requires that annotations be typed, and allows users to define

their own types [14]. The restriction on this is that the semantics of all annotation

types must be described by an accompanying RDF schema, much as an XML schema

is used to describe the allowable structure of an XML document.

Unfortunately, Annotea's requirement places a significant burden upon the user

who is defining a custom annotation type, especially if the user happens not to be

familiar with RDF schemata. This design therefore eschews the schema requirement

in favor of a more flexible framework for specifying metadata types.

As with Annotea, metadata types should be extensible, but the system should not

require the user to provide any description of custom types. Instead, the semantics

of new metadata types is interpreted by plug-ins to the web application, which try to

parse the metadata and may modify the behavior of the user interface accordingly.

If no plug-in recognizes the metadata type, the system falls back silently and ignores

the annotation. The following example will illustrate this design:

Suppose that a user adds a custom metadata type to describe the musical genre

of an audio document if applicable, and annotates a number of music files using this

method. Without any plug-ins that recognize this metadata type, system treats these

annotations the same way it treats informal text annotations containing the string

"Classical" - by displaying the text. One plug-in might filter the annotations by

displaying only files marked as Baroque or Classical, while another plug-in might at

the same time suggest possible composer names.

Thus, this system is somewhat analogous to the concept of dynamic typing in

programming languages. It is not necessary to define explicitly how a type is im-

plemented before instantiating data of that type. Rather, it is up to the system to

determine at run-time whether the data is usable or not. Similarly, it is the user's

responsibility to make sure that this flexibility does not result in metadata being mis-

interpreted. The hypothetical genre annotator may need to be careful with a plug-in

for labeling readings of Classical literature.

3.3 Data organization

In addition to the use of tags for categorization purposes, machine-interpretable meta-

data presents many possibilities for indexing audio files for retrieval or organizing

them for browsing and exploring. A few of these properties, to be described in the

following sections, are essential and universal enough to be included in the annotation

system as built-in features.

3.3.1 Ownership and permissions

The annotation system should support a framework for users to register for accounts

and to submit audio. All such audio will be owned by the user who submitted it,

and will by default not be visible to other users browsing the system. However, it

should be possible for the owner of an audio file to share it via structured metadata

with other users or groups of users - including the universal group of all users. Thus,

annotations with this metadata type serve as a basic system of access control lists.

3.3.2 Date and Location

Nearly all audio documents have a meaningful date' of creation. A significant portion

of them (certainly those which are real-life recordings) also have a meaningful location

of creation. Given this, the annotation system should support structured metadata

types which describes the audio's date and location of origin.

1Note: here the term "date" may be arbitrarily precise here; it is not limited to the granularity
of calendar dates.

Date and location may well be so meaningful because the properties of time and

space are so universal and naturally understood. Calendars and maps, of course, in

some form have been ubiquitous representations of time and space, respectively, long

before the popularization of computers. The usefulness of date and location as both

an indices for retrieval and continuums for browsing should not be underestimated.

Thus, in addition to having metadata types that represent these dimensions, the

annotation tool should also provide interfaces to navigate through time and space.

The design requirements for a web-based annotation system were detailed in this

chapter, with an emphasis on maximizing the browser accessibility of the web inter-

face as well as the expressiveness and flexibility of the annotations tool itself. The

description of the actual design and implementation of the system architecture fol-

lows.

Chapter 4

Implementation

Krik Krak' is an implementation of a web-based audio annotation tool which was

developed to satisfy the design requirements detailed in chapter 3. The goal was

to provide a web application with a rich interface through which communities of

individuals and groups could share and annotate audio documents.

The following section provides an overview of the system and briefly outlines how

Krik Krak fulfills the previously given design requirements. The remaining sections

of this chapter describe each of the components of the system in detail.

4.1 Overview

Krik Krak is a rich web application developed in the "Web 2.0" paradigm. That is, it

was designed to facilitate social participation, and implemented with web technologies

such as AJAX to provide a rich user interface [26, 27].

The client-side interface consists of an HTML document that uses a combination of

cascading stylesheets (CSS) and JavaScript to interact with the layout of the webpage

in response to the user's actions. The JavaScript code uses the document object model

(DOM) to affect the appearance of the page dynamically. These web technologies are

1The name "Krik Krak" is borrowed from the Haitian storyteller's custom of starting a story by
asking the audience "Krik?" The audience responds with "Krak!" to acknowledge the beginning of
the story [25].

specified by web standards2 , and while not all browsers implement them consistently,

they are widely-supported on the web.

In addition, the JavaScript-based XMLHttpRequest object, an embedded Java

applet, and an embedded Flash object provide methods by which the application can

communicate with the web server. The ability to send and receive data allows the

interface to update itself when new audio documents or annotations are submitted

by other users, thereby facilitating real-time collaboration.

Jun V08ii iiiiiii ii i ii i ii iil
S
:
i ! !!iiii: i !:!i !: r ~!i~i! i~ i !IIIII?!F ! !C

:
!i '.

Jul D08

Figure 4-1: Screenshot of the Google Maps object and timeline.

The user interface itself consists of a Google Maps3 object and a timeline, with

which the user can filter and browse audio documents by location and time, respec-
2The World Wide Web Consortium (W3C) at http://w3.org provides specifications for HTML,

CSS, and DOM.
JavaScript is a dialect of ECMAScript, which is specified by ECMA [28].

3Website URL: http://maps.google.com

(W

tively. The timeline, like the map, can be scrolled and zoomed to change the visible

range of time. Audio documents in the current location and time view are marked on

both the map and timeline, and displayed in a list. The user can select a particular

document to retrieve its annotations, play the audio from any point in time, and add

annotations to the document as a whole or synchronized to a specific part.

Annotations are presented to the user in the form of text fields. The text rep-

resentation of structured metadata contains a prefix identifying the metadata type

surrounded by colons (:). On the other hand, annotations without a prefix are ei-

ther tags or comments. An annotation that contains a space is treated as a comment.

Otherwise, it is treated as a tag, and must use an underscore (_) instead of a space

if there are multiple words. This system of encoding annotations as either metadata,

tags, or comments allows everything to be displayed and edited as plain text, and

differentiates between the three formats using simple and intuitive criteria.

The implentation details will be discussed in further depth in the following sec-

tions.

4.2 Browsing interface

When a user browses the audio repository, the list of documents visible to and se-

lectable by the user for inspection is determined by the current view. Conceptually,

a view is essentially a variable number of filters, or boolean-valued functions, which

determine whether a particular audio document is visible and filter out those that

aren't. If the document satisfies the conditions of all active filters, it is marked on

both the map and timeline, and present on the list of visible documents.

There is always at least one implicit filter in effect when browsing: the current

user's permission to access a document. This filter prevents the user from seeing any

document owned by another user which the latter has not shared, or which does not

contain the browsing user on its access control list (see section 3.3.1 for specifics about

using metadata to define access control lists).

