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Abstract

Technological advances in the area of unmanned vehicles are opening new possibilities for creating
teams of vehicles performing complex missions with some degree of autonomy. Perhaps the most
spectacular example of these advances concerns the increasing deployment of unmanned aerial
vehicles (UAVs) in military operations. Unmanned Vehicle Systems (UVS) are mainly used in
Information, Surveillance and Reconnaissance missions (ISR). In this context, the vehicles typically
move about a low-threat environment which is sufficiently simple to be modeled successfully. This
thesis develops tools for optimizing the performance of UVS performing ISR missions, assuming
such a model.

First, in a static environment, the UVS operator typically requires that a vehicle visit a set of
waypoints once or repetitively, with no a priori specified order. Minimizing the length of the tour
traveled by the vehicle through these waypoints requires solving a Traveling Salesman Problem
(TSP). We study the TSP for the Dubins' vehicle, which models the limited turning radius of fixed
wing UAVs. In contrast to previously proposed approaches, our algorithms determine an ordering
of the waypoints that depends on the model of the vehicle dynamics. We evaluate the performance
gains obtained by incorporating such a model in the mission planner.

With a dynamic model of the environment the decision making level of the UVS also needs to
solve a sensor scheduling problem. We consider M UAVs monitoring N > M sites with independent
Markovian dynamics, and treat two important examples arising in this and other contexts, such as
wireless channel or radar waveform selection. In the first example, the sensors must detect events
arising at sites modeled as two-state Markov chains. In the second example, the sites are assumed
to be Gaussian linear time invariant (LTI) systems and the sensors must keep the best possible
estimate of the state of each site. We first present a bound on the achievable performance which
can be computed efficiently by a convex program, involving linear matrix inequalities in the LTI
case. We give closed-form formulas for a feedback index policy proposed by Whittle. Comparing
the performance of this policy to the bound, it is seen to perform very well in simulations. For the
LTI example, we propose new open-loop periodic switching policies whose performance matches
the bound.

Ultimately, we need to solve the task scheduling and motion planning problems simultaneously.
We first extend the approach developed for the sensor scheduling problems to the case where switch-
ing penalties model the path planning component. Finally, we propose a new modeling approach,
based on fluid models for stochastic networks, to obtain insight into more complex spatiotemporal
resource allocation problems. In particular, we give a necessary and sufficient stabilizability condi-
tion for the fluid approximation of the problem of harvesting data from a set of spatially distributed
queues with spatially varying transmission rates using a mobile server.
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Chapter 1

Introduction

1.1 Unmanned Vehicle Systems

Unmanned vehicles, which have been used for decades for space exploration, are becoming im-
portant assets in military operations. The traditional role of unmanned aerial vehicles (UAVs) in
Intelligence, Surveillance and Reconnaissance missions (ISR) is now completed by developments
of their capacities for secure communications and data distribution, and combat missions, among
others [128]. For these tasks, unmanned vehicles offer significant advantages over standard aircraft:
the possibility of cheaper machines that can be deployed in greater number, with better capabilities
(e.g. endurance), and without risk to aircrews. In 2002, the goal of the Air Force was that, "by 2010,
one third of the operational deep strike aircraft of the Armed Forces be unmanned" [9]. Although
important challenges still have to be overcome to allow their seamless operations in the civilian
airspace, they could be used in areas such as environmental research, weather forecasting, border
patrol, traffic monitoring, and petroleum exploration. The Darpa Grand Challenge is perhaps the
best example of the attention that autonomous ground vehicles are receiving as well [42].

The main motivation for this thesis comes from the development of Unmanned Aerial Systems
(UAS). Compared to the parallel research efforts on sensor networks, we can characterize these mo-
bile robotic networks, at least for a reasonably close future, as being composed of tens or perhaps
hundreds of vehicles at most, each possessing important computational and communication capabil-
ities. The current architecture of these systems is currently composed of a ground station collecting
data from the vehicles and supervising their operation. Especially for ISR missions in low threat
environments, an important research topic is to increase the level of autonomy of UAS and their
integration with human operators. Ideally, a single operator should be able to monitor several UAVs
which would automatically optimize their behavior based on the environment encountered and the
data gathered by the overall system. Compared to UAV flight technology, the autonomy technology
is fairly immature and will probably remain the primary bottleneck for future developments.

Increasing autonomy in UAS will require integrating advances in diverse areas such as sensor
fusion, cooperation over communication networks, path and motion planning, trajectory regula-
tion, task allocation and scheduling. In this work, we adopt an approach based on performance
optimization to design trajectories and allocate tasks in UAS. We consider several scenarios, with
a particular emphasis on dynamic environments, which is a less developed area in the available
literature on UAS mission planning.
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Figure 1-1: UAS Mission Performance Optimization

1.2 General Framework

Figure (1-1) describes a general framework in which the controller design problem for unmanned
vehicle systems (UVS) can be cast. The aggregate state of the environment and the vehicles con-
stitutes the "plant", and we can only influence its dynamics by controllers acting on the state of the
vehicles. These vehicles typically provide only local observations of the state of the environment.
The goal is to design controllers so that the vehicles behave as well as possible in the environ-
ment, according to some specified performance measure. There is already a large and fast growing
literature on designing trajectories for UVS and mobile sensors. This could be for an end-point
control problem, when the sensors must reach a final configuration achieving a good area coverage
[32], or a more dynamical task such as adaptive sampling [86, 129]. For other task allocation prob-
lems for UVS, most of the current literature focuses on static problems, usually variations of the
weapon-target assignment problem [115]. Under this approach, an optimization problem is solved
periodically to account for changes in the environment. An exception is the adaptation of the work
on the dynamic traveling repairman problem [18] in the context of mobile robotic networks [110].

A large part of the literature on mobile robotic networks adopts a "bottom-up" approach, fo-
cusing first on a set of constraints that must be satisfied by the controller, such as being distributed
and allowing only local communications. The focus, at least currently, is then more on the tacti-
cal level planning, for example understanding how the group can agree on adopting a given spatial
configuration, and synthesizing interesting collective behaviors from local rules, see e.g. [98, 21].
Since we assume that a central controller is available to the UAS at the ground station, or that all
vehicles have the capacity to communicate with each other, these tactical level issues do not arise
in this thesis. Instead, we focus on mission planning at the strategic level, deciding what action the
system should take at each time and using which vehicle. We do not consider in much detail the

........ K--
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questions related to the potential distributed implementation of the control laws developed. How-
ever, the computational complexity of the proposed algorithms still plays an important role in our
study.

Planning for unmanned systems is a broad area that has been studied by the computer science
and control communities in particular, see e.g. [25, 78, 29] for a very small sample of the existing
research with a focus similar to ours. We review the more relevant literature in the next section
along with the specific problems considered in this thesis.

1.3 Contributions and Literature Overview

1.3.1 Static Path Planning: The Traveling Salesman Problem for a Dubins Vehicle

We start by considering a static environment with a given set of waypoints to be visited by a single
vehicle, with no a priori specified order. In order to increase its autonomy and minimize its cycle
time through the waypoints, this vehicle must then solve a traveling salesman problem (TSP), i.e.,
find the shortest tour visiting these waypoints. This problem is especially important since often the
waypoints have to be visited in a periodic fashion and any improvement on the length of the tour
can have large performance benefits over the long term. Good tours can also be used to design
open-loop (polling) scheduling strategies in a dynamic environment, by additionally specifying the
time to stay at each waypoint location.

To cope with the difficulty of designing controllers for autonomous robots, a layered architecture
such as the one shown on fig. 1-2 is usually employed. A mission planning level typically solves
combinatorial problems such a the traveling salesman problem, and the executive layer is in charge
of designing a trajectory following the commands sent by the mission planner. However, in the
most naive implementation, the decision making level does not have a model of the dynamics of
the vehicle, and the motion planner might have great difficulties executing the plan on the physical
system. Considering the traveling salesman problem for a Dubins vehicle, we show that important
performance gains can be expected by improving the interaction between the decision making level
and the motion planner.

The Dubins vehicle is a useful approximation of the dynamics of fixed wing UAVs. This vehicle
can only move forward with constant velocity in the plane, and has a limited turning radius. At the

* ** 0

I
I



same time, the model is simple enough to have a complete characterization of the optimal point-
to-point trajectories. The Dubins TSP (DTSP) was recently considered implicitly in [124], and
then more thoroughly in [109, 108, 110, 104, 88, 59]. The methods recently proposed to solve this
problem with a deterministic set of waypoints all build on a waypoint ordering computed without
taking into account the dynamics of the vehicle, enforcing in effect the separation of the controller
into distinct layers. Typically this ordering is obtained by solving the TSP for the Euclidean metric
(ETSP). The methods then focus on the design of an admissible trajectory following this ordering.
Note that if the ordering is fixed, designing a shortest curve through the waypoints has a 5.03-
approximation described earlier in [84] and running in linear time.

In chapter 2, we show that the DTSP is NP-hard, justifying the work on approximation algo-
rithms and heuristics. Moreover, we show that choosing the ordering of points optimal for the
Euclidean TSP cannot lead to an approximation ratio better than 92(n). We describe an algorithm
based on choosing the headings or a set of possible headings at each point first, and then solving a
generalized asymmetric TSP to find the ordering. This approach follows naturally from the previ-
ous contributions to non-holonomic motion planning for the shortest path problem, see e.g. [60].
Numerical simulations confirm the improved practical performance of this approach over ETSP-
based algorithms, when the turning radius of the vehicle is of the same order of magnitude as the
inter-waypoint distances.

In fact, there is currently no algorithm that returns, for any instance of the DTSP, a tour within
a factor f(n) of the optimum, for f a function independent of the geometry of the instance. For
all proposed algorithms so far, f scales as the inverse of the minimum Euclidean distance between
any two waypoints of the instance. A complete enumeration of all permutations of the waypoints
followed by the determination of the headings using the linear algorithm of [84] provides a constant
factor approximation, which however runs in time at least (n -n!). We describe another algorithm
achieving a O(logn) approximation ratio, which runs in time O((nlogn)2 -2n) in the worst case.
Obtaining an approximation algorithm running in polynomial time is still an open problem.

1.3.2 Dynamic Scheduling and Bandit Problems

Suppose now that the environment is dynamic and that as time passes, task requests appear at the
location of the waypoints. Several ways of handling the dynamic nature of the associated perfor-
mance optimization problems are possible. A solution to the traveling salesman problem can be
used as a building block for open-loop policies scheduling the activities of the vehicles, in asso-
ciation with periodic re-optimization. The TSP tour is executed periodically and the policy only
decides how much time should be spent at each location. Optimizing the length of these visit times
is performed at the beginning of each cycle, assuming that the state of the environment remains
fixed for the length of the cycle, or even only once at the beginning of the mission based on the
available information such as task mean inter-arrival and service times. Such analysis can be found
in the abundant literature on polling models [123, 138].

In this thesis, we focus instead on closed-loop policies, which continuously determine the be-
havior of the vehicles based on the knowledge acquired so far about the environment. In chapters 4
to 6, we make the assumption that a probabilistic description of the environment dynamics is avail-
able and consider the problem of allocating tasks through time to a set of vehicles performing an
ISR mission. We consider a set of N sites that must be inspected by M vehicles. We assume that the
states of these sites evolve independently as Markov processes with known transition probabilities,
and that rewards can be collected by the vehicles visiting certain sites in certain states. We take as
a starting point the multi-armed bandit problem (MABP), which is one of the few instances of a
dynamic stochastic scheduling problem with an efficiently computable optimal solution [47]. The



MABP corresponds to the case where M = 1 and the states of the sites that are not inspected remain
idle. A more interesting model for our purpose is the restless bandit problem (RBP) [136], which
relaxes these assumptions, but quickly leads to intractable computational problems [101]. Chapter
3 provides background material on the MABP and the RBP.

The thesis contributes to the literature on stochastic scheduling and restless bandit problems,
and the application of these tools to sensor scheduling, in chapters 4, 5 and 6. We consider two
main models relevant to unmanned vehicle routing:

* Dynamic scheduling for problems with partial observations (chapters 4 and 5). The infor-
mation available to an UAS is usually limited to the information gathered by the vehicles
themselves. To develop our understanding of this situation, we consider first in chapter 4
a discrete-time model where the sites evolve as independent two-state Markov chains. This
evolution is independent of the action of the vehicles. A vehicle visiting a site in the first
state receives a fixed reward, and no reward if the site is in the second state. Moreover, at
each period the UAS can only observe the state of the sites where a vehicle is present, and
estimate the state of the remaining sites. Hence there is trade-off between visiting a site to
collect a reward present with high probability and visiting sites to update the state estimates.
For this problem, which is a particular case of the RBP, we can compute in closed form an
index policy proposed by Whittle, and compute efficiently an upper bound on the achievable
performance. Numerical simulations seem to show that the index policy performs very well,
and is possibly asymptotically optimal in the limit N - oo with the ratio M/N constant. Note
that recently the same model was considered by Guha et al. [53]. They showed that a slightly
more general version of this problem is NP-hard, and gave a 2-approximation for the average-
cost version of the problem, using a different policy, which requires more computations. More
references on the use of the MABP and RBP for other sensor scheduling problems are given
in the introduction of chapter 4 and 5.

This problem is a type of sequential detection problem. In chapter 5, we consider an estima-
tion problem where the N sites evolve in continuous time as N independent Gaussian linear
time invariant (LTI) systems. The M mobile sensors are used to keep the best possible esti-
mate of the states of the sites, neglecting the time it takes for them to travel between sites.
It is well known that this problem reduces to a deterministic optimal control problem, which
however is not easy to solve in general [91, 8]. We apply the ideas developed for the RBP to
this problem. In the case of one-dimensional systems with identical sensors, Whittle's index
policy is computable in closed form and experimentally its performance matches the standard
restless bandit bound on achievable performance. We then consider the multidimensional
case, and a generalization to non-identical sensors. We show how the generalization of the
performance bound can be computed by a convex program involving linear matrix inequal-
ities whose size grows as a polynomial of the size of the instance of the problem. We also
build from the computation of this bound a family of new switching policies and prove that
their steady-state performance approaches the bound arbitrarily closely.

* Restless bandits with switching costs (chapter 6). In chapters 4 and 5 we do not take the
path planning problem into account, neglecting the time it takes for a vehicle to switch from
one site to another. This is done in order to obtain clean results; the policies could then
provide heuristics for more realistic scenarios involving switching times or costs. In chapter
6, we take a closer look at the problem and add switching costs penalizing the travel of
vehicles between the sites to inspect. Adding switching costs even to the MABP destroys
the optimality of the classical index based solution. In fact, the basic problem of optimally



allocating a server between two queues with exponential service times and a switching cost
is still open. Chapter 6 adopts a computational approach to the restless bandit problem with
switching costs (RBPSC). Extending a technique previously proposed by Bertsimas and Nifio-
Mora for the RBP [17], we develop a linear programming relaxation for the RBPSC. We
then propose a heuristic built on the information extracted from the relaxation, and provide
computational simulations comparing the performance of the heuristic to the performance
bound given by the relaxation. Note that we do not expect to obtain an a priori approximation
factor for such a general problem, since it is PSPACE-hard to approximate the RBP within
any factor, unless some restriction on the rewards is imposed.

1.3.3 Continuous Path Planning for a Data Harvesting Mobile Server

When we approach the UAS performance optimization problems using the discrete models above,
the considerations about the design of the vehicle trajectories are limited to specifying which sites
should be visited at each period. Moreover, we assume in chapters 4, 5 and 6, as is typically done in
the vehicle routing literature, that a task requested at a site requires a vehicle to be positioned exactly
at that site. For typical missions performed by UAS, such as gathering data, performing remote
measurements, or relaying communications, this requirement should be relaxed. We would like to
refine the models by superposing to the scheduling problems a trajectory optimization problem in
continuous space.

In chapter 7, we focus on the trajectory optimization problem for an UAV acting as a communi-
cation relay or performing measurements remotely. There are N sites transmitting information to the
vehicle, either actively in a communication scenario or passively in a reconnaissance scenario. The
transmission rate for each bit of information depends on the position of the vehicle with respect to
the sites, see fig. 1-3. In a more classical setting, such as in Klimov model or in polling systems, we
would have restricted the server to move between the site locations only. This does not necessarily
provide the best performance in our situation, where any intermediate position is available.

Given the complexity of the computations in chapter 6 for the approach based on Markov deci-
sion processes, we resort to model approximations from the start. We consider a deterministic fluid
approximation to obtain insight into this problem. We provide a necessary and sufficient stabiliz-
ability condition for the fluid model, that is valid for any set of spatial service rate functions. For the
case of two sites, we consider the design of server trajectories to drain optimally a given set of jobs
present at the sites initially when no further job arrivals occur. A feedback form solution is given
for some piecewise linear service rate functions, and we test the policy with good results on a more
realistic model assuming stochastic job arrivals.

1.4 Outline

In chapter 2 we consider the traveling salesman problem for one Dubins vehicle. This is an example
where an automated planner can optimize the performance of the vehicle in an environment as-
sumed to be static. Starting with chapter 3, the environment is assumed to be dynamic and our goal
is to design mission planners that incorporate the information gathered with time. Chapter 3 itself
provides some background on Bandit problems and the associated computational tools. Chapter 4
and 5 consider the dynamic planning problem for mobile sensors using the restless bandit approach,
in a sequential detection scenario and an estimation scenario respectively. In chapter 6 we treat a
RBP with additional switching costs penalizing switching between the sites. This is intended to
capture the path-planning component and avoid excessive site switching in the sequential allocation
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fixed stations to a mobile receiver, with spatially decaying service

policies obtained previously. Finally in chapter 7 we account for a continuous environment where
the typical surveillance tasks of an UAV can be performed remotely and for several sites simulta-
neously. The fluid model approximation that we propose is a flexible tool that could be useful to
obtain insight into complicated UAS mission planning problem. Chapter 8 concludes the thesis and
outlines some research topics for future work.
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Chapter 2

Static Path Planning: The
Curvature-Constrained Traveling
Salesman Problem

A basic tool needed by an UVS operator is a way of generating the trajectory of a vehicle auto-
matically once he has specified a set of target locations that the vehicle must inspect. Often, the
order in which the sites are to be inspected is not specified a priori and we should design the tour
of minimum length visiting the waypoints, or equivalently the minimum time tour if the velocity
of the vehicle is constant. Gains in performance on this problem can have a large impact since the
tour might have to be executed repetitively during the duration of a surveillance mission. It is also a
building block for static scheduling policies where, once an order of the waypoints has been chosen
to minimize the total travel time, we can specify the time to spend at each site for inspection. Later
chapters will consider closed-loop scheduling policies that decide dynamically which target to visit
next based on the information gathered about the environment during the mission.

The static waypoint ordering problem minimizing the travel distance is an instance of the
well known traveling salesman problem (TSP). However, existing algorithms for the TSP must be
adapted to include the dynamics of the vehicles if good performance is to be expected. We consider
the TSP for a type of vehicle subject to differential constraints, namely the Dubins vehicle, which
is a good model for fixed wing UAVs. We first provide a proof of the NP-hardness of the TSP for
the Dubins vehicle, justifying our subsequent work on approximate solutions. We also provide a
lower bound of £ (n) on the approximation ratio achievable by any algorithm following the ordering
optimal for the Euclidean metric, which is an often used heuristic.

2.1 Introduction

In an instance of the traveling salesman problem (TSP) we are given the distances dij between any
pair of n points. The problem is to find the shortest tour visiting every point exactly once. We also
call this problem the tour-TSP to distinguish it from the path-TSP, where the requirement that the
vehicle must start and end at the same point is removed. This famously intractable problem is often
encountered in robotics and typically solved by the higher decision-making levels in the common
layered controller architectures. The dynamics of the robot are usually not taken into account at
this stage and the mission planner might typically chose to solve the TSP for the Euclidean metric
(ETSP), i.e., the distances dij represent the Euclidean distances between waypoints. This can result
in poor overall performance, since the sequence of points chosen by the algorithm can be very hard



to follow for the physical system.
In order to improve the performance of unmanned aerial systems in particular, we need to inte-

grate the high level problem of mission planning and the low level problem of path planning [124].
We obtain a motion planning problem with differential constraints, for which most of the exist-
ing work concerns the shortest path problem, see, e.g. [79]. In theory, the TSP with differential
constraints could be formulated as an optimal control problem and solved numerically, for exam-
ple using a mixed-integer linear program [113]. However this procedure is already complex if the
sequence of waypoints is specified, and so directly adding a hard combinatorial problem to it is
practical only for a very small number of points.

There has been in the past few years some interest in designing tractable algorithms for the trav-
eling salesman problem using simplified dynamic models. In this chapter we consider the traveling
salesman problem for the Dubins vehicle (DTSP). The Dubins vehicle can only move forward in
the plane, at constant speed, and has a limited turning radius. This model can generate paths that are
almost feasible for fixed-wing aircraft, and therefore provides a waypoint sequence that is relevant
for the low-level controller of these vehicles tracking the designed trajectories. At the same time,
for this model we have for example an analytical characterization of the shortest path between any
two configurations, giving hope that efficient algorithms with good performance can be designed to
solve the TSP.

A stochastic version of the DTSP for which the points are distributed randomly and uniformly
in the plane was considered in [108, 110, 41, 59]. Here however, we concentrate on algorithms and
worst-case bounds for the more standard problem where no waypoint input distribution is given. In
that case, most of the existing algorithms seem to build on a preliminary solution obtained for the
ETSP [109, 104, 88]. We refer the reader to our more detailed survey of the existing algorithms
in [82]. Note that we do not impose a lower bound on the minimum Euclidean distance between
waypoints. Since the turning radius of an aircraft is proportional to the square of its velocity and
high-speed operating conditions can be required, in particular in adversarial environments, situa-
tions where the points are densely distributed compared to the turning radius are clearly of interest.
For example, an UAV flying at a velocity of 200 km/h and engaging a turn with a 40 o bank angle
has a turning radius of almost 1 km. In this case the dynamics of the vehicle become really relevant
and require new solution methods not developed for the ETSP.

Contributions of this chapter We first prove that the DTSP is NP-hard, thus justifying the work
on heuristics and algorithms that approximate the optimal solution. On the negative side, we give
some lower bounds on the approximation ratio achievable by recently proposed heuristics. Follow-
ing a tour based on the ETSP ordering or the ordering of Tang and Ozgiiner [124] cannot achieve an
approximation ratio better than 9(n)1. The same is true for the nearest neighbor heuristic, in con-
trast to the ETSP where it achieves a O(logn) approximation [106]. Then we propose an algorithm
based on heading discretization, which emerges naturally from the previous work on the curvature-
constrained shortest path. Its theoretical performance is of the same type as for these shortest-path
algorithms and does not improve on the previously mentioned heuristics. However numerical sim-
ulations show a significant performance improvement in randomly generated instances over other
heuristics when the inter waypoint distances are smaller than the turning radius of the vehicle.

The rest of the chapter is organized as follows. We recall some facts about the Dubins paths
in section 2.2 and reduce the DTSP to a finite dimensional optimization problem. This section
also contains the lower bound on approximation ratios for various heuristics. In Section 2.3 we
show that the DTSP is NP-hard. Section 2.4 describes two algorithms that are not based on a

1 We say f(n) = O(g(n)) if there exists c > 0 such that f(n) < cg(n) for all n, and f(n) = (g(n)) if there exists c > 0
such that f(n) > cg(n) for all n.



solution for the ETSP. The first, based on heading discretization, returns in time O(n3) a tour within

O (min ((1 + ~)logn, (1 + ~)2 of the optimum, where p is the minimum turning radius of the

vehicle and e is the minimum Euclidean distance between any two waypoints. The second returns
a tour within O(logn) of the optimum, but is not guaranteed to run in polynomial time. Finally,
section 2.5 presents some numerical simulations.

2.2 Heuristics Performance

A Dubins vehicle in the plane has its configuration described by its position and heading (x,, 0) E
R2 x (-7r, 7r]. Its equations of motion are

i=vo cos(0), y=vo sin(0), =-u, with u E [-1, 1].

Without loss of generality, we can assume that the speed vo of the vehicle is normalized to 1. p is the
minimum turning radius of the vehicle. u is the available control. The DTSP asks, for a given set of
points in the plane, to find the shortest tour through these points that is feasible for a Dubins vehicle.
Since we show below that this problem is NP-hard, we will focus on the design of approximation
algorithms. An a-approximation algorithm (with a > 1) for a minimization problem is an algorithm
that produces in polynomial time, on any instance of the problem with optimum OPT, a feasible
solution whose value Z is within a factor a of the optimum, i.e., such that OPT < Z < a OPT.

Dubins [38] characterized curvature constrained shortest paths between an initial and a final
configuration. Let P be a feasible path. We call a nonempty subpath of P a C-segment or an S-
segment if it is a circular arc of radius p or a straight line segment, respectively. We paraphrase the
following result from Dubins:

Theorem 2.2.1 ([38]). An optimal path between any two configurations is of type CCC or CSC, or
a subpath of a path of either of these two types. Moreover the length of the middle arc of a CCC
path must be of length greater than 7Cp.

In the following, we will refer to these minimal-length paths as Dubins paths. When a subpath
is a C-segment, it can be a left or a right hand turn: denote these two types of C-segments by L
and R respectively. Then we see from Theorem 2.2.1 that to find the minimum length path between
an initial and a final configuration, it is enough to find the minimum length path among six paths,
namely among {LSL,RSR, RSL,LSR,RLR,LRL}. The length of these paths can be computed in
closed form and, therefore, finding the optimum path and length between any two configurations
can be done in constant time [118].

Given this result, solving the DTSP is reduced to choosing a permutation of the points specifying
in which order to visit them, as well as choosing a heading for the vehicle at each of these points.
If the Euclidean distance between the waypoints to visit is large with respect to p, the choice of
headings has a limited impact and the DTSP and ETSP behave similarly. This has motivated work
using for the DTSP the waypoint ordering optimal for the ETSP [109, 104, 88], and concentrating
on the choice of headings. Theorem 2.2.2 provides a limit on the performance one can achieve using
such a technique, which becomes particularly significant in the case where the points are densely
distributed with respect to p.

Before stating the theorem, we describe another simple heuristic, called the nearest neighbor
heuristic. We start with an arbitrary point, and choose its heading arbitrarily, fixing an initial config-
uration. At each step, we find the point not yet on the path which is closest for the Dubins metric to



the last added configuration (i.e., position and heading). This is possible since we also have a com-
plete characterization of the Dubins distance between an initial configuration and a final point with
free heading [22]. We add this closest point with the associated optimal arrival heading and repeat
the procedure. When all nodes have been added to the path, we add a Dubins path connecting the
last configuration and the initial configuration. It is known that for the ETSP, which is a particular
case of the symmetric TSP, the nearest neighbor heuristic achieves a O(logn) approximation ratio
[106].

Theorem 2.2.2. Any algorithm for the DTSP which always follows the ordering of points that is
optimal for the ETSP has an approximation ratio Rn which is 92(n). If we impose a lower bound E
sufficiently small on the minimum Euclidean distance between any two waypoints, then there exist
constants C, C', such that the approximation ratio is not better than (Cn These statements are
also true for the nearest neighbor heuristic.

Proof Consider the configuration of points shown in fig. 2-1(a). Let n be the number of points,
and suppose n = 4m, m an integer. For clarity we focus on the path-TSP problem but extension to
the tour-TSP case is easy, by adding a similar path in the reverse direction. The optimal Euclidean
path-TSP is shown on the figure as well. Suppose now that a Dubins vehicle tries to follow the
points in this order, and suppose e is sufficiently small. Then for each sequence of 4 consecutive
points, two on the upper line and two on the lower line, the Dubins vehicle will have to execute a
maneuver of length at least C, where C is a constant of order 2zp. For instance, if the vehicle tries to
go through the two top points without a large maneuver, it will exit the second point with a heading
almost horizontal and will have to make a large turn to catch the third point on the lower line. This
discussion can be formalized using the results on the final headings of direct Dubins paths from
[84]. Hence the length of the Dubins path following the Euclidean TSP ordering will be greater
than mC.

On the other hand, a Dubins vehicle can simply go through all the points on the top line, execute
a U-turn of length C' of order 27rp, and then go through the points on the lower line, providing an
upper bound of 2ne + C' for the optimal solution. So we deduce that the worst case approximation
ratio of the algorithm is at least:

nC
Rn > 4

2ne + C'

But we can choose e as small as we want, in particular we can choose e < 1/n for problem instances
with n points, and thus Rn = 92(n).

For the nearest-neighbor heuristic, we use the configuration shown on fig. 2-1(b), for e small
enough. The figure shows the first point and heading chosen by the algorithm. The proof is similar
to the argument above and left to the reader. It essentially uses the fact that points inside the circles
of radius p tangent to the initial heading of a Dubins path starting at a point P are at Dubins distance
greater than 7rp from P [22]. []

Remark 2.2.3. In [124], Tang and Ozgiiner do not use the ETSP ordering, but instead, construct the
geometric center of the waypoints, calculate the orientations of the waypoints with respect to that
center, and traverse the points in order of increasing orientations. It is easy to adapt Theorem 2.2.2
to this case, closing the path of fig. 2-1(a) into a cycle for example.

Remark 2.2.4. Using the notation of the theorem, the "Alternating Algorithm" proposed in [109]
achieves an approximation ratio of approximately 1 + 3.48- [110].
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(a) Waypoint configuration used to analyze the performance (b) Configuration used to analyze the perfor-
of ETSP based heuristics. mance of the nearest-neighbor heuristic.

Figure 2-1: Waypoint configurations used as counter-examples in theorem 2.2.2.

Remark 2.2.5. If the waypoint ordering is decided a priori, for example using the solution for the
ETSP, [84] describes a linear time algorithm to choose the headings which provides a tour with
length at most 5.03 times the length of the tour achievable by a choice of headings optimal for this
waypoint ordering.

2.3 Complexity of the DTSP

It is usually accepted that the DTSP is NP-hard and the goal of this section is to prove this claim
rigorously. Note that adding the curvature constraint to the Euclidean TSP could well make the
problem easier, as in the bitonic TSP 2 [31, p. 364], and so the statement does not follow trivially
from the NP-hardness of the Euclidean TSP, which was shown by Papadimitriou [100] and by Garey,
Graham and Johnson [46]. In the proof of theorem 2.3.1, we consider, without loss of generality,
the decision version of the problem, which we also call DTSP. That is, given a set of points in the
plane and a number L > 0, DTSP asks if there exists a tour for the Dubins vehicle visiting all these
points exactly once, of length at most L.

Theorem 2.3.1. Tour-DTSP and path-DTSP are NP-hard.

Proof This is a corollary of Papadimitriou's proof of the NP-hardness of ETSP, to which we refer
[100]. First recall the Exact Cover Problem: given a family F of subsets of the finite set U, is there
a subfamily F' of F, consisting of disjoint sets, such that F' covers U? This problem is known
to be NP-complete [68]. Papadimitriou described a polynomial-time reduction of Exact Cover to
Euclidean TSP. That is, given an instance of the Exact Cover problem, we can construct an instance
of the Euclidean Traveling Salesman Problem and a number L such that the Exact Cover problem
has a solution if and only if the ETSP has an optimal tour of length less than or equal to L. The
important fact to observe however, is that if Exact Cover does not have a solution, Papadimitriou's
construction gives an instance of the ETSP which has an optimal tour of length > (L + 3), for
some 3 > 0, and not just > L. More precisely, letting a = 20 exactly as in his proof, we can take
0< 3< v 2 +lI-a.

Now from [109], there is a constant C such that for any instance 6 of ETSP with n points
and length ETSP(9J), the optimal DTSP tour for this instance has length less than or equal to
ETSP(J) + Cn. Then if we have n points in the instance of the ETSP constructed as in Papadim-
itriou's proof, we simply rescale all the distances by a factor 2Cn/3. If Exact Cover has a solution,
the ETSP instance has an optimal tour of length no more than 2CnL/3 and so the curvature con-
strained tour has a length of no more than 2CnL/3 + Cn. If Exact Cover does not have a solution, the
ETSP instance has an optimal tour of length at least 2CnL/6 + 2Cn, and the curvature constrained
tour as well. So Papadimitriou's construction, rescaled by 2Cn/3 and using 2CnL/5 + Cn instead of

21 would like to acknowledge Vincent Blondel for suggesting this example



L, where n is the number of points used in the construction, provides a reduction from Exact Cover
to DTSP. O

Remark 2.3.2. It is not clear that DTSP is in NP. In fact, there is a difficulty even in the case of
ETSP, because evaluating the length of a tour involves computing many square roots. In the case of
DTSP, given a permutation of the points and a set of headings, deciding whether the tour has length
less than a bound L might require computing trigonometric functions and square roots accurately.

