Human-Automation Interaction for Lunar Landing
Aimpoint Redesignation

By
Jennifer M. Needham
B.S. Mechanical Engineering
Rice University, 2006

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of
Master of Science in Aeronautics and Astronautics
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
September 2008

© 2008 Jennifer M. Needham. All rights reserved.
The author hereby grants to MIT permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole or in part in any medium now known or hereafter created.

Author.......ooooiiiiiii V e
Départmentfof Aeronautics and Astronautics
. , Augpist 29, 2008

//eﬁ\,"' .

Approved by.......ooviiiiii g g e ~
7 27" Lauren J. Kessler

Principal Member of the Technical staff

Group Leader — Autonomous Mission Control

The Charles Stark Draper Laboratory, Inc.

Thesis Supervisor

Certified by......oovviiiii e e NQ e
Prof. R. John Hansman

Professor of Aeronautics and Astronautics
Director, International Center for Air Transpﬁition

T N .~ Thegis Supejvisor
Accepted DY.....oeviiiiiiii e —p

et TR eene
Prof. DaV1Marmofal
Associate Dep ent Head

MASSACHUSETTS INSTITUTE Chairman, Department Committee on Graduate Students
OF TECHNOLOGY

0CT 157008

LIRRARIES | ARCHIVES




[This Page Left Intentionally Blank]



Human-Automation Interaction for Lunar Landing
Aimpoint Redesignation

By

Jennifer M. Needham
B.S. Mechanical Engineering
Rice University, 2006

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of
Master of Science in Aeronautics and Astronautics

Abstract

Human-automation interactions are a critical area of research in systems with
modern automation. The decision-making portion of tasks presents a special challenge for
human-automation interactions because of the many factors that play a role in the
decision-making process. This is prominent in human spaceflight, where the astronaut
must continually interact with the vehicle systems. In future lunar landings, astronauts
working in conjunction with automated systems will need to select a safe and achievable
landing aimpoint. Ultimately, this decision could risk the safety of the astronauts and the
success of their mission. Careful study is needed to ascertain the roles of both the human
and the automation and how design can best support the decision making process.

The task of landing on the moon was first achieved by the Apollo program in
1969, but technological advances will provide future landings with a greater variety and
extensibility of mission goals. The modern task of selecting a landing aimpoint is known
as landing point redesignation (LPR), and this work capitalizes on an existing LPR
algorithm in order to explore the effects on landing point selection by altering the levels
of automation. An experiment was designed to study the decision-making process with
three different levels of automation. In addition, the effect of including a human-
generated goal that was not captured by the automation was studied.

The experimental results showed that the subjects generally used the same
decision strategies across the different levels of automation, and that higher levels of
automation were able to eliminate earlier parts of the decision strategy and allow the
subjects to select a landing aimpoint more quickly. In scenarios with the additional
human goal, subjects tended to sacrifice significant safety margins in order to achieve
proximity to the point of interest. Higher levels of automation allowed them to maintain
high levels of safety margins in addition to achieving their external goal. Thus, it is
concluded that with a display design supporting human goals in a decision-making task,
automated decision aids that make recommendations and assist communication of the
automation’s processes are highly beneficial.
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Chapter 1 Introduction

1.1 Motivation

The Human Interactive Mission Manager (HIMM) is an extension of Draper’s
autonomy technology, the All-Domain Execution and Planning Technology (ADEPT)
framework (Ricard and Kolitz, 2002) to enable human interaction. ADEPT-based
autonomous systems have been developed and demonstrated in several domains, but with
the addition of human interaction mechanisms, the capabilities and relevant domains will
be broadened to include missions that require an operator in the loop, either onboard or

remotely.

Human Human-Interaction Automation-Interaction Mission Manager
Mechanisms Mechanisms (ADEPT™)

Figure 1: Representation of the HIMM (Draper Explorations Magazine, 2008)

The automation-interaction mechanisms, shown in Figure 1, translate the data that
is exchanged between the human and the autonomous mission manager (Furtado, 2008).
The human interaction mechanisms include the displays and the input mechanisms that

the operators will need to understand the system and to formulate and provide input. The
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displays are crucial components of the HIMM because they are the primary source of
information to the operators, allowing them to see into the so-called “black box” of
automation. Depending on the application, operators can have a limited understanding of
the automation and therefore form their understanding on what the automation is
currently doing based on information that is communicated through the display interface.
Since the operator depends on the displays for information about the system, the
displays must account for the operator’s limitations concerning the amount and types of
information that he or she can understand. The display designs must also account for the
impact of time constraints on the information to be displayed, and how an operator will
use this information to make decisions to guide the automation. These decisions can lead

to mission success or failure, so the display design becomes increasingly critical.

1.2 High Level Research Objectives

The goals that need to be addressed for an effective HIMM design are: (1)
establish the human workload at an appropriate level; (2) capitalize on human insight for
the knowledge-based tasks; (3) evaluate strategies on the types/levels of data the operator
can manipulate; and (4) develop methods for conveying autonomy information to the
human in a consumable manner. These four goals are intended to shape the human-
automation interaction design at the level that is appropriate across multiple domains.

To address these goals, an example problem was used. The HIMM is most useful
for complex, time-critical applications, in which a human alone cannot effectively
monitor and intervene when necessary, but there is an opportunity for a person to be a
part of the decision process. This opportunity arises either because there are people

onboard the vehicle or because there is a remote connection with the vehicle. The
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problem used in this thesis addresses an aspect of lunar landing, specifically the tasks
surrounding selecting a safe landing aimpoint at the end of a lunar lander’s descent.

The concern for human workload as the human interacts with automation is based
on workload issues that have emerged with other automation systems. Although
automation has been shown to reduce task workload (Wickens and Hollands, 2000), it
can also change the nature of the workload from primarily physical to primarily mental.
Parasuraman et al (2000) suggested that correctly designed automation provides an
appropriate level of mental workload that prevents the user from becoming overwhelmed.
However, inappropriately designed automation can have the opposite effect.

The Skills, Rules, Knowledge (SRK) framework was developed by Rasmussen
(1983) to describe different operator behaviors. Skill-based behaviors are primarily
sensorimotor tasks, requiring little or no conscious control to perform or execute an
action once an intention is formed. Rule-based behaviors are characterized by organized
rules and procedures. Knowledge-based behaviors primarily occur in novel and
unexpected situations and rely on knowledge of the system to analyze the system and
form goals and actions. Since knowledge-based tasks represent a more advanced level of
reasoning, it is appropriate to capitalize on human insight for these tasks.