4.2.1 Filtering by space and time

In addition, the map and timeline controls impose view filters on the user's browsing

by hiding all audio documents that are not within the window of visibility. Specifically,

the map imposes maximum and minimum values on the latitude and longitude of a

document's geolocation. These four filters also allow documents with no geolocation

to be shown; the map provides a checkbox with which the user can include a filter

that rejects un-located documents.

Likewise, the timeline imposes two view filters that determine whether any part of

an audio document's duration lies between the minimum and maximum values of the

timeline. The filter rejects audio that exists completely before the timeline's visible

range (i.e. the document's ending time precedes the minimum time) or completely

after the range (i.e. the maximum time precedes the document's starting time).

Thus, the view filtering performed by the map and timeline, combined with their

controls that allow the user to scroll around or zoom in and out, provide an intuitive

interface by which the user can narrow down the list of visible documents or explore

documents according to temporal or spatial proximity.

4.2.2 Filtering by tagging

While the map and timeline windows provide a loosely hierarchical way for the user

to retrieve audio documents, tagging allows users to filter the view non-hierarchically.

The interface features a form with which the user to define a list of tag filters, where

each tag corresponds to a filter that accepts only documents with that tag. The list

of tags defines a view where the visible documents contain all the tags on the list.

The more tags the user adds to the list, the more specific the view.

As a convenience, every instance where a tag is displayed in the interface - in

the list of annotations attached to a document, for example - is mouse-clickable and

responds by toggling that tag's presence in the tag filter; it is added if not already

present, and removed if otherwise. This allows the user to modify the browsing

parameters with ease.

So far this section has described a number of built-in filters that narrow down the

set of visible documents based on user ownership, spatial and temporal position, and

tagging. Every time the user changes the view by modifying the list of active filters,

an XMLHttpRequest is made to the server to retrieve the new visible set. Note,

however, that the number of filters is not limited to the few provided here; plug-ins

which parse and interpret structured metadata, to be discussed in more detail later,

can also add their own filters with more complex acceptance tests.

4.3 Content contribution

The Krik Krak application is designed so that the user can easily contribute content

to the repository. A number of interfaces allow the user to submit audio documents

to the system, while annotations can be directly added or deleted via the AJAX

webpage.

4.3.1 Contributing audio

There are three different interfaces by which audio can be submitted to the repository

of audio documents. Uploading an audio file is the first method and the one that is

most straight-forward to use. Above the list of visible audio documents is a file upload

form, similar to that by which webmail clients upload attachments.

Contributing audio via network access

After the user selects a file from the client machine, Krik Krak calls the JavaScript and

Flash library SWFUpload 4 to make an HTTP POST request to the server machine.

Flash is used here for the reason that the asynchronous XMLHttpRequest object is

not allowed to attach files; an alternate method of uploading is necessary in order to

avoid reloading the client page. Once the file has been uploaded to the server, the

4Available at http://swfupload.org under the MIT License.

Figure 4-2: Interface for contributing audio via HTTP upload, server download, or

telephone.

user only needs to browse for the audio document with the newest creation date and

no geolocation.

A similar route for submitting audio to the repository involves downloading the

file from another web server instead of uploading it via the client's browser. In this

method, a text field next to the upload form is used to tell the server a third-party

URL pointing to the file in question. The file transfer is then performed by a server-

side script that downloads it directly from the third-party web server. While the

result is nearly the same, the method is better suited to larger files as the restrictions

on the HTTP POST request, such as file size, no longer apply.

In both of these cases, the submitted audio document is automatically annotated

with a creation date equal to the time of upload, and a null geolocation to indicate

that it has not been placed on the map.

Contributing audio via telephone

The third way by which audio can be added to the repository is more involved and

geared toward streaming live recordings to the server. In order for this feature to be

accessible to a large population of users, the audio is streamed to the server via tele-

phone. Rather than requiring an audio streaming server, to which users typically do

Upload media

... or specify a RL:
example.com/recording.wav

... or schedule a call:
Time: +12 hours e.g. now

Phone: 1234567890 +1 hour 30 m
(ubmit Qery 1 2/24/08 11: 6p

not have access, the phone abstraction allows the use of many technologies, including

landline and mobile cellular phones, and computers that can make VoIP calls.

To stream audio to the server via a phone, either the phone must call the server to

initiate a transfer, or vice versa. For the latter case, the Krik Krak interface contains

a form for scheduling phone calls; the user submits a phone number for the server to

call and a time at which to call. As the audio is transmitted, an audio document is

added to the repository at the start of the call, and lengthened in real-time (during

which it can be played back or annotated) until the call terminates.

While the phone interface has been designed with the goals of convenience and

ease of use, the server architecture underlying the streaming functionality is somewhat

more complex, and will be discussed later, in section 4.4.

Scheduled phone calls

When the user schedules the phone server to call a particular phone number, the call

does not necessary occur immediately. Instead, the user has the option to specify a

later date and time at which the call will be made. Functionally, the phone server

merely behaves as if the web interface had waited for the appropriate duration of time

before submitting, during which the user may have left the computer.

The ability to schedule phone calls ahead of time may be useful for a number of

purposes. A user who carries a personal cell phone will not find much benefit in a

server that can only schedule immediate calls; the cell phone is essentially tethered

to the computer from which the call is scheduled, thus defeating the purpose of a

mobile device. Even if this were not the case, scheduling non-immediate calls may be

convenient if the call time were late at night, for example. This is often relevant to

the area of environmental monitoring, which will be discussed in section 5.1.

4.3.2 Adding annotations

Once audio documents have been entered into the repository, users can browse them

via the web application interface and add annotations. This section describes the

generic text input method for the three kinds of annotations, how they differ in

format, and some applications of structured metadata.

When the user selects an audio document from the list of visible documents, the

annotations associated with it are displayed alongside it, each with a button to delete

it. A text input field allows the user to add new annotations associated with the

entire document. For synchronized annotation, the user clicks a temporal position

on the timeline to create an instantaneous annotation, or clicks and drags to select

a duration. Upon releasing the mouse, a similar input field appears for the user to

type in and submit text. In all three cases, the JavaScript XMLHttpRequest object

is used to inform the server asynchronously so that the user can continue to use the

web interface.

V *I

+

'Circa 4pm: beginning of I

Figure 4-3: Example of adding an annotation synchronized to a point in time.

4.3.3 Child annotations

Additionally, annotations can be attached not only to audio documents, but to other

annotations as well. When a user creates an annotation, a parent annotation may be

specified, making the new annotation a child of the parent. If no parent is specified,

the new annotation is merely a child of the audio document. Once an annotation has

been created, it has no child annotations by default, until the user in turn attaches

additional child annotations to it.