2.4 Algorithms

2.4.1 An Algorithm Based on Heading Discretization

A very natural algorithm for the DTSP is based on a procedure similar to the one used for the short-
est path problem [60]. It consists in choosing a priori a finite set of possible headings at each point.
Suppose for simplicity that we choose K headings for each point. We construct a graph with n clus-
ters corresponding to the n waypoints, and each cluster containing K nodes corresponding to the
choice of headings. Then, we compute the Dubins distances between configurations corresponding
to pairs of nodes in distinct clusters. Finally, we would like to compute a tour through the n clusters
which contains exactly one point in each cluster. This problem is called the generalized asymmetric
traveling salesman problem, and can be reduced to a standard asymmetric traveling salesman prob-
lem (ATSP) over nK nodes [11]. This ATSP can in turn be solved directly using available software
such as Helsgaun's implementation of the Lin-Kernighan heuristic [57], using the log n approxi-
mation algorithm of Frieze et al. [45], or the 0.8421ogn approximation algorithm of Kaplan et al.
[66].

We proposed this method in [80] and in practice we found it to perform very well, see section
2.5. The type of approximation result one can expect with an a priori discretization is the same as in
the shortest path case, that is, the path obtained is close to the optimum if the optimum is "robust".
This means that the discretization must be sufficiently fine so that the algorithm can find a Dubins
path close to the optimum which is of the same type, as defined in section 2.2 (see [3]). A limitation
of the algorithm is that we must solve a TSP over nK points instead of n.

2.4.2 Performance Bound for K = 1.

Suppose that we choose K = 1 in the previous paragraph. Our algorithm can then be described as
follows:

1. Fix the headings at all points, say to 0, or by choosing them randomly uniformly in [-7, 7r),
independently for each point.

2. Compute the n(n - 1) Dubins distances between all pairs of points.

3. Construct a complete graph with one node for each point and edge weights given by the
Dubins distances.

4. We obtain a directed graph where the edges satisfy the triangle inequality. Compute an exact
or approximate solution for this asymmetric TSP.

Next we derive an upper bound on the approximation ratio provided by this algorithm. If we
look for a polynomial time algorithm, we must be satisfied with an approximate solution to the ATSP
in step 4. There is however some additional information that we can exploit once the headings have
been fixed, which differentiates the problem from a general ATSP. We have the following:



Figure 2-2: A feasible return path for an RSL Dubins path.

Lemma 2.4.1. Let dij denote the Dubins distance from point Xi = (xi,yi) to point Xj = (xj,yj) in
the plane after the headings {Ok}= 1 have been fixed. Then:

dij 4x pmax <+
ij dji-

where E is, for the rest of this section, the minimum Euclidean distance between any two waypoints.

Proof. This result follows from the easy inequality dij > e and from the following fact:

dij < dji + 47p.

To show this, consider the Dubins path from the configuration (Xi, Oi) to (Xj, Oj). We construct a
feasible path (not necessarily optimal) for the Dubins vehicle, to return from (Xj, &j) to (Xi, Oi). On
the forward path, the Dubins vehicle moves along an initial circle (of radius p), a straight line or
a middle circle, and a final circle. For a CCC path, it is easy to find a return path on the same 3
circles, using the small arc on the middle circle (hence such a return path is not optimal). For the
CSC paths, the line is tangent to the following 4 circles: two circles are used as turning circles in the
forward path, and the other two circles are symmetric with respect to the line. We consider return
paths for the different types of Dubins paths, which use these 4 circles and either the straight line of
the forward path or a parallel segment of the same length. The bound is shown to hold in all cases.
An example for an RSL path is provided on Fig. 2-2. OE

With this bound on the arc distances, we know that there is a modified version of Christofides'
algorithm, also due to Frieze et al. [45], which provides a 1 + approximation for the ATSP
in step 4. So to solve the ATSP, we can run the two different algorithms of Frieze et al. and choose
the tour with minimum length, thus obtaining an approximation ratio of min (logn, 3 1 + -))
The time complexity of the first three steps of our algorithm is O(n2). The algorithm for solving
the ATSP runs in time O(n3 ), so overall the running time of our algorithm is O(n 3). To analyze the
approximation performance of this algorithm, we will use the following bound.

Lemma 2.4.2. Let dij be the length of the Dubins path between two configurations (Xi, 6i) and
(Xj, Oj) and let Eij be the Euclidean distance between Xi and Xj. Let ij be the Dubins distance
between the two points after fixing the headings in the first step of the algorithm. If the headings are



chosen deterministically, we have

i < 1 +27rp max 3max(i, dij : C1 dij, (2.1)

whereas if they are chosen randomly, we obtain

E[d1358p] ) dij =: C2 dij. (2.2)Eii
Proof The bound follows from the discussion in section 4.8 of [60]3 , which we briefly summarize.
The headings at Xi and Xj, as fixed by the algorithm, can differ from the given heading Oi and Oj by
3i, 5j E [-r, 7r). This translates into a path difference

idij -dij I p [max {Ai,Bi} + max {Aj,B}] ,

where
i ( sin(6/2) )

Ai = 365i + 7r sin( ) , Bi= 151+4arccos 1- s /2
2 2

and we substitute 6i to 5j to get Aj, Bj. The A and B terms come from the analysis of perturbations
of CSC paths with opposite initial and final turning directions and CCC paths respectively. Per-
turbations of a CSC path with identical initial and final turning directions are dominated by the A
terms. To obtain (2.1), we take the worst possible values, 6i = 6j = - r. Moreover, for the second
part of the max term, the fact that a CCC optimal path must have minimum length 7rp was used.
The bound (2.2) follows from the fact that in the randomized heading assignment, the perturbations
8i, Sj are uniformly distributed in [-7r, 7r), and we can then compute

E[max {Ai,Bi} +max {Aj,Bj}] = 13.58.

The following theorem then describes the approximation ratio of our algorithm.

Theorem 2.4.3. Given a set of n points in the plane, the algorithm described above with K = 1, re-

turns a Dubins traveling salesman tour with length within afactor (min ( + ) logn, (1 + 2))
of the length of the optimal tour More precisely, the deterministic choice of headings guarantees
an approximation ratio of

1+2 pmax 7 min logn, +

Eij 3max(eij, Kp) 2

whereas the randomized choice of headings provides an approximation ratio of

1+ min log n, 3 4p

in expectation. The running time of this algorithm is O(n3 ).

Proof Call OPT the optimal value of the DTSP and o* the corresponding optimal permutation
specifying the order of the waypoints. We have OPT = n-1 d,(i)c*(i+l) +d*(n)*() := L({dij}, 0*).

3It appears that eq. (4.38) and (4.48) in [60] contain a typographical error, namely a p is missing.



Considering the permutation a* for the graph problem (where the edge weights are the distances
{dij}) and 6* the optimal permutation for the graph problem, we have

L( {dij}, *) < L({ d}, a*) < C L( {dij}, a*),

with C equal to Ci or C2 as defined in lemma 2.4.2. We do not obtain the optimal permutation for
the ATSP on the graph in general, instead we use the approximation algorithm mentioned above.
Calling & the permutation obtained, we have:

L({fj}, ) <min, logn, 3 1+ 47E L({J;} *)

< (C min logn, (1 + )))OPT.

El

Remark 2.4.4. For better performance in practice, one should try to run the randomized algorithm
several times and choose the shortest tour obtained.

We note that the bound provided is in fact worse than the bound available for the "Alternating
Algorithm" (AA), see remark 2.2.4. However, this bound does not seem to be tight, and moreover,
experiments suggest that the randomized heading assignment in fact performs significantly better in
general than the AA when the waypoint distances are smaller than the turning radius (see section
2.5).

2.4.3 On the p/e Term in Approximation Ratios

Every approximation ratio mentioned so far contains a term (1 + p /e), where e is the minimum
Euclidean distance between any two waypoints. As seen in theorem 2.2.2, this term is unavoidable
for any algorithm based on the ETSP optimal ordering. It is particularly problematic when way-
points are distributed densely with respect to the turning radius, although it seems in general too
pessimistic for randomly distributed waypoints.

An algorithm that returns tours within a constant factor of the optimum certainly exists. A
naive algorithm can enumerate all permutations of waypoints, and optimize the headings for each
permutation. More precisely, one can use the linear time, 5.03-approximation algorithm of Lee
et al. [84] to choose the headings for a given permutation. Taking the best tour, one obtains a
constant factor approximation, but of course the algorithm runs in time at least n -n! (with the
method described in [73, chap. 1] to enumerate the permutations, we can have an algorithm that
runs in time n . n!).

We would like to understand if one can design better algorithms with approximation ratios that
are independent of E. In this paragraph, we describe an algorithm that improves on the time com-
plexity of the naive algorithm, although it does not achieve polynomial running time and provides
only a O(logn) approximation ratio. The technique combines ideas from [84, 4] to start by finding
chains of points which are almost aligned, as described in lemma 2.4.6.

Assume without loss of generality that p = 1, by rescaling distances. For two points X and
Y such that dist(X, Y) < 2, we can draw two unit circles passing through X and Y, see fig. 2-3.
Following [84], a path from X to Y included in the intersection of the two circles is called a direct
path. We call this region the region of direct paths between X and Y. Otherwise it is called a detour
path. It is also shown in [84] that the length of any detour path is at least r, and that given an



Figure 2-3: A path included in the dark region is called a direct path.

interval I of initial headings for a direct path from X to Y, the set of possible final headings at Y is
also an interval (of size less than 7r), and can be computed from I in constant time. We extend these
definitions to paths going through multiple points. A path going through points P1, P2, ... , Pm will
be denoted (Pl, p2,* .. , Pm). A path (Pl, P2 -* , Pm) is called a direct path if the Euclidean distance
d(pl,Pm) is strictly less than 2, and the Dubins length of the path is at most 7. Otherwise it is called
a detour path. It is clear that all the Dubins paths between two points pi, P j, i < j, in a direct path
(Pl,..., pm) are then direct paths.

Let us fix a point s. We define a relation -s between points distinct from s by p -s q if there
exists a direct path (s, p, q). Let us start with the following preliminary result.

Lemma 2.4.5. The relation -s is a strict order relation.

Proof If p -<s q, then p is in the region of direct paths between s and q, and we see from figure
2-3 that the region of direct paths between s and p is contained strictly in the region of direct paths
between s and q (just let X := s on the figure and rotate the circles around s until they both pass
through p). The property

p -<s q = -(q - s p)

easily follows. For the transitivity property

(P -<s q) A (q -s r) = (p -< r),

we use the same fact to see that p belongs to the region of direct paths between s and r. Then one
can see from elementary geometry that there exists a Dubins path (s, p, r).

Lemma 2.4.6. There is an algorithm that finds a maximum cardinality direct Dubins path through
a given a set of waypoints, in time O(n 2 logn 2 n).

Proof Let us fix a point s. We then choose k other points pi, Pi2, ... Pik, starting with k = n - 1,
until the following procedure succeeds. We want to check if there is a direct path starting at s and
going through these k points. Consider the order relation -<s. This relation can be verified between
two points in constant time since it requires only verifying that a point belongs to the region of fig.
2-3. When verifying the relation between two points in the following, if p -<s, q fails, we always
test if q -<s p. We use this order relation to sort the points Pi, ... , Pik, which can be done in time
klog k. During this process, we stop immediately if we find two points that are not comparable, since
we then know that there is not direct path starting at s through the k points. If the sort succeeds,
this produces a direct path starting at s through the k points. Continuing likewise for each set of
waypoints and all k, we can find a maximum cardinality direct path starting from s in time at most



nlogn 2n. Repeating the procedure for each s, we can find a maximum cardinality direct path of the
instance in time at most n2 log n 2n.

The next lemma is as in the proof of theorem 2.3 in [4].

Lemma 2.4.7. Given a set of n points 9, with optimal Dubins tour r* with length L* such that
L* < 7rK, we can partition YJ into r groups of points {C1,..., Cr}, where the points in each Ci can
be linked by a direct Dubins path, and such that r < Klog n. This partition can be found in time
O((n logn) 2 2n).

Proof By induction on n. The case n = 1 is trivial. Now for the induction step, notice that r*
contains a subpath of cardinality at least n/K with length at most r. So such a subpath must be a
direct path. Using lemma 2.4.6, we can find such a subpath, and we let the points on this path form
C1. Consider now the instance '~ with n' points obtained by deleting the points of C1 from 9.
Clearly the length of the optimal tour for 9' is less than 7rK. Also, Klogn' < Klog [n (1 - i) <

K-
Klogn - 1. By the induction hypothesis, we can find a partition for J' consisting of at most
r/ < Klogn' sets Ci, i = 2,..., r+ 1. Then we add C1. ]

Proposition 2.4.8. There is an algorithm which gives a O(logn) approximation for the DTSP in
time O((nlogn)2 2n).

Proof Given a set of n waypoints, let us call L* the minimum length of a Dubins tour through these
points. Define K = [L*/lr]. By lemma 2.4.7, we can construct a partition of the points into r direct
Dubins paths {C 1,...,Cr}, with r < Klogn. We can close the Dubins paths on the sets Ci to obtain
r cycles of length Li < 27r + 27r =: ci, which we also call Ci. If we can find two waypoints pk E Ck,
Pl E C1, k # 1, with Euclidean distance IIPk - P1 112 < 2, then we can merge Ck and C, to obtain a new
cycle for the Dubins vehicle, of length at most Lk + LI + K2, for some fixed constant c2. A value
of K2 can be obtained from the discussion in [109] for example. We can thus merge all the cycles
which have close waypoints. Finally, we are left with cycles such that points on distinct cycles are
at Euclidean distance at least 2 apart. Choose arbitrarily a point on each cycle and for this subset
of points, compute a Dubins tour using the alternating algorithm. We get a cycle of length less than
2.74 L* joining the previous cycles (take e = 2 in remark 2.2.4). From this configuration, we can
finally create a Dubins tour through all the points using the same cycle merging procedure as in the
algorithm of Frieze et al. for the ATSP [45]: as long as a point has two incoming and outgoing
Dubins paths belonging to 2 different cycles, we can short-circuit one incoming-outgoing pair of
paths, incurring each time at most a fixed penalty K3. At the intermediate step before the alternating
algorithm, the total length of the cycles is at most (Ki + K2)r, and there are at most r of these cycles.
We join them via a cycle of length 2.74L*, and the merging procedure adds a penalty of at most K3 r.
So the length of the resulting Dubins tour is bounded by

(K1 + K2 + iK3 )r + 2.74L* < r4 L* logn.

Hence overall the procedure produces a tour with length O(L* log n). O

2.5 Numerical Simulations

Fig. 2-4 presents simulation results comparing the practical performance of different algorithms
proposed for the DTSP. Points are generated randomly in a 10 x 10 square. All the TSP tours (sym-
metric and asymmetric) are computed using the software LKH [57]. We compare the performance



of the Alternating Algorithm (AA) [109], the nearest neighbor heuristic (NN) of section 2.2, and the
algorithm described in section 2.4.1. AA is based on the optimal Euclidean ordering. It computes
the optimal ETSP, and keeps every other edge in the loop. These edges are straight lines followed
by the vehicle, which must then connect the end of a straight path with the start of the next one by
a Dubins path. Compared to our randomized heading algorithm, we see that the performance of
AA is similar for low point densities. In fact, AA clearly outperforms the randomized heading al-
gorithm if the points are very sparsely distributed and the optimal tour tends to become the same as
the optimal Euclidean tour. However, in scenarios with waypoints densely distributed with respect
to the vehicle turning radius, which arise for example for UAVs in urban environments, or loitering
weapons flying at high speed [70], large performance gains can be obtained by our algorithms over
the AA.

Moreover for the choice of heading, even with just one discretization level, we can use the same
heading as AA, and compute the solution of the ATSP (as in step 4 of paragraph 2.4.2) using this
heading. This clearly always performs at least as well as AA (at least if the TSP are solved exactly),
and the figure shows the significant performance improvement due to only changing the ordering,
as the number of points increases. Also shown on the figure are the performance curves for an
increasing number of discretization levels. With 5 discretization levels, a tour through 100 points
can be computed on a standard laptop in about one minute, requiring the solution of an ATSP with
500 points, well below the limits of state-of-the-art TSP software.

In [41 ], the authors derive the following asymptotic lower bound on the length of the DTSP with
waypoints uniformly distributed in a rectangle:

lim E[LDTSP(n)1 > 3pWH)1/3h m >-(3pWH) /3n o n2/3 - 4
where W and H are the dimensions of the rectangular region, and LDTsp(n) is the random length of
the optimal Dubins tour over n points. We plot this lower bound on figure 2-4 as well. It is then
interesting to evaluate the rate of growth of the tour length with n for the random input case. The n2/ 3

rate of the lower bound is known to be optimal since the algorithm proposed in [110] achieves it.
If we perform a linear regression using the points of figure 2-4, disregarding the instances with less
than 20 waypoints which are too optimistic, we obtain the experimental growths given in table 2.1.
We remark that as the number of discretization levels increases, the algorithm seems to approach
the theoretical optimal growth rate. On the other hand, if we evaluate the bound of theorem 2.4.3,
then ec 1//I-, and so we obtain a growth rate for the randomized algorithm upper bounded by
n: + = n7/ 6 , which seems to be overly conservative in the case of random waypoints. Note that we
do not include the log n factor here because the ATSP was solved exactly in the experiments.

With 10 discretization levels, the rate is close to optimal on such random inputs. Note also the
good asymptotic performance of the nearest neighbor heuristic, which moreover is much easier to
compute than the other heuristics. Although not done for the comparisons on Fig. 2-4, in practice
it is worth including the headings of NN as part of the set of headings used in the discretization
of section 2.4. Finally, Fig. 2-5 shows an example of tours through 50 points computed using the
Alternating Algorithm and our algorithm using 10 discretization levels.

2.6 Conclusion

In this chapter, we have presented new contributions to the study of the curvature-constrained trav-
eling salesman problem. These include a proof that the problem is NP-hard and new algorithms that
are not based on the waypoint ordering optimal for the Euclidean metric. An important remaining
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Figure 2-4: Average tour length vs. number of points in a 10 x 10 square, on a log-log scale. The
average is taken over 30 experiments for each given number of points. Except for the randomized
headings, the angle of the AA is always included in the set of discrete headings. Hence the difference
between the AA curve and the 1 discretization level curve shows the performance improvement
obtained by only changing the waypoint ordering.



Algorithm Dubins tour average length
Alternating Algorithm 1.6 x no.96

Nearest Neighbor Heuristic 2.3 x no.69

Randomized Headings 2.2 x no.76

AA + ATSP with 1 discretization level 2.1 x no0 7 1

5 discretization levels 1.9 x n.7
10 discretization levels 1.9 x no.68

Table 2.1: Experimental growth of the average Dubins tour lengths for the different algorithms,
when the waypoints are distributed randomly and uniformly in a 10-by-10 square.

Alhmng Algorithm

Discretiz2ed Headings

-2 0 2 4 6 8 10 12
1 0 2 4 6 8 10 12

(a) Alternating Algorithm (b) 10 discretization levels.

Figure 2-5: Dubins tours through 50 points randomly distributed in a 10 x 10 square. The turning
radius of the vehicle is 1. The tour on the right is computed using 10 discretization levels.

direction of research is to improve on the algorithms in section 2.4 to obtain a log(n) or possibly
constant factor approximation algorithm running in polynomial time (or to prove that this is not
possible).

Designing good tours for UAVs performing surveillance missions is a basic task that an auto-
mated system should handle for an UAV operator. However, in a dynamic environment, the tours
should be modified as more information is gathered during the mission, in order to improve the per-
formance of these systems. Starting in the next chapter, we will focus on the design of such reactive
systems helping the operator schedule dynamically the tasks of the vehicles.

I I I I I I



Chapter 3

Dynamic Stochastic Scheduling and
Bandit Problems

For the remainder of this thesis we study some dynamic scheduling and path planning problems,
with a focus towards scheduling surveillance tasks for automated vehicles. The environment where
these vehicles evolve is typically uncertain and in chapter 4, 5 and 6 we assume a stochastic model
of the uncertainty.

A model of fundamental importance in stochastic scheduling and appearing in these chapters is
the multi-armed bandit problem (MABP). In particular, the crucial assumption made is that a task to
be performed by the vehicles at a site can be associated to a state that evolves in time independently
of the states of the other tasks at different locations. In the context of aerial surveillance and sensor
management, this means typically assuming that targets evolve independently of each other. As
we will see, this assumption forms the basis of computational simplifications to obtain exact or
approximate policies.

In this chapter, we provide some background material on the MABP and on an interesting
extension, the restless bandit problem (RBP). This material is well known, but we gather results
from various sources, with an emphasis on the computational techniques used later.

3.1 The Multi-Armed Bandit Problem (MABP)

Bandit problems can be posed in various forms, but invariably capture the conflict between taking
actions which yield immediate reward and taking actions whose benefit will come only later. The
terminology "multi-armed bandit problem" comes from the situation where one wants to play op-
timally on several slot machines (also called one-armed bandits). The basic stochastic version of
the multi-armed bandit problem (MABP) in discrete-time can be described as follows. We consider
N projects, of which only one can be worked on at any time period. Project i is characterized at
time t by its state xi(t). If project i is worked on at time t, one receives a reward atri(xi(t)), where
a E (0, 1) is a discount factor. The state xi(t) then evolves to a new state according to given transi-
tion probabilities. The states of all idle projects are unaffected. The goal is to find a policy which
decides at each time period which project to work on in order to maximize the expected sum of
the discounted rewards over an infinite horizon. The MABP was first solved efficiently by Gittins
[49, 47]. He showed that it is possible to attach to each project an index that is a function of the
project and of its state only, and that the optimal policy is simply characterized by operating at each
period the project with the greatest current index. If the state space of each project is finite, these
indices can be calculated efficiently [131, 64, 69, 16]. In fact, the best known algorithms to com-



pute the Gittins index function for one project with n states runs in time O(n3). There are also some
closed form solutions available for a few specific MABPs. Among them:

* if a project is deteriorating, i.e., if a project in state x evolves with probability 1 to states y with
reward r(y) < r(x), then the Gittins' index is just the immediate reward r(x(t)). Hence if all
projects are deteriorating, the simple greedy policy which maximizes the immediate reward
is optimal.

* some deterministic scheduling problems which can be solved by a simple interchange argu-
ment [47].

* some problems with continuous time stochastic dynamics and certain reward structures, see
in particular [67].

Remark 3.1.1. Varaiya et al. [131] showed that it is not necessary to assume Markovian dynamics
for the optimality of an index policy in the MABP, but this assumption allows the efficient compu-
tation of the Gittins indices.

Intuitively, the Gittins index of a project in a given state summarizes the "value" of activating the
project in this state, taking into account the immediate reward as well as the future evolution of the
project. Then if several independent projects are available, we simply activate the one with highest
value. There are several possible equivalent definitions of the Gittins index which correspond to this
intuition. Consider a single project at time t = 0, in state x. Gittins [49, 48] proposed to compare
the project to a standard project, whose activation corresponds to permanently retiring with a final
reward A/(1 - a). Equivalently, the standard project has a single state and produces a constant
reward A at each period. The equivalence is due to the fact that if we activate the standard project in
the second formulation, the initial project stops evolving. Hence, at least as far as optimal policies
are concerned, once we engage the standard project we should engage it forever (see [39, lemma 4.5
p.23] for a more formal proof). The Gittins index v(x) is then defined as the level of reward A for
the standard project which makes the optimal policy indifferent between choosing the initial project
in state x or the standard project. Hence as A varies we obtain a parametrized family of optimal
stopping problems, and A is the value of the parameter pitched just at the right level to make the
optimal policy indifferent between continuing and stopping the initial project in state x.

From this discussion we obtain some algebraic definitions of the Gittins index. We take the
dynamic programming point of view adopted by Whittle [135]. For now, we continue to consider the
problem with one project and an additional standard project. Denote by J* (x; A) the total expected
reward achievable by a policy that chooses optimally the time to retire, when the project is in state
x and the retirement reward is A /(1 - a). Let us suppose that the immediate reward function
r(.) is bounded over the state-space X of the project so that there exist constants A,B such that
A < r(y) < B for all y E X.

Lemma 3.1.2 ([135]). J* (x; X) is an non-decreasing convex function of A for which J* (x; A) = A
for 2 > B.

Proof. The proof of the convexity of J* (x; A) as a function of A is the only non-trivial part. Write
J*(x; A) as

J*(x;) = supE a t r(x(t)) + (3.1)
>0 t=o 1 - a

where the sup is over stopping times r. Hence J* (x; ), is the supremum of linear functions of 2
hence convex in A. [



The Gittins index 1 (x), by definition, is obtained as the minimum value of X for which J* (x; X) =
A/(1 - a), i.e., where both stopping and continuing are optimal. From equation (3.1), we then re-
cover the characterizations of the type used by Gittins,

E [E -j ctr(x(t))] _E [E,',t_- atr(x(t))]
S(x) = sup 1-E = sup E c]

,>1 1-a l E [Et=O

Here on the right-hand side we take the supremum over strictly positive stopping times, considering
policies that continue for at least one more step in state x.

Now going back to the original problem with N projects, suppose we can compute the indices
Xi(x') for each project. Gittins theorem then says that for the MABP, it is optimal to choose at each
period the project which corresponds to the maximal index, choosing arbitrarily among projects for
which ties might occur.

3.2 The Restless Bandit Problem (RBP)

The strong assumptions made in the MABP inhibit its applicability in most sensor management
problems that are of interest in this thesis. For example, if we have more than one vehicle at our
disposal in a surveillance mission, we need to consider extensions to the MABP where M > 1
projects can be operated at every period. It is known that in general, operating the M projects with
greatest Gittins indices is not optimal [47].

More crucially, even with only one mobile sensor platform, modeling a surveillance problem as
a MABP requires assuming that targets that are not observed have their state frozen. This assump-
tion applies for example in target identification problems: if no measurement on a target is taken at
a given period, the posterior probability for that target does not evolve. However, in most scenarios
of interest, such as the ones presented in chapter 4, 5 and 6, this assumption does not hold.

To overcome the shortcomings of the multi-armed bandit model, Whittle [136] introduced the
restless bandit problem (RBP). Whittle himself mentioned the scheduling of aircraft in maritime
surveillance missions as a potential application of the RBP. In this problem, we now allow for M
projects to be simultaneously operated, rewards can be generated for the projects that are not active,
and most importantly these projects are also allowed to evolve, possibly according to different tran-
sition rules. These less stringent assumptions are very useful for sensor management problems, but
unfortunately the RBP is now known to be intractable, in fact PSPACE-hard [101], even if M = 1
and we only allow deterministic transition rules. Nonetheless, Whittle investigated an interesting
relaxation and index policy for this problem, which extends Gittins' and gives yet another interpre-
tation of the Gittins indices in the case of the MABP.

3.2.1 Whittle's Relaxation for the RBP

We now present the ideas proposed by Whittle to solve approximately the RBP, with a particular
focus on the associated computational tools. Whittle's relaxation technique has been used more
recently and apparently independently for sensor management problems by Castafi6n [27, 28], and
investigated in a more general context by Adelman and Mersereau [2] and in Hawkins' thesis [56].
It is in fact a classical technique in control which relaxes hard pathwise constraints into soft integral
constraints.

The RBP can be viewed as a constrained Markov decision process (MDP), with a sample-path
constraint imposing that M out of the N available bandits be activated at each time period. This type
of problem can be hard to solve in general, so we relax the resource constraint to enforce it only on



average. We then obtain a constrained MDP in a more classical form [6]. Moreover, an essential
additional feature of Whittle's relaxation is that it decouples almost completely by project and can
be computed by solving N independent problems, just as in the MABP, followed by a simple convex
optimization problem.

To be more specific, consider N projects evolving as controlled Markov chains over state spaces
4i, i = 1,...,N. The global state space is X := x ... x 3KN. At each time, a project can be either

active or passive. We denote the action for project i at time t by Ai(t) = 0 if the project is passive,
Ai(t) = 1 if it is active, and let the global action vector be A(t) = (Ai(t),...,AN(t)). Associated to
these actions for project i are two probability transition kernels Pi,O and Pi,l that govern the evolution
of the state of project i. We assume that different projects evolve independently. If the N projects
are in state X = (X1,...,XN) and action A is taken, we get for that period a reward

N

r(X,A) = r(Xi,Ai).
i=1

In the discrete-time, discounted reward version of the RBP, we wish to maximize, over the policies
7r, the total reward

Ja(v,7r)= E {J atr(X(t)A(t))} a E (0,1), (3.2)
t=O

where a is the discount factor, v a distribution on the initial states, and Ev the expectation operator
under policy 7r and initial distribution v. This maximization problem is subject to the constraint

N

I {Ai(t)=1} = M, Vt, (3.3)
i=

where 1{.} denotes the indicator function. In the average reward version of the problem, we maxi-
mize

Javg(V, 7r) = lim sup -- E r(X(t), A (t)) (3.4)
T-- t=T

(3.5)

still subject to constraint (3.3). Note that under appropriate conditions on the transition probabilities,
the average reward Javg (v, 7) will not depend on the initial distribution v [103].

The only coupling between the different projects is due to the resource constraint (3.3). Still this
problem does not seem easy to solve, so we relax it to enforce the constraint only on average. It is
clear that (3.3) implies the new constraints

Da(V, 7) = E at l{Ai(t)=O} = 1 (3.6)
t=0 i=1

Davg(V, rC) = lim sup E l{Ai(t)=0} = N - M, (3.7)
T-,m t=0i=l

which are useful for the discounted and average reward problems, respectively.
In the following, we treat the discounted reward problem, but the derivation for the average

reward problem is entirely similar. The first goal is to solve the relaxed problem with constraint
(3.3) now replaced by (3.6), in order to obtain an upper bound on the achievable performance. We



form the Lagrangian

La (V, ;) = Ja (v, 7r) + Da (V, ) N-M-

N , N-M= at  ri(Xi(t),Ai(t)) + X Ai(t)=0} 1- -Ma

= EE at (ri(Xi(t)1Ai(t))-+Xlf{Ai(t)=0})
i=1 t=O

Then the optimal reward for the problem with averaged constraint satisfies

a (v) = sup infLa(v, Z; X) = sup infLa(v, Zc; ), (3.8)
r-En X ~EnIs X

where H is the set of all policies, and Is is the set of stationary Markov (randomized) policies.
Since we allow for randomized policies, a classical minimax theorem allows us to interchange the
sup and the inf to get (see [6])

fa(v) = inf { a(v;') - , (3.9)

where

fa(v; ) = sup E' a' ri(Xi(t),Ai(t)) + {Ai(t)=} , (3.10)
7CElD t=O i=1

and lD is now the set of stationary deterministic policies. For a fixed value of , fa(v; ) can be
computed using dynamic programming, and the possibility to restrict to deterministic policies is a
classical result for unconstrained dynamic programming. Moreover, the computation of ja (v; 2)
has the interesting property of being separable by site, if the initial distribution of the states of the
bandits is the product of individual independent distributions vi for each bandit. In this case we can
solve the dynamic programming problem for each site separately since:

N

Ja (V;)4 -- (vi;,),
i=l

and we have Bellman's equation (under appropriate conditions [14]) for each site separately:

fa(xi;, ) = max{ri(xi,O) +1 + aEi',o [f (yi; 2,) |xi],ri(xi , 1) + aE',' [f (yi; )|,)xi]}. (3.11)

So, for a fixed value of X, we have decomposed the large problem over the cartesian product X into
N similar dynamic programs providing the value functions J (vi; X). This is an important reduction
in computational complexity, similar to what is achieved in Gittins' solution.

For any value of X, we obtain an upper bound

N-M
Ga (V; ) = fa(v; ) -2 (3.12)

1-a

on the achievable performance. We can now finish the computation of the best such upper bound
(3.9) using standard convex optimization methods. Ga(v; X) is the dual function, which we would



like to minimize over 2. G is a convex function of X because it is defined as a supremum of
linear functions, but in general it is not differentiable. We can solve the minimization problem (3.9)
using the subgradient method, although an even simpler method such as a line search would also be
possible. We have the following well-known result, see e.g. [13]:

Theorem 3.2.1. A subgradient of Ga (v; -) at 2 is

N-M N N-M
Da(V, IC) - -a ED i, - (3.13)

1-a =1-a'i=1

where 7r is an optimal policy for the problem (3.10) (which can be decomposed into optimal policies
ir' i for each site), and

D'a (vi, ,i) Ev'  atl{a 0} .
t=o

Note also that the computation of D'a(v , ~') is similar to the one for fai(vi; X): it is a RBP
with passive reward 1 and active reward 0. So if we have a closed form expression of the value
function verifying (3.11), we obtain a closed form expression for the subgradient at no additional
cost. Chapter 4 will provide such an example.