An important aspect of human-automation interaction is the detailed nature of the
interaction capabilities. From both the operator’s and automation designer’s viewpoints,
unlimited interaction capabilities are undesirable and unrealistic. No single rule exists
about which types of data and which levels of automation are most appropriate for the
operator. Yet there are strategies that can be derived, theoretically or empirically for the

HIMM. In this thesis relevant theories on expert decision making are presented and
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applied to a lunar landing problem. This analysis leads to information requirements used

to develop operator displays, which were then evaluated through experimentation.

1.3 Specific Research Objectives

It will be discussed in detail in future chapters that the landing point redesignation
(LPR) decision is a knowledge-based task, especially in off-nominal situations. The
human’s insight is important in this human-automation interaction when the human
brings to the table information that is outside of the automation’s programming and
knowledge sources. However, to capitalize on this insight in a highly automated system,
allowance for the expression of such insight should be made early in the design phases of
the system. This allowance is given in the choice of levels of automation that will be
studied; levels of automation that are too high risk shutting out the human’s insight for
knowledge-based tasks.

Data manipulation by an operator is affected by the previous two concepts of
workload and knowledge-based tasks. Especially in the lunar landing domain, time is a
limiting factor to any operator’s strategy for data manipulation. For the LPR decision, the
primary data is the safety criteria and the position of the landing aimpoint. By increasing
the level of decision making automation, the operator is manipulating higher, more
abstract levels of data. By adding a point of interest, the operator is incorporating a
different, non-automated type of data.

A research goal that will be indirectly addressed by the experiment is the
development of the algorithm representation to convey information about the algorithm
to the human. Since the representation will be used in all three levels of decision making

automation being tested, the subjects’ ability to understand and use the representation
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will only be indirectly studied. Since Sheridan’s 10 levels are purposely generic in nature,
specific implementations of these levels are left to designers. Thus, the representation is a

significant research goal because of its role in defining the levels of automation.

1.4 Thesis Organization

Chapter 2 provides the background research on levels of automation, designing
for human-automation interactions, decision-making, the lunar landing domain, relevant
display design principles, and current lunar landing work including the landing point
redesignation (LPR) algorithm. It provides a summary of the research considered for this
thesis.

Chapter 3 discusses the Apollo lunar landing and applies principles of cognitive
task analysis to analyze the role of humans and automation in lunar landing. A human
decision-making model, which is based on Klein’s (1998) recognition primed decision-
making model, is presented to analyze the impact of automation in the lunar landing
aimpoint decision. In addition, a landing aimpoint representation is designed based on the
existing LPR algorithm and the information needs identified in the cognitive models.

Chapter 4 describes the experiment objectives, equipment and testbed, display
design features, experimental design and procedure, participants, data collection, and
methods of data analysis.

Chapter 5 analyses and discusses all of the results of the experiment. Interview
results are explained and discussed to provide further insight into the performance data.

Chapter 6 draws conclusions about the role of automation in lunar landing and the
influence of automation on human decision making, as tested in the described

experiments. Future work is also discussed with respect to the role of the algorithm in
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human decision-making, recommendations for future designers, and suggestions for

displaying the algorithm functions.
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Chapter 2 Background

This section summarizes the necessary considerations for human-machine
interactions in the lunar landing domain. It introduces ten levels of automation and their
application to collaborative human-automation decision making. Further, it broadly
describes the decision making process and addresses the situations when humans and
automation have the same or differing goals. The chapter continues with a description of
the lunar landing domain, including a comparison of Apollo and future lunar landings. In
addition, it summarizes recent work done in this domain as well as the landing point

redesignation algorithm used and referenced throughout this work.

2.1 Levels of Automation

To complete the various function needed to achieve a task, system designers must
consider how to allocate these function between human and automated elements of the
system (Sanders and McCormick, 1997). Recommendations of human-computer
integration were based on guidelines of the respective strengths of humans and
computers, such as Fitts” List (Fitts 1951, 1962).

The concept of levels of automation was first introduced by Sheridan and

Verplank in 1978. As summarized in
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Table 1, increasing levels imply greater autonomy for the computer and a smaller role for

the human.
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Table 1: Ten Levels of Decision and Action Selection Automation (Modified from Parasuraman,
Sheridan, & Wickens, 2000)

(=)

HIGH The computer decides everything, acts autonomously, ignoring the human.

informs the human only if it, the computer, decides to

informs the human only if asked, or

executes automatically, then necessarily informs the human, and

allows the human a restricted time to veto before automatic execution, or

executes that suggestion if the human approves, or

suggests one alternative

narrows the selection down to a few, or

The computer offers a complete set of decision/action alternatives, or

— (Wb oo O|—

LOW The computer offers no assistance: human must make all decision and

actions.

Level 1 automation refers to a human performing a task without automation, and
level 10 automation refers to the computer performing a task autonomously, independent
of the human. This framework of discrete levels has been broadly applied, especially
since it is a generic, domain-independent naming scheme.

Sheridan further expanded his concept of levels of automation to include
Wickens’s model of human information processing: sensory processing,
perception/working memory, decision making, and response selection (Wickens, 1984).
This research is concerned with the landing point redesignation decision, and thus the

levels of automation directly related to decision making.

Sensory Perception/ Decision Response
Processing Working o  Making | Selection
Memory
I

o N

Figure 2: Ten Levels of Automation (Adapted from Sheridan, 2000)
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Similar to the original ten levels of automation, level one of decision making
automation means that the human must make all decisions. Level ten of decision making
automation means that the computer decides autonomously, ignoring the human, which
corresponds to a fully automated system (Sheridan, 2000). These levels of automation
will be further explained and referenced throughout this work.