This mechanism essentially allows the user to create annotations of annotations.

So far, it has been possible to annotate audio documents as a whole or in part. Child

annotations allow the user to do the same for existing annotations. One use of child

annotations is to facilitate adding supplementary information about but not directly

related to an annotation - for example, a statement of whether a particular annotation

was created by a human or a machine process, or about its confidence level.

The design of child annotations also allows the user to create a group of an-

notations in a hierarchical tree structure; the terminology of "parent" and "child"

annotations was chosen to reflect this structure. A commentator on a speech may

choose to denote large sections based on topic using parent-less annotations, and

attach more specific remarks to each section using child annotations. Alternately,

multiple commentators may use child annotations to respond to one another, as in a

discussion forum. Moreover, if the discussion does not branch, particularly if only two

users participate, it can be thought of as a conversation thread, and the associated

data structure is the linked list.

It is important to note that, despite being attached to another annotation, a child

annotation is ultimately still about the audio document. This relation is evident when

one traces a child annotation's parent (and possibly ancestor) annotations back to

the audio to which it is rooted.

4.3.4 Annotation types

Every annotation has a text representation, which is the format that is used when

annotations are created via a text input field on the web application. Despite sharing

a text interface, annotations can be categorized into comments, tags, and structured

metadata (with the latter allowing for even more specific categorization). The anno-

tation system uses the format of an annotation's text representation to decide which

type it is and how to treat it.

Comments are the most straight-forward type of annotation, as they take the form

of a phrase, sentence, or paragraph that users typically write when making remarks

about a document. The annotation system assumes that comments contain multiple

words separated by spaces, and uses the presence of the space character to decide

whether an annotation is a comment or not. To exclude metadata annotations which

contain spaces, a comment also cannot begin with a colon. This requirement should

not be significantly limiting, however, as sentences do not begin with colons. The web

interface displays comments in paragraph form below the document being annotated,

and does not perform any additional processing.

In contrast to comments, tags are typically single-word keywords or indices used

for categorization purposes rather than rhetorical description. Therefore, the anno-

tation system interprets annotations with no spaces (and, again, not beginning with

a colon) as tags. Rare tags consisting of multiple words can use underscores in place

of spaces, as in alto_sax, in order to differentiate from comments. As described in

section 4.2.2, the web interface makes tags clickable, and upon being clicked they are

added or removed from the active view filter as appropriate.

Finally, metadata allows users to create annotations in structured formats that

allow for plug-ins to parse and interpret them. The text representation of such an

annotation consists of two parts: the name of the metadata type and the data's text

representation. Typically, the type name is itself a tag that categorizes what kind of

metadata it describes. The type name is delimited by colons, and therefore cannot

contain any colons.

The text representation is then appended to the delimited type name, forming

the entire annotation's text representation. For example, an annotation with the text

representation :temp:78F has a type name of temp and its data part is 78F, which

may be interpreted by a suitable metadata plug-in to mean that the temperature was

78 'F when the document in question was recorded.

While comments, tags, and metadata perform different roles in the annotation of

an audio document, they are alike in that they all have text representations and share

the same text field input method on the Krik Krak web interface. The primary ob-

jectives of the text format requirements that differentiate the three were intuitiveness

and readability.

In the case of comments and tags, the user can write a few sentences in response

to a document or add a few tags to label, and the annotation system will recognize

the user's intention and treat the annotations accordingly. The user may even see

the metadata annotation :temp: 78F and decide to change it to :temp: 91F without

needing to know how a particular metadata plug-in uses that annotation. As a result

the annotation framework and the user are both able to recognize and work with the

different types of annotations.

4.3.5 Built-in metadata

A few of the structured metadata types are important enough to the usage of the

annotation system that the web interface provides built-in mechanisms to parse and

interpret them.

As previously discussed in section 4.2.1, the browsing interface interprets the lo-

cation and date metadata types and provides view filters using windows for latitude,

longitude, and date. Since location and date are such essential indices for the brows-

ing and retrieval of audio documents, the interface additionally prevents the user from

deleting them or creating multiple instances of them with conflicting values.

Although newly submitted audio documents are automatically annotated with the

current creation date, the system has no way of reliably determining their location.

Users are encouraged to enter in the most meaningful location metadata for the benefit

of organization - even the location of the client computer from which the document

was uploaded can be a helpful browsing index. The user can set the document's

location by dragging its Google Maps marker (an upside-down teardrop) from its

initial position off the map to a point on the map. This drag-and-drop interface also

allows the user to edit the location metadata later.

On the other hand, the web application offers no drag-and-drop interface for the

user to change the date of an audio document. The user can instead click on the date

field to edit it in place. The date field can accept a number of textual date representa-

tions as specified by the GNU date input formats5 , such as Aug 8 2008 8:08:08pm,

last Monday, and 2 hours ago.

Of course, machine interpretation of metadata is not limited to these built-in

examples. The annotation system allows users to contribute their own JavaScript

plug-ins, which can create view filters or provide more human-friendly ways to display

and edit structured metadata. The plug-in framework will be explored in the following
5 See http://gnu.org/software/tar/manual/html-node/Date-input-formats.html

section.

4.4 System architecture

While the previous sections in this chapter have focused primarily on the client-side

web interface to a fairly simple backend, there are some less visible components of the

annotation system whose complex architecture is worth describing. This section first

discusses the metadata plug-in framework, which gives users the ability to extend

the built-in system and provide custom interpretations of structured metadata. In

addition, the main components of the server architecture will be explored.

4.4.1 Metadata plug-ins

The built-in abilities of the annotation system to parse and interpret structured meta-

data allow the user to perform basic filtering based on location, time, and tagging.

The map and timeline provide intuitive interfaces to visualize an audio document's

position in space. The plug-in framework lets the user customize how the web ap-

plication responds to certain metadata types by registering a collection of JavaScript

functions that are called when certain metadata annotations are displayed.

A plug-in is essentially a JavaScript handler for one or more events that are fired

by the application when the user performs certain actions. Specifically, the handler is

initialized when it is registered to the application; it is later notified by the application

after the list of visible documents is updated, after the user selects a document to in-

spect its annotations, and after the user deselects a document. Additional arguments

are passed to the handler where appropriate: view change events are accompanied by

the list of documents, selection events are accompanied by the document and its list

of annotations, and deselection events are accompanied only by the document.

Once a plug-in contributer has prepared a JavaScript file containing the handler,

inserting the plug-in to the annotation interface is as simple as providing the file's

location on the web via a text form. Once the webpage is reloaded, the provided

JavaScript will be incorporated into the page and its handler will be called at the

appropriate time. In its current state, Krik Krak does not keep track of loaded

plug-ins when the user exits the page, and so the user must repeat this procedure

after starting a new browsing session. A future implementation may allow the user

to specify a preference for certain plug-ins to be loaded whenever that user starts

browsing.