3.2.2 Linear Programming Formulation of the Relaxation

In this section, we assume that the state space X of each project is finite. For bandit i and fixed X,
Bellman's equation is

Jl(xi;)= max + ri(xi, 0)+a E px (yyi;), ri(x, 1)+a pi; (y i ;). (3.14)
yiEY y EXi

This can be solved using linear programming (LP), see e.g. [103]. We obtain, for each i, the
following linear program, whose variables are the {i, }Ix, representing the values of the optimal
reward-to-go:

minimize vCii (3.15)
xi Ez- i

subject to 2/ - a E pa ii > ri(xi,ai) +A{a1,=oi, Vxi E X,ai E {0, 1}.
yiE i

So we can solve, for each X, these N linear programs to obtain the value of the objective in the
subgradient algorithm. Alternatively, we can solve the N problems simultaneously and the mini-
mization over 2 as well via a single large LP, whose variables are the Xi and X. The following LP
corresponds to the direct optimization of (3.9) and its optimum value provides the upper bound on
the achievable performance:

NN-M

minimize{{x} i v i  -a (3.16)
i=1 xiEto - a

subject to i - a p,a, - l{ai=O} ri(xi,ai) , Vi,Vxi E ai E {0, 1}.
yi yi

Remark 3.2.2. The LP (3.16) is the same as the LP (14) in [17], except for the constraint X > 0
there, which is not correct (unless we want to solve instead the problem with at most M bandits



active at each period instead of exactly M bandits). The other slight differences are due to the fact
that in that paper, the authors use equivalently a constraint on the number of expected active bandits,
and A is then a tax for activity instead of a subsidy for passivity.

For the average reward criterion, assuming each bandit is unichain [103], the LP (3.15) and
(3.16) respectively become

minimize {,{ hii I (3.17)
subject to ±+ h - a h -Al {a=} > ri(xi,i) , Vxi E i, ai E {0, 1},

X y i Yi 1ai=oj-c1

and

N

minimize {{}, {hi}), )  - A (N - M) (3.18)
i=1

subject to y +h - a px,Y - l1{ai=O0} > ri(xi,ai), Vi, Vxi E i,ai E {0,1 }.
yiEX

3.2.3 The State-Action Frequency Approach

In chapter 6, we formulate the RBP with switching costs using the state-action frequency approach
to MDPs, which results in the linear programs dual to the ones obtained via dynamic programming
as in section 3.2.2 [103]. This approach goes back to [89, 36, 37], and is based on the properties
of the set of occupation measures achievable by different classes of policies. This material is only
referred to in chapter 6.

Let us start with some general definitions. We will come back to the RBP in a moment. A
(finite, discrete-time) MDP is defined by a tuple {X,A, -, r} as follows:

* X is the finite state space.

* A is the finite set of actions. A(x) C A is the subset of actions available at state x. X =
{(x,a) : x E X,a E A(x)} is the set of admissible state-action pairs.

* 3 are the transition probabilities. xay is the probability of moving from state x to state y if
action a is chosen.

* r: -- R is an immediate reward.

We define the history at time t to be the sequence of previous states and actions, as well as the
current state: ht = (x , al ,x2, a2, ... ,xt-, at-1 ,xt). Let Ht be the set of all possible histories of length
t. A policy u in the class of all policies U is a sequence (ul, u2,...). If the history ht is observed at
time t, then the controller chooses an action a with probability ut (a ht). A policy is called a Markov
policy (u E IM) if for any t, ut only depends on the state at time t. A stationary policy (u E Hs)
is a Markov policy that does not depend on t. Under a stationary policy, the state process becomes
a homogeneous Markov chain with transition probabilities Pxy [u] = EaCA(x) xay u(a x). Finally, a
stationary policy is a deterministic policy (u E lID) if it selects an action with probability one. Then
u is identified with a map u: X -- A.

We fix an initial distribution v over the initial states. In other words, the probability that we
are at state x at time 1 is v(x). If v is concentrated on a single state z, we use the Dirac notation
v(x) = 3z(x). Kolmogorov's extension theorem guarantees that the initial distribution v and any



given policy u determine a unique probability measure IPU over the space of trajectories of the states
Xt and actions At. We denote by EF the corresponding expectation operation.

For any policy u and initial distribution v, and for a discount factor 0 < a < 1, we define the
total expected discounted reward

Ra(v,u)= Eu a1t-lr(X,,A,) (3.19)
t=1

at-1 Er(Xt,At),
t=l

where the exchange of limit and expectation is valid in the case of finitely many states and actions
by the dominated convergence theorem.

An occupation measure corresponding to a policy u is the total expected discounted time spent
in different state-action pairs. More precisely, we define for any initial distribution v, any policy u
and any pair x E X,a E A(x):

fa(v,u;x,a) := (1- a) at-IP(Xt = x,At = a).
t=1

The vector [fa (v, u;x, a)]x,a defines a probability measure fa(v, u) on the space of state-action pairs
that assigns probability fa(v,u;x,a) to the pair (x,a). fa(v, u) is called an occupation measure and
is associated to a stationary policy w defined by:

w(aly) = f(v,u;ya)Vy X, aE A(y), (3.20)

whenever the denominator is non-zero, otherwise we can choose w(a y) E [0, 1] arbitrarily. We can
readily check that

fa(V, u;x, a)
Ra (v, u) = (vu;xa) r(x, a). (3.21)

xEXaEA

Let Qa(v) to be the set of vectors p = [Px,al]x,a E RIl satisfying

yEX CaEA(y) Py,a(5x(Y) - aw-yax) = v(x), Vx E X (3.22)
Py,a >O, Vy E X, a A(y).

Qa (v) is a closed polyhedron. Note that by summing the first constraints over x we obtain Ey,a Py,a =
1/(1 - a), so (1 - a)p with p satisfying the above constraints defines a probability measure. It also
follows that Qa (v) is bounded, i.e., is a closed polytope. One can check that the scaled occupation
measures fa(v, u)/(1 - a) belong to this polytope. In fact Qa(v) describes exactly the set of occu-
pation measures achievable by all policies (see [6] for a proof): the extreme points of the polytope
Qa (v) correspond to deterministic policies, and each policy can be obtained as a randomization
over these deterministic policies. Thus, one can obtain a (scaled) optimal occupation measure cor-
responding to the maximization of (3.21) as the solution of the following linear program:

maximize p~x,a ar(x, a) (3.23)
xEXaEA

subject to [Px,a]x,a E Qa(v)



where p = [pl,a]x,a E RIll is the vector of decision variables.
The corresponding LP in the average reward formulation turns out to be [6]:

maximize Px,a r(x, a)
xEX aEA

subject to [Px,a]x,a E Q,

(3.24)

where Q1 is defined as

SyEXEaEA(y) Py,a(3 x(Y) - J'yax) = 0,VX E X

EyEX EaEA(y) Py,a = 1

Py,a O0, VyEX,aEA(y).

(3.25)

The decision variables Px,a have again the interpretation of state-action frequencies, now in the
sense of the expected long-run fraction of time that the system is in state x and action a is taken. We
skip the mathematical subtleties of the exact definition [6, chap. 4].

Application to the RBP

The relaxed version of the RBP is a MDP with an additional constraint on the average number
of projects activated at each period. This constraint is easy to state in the domain of state-action
frequencies, being just

N N-M

E E li 1-a
i=1lxiE i

where the (1 - a)pii,ai correspond to the state-action frequencies for bandit i. One can then simply
add this constraint to the linear program (3.23) or (3.24), to obtain:

N
maximize pXi,,o ri(xi, O) + Pxi,1 ri(xi, 1)

i=1xiE ri

LaE{o,1} [Pi,ai - ayiEi yixi Pjyi,a, = vi, Vi, Vxi E i

subject to E -,N P.io N-MPi=1 ax 0, Vxi xi xO - -a

Piiai V O, Vi,gxi E Xi,ai E {0, 1 ,

(3.26)

(3.27)

in the discounted reward case, and

maximize Pi,ori(xi,0)+ px,1 ri(xi, 1)
i=lxiE i

SiE~ i iyai i,ai

{subject to o,1} EyiE i Pxi,ai = , Vl

EP1N xe ,i o=N-M

Pxi,ai >_ O , Vi,Vxi E i,a iE {0,1},

(3.28)

(3.29)

in the average reward case. It is straightforward to verify that these linear programs are the dual of
the relaxed LPs (3.16) and (3.18). They can also be directly interpreted as a relaxation for an exact



formulation of the RBP in the space of state action frequencies. This will be treated in chapter 6.

3.2.4 Index Policies for the RBP

Whittle's Indices

Section 3.2.1 explains how to obtain an upper bound on the performance achievable in a restless
bandit problem. It remains to find a good policy for the original, path constrained problem. Pa-
padimitriou and Tsitsiklis have shown that the RBP is PSPACE hard [101] and, as remarked in [52],
their proof in fact shows that it is PSPACE hard to decide if the optimal reward in an instance of
the RBP is positive. Hence in [52], the authors conclude that it is PSPACE hard to approximate
the RBP to any factor. Note however that a slight modification of the problem, say allowing only
positive rewards, makes this argument impossible, i.e., no inapproximability result is available then.

On the positive side, we have heuristics that have performed well in practice. For the modifica-
tion of the MABP where M > 1, playing the M bandits with highest Gittins indices is suboptimal in
general [47], but is often expected to perform well [134]. For the RBP, Whittle proposed an index
policy which generalizes Gittins' policy for the multi-armed bandit problem and emerges naturally
from the Lagrangian relaxation [136].

To compute Whittle's indices, we consider the bandits (or targets) individually. Hence we isolate
bandit i, and consider the problem of computing Jf (xi; ). )u can be viewed as a "subsidy for
passivity", which parametrizes a collection of MDPs. Let us denote by i'(,) C i the set of
states xi of bandit i such that the passive action is optimal, i.e.,

@i(A) = {xi E Xi : ri(xi,0) +. + aEi'[f(yi; h)(x] > ri(xi, 1) + aEi', [,(yi;X)xi])

Definition 3.2.3. Bandit i is indexable if .'(X) is monotonically increasing from 0 to Xi as X
increases from -oo to +, i.e.,

X1 < 2 ( Xi(1) C -i(2) (3.30)

Hence a bandit is indexable if the set of states for which it is optimal to take the passive action
increases with the subsidy for passivity. This requirement seems very natural. Yet Whittle provided
an example showing that it is not always satisfied, and typically showing the indexability property
for particular cases of the RBP is challenging, see e.g. [97, 50]. However, when this property could
be established, Whittle's index policy, which we now describe, was found empirically to perform
outstandingly well.

Definition 3.2.4. If bandit i is indexable, its Whittle index is given, for any x i E i, by

'i(xi) = inf {X E R: xi E . I() }. (3.31)

Hence, if the bandit is in state xi, )i(xi) is the value of the subsidy 1 which renders the active
and passive actions equally attractive. Note that from the discussion in section 3.1, Xi(xi) is exactly
the Gittins' index if the RBP problem is in fact a MABP. Whittle showed that the MABP is always
indexable.

Assuming that each bandit is indexable, we obtain for state (xi(t),..., XN(t)) a set of Whittle
indices 21 (xl (t)),..., .N(xN(t)). Then Whittle's index heuristic applies at each period t the active
action to the M projects with largest index 2i(xi(t)), and the passive action to the remaining N- M
projects.



Note that in the relaxation, we obtained a value X* for the optimal Lagrange multiplier. Then the
optimal policy for the relaxed problem simply considers each bandit independently, and activates
bandit i in state xi if and only if its index i(xi) is greater than X*, by definition of the problem
for bandit i, parameter value )*, and the Whittle index. In this way, the N bandits coordinate their
actions by using the same Lagrange multiplier X * so that on average, only M of them will be active.
Now Whittle's index policy, instead, activates only the M sites with largest indices, respecting the
path constraint. Whittle conjectured that as N - oo with the ratio M/N fixed, the performance per
bandit of the Whittle policy approaches the performance per bandit of the optimal policy for the
relaxed problem, hence is asymptotically optimal and the bound on performance is asymptotically
tight. This conjecture, which is in general not true without further assumptions, has been studied by
Weber and Weiss [133] when all bandits are identical.

3.3 Conclusion

In this chapter we have provided some background material related to certain classical dynamic
scheduling models, namely the MABP and the RBP. The computational techniques and ideas pre-
sented in this chapter will be used repetitively in the next three chapters and specialized to the
context of UVS management.





Chapter 4

Scheduling Observations

In this chapter we investigate a discrete dynamic vehicle routing problem, with a potentially large
number of vehicles and sites to visit. This problem arises in intelligence, surveillance and recon-
naissance (ISR) missions for UAS. Each site is modeled as an independent two-state Markov chain,
whose state is not observed if the site is not visited by some vehicle. The goal for the vehicles is
to collect rewards obtained when they visit the targets in a particular state. This problem can be
seen as a type of restless bandit problem, as defined in chapter 3. Here we compute Whittle's index
policy in closed form and the upper bound on the achievable performance efficiently. Simulation
results provide evidence for the outstanding performance of this index heuristic and for the quality
of the upper bound. A related estimation problem, scheduling the measurements of M sensors on
N > M independent targets modeled as Gaussian linear systems, will be considered in chapter 5.

In this chapter, we do not impose transition costs or delays for switching sensors between targets
or locations. This allows for cleaner results, which can potentially be modified heuristically to
account for switching effects. Since these effects are important in UAS missions to capture the
path-planning component, we address them in more details in chapter 6.

4.1 Introduction

Consider the following scenario. A group of M mobile sensors (also called UAVs or agents in the
following) is tracking the states of N > M sites. We discretize time. At each period, each site can be
in one of two states sl or s2, but we only know the state of a site with certainty if we actually visit it
with a sensor. For i E { 1,..., N}, the state of site i changes from one period to the next according to
a Markov chain with known transition probability matrix Pi, independently of the fact that a sensor
is present or not, and independently of the other sites. Hence we can estimate the states of the sites
that are not visited by any sensor at a given period. To specify P', it is sufficient to give P,' and PI1,
which are the probabilities of transition to state sl from state sl and s2 respectively. When a sensor
explores site i, it can observe its state without measurement error, and collect a reward R' if the site
is in state sl. No reward is received if the site turns out to be in state s2, and there is no cost for
moving the agents between the sites. The goal is to allocate the sensors at each time period, in order
to maximize an expected total discounted reward over an infinite horizon.

Through this model, we capture the following trade-off. It is advantageous to keep a good
estimate of the states of the sites in order to take a good decision about which sites to visit next.
However, the estimation problem is not the end goal, and so there is a balance between visiting sites
to gain more information and collecting rewards. For an application example, one can think of the
following environmental monitoring problem. M UAVs are surveilling N ships for possible bilge



water dumping. A reward is associated with the detection of a dumping event (state sl for a ship).
However, if the UAV is not present during the dumping, the event is missed.

The problem described above is related to various sensor management problems. These prob-
lems have a long history [8, 91], but have enjoyed a renewed interest more recently due to the
important research effort in sensor networks, see e.g. [43, 27, 28, 54, 125, 137]. Close to the ideas
of our work, we mention the use by Krishnamurthy and Evans [74, 75] of Gittins' solution to the
multi-armed bandit problem (MABP) to direct a radar beam towards multiple moving targets. See
also [132, 112, 122]. La Scala and Moran [111] suggest to use instead (for a filtering problem) the
restless bandits model, as we do here. However, in the restricted symmetric cases that [ 111 ] consid-
ers, the greedy solution is optimal and Whittle's indices and upper bound are not computed. In fact,
Whittle already mentioned the potential application of restless bandits to airborne sensor routing in
his original paper [136]. Recently, a slightly more general version of our problem was considered
independently by Guha et al. [52], in the average-cost setting, to schedule transmissions on wireless
communication channels in different states. These authors propose a policy that is different from
Whittle's and offers a performance guarantee of 2. They show that their version of the problem is
NP-hard. The complexity class of the problem considered here is currently not known.

The assumptions made in the MABP inhibit its applicability for the sensor management prob-
lem. Suppose one has to track the state of N targets evolving independently. First, the MABP
solution helps scheduling only one sensor, since only one project can be worked on at each period.
Moreover, even if one does not make new measurements on a specific target, its information state
still has to be updated using the known dynamics of the true state. This violates the assumption
that the projects that are not operated remain idle. Hence in [74] the authors have to assume that
the dynamics of the targets are slow and that the propagation step of the filters can be neglected
for unobserved targets. This might be a reasonable assumption for scheduling a radar beam, but
not necessarily for our purpose of moving a limited number of airborne sensors to different regions.
Whittle's extension to the RBP is useful in this context. His relaxation technique in particular has
been used more recently and apparently independently for more involved sensor management prob-
lems but with similar characteristics by Castafi6n [27, 28]. Whittle's heuristic however has been
rarely mentioned in the literature on sensor scheduling, except in [111]. A reason might be the
difficulty of computing Whittle's indices.

The rest of the chapter is organized as follows. In section 4.2, we give a precise formulation
of our problem. In section 4.3, we provide a counter example showing that the obvious candidate
greedy solution to the problem is not optimal. Our approach is then to compute an upper bound
on the achievable performance by using Whittle's relaxation, and a lower bound by computing
Whittle's policy. The computation of Whittle's indices is non trivial in general, and the indices may
not always exist. An attractive feature of our particular problem however is that most computations
can be carried out analytically. Hence in section 4.4, we show the indexability of the problem and
obtain simultaneously a closed form expression of Whittle's indices. Finally in section 4.5, we
verify experimentally the high performance of the index policy by comparing it to the upper bound
for some problems involving a large number of targets and vehicles.

4.2 Problem Formulation

For the dynamic optimization problem described in the introduction, the state of the N sites at time
t is xt (xi, ... ,xV) E {si,s2 }N, and the control is to decide which M sites to observe. An action
at time t can only depend on the information state It which consists of the actions ao,... ,at_ at
previous times as well as the observations yo,...,Yt-1 and the prior information y_l on the initial



state xo. We represent an action at by the vector (a, ... ,a) E {0, 1 }N, where at = 1 if site i is
visited by a sensor at time t, and a' = 0 otherwise.

Assume the following flow of events. Given our current information state, we make the decision
as to which M sites to observe. The rewards are obtained depending on the states observed, and the
information state is updated. Once the rewards have been collected, the states of the sites evolve
according to the known transition probabilities.

Let p be a given probability distribution on the initial state xo. We assume independence of the
initial distributions, i.e.,

P(x = s1,...,x = s N ) = p(s1,...,s N )

N

= fl(pi )l{s'=sl}(1- pi )1{s'I=s2}
i=1

for some given numbers pI E [0, 1]. We denote by 1 {-} the indicator function. For an admissible
policy 7r, i.e., depending only on the information process, we denote EP the expectation operator.
We want to maximize over the set H of admissible policies the expected infinite-horizon discounted
reward (with discount factor a)

J(p, ) = Ej { atr(xtat)) (4.1)

where
N

r(xt,at) = YRi 1 {a = 1,xt = sl},
i=1

and subject to the constraint
N

1 {a = 1} =M, Vt. (4.2)
i=1

It is well known that we can reformulate this problem as an equivalent Markov decision process
(MDP) with complete information [14]. A sufficient statistic for this problem is given by the condi-
tional probability P(xt It), so we look for an optimal policy of the form 7t (P(xt It)). An additional
simplification in our problem comes from the fact that the sites are assumed to evolve independently.
Let p' be the probability that site i is in state sl at time t, given It. A simple sufficient statistic at
time t is then (p',..., ptN ) E [0, 1]N.

Remark 4.2.1. The state representation chosen here involves a uncountable state space, for which
the MDP theory is usually more technical. However, in our case, little additional complexity will
be introduced. It is possible to adopt a state representation with a countable state space, by keeping
track for each site of the number of periods since last visit as well as the state of the site at that
last visit. In addition, we need to treat separately the time periods before we visit a site for the first
time. This state representation, although potentially simpler from the theoretical point of view, is
notationally more cumbersome and will not be used.
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Figure 4-1: Counter Example.

We have the following recursion:

PIl, if site i is visited at time t and found in state sl.

SPi, if site i is visited at time t and found in state s2.P+1 = (4.3)
fi(pt) := pTP1P + (I - pt)P 1 = P21 + P (P I - P 1),

if site i is not visited at time t.

4.3 Non-Optimality of the Greedy Policy

We can first try to solve the problem formulated above with a general purpose solver for partially
observable MDPs. However, the computations become quickly intractable, since the size of the
underlying state space increases exponentially with the number of sites. Moreover, this approach
would not take advantage of the structure of the problem, notably the independent evolution of
the sites. We would like to use this structure to design optimal or good suboptimal policies more
efficiently.

There is an obvious candidate solution to this problem, which consists in selecting at each period
the M sites for which pR' is the highest. Let us call this policy the "greedy policy". It is not optimal
in general. To see this, it is sufficient to consider a simple example with completely deterministic
transition rules but uncertainty on the initial state. This underlines the importance of exploring at
the right time.

Consider the example shown on Fig. 4-1, with N = 2, M = 1. Assume that we know already at
the beginning that site 1 is in state sl, i.e., pl 1. Hence we know that every time we select site 1,
we will receive a reward R 1, and in effect this makes state s2 of site 1 obsolete. Assume R1 > p2 

1R2,
but (1 - p 2 )R2 > R1 , i.e., R2 -R 1 > p21R 2 . Let us denote p21 := p 2 for simplicity. The greedy
policy, with associated reward-to-go Jg, first selects site 1, and we have

Jg(1,p 2 ) = R 1 + aJg(1, 1 - p 2).

During the second period the greedy policy chooses site 2. Hence

Jg(1, 1 - p 2 ) = (1 - 2 )R2 a(1 - p 2 )Jg(1,0) + ap 2 g(1, ).

Note that Jg (1,0) and Jg (1, 1) are also the optimal values for the reward-to-go at these states, because



the greedy policy is obviously optimal once all uncertainty has been removed. It is easy to compute

R 1 + 1 R 2  R2 + aR 1

Jg(1,0) =2 J1) l 2 .1-a 2  ' 1-a 2

Now suppose we sample first at site 2, removing the uncertainty, and then follow the greedy
policy, which is optimal. We get for the associated reward-to-go:

J(1,p2 ) = p2R 2 +p 2Jg(1,O)+a(1-p 2 )(1,1).

Let us take the difference:

J-Jg = pR2 + ap2 Jg(1,0) + a(1- p2 )Jg(1, 1) -R

- a(1 - p2 )R2  a 2(1 p2)Jg(1,0) - a 2p2 Jg(l, 1)

= p2R2 - R 1 - a(1 - p 2 )R 2

+ aJg(1,0)(p2 - a + ap 2)+ aJg(1, 1)(1 - p2 ap 2)

= p2R2 - R - a(1 - p 2 )R 2

a 2 [(R 1 + aR 2)(2 - a ap 2)

+ (R2 + aR ) (1 - P2 - ap2 )]

Sp2R2 - R 1 - a(1 - p 2 )R2+

a a 2 [R 1 (p 2 _ a + ap 2 + a - ap 2 - a 2p 2 )

+R 2 (ap 2 - a 2 + a2 p 2 + I - p 2 - ap 2)]

Sp 2R 2 - R - a( - p 2 )R2 + ap 2 R'+ aR 2( - p 2 )

=p 2 R 2 _-R 1 + ap 2 R 1 .

For example, we can take R2 = 3R', p2 = (1 - E)/3, for a small e > 0. We get p2R2 = R 1 (1 -
e) < R1 and (1 - p2 )R2 = (2 - e)R 1 > R 1 so our assumptions are satisfied. Then J-Jg = R'(1 -

- 3), which can be made positive for e small enough, and as large as we want by simply scaling
the rewards. Hence in this case it is better to first inspect site 2 than to follow the greedy policy from
the beginning.

4.4 Indexability and Computation of Whittle's Indices

The optimization problem (4.1) subject to the resource constraint (4.2) seems difficult to solve
directly. It is clear however that this is a particular case of the RBP (3.2)-(3.3), and so we will
try in the following to make Whittle's ideas more explicit for this specific problem. Our goal is to
compute the upper bound (3.8), Whittle's indices (3.31), and to test the performance of Whittle's
heuristic against this upper bound.

4.4.1 Preliminaries

In this section we study the indexability property for each site. For the sensor management problem
considered in this chapter, we show that the bandits are indeed indexable and compute the Whittle
indices in closed form. Since the discussion in this section concerns a single site, we drop the super-



script i indicating the site in the expressions of paragraph 3.2. A site has its dynamics completely
specified by P21 and P11. We denote the information state by pt, i.e., Pt is the probability that the
site is in state sl, conditioned on the past. If we visit the site and it is in state sl, we get a reward
R > 0, but if it is in state s2, we get no reward. In the following, we call visiting the site the active
action. Finally, if we do not visit the site, which is called the passive action, we collect a reward
X with probability 1. The indexability property (3.30) that we would like to verify means that as
X increases, the set of information states where it is optimal to choose the passive action grows
monotonically (in the sense of inclusion), from 0 when 2X1 -+ -oo to [0, 1] when X -> +o.

For convenience we rewrite Bellman's equation of optimality for this problem. If J is the optimal
value function, then

J(p) = max { + aJ(fp), pR + apJ(P1) + a(1 - p)J(P21)} (4.4)

where fp := pP + (1 - p)P21 = P21 + P(P11 - P21).

Note that for simplicity, we redefined J(p) := fJ(p; X) in the notation of paragraph 3.2. First we
have

Theorem 4.4.1. J is a convex function of p, continuous on [0, 1].

Proof It is well known that we can obtain the value function by value iteration as a uniform limit
of cost functions for finite horizon problems, which are continuous, piecewise linear and convex,
see e.g. [121]. The uniform convergence follows from the fact that the discounted dynamic pro-
gramming operator is a contraction mapping. The convexity of J follows, and the continuity on the
closed interval [0, 1] is a consequence of the uniform convergence. [l

Lemma 4.4.1. 1. When X < pR, it is optimal to take the active action. In particular, if < 0, it
is always optimal to take the active action and J is affine:

J(p) = aJ(P21) + p[R + a(J(Pl1) - J(P21))]

(aP2 1 + p(l - a))R
(1- a)(1 - a(P 1 -P 2 1)) (4.5)

2. When >2 R, it is always optimal to take the passive action, and

J(p) = (4.6)
1-a

Proof By convexity of J, J(fp) < pJ(Pll) + (1 - p)J(P21) and so for X < pR, it is optimal to
choose the active action. The rest of 1 follows by easy calculation, solving first for J(Pl) and
J(P 2 1). To prove 2, use value iteration, starting from Jo = 0. Ol

With this lemma, it is sufficient to consider from now on the situation 0 < X < R.

Lemma 4.4.2. The set of p E [0, 1] where it is optimal to choose the active action is convex, i.e., an
interval in [0, 1].

Proof In the set where the active action is optimal, we have

J(p) = pR + apJ(P 1) + a(1 - p)J(P2 1).



Consider Pl and p2 in this set. We want to show that for all A E [0, 1], it is also optimal to choose
the active action at p = pp1 + (1 - )P2. We know from Bellman's equation (4.4) that

pR + apJ(P11) + a(1 - p)J(P21) < J(p).

By convexity of J, we have

J(p) <1J(pI) + (1 - P)J(p2)

J(p) <P (piR + apiJ(PUi) + a(l- pl)J(P21)) + (- ) (p2R + ap2J(P1) + al (1-p 2)J( 21))

J(p) <pR + apJ(P1 ) + a(1 - p)J(P21).

Combining the two inequalities, we see that the active action is optimal at p. O

Lemma 4.4.3. The sets of p E [0, 1] where the passive and active actions are optimal are of the form
[O, p*] and [p*, 1], respectively.

Proof This follows from the convexity of the active set and the fact that the active action is optimal
for p> ~ by lemma 4.4.1. O

In the following, we emphasize the dependence of p* on X by writing p*(,). It is a direct
consequence of lemma 4.4.3 and the continuity of J that p*(A) is the unique value where the passive
and the active actions are equally attractive. We also see that to show the indexability property of
definition 3.2.3, it is sufficient to show that p*(A) is an increasing function of AL. Then, Whittle's
index is obtained by inverting the relation A - p* (), i.e.,

)(p) = inf {l: p*((A) = p}.

In the following, we will compute p*(X) explicitly, distinguishing between various cases de-
pending on the values of the parameters P1I and P21 of the bandit. In addition we also compute the
value function J(p) and the following "discounted passivity measure" for each bandit:

D(p, r) = E { latl={}}

This last quantity is necessary to compute the subgradient (3.13). Its computation is a policy evalu-
ation problem. D(p, i ) obeys the equations

D(p, {)= apD(P1,ir,)+ a(1 - p)D(P21 , 7) forp > p*(X)

1 + aD(fp, 7x) for p < p*(A).

These equations can be compared to those verified by J(p) once p*(X) is known:

J(p) = R+ apJ*(P,)+a(1 - p)J*(P21,X) for p > p*(I)

J( + aJ*(fp,) for p < p*().

Hence it is sufficient to have a closed form solution for J(p). To compute D(p, Z), we simply
formally set R = 0 and 2 = 1 in the corresponding expression for J(p). For example, starting
from expressions (4.5) and (4.6), we recover the (trivial) result that D(p, 7j) = 0 if 1 < 0 and
D(p, 7x ) = 1/(1 - a) if A > R.



The next paragraphs of this section present the explicit computations. A summary of the results
is provided in paragraph 4.4.5.

4.4.2 Case P21 = P1 1

This case is very easy. Let P 1 =- P21 = P. We have in particular fp = P, for all p E [0, 1]. Bellman's
equation gives

J(p) = maxf{ + aJ(P), pR + aJ(P)},

so in this case, we have immediately

P*(z)= R

and the project is indexable since this is an increasing function of 2.
To give the complete expression of the value function, we only need to determine J(P). There

are two cases:

1. Case P < (X/R): then J(P) = , and so

- ifp <I
J(P) = a ifp

2. Case P > (X/R): then J(P) = and so

J(p) + aPR -if P <

(P + _)R ifp >

4.4.3 Case P2 1 < P1 1

This case is more involved. We will need to consider the evolution of the state pt.

Case P1 1 = 1, P2 1 = 0

Suppose first P 1 = 1, P2 1 = 0, and recall that 0 < X < R. Then it is clear that J(0) = a/( - a)
and J(1) = R/(1 - a). By continuity of J, at p* we are indifferent between the passive and active
actions, so

J(p*) = 2, + aJ(p*) = p*R + ap*J(1) + a(1 - p*)J(O),

from which J(p*) = A/(1- a) follows, and then

S -(1-a)
p = R- a "

Thus p* () an increasing function of X, since its derivative is

dp* (1- a)R >0
dX (R - a) 2 -
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Figure 4-2: Case I < p* < P 11 . The line joining P2 1 and PIl is p -> f(p). In the active region, we
have pt+l = P1 1 or P21 depending on the observation.

As for the value function, we get

1 ifp <ip*
J(P) p p

S+P R-a if p > p*.

Case 0 < P11 -P 21 < 1

In this case there is a unique point of intersection between the diagonal line and the line which is the
graph of p -* fp, see Fig. 4-2. We will denote by I the abscissa in [0, 1] of this intersection point.
Then I is defined by

I= fl-= P2 1 +I(P 1 -P 2 1),

that is,
P21I=

1- (P1 - P21 )'

which is well defined as long as we are not in the case of the previous paragraph. Note that P21 <
I < Pl . Also, we have

fnpl - fnp2 = (P- P2 ) (P11 - P2 1)n , V P1 P2 E [0, 1],

and in particular

fnp- fnI= fnp - I = ( p -I) (P1 - P21) n.  (4.7)

So as long as JP1I - P211 < 1, as in this paragraph or in paragraph 4.4.4, the distance between fnp
and I decreases strictly at each iteration and fnp -+ I as n --+ oo.

Case p* > 1:
Assume first that p* > I, and consider p belonging to the passive region [0, p*]. From (4.7) and

the assumption 0 < P11 - P21 < 1, we obtain a sequence of iterates fnp which remains in the passive
region while converging to I. Hence we get, since J is continuous at I,

J(p) = ) + aJ(fp) = + + aJ(f 2 p) =
1-a



So for instance, J(P21) = J(p*) = - since P2 1 < I < p* implies that P2 1 belongs to the passive

region.

Now for p > p*, we have

J(p) = pR+ apJ(Pil) + a(1 - p)J(P21) = pR + apJ(Pl 1) + a(1 - p)

There are two subcases. First if P1 1 < p*, then we get

aX
J(p) = pR +

1-a

Continuity of J at p*, gives p*R + = and so

p*() = R-. (4.8)

This is the expression in the case ! > Pi1.

It is also possible that P11 > p*. Then

J(Pi1) = P1R+ aPJ(P) + (1 -J(Pi)+ al -P 1)J(P21),

which gives
P11R+ a(1 -P11) "

J(PI1 ) = 1 -
1 - aP1 1

Using the continuity of J at p* and the fact that fp* < p*, we get

*R P 11R + a ( 1 - P 11)  0,

p R1 - aPjj 1-a

which after simplifications gives

p*(-) = a ) (4.9)
R- aX

Then the condition p* < Pul translates to ! < Pi1, which is consistent. As before, it is easy to see
that p* is an increasing function of 2L in this subcase. This completes the case p* > I.