The chosen level of automation may also affect workload. In human factors
research, workload is broadly divided into physical or mental workload and is measured
by objective or subjective measures (Sanders and McCormick, 1993). In this research, the
primary workload is mental since the main task is decision-making, and very little
physical effort is required. Workload can be increased by the number of tasks, the
difficulty of the task, or restrictions on the information given to complete the task
(Sanders and McCormick, 1993). The appropriateness of a level of workload for a given
task is well described by the modified Cooper-Harper scale (Harper and Cooper, 1986),
which can be used for cognitive, perceptual, and communications tasks. It is a subjective
workload measure with ten discrete ratings: (1) operator mental effort is minimal and
desired performance is easily attainable to (10) the instructed task cannot be
accomplished reliably (Wierwille & Casali, 1983). The scale reflects the fact that humans
link their performance of a task with the process used to produce that performance. In
addition, the modified Cooper-Harper scale is a subjective workload rating, and some
investigators have suggested that subjective ratings of mental workload are the best

existing method for truly reflecting workload (Sheridan, 1980).
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2.2 Collaborative Human-Automation Decision Making

Many models of human decision making have been set forth, and the models can
be roughly divided into rational and naturalistic decision making. Rational decision
making, also known as rational choice strategy, describes a particular model in which an
‘optimal’ solution is sought among many options (Klein, 1997). In contrast, all options
are not considered in naturalistic decision making, and generally, a single solution is
quickly produced. One notable naturalistic model, Klein’s Recognition Primed Decision-
making (RPD) model (1998), was developed after observing and interviewing expert fire
fighters. His team found that experience led the firemen to make quick decisions without
considering all the possible solutions. In the RPD model, four elements of situation
recognition are used to generate solutions: expectancies, relevant cues, plausible goals,
and action sequences known from previous situations (Klein, 1998). Concepts from the
RPD model will be further discussed and applied to the lunar landing domain in the next
chapter.

Decision making automation is generally encapsulated in algorithms, and some
work has been done in the area of human interactive algorithms. In studies such as Klau
et al (2002), humans partnered with automated systems to guide solution searches.
Similar studies with algorithm interaction have focused on Unmanned Aerial Vehicle
(UAV) path planning, such as Forest et al (2007). These studies employed scenarios
where the automation and human worked on a common task with common goals, and the
resulting decisions were analyzed for their ability to reach these goals. In addition, the
scenarios were conducted over several minutes, a period appropriate to the associated

domain and task.
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What about when humans and automation work on common tasks but with
differing goals? Specifically, how are decisions reached when the human has a goal that
is external to the automation? When the human merely has a poor understanding of the
automation and is surprised by an action of the automation, this phenomenon is called
automation surprise (Palmer 1995). But in the case where the human has a goal external
to the automation, the human may understand the automation but still need to make a
decision that goes against the automation’s programming. One could almost say that the
automation has a poor ‘understanding’ of the human, ‘surprised’ by what the human

does.

2.3 Lunar Landing

To address these goals, an example problem was used. The HIMM is most useful
for complex, time-critical applications, in which a human alone cannot effectively
monitor and intervene when necessary, but there is an opportunity for a person to be a
part of the decision process. This opportunity arises either because there are people
onboard the vehicle or because there is a remote connection with the vehicle. The
problem used in this thesis addresses an aspect of lunar landing, specifically the tasks
surrounding selecting a safe landing aimpoint at the end of a lunar lander’s descent.

As discussed in Chapter 1, the HIMM emphasizes human-automation interactions
in complex, time-critical application in which the human is a significant but not solitary
portion of the decision making process. Both the history and the future of lunar landing
involved significant human-automation interactions, and technological advances have
opened the role of automation in terms of its assistive capabilities. While the human will

certainly be required to make many decisions during the lunar landing, one fundamental
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decision is the choice of a place to land. The landing aimpoint decision may be studied in
the Apollo lunar landings and modeled for future lunar landings based on current
technologies and the basic task requirements. Thus, with an emphasis on the landing
aimpoint decision, the lunar landing domain is an appropriate and realistic application for
this work.

There are many differences between the Apollo lunar landings and the next lunar
landings, yet any consideration of the new cockpit cannot neglect the work done as part
of the Apollo program. Despite considerable advances in technology since the 1960s,
modern engineers can benefit from an analysis of the challenges of lunar landing found
and faced by astronauts and engineers in Apollo. As will be discussed below, the results
of such an analysis must not be carried out of context; the availability and use of
automation in the Apollo program should be examined as history and experience but not
as rules or limitations for future missions. It would be dangerous and ignorant to assume
that the landing task can be approached as it was two generations ago. The moon may not
have changed, but the landing task must be reconsidered to achieve the new goals in the
lunar landing domain today.

The Apollo lunar landing consisted of three major phases: the braking phase, final

approach phase, and landing phase as shown in Figure 3.
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When P64 was initiated, it displayed a specific 2-digit look angle on the DiSplay
and KeYboard (DSKY). The Lunar Module Pilot (LMP) read this number aloud to the
Commander. The number was correlated to vertical and horizontal scales etched onto the
inside and outside layers of the vehicle window -- the Landing Point Designator (LPD).
When the commander aligned the inside and outside etches, he could see where the
computer projected it was going to land by observing where the 2-digit number was
located. If a different landing site was desired, joystick inputs communicate to the
computer redesignations of the landing aimpoint (Klumpp, 2003).

The Apollo landing strategy only required “landing at any suitable point within a
reasonably small area, constrained in size primarily by the guidance dispersions”
(Cheatham and Bennett, 1966). Visual assessments of the lunar surface are significantly
affected by lighting conditions. Apollo landings relied very heavily on visual
assessments, so the Apollo landing strategy was also limited by particular lighting
conditions. This requirement constrained the Apollo missions to landing near the equator
of the moon (Cheatham and Bennett, 1966).

For the next lunar landing, the ESMD requirements include the capability to land
anytime and anywhere (Fuhrman et al, 2005). However, the current ESMD landing
strategy requires landing at a pre-specified point, a strategy noted by Cheatham and
Bennett (1966) and exemplified by the desire to land “with[in] 100 ft. of the position of a
surveyor spacecraft, or perhaps another type of spacecraft.” The new requirements for
landing anywhere and anytime on the moon implies landing in any lighting conditions,
requiring backup capabilities to visual assessments. Because Apollo landings relied so

strongly on visual assessments, these requirements lead to fundamental reconsiderations

25



of the lunar landing strategy and cockpit needs. Combining these new requirements
indicates the need for a true partnering between humans and automation to achieve the
next generation of lunar landings.

The next lunar landing has been envisioned as a three-phase landing, similar to
the Apollo landings. The three major phases are the braking phase, the approach phase,

and the terminal descent phase as shown in Figure 5.
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Figure 5: Future Lunar Landing Profile (Epp, Robertson, & Brady, 2008)

The human’s input for selecting a landing aimpoint will occur during the human
interaction portion of the approach phase as shown above. Although the process is not
fully defined, a rough schematic of this human-machine interaction is shown in Figure 6.
Upon vehicle pitchover, sensors will scan the surface for hazards. The Hazard Detection
and Avoidance (HDA) algorithm will then have the capability to recommend safe landing
aimpoints to the pilot. This information will be displayed in an as yet unspecified way to

the crew. They may also have a window with augmented vision capabilities, as a source
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2.4 Related Work

Despite the resurgence in lunar landing interest, there are only a few projects
considering the new challenges of the next generation lunar lander cockpit. The Lunar
Access project (Cummings et al., 2005) was a response to President Bush’s Vision for
Space Exploration (NASA, 2004), examining the challenges of the lunar landing. The
scope of Lunar Access included a broad look across lunar landing focusing on
information requirements. The project resulted in a preliminary display design solution,
including a cursory redesignation display. Lunar Access started before automation
capabilities were thoroughly considered or defined, and therefore were only implicitly
assumed, and essentially no mission manager discussed.