View filtering

Although the plug-in API is quite sparse, the JavaScript handler can alter any data

structure or DOM object it needs in order to modify the behavior of the web inter-

face. Typically, the view change handler performs additional filtering on the list of

visible documents. Every time the view is modified, the new view parameters are

asynchronously sent to the server, which applies the built-in filters and replies with

the new document list.

When the new list is in turn passed to the handler, the handler can iterate through

it, parse the annotations whose type it recognizes, and reject documents by removing

them from the list. Thus, the handler adds its own view filter which is implemented

on the client-side. Taking the previous example of the :temp: metadata type, a

temperature-aware plug-in might register a handler that removes documents with

metadata indicating a temperature lower than 90 'F, leaving only a list of documents

recorded on hot days. Of course, it is also up to the handler how to deal with

documents with no recognizable metadata.

4.4.2 Plug-in applications and examples

Custom metadata interfaces

A plug-in that handles document selection events may provide custom interfaces with

which the user can view and edit the metadata. When the user selects a document, the

annotations associated with the document are displayed, although for metadata types

other than location and time, only the text representation is used. In the handler, a

plug-in may replace the text representation in the layout of the webpage with a more

intuitive interface. Furthermore, the handler may attach JavaScript event handlers

to the custom interface so that it will be notified when the user interacts with it using

the mouse or keyboard.

Figure 4-4: Example of a plug-in displaying temperature metadata, indicating mildly

warm weather. Below is an example of humidity metadata in its text form, which the

plug-in did not interpret.

Consider once again the example of a :temp: metadata type that signifies temper-

ature. Instead of using the default text representation, a plug-in can replace it in the

DOM with an image of a thermometer that color-codes the temperature. It can also

request to be notified when the user mouse-drags the temperature marking up or down

and interprets this action by redrawing the thermometer. When the user releases the

mouse, the plug-in's handler is notified again and can send an XMLHttpRequest to

update the server with the new the temperature value for this annotation.

Tag aggregation and visualization

One feature of folksonomies is the aggregation of the collective "wisdom" of a large

number of users and tags, and using this data for visualizations or additional tools for

tag manipulation. For example, a text field for adding tags can read what the user has

already typed to suggest possible completions, based on the number of existing tags

that start with that string. A more common tool is the tag cloud, a visualization of

a folksonomy's popular tags and their relative frequencies. Tag clouds on Flickr and

Delicious allow users to see what tags others commonly use. In these two instances,

the popularity of a tag is reflected in its font size or color, so that the most popular

tags are naturally displayed more prominently.

As a tool for navigation and browsing, tag clouds allow the user to see (and filter

by) not only the most popular tags in a folksonomy, but also the most popular tags

within a particular subset of content. For example, within the view filtered by the

tag concerto, the tag piano may be popular. This reveals that these two tags are

strongly related due to the frequency with which both of them are used to tag a

document.

The plug-in framework can be used to implement a client-side tag cloud. The

plug-in provides a JavaScript handler that is called whenever an annotation is received

from the server. Instead of replacing the text representation of the annotation with

a graphical interface, however, the handler merely checks whether the annotation is

a tag, and if so adds it to a counter of that tag's frequency. It also constructs a tag

cloud using HTML, updating the font of each tag accordingly whenever that tag is

passed to the handler.

new_england boston
nature piano m acoustic

distotne voice screech noisy
granular reverb

Figure 4-5: Sample cloud generated by a plug-in, with tag frequency represented by
font size.

There are a number of benefits associated with a client-side tag cloud plug-in.

First, the nature of a tool that modifies the tag cloud while processing annotations

means that the cloud is updated as soon as the tags change. For example, when the

user adds a tag to a document, the handler is called immediately and updates the

cloud immediately. More importantly, however, is the extensibility of such a plug-in.

The user can easily modify the handler to count a tag two or more times depending

on the document's date, thus producing a cloud biased toward tags describing more

recent documents.

Using JavaScript handlers, plug-ins can create custom view filters, metadata inter-

faces, and aggregation tools to enhance the user's interaction with the web application.

With this feature, browsing is not limited to filtering by location, time, and tagging;

similarly, viewing and editing metadata annotations is not limited to reading and

typing in accordance to a rigid text format. The plug-in framework allows for a much

richer user experience with structured metadata and tags.

4.4.3 Server architecture

Figure 4-6: Overview of system architecture with client, server, and telephone mod-

ules.

Krik Krak is built on a client-server architecture, where the user interacts with the

web application on the client machine with a web browser, which in turn frequently

makes requests to the server whenever it needs to retrieve more data. The chapter

has so far focused on the web application side of the system; this section turns to

look at the server side.

The annotation server runs on one host machine, and consists of three daemon

processes that run in the background and respond to client requests: the Apache

HTTP Server, which handles HTTP requests, the Java server, which handles connec-

tions from Java applets, and the Asterisk' server, which makes or takes phone calls.

In conjunction with these transient services, the file system and MySQL database

store all the permanent data in the annotation system, namely, the audio documents

and annotations themselves.

The MySQL database uses a very simplistic and straight-forward design to store

structured information pertaining to audio and annotations. Two tables are used:

the audio table allocates one row per audio document and contains all relevant in-

formation not related to annotations (including the document's file system path);

the annotations table conversely allocates one row per annotation and contains all

information relevant to annotations.

Accessing audio and annotations

The MySQL database is most frequently accessed by the Apache HTTP Server.

Apache accepts HTTP connections created by the client application's XMLHttpRe-

quest object and uses a PHP module to retrieve lists of documents and annotations

from the database based on view parameters passed in the HTTP request. The

PHP module also handles new files sent by the client's Flash SWFUpload library or

downloaded from third-party web servers and inserts them into the database.

The database is also accessed by the Java server, which provides the capability

to stream audio to the client in real-time. When the user plays an audio document,

the client-side Java applet opens a socket connection7 to the Java server, requesting

audio. In turn, the Java server consults the database for the document's file system

path, reads the file into memory, and streams the audio content back to the client

6 Website URL: http://asterisk.org
7In practice, the stateless, connectionless protocol UDP is used instead of TCP for the sake of

streaming performance. However, important messages such as starting and stopping the stream are
sent reliably, so the socket behaves, where necessary, as if it were connected.

Figure 4-7: Flow of data in stream-from-file mode.

applet until the user decides to stop playback.

Live streaming

When streaming a live phone call, however, the audio document has not yet been

written to the file system; it is processed by the Asterisk phone server running in

a separate process and, by default, discarded. In order to capture the audio, an

Asterisk script creates a named pipe on the file system, provides the Java server with

its location - just as the database would, with a real file - and subsequently redirects

the audio to the pipe. Thus, the Java server reads the audio into memory as if it were

reading a file, and simultaneously writes it to a real file known to the database while

streaming it to the Java applet.