Remark 4.4.4. The expressions (4.8) and (4.9) give a continuous and monotonically increasing
function p* () on the interval [X1I,R] = [iI, PR] U [P 1R, R], where XI is the point where p* (XA) = I,
with p* (XI) given by (4.9). This can be rewritten

P2 1R

I - (P11 - P21) (1 + a - aP11)

Summarizing the results above, we have then

1. If R > X > P11R, then p*(X) = L and

-a ifp<p*
J() = pR + ; ifp>p*.



2. If PlIR > ) > 1X, then p*(A) = 1-a) and

= 11-a ifp < p*
J(p) { a p.+ R-a , if p > p*.

Case p* < I:

This subcase is the most involved. We have by continuity of J at p*:

J(p*) = + aJ(fp*) = p*R + ap*J(P i) + a( - p*)J(P2 1).

Since p* < I we have fp* > p*, i.e., fp* is in the active region. So we can rewrite the second

equality as:

+a((fp*)R+a(fp*)J(Pll)+a(1- fp*)J(P2 1)) = p*R+ap*J(P1)+a(1-p*)J(P21). (4.10)

Expanding the left hand side gives

J(p*) = + a2 J(P 2
1) + a(P 2 1 +p*(Pll -P 2 1))[R + a(J(P1) -J(P21))]-

It is clear that PI1 > I and since I > p* we have

J(P11) = PlR + aPIJ(Pll) + a( - Pll)J(P21 ),

soP) P IR + a(l- Pl )J(P 21)
J(P1l) = I - aPj1

which gives
(P1) -(P1) R - ( - a)J(P21)

J(Pll)-J(P21) I - aP1 1

and

R + a(J(P ) - J(P21)) - ( - )J(P2) (4.11)
1 - aP1 1

We now use (4.11) on both sides of the continuity condition (4.10):

2jl(P R - a(1 - a)J(P21) R - a(1 - a)J(P21)
+ a2 j(P21) + a (P21 +p*(P -P21)) -1-aPJ21 = aJ(P2 1) +P* [R -(1-)J(aPl ]

We obtain:
a[ R-a)J(P)a(1-a)J(P2 1)]a(1 - a)J(P21) + P21 R1-aP2,

P = R-a(1-a)J(P21)(1 -a(P 11 -P 2 1)) 1-aP 2 )

We can rewrite this expression as

S(1 - a(Pl - P2 1)) [X - a(1 - a)J(P2 1)] + aP2 1 (R - M)
(1 - a(PI I- P2 1)) [R - a(1 - a)J(P2 1)]

or
*- (R - A)(1 -aP 11 ) (4.12)

(1 - a(PI1 -P21)) [R - a(1 - a)J(P21)]
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Figure 4-3: Case P2 1 < P* < I

So essentially the problem is solved if we can have an expression for J(P 21). The case where

p* < P21 can be solved the most easily. Then

J(P 2 1) = P21R + aP21J(P11) + a(1 - P21)J(P 2 1),

which, combined with the similar equation for J(P ), gives:

R(PI1- a(P 1 1 -P 2 1))
J(P 1 ) = (4.13)

(1- a)[1 - a(PI1 -P21)]
P2 1R

J(P2 1) =(1 - P2 1 ) (4.14)
(I - a) [I - a(PI1 - P21)]

After some calculation, we get:

R

and this is valid for the case p*(,) < P2 1, i.e., X < P2 1R. Moreover, in this case we obtain after
some additional calculation:

R(1- a)
R+ a(J(P11) -J(P 21 )) a(P -P 2 )'

which will be useful in the expression of J(p).

Now from figure 4-3, if P2 1 < p* < I, it can be seen that the iterates fkp21 , initially in the passive
region, eventually reach the active region and at that point one can evaluate J(P2 1). The number of
iterations however depends on the position of p*.

It is easy to see that

1 - (P1 - P21)n+1
f"P21 = P21 -

1-(P1 -P 2 1)

The rest of the analysis, computing J(P2 1) for P2 1 < p* < I, will distinguish different cases by the
unique integer k such that:

fkp2 1 < P* < fk+1P 2 1 .



By definition of p* separating the passive and active regions, we have:

1 - a k + 1
J(P21) = +a +a 2  +.. k++ ak k 2l1) = + (fk+ lP21)1-a

(4.15)

J(fk+lP21) = (fk+lp21 )R+ a(fk+P21)J(P1) + a(1 - fk1P21 )J(P 21 )

= aJ(P2 1) + (fk1 P21) [R+ a(J(P ) - J(P2 1))]

+1 R - a(1 - a)J(P21)
= aJ(P2 1)+ (fk+ 21) 1 - (4.16)

1 - aP11

where the last line was obtained using (4.11). Solving this system of equations, we obtain

1 (1 - ak+1)(1-aPl)X +ak+l(1-a)(fk+lP21)R
1 - a (1 - ak+2)(1-aP11)+ak+2(1 - a)(fk+1P21)

We can now use this expression in (4.12). As an intermediate step, we compute:

(1 - aP11)[R(1 - a k + 2 ) - (a - ak+2)]
R- a(1 - a)J(P21) - (1 - aPl1 )(1 - ak+2 ) + ak+2 (1 - a)(fk+lP2 1)

Then we obtain:

(R - X) [(1 - aP 1)(1 - ak+) + k+2(1 - a)(fk+lp21)1

(1 - a(PI1 - P21)) [R(1 - a k+ 2 ) - 2(a - ak+2)]

We rewrite this expression in a more readable form as:

p* = 1 -Ak C (4.18)
BkR - Ck1I

(1 - aP 1)(1 - ak +2 ) + ak+2 (1 - a)(fk+1 P 21)
Ak

1 - a(P11 -P 21)

Bk = 1 - ak + 2

Ck = a - k + 2

The condition

fkp 21 < P* < fk+1 2 1

can then be rewritten as

Ak - (1- fkp21)Bk X Ak- (1- fk+lP2 1)Bk<- < (4.19)
Ak - (I - fkP21l)Ck R - Ak - (1- fk+lP21)Ck(

As a sanity check, we can verify that the successive thresholds agree:

Ak - (1- fk+lP2 1)Bk Ak+l -(1I- fk+lP2 1)Bk+l

Ak - (I - f+lP2 l) Ck Ak+1 - (1 - fk+lP2 1)Ck+l

Taking the cross-products, this amounts to verifying:

(1 - fk+lP21) (Bk+1C k - BkCk+l) + Ak(Ck+l - Bk+l) + Ak+1 (Bk - Ck) = 0.
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Figure 4-4: Plot of p*() for P2 1 = 0.2,P 1 = 0.8, a = 0.9.

The left hand side gives

(1 - fk+1 p21)[a( - ak+3 )((1 - ak+) - a( - ak+2 ) 2 ] + (1 - a) (Ak+1 - Ak)

k+2 )2 (l fk+lp ) 1 - aPll)k+2(1 - a)+ k+2(1 - a)(afk+221 fk+ 2 1)

k+2 +1 11) + aP21 + 11 - P21) - 1 fk+1 P21
a( 1-a(P11-P 2 1)[ (1-aPll)+ aP2 1 + [a(Pll -P 2 1 ) - 1]fk+lp2 11

=0.

On each interval, we verify that p* is an increasing function of A'. We just compute

dp* - (BkR- Ck ) + Ck(R- X)
= -Ak

dA (BkR - Ck )2

dp* (1 - a)R
= Ak > 0.

d X (BkR - CkX) 2 -

Remark 4.4.5. It can be verified that the first threshold also coincides with the previous case studied,
that is:

Ao - (1 - fP 2 1)Bo
SP21

Ao - (1 - fP 2 1)Co

Also, as k -- oo, we can easily verify that the thresholds in (4.19) converge to A;/R.

A plot of p* (X) is given on Fig. 4-4 and 4-5. To conclude this case, i.e., A < XI, let us summarize
the computational procedure.

1. If A < P2 1R, then p*(A) = . J(P 11 ) and J(P 2 1) are given by (4.13) and (4.14) respectively.

2. If P21R < A < XI, we have first to find the unique k such that the condition (4.19) is verified.
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Figure 4-5: Plot of p*(A) for P2 1 = 0.2,Pl I = 0.8, a = 0.9. The vertical lines show the separation
between the regions corresponding to different values of k in the analysis for p* < I. I, is an
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Once this is done, p* is given by (4.18), J(P21) is given by (4.17), and J(P1 1 ), or equivalently
R + a(J(P11 ) - J(P 2 1)), is given by (4.11).

With this, we have all the elements to actually compute J(p) for given values of p and A. When

p > p*, we have J(p) = aJ(P21) + p[R + a(J(P1) - J(P21))] and so we are done. When p < p*
however, to finish the computation we need to proceed as in the computation of J(P21). We first find
the unique integer 1 such that f 1p < p* < fl+1p (it exists since here p* < I and ftp -+ I as 1 - ox).
Let s = P1 1 - P2 1. Since

1 - st
ft p = P2 1  + p = (1 - s ) + psl = I - l - p),

1-s

we obtain

1= F ln I -p 1.

Then we have

1 - al+ l

J(p) = 1 - +2J(P 2 1)+ a'l+(f+lp) [R + a(J(Pil) -J(P 21))],1-a

see (4.15), (4.16).

4.4.4 Case P21 > P11

Case P1 1 = 0, P21 = 1

As in section 4.4.3, we start the study of the remaining case P2 1 > P11 with P1 1 = 0, P2 1 = 1. Then,
because the active and the passive actions are necessarily optimal at p = 1 and p = 0 respectively

/
~1~

/
/

/

-I--
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,il

G



by lemma 4.4.3, we have

J(1) = R+ aJ(0), J(0) = +aJ(1),

which gives

R+ a83 3 + aR
J(1) = - 2  J(0)= 1-a 2  (4.20)

1-a2 1-a2

and from which we get

R + a (J(O) - J(1)) =
1+a

Now by continuity of J,

J(p*) = X + aJ(1 - p*) = p*R + ap*J(O) + a(1 - p*)J(1), (4.21)

and using the preceding relations in the right-hand side

R+ a , R + ao R+a ( al + a l2
J(p*)=a + p*R+a - - - + p* . (4.22)

I - a2 P +a 1+t 1-a

Now if we have p* > 1/2, then 1 - p* < 1/2 < p* is in the passive region, and so

J(1 - p*) = a + aJ(p*).

Reporting in the first part of (4.21), we obtain

J(p*) = 1-a

which, with (4.22), gives

X(l + a - a 2 ) - aR
(1 - a)(R+ aX)

p* is an increasing function of X since one can verify that

dp* (1 - a 2 ) > 0.
dX (1 - a) 2 (R + a1)2

Then the condition p* > 1/2 translates to

32 1+a 1

R - 2+a-a 2  2-a

In the case p* < 1/2, (1 - p*) > 1/2 > p* is in the active region, so we obtain

J(1 - p*) = (1 - p*)R + a(1 - p*)J(O) + ap*J(1)

= R + aJ(O) - p* [R + a(J(0) - J(1))]

Reporting in (4.21), we get

.+ a(R + aJ(O) - J(1)) = p*( + a)[R + a(J(O) - J(1))]



which gives after easy calculation

R+ ai

This is again an increasing function of X and the condition p* < 1/2 can be written

1
R 2-a'

which is coherent (the junction between the two cases happens when p*(X) hits 1/2).
Now for a given value of p and X,, we also want to compute J(p). Comparing ,/R to 1/(2- a),

we can deduce the correct formula for p*. Then if p > p*, we are done, using the values of J(O) and
J(1) in (4.20). We obtain in this case:

J(p) =R+aX (a + p(l - a))1- a 2

If p < p*, J(p) = Z + aJ(1 - p), and we distinguish between two subcases. If (1 - p) < p* (which
is only possible if p* > 1/2), i.e., 1 - p* < p < p*, then

J(p) = a1-a

Otherwise, if (1 - p) > p*, i.e., p < 1 - p* and p < p*, then

J(p) = X + a[(1 - p)R + a(1 - p)J(0) + apJ(1)].

and this gives after simplifications

J(p) (1 - a 2 p(1 - a)) +aR(1 -p(l - a))
1 - a2

Case 0 < P2 1 -P 1 1 < 1

The discussion related to the fixed point I at the beginning of section 4.4.3 is still valid here, in-
cluding equation (4.7) showing the convergence of the iterates fnp to I since we assume in this
paragraph that 0 < P2 1 - P11 < 1. These iterations land now alternatively on each side of I.

Case p* > I.
In the case p* 2 I, the iterates fnp* converge to I while remaining in the passive region. So we

immediately get

J(p*) = 1-a

By continuity of J at p*, where the active action is also optimal, we have

= p*R + ap*J(P 1) + a(1 - p*)J(P21),1-a

and this gives us

1-a aJ(P2 1)

R + a(J(P1) - J(P21)) (4.23)

We now compute J(Pi1) and J(P21) in the different cases, depending on the position of p*. Note



first that P1 1 < I necessarily, so P1 is in the passive region by our assumption p* > I. Hence

J(PI) = 2 +aJ(fPlI).

fP11 is greater than I however and can fall in the passive or the active region. If fP1 < p*, it is easy

to see that the iterates fnP I will remain in the passive region, and so we obtain

J(P1) -a

If fP11 > p*, we get

J(fP I) = (fP)R + a(fPj )J(Pl) +a(1 - fP )J(P21).

We can now have p* greater or smaller than P21 . However note that necessarily I < P2 1 and so

if P21 < p*, the iterates fnp2 1 remain in the passive region and

J(P21) = 1-a

Otherwise if p* < P21, then

J(P 2 1) = P21R + aP 2 1J(P1 ) + a(1 - P2 1)J(P 2 1),

and so

R + aJ(P11)
J(P21) = P2 J(P 1)

1 - a+ aP 2 1 '

R+ aJ(PI)
R + a(J(PI ) - J(P 21)) = (1 - a) aJ(P 1)

I - a + aP2 1

We can now finish the computation of p* using (4.23). Note first that

fP1 1 = P21 - P1 1(P21 - P11) < P21.

Hence we will subdivide the interval I, 1] into the union [I,fP11] U [fPI1,P21] U [P21,1]. For p* E

[P21 , 1], J(P 11 ) = J(P 2 1) = /(1 - a) and so

Clearly then p*(X) = P2 1 if and only if X = P2 1R.

For p* E [fPl,P211],

ii R+aJ(PI1)
- aP 2 1 R+aJ(P)

1-a+aP21 J(P11) = S-a

This gives after substitution
S(1 + aP 2 1) - aP2 1R

P = R(1 - a) + a

We verify easily that d- is an increasing function of Z and we check that this expression gives again



p*() = P21 if and only if X = P21R. As for the other side of the interval, we have p*(l) = fP1i if

and only if
RP21 - (1 - a)P (P2 1 -P) (4.24)

S1 + aP1 (P21 - PI 1)

Finally we consider the case p* E [I, fPI1]. There is a bit more work to get an expression for

J(P 11). We have

J(P 1)= a + aJ(fP11)

J(Pil) = + a2J(P 21)+ a(fPll)[R +a(J(Pl)- J(P21))]

R+aJ(Pl) a2p 21 +a(1- a)(fPjl)].
1 - a+ aP21

This implies immediately

RaJ(P)R+ (RaJ(P+a) [a3p21 + a2(1 -a)(fPll)
1 - a- + aP21

(R + a2)(1 - a + aP2 1)
R+ aJ(P1) =

(1 - a)(1 + aP21 + a2Pl (P21 - 1))

Finally this gives

X(1I +a(1 + a)P 21 - 2( fp1)) - aP 2 1(R+ a/)
(1 - a)(R + aX)

-(1 + a( - a)P21 +
2P1(P21 - P11)) - P21R

(1 - a)(R+ aX)

It is again straightforward to verify that this is an increasing function of X by computing the

derivative. For the boundary points, we get by direct calculations that p* (X) = fP 1 1 if and only if X

is given by (4.24), verifying the continuity at this point, and p* (/I) - I if and only if

P21R
S= , : P21R (4.25)

1 + (P21 - P11) (1 - a+ aP l)

This expression will also be obtained from the analysis below for P1l < p* < I.

Case p* < I.

Last, we consider the case p* < I. It is clear graphically or by inspection of the expression for I

that P21 > I, so the active action is optimal at P21, and

R + aJ(P11)
J(P21) = P21 aJ 1 )

l - a(1 - P21)

This gives
R + aJ(P1 1)

R+ a(J(PI1) -J(P 21)) = (1 - a (1 - 21 )"

We have, again by equation (4.7), that fp* > I > p*, so, by continuity of J at p*,

S+ aJ(fp*)= X +a[(fp*)R+ a(fp*)J(P )+a( -f p*)J(P21)] = p*R+ap*J(Pll )+a(l -p*)J(P2),



identical to (4.10). We get

( - a + aP 21) + (R+ aJ(Pl))(a2 21 +a( -a)(P21 +p*(P11 -P21)))

= (R + aJ(Pll))(aP21 + (I -a)p),

i.e.,
(I - a aP2 1) + a(1 - a)p* (PI1 -P 21) = (1 - a)p*,
R + aJ(PIi)

so
o* (1 + aP 21 - a)

(1 - a)(1 + aP21 - aPl1)(R + aJ(Pi1))

Hence the problem is solved if we have an expression for J(Pi1). It is clear graphically that

P11 < I. From equation (4.7), we also see that fP11 > I since P11 - P21 < 0. Hence this time, fP11

is in the active region, and so the analysis is simpler than in paragraph 4.4.3. The only cases to

consider are 0 < p* < P1 1 and P1 1 < p* < I.

In the first subcase 0 < p* < Pi 1, P11 is in the active region and so

J(PI1) = P1R + aP1J(Pv) + a(1 - PlI)J(P2 1)

P2 1R + aP2 1J(P 1) R + aJ(P 1)

1 - a(l -P2 1) 1 -a(1 - 2 1)

(P11 + a(P21 - P1 ))(R+ aJ(P ))

1 -a(1 -P21)

and so

S R(PII + a(P 2 1 - P P1 ))

S(1 -a)(1 + a (P2 1 - Pl ))'

R(1- a + aP2 1)
R + aJ(P 1) =J(P - (1 - a)(1 + a(P21 -P 11 ))'

R + a[J(PI1) - J(P21)] 1
I + a(P21 - P11)

This gives

R'

and the condition p* < P11 is A < PIIR.

In the second subcase, P11 < p* < I, and fP1 1 is in the active region, so we have

J(P 11 ) = A + aJ(fP 1 ) = A + a[fP11R + afPIJ(P1 ) + a(1 - fP 1 1)J(P 21)]

R+aJ(P) (a2p +a -a)fP)
J(P1) = A + I (P21) 21 + a 1 - a)fP 1)1 - a(1 -P 21)

(R+ aJ(P1 1 ))(1 -a + aP21) (R+)(-+aP2 1) (Ra 2(aP2 1 +(1 -a)fP 1 l)(R+ aJ(PI))
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Figure 4-6: Plot of p*(A) for P2 1 = 0.9 ,P1 1= 0.2, a = 0.9.

and so we get

This gives finally

(R + aL) (1 - a + aP 2 1)
(1- a)[1 + aP 21 + a 2P (P21 -Pll)]

(R + ak)R + a[J(PI) - J(P21)] = P21 + a2)]

P [1 1+ aP 21 + a 2p 1(P 2 1- P 1 1)]

p* )(
(R+ al)(1 +aP21- aPl)

which simplifies to (add and substract aP 1 in the numerator)

) (1+ aPil)
p*

R+a

It is easy to see that it is an increasing function of X, and that the condition p* > P11 translates to
X 2 P11R. We also verify that the condition p* < I corresponds to A < XI, where X, is given by
(4.25), which implies the continuity of p* (A) at Xi.

A plot of p*(X) is given on Fig. 4-6. Finally, we summarize the computational procedure for the
case 0 < P21- Pll < 1. Given X, we first check in which subset of the partition [0, P,1R] U [PI1 R, X.] U



[lI, fPl] U [ AfP ,P2 1R] U [P2 1R,R] it belongs. We then compute p*(A) accordingly. That is,

I if A E [O, P1 1R] U [P21R,R]

X(l+a 11) if A E [PI R, 1,]R+xX
p*(X) (l+a(1-a)P21+a2 11(P21-Pil))-aP2 1R if [2,fp 11

(1-a)(R+aA) if E 1
(1 +aP2 1)-aP21R if A E [kfpP 2 IR].
R(1-a)+a i

With the value of p*(A), we can finish the computation. For a given p E [0, 1], we can first have

p > p*, in which case we are done, using the values of J(Pil) and J(P 2 1) computed in the various
cases. If p < p*, as in the previous paragraph, we need to distinguish two subcases. If fp < p*
(which can happen only when p* > I, i.e., 2, > A1), then immediately J(P) = ,/ (1 - a) since the
iterations remain in the passive region. Otherwise, fp > p* and we can compute

J(p) = + (fp)R + a2 (f p)J(P) + a2(1 - fP)J(P 21)

using the values of J(PI I) and J(P I) obtained in the various cases.

4.4.5 Summary: Expressions for the Indices and the Relaxed Value Function

The previous paragraphs establish the indexability property for the two-state Markov chain under
partial observations modeling a site, for all possible values of the state-transition matrix. Now we
obtain Whittle's index by inverting the relation p* (A) to A (p). We get

Theorem 4.4.2. A two-state restless bandit under partial observations as considered in this chapter
is indexable. The index A (p) can be computed as follows. Let s = P 1 - P2 1 (then -1 < s < 1),

fnp21 = P21  , and I = e21
1-s ' -s"

1. Case s = O (P = P21):

A (p) = pR

2. Case s = 1 (P 1 = 1, P2 1 = 0):

(p) = pR
I - a(1-p)"

3. Case 0 < s < 1 (P > P2 1 ,P11 - P2 1 < 1 and note that P21 < I < P 1 ):

* Ifp > Pi1 or p < P2 1: A(p) = pR.

* IfI < p < Pll: (p) = 1-a(p~ -)

SIf 21 < p < I: Let k(p) -= - 2 (i.e., k(p) is the unique integer such that

n(1-) 2 <k(p) < ln( 1). Then letIns 2 Ins

(1 - aP1 )(1 - aak(p)+ 2 ) + ck(p)+2 (1- a)(fk( p ) + P2 1 )
Ak(p) 1 - as

Bk(p) = 1 - tk(p)+ 2

Ck(p) = a - ak(p)+
2 .
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Figure 4-7: Whittle indices.

We have
(P) Ak(p) - (1 - p)Bk(p) R

Ak(p)- (1 - P)Ck(p)

4. Case s = -1 (P1 = 0,P2 = 1)

*= +p(1-a) R.
" If p _ 1/2: X (p) = -a)(1p)

* Ifp < 1/2: A(p) = P R.

5. Case -1 < s < O (Pl < P21,P21 -P11 < 1 and note that P21 > I > Pll):

* If p > P21 or p 5 Pl: A(p) = pR.

* If fP p < P21  (p)= -p)R.

* IfI < pp fPi1: A(p) = p+a(P2 -p) sR.

* If P < P < I: (p) = - P R.

Summary of the expressions for the Value Function J(p; A)

When < 0, we have
(aP 21 +p(1 - a))R

(1 - a)(1-a(PI -P21))

If X > R, we have

J(p;A) A
1-a

Finally, consider the case 0 < , < R. Let s = Pu - P2 1 (then -1 < s < 1), fnP21  P21 - and

I= .s" Then we have

1. Case s = 0 (i.e.,Pll = P21):

* if 0 < X < PI1R then

J(p) aPR if p l
A (p+ a-P)R if> p> .



* if P11R < < R then
I if p<

J(p) { -a R

pR + Casa if p >.

2. Case s = 1 (i.e., P 1 = 1,P21 = 0):

(1 - a)
R-at '

;L
J(p) = {-;

la

if P < P*

+ aPR-' ifp > p*.

3. Case 0 < s < 1 (i.e., P > P21, P11- P21 < 1 and note that P21 < I <P 11): define

P2 1R
1 - (P 1 -P 21)(1 + a- aP 1)

(note: P21R < 21 < P1IR).

* If 0 < 2 < P21R, then p*(2l) = -.

If p < p*, let 1 = l- In - 1 -land
Ins I-p

aP2 1R1 - al + 1

J(p) = + a'+'
1-a

T

1 (1 - a

(1-a)[I- a(P 11 - P2 1)]

aP 2 1R

- a(PI - P2 1)]

R
+ a1+1 (f1+1p)

[1 - a(Pl1 -P21)]'

R(1 - a)
+ [i..,(= - aboove).

(1 - a) [I - a(PII - P21)]

1 L . .

* If P2 1R < 2 < 2,1, then we first find the unique integer k such that

Ak - (1 fkP21)Bk

Ak - (1 - fkp21)Ck

2< Ak - (1 -fkl 21)Bk
<-Ak k+

R - Ak-(1 -fk+lP 2 l)Ck

Then p*(,) is given by (4.18), J(P21) is given by (4.17), and J(Pii), or equivalently
R + a(J(P1) - J(P21)), is given by (4.11). Finally

J(p) = A + X 1+2J(P21)+a+1'(fl+1p)[R + a(J(Pll) -J(P 21))],

where 1 is defined as in the previous case 0 < X < P21R, with l = -1 if p > p*().

If At < LP11R, then p*(() = R(-a and

J(p)= 1-a ifp p*

-+p t- if p > p*.

* If P1iR < < R, then p*() = R and

J() = 1-if p < p*
J(p) = PR + _a ifp > p*

4. Case s = -1 (PI1 = 0,P2 1 = 1):

I I D f $ I I = I "



SIf 0 < R 2, then p*(,) = R and

((1 - a 2p(1-a))+aR(1-p(1-
a)) if p < P*

) R+a \ 1-a 2

J(p;) = if 1 -p* p <  P*

-a l (a + p(1 - a)) if p > p*

5. Case -1 < s < 0 (Pll < P21,21 - P11 < 1 and note that P21 > I > P11). Define

P21R

1 +(P21 -P11)(1 - a+1aP1)

P21 - (1 - a)PI1 (P2 1 - Pl)
P :=R 1+ aP 1 (P2 1 - P1)

* If 0 < A PIR, then p* (X) = L and

i+a (fp + aP2, R if p < p*,

(- + a[~P 
+ 2I 1+a(P21-P ) *

J( )= (p+ P2 , ) R ) f p> p*.

I1a1 I+a
2Pi(P2 1-P 11)

* If P1 < X 2,fp, then p*(2) = XR ( 1 -+)) and

+ a (fp+ ) ( i+a p+a2 p 1 (21
-Pii)) if p < p* andfp > p

J(p) = , if p < p* and fp < p*J(P) (p+ aP21 ) +aPa ) I ifp > p) (R +a ) _p- p ,.

(1P 1+ala2 P( P2 1) ) 21) -

* If lfp < A < P2 1R, then p*() = R(1ai-a)PR+ and

Tfp+ a l 1-a+aP21S a ( fp+ f ) (I-a+a ,if p < p* and fp > p*
J(p) = , if p < p* and fp <_ p*

aP + p (l-a)R+aX, if p > p*(P 1-a 1-a+aP21



-a

e

/ 7k0 500 1000 1500 2000 2500 3000

Number of sites N

Figure 4-8: Monte-Carlo Simulation for Whittle's index policy and the greedy policy. The upper
bound is computed using the subgradient optimization algorithm. We fixed a = 0.95.

* IfP21R < X < R, then p*(X) = - and

1-a1-a2) + a(fp)R, ifp < p*and fp > p*
J(p) = a if p< p* and fp< p*

pR+ a", ifp > p*

4.5 Simulation Results

In this section, we briefly present some simulation results illustrating the performance of the index
policy and the quality of the upper bound. We generate sites with random rewards R' within given
bounds and random parameters P11, P21. We progressively increase the size of the problem by
adding new sites and UAVs to the existing ones. We keep the ratio M/N constant, in this case
M/N = 1/20. When generating new sites, we only ensure that Pu - P21 is sufficiently far from
0, which is the case where the index policy departs significantly from the simple greedy policy.
The upper bound is computed for each value of N using the subgradient optimization algorithm.
The expected performance of the index policy and the greedy policy are estimated via Monte-Carlo
simulations.

Fig. 4-8 shows the result of simulations for up to N = 3000 sites. We plot the reward per agent,
dividing the total reward by M, for readability. We can see the consistently stronger performance of
the index policy with respect to the simple greedy policy, and in fact its asymptotic quasi-optimality.

4.6 Conclusion

We have proposed the application of Whittle's work on restless bandits in the context of a mobile
sensor routing problem with partial information. For given problem parameters, we can compute
an upper bound on the achievable performance, and experimental results show that the performance
of Whittle's index policy is often very close to the upper bound. This is in agreement with existing
work on restless bandit problems for different applications. Some directions for future work include



a better understanding the asymptotic performance of the index policy and the computation of the
indices for more general state spaces.





Chapter 5

Scheduling Kalman Filters

In the previous chapter, we modeled the UAV routing problem as a sequential detection problem
by assuming that the sites to be observed were independent two-state Markov chains. Suppose
now that the sites or targets can be modeled as independent Gaussian linear time invariant systems,
and that we would like to use the mobile sensors to keep a good steady-state estimate of the states
of the targets. Similarly to the previous chapter, observations can only be made by the sensors if
they travel to the location of the target. This is a variation of a problem considered by Meier et
al., and Athans [91, 8]. In this chapter we apply the tools and ideas developed for the RBP to this
estimation problem. The RBP provides the insight to derive a tractable relaxation of the problem,
which provides a bound on the achievable performance. We show how to compute this bound by
solving a convex program involving linear matrix inequalities. Exploiting the additional structure of
the sites evolving independently, we can decompose this program into coupled smaller dimensional
problems. We give the expression of the Whittle indices in the scalar case with identical sensors. In
the general case, we develop open-loop switching policies whose performance matches the lower
bound arbitrarily closely as the times for the sensors to switch targets tend to zero.

5.1 Introduction

We still have M mobile sensors tracking the state of N sites or targets. We consider here a continuous-
time version of the problem. Let us now assume that the sites can be described by N plants with
independent linear time invariant dynamics,

i = Aixi +Biui+wi, xi(O) =xi,o.

We assume that the plant controls ui(t) are deterministic and known for t > 0. Each driving noise
wi (t) is a stationary white Gaussian noise process with zero mean and known power spectral density
matrix W:

Cov(wi(t), wi(t')) = Wi 3(t - t').

The initial conditions are random variables with known mean _i,o and covariance matrices Ei,o. By
independent systems we mean that the noise processes of the different plants are independent, as
well as the initial conditions xi,o. Moreover the initial conditions are assumed independent of the
noise processes. We shall assume that

Assumption 5.1.1. The matrices Ei,O are positive definite for all i E { 1,..., N}.

This can be achieved by adding an arbitrarily small perturbation to a potentially non invertible



matrix Ei,o. This assumption is needed in our discussion to be able to use the information filter later
on and to use a technical theorem on the convergence of the solutions of a periodic Riccati equation
in section 5.4.3.

We assume that we have at our disposal M sensors to observe the N plants. If sensor j is used
to observe plant i, we obtain measurements

Yij = Cij x i + Vij.

Here vij is a stationary white Gaussian noise process with power spectral density matrix Vij, assumed
positive definite. Also, vij is independent of the other measurement noises, process noises, and
initial states. Finally, to guarantee convergence of the filters later on, we assume throughout that

Assumption 5.1.2. For all i E { 1, ... , N}, there exists a set of indices jl, j ... Ji E {1,... ,M}

such that the pair (Ai, i) is detectable, where .i = [CT1,. CT ]T.

Assumption 5.1.3. The pairs (Ai, Wi / 2) are controllable, for all i E { 1,..., N}.

Remark 5.1.4. It is conjectured that in the following the assumption 5.1.3 can be replaced by the
following weaker assumption: the pairs (Ai, Wi / 2) are stabilizable, for all i E { 1,... ,N}.

Let us define

1 if plant i is observed at time t by sensor j

0 otherwise.

We assume that each sensor can observe at most one system at each period, hence we have the
constraint

N

Erij(t) 1, Vt, j= 1,...,M. (5.1)
i=1

If instead sensor j is required to be always operated, constraint (5.1) should simply be changed to

N

7ij ( t ) = 1. (5.2)
i=1

The equality constraint is useful in scenarios involving UAVs, where it might not be possible to
withdraw a vehicle from operation during the mission. The performance will of course be worse in
general than with an inequality once we introduce operation costs.