A current program involved in studying precision lunar landing is called the
Autonomous Landing and Hazard Avoidance Technology (ALHAT). ALHAT is a
technology development program primarily exploring guidance, navigation, control,
automation, and sensors for the lunar landing. Recently the project scope was expanded
to include the human interaction mechanisms, particularly display design. Although
ALHAT has only begun to examine human interaction mechanisms, my research draws
upon much of their current precision work, particularly in terms of the automation
algorithms designed for the HDA phase.

Landing re-designation to avoid hazards has been identified as a key decision for
the crew (Smith et al 2008). The HIMM incorporates a specific landing point
redesignation (LPR) algorithm developed by engineers under the ALHAT program. The
LPR algorithm (see Figure 7) offers a ranked list of candidate landing aimpoints using

four parameters: slope of the terrain, roughness of the terrain, distance to the nearest
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hazard, and the fuel required to divert from the nominal aimpoint. The slope and
roughness of the terrain have thresholds dictated by the spacecraft vehicle limits. A
sensor will collect surface elevation data from which slope and roughness values may be
calculated. If these values exceed pre-defined thresholds, the algorithm will mark that
position as hazardous. It is from these hazards that the parameter distance to nearest

hazard is calculated.

Divert fuel contours

DTNH maps

Normalizes input maps | Recommended LPs,
Slope maps Generates cost maps >
Combines cost maps ranked or unranked

Roughness maps Selects landing aimpoints

Tolerances

Figure 7: Schematic Representation of the LPR Algorithm (interpretation of the description in
Cohanim & Collins, 2008)
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Chapter 3 Decision Making Model and Application to LPR

This chapter presents a task analysis of the Apollo landing point selection to study
the role of humans and automation in the lunar landing. This task analysis is updated to
take into account current lunar landing goals and technologies. The decision making
process is further examined, various decision making methods are discussed, and a
general decision making (DM) model is suggested. In addition, a landing aimpoint
representation is designed based on the existing Landing Point Redesignation (LPR)

algorithm, and recommendations for the display design are also presented.

3.1 Cognitive Task Analysis

The LPR task includes both the cognitive and physical processes of choosing a
landing aimpoint that achieves the mission goals. These processes can be explored
through a technique called cognitive task analysis (CTA) (Schraagen et al, 2000). CTA is
a proven technique in the design of cockpits for space environments; analysis of the
Space Shuttle cockpit, including interviews with astronauts, lead to a series of proposed
improvements called the Space Shuttle Orbiter Cockpit Avionics Upgrade (McCandless
et al 2005).

Traditionally, CTA is done through in-the-field observations and interviews
(Schraagen et al, 2000). However in the case of the Apollo lunar landings, a retrospective
task analysis must be done. Such analysis is strongly supported through documentation

and recordings of individuals performing the task, since CTA interviews performed
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months or years after the event are susceptible to subjective bias and long-term memory

inaccuracies (Horselenberg et al, 2004).

3.1.1 Apollo landing point selection

The cognitive task analysis in this thesis purposely examined a fixed time period
of activities. The analysis was centered on the LPR decisions made in the phase between
pitchover and low gate. This period was chosen because it was believed to best express
the human automation interactions done to perform the LPR task during the Apollo
landings. In addition, only the nominal LPR task was considered, and many potential off-
nominal scenarios and tasks were excluded. This reflects the materials available for the
CTA, particularly the voice transcripts of the landings (Jones, 2007). The task is shown in
Figure 8.

The CTA models are separated into the tasks of the human on the left and the
processes and contributions of external sources on the right. Both the human and the
external entities enter the LPR decision with a set of previous knowledge obtained from
training, previous mission phases, or previous programming in the case of automation.
These items are listed at the top of the diagram. The interface between the human and
external entities is centered in the diagram, and although its physical nature varies
between the Apollo and modern systems, its role is analogous. The arrows circling
through the interface suggest that the human-automation interactions occur in two waves.
First, there is an initial evaluation, which is a short period of initial connection between
the human and external sources. This is followed by a longer period of refining

interactions that eventually lead to the LPR decision.
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3.1.2 Effect of current lunar landing goals

As emphasized by Smith et al (2008), analyses of the Apollo lunar missions assist
considerations of current lunar landing goals because the functional requirements of the
missions are similar. There are differences which include crew responsibilities and
interactions with the automation. For example, it is assumed that a single pilot will have
the responsibility of the LPR decisions and that the pilot will only interface with the
automation.

It is more difficult to perform a cognitive task analysis on a conceptual task for
future missions than on a task performed many years in the past. Cognitive analysis of
tasks in the design phase must be assembled from designers as well as general human
factors knowledge, but it must continue to be updated as the task evolves. Thus, the
following analysis should be seen as one snapshot along that evolutionary path. The task

with updated elements is shown in Figure 9.

33



143

Swipue] Jeunt jo sisA[euy yse] payepd() :6 231

Human

Previous Knowledge

« Crater Patterns

+ Position of Desired Landing Sites Relative to
Crater Patterns

+ Algorithm Aimpoint Selection Criteria and
Limitations

+ Vehicle Knowledge Including Vehicle Hazard
Tolerance Limits

+ Goals and Values Unique to Specific Mission

Automation

Previous Programming

« Receives Sensor Data as a Digital Elevation
Map (DEM)

* Processes DEM to Find Hazards

* Pre-programmed Algorithm and
Recommendation Selection Safety Criteria

Initial Landing Point Evaluation
With Previous Knowledge

Landing Point Redesignation Decision
« Evaluate Current Landing Aimpoint

+ Decide if Redesignation Needed and if so,
Where to Redesignate

Additional Task with LOA 2+

« Search safety criteria data to confirm choice of
alternate landing aimpoint

Additional Task with LOA 3/3+

+ Apply previous knowledge to
assess landing aimpoint options

+Select Landing Aimpoint with Input Device

Input Device

e

Basic Display Features

« Current Landing Aimpoint Relative to Desired
Landing Site

» Current Landing Aimpoint Relative to
Hazardous Areas

» Display Indication of Current Position
+ Display Remaining Time

« Safety Criteria across Landing Area

Additional Information with LOA 3 and 3+

+ Position of Recommended Aimpoints

« Position of Recommended Aimpoints Relative
to Current Aimpoint

« Position of Recommended Aimpoints Relative
to Visible Hazards

« Safety of Recommended Aimpoints

« Control System converts hand controller clicks
into vehicle commands to redesignate




This analysis has more simplistic results than the Apollo analysis, and this is the
result of much of the design being still undecided. For example, it is unclear what the
human’s expectations of the situation will be as shaped by previous mission phases. It is
also unclear what the effect of the algorithmic aimpoint recommendations will be on the
final LPR decision.