Consider, in summary of this section, the process by which a user plays and

annotates an audio document while it is being recorded live and streamed in real-

time. At the start of the phone call, the Asterisk server notifies the Java server

and begins piping the audio stream to Java. The Java server inserts an entry into

U.DP

Client

Java
applet

Figure 4-8: Flow of data in live streaming mode.

the database, which is in turn visible to the Apache PHP module that lists visible

documents.

The web application user (who may be different from the phone caller) notices,

while browsing, that a new document has been added and that it is being recorded live.

With piqued interest, the user plays the ongoing recording, prompting a handshake

between the user's Java applet and the Java server. The Java server replies to the

applet with a copy of the incoming stream, which the user hears and annotates.

The Apache PHP module accesses the database to insert the new annotation, which

immediately becomes available to the user creating the ongoing recording, closing the

loop.

Chapter 5

Applications

Up to now, the design requirements and implementation of Krik Krak have been

discussed abstractly, with few examples of how some of the features might be used.

As a result, the collective benefits of such an annotation tool may not be immediately

clear. This chapter discusses some of the applications of the annotation tool and

presents them as a series case studies.

5.1 The Owl Project

The Owl Project is, at the time of writing, an ongoing project at the MIT Media Lab

seeking to make use of the ubiquitous technology of mobile devices for owl censuses

and other environmental sensing and monitoring [29, 34]. The Owl Project's need

for a convenient way to make recordings in a forest, and for a web-based interface for

browsing and annotating recordings, was the motivation for this thesis.

The following sections discuss the role of volunteer scientists in the field of or-

nithology, and the role of Krik Krak in leveraging their involvement in the collection

of natural sounds.

5.1.1 Citizen science

Recently, certain scientific communities have begun to enlist the help of large groups

of non-scientists to accomplish particular tasks that may be otherwise difficult to ac-

complish [30]. This emerging trend has come to be called "citizen science" and may

involve individuals of varying experience and training, from other scientific commu-

nities to amateur scientists and even hobbyists and recreationists.

One area where citizen science has become popular is the field of ornithology, the

study of birds, which can often benefit significantly from the large and spread-out

army of observant eyes afforded by a citizen scientist population. The partnership

between ornithology and citizen science has a history dating back to 1900 with the

first annual Christmas Bird Count, held by the Audubon Society [31]. More recently,

the prominent Cornell Laboratory of Ornithology has created a lab program dedicated

to citizen science1 [32].

5.1.2 Environmental monitoring with cell phones

The Owl Project evolved out of a desire to explore the possibilities of using mobile

technology, in particular cellular phones, for audio interaction with animals and en-

vironmental sensing and monitoring. The viability of using cell phones to perform

and record bird vocalizations, one of the tasks popularly used in owl census-taking

procedure [33], has been shown to be sufficiently comparable to that of using the

conventional playback technology [34].

Typically, broadcast surveys of owl populations involve scientists and volunteer

citizen scientists who play pre-recorded samples of owl vocalizations and record re-

sponses at survey points in the species' habitat. The cell phone methodology of the

Owl Project is able to automate much of this process when used in conjunction with

the Krik Krak annotation system's phone scheduler. Furthermore, it is possible to

place multiple phones along the survey route to be called simultaneously, thus aug-

menting the capabilities of human-conducted experiments.

1Website URL: http://birds.cornell.edu/citscitoolkit

5.1.3 Annotation of owl responses

Already it can be seen that the annotation system is a tool that can streamline the

process of performing broadcast surveys in a number of ways. The leveraging of ubiq-

uitous cell phones as live recording devices coincides with the somewhat serendipitous

suitability of phones as vocalization players and recorders. This frees potential census-

conductors from the need to bring CD players and audio recorders to surveys, and

thus significantly increases the scalability of such citizen science programs.

Another advantage of using cell phones over traditional players and recorders is

that the cell network can automatically gather the recorded audio in a centralized

repository, the annotation server, avoiding the task of manually assembling the collec-

tively recorded audio off of many separate recording devices. The audio documents'

presence on the server, in turn, opens up many opportunities for annotation by both

human and machine.

By the time an audio recording has been submitted to the server, it is already

annotated with the correct date and time metadata. A cell phone with access to

a GPS service and the internet (no longer a lofty requisite!) can also immediately

add the correct geolocation metadata. The collaborative nature of the annotation

system lets users on the web observe and annotate the experiment in progress, and

even provide live feedback to the scientist. After the experiment finishes, scientists

and untrained web users alike can browse through the recordings.

With an Owl Project plug-in, the user can decide and annotate the species of

an owl based on its recorded vocalization. Owl Project audio documents can also

be annotated with various metadata pertaining to environmental conditions, such

as temperature or humidity, and recording state, such as the directionality of a vo-

calization. Once these metadata are added to the system, the plug-in can replace

the text representations with more intuitive visualizations, such as a compass with

directionality that is updated as the corresponding recording is played back.

A drawback of a number of citizen science programs, including The Birdhouse Net-

work at Cornell [35], is that volunteers' participation, from enrollment to research to

debriefing, is often done with minimal interaction with other volunteers or even with

the organizing scientists. Making an annotation website the focal point of research-

doing facilitates both types of interaction and opens the project to an even wider

population of curious web surfers.

5.2 Oral histories and storytelling

While the Owl Project calls and records owl vocalizations to document the owl pop-

ulation and environment, another practice in a disparate multi-disciplinary field per-

forms a similar task. Oral histories record the experiences of people via interview

to document society and culture, and are used by researchers of various disciplines

including historians, anthropologists, and linguists.

Although the modern tradition of gathering oral histories dates back to long before

the popularization of the internet, the internet has given rise to a new wave of digital

oral histories, salient examples of which include StoryCorps [36], the UN Intellectual

History Project [37], and Our Stories 2, a web-based collection founded by UNICEF,

One Laptop per Child (OLPC), and Google.

Regardless of its use in diverse settings and disciplines, the practice of collecting

oral histories is fairly consistent across disciplines: the collector interviews the subject,

records the conversation, and may later convert the conversation into a text transcript

[38]. The recording, along with the text transcript if available, is typically then added

to a catalogue of oral histories for future reference.

2Website URL: http://ourstories.org

5.2.1 Transcribing and annotating oral histories

However, it appears that oral histories are, in general, sparsely annotated, and as

a result they can only be browsed using very basic indices or parameters such as

the interviewee's name or location. The online interface to Our Stories provides

little information alongside its interview videos. The Books with Voices interface,

developed at the University of California, Berkeley [39], recognizes these shortcomings

and attempts to address the usability issues both of recordings and of transcripts by

augmenting transcripts with random access to the corresponding video, essentially

synchronizing the transcript with the recording.