We also add the following constraint, similar to the one used by Athans [8]. We suppose that
each system can be observed by at most one sensor at each time, so we have

M

j(t) < 1, Vt, i = 1,...,N. (5.3)
j=1

Similarly if system i must always be observed by some sensor, constraint (5.3) can be changed to
an equality constraint

M

E 7i(t) = 1. (5.4)
j=1

We consider infinite-horizon problems, mostly in the average cost version and briefly in the
discounted cost version. The parameters of the models are assumed known. We wish to design an



observation policy 7r(t) = {fij(t)} satisfying the constraints (5.1), (5.3), and an estimator 2, of x,
depending at each instant only on the past and current observations produced by the observation
policy, such that the average (or total discounted) error variance is minimized, in addition to some
observation costs. The policy 7r itself can also only depend on the past and current observations.
More precisely, we wish to minimize, subject to the constraints (5.1), (5.3),

1 TN(
Javg = minlimsup-E (x - ,i)'Ti -i,i) -+ CE Kiiji(t) dt , (5.5)

Sx T-oo i=1 j=1

for the average cost problem, or

Jp (o) = minE e- t (xi - ,i)'T(xi - X,i) + ~~ ij (ij(t) dt (5.6)
i=1 j=1

in the discounted cost version. Here the constants iij are a cost paid per unit of time when plant i is
observed by sensor j. The Ti's are positive semidefinite weighting matrices.

5.1.1 Modeling different resource constraints

A note on the generality of constraints (5.1), (5.2), (5.3) and (5.4) is useful. Allowing more measure-
ments per system can be done without change in our discussion. Indeed, suppose (5.3) is replaced
by

M

E "ij(t) < Ki,
j=1

for some i E {1,... ,N} and some constant Ki E {1,... ,M}. Then we create Ki copies of system i
and impose constraint (5.3) for each of them. In each of the copies however, we replace the matrices
Vij by Vij/Ki. Then we sum the resulting Ki Riccati differential equations involving Ei. For example,
if two sensors jl and j2 observe two copies of system i at the same time, this transformation is in
effect equivalent to receiving the measurement

Cijl vij, 0

Cij2 1 0 ij2

for system i. Similarly, we could allow a sensor to observe several systems simultaneously if we
allowed, quite unrealistically, that noise measurements remained independent for the two systems.

Using (5.4) we can also impose a constraint on the total number of allowed observations at each
time. Indeed, consider a constraint of the form

NM

_, ri(t) < p, for some positive integer p.
i=1 j=1

This constraint means that M - p sensors are required to be idle at each time. So we can create
M - p "dummy" systems (we should choose simple systems, although satisfying assumptions 5.1.2
and 5.1.3, to minimize computations), and associate the constraint (5.4) to each of them. Then we
simply do not include the covariance matrix of these systems in the objective function described
above.

In conclusion, it is sufficient for the modeling of a large number of problems to consider only
constraints (5.1)-(5.4). Replacing the inequality by equality signs only changes trivially our discus-



sion. Finally, considering coupled measurement noise processes is also possible at the expense of
increasing complexity in the computations of the assignment policies.

5.1.2 Literature Review

The sensor scheduling problem presented above, except for minor variations, is an infinite horizon
version of the problem considered by Athans in [8]. See also Meier et al. [91] for the discrete-
time version. Athans considered only one plant to observe. We include here several plants to
show how their independent evolution property can be leveraged in the computations, which is
similar to the previous idea demonstrated for bandit problems (called dual decomposition method
in optimization).

Discrete-time versions of this sensor selection problem have received a significant amount of
attention, see e.g. [43, 99, 126, 125, 54, 111, 117]. All algorithms proposed so far, except for the
greedy policy of [111] in the completely symmetric case, either run in exponential time or consist
of heuristics with no performance guarantee. However, to the author's knowledge, the problem
has not been shown to be intractable. We do not consider the discrete-time problem in this thesis.
Finite-horizon continuous-time versions of the problem, besides the presentation of Athans [8],
have also been the subject of several papers [119, 107, 10, 83]. For these problems the solutions
proposed, usually based on optimal control techniques, also involve computational procedures that
scale poorly with the dimension of the problem.

Somewhat surprisingly however, and with the exception of [94], it seems that the infinite-
horizon continuous time version of the Kalman filter scheduling problem has not been considered
previously. Mourikis and Roumeliotis [94] consider initially also a discrete time version of the
problem for a particular robotic application. However, their discrete model originates from the sam-
pling at high rate of a continuous time system. To cope with the difficulty of determining a sensor
schedule, they assume instead a model where each sensor can independently process each of the
available measurements at a constant frequency, and seek the optimal measurement frequencies. In
fact, they obtain these frequencies by introducing heuristically a continuous time Riccati equation,
and show that the frequencies can then be computed by solving a semidefinite program. In contrast,
we consider the more standard schedule-based version of the problem in continuous time, which
is a priori more constraining. We show that essentially the same convex program provides in fact
a lower bound on the cost achievable by any measurement policy. In addition, we provide addi-
tional insight into the decomposition of the computations of this program, which can be useful in
the framework of [94] as well.

The rest of the chapter is organized as follows. Section 5.2 briefly recalls that for a fixed policy
7r(t), the optimal estimator is obtained by a type of Kalman-Bucy filter. In contrast to the previ-
ous chapter, the properties of the Kalman filter (independence of the error covariance matrix with
respect to measurements) imply that the remaining problem of finding the optimal scheduling pol-
icy 7r is a deterministic control problem. In section 5.3 we treat a simplified scalar version of the
problem with identical sensors as a restless bandit problem, and provide analytical expressions of
the Whittle indices and of the elements necessary to compute the performance bound. Then for the
multidimensional case, treated in full generality in section 5.4, we show that the lower bound on
performance can be computed as a convex program involving linear matrix inequalities. This lower
bound can be approached arbitrarily closely by periodically switching policies described in section
5.4.3.



5.2 Optimal Estimator

For a given observation policy i(t) = {ij(t)}i,j, the minimum variance filter is given by the
Kalman-Bucy filter [65], see [8]. The state estimates R, where subscripts indicate the dependency
on the policy z, are all updated in parallel following the stochastic differential equation

dt (j= IJ ij

',i (0) = Xi,o.

The resulting estimator is unbiased and the error covariance matrix ,,i(t) for site i verifies the
matrix Riccati differential equation

dtai(t) = AiY,i(t) + E,i(t)Ai +Wi - Eri(t) ( rij(t)CT Vij'Ci) YA,i(t), (5.7)

Ex,i() = Ei,o

With this result, we can reformulate the optimization of the observation policy as a deterministic
optimal control problem. Rewriting

E((xi -. i)'Ti(xi -ii)) = Tr (Ti i),

the problem is to minimize

y= minlim sup -1  Tr(Ti (,i(t)) + L 'Cij(t) dt , (5.8)
T-- o i= 1 j=1

or

Jp (o) = min e-Pt Tr( iz,/(t))+ EKijfij(t) dt , (5.9)
i=1 j=1

subject to the constraints (5.1), (5.3), or their equality versions, and the dynamics (5.7).

5.3 Sites with One-Dimensional Dynamics and Identical Sensors

We assume in this section that

1. the sites or targets have one-dimensional dynamics, i.e., xi E R, i= 1,...,N.

2. all the sensors are identical, i.e. Cij = Ci, Vij = Vi , Cij = li, j = 1,...,M.

Because of condition 2, we can simplify the problem formulation introduced above so that it corre-
sponds exactly to the type of bandit problems introduced in chapter 3. For this purpose, we define

W 1 if plant i is observed at time t by a sensor

10 otherwise.

Note that a constraint (5.4) for some system i can be eliminated, by removing one available sensor,
which is always measuring the system i. Constraints (5.2) and (5.3) can then be replaced by the



single constraint

Ci(t) = M, Vt.
i=1

This constraint means that at each period, exactly M of the N sites are observed. We treat this case
in the following, as it is the standard formulation of restless bandit problems, but the equality sign
can be changed to an inequality.

To obtain the lower bound, we relax the constraint to

lim sup1 f i(t)dt = M,
T -- -T i= 1

for the average cost problem, and

=l e i(t)dt = M

for the discounted cost problem. As explained in chapter 3, we adjoin this constraint using a (scalar)
Lagrange multiplier A and we are led to consider for each site

1
() = m lim sup -T Tr(Ti Y,i(t)) + (ii + X) zi(t)dt,

7tj T-*oc Tfo

for the average cost problem. Here i is the cost per time unit for observing site i. For the discounted
cost problem, we need to consider for each site

J' (Ei,o,A) = minj e- t {Tr(Ti-r,i (t)) + (i+X) 7ri (t)}dt.

The dynamics of E,,i are now given by

d- ,i(t) = AiYr,i(t) + Yr,i(t)A + Wi - ri (t) c,i(t)CVi-l CiY,i(t), (5.10)

EzC,i(0) = Yi,0o

If the dynamics of the sites are one dimensional, i.e., i E IR, we can solve this optimal control
problem for each site analytically. That is, we obtain an analytical expression of the dual function
which provides a lower bound on the cost for each A. Additionally, we can obtain an analytical
expression for the Whittle indices. The expression of the Whittle's indices for first order determin-
istic systems was given by Whittle [136] and Dusonchet [39], assuming that the smooth-fit principle
holds. In fact, their expression is not valid over the whole state-space and we correct this mistake in
this section.

We will also change the notation slightly for this one-dimensional problem and define

qi := Wi, ri := Vi.

We can consider the problem for a single site, dropping the index i. The dynamical evolution of the
covariance obeys the equation

C2

= 2aE+ q- 7- E 2, with 7r(t) E {0, 1}.



The HJB equation is

y(A) =min E+(2aE+q)h'(E;,), E+K+ +(2aE+q - E2)h'(E;£) ,

in the average cost case, and

Pv(E;I)= min E+(2ar+q)V(E;a),E++ +(2a+q- E2)V(;)

in the discounted-cost case. We will use the following notation. Consider the algebraic Riccati
equation

c2

2ax + q - -x = 0.
r

Note that by the observability assumption 5.1.2, we have c > 0. Then, this equation has two roots

a- a2 + cq/r a + 2 + c2q/r
x= c2 /r x2 2 r

x2 is strictly positive, unless a = q = x2 = 0. xl is strictly negative, or 0 if a > 0 and q = 0. By
assumption 5.1.3, the pair (a, q) is controllable. In fact, stabilizability is sufficient to imply a < 0 if
q - 0 and so x1 is strictly negative and x2 is strictly positive.

5.3.1 Average-Cost Criterion

We perform the calculations for the average cost criterion, which leads to simpler formulas. A
similar treatment is possible for the discounted cost criterion. First, we can treat the case i + 0
immediately. Then it is obviously optimal to always observe, and we get, letting E = x2 in the HJB
equation:

y() = X2 IC +.

So from now on we can assume ) > - KI. Note that here X has the interpretation of a tax for activity
instead of a subsidy for passivity as in chapter 3.

Now let us temporarily assume the following result on the form of the optimal policy. Its va-
lidity can be verified a posteriori from the formulas obtained below, using the fact that the dynamic
programming equation provides a sufficient condition for optimality of a solution.

Conjecture 5.3.1. The optimal policy is a threshold policy, i.e., it observes the system for E > T
and does not observe for E < T, for some T E R+.

Now we would like to obtain the value of the average-cost y(X) and of the threshold T (X) or its
inverse A(T). Note that we already know T(X) = 0 for 2 < -K. Inverting the relation H- T(2)
gives the Whittle index, assuming that T (a) is an increasing function of X.

Case T _ X2

In this case, we obtain as before

y(X) =x2 + K 2+ . (5.11)

This is intuitively clear for T < x2: even when observing the system all the time, the variance still
converges in finite time to a neighborhood of x2. Since this neighborhood is in the active region



by hypothesis, after potentially a transition period (if the variance started at a value smaller than
T), we should observe always, and hence the average cost is the same as for the policy that always
observes.

By continuity at the interface between the active and passive regions, we have

T + (2aT + q)h'(T) = T + (i + X) + (2aT +q- -T2)h'(T)
r

c2

K+c = T2h'(T).
r

We have then

-T 2(x 2± 2) = -T 3 + (2aT +q)(Kc+ )
r r

( c2 ) C22-T +aT+q (+)=-T2(X2 - T)
r r

-(T-x 2)(T-Xl)( +)L =T 2(x 2 -T) (assuming c 0)

T 2 -  T(K+X) +xi(K+) = 0

T2 K+ - ( +)(+A-2, - 4x)
so 2(T) = -+ - T() = (5.12)

T- xi 2

Expression (5.13) and (5.12) are valid under the condition

T(2) = + X2.

Note from (5.12) that T - X (T) is indeed an increasing function.

Case T > x2

It turns out that in this case we must distinguish between stable and unstable systems. For a stable
system (a < 0), the equation

2ax + q = 0

has a strictly positive solution Xe = - > x2.

Stable System (a < 0) with T > xe:

In this case we know that Xe is in the passive region. Hence, with E = Xe in the HJB equation,
we get

r(X) =xe. (5.13)

Then we have again
2

K+X= C-T 2h'(T),r
and now

T + (2aT +q)h'(T) = xe.



Hence

-T2( e- T) = (2aT +q)(+ ) = 2a(T-xe)(K+ )
r

c2T 2  2|a r(, + K)
1(T) = -Kf+ c T() = c (5.14)

2+ a Yr |c|

Stable System (a < 0) with x2 < T < Xe, or non-stable system (a > 0):
If the system is marginally stable or unstable, we cannot define xe. We can think of this case

as Xe -+ oo as a -- 0_, and treat it simultaneously with the case where the system is stable and
x2 < T < Xe. Then x2 is in the passive region, and Xe is in the active region, so the prefactors of h'(x)
in the HJB equation do not vanish. There is no immediate relation providing the value of y(),). We
will use the smooth-fit principle to handle this case and obtain the expression of the Whittle indices,
following [136]. Note that this approach alone is insufficient as it misses the cases treated above.

Theorem 5.3.1 ([136],[39]). Consider a continuous time one-dimensional project x(t) E R satisfy-
ing

x(t) = ak(x), k= 0,1,

with passive and active cost rates rk (x), k = 0, 1. Assume that ao (x) does not vanish in the optimal
passive region, and al (x) does not vanish in the optimal active region. Then the Whittle index is
given by

[al (x) - ao(x)] [ao(x)(rl)'(x) - al (x)(ro)'(x)]
, (x) = ro(x) - r1 (x) + ao(x) [(a)'(x) - - a(x) [(ao)'(x) -3]

in the discounted case, and

[al(x) - ao (x) ] [ao(x) (rl)'(x) - al (x)(ro)'(x)]
h(x) = ro(x) - rI(x) +

ao(x)(al)'(x) -al(x)(ao)'(x)

in the average-cost case.

Remark 5.3.2. The assumption that ao and al do not vanish, capturing the cases previously studied,
is missing from [136],[39].

Proof We give for completeness some details skipped in the proofs of [136], [39, p.53], which use
the smooth-fit principle. A more rigorous proof should be possible, using variational inequalities.
The HJB equation for the discounted-cost case is

3V(x) = min{ro(x) +aoV'(x), rl (x) + + alV'(x)}.

Hence, under our non vanishing assumption for ao and al

3_V-ro in the passive region
V'(x) = ao (5.15)

3v-r-1 - in the active region.al

Continuity of V on the boundary gives

aoV' + ro = al V' + rl + 1 on the active-passive boundary.

Looking at the continuity of the second derivative of the value function on the boundary (as-



suming the smooth-fit principle to be valid), we obtain the additional relation:

on the active-passive boundary

PV' - ro - aoV '  pV' - r1 - al V/
a ausing (5.15)

a0  al

V'(a1 (p - aO) - ao(P - a)) = a!ro - aor' .

Hence we obtain,

(ao - al) (air - aor')
r = ro+-rl +

al ( - a') - ao(p - al)

The average-cost result is obtained for / = 0 or directly by the same type of argument.

Corollary 5.3.3. The Whittle index for the case x2 < T < Xe is given by:

c2 T 3

(T) = -~K+
2r (a+ P/2)T+q

in the discounted cost case, and
c2 T3

X(T) =-+
2r aT + q

in the average cost case.

Proof We have

a0 (E ) = 2aE + q, a l ( E ) = 2aE + q

ro(E) = , r (E)= E+ C K

(5.16)

(5.17)

c22
r

We get in theorem 5.3.1

S(E= -- -

(-)=K-

3~= -K-
;1 (z) =K

_C2y
2 

C
2£2

r r

(2a + q) (2a - 2 -/ ) - (2a + q - 2E2) (2a -/)

C4  E 4

r2 -(2a£ + q)2 L+ L2(2a -/)

C4  Y3

r2 2a - 2-q -  c2r r r

C2 Y3

2r (a + p/2)E + q

The average-cost expression is obtained by formally setting P = 0.

With the value of the Whittle index, we can finish the computation of the lower bound y()L) for
the case x2 < T < Xe. Our task of solving the HJB equation has been simplified by the use of the
smooth-fit principle leading to the expression of the Whittle indices. Inverting the relation (5.17),

ao( V' - ro) - a'o(PV - ro) al(P V'- r') - a' (PV - ri - 1)



- 1C

A ()

Figure 5-1: Whittle index for one-dimensional dynamics.

we obtain, for a given value of X, the boundary T () between the passive and active regions. T(A)
verifies the depressed cubic equation

X3 2r 2r
3 -( + K)aX - 2 (A + )q = 0. (5.18)

For A + K > 0, by Descartes' rule of signs, this polynomial has exactly one positive root, which is
T(X).

The HJB equation then reduces to

y(A) =x+h'(x)(2ax+q), forx < T(A) (5.19)

r(A) = x+ K + +h'(x)(2ax + q - x2), forx > T((), (5.20)
r

with h, h' and h" assumed continuous on the boundary between the active and passive regions. Now
for x2 < T(k) < Xe, with x = T(A) > 0 in the HJB equation, eliminating h'(T(A);X), we get

1C C2 (T(I))
2

)= )+ +(-Tr 2aT()+q q

(y(X) - T(X)) c2 (T(X)+q = +

r( + c )(2aT(A) + q)
y() = T() + c2 (T()) 2  , forX2 <T() < Xe.

Summary:

Theorem 5.3.2. The bandits in the Kalman filter scheduling problem are indexable. For bandit i,
the Whittle index A (Ei) is given as follows.

-Ki+ c if i < x2,i,

2ri ai-i+qi ifx2,i < i < Xe,i,

-ti -+?Y ifxe,i < i,

with the convention xe,i = +oo if ai > O. The lower bound on the achievable performance is obtained



by maximizing the concave function

N

i=1

over A, where the term 'i(X) is given by

x2,i + Ki + l if I <i (x2,i),

) r i.(1'" +X)(2aiTi(X,)+qi)
T/() = ~TI ( ) + r(c(T) ())q) if Ai(x2,) < a < (Xe,i), with Ti (X) positive root of (5.18),

Xe,i if 2 i(Xe,i) <  .

Proof The indexability comes from the fact that the indices A (E) are verified to be monotonically
increasing functions of E. A is a tax for activity in the formulation of this chapter. Inverting the
relation we obtain T (X) as the variance for which we are indifferent between the active and passive
actions. As we increase A, T(A) increases and the passive region (the interval [0, T(A)]) increases.

5.3.2 Numerical Simulations

Figure 5-2 provides an example of sample covariance trajectories obtained using the feedback con-
trol based on the restless bandit indices. There are two (unstable) systems and one sensor, with
identical parameters ci, qi, ri equal to 1, for i = 1,2, and al = 0.1, a2 = 2. We set Ki = 0, i = 1,2 in
this example. We compare the Whittle index policy to the greedy policy, which simply measures at
each time the system with the largest covariance. As can be seen from the figure, the effect of this
greedy policy is to make the steady state values of the covariances of the two systems roughly equal.
In contrast, the policy based on restless bandit indices tends to make the steady state Whittle indices
converge to the same value. Note that in terms of computational cost, the bandit index policy, using
the analytical formulas derived above, scales as well as the greedy policy with the number of sites,
since it simply requires ordering N numbers.

Figure 5-3 shows an example of covariance trajectories and a sample of the controls for a prob-
lem with 10 sites and 4 sensors. In the simulations performed so far, the performance of the Whittle
index policy has matched closely the lower bound, with a gap of the order of the numerical precision
involved in the performance simulation. The question of determining if this policy is optimal or of
providing an a priori performance bound remains open.

5.4 Multidimensional Systems

Generalizing the computations of the previous section to multidimensional systems requires solving
the corresponding optimal problem in higher dimensions, for which it is not clear that a closed form
solution exist. Moreover we have considered in section 5.3 a particular case of the sensor scheduling
problem where all sensors are identical. Here we return to the general multidimensional problem
and sensors with possibly distinct characteristics, as described in the introduction.

Treating the average cost problem, we show that computing the value of a lower bound similar
to the one used in section 5.3 reduces to a convex optimization problem involving, at worst, Linear
Matrix Inequalities (LMI) whose size grows polynomially with the problem essential parameters.
Moreover, one can further decompose the computation of this convex program into N coupled sub-
problems as in the standard restless bandit case.
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(a) Whittle index policy.

X 2,1

...............- E 2
- x2,2

--

(b) Greedy policy.

Figure 5-2: Comparison of the Whittle index policy and the greedy policy for a problem with two
systems and one sensor. Also shown on the figure are the steady state covariances x2,i obtained if
system i could be always observed. The cost of the Whittle policy is 8 and matches the lower bound,
whereas the performance of the greedy policy is 9.2.
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(a) Covariance Trajectories. (b) Index policy for each site.

Figure 5-3: N=10 independent systems, unstable, with randomly generated parameters. Here M=4.
The lower bound on the achievable performance is 41.08. The simulation evaluation of the perfor-
mance gives a cost of approximately 41.
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5.4.1 Performance Bound

Let us repeat the deterministic optimal control problem under consideration:

mm lim sup Tr(Tii(t))+ ricijri(t) dt, (5.21)
/o=1 j=1

s.t. :i(t) = Aii- i~+ +W i i ij(t)c Tvi-1Cij) i, i= 1...,N, (5.22)

(Mj=1
7rij(t) E {0,1}, Vt,i= 1 ...,N, j= 1,...,M,
N

E ij(t) = 1, Vt, j= 1,...,M, (5.23)
i= 1
M
E 7rij(t) < 1, Vt, i= 1,...,N, (5.24)
j=1

Yi(0) = Ei,o, i= 1,...,N.

Here we consider the constraints (5.2) and (5.3), but any combination of inequality and equality
constraints from (5.1)-(5.4) can be used without change in the argument for the derivation of the
performance bound.

We define the following quantities:

1 f0
ij() - 7rij (t)dt, VT. (5.25)

Since 7rij(t) E {0, 1 } we must have 0 < i ij(T) < 1. Our first goal, following the now standard idea
exploited in the restless bandit problem, is to obtain a lower bound on the cost of the optimal control
problem in terms of the ftij(T) instead of the functions rij(t).

It will be easier to work with the information matrices

Qi(t) = EY' (t).

Note that invertibility of Ei(t) is guaranteed by our assumption 5.1.1, as a consequence of [24,
theorem 21.1]. Hence we replace the dynamics (5.22) by the equivalent

M
i= -QiAi -ATQi- QiWiQi+ 7ij(t) CT Vi C i= 1,...,N. (5.26)

j=1

Let us define, for all T,

i(T) := i(t)dt, Oi(T) := Qi(t)dt

By linearity of the trace operator, we can rewrite the objective function

N M
limsupi Tr(Tii(T)) + 1cijij(T) .
T-- i=1 j=1

Let Sn , S n, _ denote the set of symmetric, symmetric positive semidefinite and symmetric posi-
tive definite matrices respectively. A function f: Rm - Sn is called matrix convex if and only if for



all x, y E R mm and a E [0, 1], we have

f(ax + (1 - a)y) d- af(x) + (1 - a)f(y),

where -< refers to the usual partial order on Sn , i.e., A - B if and only if B -A E Sn . Equivalently, f
is matrix convex if the scalar function x F-+ zTf(x)z is convex for all vectors z. The following lemma
will be useful

Lemma 5.4.1. The functions

Sn n Sn - Sn

X - XWX

for W E Sn+, are matrix convex.

Proof See [23, p.76, p.110].

A consequence of this lemma is that Jensen's inequality is valid for these functions. We use it
first as follows

T t-- Qi(t)dt = Oi(T),
-T )0

hence

VT, ii(T) - (Qi(T)) -

and so

Next, inr(Titegrati(T)) Tr(T(5.26), (i(T))).we have

Next, integrating (5.26), we have

- Qi,o) = - i(T)Ai - AT Oi(T) -

- Qi,o) = -Oi(T)Ai - A Oi(T) -

TjQi(t)WiQi(t)dt+

S Qi(t)WiQi(t)dt +

T I(t)) C'TV cij1]Ij 1]j

Using Jensen's inequality and lemma 5.4.1 again, we have

T Qi(t)WiQi(t) >- Oi(T)WiQi(T),

and so we obtain

1i11I(Qi(T) - Qi,o) -< -Oi(T)Ai -AT Q(T) - i(T)Wii(T) + i(
T -A Oi() -!j(T)j!OjT)T

Last, since Qi(T) >- 0, this implies, for all T,

M

ai(T)AT +ATi(T) + Oi(T)Wii(T) - E ifij(T)CVijv'Cij
j=1

S(Qi(T)

1
I (Qi(T)
T

)C/TVi 1Cij.

SQi,o
T

(5.27)

(5.28)

tij (T)CzjVi 'Cij-

,,

r

VT, ( Ti(t)dt ) 
- 1



So we see that for a fixed policy z and any time T, the quantity

Tr(T ii(T)) + i 1j 1 (T) (5.29)

is lower bounded by the quantity

N
Tr(Ti (Q)i(T))-I) +

i= 1

where the matrices Oi(T) and the number fij(T) are subject to the constraints (5.28) as well as

N M

0 < ftj(T)< 1, fij(T)= 1, j =1,...,M, E itij(T)
i=1 j=1

< 1, i= 1,...,N.

Hence for any T, the quantity Z*(T) defined below is a lower bound on the value of (5.29) for any
choice of policy r7

Z*(T) = min
Qi,Pij

N{ Tr(T
i=1

M

s.t. QiAi +AT Q Q iWii- -
j=1

+ EiP, 
j=1

.T - 1i,o
PijCijVi Cij ' -T , i= 1...,N,

Pij 1, j= 1,...,M,
i=1

M

Pij < 1, i= 1,...,N.
j=1

Consider now the following program, where the right-hand side of (5.31) has been replaced by

{ r(Ti~
N

Z* = min
ii,Pij i= I

s.t. (QiAi +Ai i OiWiii -

N

pij < 1,
i=1

M

j=1

M

PijCijVi 'Cij -4 0, i = 1...,N,

j= 1,...,M,

M

SPij 1, i = 1,... ,N.
j=1

(5.30)

(5.31)

(5.32)

(5.33)

cij Riij(T) ,

pijPiJ



Defining 6 := 1/T, and rewriting by slight abuse of notation Z*(6) instead of Z* (T) for 6 positive,
we also define Z*(0) = Z*, where Z* is given by (5.32). Note that Z*(0) is finite, since we can find
a feasible solution as follows. For each i, we choose a set of indices Ji = {jl,..., ni } C { 1, ... ., M}
such that (Ai,Ci) is observable, as in assumption 5.1.2. Once a set Ji has been chosen for each i,
we form the matrix P with elements Pij = 1 {j E Ji}. Finally, we form a matrix P with elements
Pij satisfying the constraints and nonzero where the Pij are nonzero. Such a matrix P exists as a
consequence of Birkhoff theorem, see theorem 5.4.2. Now we consider the quadratic inequality
(5.33) for some value of i. From the detectability assumption 5.1.2 and the choice of Pij, we deduce
that the pair (Ai, i), with

Ci V1/2 --- -1/2 i(5.34)
= Vii "' PiM CiM vim (5.34)

is detectable. Also note that
M

Tci = PijCjVi Cij.
j=1

Together with the controllability assumption 5.1.3, we then know that (5.33) has a positive definite
solution Qi [1, theorem 2.4.25]. Hence Z*(0) is finite.

We can also define Z*(6) for 6 < 0, by changing the right-hand side of (5.31) into 6Qi,o
- 1Qi,o. We have that Z*(6) is finite for 6 < 0 small enough. Indeed, passing the term 6Qi,o on
the left hand side, this can then be seen as a perturbation of the matrix Ci above, and for 6 small
enough, detectability, which is an open condition, is preserved.

We will see below that (5.30), (5.32) can be recast as convex programs. It is then a standard
result of perturbation analysis (see e.g. [23, p. 250]) that Z*(6)is a convex function of 6, hence
continuous on the interior of its domain, in particular continuous at 6 = 0. So

limsupZ*(T) = lim Z*(T) = Z*.
T--+oo T-+

Finally, for any policy 7, we obtain the following lower bound on the achievable cost

1 N M
limsup - Tr(TiYi(t))+ i1Ciij(t) dt > lim Z*(T) =Z*
T--., To i=1 j=1 T--+

We now show how to compute Z* by solving a convex program involving linear matrix inequalities.
For each i, introduce a new (slack) matrix variable Ri. Since Qi >- 0, Ri >- Q-1 is equivalent, by
taking the Schur complement, to

Ri I >0
I Qi

and the Riccati inequality (5.33) can be rewritten

Oa+ - =lC1ij 
1/ 2

i /ijC I Ci -I --<0

Wi i -I



we finally obtain, dropping the tildes from the notation Qi, the semidefinite program

N M
Z* = min Tr(TRi) + KijPij , (5.35)

Ri,Qi,ij i=1 j=1

i-RiIs.t. 0, i= 1...,N,ij Q- 0 i 1 .... NN

j=1

Hence solving the program (5.35) provides a lower bound on the achievable cost for the original
optimal control problem.

5.4.2 Problem Decomposition

It is well-know that efficient methods exist to solve (5.35) in polynomial time, which implies a
computation time polynomial in the number of variables of the original problem. Still, as the number
of targets increases, the large LMI (5.35) becomes difficult to solve. Note however that it can
be decomposed into N small coupled LMIs, following the standard dual decomposition approach
already used for the restless bandit problem. This decomposition is very useful to solve large scale
programs with a large number of systems. For completeness, we repeat the argument below.

We first note that (5.36) is the only constraint which links the N subproblems together. So we
form the Lagrangian

L(R,Q,p;X)= T r(TiRi)+ E(cij+Xj)Pij - E2 ,
i=1 j=1 j=1

where X E mM is a vector of Lagrange multipliers. We would take X E I M if we had the constraint
(5.1) instead of (5.2). Now the dual function is

N M

G() = EGi(A) - E j, (5.37)
i=1 j=1



M

with Gi() = min Tr(TRi)+ E (i
RiQi,{Pij }l<j<M j=1

Ri I

iAj +A j -=1 PijCiVij Cij
wi1/2Qi

~Wi ]

j+j)pij,

QiWi /2

-I

(5.38)

-I< 0

M

EPij < 1.
j=1

The optimization algorithm proceeds then as follows. We choose an initial value X1 and set
k= 1.

1. For i= 1,... ,N, compute R, Qi, {p }jl<jM optimal solution of (5.38), and the value Gi(Ak).

2. We have the value of the dual function at Xk given by (5.37). A supergradient of G(Xk) at 2 k
is given by

N N

i=1 i=1

3. Compute 2lk+l in order to maximize G(X). For example, we can do this by using a supergra-
dient algorithm, or any preferred nonsmooth optimization algorithm. Let k:=k+l and go to
step 1, or stop if convergence is satisfying.

Because the initial program (5.35) is convex, we know that the optimal value of the dual opti-
mization problem is equal to the optimal value of the primal. Moreover, the optimal variables of the
primal are obtained at step 1 of the algorithm above once convergence has been reached.

5.4.3 Open-loop Periodic Policies Achieving the Performance Bound

In this section we describe a sequence of open-loop policies that can approach arbitrarily closely the
lower bound computed by (5.35). These policies are periodic switching strategies using a schedule
obtained from the optimal parameters pij. Assuming no switching times or costs, their performance
approaches the bound as the length of the switching cycle decreases toward 0.

Let P = [pij] 1<i<N,1<jiM be the matrix of optimal parameters obtained in the solution of (5.35).
We assume here that constraints (5.1) and (5.3) were enforced, which is the most general case for
the discussion in this section. Hence P verifies

0 < pij < 1, i = 1,...,N, j = 1,... ,M,
N M

pij < 1, j= I,...,M, and pij < 1, i= 1,...,N.
i=1 j=1



A doubly substochastic matrix of dimension n is an n x n matrix A = [aij] 1 i,j<n which satisfies

0 < aij < 1, i,j = 1,...,n,
n n

aij< 1, j=,...,n, and aij<li=a,...,n.

i=1 j=1

If M = N, P is therefore a doubly stochastic matrix. Else if M < N, we can add M - N columns of
zeros to P to obtain a substochastic matrix. Finally if N < M, we can add N - M rows of zeros to
P to obtain a substochastic matrix. In any case, we call the resulting doubly substochastic matrix
P = [fij]. If rows have been added, this is equivalent to the initial problem with additional "dummy
systems". If columns are added, these correspond to using "dummy sensors". Dummy systems are
not included in the objective function, and a dummy sensor j > M is associated to the measurement
noise covariance matrix Vi,' = 0 for all i, in effect producing no measurement. Without loss of
generality, in the following we assume that P is an doubly substochastic N x N matrix.