The environmental observations are assumed to be only given to the automation
through an automated sensor, as described in Chapter 2. This data will be different in
nature than the observations gathered by the human from the window described above in
the Apollo CTA. The sensor will be able to offer much more detailed information, such
as specific elevation and distance values, which the human was only able to infer heights
and lengths with a window view of the surface.

Certainly, the analysis shows the criticality of the display as an interface
mechanism. The automation is limited by the capabilities of the sensor and the logic and
calculations within the LPR algorithm. Thus, the clear expression and transmission of this
data must be a substantial design concern in this system. In a way those limitations are
reflected by the fact that the LPR decision will ultimately be made by the operator and
the role of the automation may be seen as advisory and informative. However, the
augmented role of the automation appears to alter the human’s primary focus, and thus
cognitive resources, to primarily evaluation and decision-making and de-emphasizing

information gathering.
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3.2 Decision Making Model

Since the landing point redesignation task is a decision-making process, a
designer would be greatly assisted with knowledge about how that decision is made and
how he or she can provide the correct information in the decision-making process.
Researchers have established that theories of classical decision making do not apply as
well for most human decision making (e.g., Beach & Lipshitz, 1993, and Klein, 1999). At
the same time, research has explored human decision making in applied settings and have
created models of the behavior they found, an area known as naturalistic decision-
making.

Many naturalistic decision-making models exist, as exemplified by Lipshitz
(1993), but not all apply to the LPR decision. The LPR decision may be characterized as
a time-pressured decision made by an expert. As assumed in the above analysis, choosing
a landing aimpoint is not a novel activity, but one approached with previous, albeit
simulated, experiences and a significant amount of prior knowledge. It is more mentally
than physically challenging, and even the physical actions resulting from the decision are
simple, few, and constrained.

The above characterization of the LPR task defines what type of decision-making
model is required. The model should account for a time limitation, which restricts the
amount and type of information that a human can process as part of their decision, as well
as the number or number of mental simulations that the human can make through the
decision-making process when considering alternatives. In addition, the model should be

geared toward well-trained experts who can incorporate long-term knowledge of a
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situation, and the model should focus on the cognitive challenges of the decision, de-
emphasizing the link with physical actions.

One aspect rarely included with most naturalistic decision-making models is the
impact of and interaction with automated systems. It has also been noted that studying the
interaction of expert decision makers with automated decision aids could produce a set of
guidelines for the design of those aids (Mosier, 1994), and that principles should be
extensible to broader categories of automation. One example of naturalistic decision-
making theory (Smith and Marshall, 1994) applied schema theory in the decision of a
decision aid for anti-air warfare. They argue that schema theory is the most appropriate
theory for this domain because other theories, like Klein (1992) and Norman (1993), pre-
suppose that there is a pre-existing structure for experts to recognize.

However, as the LPR task has been described in this text, it has a well-formed
structure, and the resulting action may be viewed as a simple binary decision, either
selecting a new aimpoint or taking no action. Like the application of schema theory, a
decision-making model should not restrict the decision aid design to a single type of

knowledge, strategy, or performance (Smith and Marshall, 1994).

3.2.1 Existing Decision-Making Models

Three decision-making models were chosen that represent the span of naturalistic
decision making models and contain components of the desired DM model set out
previously -- Recognition Primed Decision-making (RPD) (Klein, 1999), image theory
(Beach, 1993), and the dominance search model (Montgomery, 1993). These three

models vary slightly in both their depth and breadth, as well as in their specific details;
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however the significant overlay allows the decision models to be combined to model the
LPR decision.

The RPD model (Klein, 1999) is one of the most widely accepted naturalistic
decision-making models. The model was developed based on observations and interviews
of expert firefighters, and it describes how experts are able to quickly recognize
appropriate courses of action based on recognition of elements of a previously
encountered situation. Recognition has four aspects: goals, cues, expectations, and
actions. In addition, the model includes the evaluation of potential actions through mental

simulation.
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Figure 10: Recognition Primed Decision Making (Klein, 1999)
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The model has many elements that are applicable to the LPR decision. The
fundamental concept of recognition requires an expert. Further, the development of the
model reflects situations in which time was a critical element. However, the model does
not include some key elements of the LPR decision. Decision alternatives are developed
and evaluated sequentially and independently; thus, the situation where a group of
alternatives are presented together is not considered. Certainly, the model excludes
interactions with automation, which is a crucial part of the LPR decision.

Image theory (Beach, 1993) is a decision-making model that emphasizes
decisions guided and constrained by three types of images: values, goals, and plans. Like
RPD, image theory asserts the importance of goals in decision making, and its use of
plans is equivalent to the actions included in RPD. The addition of a value image gives
shape to the four elements of recognition, that is, it allows for one goal to take precedence
over another or for one cue to be more important than all others. Further, image theory
explicitly models a decision between alternatives with so-called compatibility and
profitability tests. The compatibility test assumes that an alternative will be eliminated if
it does meet the decision maker’s three images beyond a threshold. In effect, this test is a
process by elimination, quickly screening out unacceptable options. The profitability test

is then used to choose the best of the acceptable options through an unspecified method.
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The dominance search model of decision making (Montgomery, 1993) proposes a
naturalistic method for evaluating alternatives. The model suggests that decision makers
pass through several phases to redefine goals and alternatives until one option becomes
dominant. The dominance search model has essentially the same structure as image
theory, by first screening out unacceptable alternatives and then evaluating the remaining
options. The main difference is that the dominance search model specifies a specific
method for selecting the best alternative; an unspecified criterion of dominance is
selected to evaluate the remaining options, and that criterion is altered if no dominant
method is found. This method is fairly specific in the decision making process, but it fails
to suggest which categories of attributes are used to pre-screen alternatives, or what

elements compose the criterion of dominance. The combination of recognition-primed
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decision making, image theory, and the dominance search model provide sufficient tools

to develop a decision-making model for the LPR decision, as shown in section 3.2.4.