A richer browsing interface for recording and transcript alike is nevertheless left

to be desired. Consider, as follows, the transcription process suggested by excerpts

quoted from the interview production guides of Telling Their Stories 3, an oral his-

tories project presented by the Urban School of San Francisco focusing on Bay-area

Holocaust Survivors and other individuals who lived during World War II era.

* Use "Question:" to tag all interviewer questions and comments.

* Put in parentheses (...) all unintelligible names and terms, unknown spelling,

etc. This [is] our signal to make sure to revisit to clarify.

* Record in parentheses (...) the TIME in "(minutes:seconds)" for every well-

spaced question - this need not be exact - it just serves as a useful reference.

* Italicize obvious non-English words (e.g. "Shabbat"). These will often also be

put in parentheses (...) if you do not know the correct spelling.

The similarities between the task of creating plain-text transcripts of recordings

and the process of annotating audio documents with structured metadata and tags

are substantial. Questions and comments by the interviewer, as well as parenthesized

names and terms, can easily be given tags. Timing information is already inherent in

a system supporting synchronized annotations; finally, non-English words can, again,
3 Website URL: http://tellingstories.org/about

be tagged as appropriate, or even be given a metadata annotation such as :lang:heb

to signify Hebrew words.

The benefits of an annotation system for oral histories are not limited to an easier

and more streamlined transcription process. Moving the tags and metadata from

stylistic conventions for text documents to an annotation system means that the

transcript is decoupled from the annotations. Consequently, this allows for future

users to retrieve all occurrences of Hebrew words, as an example, or to read just the

transcript, absent of editorial notes and shorthand added later.

It is worth repeating that the web-based aspect invites a much larger community

of web users to view the oral histories. The task of transcribing an interview is also

easily open to multiple users. And, as suggested in section 3.1.3, the capability to

stream an interview opens up the possibility of onlooking web users commenting on

and influencing the course of the interview, adding a new dimension to the concept

of conversation in oral histories.

5.2.2 Oral histories in the context of natural stories

A generalized way of viewing oral histories may consider them to be subset of natural

stories, which in turn include the vocalizations studied by the Owl Project. After all,

as humans are classified as a specie, a number of overlaps between the analyses of

oral and natural stories can be seen: speech recognition can parse a recording, and

the field of linguistics seeks to analyze its grammar. Conversely, a recording of an

owl's vocalizations can be considered as a story, which contains information about

the environment that bird specialists must interpret. As discussed in the following

section, a musical performance can be subjected to the same analysis and thus treated

as another instance of natural stories.

5.3 Music performance and analysis

5.3.1 Live performance

Of course, musical performances are another prominent circumstance suggesting the

use of unobtrusive recording devices which are capable of streaming real-time audio.

A concert organizer can decide to broadcast a live stream of a performance, possibly

for increased exposure. Alternately, a concert attender can just decide to share the

performance with a group of friends, if permitted. Either way, web users elsewhere,

who for some reason may not have been able to attend, can experience the perfor-

mance vicariously and comment on it - although in this case the real-time comments

are not likely to influence the performer.

A musician who does not require a live stream can also, of course, just record the

concert with a microphone and upload the digital audio later. This approach does

allow for better sound quality; after all, cell phone audio quality, while sufficient for

carrying believable signals of owl vocalizations, is not likely to replace professional

microphones for capturing high-fidelity sound. In the end, the musician still has an

easy method of listening to and annotating the live performance, which can often be

artistically enlightening feedback loop.

5.3.2 Musical analysis

The real benefit of an annotation system for music, however, is its applicability for

students and researchers of Western classical music history and theory. In contrast

to text documents, which be simultaneously read and annotated by highlighting on

paper, musical documents suffer a disconnect between reading scores on paper and

hearing a recording; additionally, scores do not express important temporal relation-

ships precisely.

On the annotation timeline, spatial distance between two points corresponds pro-

portionally to temporal distance. Furthermore, reading and hearing are linked; if

the parts of a sonata movement are annotated, it is trivial to start listening from, for

instance, the recapitulation's second theme, without having to seek to it in an opaque

CD track. Musical annotations are not limited to bookmark-like labels, either. With

an appropriate plug-in, structured metadata can allow a student to track complex

harmonic progressions or subtle thematic transformations.

Given the timeline interface, scholars may appreciate the visual evidence of com-

posers' use of Fibonacci numbers and the golden ratio [40]; whether or not these

claims are valid, it is difficult to ignore repeated proportions and geometric series

when they are presented visually. Analysis of the fugue, a highly complex type of

piece involving multiple voices, can also be elucidated with annotations: once the

occurrences of a fugue's theme are labeled on the timeline, the relationships between

the voices and the order in which they occur are immediately clear. This may aid,

for example, in completion of Bach's unfinished Art of Fugue [41, 42].

This chapter will conclude by describing a plug-in designed to be a study tool for

music history students, who are often asked to identify the composer and name of a

piece from its historically-significant stylistic features. After a set of musical pieces

have been annotated, the plug-in enters a practice-test mode by temporarily replacing

all metadata annotations of type :composer: or :name: with question marks.

When a document is selected, the plug-in handler automatically starts playing

it from a random point within the piece and creates two blank fields in which the

student is to supply the composer and name. As the piece plays, the plug-in shows

annotations of type : style: as hints until the student is able to answer correctly. At

this time, the plug-in moves ahead to the next piece on the practice test. Of course,

the ability to filter the pool of testable pieces down to the student's two known weak

points, :period:Baroque and :form: concerto, is merely further testament to the

system's flexibility and applicability.

Chapter 6

Conclusion

6.1 Summary

This thesis began by examining the current state of the World Wide Web with regard

to the ability of people and machines to make sense of audio and video documents

on the web. As a result, it proposed to design and implement a web-based audio

annotation system, the basis for this thesis.

In chapter 2, a survey of existing web annotation systems was given, starting from

1993 with the group annotation server of Mosaic, the first popular web browser. A

number of similar annotation systems were discussed, noting particular advances such

as the ability to select excerpts in a document or to filter the view of annotations. In

addition, a number of image annotation systems were discussed, including AKTive

Media, which introduced strongly-typed metadata, and Flickr, which popularized

tagging.

As a response to the advantages and disadvantages of previous annotations sys-

tems, the design requirements for a web-based audio annotation tool were described

in chapter 3. The basic deployment restriction that the annotation tool be platform-

independent ensures the application's accessibility. A number of annotation features,

namely synchronicity, tagging, and extensible metadata, are intended to maximize the

system's expressiveness and flexibility. Finally, a number of built-in metadata types

and interpretations were suggested to improve the basic usability of the system.