Doubly substochastic matrices have been intensively studied, and the material used in the fol-
lowing can be found in the book of Marshall and Olkin [90]. In particular, we have the following
corollary of a classical theorem of Birkhoff [19], which says that a doubly stochastic matrix is a
convex combination of permutation matrices.

Theorem 5.4.2 ([93]). The set of N x N doubly substochastic matrices is the convex hull of the set
Yo of N x N matrices which have a most one unit in each row and each column, and all other
entries are zero.

Hence for the doubly substochastic matrix P, there exists a set of positive numbers Ok and
matrices Pk E _0 such that

K K

P = E OkPk, with Ok = 1, for some integer K. (5.39)
k=1 k=l

An algorithm to obtain this decomposition is described in [90] and [30] for example, and runs in
time O(N4.5 ). Note that any matrix A E -0 represents a valid sensor/system assignment (for the
system with additional dummy systems or sensors), where sensor j is measuring system i if and
only if aij = 1.

The family of periodic switching policies considered is parametrized by a positive number e
representing a time-increment over which the switching schedule is executed completely. A policy
is defined as follows for a fixed value of e:

1. At time t = le, 1 N, associate sensor j to system i as specified by the matrix P1 of the
representation (5.39). Run the corresponding continuous-time Kalman filters, keeping this
sensor/system association for a duration 01e.

2. At time t = (1+ 01)e, switch to the assignment specified by P2 . Run the corresponding con-
tinuous time Kalman filters until t = (1 + 1 + 0)e.

3. Repeat the switching procedure, switching to matrix Pi+1 at time t = 1 + 1 + --- + Oi, for
i - 1,...,K - 1.

4. At time t = (I + 01 + ... + K)e = (1+ 1)e, start the switching sequence again at step 1 with
P1 and repeat the steps above.



Performance of the Periodic Switching Policies

Let us fix E > 0 in the definition of the switching policy, and consider now the evolution of the
covariance matrix Ef(t) for the estimate of the state of system i. The superscript indicates the
dependence on the period e of the policy. First we have

Lemma 5.4.3. For all i E {1,... ,N}, the estimate covariance Ef (t) converges as t ---+ oo to a periodic
solution f (t) of period e.

Proof Fix i E {1,...,N} (if we had M > N, then P would be a M x M matrix and we would not
consider here the additional dummy systems corresponding to i > N). Let oi(t) E {0, 1,... ,N} be
the function specifying which sensor is observing system i at time t under the switching policy. By
convention ai(t) = 0 means that no sensor is scheduled to observe system i. Note that we never
have i (t) E {M + 1,... ,N}, since this means that a dummy sensor is scheduled to observe system
i, but this would imply pij > 0 from (5.39), which is not true for j > M+ 1. Note also that ai(t) is a
piecewise constant, e-periodic function. The switching times of ai(t) are t = (1 + 01 + - + Ok-1)E,
fork= 1,...,Kandl E N.

Then the filter covariance matrix Ef(t) obeys the following periodic Riccati equation (PRE):

F (t) = AiE. (t) + E (t)A T + Wi - tEft ((Cl (t)) Tci (t)Ey (t) (5.40)

I:(t) = Y',,

where C (t) := V Cia(t) is a piecewise constant, e-periodic matrix valued function. We now
show that (Ai, C (-)) is detectable. Indeed, from the definition of detectability for linear periodic
systems and it modal characterization [20], we can see that the pair (Ai,CF~(.)) is not detectable if
and only if there exist an eigenpair (X, x) for Ai such that

Aix = Ax,
CijlX = 0,

Ci 2 eAiO'
1 x - e1eCij2x = 0,

CijKeAi(1+-+OK-1)eX = e'(01..1(+ K-1)ECijKx = 0.

But this means that (A, Ci) is not observable, with Ci = [Cl 1,..., CTK]T. It is easy to see then that

this equivalent to saying that (A, i) is not observable, with Ci defined as in (5.34), but now with
the optimal parameters pij. This would imply that the program (5.35) is not feasible [1, theorem
2.4.25], a contradiction. Finally, (Ai,C C(.)) detectable together with our assumption 5.1.1 implies
by the result of [95, corollary 2] that

lim (E (t) - f (t)) = 0,
t--oo

where Ef(t) is the strong solution to the PRE, which is E-periodic.
O

Next, denote by i(t) the solution to the following Riccati differential equation (RDE):

SAi iA Wi i ( PijCTvilci xi, Vi(0) = Ei,o. (5.41)



Assumptions 5.1.2 and 5.1.3 guarantee that ii(t) converges to a positive definite limit denoted CE.
Moreover, E* is stabilizing and is the unique positive definite solution to the algebraic Riccati equa-
tion (ARE):

Aiji Li N T +-Wi - Li PijCTVij Cij i = 0. (5.42)

The next lemma says that the periodic function E (t) oscillates in a neighborhood of 17.

Lemma 5.4.4. For all t E R+, we have C (t) - 1_ = O(E) as e -+ 0.

Proof The function t -> Ef(t) is the positive definite periodic solution of the PRE (5.40). It is e-
periodic. From Radon's lemma [1, p.90], which gives a representation of the solution to a Riccati
differential equation as the ratio of solutions to a linear ODE, we also know that Ef is C' on each
interval where ai(t) is constant, where oi(t) is the switching signal defined in the proof of lemma
5.4.3.

Let i be the average of t - F (t):

1
S= e,(t)dt.

From the preceding remarks, it is easy to deduce that for all t, we have if (t) - 0 = O(e). Now,
integrating the PRE (5.40) over the interval [0, E], we obtain

S11

Jo^fA (t)(c (t) (t)(t)dt= - F(O))=0.

Expanding this equation in powers of e, we get

Aif .f +A +Wi-i -, (CI(t)) c(t)dt +R(e) =0,

where R(e) = O(e). Let jk := Ci(t) for t E [(I + 01 - + k-I )E, (l + 01 +... + k)e]. We can then
rewrite

1 foe  c OTcc7 'CK
-- # ykCjaijk Cijk.e (Cf (t)) Cf(t)dt  V '

k= l

Let us denote by Pk,ij the (i, j)th element of the matrix Pk in (5.39). We have Pk,ij - l {j=jk with the

above definition of jk, including the case jk = 0 (no measurement), which leads to Pk,ij = 0 for all
j {1,... ,N}. Then we can write

K K N

k k Vi C Ok kijC V i (5.43)
k-=1 k=1 j=1

S OkPk,ij CV C
j=1 k=1
N

PijCijVij Cij
j= 1

M

j= P1ijCVU1
j=1



where the last equality uses our convention Vi- 1 = 0 for j > M + 1, and the fact that Pij = Pij for

j < M. So finally, we obtain

Aie + ieA T + (Wi +-R(E)) - ( pijC ViC-1i)

Note moreover that Ef is the unique positive definite stabilizing solution of this ARE. Now com-
paring this ARE to the ARE (5.42), and since the stabilizing solution of an ARE is a real analytic
function of the parameters [35], we deduce that - E = O(e), and the lemma.

Theorem 5.4.5. Let ZE denote the performance of the periodic switching policy with period e. Then
Z e - Z* = O(E) as E - O, where Z* is the performance bound (5.35). Hence the switching policies
approach the lower bound arbitrarily closely as the period tends to 0.

Proof We have

ZE = limsup T  rr(Ti (t)) +
T- oo i=1 j=1

where 7'E is the sensor/system assignment of the switching policy. First by using a transformation
similar to (5.43) and using the convention ij = 0 for j E {0} U {M + 1,..., N} (no measurement or
measurement by a dummy sensor), we have for system i

I M
T E 3j=1

1 i- (n+1)e 1  T

T n= T j= 1Ji

KI1 7 T
S ETJ ) + i Tj Eijj i ( t ) d t

T Ek=1 T yjJ j=l

LTJ j p + - T M ij 7rij (t)dt.
T E T] j 1 (5.44)

Hence
1 su N M N M

lim sup T ij7j(t)dt < p KijPij.
T-+o i=1 j=1 i=1 j=1

Next, from lemma 5.4.3 and 5.4.4, it follows readily that lim supt, E'(t) - E* = O(E). It is
well known [127] that E* is the minimal (for the partial order on S') positive definite solution of
the quadratic matrix inequality

Aii + A +Wi - Ei
PijCVi Cij Ei -< 0.(j= 1

Kj f (t) dt,



Hence for the pij obtained from the computation of the lower bound, these matrices E* minimize

N

i=-1

(Mst Ai + iAT + , (..r T
j=1 iji j .i - O, i= 1, ,N. (5.45)

Changing variable to Qi = - 1, and multiplying the inequalities (5.45) on the left and right by Qi
yields

M
QiAi +AT Qi QiWii - T PiJC/V-'Ci- j 0,

j=1

and hence we recover (5.33). In conclusion, the covariance matrices resulting from the switching
policies approach within O(e) as e -+ 0 the covariance matrices which are obtained from the lower
bound on the achievable cost. The theorem follows, by bounding the supremum limit of a sum by
the sum of the supremum limits. []

Remark 5.4.6. Since the bound computed in (5.35) is tight, and since it is easy to see that the perfor-
mance bound of section 5.3 is at least as good as the bound (5.35) for the simplified problem of that
section, we can conclude that the two bounds coincide and that section 5.3 gives an alternative way
of computing the solution of (5.35) in the case of identical sensors and one-dimensional systems.

Transient Behavior of the Switching Policies

Before we conclude, we take a look at the transient behavior of the switching policies. We show
that over a finite time interval, Ef(t) remains close to i(t), solution of the "averaged" RDE (5.41).
Together with the previous results on the asymptotic behavior, we see then that E (t) and i(t)
remain close for all t.

Lemma 5.4.7. For all 0 < To < o, there exist constants eo > 0 and Mo > 0 such that for all 0 < e <
Co and for all t E [0, [ e], we have IIE'(t) - ii (t) oo < Moe.

Proof By Radon's lemma we know that Ef is C' on each interval where ci(t) is constant. We have
then, over the interval t E [le, (1 + 01)e], for l E N:

E~f((1+ 01)e) = \ (le) +pe[AE (le)+-- (le)A + EWi - (le)C V _i (le)] + O(e2),
(5.46)

where ji := ai(t) is the sensor associated to system i during the first period as specified by P1.
Similarly in the following, we let jk := ai(t) for t E [(l + 01 +... + Ok-1)e, (I + 01 + ... + k)E].
Now over the period t E [(I + 01)e, (1 + 01 + 2)e], we have:

rE ((1+ -- 1+- .2) e) = ri ((l - 1)) - 2e[Ai((l+0 - 1)e) q- ((+ - 01)e)Ai + Wi

-((l+ 1)E)CI V I2 CEi ((l+ 1)e)] + O(e2).

Using (5.46), we deduce that

Ef ((1 + 1 + 02)E) E(le) + E[01 + 02]{fA P V(le) + C(le)AT + Wi)

- e(le) (01 C VI C + 2CVI )l (le) + O(C2
Y-E~ ii i.I Il 2 i .2 1j 2
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By immediate recursion, and since 1 + - - + PK = 1, we then have

((l)E)= E l+E{AiEf(E)+ (lE)A +Wi} L(le) Tk C k(

(k=1

Hence by the same transformation as in lemma 5.4.4, Ef verifies the relation

F ((1 + 1)E) = Ef (l)- +{AiF (l)--E (le)AT +W}-e (le) pijCiTVi cij Ef (le ) + O ( 08 2 )

(j=1
(5.47)

But notice now that the approximation (5.47) is also true by definition for ,i(t) over the interval

t E [le, (1 + 1)E]. Next, note the identity for Q,X and X symmetric:

AX + AT _ XgQ - (AX +XA T - XQX)

= (A - Q) ( - X) + ( -X)(A-XQ)" + (x-X)Q(x-x).

Letting Q = E pijCjVj 1Cij, AF (1) = i(le) - EF(lE), we obtain from this identity

A(I + 1) = AF(1) + e{ (A - i(le)Q)A (l) + AE (1) (A - ji(lE)Q)T + AF (I)QA(l) } + O(E2).

Note that Af (0) = 0 and i(t) is bounded, so by immediate recursion we have

Af(1) = ERk(e), where Rk(e) = O(e 2 ) for all k.
k=1

Fix To > 0. We have then

This means that there exist constants el, M 1 > 0 such that

12i eol -1 o e ME, forall0<E<El.

It is clear that this approximation is in fact valid for all t up to time r] e. O

5.5 Conclusion

We have considered in this chapter an attention-control problem in continuous time, which con-

sists in scheduling sensor/target assignments and running the corresponding Kalman filters. In the

context of an UVS surveillance mission, the problem is motivated as in the previous chapter by dis-

cretizing the observation space into distinct sites and assuming now that the state of each individual

site evolves as an LTI system. Admittedly, and especially for our formulation in continuous time,

the absence of switching times or costs when a sensor moves between different sites is potentially

problematic for the vehicle routing problem. We will start investigating the addition of switching

costs in the next chapter. Still, we hope that this problem, by providing cleaner results than what

can be reached if we superimpose a traveling salesman problem, can help build good heuristics for



Covariance Trajectories

- Whittle index policy
- Whittle index policy
- Averaged
- Periodic Switching
- Averaged
- Periodic Switching
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SI I I I I

Figure 5-4: Comparison of the covariance trajectories under Whittle's index policy and the periodic

switching policy, for the example of figure 5-2. Here the period E was chosen to be 0.05 (the A

coefficients of the systems are 0.1 and 2 for the lower curve and the upper curve respectively). In

black we show the solution ii(t) of the RDE (5.41).
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observation missions. Additionally, there are numerous other sensor scheduling applications where
the switching costs are not as important. Athans mentions a few: telemetry-data aerospace sys-
tems, radar waveform selection for multi-target tracking, data collection and polling. We could also
think of applying these results to design an attention-control system for UAV operators. Typically
for these systems, the attention switching times are much smaller than the time constants of the
dynamics of the processes.

In continuous time, we can prove that the bound obtained from a RBP type relaxation is tight,
assuming we allow the sensors to switch arbitrarily fast between the targets. An open question is
to characterize the performance of the restless bandit index policy derived in the scalar case. It was
found experimentally that the performance of this policy seems to match the bound, but we do not
have a proof of this fact. An advantage of the RB index policy over the switching policies is that it
is in feedback form. Obtaining optimal feedback policies for the multidimensional case would also
be of interest.

An interesting practical aspect of the index based solution is that, as long as the assumption
of independent site dynamics is respected, it is not required that the models of the different sites
be similar. For example, we could have one site with a discrete state space as in chapter 4 (in
a continuous-time version) and another modeled as a linear system as in this chapter. The index
solution is still based on comparing the Whittle indices computed for each site, and the performance
bound is still computed from the sum of the value functions for relaxed problems at each site. The
details regarding problems with heterogeneous dynamics are left for future work.
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Chapter 6

Adding Switching Costs

In the approach to mobile sensor scheduling presented in chapters 4 and 5, the path-planning com-
ponent was not considered. This allows for much simpler computations and the results can provide
insight into the final scheduling problem. However, in general in the context of vehicle routing
problems the policies obtained require frequent location changes that are costly and even unrealistic
in practice. Hence these policies have to be heuristically adapted to the situation at hand. In this
chapter we try to incorporate directly some form of switching penalty into the optimization problem.
Ideally, we would like to handle scheduling problems featuring a path planning component simi-
lar to the Dubins TSP considered in chapter 2. Because of the complexity of the resulting model
however, we only consider simplified versions of it in this thesis.

We present here a linear programming relaxation for the discrete-time restless bandit problem
with additional costs penalizing switching between the bandits. These switching costs can model
travel distances for example. The relaxation is derived in a systematic way, starting from the exact
linear programming formulation of the problem, and optimizing over a restricted set of marginals of
the occupation measures (see section 3.2.3 for background material on this approach to MDPs). An
important part of the derivation is the search for valid constraints on these marginals, improving the
quality of the relaxation. This relaxation provides an upper bound on the reward achievable by any
policy. A lower bound is obtained by developing a one-step lookahead policy, using the information
extracted from the dual of the linear programming relaxation to construct an approximation of the
reward-to-go. Moreover, we show how this policy can equivalently be obtained using a technique
introduced by Bertsimas and Niflo-Mora in their work on the standard restless bandit problem.
Experimental results as well as a recently developed bound for approximate dynamic programming
provide some empirical support for our heuristic. Throughout we delineate the type of assumptions
needed to develop the relaxation, in order to facilitate the adaptation of the methods to different
models.

An alternative way, potentially more flexible, of approaching the joint path-planning and schedul-
ing problems arising in real-world missions performed by UAS, and based on a deterministic fluid
approximation of the problems, will be described in chapter 7.

6.1 Introduction

In this chapter we study an extension of the MABP and RBP where we add costs for changing
the currently active project. We call the resulting problems the multi-armed bandit problem with
switching costs (MABPSC) and restless bandit problem with switching costs (RBPSC) respectively.
This extension is of great interest to various applications besides mobile sensor routing, as discussed
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by [61, 62, 130, 72], in order to model for example set-up and tear-down costs in queuing networks,
transition costs in a job search problem or transaction fees in a portfolio optimization problem.

As mentioned by Glazebrook et al. [50], certain MABPSC can be transformed to a restless
bandit problem, if we assume that the switching costs have a separable form, that is, the cost for
switching from project i to j can be written cij = ci + cj. This restriction on the switching costs
is not applicable in our typical situations where these costs represent travel distances. Then, an
additional level of coupling between the projects is introduced, and it is not clear how to apply
the methods developed for restless bandits. A partial characterization of the switching times for
the MABPSC with constant switching cost can be found in [7], and some related papers in the
statistics literature include [12, 55, 63]. Dusonchet and Hongler [40] solved a two-armed bandit
problem with switching costs analytically, in the case of deteriorating rewards. Note also that in the
regret minimization formulation of the bandit problem as in Lai and Robbins [76], Agrawal et al. [5]
showed that the addition of switching costs does not change the achievable asymptotic performance.
We do not consider this formulation of bandit problems in this thesis.

For the RBP, Bertsimas and Nifio-Mora [17] used the linear programming approach to MDPs to
give refined versions of Whittle's relaxation, and gave empirical results showing that their bounds
on the achievable performance are indeed tighter. They also proposed a new heuristic for the RBP.
The drawbacks of this heuristic compared to Whittle's index heuristic are that there is less empirical
evidence for its quality, it does not reduce to Gittins' optimal policy for the MAPB, and its computa-
tion is not decomposable by project as Whittle's. On the other hand, it is more easily applicable than
Whittle's heuristic since it does not require indexability of the projects, and it has a natural interpre-
tation from the linear programming point of view. We also provide an equivalent interpretation for
this heuristic in terms of approximate dynamic programming.

This chapter essentially extends the technique of Bertsimas and Nifio-Mora to the RBPSC. We
use the state-action frequency approach to MDPs, as in section 3.2.3. In our context, we found this
approach more natural than starting in the dynamic programming domain. Indeed, in the formula-
tion of the relaxation we are naturally led to consider certain resource allocation constraints, taking
into account the limited number of bandits that we can activate and their positions. Additional con-
straints for MDPs are most easily formulated in the state-action frequency domain, and this is done
even in works that adopt a dynamic programming approach from the start, such as [136, 27]. These
authors then need to use Lagrange multipliers to transfer these constraints back in the dual domain
of dynamic programming. It appears clearer to obtain a complete formulation first on the primal
side of state-action frequencies, possibly considering the dual later on in order to use the available
dynamic programming techniques.

The rest of the chapter is organized as follows. In section 6.2 we formulate the RBPSC using
the LP approach of section 3.2.3. In Section 6.3, we show that the special case of the MABPSC
is NP-hard. Then, we propose a first-order linear programming relaxation of the general RBPSC
problem, which provides an efficiently computable bound on the achievable performance. Section
6.4 describes how the relaxation can be used to motivate a heuristic solving the problem in practice.
This heuristic is based on approximate dynamic programming techniques, but we also explain how
to recover it from the linear programming theory used by Bertsimas and Nifio-Mora to design their
primal-dual heuristic for the restless bandit problem. Section 6.5 presents numerical experiments
comparing the heuristic to the performance bound. In section 6.6 we provide a result linking the
performance of the heuristic to the quality of the relaxation. Together, these last two sections provide
some empirical support for our heuristic.
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6.2 Exact Formulation of the RBPSC

6.2.1 Exact Formulation of the RBSC Problem

In the RBPSC, N projects are distributed in space at N sites, and M < N servers can be allocated
to M different projects at each time period t = 1,2,... In the following, we use the terms project
and site interchangeably; likewise, agent and server have the same meaning. At each time period,
each server must occupy one site, and different servers must occupy distinct sites. We say that a
site is active at time t if it is visited by a server, and is passive otherwise. If a server travels from
site k to site 1, we incur a cost ckl. Each site can be in one of a finite number of states xn E Sn, for
n = 1,..., N, and we denote the Cartesian product of the individual state spaces Y -- St x ... x SN.
If site n in state x, is visited, a reward rn (x,) is earned, and its state changes to y, according to the
transition probability pYn'l. If the site is not visited, then a reward (potentially negative) r (xn) is
earned for that site and its state changes according to the transition probabilities pyn We assume
that all sites change their states independently of each other.

Note that if the switching costs are all 0, we recover the initial formulation of the RBP. If in
addition the passive rewards are 0 and the passive transition matrix is the identity matrix, we obtain
the MABP. If we just add the switching costs to the basic MABP, we call the resulting model
MABPSC.

The RBPSC problem can be cast into the MDP framework as follows. Let us denote the set
{ 1,... ,N} by [N]. We consider that when no agent is present at a given site, there is a fictitious
agent called passive agent at that site. We also call the real agents active agents, since they collect
active rewards. The transition of a passive agent between sites does not involve any switching cost,
and when a passive agent is present at a site, the passive reward is earned. Therefore, we have a
total of N agents including both the real and passive agents, and we can describe the positions of all
agents by a vector s = (sl,..., N), which corresponds to a permutation of [N] (due to our constraint
that different agents must occupy different sites). We denote the set of these permutation vectors by
-I[N]. We let the M first components correspond to the active (i.e., real) agents. For example, with

M = 2 and N = 4, the vector (sl = 2,s2 = 3,s 3 = 1,S4 = 4) E 1-14] means that agent 1 is in site 2,
agent 2 in site 3 and sites 1 and 4 are passive.

For an agent i E [N], we refer to the set of the other agents by -i. If we fix si E [N] for some
1 < i < N, then we write si to denote the vector (sl,... ,Si-1, i+1, ... ,SN), and HI[N-s to denote
the permutations of the set [N] - {si}. In particular, we write s_, [N l_,s to denote the sum over all
permutations of the positions of the agents -i, over the set of sites not occupied by agent i. We also
write 5'-i to denote the cartesian product S1 x ... Si-1 x Si+l x ... x SN.

The state of the system at time t can be described by the state of each site and the positions
s E -[N] of the servers, including the passive ones. With this state description, we are able to handle
any number M < N of agents as a parameter within the same framework. We denote the complete
state by (xi,... ,xN;sl,... ,sN) := (x;s). We can choose which sites are to be visited next, i.e., the
action a belongs to the set H[N] and corresponds to the assignment of the agents, including the
passive ones, to the sites for the next time period. Once the sites to be visited are chosen, there
are costs Csiai for moving the active agent i from site si to site ai, including possibly a nonzero cost
for staying at the same site. The reward earned is iE, ra (xai) + N,,M r (xaj). We are given a
distribution v on the initial state of the system, and we will assume a product form

v(x, ... ,xN;si, ... ,sN) = Vi(Xi) ... VN(xN)ld (S1)... dN (SN), (6.1)

i.e., the initial states of the sites are independent random variables and server i leaves initially from
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site di, with d E -I[N]
The transition matrix has a particular structure, since the sites evolve independently and the

transitions of the agents are deterministic:

M N N

(x';s')a(x;s) IIPx4 iXai H aixi  5si (ai) (6.2)
i= 1 i=M+1 i= 1

With these elements, we can specialize (3.23) to obtain the following proposition.

Proposition 6.2.1. The optimal occupation measure for the RBSC problem can be obtained by
multiplying by (1 - a) the optimal solution [P(x;s),alxE,(s,a)En2 of the following linear program:

maximize

E E ((ri (x ai) - C sia )  r i=M1 i(x ai) P(x;s),a (6.3)
SEI[N] aEH[N] xEY i=1 i=M+1

subject to

M N N

E P(x;s),a - P(x';s') ,sf P x, I PXxi =  Vi(xi)di(Si), (6.4)
aEH[N] s'EHN] x'EYf i=1 i=M+1 i= 1

V (x, s) E Yx x[N ]

P(x;s),a > 0, V ((x;s),a) E x HnN ].

Remark 6.2.2. The formulation above is of little computational interest since the number of vari-
ables and constraints is of the order of IY| x (N!)2, that is, exponential in the size of the input. For
example, if we consider a problem with N = 10 sites and 5 states for each site, we obtain a linear
program with more than 6 x 1013 variables, and therefore real world instances of the problem cannot
be solved by feeding this formulation directly into an LP solver. Note that for M fixed, we obtained
a slightly more compact formulation in [81] (in that paper, for M = 1). However, that exact formula-
tion is still intractable, and does not lead to a significantly more compact relaxation. The advantage
of the formulation presented here is that M can be given as a parameter without modification of the
algorithms.

6.2.2 Dual Linear Program

We can obtain the linear program dual to (6.3) by constructing it directly, or starting from Bellman's
equation and using standard dynamic programming arguments [14, vol. 2, p. 53]. The decision
variables correspond to the reward-to-go vector {Ax,s}x,s. We get

N

minimize E ,s 1 Vi (xi) di (Si) (6.5)
x,S i= 1

subject to

S(fj- 1p X pO -Ai1,a Y (r 1 (x ai ) Csiai)+ Y r.(Xa),
/XS-a C ( P7, xai ai XaiXai  --

i \i=1 i=M+ i=M±1 =1 i=M+1

Vx E Y, V(s, a) E [N].
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6.3 Linear Programming Relaxation of the RBPSC

6.3.1 Complexity of the RBPSC and MABPSC.

It could well be that the RBPSC appears difficult to solve only because of our own inability to
formulate it in an efficient manner. In the most general formulation above, we know however that
the problem is likely to be intractable, since [101] showed that the RBP is already PSPACE-hard,
even for the case of deterministic transition rules and one server. Here we show that the other special
case MABPSC is also difficult. In this Section, we also denote (with a slight abuse of notation)
by MABPSC the decision version of the optimization problem considered before; that is, given an
instance of the MABPSC and a real number L, is there a policy that achieves a total expected reward
greater than or equal to L? The fact that this problem is NP-hard is deduced from the same result
for the HAMILTON CIRCUIT problem.

Theorem 6.3.1. MABPSC is NP-hard.

Proof Recall that in the HAMILTON CIRCUIT problem, we are given a graph G = (V, E), and we
want to know if there is a circuit in G visiting all the nodes exactly once. HAMILTON CIRCUIT
was one of the first combinatorial problems proven to be NP-complete [68]. HAMILTON CIRCUIT
is a special case of MABPSC. Indeed, given any graph G = (V,E), we construct an instance of
MABPSC with N = IVI sites, travel costs cij = 1 if {i, j} E E, and cij = 2 otherwise. We choose
arbitrarily one of the sites to be the site where the server is initially present. This site has only one
state, and the reward for having the server present at this site at any period is 0. To each of the
(N - 1) other sites, we associate a Markov chain with two states. To the initial state is associated
a reward of 2 (discounted by a at each time period), and after a visit to a site in this state, the site
moves with probability 1 to the second state, associated with a reward of (-1) (discounted by a
at each time period). Once in this state, the chain remains there with probability 1. We obtain a
MABPSC since a site can change state only when it is visited (and in the first state).

Now since a > 0, it is clear that a policy can achieve a reward of (1 + a + ... + a N - 2 - a N - 1)
if and only if there exists a Hamilton circuit in G. The only possible policy actually just moves
the server along the Hamilton circuit without stopping, except when the server is back at the initial
site. E

Remark 6.3.2. Note that even the two armed bandit problem with switching costs, considered for
example by [7], seems difficult in general, although to the best of our knowledge, no formal lower
bound exists on the complexity of this more restricted case.

6.3.2 A Relaxation for the RBPSC

The discussion in the previous paragraph serves as a justification for the introduction of a relaxed
formulation of the RBPSC. In this section we will see that in the state-action frequency domain, a
relaxation can be easily obtained by optimizing over specific marginals of the occupation measure.
Once the relaxation is obtained, we can go back to the value function domain of dynamic program-
ming by taking the dual of the relaxed linear program. In general, the method that we follow to
derive a relaxation is the following:

1. identify marginals of the state-action frequencies that are sufficient to express the objective
function in (6.3).
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2. express the constraints on these marginals by partially summing over the constraints in (6.4).

3. add additional constraints due to the fact that these marginals all derive from the same state-
action frequency vector.

Although we consider here in details the RBPSC, this approach is general enough to handle
problems with a similar structure. The essential features of the problem that allow the method to
work are the separable structure of the objective function and the independence assumption for the
evolution of the sites. This approach is implicit in the work of [17] on restless bandits. It is relatively
systematic once the exact linear program has been formulated. When the coupling between the sites
increases (for instance, when we add switching costs to the RBP), the relaxation becomes more
complicated and grows in size.

We start by rewriting the objective function and we identify the relevant marginals:

e( s,) o;s,a + r(xa)
s=l a=l xaESa i=1 i=M+1

where the marginals appearing above are obtained as follows:

P xa;s),a = P(x;s),a , V (i,s, a) E [N]3 , Xa E Sa. (6.6)
X-aEy-a s_iEr[N]_s a_-i[N]_ a

and the superscripts refer to the agents.

Now to express the constraints, it turns out that we will also need the following variables:

Px,;s),a V P(x;s),a, V (i,s, a) E [N]3 , xs E Ss. (6.7)
X-sY-s S_iErI[N]_ s a-iErI[N]-a

The variables in (6.6) can be interpreted as the frequency with which agent i switches from site s
to site a and the destination site is in state xa. The variables in (6.7), up to a factor (1 - a), can be
interpreted as the frequency with which agent i switches from site s to site a and the origin site is in
state xs. Note that this notation is somewhat redundant, since we can write the variables Px;), as
in (6.6) or (6.7).

From the definitions, we have:

SPx;s),a - E Pxa;s),a V (i, s,a) [N] 3 . (6.8)
xsESs XaESa

These equality relations are important to obtain a sufficiently strong relaxation. They express com-
patibility conditions that are clearly true because the marginals are obtained from the same original
occupation measure. Another intuitive way to think about this type of constraints in the following is
that we will enforce sample path constraints only in average. Indeed, we must have, at each period
t,

1 1{Xs(t) = xs,Si(t) =s,Ai(t) =a} = 1{Xa(t) = xa,Si(t) =s,Ai(t) =a}, V (i,s,a) E [N]3,
X ESs Xa ESa

where { } denotes the indicator function. Equation (6.8) is obtained by taking expected values on
both sides of this relation, discounting and summing over time, and dividing by (1 - a).
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For agent i, some x E Y and s in I-[N], we can sum the constraints in (6.4) over xsj E Ssj for
j f i to get, for all xsi E Ssg

P(xs),a - P(. {i<M} = Vs, (Xsi) ddl(S1)...dN(SN),

aEyI[N] sGr [N] s i E Ssi

where

P(xsi;s),a P(x;s),a
X-s i E -s i

Then, still for s i fixed, we can sum over s-i E I[N]_s, rewrite EaenI[N = a =1 Yaent[Nja and

S'eII[N] N= 1 s'_nNs , to obtain

N N

S ,s),a - a s;s'),s Ps = Vs(xs) (s), (i, s) E [N]2, Vs E Ss. (6.9)
a=l .SESs'=1

There are still some compatibility conditions between the marginals that have not been ex-
pressed, similar to the constraints in (6.8). Usually, these constraints also have an intuitive interpre-
tation. For instance, in Whittle's relaxation of the RBP, there is only one additional constraint, due to
the fact that only M sites can be active at each time period. Finding and enforcing these constraints
reduces the size of the feasible polytope, and helps improve the tightness of the relaxation.