3.2.2 Effect of higher levels of automation

In this research, increasing the levels of automation above those used during
Apollo is explored. The addition of automation changes the way that the human must
process the goals, cues, expectations, and actions. Now they must contend with not only
the cognitive processes related to the situation, but also seek cues given by the
automation, understand the goals of the automation, determine whether the automation is
conforming to their expectations, and perform the associated actions. Although the search
space is reduced with increasing LOAs, the cognitive processes related to the goals, cues,
and expectations have increased.

With regards to the LPR task, three levels of automation are considered in this
work. As discussed in Chapter 2, Sheridan’s LOA 2 offers a complete set of decision
alternatives. However, automated capabilities can display hazardous landing aimpoints to
the human to reduce this complete set of decision alternatives to a recommended safe set.
The addition of this decision aid encourages a slightly different name for this LOA; thus
a complete set of landing aimpoints with the additional display of hazardous aimpoints is
called LOA 2+.

With LOA 2+, the human must spend time searching for a solution across the
entire space of solutions, so this LOA will require the greatest number of physical
actions. However, the decision is more straightforward when not dealing with additional
automated features, which are present in higher levels of automation. The human does

not need to understand more detailed computations involved in the automation, and his or
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her expectations are only that of the situation and not of other dependencies (such as
expectations of an automated system’s performance or output). Their analysis of existing
or missing cues is also only based on the situation.

As also discussed in Chapter 2, Sheridan’s LOA 3 narrows the selection to a few
decision alternatives. In the lunar landing domain, a LOA 3 means that the automation
recommends landing aimpoints such that only a few are available for the human’s
decision. An extension of LOA 3 is the capability of the automation to rank these landing
aimpoints from best to worst. Although all the automation’s recommendations are non-
hazardous, it is likely that some would require more fuel, are closer to hazards, etc than
others. Thus, displaying a rank order of the aimpoint recommendations is a form of
decision aiding. To distinguish this extension from LOA 3, it is called LOA 3+.

The LOAs 3 and 3+ may have slightly different effects on the DM model. The
rankings are intended to simplify the DM task since it is a single value that combines the
LPR safety criteria, making it simpler to decide based on a single criterion rather than
based on multiple criteria. However, the additional ranking offered by the LOA 3+ may
require the human to compare his or her personal opinions about the recommended
landing aimpoint to the computer’s ordered recommendation. Specifically, the human
will be concerned about whether or not he or she agrees that the top ranked aimpoint
deserves that ranking according to the relevant criteria. If this question is answered
negatively, then the human would need to evaluate if the second ranked aimpoint is truly
the best, and so on. Generating a ranked order of the recommended landing aimpoints and

then comparing this self-rating with the automated rankings becomes a much more
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complex task than only considering self-ratings when the goals of the human and the

automation are not identical.

3.2.3 Effect of goals external to automation

Often times a person considers extra goals in addition to those that are encoded
within the automation. A person is able to integrate the details of an evolving situation
and adapt their goals, emphasizing certain goals more or less as the situation unfolds.
This leads to a mismatch in the goals of the automation and the goals of the person,
which significantly changes the decision since goals are a key portion of the RPD model,
image theory, and the dominance search model. As was discussed in the previous
section, this mismatch increases the complexity of the task for the operator because the
results of the automation are different than what the operator expects.

In the experiment presented in the following chapter, the effect of a goal external
to the automation is further explored. For LOA 2+ the effect of external goals 1s
hypothesized to be minimal. The human will have an additional goal to consider, but he
or she will proceed in the same fashion as when only a single goal was present, assessing
the landing area and searching through the solution space.

However, for LOAs 3 and 3+, the impact of the additional goals is expected to be
more significant because the need for a separate evaluation of the automation’s
recommendations is now important. The automation only uses safety criteria to generate
the landing aimpoints, whereas the recommendations do not incorporate an additional
external goal. It is unclear how this will affect the decision. One possibility is that the
human would use the resulting recommendations to represent the safety goal, create a set

of internal rankings corresponding to the second goal, and combine these rankings to
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decide which aimpoint is the best overall. In this scenario, the rankings should assist the
human relative to having unranked recommendations.

Further, there is no rule that the goals need to be equal; in fact, one goal could be
much more important than the other. Since the algorithm was programmed long before
the mission, the human’s internal goal might be more urgent. As the importance of the
human’s independent goal increases, his or her consideration of the automated
recommendations will change. The rankings according to the safety criteria may become
less relevant, exchanged for the human’s internal rankings. Thus, it is likely that as the
human’s external goal becomes more important, the task will become more challenging,
especially when rankings are present, as the human must decide to what extent to utilize

these rankings and to what extent to rely on his or her estimations.

3.2.4 Decision making model for LPR

The decision making model for LPR offers a general framework, drawing
elements from both image theory and recognition-primed decision making. The model is
shown in Figure 12 below and is based on the results of the cognitive task analysis. The
decision making model for LPR does not attempt to predict which specific decision
process the operator will use; that must be studied experimentally. It does, however,
suggest the important role of the safety criteria which, combined with location, make up

the attributes of each landing aimpoint.
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3.3 Safety Criteria Representation

A graphical representation was created to display the safety criteria used to select
and rank the landing aimpoints in the algorithm. Safety in this case refers to the ability to
safely land at a given point on the surface of the moon. It incorporates the topography of
the terrain, the tolerance of the vehicle in relation to the terrain and the amount of fuel
required to reach the landing point in relation to the amount of available fuel. There are
two parameters representing the terrain: slope and roughness. Whether or not the vehicle
terrain tolerance will be met is determined with a parameter that returns the distance to
the nearest hazard. The representation of these criteria plays double roles in allowing the
human to both view the data considered by the algorithm and make an independent
evaluation about the ranking of the landing aimpoints, for LOAs 3 and 3+.