Chapter 4 described the implementation of an annotation system, Krik Krak, that

satisfies the aforementioned design requirements. The browsing interface, including

a map, timeline, and tag filter which define the annotation view, comprises an im-

portant component of the system. The three ways of submitting audio (by HTTP

upload, server-side download, or phone streaming) and the three kinds of annotation

(comments, tags, and structured metadata) were discussed, with a focus on how the

common text representation of annotations allows for flexible, polymorphic treatment

of them. Lastly, the architectures of client-side plug-ins and of server-side daemons

were discussed.

Finally, a number of possible applications for the annotation system were given

in chapter 5, with an emphasis on the framework's flexibility and adaptability to

other fields. The Owl Project is one instance that makes extensive use of the ability

to schedule phone calls and stream audio live and in real-time to the server for the

purpose of environmental sensing and monitoring. The collection, transcription, and

annotation of oral histories was given as another field with needs closely matched by

the capabilities of the annotation system. The chapter also described a hypothetical

tool for the storage and analysis of musical pieces and cumulated in a plug-in extension

that could administer customizable practice tests to music history students.

6.2 Future work

Although the annotation framework was designed with usability and flexibility in

mind, there are a number of issues or shortcomings suggesting directions for further

work. These will be discussed in the following sections.

6.2.1 Scalability

For the sake of accessibility from any computer connected to the internet, the archi-

tecture of the annotation system places the burden of storing and serving all data

on a single server machine. Clearly, as more users access the website and add more

audio and annotations, performance will degrade for all users in terms of server re-

sponsiveness and ability to handle many simultaneous requests.

One solution is to modify the design so that multiple server machines can serve the

same data in order to distribute the load. The issue then becomes one of consistency:

how does one user see another's newly created annotation if they connect to different

servers? Since database reads are far more common than writes (due to the fact that

browsing constantly generates reads, but only annotation creation, modification, or

deletion generate writes), it may be possible to implement a system in which servers

usually read from data caches which are periodically invalidated and resynchronized.

6.2.2 Extending live streaming

Even though the ability to stream live audio to the server with ubiquitous cell phone

technology while away from a computer has proved to be extremely useful and adapt-

able, there are cases in which the audio contributor wants to stream higher-quality

audio. Currently, there is no interface by which a digital microphone can access the

phone server.

To address this issue, the Java server needs to be extended to accept incoming

audio streams from a network socket, similar to the Asterisk phone server. As the

audio is being sent directly to the Java server, there is no need for a file system pipe;

the Java server merely needs to insert it into the database and stream it to interested

clients. Note that this revised architecture also allows users to submit audio using yet

another method: their computer's built-in microphone. Only the Java applet needs

to be modified in order to capture the audio from the microphone and send it to the

server.

6.2.3 Video annotations

Perhaps the feature that is most conspicuously missing from Krik Krak is the support

for video documents and annotations, a feature that was intentionally omitted from

the goals of this project. Including it would have implied a number of additional

requirements with little to no overlap with the current system: video playback in

the client browser, sub-image selection for spatially positioned annotations, and the

ability to upload a live video stream in real-time to the server, probably from a

webcam or another video capture device.

On the other hand, a framework supporting video playback and annotation ap-

pears to be well within reach, if only because all of the aforementioned requirements

are natural extensions of their counterpart in audio annotation. There are, however,

a number of technological hurdles to overcome that are unique to video. For in-

stance, the bandwidth requirements of streaming video are vastly greater than those

of streaming audio, which may exclude many users from uploading video over slower

internet connections. Much more work, and possibly even architecture re-designing,

may be necessary before web-based video annotation can become a reality.

6.3 Contribution and perspective

In this thesis, a web-based audio annotation tool supporting synchronized annota-

tions, folksonomic tagging, and extensible structured metadata was described. While

the initial implementation of such a system was necessarily experimental and pro-

totypical in nature and ultimately, in many parts, not yet suitable for large-scale

deployment, a number of insights were gained in designing and building such a sys-

tem, particularly resulting from discovering its applicability to a diverse variety of

disciplines and tasks.

While the goal of the project was to design an audio annotation tool, it may

be argued that two main factors contributed to its ability to adapt to multiple usage

scenerios, neither of which was the niche-filling choice of audio as the medium. Firstly,

the plug-in framework must be given credit for opening the web interface to user-

generated functionality. Not only are plug-ins able to parse and interpret custom

metadata types, but the JavaScript handler mechanism allows plug-ins to alter the

entire web interface as they see fit - with no threat to an annotation server protected

by a well-designed HTTP abstraction.

Secondly, it can be seen that the principle of accessibility, in its broadest sense,

invites potential communities of web users built around sharing and collaborating

on annotating as well as an entire population of cell phone users. If the former is

confirmation that the Web 2.0 paradigm empowers crowds to act in concurrence, the

latter suggests that liberating users from their computers magnifies their versatility

enormously.

I believe there is no other annotation system with a design similar to that of Krik

Krak, at the time of writing. Certainly, all of the components have been explored

and exploited elsewhere, but this combination and arrangement of them is unique, as

suggested by the scarcity of tools that have applications specific to ornithology, oral

histories, and music history.

I hope that in time, the combination suggests and lends itself to many more

applications, and that it may lead to a better understanding of how we, as individuals

connected by a digital web, share, collaborate, and make sense of the information

surrounding us.

Bibliography

[1] Garrett, Jesse James. Ajax: A New Approach to Web Applications. Adaptive

Path, February 18, 2005.

http://adaptivepath.com/ideas/essays/archives/000385.php

[2] Abbate, Jane. Inventing the Internet. Cambridge: MIT Press, 1999.

[3] Wilcox, L., Smith, I., & Bush, M. Wordspotting for Voice Editing and Audio

Indexing. SIGCHI Conference on Human Factors in Computing Systems, May

1992.

[4] Van Thong, J.M., Goddeau, D., Litvinova, A., Logan, B., Moreno, P., & Swain,

M. SpeechBot: a Speech Recognition based Audio Indexing System for the Web.

6th RIAO Conference, 2000.

[5] Makhoul, J.K., Kubala, F., Leek, T., Liu, D., Nguyen, L., Schwartz, R., & Sri-

vastava, A. Speech and Language Technologies for Audio Indexing and Retrieval.

Proceedings of the IEEE, Volume 88, no. 8, pp. 1338-1353, August 2000.

[6] Dorai, C. & Venkatesh, S. Computational Media Aesthetics: Finding Meaning

Beautiful. IEEE Multimedia, Volume 8, no. 4, pp. 10-12, 2001.

[7] Bush, Vannevar. As we may think. The Atlantic Monthly, July 1945.

[8] Reid, Robert H. Architects of the Web: 1000 Days That Built the Future of

Business. New York: John Wiley and Sons Inc., 1997.