For the RBPSC, the constraints below are motivated by the fact that exactly one agent (active
or passive) must be at each site at each period. The frequency with which the agents leave site j in
state xj should be equal to the frequency with which the agents move to site j in state xj. So we
expect that the following constraints should hold:

NN NN

Pxij,j,a E ,sj Vj E[N], E S1 . (6.10)
i=1a=1 i=ls=l

We now show that (6.10) is indeed a valid constraint. According to the definition of the marginal
(6.7), we have for the left hand side

N N N NEEPxj,j,a E E P(xj,sj);(si,j),(a_i,a) '

i=la=l i=1 a=l XjES_j s-iEI[N]_j a_iEI[N]_,a

using the notation (xj,2) = (xl,...,xj- ,I ,XJ 1, ... ,XN), (S-i,j) = (s1,...,si-l,jsi+l,...,n),

and (a-i,a) = (al,...,ai-l,a,ai+l, ... ,n). We get

N N N

E E pij,j,a  Y E E Y P(x_-,J);(s-i,j),a
i=1 a=1 x-jESj aEI[N] i=1 _iEI[N]-j

E E E P(xj,ij);s,a. (6.11)
x_jES_j aEf[N] sEI[N]

The first equality comes from the fact that we count all the permutation vectors a by varying first
the ith component ai from 1 to N. The second inequality comes from the fact that we count all the
permutations s by varying the position i where the component si is equal to j (exactly one of the
components of a permutation vector of 1- [N] has to be j). The proof that the right hand side of (6.10)
is also equal to the quantity in (6.11) is identical.
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Here are two additional sets of valid constraints:

N N

x Ps;s,a = I E Ps;s; , V(i, ) E [N]2 , (6.12)
s=1 xESs aE[N]-a kE[N]-i s=1 xsESs

N N

E E E Pxa;s,a = E E Pk;g;a) V(i,§) E [N]2  (6.13)
a=l xaESa sE[N]-9 ke[N]-i a=l xaESa

Intuitively, on the left hand side we have the probability that agent i does not go to site a (respectively
does not leave from site s, which must equal the probability that some other agent k (passive or not)
goes to site d (respectively leaves from site g). Again, these relations can be verified by inspection
of (6.7). Indeed, in (6.12) for (i,d) fixed, similarly to (6.10), we have two equivalent ways of
summing the occupation measure over all indices (x, s, a) such that none of the permutation vectors
a with a in position i appears. On the left hand side of (6.12), we vary the coefficient ai in the set
{ 1,... ,N} \ {d}, whereas on the right hand side, we obtain the same result by forcing the element
d to be in a position different from position i. Similarly, in (6.13), we have two ways of summing
over all indices such that none of the permutation vectors s with g in position i appears.

Finally we have obtained a relaxation for the RBPSC:

Theorem 6.3.3. We can obtain an upper bound on the optimal reward achievable in the RBPSC by
solving the following linear program:

maximize

S(r a(xa) - csa) ( Pxoa;s.a + ro(xa) (6.14)
s=l a=lxaESa i=1 i=M+1 (6.14)
subject to

(6.8), (6.9), (6.10),(6.12), (6.13),

P(x;s),a > 0, V(i,s,a) E [N]3,xs E Ss

P x;s),a > 0 , V(i,s,a) E [N]3 ,Xa E Sa.

There are now O(N 3 x maxi |Si ) variables pIx,;s)a' P(xa;s)a and constraints in the relaxed linear
program, which is polynomial in the size of the input. From the discussion in paragraph 2.3, it is
unlikely that a polynomial number of variables will suffice to formulate the RBPSC exactly. How-
ever, the addition of the constraints tying the marginals together helps reduce the size of the feasible
region spanned by the decision vectors and improve the quality of the relaxation. Computing the
optimal value of this linear program can be done in polynomial time, and provides an upper bound
on the performance achievable by any policy for the original problem.

Remark 6.3.4. We could obtain tighter relaxations by considering marginals involving several sites
and/or agents at the same time. In the limit case, we obtain the exact formulation when all sites and
agents are considered simultaneously. This idea is followed by [17] for the restless bandit problem.

6.3.3 Dual of the Relaxation

It will be useful to consider the dual of the LP relaxation obtained in the previous paragraph,
which we derive directly from (6.14). This dual program could also be obtained by dynamic pro-
gramming arguments, in the spirit of the original work of Whittle, incorporating the constraints
(6.8), (6.10), (6.12), (6.13) using Lagrange multipliers. This provides additional insight, and in
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the next section, we will give an interpretation of this dual LP in terms of approximate dynamic
programming. We obtain:

N N

minimize E E vs (xs) di(S),xs (6.15)
i=l s=1 xsESs

subject to

15,x,s + ,a + Ksx, - + > 0 , O,V(i,s,a) E [N]3 ,s # a, (6.16)
i' i a' a

- a Epa, Sa ,a - ~s,a - ca,xa , r (x) C- sa , V I < i <M, Vs a, (6.17)
xa il i sl/s

- aE pXaa i's,a - ,xa - i+ r(xa), VM + < i < N, Vs a,
Xa il i s'S s

ax _pxsis, - ( ) + , + 4 ,) > r (xs) - ss , V l < i < M, (6.18)

,x,-a Ps - (( + /)+ (, + ') rs(xs) , VM+ 1 < i < N.

s i' i s' s

The optimal dual variables i,xS are Lagrange multipliers corresponding to the constraints (6.9)
and have a natural interpretation in terms of reward-to-go if site s is in state xs and visited by
agent i (see section 6.4). The optimal dual variables (ft,a, R,, a, , s correspond to the additional
constraints (6.8), (6.10), (6.12), and (6.13) respectively. We can obtain the optimal primal and dual
variables simultaneously when solving the relaxation. For j = s or a, we also obtain the optimal
reduced costs x;j,s,a: Ixs,s,a are equal to the left hand side of the constraints (6.16), whereas ?xa,s,a
are equal to the difference between the left hand side and the right hand side of (6.17), or (6.18) if
s = a. There is one such reduced cost for each variable pij,s,a of the primal, and by complementary
slackness, Pjs,a_,s,a = 0, where Pfij,s,a are the optimal values of the primal.

6.4 Heuristics for the RBPSC

Computing the optimum value of the relaxation presented in the previous section provides a bound
on the performance achievable by any assignment policy. The relaxation is also useful to actually
design assignment policies for the agents, using approximate dynamic programming techniques.
We present here a one-step lookahead policy and its relationship with the primal-dual heuristic of
Bertsimas and Nin6-Mora, developped for the restless bandit problem. Another very simple greedy
policy will be used for comparisons in the numerical experiments presented in section 6.5.

6.4.1 One-Step Lookahead Policy

Consider the multi-agent system at a given time, for which the state is

(Xl,...,XN;s , .. .,SN),

with (Sl,... ,SN) a permutation of [N]. Given the interpretation of the dual variables i,xsi in terms

of reward-to-go mentioned in section 6.3.3, it is natural to try to form an approximation J(x; s) of
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the global reward-to-go in state (x; s) as

N

J(xl ,... ,XN; S1,.... sN) -- si,xsi (6.19)
i=-i

where ,siL i are the optimal values of the dual variables obtained when solving the LP relaxation.
The separable form of this approximate cost function is useful to design an easily computable one-
step lookahead policy [14], as follows. At state (x;s), we obtain the assignment of the agents by
solving

a(x;s) E argmaxaEi[n] g((x;s),a) +a Y @xax, f(x';a) , (6.20)

where g((x; s), a) is the immediate reward

M N

g((x; s),a) = (r (x a i ) - csiai)+ E r O(xai) (6.21)
i=1 i=M+ 1

and from (6.2)

M N

!xax' = 9(x;s)a(x';a) = Pxaix i  Pxaix i' (6.22)
i=1 i=M+I

In this computation, we replaced the true optimal cost function, which would provide an optimal
policy, by the approximation J. Using (6.19), we have the following maximization problem:

max r ((xa i ) - Csiai + a E 4Pxiii Px,aEn[N] jPx aix (6.23)

i= 1 X tai ES a+E rO, (x ai ) + aE ;1i,X' a0
i=M+1 Xai E Sai

Assuming that the optimal dual variables have been stored in memory, the maximization above is
actually easy to perform. The evaluation of one parenthesis involves only the data of the problem
for the current state of the system, and one summation over the states of one site, i.e., takes a time
6(maxi ISi ). Let us denote the terms in parenthesis mi,ai. All these possible terms can be computed
in time 6(N2 maxi ISi ), and (6.23) can be rewritten:

N

max mi,ai. (6.24)
aclI[N ] 

i=1

This is a linear assignment problem, which can be solved by linear programming or in time O(N 3)
by the Hungarian method [114]. Thus, the assignment is computed at each time step in time

O(N 2 max jSiJ + N 3)

by a centralized controller, which needs to store the optimal dual variables of the relaxation in
addition to the parameters of the problem.
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6.4.2 Equivalence with the Primal-Dual Heuristic

Recall from paragraph 6.3.3 that, when solving the linear programming relaxation, we can obtain

the optimal primal variables {i,s,a}, the dual variables {1,, ,a, a, , , and the reduced

costs {fj,s,a}. These reduced costs are nonnegative. In [17], Bertsimas and Nifio-Mora motivated
their primal-dual heuristic for the RBP using the following well-known interpretation of the reduced
costs: starting from an optimal solution, ?xj;s),a is the rate of decrease in the objective value of the

primal linear program (6.14) per unit increase in the value of the variable P'xj;s),a

We use this interpretation and the following intuitive idea: when agent i is in site s in state xs

and we decide to send it to site a in state Xa, in some sense we are increasing the values of Px,;s),a

and P(xa;s),a' which are proportional to the long-term probabilities of such transitions. In particular,

we would like to keep the quantities P(x;s),a found to be 0 in the relaxation as close to 0 as possible

in the final solution. By complementary slackness it is only for these variables that we might have

<xj;s),a > 0. Hence, when the system is in state (x;s), we associate to each action a an index of
undesirability

N

I((x;s), a) = Xsii),ai + o xa;si),ai) + Xsi;Si),Si, (6.25)
{iE [N] :si ai } {ie [N] :si=ai}

that is, we sum the reduced costs for the N different projects. The separation of the two cases si = ai

and si - ai in the summation is justified below from the form of the reduced costs. Then we select

an action apd E I[N] that minimizes these indices:

apd (X; S) E argmina {I((x; s),a)}. (6.26)

We now show that this policy is in fact equivalent to the one-step lookahead policy described

earlier. Using the expression for the reduced costs from paragraph 6.3.3, we can rewrite the indices

in (6.25) more explicitly. The term rs+;Si),ai + (xEi;si),ai of the sum (6.25) is equal to

i': i a:' ai

- a p 1  ad -_si _ + s, - ri (Xai) + siai I{i < M}
Xa i  

i' i s' s

N N N N
iXsi"-iX sil + - C k -Si 

-- E ii + a Cai i,Xai (6.27)

i'= 1 s'=1 i'=1 a'=1

1'E l {i<M}' - 1{i_<M}

- Pxaiai, iai - rai (xai) +csiai 1{i < M},
Xai

after cancellation of -i,a , and adding and subtracting /,i and si,. This expression is valid for the
terms x,i;s;),si as well. Now after summation over i E [N], the first line in expression (6.27) does not

play any role in the minimization (6.26). This is obvious for the terms that do not depend on a. For

the terms involving the aij, we can write

N N N N N N

i=1 i'=1 i=li=1 i'=1 a=1
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the last equality being true since a is just a permutation of {1,..., N}. Hence the sums involving the
4i cancel (in fact we even see that each individual sum is independent of the choice of a). As for
the term Ei~ ki ,,, it is equal to Ej= kj,xj and so it is independent of the choice of a E H[N]. We
are left with the following optimization problem:

i=1 Xai

which after a sign change is seen to be exactly (6.23). We have shown the following

Theorem 6.4.1. The primal-dual heuristic (6.26), based on the interpretation of the reduced costs
of the LP relaxation, is equivalent to the one-step lookahead policy (6.23) assuming the separable
approximation (6.19) for the reward-to-go.

In view of this result, we obtain an alternative way to compute the one-step lookahead policy.
The minimization (6.26) is again a linear assignment problem. If we can store the O(N3 maxi(ISil))
optimal reduced costs instead of the 6(N 2 maxi(|Si)) optimal dual variables, there is just a linear
cost involved in computing the parameters mi,ai of the problem at each period resulting in an overall
6(N 3) computational cost for the on-line problem at each period. This is negligible in practice
since N cannot be very large for the LP relaxation to remain computable.

6.4.3 A Simple Greedy Heuristic

Perhaps the simplest policy for the RBSC problem is the greedy policy which chooses the next
action aE II[N] maximizing the immediate reward. This can be done as before by solving a linear
assignment problem, since it is the same as fixing the value of the Ai.,X', in (6.23) to zero, i.e.,
approximating the reward-to-go by zero. This policy is actually optimal for the MAB problem with
deteriorating active rewards, i.e., such that projects become less profitable as they are worked on
[14, vol. 2, p.69]. This policy is easy to implement, it does not require solving a linear program,
and we will use it as a benchmark in our numerical simulations.

6.4.4 Additional Computational Considerations

The major bottleneck limiting the use of our method for large-scale problems is the (off-line) com-
putation of the relaxation (6.14) which involves a large number of variables. Solving a problem with
30 sites which can each be in one of two states requires solving a linear program with about 105
variables, independently of the number of agents used. Although this is a computation which can
still be carried out, as the next section on numerical experiments will demonstrate, the limits of the
state-of-the-art linear programming technology are reached for relatively small problems. For these
problems of limited size, once the linear program has been solved, the one-step lookahead policy is
easily computed in real-time during the experiment.

Since the one-step lookahead policy can be computed quickly for the range of parameters of
interest, it is tempting to try to use it as a base policy to obtain a rollout policy, whose performance
is known to be at least as good as the base policy, as in [15, 14]. In practice, we noticed interesting
improvements when we could indeed implement it, in the single agent formulation presented in
[81]. In the multi-agent case however, this policy is difficult to implement since the number of next
possible states and actions, from which an approximate value function is to be estimated, grows
very fast with the size of the problem.
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6.5 Numerical Simulations

Table 6.1 presents numerical experiments on problems whose characteristics differently affect the
performance of the heuristics described in section 6.4. In some cases, when the size of the state
space allows it, we also compute the optimal performance as the solution of the linear program
(6.3). In any case, we give an upper bound on this performance using the relaxation (6.14). Linear
programs are implemented in AMPL and solved using CPLEX. Due to the size of the state space, the
expected discounted reward of the various heuristics is computed using Monte-Carlo simulations.
The computation of each trajectory is terminated after a sufficiently large, but finite horizon: in
our case, when at times the maximal absolute value of any immediate reward becomes less than
10-6. To reduce the amount of computation in the evaluation of the policies, we assume that the
distribution of the initial states of the sites is deterministic.

In table 6.1, we adopt the following nomenclature:

* a: discount factor.

* N: number of sites/projects.

* M: number of agents.

* ISil: number of states per project (all projects have the same number of states).

* c/r: ratio of the average switching cost divided by the average active reward. This is intended
to give an idea of the importance of the switching costs in the particular experiment. The
switching costs are always taken to be positive. Hence c/r = 0 means that there are no
switching costs.

* Z*: optimal value of the problem (when available).

* Zr: optimal value of the relaxation.

* Zg: estimated expected value of the greedy policy.

* Zosi: estimated expected value of the one-step lookahead policy.

Here is a brief description of the scenarios considered in the simulations. Problem 1 is a multi-
armed bandit problem (no transition costs, one agent, the passive sites are frozen) with 4 sites and
3 states per site. The index policy is not optimal, so we see that we do not recover Gittins' policy.
Hence the policy is also different from Whittle's policy in general, which reduces to Gittins' in
the MABP. Problem 2 is the same as problem 1, but the active transition probability matrices are
changed so that the problem satisfies the deteriorating reward property. In this case, it is known that
the greedy policy is optimal. On the other hand, we see that the one-step lookahead policy does
not perform optimally. In problem 3, we add transition costs to problem 2. The greedy policy is
not optimal any more, and the one-step lookahead policy performs better in this case. Problem 4
is designed to make the greedy policy underperform: two remote sites have slightly larger initial
rewards (taking into account the cost for reaching them), but the active rewards at these sites are
rapidly decreasing and the agents are overall better off avoiding these sites. The greedy policy does
not take into account the future transition costs incurred when leaving these sites. In this case, it
turns out that the one-step lookahead is quasi-optimal. In problem 5 on the other hand, the greedy
policy performs better, which means that no guarantee of a better performance from the one-step
lookahead policy can be claimed for a general problem. However, from the conducted experiments,
it seems that the one-step lookahead policy has often an advantage when the switching costs are
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Table 6.1: Numerical Experiments

Problem a Z* Zr Zg Zosi
(N,M, Si , c/r)

Problem 1 0.5 84.69 85.21 84.5 84.3
(4,1,3,0) 0.9 299.6 301.4 276 294

0.99 2614.2 2614 2324 2611
Problem 2 0.5 84.13 85.14 84.1 84.1
(4,1,3,0) 0.9 231.0 245.1 231 228

0.99 1337 1339 1337 1336
Problem 3 0.5 57.54 59.32 56.0 57.3
(4,1,3,0.6) 0.9 184.5 185.0 177 183

0.99 1279 1280 1273 1277
Problem 4 0.5 165.7 115 165

(4,2,5,1.39) 0.9 767.2 661 767
0.95 1518 1403 1518

Problem 5 0.5 39.25 38.5 36.5
(6,2,4,0) 0.9 214.0 205 198

0.95 431.6 414 396
Problem 6 0.5 9.727 6.93 8.24

(6,2,4,1.51) 0.9 62.80 38.0 47.0
0.95 128.7 78.0 99.0

Problem 7 0.5 196.5 189 194
(20,15,3,1.16) 0.9 952.7 877 900

0.95 1899 1747 1776
Problem 8 0.5 589.4 566 564

(30,15,2,2.18) 0.9 2833 2640 2641
0.95 5642 5218 5246

significant. Moreover, it is not obvious how to design experiments where it clearly underperforms,
in contrast to the greedy policy in problem 4. Problem 7 and 8 are larger scale problems, with up
to 30 sites. The relaxations are computed in about 20 minutes on a standard desktop, showing the
feasibility of the approach for this range of parameters.

6.6 A "Performance" Bound

In this section, we present a result that offers some insight into why we could expect the one-step
lookahead policy to perform well if the linear programming relaxation of the original problem is
sufficiently tight. We begin with the following

Lemma 6.6.1. The approximate reward-to-go (6.19) is a super-harmonic vector i.e., it is feasible
for the original dual linear program (6.5).

Proof. Consider one constraint in the original dual LP (6.5), for a fixed state-action tuple (x, s, a).
We consider a situation where si $z ai for all i E { 1,... N}. Summing the constraints (6.16) over i
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for the given values of xsi, si, ai, we get

N N N NN NN

ii,xsi -L Lsi,ai - ,x, Esi
i=1 i=l i=1 i=1 i'=1 i=1 a'=1

N N N

= iis,x, + E i ,aj + Csx 0. (6.28)
i=1 i=1 i=1

The cancellation follows from the discussion preceding theorem 6.4.1. Now summing the con-
straints (6.17) over i, we also get

N N N N

-a EPX ai.l ai,lai si 'ai,ixai ~ iM- (Xai) - Csa{i M} .

i=1 Xai  i=1 i=1 i=1

Finally, we add these two inequalities. We obtain

N N N

a, Xs -E a E xia a} > rai - (Xai) - Csia 1i M }
i=1 i=1 .a i  i=1

which is the inequality obtained by using the vector (6.19) in the constraints of (6.5).
The case where si = ai for some i is almost identical, considering the constraints (6.18) for the

corresponding indices. O

In the following theorem, using the notation of section 3.2.3 we will use the occupation measure
(state frequency) Fa (v, i~) on the state space, which we define from the state-action frequency simply
as

Fa (v, ii;x,s) = fa (v, i; x,s,a), V(x,s).
aErl[N]

Theorem 6.6.2. Let v be an initial distribution on the states, of the product form (6accordin). Let g to be the
optimal reward function, J be an approximation of this reward function formed according to (6.19),
and i~ be the associated one-step lookahead policy. Let Fa (v, 17) and Ja be the occupation measure
vector and the expected reward associated to the policy ii. Then

1
vT(J* - J) < -lFa(v, )T( - J*), (6.29)

1-a

or in other words,

1
Ev(x, s) |J*(x, s) - Ja (x, s) I < 1 Fa (v, 7; x, s) (J(x, s) - J* (x, s)).
x's I - a x's

In words, the theorem says that starting with a distribution v over the states, the difference
in expected rewards between the optimal policy and the one-step lookahead policy is bounded by
a weighted ll-distance between the estimate f used in the design of the policy and the optimal
value function J*. The weights are given by the occupation measure of the one-step lookahead
policy. This result is true for every one-step lookahead policy that uses a superharmonic vector as
an approximation of the cost-to-go. It gives some motivation to obtain a good approximation J and
a tight relaxation.

Proof We follow the analysis presented in [34]. First, by lemma 6.6.1, the vector J in (6.19) is a
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feasible vector for the linear program (6.5), and since J* is the optimal solution we have

vT > V TJ*. (6.30)

For an action a E 1[U], we denote by ga the vector of immediate rewards, i.e., from the definition
(6.21), ga(x; s) = g((x; s), a). Recall also the definition (6.22) of the transition matrix Jxax'. Let Ta
and T the dynamic programming operators

(TaJ)(x;s) = ga(x;s) +a 1 JSxaxJ(x';a),
X'Ey

(TJ)(x;s) = max ga(x;s)+a xJ xax,J(X';a)).

For a deterministic stationary policy u : Y x I[N] -- HI[N], we will also simply write u instead
of u(x, s) when it appears as a subscript. Then the cost Ja of policy 1 defined in the theorem is the
solution of the linear system J - TaJa. If we also denote by Pa the stochastic matrix Oxa(x;s)x,, this
can be written as

Ja = ga + aPJJ.

Now (I - aP) has an inverse since Pa is a stochastic matrix and a < 1, so we get

Ja = (I - aPa) - ga.

Moreover, under policy ii, the state of the system evolves as a Markov chain, and we have

Iuv(X = x, St = ) = [TPatxs. So the occupation measure is

Fa(v,5) = (1 - a) atvT = (1 - a)vT(I- Pa)- .  (6.31)

t=O

Now

f-Ja = (I- aPa)- [(I- aP,)f- ga] = (I-aP,7)- 1 [f- (ga + aPJ)] .

By the definition of the one-step lookahead policy ga + aPJf = Ti. So we obtain

f- Ja = (I - aP)- [i- TJ .

Then starting from (6.30) and using (6.31)

1
vT (J* -Ja) < VT(f Ja) < Fa(v, )T(j- Ti).

1-a

By lemma 6.6.1 we know that f > Ti. Then by the monotonicity of the operator T the fact that
limN,. TNfj= J*, we obtain TfJ> T 2J > ... > J*. So

T (J* _- J ) < F )( _ J*),1-a

which is the inequality in the theorem. [
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6.7 Conclusion

We have presented a linear programming relaxation for a modified version of the restless bandit
problem, adding costs to switch between the bandits. This set-up is quite powerful to model a wide
range of dynamic resource allocation problems. Since the problem is computationally intractable
and an optimal solution can in general not be directly computed, the relaxation is useful in providing
a bound on the performance achievable by any policy. We also presented a heuristic to solve the
problem in practice, as well as its performance on specific examples. An interesting part of the
analysis showed the equivalence between the approximate dynamic programming point of view
and a technique derived from linear programming theory based on the interpretation of the reduced
costs. The relaxation can be obtained automatically by first formulating the original problem as a
Markov decision process on the whole state space and then optimizing over specific marginals of
the occupation measure. The techniques presented only rely on the partially separable structure of
the problem and should be useful for other problems with similar structure.
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Chapter 7

Continuous Path-Planning for a
Data-Harvesting Vehicle

UAS are actively used in various civil and military ISR missions. Another application under con-
sideration mentioned in the introduction is to use UAVs as communication relays, for example
between spatially separated groups on a battlefield [128]. Researchers are now developing numer-
ous models targeted towards these data harvesting applications for mobile sensor systems, see e.g.
[51, 85, 116, 44, 102]. Usually the path planning problem is simplified by considering discrete mod-
els where data is transfered from locations in the environment to the mobile elements only when the
locations are physically visited by these vehicles. The path of the vehicles (when it is not assumed
to be a random walk) is then determined by solving a combinatorial optimization problem, such as
the Mobile Element Scheduling Problem [120] or other variations of vehicle routing problems. This
modeling approach discretizing the exploration space was also adopted in the previous chapters on
stochastic dynamic scheduling.

When mobile robots are to be used for remote sensing or as communication relays however, it
is preferable to optimize their trajectories without assuming a priori a fixed discrete set of possible
travel locations. Moreover, measurements and transmission occur during the motion of the sensor,
and this motion can even play a crucial role in the quality of the measurements, such as in synthetic
aperture radar imaging. These features cannot be captured by the discrete models considered above.
In addition, we saw in chapter 6 that the addition of the path planning component to standard
stochastic models used in scheduling, via switching costs or times, leads to problems that are very
difficult to solve and for which few results are available. For instance, the polling problem with
two queues and switching times is still open [105]. This motivates us to introduce in this chapter a
more flexible framework for combined path-planning and scheduling, inspired by the deterministic
fluid approximations used for controlling stochastic networks. This model, although not as detailed
as models based on MDPs, should provide insight for the development of good control policies for
complicated spatiotemporal scheduling scenarios.

7.1 Introduction

In this chapter, we assume that the work to be performed at the sites by the vehicles can be mod-
eled as jobs arriving at spatially distributed queues. For example, requests for information transfer
between a site and an UAV, via measurement or wireless communication, arrive at the site and must
be served by the vehicle. If this problem is approached from a queueing theory perspective, there
is an extensive literature under the rubric of polling systems [123], which is mostly concerned with
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I service rate 1
service rate 2

Figure 7-1: Uplink from two fixed stations to a mobile receiver, with spatially decaying service
rates.

performance evaluation of open-loop path-planning policies (the queues are served in some fixed
cyclic order). The work on polling systems also assumes a discrete model where the service at the
queues can be performed only if the server is present at the queue location.

In contrast we consider a continuous polling model where a server can serve spatially separated
queues with service rates that depend on the position of the server with respect to the queues. This
could model for example the uplink of a wireless transmission system where base stations on the
ground transmit their data to a mobile fusion center. Another application concerns planning the
trajectory of a mobile measurement station: the quality of the measurements and the time to acquire
a bit of information typically depend on the distance to the target. A related integrated model
involving path planning and information collection was presented recently in [71].

The goal is to design the trajectory of the server in order to:

* stabilize the system, i.e., keep the number of tasks in the different queues uniformly bounded.

* optimize a given performance measure, such as minimizing the total number of jobs at all
queues over a given horizon.

To obtain a tractable model for analysis and control design, we rely on a deterministic fluid approxi-
mation of the problem. Fluid models have proved to be very useful in obtaining insight and policies
with good performance in the control of queueing networks [92], including discrete polling systems
[77], where more traditional approaches based on MDPs are often too detailed and suffer the curse
of dimensionality.

The rest of the chapter is organized as follows. Section 7.2 describes the fluid model considered.
A necessary and sufficient condition for its stabilization, the main result of this chapter, is presented
in section 7.3. Finally in section 7.4, we look at the trajectory optimization problem for an example
of a draining problem in which the goal is to collect an initial set of packets from two queues
as efficiently as possible, without taking into account new arrivals. This model could be useful to
develop batch policies ensuring a degree of fairness in service by periodically freezing the jobs to be
served next in the queues. A simple performance bound and numerical simulations briefly discuss
the relationship between the fluid model and stochastic models assuming variability.

7.2 Fluid Model

Fig. 7-1 presents a conceptual model of the problem for two base stations or sites. Some information
to be transmitted to a mobile server arrives at N queues located at fixed sites, with constant rates
ai, i = 1,...,N. We represent this information as a continuous quantity, called fluid hereafter. The
fluid present in queue i can be drained from the queue at maximal rate Mi(x(t)), which is a function
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Figure 7-2: Example of a one-dimensional filling rate profile for a site at position x = 0.

of the position x(t) of the server at time t. The allocation rate of the server to queue i is denoted i,
with 0 < 4i < 1, so that the actual service rate for queue i at time t is jui(x(t)) i(t). Both the position

x(t) and the allocation rate vector 4(t) can be controlled by the server, subject to constraints. The

server might have dynamics, constraining the choice of trajectories. As we will see, in general the

dynamics of the vehicle do not play a role in the stability condition for the system. However, they

influence the delay in servicing the jobs in the queues. As an example, we assume in section 7.4

that the server has the trivial dynamics with bounded velocity

x = u, Iul < V, x(0) = xo, (7.1)

where u is the velocity control. The allocation rate vector is always subject to the constraint 0 <
4 < 1. Additional constraints, potentially dependent on the position of the server, and modeling for

example the communication capacity region in the multiple base station transmission scenario, are

assumed to be linear with respect to the rate allocation vector. Hence the constraints on the rate
allocation vector can be summarized as

4> 0, C(x) < 1,

where C(x) is called the constituency matrix when the server is at position x. The dynamics of the
queues are described by the following differential equation

dqi(t) = - i(x(t))(t) , (7.2)
dt ( qi

where d denotes the right derivative, and we use the notation

(g(x)) g(x) if y > 0

max(g(x),0} if y = 0.

We can also add constraints imposing finite buffer sizes.
Fig. 7-2 shows an example of a filling rate profile for a one-dimensional problem with service

rate ki(x) linearly decreasing with the distance xli to the queue. The vector field in (7.2) enforces
the nonnegativity constraint for the fluid levels in the buffers, and is discontinuous on the boundary
where qi = 0 and a - i(x) i < 0.

Example 7.2.1. Two stations transmit a signal to the mobile server (UAV) over a shared additive
white Gaussian noise channel, with power Pi, i = 1,2. The server, when at position x, receives the
signal from station i with power pi(x) = Pi/(Ci + lIx - xi )ai, where Ci and ai are constants, and
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x i is the position of the ith base station. If the server decodes the transmission of the base stations
sequentially, it can achieve communication rates Ri(x) that are subject to the following constraints
[33]:

Ri < log(l + pi(x)), i= 1,2, and Ri +R2 < log(l+ pl(x) + p2 (x)).

To put this example in our framework, we can let Li(x) = log(1 + pi(x)) for i = 1,2, Ri = pi(x) i
and rewrite the constraints

0 < i < 1, i= 1,2, and - 2(X)2 < 1.
log(1 + p (x) + P2 (x))

The model described above can be generalized as follows. The vector of queue sizes q E Ru

obeys the system of differential equations

d+dt q(t)= a + B(x(t)) (t), (7.3)

where a is the vector of external arrival rates, E R is the vector of allocation rates, and B is an
N-by-i matrix. The position x(t) E RWd of the server, where d denotes the dimension of the geometry
of the problem, obeys the controlled differential equation (7.1). We let X C Rd denote the set of
reachable values for the state x. In addition, the state q of the queues is constrained to belong
to a polyhedral state-space Q, which includes the non-negativity constraints and the potential finite
buffer constraints. When the system is in state (q, x), the rate allocation vector belongs to a convex
polyhedron which depends on the state x of the server

SE U(x) = ( : > 0, C(x) < }.

In addition, there are additional implicit constraints on " when q hits the boundaries of Q, to prevent
the queue lengths from violating their positivity or finite buffer size constraints.

In complicated networks, the matrix B might not be square and the components of ' correspond
to different activities [92, chapter 6]. In the simple scheduling scenario described here however,
B(x) is a diagonal matrix for all x, with Bii(x) = -i (x). The stability condition presented in section
7.3 is valid for the general model (7.3) however.

Finally, note that models of the vehicle dynamics much more general than (7.1) could be used.
In fact, the dynamics of the vehicle do not play a role to obtain our stability condition for the fluid
model, except for the fact that (7.1) allows the control law to stop the vehicle at an arbitrary location
of the state space X. Hence the stability condition presented below is valid for any vehicle that can
stop at any x E X (for example, a double integrator, or a Reeds-Shepp vehicle) but would have to be
adapted to work for the Dubins vehicle for example.

7.3 Stability of the Fluid Model

In general, it is not possible to drain all queues to zero simultaneously using the mobile server, if
the intersection of the draining regions, which are the regions of X where the server can drive the
queue level of a particular queue towards 0, is empty. Hence we use the following weaker notion of
stability.

Definition 7.3.1. The system q is said to be stabilizable if there exists constants K and T such that,
for any initial condition qo,

Jq(t)[ II < K Vt > Tqo0oll-.
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Remark 7.3.2. The requirement to bring the queue sizes close to 0 in a time proportional to IIqo01
is without loss of generality, as should be clear from the dynamics (7.3) and the geometric picture
presented in the following.

To study the possible trajectories of the vector q in (7.3), we will study the velocity space for
the queues, generalizing the corresponding definitions in [92]. Let

Y= U{{x}xU(x)}.
xEX

First we note that a trajectory (x(t), 4(t)) defines for each T E R+ a probability measure Px', on Y

where Pr' (A) is the proportion of time that the pair (x, 4) spends in set A C Y in the interval [0, T].
In other words

PT'1 (A) = Sx(rt),(t)(A)dt.

Then, integrating (7.3), we obtain, for all T E R+,

q(T)= qo+a+rT+ B(x(t))4(t)dt

q(T) = qo + aT + T B(x)'Sx(t), (t)(dx,d4)dt

q(T) = qo+ aT + T B(x) P P (dx,d4). (7.4)

Define the velocity space for the queues as

V = {+ IB(x) P(dx, d4) : P a probability measure on Y .