The criteria are represented as margins instead of the raw values. Representing the
data as a margin provides not only the data value but also the value of the data. If a
particular roughness value is given, for example, it still must be interpreted relative to the
appropriate vehicle threshold for roughness. The slope and roughness margins are
measured relative to vehicle tolerances. The distance to hazard is a natural margin, and
the fuel margin is a well-known margin. Further, by showing the margins rather than the
raw slope and roughness values, the most desirable landing aimpoint is made the most
visually compelling. Thus, displaying the margins makes salient the safety of the landing

aimpoint, aiding the LPR task. The design concept is shown in Figure 13 below.
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Figure 13: Landing Aimpoint Representation

The hazard distance margin is unique in that it has a non-zero minimum threshold.
The largest value of the margin is not when the distance to hazard is zero; that point
actually corresponds to the minimum margin value. However, this non-zero threshold 1s
unclear. For example, in the extreme case, it is clear that if the nearest hazard were
infinitely far away, that hazard will have no effect on the safety of the landing aimpoint.
For the representation design, it is assumed that hazards more than two lunar footprints
away are considered as safe as hazards greater than two lunar footprints away from the
landing aimpoint. The values corresponding to the maximum and minimum margins are

included in Table 2 below.

Table 2: Maximum and Minimum Safety Parameter Margins

Safest Value (Max) Least Safe Value (Min)
Slope Margin 0 degrees 12 degrees (Apollo)
Roughness Margin 0 meters 0.5 meters (Apollo)
Hazard Distance Margin | 24 meters 0 meters
Fuel Margin | (normalized to expected | O (normalized, corresponding
fuel consumption to reach | to the corner of the scanned
center of the landing area) | landing area)
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3.4 Requirements

The requirements that were developed in this research to describe the essential
functionality revealed in the task analysis and decision making model. The display design
used for this experiment was based on the requirements. While the LPR decision is
crucial to lunar landing, similar human-automation decision-making scenarios in other
domains would benefit from parallel principles.

1. The displays should include the following data to enable a user to analyze a
candidate landing site:
a. the landing area including geometry and the position of significant
landmarks
b. the landing aimpoints including position and attributes
c. safety criteria information across the landing area for expert pattern
recognition and decision aiding through trends
d. hazards, minimally showing their position relative to the landing
aimpoints, ideally including elevation, slope, and/or a severity coding
e. existing assets or other pieces of information related to the mission goals
f. time remaining in the task
2. The displays should be graphical and ecological in nature to expedite the task.
3. The displays should not cater to a single decision-making methodology, but

should be adaptable and supportive to a range of methods.
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Chapter 4 Experiment Methods

An experiment was conducted to evaluate the levels of automation and decision
making process of participants using the displays described in Chapter 3. Participants
were given one of the three missions that influenced their goals and priority of those
goals. They then interacted with one of the three levels of automation to decide which
landing aimpoint seemed best to them. At the end of the experiment, the participants and
experimenter reviewed recordings of the participant’s actions, and the participant
described his or her decision-making process as well as the influences of the mission and

level of automation on that process.

4.1 Experiment Objectives

The objectives of this experiment focus on the LPR decision and assessment of
the human-computer collaboration to make this decision. The specific objectives are to
test different levels of automation and scenarios both when the goals of the human and
the computer are the same and when the goals are different. The performance and

decision strategy of the human will be examined.

4.1.1 Level of Automation

In Chapter 3, three levels of decision making automation were shown to be
important in human automation interactions for the landing point redesignation decision.
These three levels have also been shown to influence the human’s decision through the

level of automated decision support. LOA 2+ offers a full decision set to the human,
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showing hazards in the landing area but not restricting the human’s decision. Level 3
automation restricts the human’s decision space to aimpoints recommended by the LPR
algorithm. LOA 3+ additionally computes rankings that order the aimpoints from best to
worst according to the particular criteria used by the algorithm. In the baseline scenario,
the human and algorithm have the same goals and criteria for a successful decision. With
an automated system to assist in the decision, the human will be able to fully utilize the
algorithm to achieve the task. Since the decision is physically expressed when the human
inputs his or her decision, the person’s performance can give insight into the decision
itself. The following hypotheses capture the performance using the three levels of
automation.

Hypothesis 1: the time needed to complete the LPR decision is expected to be
longest for scenarios with level 3+ automation, and shortest for scenarios with level 2+
automation

Hypothesis 2: the quality of the landing aimpoint chosen is expected to be best for

scenarios with level 3+ automation and worst for scenarios with level 2+ automation

4.1.2 Point of Interest

The proximity to a point of interest (POI) is a goal that the human must consider
that is external to the algorithm. Two missions are defined that guide the human’s
valuation of the POI: the geological and rescue missions. In the geological mission, the
human is given a point of interest representing an interesting surface feature; in the rescue
mission, the point of interest is the location of a stranded astronaut. The geological and
rescue missions are example scenarios that put increasing importance on the goal of

proximity to the POI. With level 2+ automation, the human considers the location of the
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point of interest as well as safety, and only the locations of hazardous areas are shown to
support the person’s decision. Since the algorithm does not consider the point of interest
in its aimpoint recommendations, the human and automation have different goals
although they are working together to perform the same task. Thus, the human must now
consider the external goal of the point of interest in addition to understanding the
computer’s recommendations. Although there are only a limited number of
recommendations to consider, the human must decide how to incorporate the point of
interest into his or her decision. Again, the person’s performance can give insight into the
decision itself; therefore, the following hypotheses capture the decision performance
across POI conditions.

Hypothesis 3: the time needed to complete the LPR decision will be longer
compared to the baseline condition, for higher levels of automation when the POI goal is
more important in the decision

Hypothesis 4: the quality of the landing aimpoint, based on safety criteria, is
expected to be lower compared to the baseline condition, for lower levels of automation

when the POI goal is more important in the decision

4.1.3 Decision Strategy

Although the decision performance may be analyzed, the strategy leading to that
decision should also be assessed due to the numerous possible strategies available, as
discussed in Chapter 3. Strategies fall broadly into either naturalistic or rational decision
making and can be further categorized based on different traits. Naturalistic decision
making strategies have been shown to be employed by experts making quick decisions in

the field. Klein and others cite the significant role of goals in their decision making
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models. In contrast, rational decision making begins by an assessment of all possible
decisions followed by careful analysis and comparison. In the scenarios with level 2+
automation, subjects are given a limited amount of time to make their assessment and
decision. In the scenarios with levels 3 and 3+ automation, the decision space 1s
significantly narrowed such that a more rationalistic strategy is more likely. Thus, the
following hypotheses capture the decision strategies:

Hypothesis 5: decision making strategies will be different between scenarios with

different levels of automation

4.2 Participants

Fifteen participants served as the subjects for the experiment. They were Draper
Laboratory Fellows pursuing Master or PhD Degrees, focusing on aeronautical and
aerospace engineering or mechanical engineering. None of the participants had detailed
knowledge of the lunar landing redesignation decision or previous experience with the
display interface or the hazard detection and avoidance (HDA) algorithm. Two
participants had piloting experience, and 11 participants had some experience reading

maps with elevation contours.
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Table 3: Study Demographics

Category N Min Max  Mean  Std. Dev.
Age (years) 15 22 29 24.2 1.8

Pilot Experience (years) 2 1 1 1 0
Computer Experience (hours) 15 20 60 45 11.8
Comp. Exp. With Mouse (hours) 15 175 55 34.5 11.5
Video Game Experience 10

Maps/Elevation Contours Experience 11

Student 15

Gender (M/F) 11/4

4.3 Testhed

The testbed for this experiment was the Draper fixed-based cockpit simulator.
Implementation of the displays components was done by Draper staff. The subjects
interacted with the LPR display with a standard computer mouse. Since only a single
display was required, the experimental setup was configurable for both right and left

handed participants. The test environment was dark, and external noises were minimized.