[9] Wolfe, Gary. The (Second Phase of the) Revolution Has Begun. Wired Magazine,

2:10, October 1994.

[10] Andreessen, Marc. NCSA Mosaic Technical Summary. National Center for Su-

percomputing Applications, February 20, 1993.

[11] Roscheisen, M., Mogensen, C., & Winograd, T. Shared Web Annotations as

a Platform for Third-Party Value-Added Information Providers: Architecture,

Protocols, and Usage Examples. Stanford University, 1994.

http://dlib2.stanford.edi/diglib/pub/reports/commentor/commentor.ps

[12] Davis, J.R. & Huttenlocher, D.P. The CoNote System for Shared Annotations.

Cornell University, Dept. of Computer Science, 1995.

http://www.cs.cornell.edu/ dph/annotation/annotations.html

[13] Schickler, M.A., Mazer, M.S., & Brooks, C. Pan-Browser support for annotations

and other meta-information on the World Wide Web. Computer Networks and

ISDN Systems, vol. 28, May 1996 pp1 0 6 3-10 74 .

[14] Kahan, J., Koivunen, M.R., Prud'Hommeaux, E., & Swick, R.R. Annotea: an

open RDF infrastructure for shared Web annotations. Computer Networks, vol.

39, issue 5, August 5, 2002, pp 589-608. (c) 2002 Elsevier Science B.V.

[15] Berners-Lee, T., Hendler, J., & Lassila, O. The Semantic Web. Scientific Amer-

ican, May 17, 2001. http://www.sciam.com/article.cfm?id=the-semantic-web

[16] Heck, R.M., Luebke, S.M., & Obermark, C.H. A Survey of Web Annotation

Systems. Dept. of Mathematics and Computer Science, Grinnell College, 1999.

http://math.grin.edu/rebelsky/Blazers/

Annotations/Summer 1l999/Papers/surveypaper.html

[17] Chakravarthy, A., Ciravegna, F., & Lanfranchi, V. Cross-media document an-

notation and enrichment. 1st Semantic Authoring and Annotation Workshop,

November 2006.

[18] Smith, Gene. Folksonomy: social classification. August 3, 2004.

http://atomiq.org/archives/2004/08/folksonomysociaLclassification.html

[19] Mathes, Adam. Folksonomies - Cooperative Classification and Communication

Through Shared Metadata. Graduate School of Library and Information Science,

University of Illinois Urbana-Champaign, December 2004.

http://adammathes.com/academic/computer-mediated-

communication/folksonomies.html

[20] Shirky, Clay. Ontology is Overrated: Categories, Links, and Tags. Clay Shirky's

Writings About the Internet, 2005.

http://www.shirky.com/writings/ontology _overrated.html

[21] Smith, Gene. Market Populism In The Folksonomies Debate. April 20, 2005.

http://atomiq.org/archives/2005/04/

market populismin_thefolksonomiesdebate.html

[22] Wald, M., Wills, G., Millard, D., Gilbert, L., Khoja, S., Kajaba, J. & Butt,

P. Multimedia Annotation and Community Folksonomy Building. World Con-

ference on Educational Multimedia, Hypermedia and Telecommunications, 2008.

pp. 2213-2220.

[23] Fields, Kenneth. Ontologies, categories, folksonomies: an organized language of

sound. Organised Sound (2007), 12:101-111 Cambridge University Press. @2007

Cambridge University Press.

[24] Best, Michael L. Can the Internet be a Human Right? Human Rights & Human

Welfare, vol. 4, issue 1. 2004.

[25] Danticat, Edwidge. Krik? Krak!. New York: Soho Press, 1995.

[26] O'Reilly, Tim. What is Web 2.0: Design Patterns and Business Models for the

Next Generation of Software. Communications & Strategies, no. 65, 1St Quarter

2007.

[27] Paulson, Linda D. Building Rich Web Applications with Ajax. Computer, vol.

38, no. 10, pp. 14-17, October 2005.

[28] ECMAScript Language Specification, Standard ECMA-262. ECMA Standardiz-

ing Information and Communication Systems, 3rd ed., December 1999.

[29] Fizz, Robyn. Cell Phone Project Counts Owls Through Call and Response.

MIT Information Services and Technology News, Volume 23, no. 1. September-

October 2007.

[30] Trumbull, D.J., Bonney, R., Bascom, D., & Cabral, A. Thinking Scientifically

during Participation in a Citizen-Science Project. Science Education, vol. 84, no.

2, pp. 265-275. @2000 John Wiley & Sons, Inc.

[31] Root, Terry L. Atlas of Wintering North American Birds: An Analysis of Christ-

mas Bird Count Data. Chicago: University of Chicago Press, 1988.

[32] Bhattacharjee, Yudhijit. Ornithology: Citizen Scientists Supplement Work of

Cornell Researchers. Science, vol. 308, no. 5727, pp. 1402-1403. June 3 2005.

[33] Takats, D.L., Francis, C.M., Holroyd, G.L., Duncan, J.R., Mazur, K.M., Can-

nings, R.J., Harris, W., & Holt, D. Guidelines for Nocturnal Owl Monitoring in

North America. Beaverhill Bird Observatory and Bird Studies Canada, Edmon-

ton, Alberta.

[34] Joachim, D. & Goodale, E. On the use of cellular telephony for audio interaction

with animals. Biology Letters. @2007 The Royal Society.

[35] Brossard, D., Lewenstein, B., & Bonney, R. Scientific knowledge and attitude

change: The impact of a citizen science project. International Journal of Science

Education, vol. 27, no. 9, July 15 2005, pp. 1099-1121. @2005 Taylor & Francis

Group Ltd.

[36] Lamothe, P. & Horowitz, A. StoryCorps. The Journal of American History,

Volume 93, no. 1, pp. 171-174. June 2006.

[37] Jolly, Richard. The Power of UN Ideas: Lessons from the First 60 Years. United

Nations Intellectual History Project, January 2005.

[38] Grele, Ronald J. Envelopes of Sound: The Art of Oral History. Greenwood Pub-

lishing Group, 1991.

[39] Klemmer, S.R., Graham, J., Wolff, G.J., & Landay, J.A. Books with Voices:

Paper Transcripts as a Tangible Interface to Oral Histories. SIGCHI Conference

on Human Factors in Computing Systems, April 2003.

[40] Rothwell, James A. The Phi Factor: Mathematical Proportions in Musical

Forms. Kansas City: University of Missouri, 1977.

[41] Goncz, Zoltan. The Permutation Matrix in J. S. Bach's Art of Fugue. Studia

Musicologica, Volume 33, pp. 109-119, 1991.

[42] Hughes, Indra N.M. Accident or Design? New Theories on the Unfinished Con-

trapunctus 14 in J. S. Bach's The Art of Fugue BWV 1080. University of Auck-

land, 2006.