4.4 Experimental Design

There are two independent variables: the level of automation (LOA) provided in a
given scenario and the point of interest missions. As previous discussed in Chapter 3,
there are three LOAs under consideration: levels 2+, 3, and 3+. Also discussed in Chapter
3, the point of interest missions represent increasing importance of additional information

possessed by the human but not by the algorithm. In the specific example of a point of
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interest, the human’s decision making will be affected, reflecting the changes to the goals
of the situation.

There are two dependent variables to represent performance improvements
between the factor levels of the independent variables. These dependent variables are task
time (the time taken to complete the task), and quality of response (a measure based on
the safety criteria shown in the algorithm representation and the distance to the point of
interest, if present). The task time is measured in seconds and will always be less than or
equal to the decision time limit of thirty seconds. The quality of the response is a
summation of the four normalized safety margins corresponding to the chosen aimpoint.
If a point of interest is present, the distance from the chosen aimpoint to the point of
interest is computed and normalized relative to the farthest possible distance to the point
of interest on the corresponding terrain map. This normalized distance to point of interest
value is then included in the quality summation. The normalized values used to compute
the quality are not averaged because an average would imply a particular weighting

scheme, which may not reflect the participant’s strategy.

4.5 Experimental Task

Sensor data in the form of terrain maps was obtained from Andrew Johnson, an
engineer at the Jet Propulsion Lab (JPL). Slope and roughness thresholds within the
Apollo limits (less than 12 degrees of slope and 0.5 meters of roughness) were chosen for
each of the terrain maps such that the maps would be equally hazardous. A value of thirty
percent hazardous was chosen for the maps after a trial-and-error process found that the
HDA algorithm recommended less than five landing aimpoints if a higher percentage of

hazards were selected.
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The HDA algorithm was run a priori for each of the terrain maps. In the
algorithm, the safety parameters were all equally weighted; however, that fact is not an
algorithmic limitation, but was specifically chosen to simplify the experimental factors. A
point-of-interest was selected for each of the three terrain maps. The point-of-interest was
chosen to be equidistant from multiple recommended landing aimpoints to pose a more
challenging decision to the participants. The recommended landing aimpoints, their

associated rankings (LOA 3+), and the respective points-of-interest are shown below.
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Figure 14: Point of Interest and Recommended Landing Aimpoints for Terrain Map 1
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Figure 15: Point of Interest and Recommended Landing Aimpoints for Terrain Map 2
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Figure 16: Point of Interest and Recommended Landing Aimpoints for Terrain Map 3

4.6 Procedure

The following is an outline of the experimental procedures used for each
participant. A detailed explanation of the procedures follows the outline.

I. Participants received off-line training on display features, including algorithm

representation, and also on the missions related to the point-of-interest.

2. Participants received off-line training on level 2+ automation.

3. Participants completed a paper test ordering five generic landing aimpoints.

4. Participants performed training and trials with level 2+ automation.

5. Participants received off-line training on level 3 automation.

6. Participants performed training and trials with level 3 automation.
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7. Participants received off-line training on level 3+ automation.
8. Participants completed a paper test, as before, but with instruction to order the
landing aimpoints as they believed the algorithm would.

9. Participants performed training and trials with level 3+ automation.

Each experiment lasted approximately an hour. The experiment was a fully
crossed, within subjects design, such that the participants experienced all three levels of
automation with all three POI missions. During the experiment, the levels of automation
were blocked because it was noticed in pre-testing experiments that the algorithm’s
recommendations significantly affected the performance when there were no
recommendations (LOA 2+). In addition, participants would partially memorize the
rankings of landing aimpoints (LOA 3+), and these memories affected the performance in
scenarios without rankings (LOA 3).

For each block of scenarios, corresponding to the three LOAs, the subjects
received the initial training through viewgraphs. Participants proceeded through this
section of training at their own pace and were allowed to ask questions at any time.
Before beginning the experimental trials, participants were also given training scenarios
of each of the experimental conditions for practice using the experimental setup in the
cockpit simulator. The experimenter was required to initiate each of the scenarios, so
generally the subject received 10-15 seconds of rest between scenarios. The participants
were again allowed to ask questions at any time.

The paper tests were given to assess the subject’s understanding of the aimpoint

representations and of the algorithm’s ranking logic. The test consisted of five aimpoints
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on a black background as exemplified in Figure 17. Three versions of the test were given
cach time to allow for repetitions of the data. The subjects completed these tests untimed

and were allowed to use the training slides that they just viewed to aid them.

Figure 17: First Paper test as given to Subjects (left) and Solution (Right)

The experimental conditions were given in the same order for each subject;
randomization was achieved through the randomized ordering of the three terrain maps.
The POI missions were given in the order of (1) no POI, (2) geological POI, and (3)
rescue POL. This order corresponds to increasing importance of the POl in the subject’s
decision-making subjects. Since the same three terrain maps were repeated for each
experimental condition, there was concern that participants would base their decision on
memories of previous trials. However, it was determined from pre-tests that subjects were
truly evaluating each scenario based on the unique conditions of that scenario. This
reflects the strong role that goals play in the decision-making process.

The interview probed the following topics:

e General decision making strategy for each level of automation



e Effect of POI missions on decision making strategy

e Integration of POI goal with safety goal, especially when landing
aimpoints are recommended by the algorithm (LOAs 3 and 3+)

e Preferences of the levels of automation

o Challenges of the decision making process

e Use of display features

o Desired additional features

4.7 Data collection

Data was collected during the experiment in the form of screen recordings and
raw performance data described under the dependent variables. The performance data
included which landing aimpoint was chosen, its correspond