Clearly, V is a convex set in RN . It is the set of directions in which we can steer the vector q, by
moving the server and controlling the allocation rates 4, if we do not take into account the dynamical
constraint (7.1) imposed on the vehicle dynamics. In fact, we will see below that this constraint does
not play a role as far as stability is concerned.

Now the following is useful for approximating the set V. Note that by definition of the Lebesgue
integral, we can approximate

a + JB(x) dP(x, (),

arbitrarily closely by the "Lebesgue sums"

a + B(xk) kpk, (7.5)
k=1

whereE pk - 1 (since P(Y) = 1), and xk E X, and ' k E U(xk), i= 1,... ,n. Such a sum correspond
to a point in V with associated measure E,1 pk xk, 4 k. Let

V(x) = {a +B(x) : E U(x)}.

For each position x of the server, V(x) is a convex polyhedron. Note that since 0 E U (x) for all x, all
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these polyhedrons contain the point a. Then we define

V = cony U V(x) .
Clearly V is the set of points of the form (7.5), and so V is dense in V. Note that since V and V are
convex, this implies

int(V) = int(V). (7.6)

Let CE be the l" e-ball

C
e -= {v E IN: -E < Vi< O, i= 1,...,N}.

Then the following theorem provides a necessary and sufficient stabilizability condition for the fluid
model.

Theorem 7.3.3. The following conditions are equivalent

1. The fluid model (7.3) is stabilizable.

2. CE C V, for some E.

3. CE C V, for some E.

The proof of the theorem is in fact straightforward once the geometric picture is clear. It is thus
helpful to consider first a simple low-dimensional example.

A Two-Dimensional Example

Consider a scheduling problem where the server can move on the real line and serve two queues at
position 0 and d with service rates pL (x) 1 and p12 (x) 2 respectively, with only the trivial constraints
0 < 1, 2 < 1. Clearly in this case we should always let 4i = 1, i = 1,2. The arrival rates are al and
a2 respectively. Hence the dynamics are

± l -11(X) 0 1F 1
- + (x) (7.7)

42 a2 0 -- 2 X) 2

U(x) = U = { = [1 32]
T :O < 1, 2 < 1 Vx, (7.8)

and in addition, we have the positivity constraints ql, q2 > 0. Figure 7-3 shows the velocity set for
an instance of the problem where

3 4
a = 1, a 2 = 3, Pl(x) = , 2 (x) (7.9)

1XI 1I+ x-4 (

Let us define the draining region of queue i as

D':= {x E R  ji- yi(x) < O }, iE{1,2},

and assume that D n0D 2 = 0. This corresponds to the situation of fig. 7-3, since the curve {(al -
1i (x), a 2 - t2 (x)) : x E R} does not intersect the set int(R 2 ). The geometric condition for stability

of theorem 7.3.3 can then be translated into a more algebraic condition. Indeed we see that the
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0

14

3 2

Figure 7-3: Velocity set for the two-dimensional example (7.9). The filled polygon is the velocity
set for the queues. The curve is the set of points {(al - l (x), a 2 - A2(x)) : x E R}. We also
show a rectangle which is the set V(x) for some value ofx. From the figure and theorem 7.3.3, we
see immediately that the system is stabilizable since (0, 0) is an interior point of the velocity set.
Moreover, we can approximately steer the vector q in the directions contained in R2. using policies
that switch between the points x1 and x2 only. The proportion of time spent at each point determines
a convex combination of the velocity vectors at x1 and x2.
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system is stable if and only if there exist two points x 1 E D' and x2 E D 2 and a parameter 0 < 0 < 1
such that

( a, -M(xI) + 0 a, - y1 (x2) 0
a2 - 2 (X 1 ) a2 - 92(X2 )  0

We rewrite these conditions as

ial - i (x2) < 0(t (xl)-_ 1 (X2))

a2 - 2 (X1 ) < (1- )( 2 (X 2 ) - 2(x
1 ))

a, -y 1(X2)

we obtain: 3 E (0, 1) s.t. pi(x)-i(x
2

)

2-L 2 (X
1
)

2(2)_92(x) < 1- 0.

These last two conditions are equivalent to the following condition

al - yl (X2 )  a2 - Y-2 (X1 )3x E D 1, x 2 E D2, s.t. ) < 1
p1 (xl) - pL (X2 )  2 (X2 ) - 2 (X 1)

which, after expansion and simplifications, can also be rewritten

3x 1 E D, x2 E D2 , s.t. (a, -p1(x 2 ))(a 2 -(x2 (X) ) < 1. (7.10)
(p, (x ) - a,)(Y2 X2) - a2)

Example 7.3.4. Let

1 1
l l(x) = Y 2(X) a= 1 = 0.5, a2 = 0.55.

1 + 0. 1x2 1 + 0.1 Ix - 813 

One can then verify that D 1 nD) 2 = 0. Condition (7.10) for x 1 = 0 and x 2 = 8 gives 0.86 < 1 hence the
system is stable. Looking only at the condition al/, 1 (0) + a 2/2 (0) = 1.05, we see that the system
is easier to stabilize than the traditional discrete two-queue setup, for which pl (x2 ) = u2 (

x ) = 0.

Proof of theorem 7.3.3

1 = 2. We have by (7.4)

qi(t) = qi(O) + v: t, i= 1,...,N

for some vt E V. Hence
qi(t) - qi(0) E V, for all t > 0.

t

Recall the definition of the constants K, T in definition 7.3.1. Let 8 E Ru with 1161O = 1/T, and
let qn(t) be a stable trajectory with qn(0) = n5,n E N. Then for all t > Tn II311 = n, we have
lqn (t) i < K. In particular we deduce that for all n E N,

qn (n) V, (7.11)
n

and so since the sequence qn(n) is bounded by K, we see that -3 E cl(V). Hence we have the
inclusion

{v E N : -e < vi < 0, i = 1,...,N} C V.
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Moreover if in (7.11) we take 3 = 1ei, with e' the ith standard basis vector, we obtain a sequence
{ (,..., ,...,)}n of points of V with en > 0, Vj, n. Hence by convexity the points - 1e

also belong to V. Finally recalling that a E V (with a E RN) and again by convexity of V, we obtain
that CE C V for e = 1/T.

2 = 3. Suppose CE C V, for some e. If CE \ {0} C int(V), then CE C V using (7.6), a E V
and the convexity of V (we use this condition since it allows the case a = 0 on the boundary of
V). The rest of the argument concerns the technical point which arises when facets of Ce are on the
boundary of V. We prove that in this case, these facets are also in V. So assume that there is a point
vo E CE \ {0} which is on the boundary of V. We call 9 the set of probability measures on Y. We
also define, for P E -?,

v(P) = a+ jB(x) P(dx,d4).

Then let P0 E 90 be such that v(Po) = V0 .

Since V is convex, there is a supporting hyperplane H c R N of V passing through vo. By a
transformation of coordinates, we can assume that H is the plane XN = 0, and that for all P E 0,
we have the coordinate [v(P)]N < 0. Considering Dirac measures, we have that for all (x, ) E Y,
(a +B(x) )N < 0. In particular, taking 0 implies that an - 0, and so

V(x, ) E Y, (B(x))N < 0. (7.12)

Now we have
vO = (B(x)¢)N P0 (dx, d4) = 0,

which, with (7.12), implies that, except possibly for a set of Y of P0 measure 0, we have (B(x) )N =
0. Hence we can restrict the problem of approximating the integral defining vo by using points
B(xk) k which are on the hyperplane H. Repeating the same argument for an intersection of hy-
perplanes if there is a lower dimensional facet of CE (such as an edge) on the boundary of V, we
see that we can always restrict the approximation problem for points v of the facet by using points
B(xk) k which are on that facet. Hence the facet also belongs to V (by convexity of V again). So
Ce C V.

3 1. The idea is intuitively clear. For T large enough, - E belongs to V, so we can write

n

0 = qo +aT +T B(xk) kpk.
k=1

Then a policy which moves the server successively through the points xk, k = 1,..., n, uses at these
points the allocation rates k, and spends time pkT at point xk drives the system approximately to
0 if T is much greater than the time spent traveling between the points xk. Moreover, this policy
is approximately time optimal, since it drives the vector of queues in the most direct way possible
towards 0. Of course, this reasoning is valid only for the case where qo,i is large for all i, for which
the positivity constraints and the travel times can indeed be neglected, but this is the only case of
real interest as far as stability is concerned. The argument is complicated however by the fact that
the choice of the configurations (xk, 4 k), which determines the total travel time and the impact of the
positivity constraints, depends on the travel direction -qo/T and it becomes problematic to obtain
an upper-bound K independent of qo on the steady-state sizes of the queues.

Hence we will show stability by driving the queues toward 0 using a single direction (the diag-
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onal), sacrificing time optimality in the process. Let qo = (qo,1, ... , qo,N) be the initial queue sizes.

We start by bringing the queue size vector close to the diagonal D := {q E RN: ql = q2 *... = qN,
as follows. For each j E { 1,... ,N}, there is a configuration (xi, iJ) E Y such that vi = B(xJ) i E
and verifies

S<0, and v > 0,i = 1,...,N. (7.13)

This is easily seen from the fact that Ce C V. Moreover, we can choose these vectors in such
a way that CE is contained in the convex cone that they generate. Then there exist nonnegative
constants t J, j = 1,...N, such that q0 + E=1 t Jv J E D, and moreover, if the server is spending time

ti in configuration vJ, j = 1,..., N, the positivity constraints on q never become active. Now if we
call T the time necessary for switching from v1 to v2, then to v3, etc., until vN, we can fix 4 = 0
while the server travels, and the policy above in fact brings the vector q to the value qi + aT on
the line aT1 + D, using a trajectory that never hits the boundaries of RN. This first phase can be
accomplished in a time upper bounded by aTi + T2 IIqo0 1f, where T2 is a constant independent of
IIqo||0 (this is because the distance from qo to D is proportional to ||qo0oo, and the coefficients ti are
of the same order).

Once the vector q is at qi + aTI, close to the diagonal, we drive it toward 0. More precisely,
there is a constant T2 > 0 such that

n
E , so - q1 = aT2 + T2  B(xk)kpk,

T2 k=1

for some configurations (xk, ),k = 1,...,n. Then by adapting the usual the policy that puts the
server in the successive configurations (xk, k), k = 1,..., n, we can move the queue size vectors by

-ql + 6 + aT 3. Here 5 is a nonnegative fixed quantity which takes into account the effect of the
positivity constraints, and T3 is the sum of the switching times between configurations. So at the
end of the second step, the vector q is at the point 8 + a(Ti + T3). The duration of the second phase
if proportional to Ilq I |, which can be bounded by a constant multiple of IIqo|. So the total time
is can be written T iqo II + aTl. Using the ideas above, it is not hard to see that there are constants
K and K1, for which we can choose KI 2 |6 + a(T + T3)I1, such that if IIq(to) I< KY1 for some t,
we can insure Iq(t) 11. < K, Vt > to (we can use the velocity vectors vJ of (7.13) for this purpose).
Hence we are done by choosing T = + T1, in the case IIqo I o > K1.

Time Optimal Trajectories

We conclude this section with a brief and informal discussion of time-optimal trajectories, that is,
trajectories which bring the queues in the bounded region of definition 7.3.1 in minimum time.
Assume that we start with an initial condition qo which is far from the boundaries, see Fig. 7-4.
Then time optimal trajectories correspond to driving the queues in the direction -qo. This direction
belongs to the velocity set if the system is stabilizable. However, it is possible that one can steer
the queues in this direction only be traveling between different points in the space X. As long as
we remain far from the boundaries of the state space Q, we can drive the queues approximately in
the direction -qo. Problems arise, and in particular we cannot necessarily neglect the traveling time
any more, once we approach the boundaries.
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Figure 7-4: Initial condition qo, velocity set (the gray polygon), and example of trajectory for the
queues.

7.4 Trajectory Optimization for a Draining Problem

If a system is stable in the sense of definition 7.3.1, then we can implement it using finite buffers.
Moreover, the proof of theorem 7.3.3 showed how to bring the queue levels below the upper-bound
K approximately in minimum time, as least when starting from a large initial condition. The precise
dynamics of the vehicle had no influence on the stability condition, but only on the values of K and
T.

There are other types of objectives one might want to optimize. If we want to give priority
to certain types of jobs at certain locations for example, minimizing a weighted sum of the queue
levels might be appropriate. In this section, we touch upon this problem, for which the dynamics of
the vehicle play a more important role.

To illustrate the ideas, we consider a simple particular case of the two-queue configuration (7.7),
(7.8). We study the problem of draining optimally the fluid present initially in the system, when no
new arrival occurs (i.e., al = a2 = 0) and we incur a running linear cost clql(t) + c2q2(t), with
Cl, c2 strictly positive constants.

7.4.1 Server with Unbounded Velocity

If the server were allowed to travel with infinite velocity, there would be a path-wise optimal so-
lution. Indeed, suppose that additionally to the points x attaining the maximum service rates j,
there is a point x* realizing the maximum

x* E argmax{c 1 l(x) + c2 2() }.
x

Then, since we have

dt c(q(t)) = -Cl [i (x(t))]+ - C2 [k2(x(t))]q2

133



we obtain immediately

Theorem 7.4.1. For the draining problem with linear cost function and a server with infinite veloc-
ity, the following rule is path-wise optimal, i.e., for given initial fluid levels, it minimizes c(t) for all
t > 0:

1. as long as qi > 0 and q2 > 0, place the server at x*

2. ifql = 0, place the server at x, otherwise if q2 = 0, place the server at x (until the total fluid
reaches 0).

Now define the infinite-horizon cost

J(qo;u(.)) = j c(q(t))dt = clql(t) + c2q 2 (t)dt, (7.14)

and the draining time
T(qo;u(-)) = min{t :q(t) = 0},

where qo = [qlo, q 20]T is the initial fluid level in the queues. A policy minimizing J(qo; -) is called
infinite-horizon optimal, and it is called time optimal if it drains the system in minimum time. We
have then

Corollary 7.4.1. For a server with infinite velocity, the policy of theorem 7.4.1, being path-wise
optimal, is also infinite-horizon optimal and time optimal.

Remark 7.4.2. If the draining regions do not overlap, the policy of theorem 7.4.1 chooses the po-
sition x* associated to the maximum value of the indices cipi*, i = 1,2. Hence, we recover the
well-known "c/ rule" [92].

7.4.2 Necessary Conditions for Optimality

We now consider the optimization of the infinite-horizon cost (7.14) for a server with the simple
dynamics (7.1) and bounded velocity. Using the minimum principle, we can derive necessary con-
ditions satisfied by optimal trajectories. For each subset S of { 1, 2}, define the Hamiltonian

HS(q, x, u, p) = Eciqi - EPipi(X) + pOU, (7.15)
iES iES

which is the Hamiltonian for the system where S represents the set of non-empty queues, and
p = [P0, P1, P2] are the adjoint variables. In contrast to standard optimal control problems for fluid
models, where the draining rate is assumed to be under direct control, we cannot enforce the posi-
tivity constraint on the fluid levels by a simple state dependent constraint on the control. We must
take into account the discontinuity in the dynamics of the system when a queue level reaches zero.

Suppose that both queues are non-empty, that the server is in the draining region Di of queue i,
and that queue i becomes empty at some time ;i. Suppose that there is only one queue becoming
empty at time ri. From the results in [26, sections 3.5 and 3.6], at the boundary qi - 0, we have the
following relations

pi(Ti-) = pi( ) + ri, (7.16)

pj(H2-) = p j(r+), j i

H1 I'2}(ri-) =H{J('}r+), j:4i (7.17)
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where 7i is a (constant) Lagrange multiplier. Now using the continuity of the state variables q, x and
of the Hamiltonian (7.17), we get

pi(i-)Pi(x(i-)) = 0,

and since the server must be in the draining region D' (where 2i(x(vi-)) > 0) when queue i becomes
empty this implies

pi(z) = 0.

Hence, the adjoint variable corresponding to queue i vanishes at the time when the queue becomes
empty. The optimal control is of the bang-bang type

u(t) = -sign(po(t))V.

When the queues in the set S are non-empty, the adjoint equations are,

Pi = -Ci, i E S

po = EPid (x(t)),
iES

where the derivative with respect to x can be taken to mean a subgradient in the case of nonsmooth
rate functions. From the first set of equations and the preceding argument, we deduce

pi(t)=ci(ri-t), i {1,2},

Finally, since the dynamics and cost function are independent of time and this is a free terminal time
problem, we know that the Hamiltonian is constant and equal to zero along optimal trajectories.

7.4.3 Draining Problem with Two Distant Sites and Linear Rate Functions

In this section, we consider an example where the server starts initially on the line segment be-
tween two base stations located at positions 0 and d. We assume for simplicity that the stations are
sufficiently far from the initial position of the server, so that the queue at each base station would
become empty before the server can reach it, if it were to always move towards that base station.
The objective is to drain the queues while minimizing the infinite-horizon cost function (7.14). We
assume that the draining region of each queue covers the whole segment [0, d], so that even a immo-
bile server is draining the queue in finite time. We also assume here that the service rate decreases
linearly with the distance to the base station, i.e., pi (x) = po - sl Ix| and 12(X) = 120 - S2 d - xJ,

with sl and s2 positive constants. In particular, in the region [0, d] of interest, we have

/21(X) = 10--sIX, 22(x) =- 20 -s 2 (d -x), xE [0,d].

Calling the terminal time tf, we have tf = zl or tf = 2 and also

H(tf) = -Vlpo(tf)l = 0 = po(tf) = 0. (7.18)

We determine the optimal trajectories by considering different cases based on which queue becomes
empty first.
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Case 2 < T1

Suppose that queue 2 at location d empties first, that is, 2 < 71 = tf. Then for t > z2, we have, for
x in the region [0, d],

Po = -Pis] = ciSl (t- Z1).

This gives, with the condition (7.18),

Po = 2 (Zi - t)2 , fort E [r2 , rl].

Hence po is strictly positive on (r 2, zl) and and so during that phase, we have u = -V, i.e., the
server moves towards the left base station, as expected.

Now consider the time r2, at which we have po0( 2) > 0 and po is continuous. On the interval
[0, T2), we have

Po = -P +P2S2 = -C1SI (1 - t) + C2S2( 2 - t).

This equation, together with the continuity condition at T2, gives

C1S1 2 C2S2

Po = (r(zl -t)- 2 2- t) 2, fort E [0, Z 2].

If cIsl = C2S 2, then po = clsl (li - ,2) ( +2 - t) and so po remains positive and the server must
always move towards the left base station. This is also true if c isl > c2S2. Now in the case C2S2 >
clsl, there is potentially a time to > 0 such that on [0, to), po(t) is negative and the server must move
towards the right base station. We obtain to by solving for po(to) = 0, so that, defining

R:= ~Is _ 2-t

Sc2S2 1 - to

we get
(t 2 - 1

to = max 1- Ri ,O (7.19)

which is positive if and only if T2 > z1R. In conclusion, for an optimal trajectory to empty queue
2 first, the server must necessarily be always moving to the left if R > 1, and if R < I it must be
moving right for time to and then left.

Consider the case R > I first. If the server always moves left, we have

x(t) = xo - Vt.

This gives (assuming that the server does not reach station 1 before tf):

l (t) = -910 + six(t) = -A10 + sixo - sl Vt,

t2

q1 (t) = q1,o + (slxo - #10)t - sV-2
4 2 (t) = -P20 + s2(d- x(t)) = -#20 + S 2 (d -xo) + s 2 Vt

t 2

q2(t) = q2,0 + (S2 (d - xo) - 20)t + S2 V -
2
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Letting qi (lI) = 0 and q2 ( 2 ) = 0, we get

(SIXO -- #10) + /(SixO - y10)2 + 2siVql,o (7.20)
:1 := 71,l (7.20)

siV

-(s 2 (d - xo) - 20) - (S2 (d - xo) -20)2 - 2s2Vq2,0
72 " 72,1 = (7.21)

s 2V

recalling that (sixo - P10) and (s2 (d - xo) - 20) are negative quantities by assumption. The trajec-
tory for the queue level q2 (t) is a convex function of t and the time 7r2 corresponds to the smallest
root of the equation q2(t) = 0. With these quantities and R > 1, for the optimal trajectory to empty
queue 2 first, we must have r2,l < r1,,. This gives a condition that depends only on the parameters of
the problems. If this condition is not verified and R > 1, then queue 2 cannot empty strictly before
queue 1.

Now suppose R < 1. As long as 72 < RTl, the optimal solution must again move the server
always to the left. So for such an extremal solution to exist, we must have v2,1 < RT,1. If we find
that 2,1 > RT1,1, always moving the server to the left cannot be optimal, but we might still have
an optimal solution which empties queue 2 first by first moving to the right. Let ti(tr) be the time
at which queue i empties if the server first moves right for a time t,, and then left. Thus, we are
considering the case R < 1, Rl (0) < 72 (0). As we increase tr, r2 (tr) decreases and r (tr) increases.
The positive time to verifies the equation

(1-R)to = r2(to)-Rl(to), fort 0 > 0 (7.22)

so we have reduced the problem to computing the functions i; (tr) and solving the fixed point equa-
tion (7.22), i.e., finding the intersection of the diagonal with (r2 (tr) - Rt (tr))/(1 - R), a decreasing

function of tr. Once we have obtained to, we can verify if the optimal solution indeed empties queue
2 first by verifying 2 (to) < i (to). If not, again, the optimal solution cannot empty queue 2 strictly
before queue 1. Note also that when r2 approaches rl from below, i.e., both queues empty at the
same time, we get to - 71 = tf, and so in the limit we should move the server to the right all the
time.

Now when the server moves to the right first for time tr, we have x = xo + Vt, and we get

2
ql(tr) =max 0,ql,o + (slxo - O)tr +siV- , (7.23)

q2(tr) = max 0, q2 ,0 + (s2 (d - xo) - #20 )tr -S 2 V . (7.24)

Note that in fact, from the argument above, for 72 < T1, tr must be such that ql (tr) and q2 (tr) are

both positive, since when queue 2 empties at r2, we must be traveling left and have passed the time
tr. This constrains the set of possible values to consider for tr. Then we can replace qi,o by qi(tr)
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and x 0 by xo + Vtr in (7.20), (7.21), to obtain

(Si (xo + Vtr) - 10o)
l /(tr) = tr -

siV

(sl (xo - Vtr) - y10)2 + 2s V (qlo + (slxo - tlO)tr + sg V

siV

-(s2(d - xo - Vtr) - 920)Z2(tr) = tr +
s2V

(s2(d - xo- Vtr) - 20)2 - 2s2 V (q2,0 + (s2(d -xo) - 120)tr- S2V)

s2 V

From these expression we can compute to by solving the fixed point equation. It reduces to finding
tr such that

(P20 - s 2 (d - xo - Vtr))

- (\s2(d-xo-Vtr) - 20)2 -2s 2 V q2,0+s+ 2(d-xo) - 20)tr-s 2 V 2

= (R S2 S  ( (XO + Vtr) - ,10)

+ ;(Si (xo + Vtr) - ,1O)2 + 2s1V (ql,o + (siXO - plo)tr -+Y s V ) }.

In practice, the feedback solution, discussed later, is more useful than the open-loop control and
does not require finding the value of to. However, to could be useful for computing performance
bounds, or t design an open-loop policy if we don't have access to the updates on the sizes of the
queues or the position of the server.

Case Z1 < 72

The analysis is identical to the previous case, interchanging the indices in the first part, and V with
-V. Let us repeat the details for completeness. For t > rl, we have, for x in the region [0, d],

Po = P2S2 = -C 2 S2 (t - r2)-

This gives, with the condition (7.18),

Po CS2 (2 - t)2, for t E [72, Z].

Hence po is strictly negative on (72, 1) and and so during that phase, we have u = +V, i.e., the
server moves towards the right base station, as expected.

Now consider the time r1, at which we have po(7l) < 0 and po is continuous. On the interval
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[0, zl), we have
Po = -plsI + p2S2 -= _-CiS 1 - t) + C2S2(T2 - t).

This equation, together with the continuity condition at r2, gives again

C1S1 2 C2S2
Po = 2 ( - t) 2 - 2 2 - t)2 , fort E [0, 2].

2 2

If c1sl = c2S2, then po = cls l(z - 2) (~ -t) and so po remains negative and the server must
always move towards the right base station. This is also true if c1s] < c2S2. Now in the case
clsl > c2S2, there is potentially a time to > 0 such that on [0, to), po(t) is positive and the server
must move towards the left base station. We obtain to by solving for po(to) = 0, and defining like
before

R := lS _ T2- t
Sc2S2 '1 - to

we get

to = ax R-2 (7.25)

which is positive if and only if 2 < zlR, since we now have R > 1. In conclusion, for an optimal
trajectory to empty queue 1 first, the server must necessarily be always moving to the right if R < 1,
and if R > 1 it must be moving left for time to and then right.

Consider the case R < 1 first. If the server always moves right, we have

x(t) = xo + Vt.

This gives (assuming that the server does not reach station 2 before tf):

1 (t) = -ilo + six(t) = -i 1o + sixo + siVt,

t2

q1 (t) = qi,o + (sixo - 0io)t + siV

42(t) = -P20 + S2(d - x(t)) = -920 + s 2 (d - xo) - s 2 Vt

t
2

q2(t) = q2,0 + (s 2 (d - xo) - #20)t - s2 V-.2

Letting qi (ri) = 0 and q2( 2) = 0, we get

(#lo - sixo) - /(sXo - 1o) 2 - 2sVqo (7.26)
T1 := 2,r = (7.26)

siV

(s 2 (d - xo) - #20) + V/(s 2 (d - xo) - /20)2 + 2s2 Vq 2,
s2 = 2,r = (7.27)
s2V

recalling that (sixo - y1o) and (s 2 (d - xo) - y20) are negative quantities by assumption. The trajec-
tory for the queue level qi (t) is a convex function of t and the time rz corresponds to the smallest
root of the equation ql (t) = 0. With these quantities and R < 1, for the optimal trajectory to empty
queue 1 first, we must have zl,r < Z2,r. This gives a condition that depends only on the parameters of
the problems. If this condition is not verified and R < 1, then queue 1 cannot empty strictly before
queue 2.

Now suppose R > 1. As long as r2 > Rzl, the optimal solution must again move the server
always to the right. So for such an extremal solution to exist, we must have 2,r > Rzl,r. If we find
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that r2,r < Rl,r, always moving the server to the right cannot be optimal, but we might still have
an optimal solution which empties queue 1 first by first moving to the left. Let zi(t) be the time
at which queue i empties if the server first moves left for a time t1, and then right. Thus, we are
considering the case R > 1, Rzl (0) > T2(0). As we increase ti, zr (t) decreases and 2 (tl) increases.
The positive time to verifies the equation

(R- 1)to = Rz(to)- r 2(t0), fort 0 > 0 (7.28)

so we have reduced the problem to computing the functions i (t1) and solving the fixed point equa-
tion (7.28), i.e., finding the intersection of the diagonal with (Rz (t1) - 2 (tl))/(R- 1), a decreasing
function of t1. Once we have obtained to, we can verify if the optimal solution indeed empties queue
1 first by verifying 'r (to) < 2 (to). If not, again, the optimal solution cannot empty queue 1 strictly
before queue 1. Note also that when z1 approaches T2 from below, i.e., both queues empty at the
same time, we get to --* 1 = tf, and so in the limit we should move the server to the left all the time.

Case i1 = 2

In this case, zi = r2 - tf, and we also have the terminal condition pi(tf) = O, i = 0, 1, 2, now simply
because it is a free terminal time problem with no terminal cost. Hence we get

1
Po = I (cisl - C2S2) (tf - t) 2

quantity which is always of the same sign as R - 1. Hence if R > 1, i.e. cIsl > c2 S2 , an opti-
mal trajectory emptying both queues simultaneously must necessarily always move the server left,
whereas if R < 1, i.e., clsl < c2S2, it always moves the server right. Hence in the case R > 1, an
extremal solution emptying both queues simultaneously is possible only if rli = r2,1. If R < 1, such
an extremal solution is possible only if Zl,r - 2,r.

Finally if R = 1, i.e., cisl = c2s2, we get a singular arc (po(t) = 0, for all t) and higher order
conditions are necessary to determine extremal controls. This case is not treated in the following.

Feedback Form Solution

To obtain a feedback control, we simply replace in the previous expressions the quantities xo, and
qgo by the current state of the system x, q. We still use the same notations for Zi,r, i,l, understood
now to be functions of the state x, q. Now for R < 1, in a given state, we can compute TI,r (x, q) and
Z2,r(X, q). If "l,r > Z2,r, we see from the previous paragraphs that the trajectory will empty queue
2 first necessarily. We compute the quantities 1l,1 and r2,1 for the current state. If 2,1 > Rzlp,, we
have seen that the solution starts by moving the server to the right. Hence the feedback solution
commands to move right in the current state. Otherwise, we move left.

If ZI,r < 2,r, an extremal solution can potentially empty queue 1 before or at the same time as
queue 2 by moving the server to the right. Moreover it is clear that this inequality implies il,1 < r2,i
since we obviously have zl,1 < ri,r and 'r2,r < T2,1. Hence, in particular, z2,1 > Ril,l and a trajectory
emptying queue 2 first also necessarily moves right initially. Hence the feedback solution prescribes
to move right if il,r, < 2,r.

Now consider the case R > 1, which is symmetric. In a given state, we first compute Tl, 1 and
r2 ,1. If 2,1 > r1,1, we see from the previous paragraphs that the trajectory will empty queue 1 first

necessarily. We compute the quantities rl,r and Z2,r for the current state. If r2,r < RzI,r, we have
seen that the solution starts by moving the server to the left. Hence the feedback solution commands
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Table 7.1: Optimal feedback control law.

to move left in the current state. Otherwise, we move right.
If r2, _ Z1,1, an extremal solution can potentially empty queue 2 before or at the same time as

queue 1 by moving the server to the left. Moreover it is clear that this inequality implies 72,r < zl,r
since again we have T1,I < T1,r and 72,r < 72,1. Hence in particular 72,r < RTI,r and a trajectory
emptying queue 1 first also necessarily moves left initially. Hence the feedback solution prescribes
to move left if r2,1 < l,1

Finally in the case R = 1, in addition to regular extremals similar to the ones obtained for R Z 1,
there are singular arcs emptying both queues simultaneously while leaving the server immobile. We
do not provide a full solution for this case, which however can be avoided by a small perturbation
of the parameters. Table 7.1 summarizes the optimal feedback control law for the draining problem
of this section.

7.5 Simulation

Suppose that when we sample the system dynamics with sampling period Ts, the system dynamics
follow in fact the following discrete time stochastic evolution

Qi((k+ 1)Ts):= Qi(k +- 1) = Qi(k) +Ai(k +- 1) -Bi(k + 1;X(k)), i= 1,2.

X((k+ 1)Ts) :=X(k+ 1) = X(k)+ U(k)Ts, IU(k) I < V,

where the queue lengths Qi are also subject to the nonnegativity constraints. Assume that the arrival
process {A(k)} is i.i.d. with E [Ai(k + 1)] = aiTs, and the variables Bi(k + 1,x(k)) are independent,
with distribution depending on the position x(k) of the server, and E[Bi(k + 1;X(k))] = pi(X(k))Ts.
Then, following the proof in [92, section 4.4], we can prove, if y (x) is sufficiently smooth, the
following lower bound on the achievable performance for the stochastic system, for each fixed
T E TsZ:

infE Tsc(Q(k); Q(O) = qo) > inf c(q(t); q(0) = qo)dt + O(Ts),

where the inf is over all admissible control policies, and limT,o O(Ts) = 0. For the sampled system,
admissible means that we consider control signals constant over the sampling period Ts.

Proof. Take for the continuous fluid system the sampled signal

u(t)=u(kT) = U(k), kT t < (k+ 1)Ts,Vk.

R < 1 T,r < Z2,r u = +V

T1,r > T2,r A 72,l > RT1,1  u = +V

Z1,r > 72,r A T2,l < R71,1 u = -V

R > 1 72,1 < Zl,l u = -V

T2,1 > T, A '2,r < RTl,r u = -V

72,1 > 71,l A 72,r > RT1,r u = +V



so that we have a server trajectory for the fluid system verifying

x(t) = x(kTs) + (t - kT)U (k)

=X(k)+(t-kTs)U(k), kTs <t < (k+l)Ts,Vk.

Then

E[Q(k + 1)] = E[Q(k)]+ aTs- p(X(k))T
k

= qo+a(k+ 1)T - E L (X(k))Ts.
i=O

The last term is a Riemann sum with left approximation, so (by Taylor expansion)

E[Q(k+1)] qo+a(k+1)Ts- j(k+1) T (x(t))dt+ ((k+)Ts2)

= q((k+ 1)Ts)+ O((k+ 1)T2 ).

Now we have, for T = kTs, approximating the integral using the trapezoidal rule, and using the
linearity of c:

T - 1 1
cilql(t) +c 2q 2 (t)dt Ts 2 [c(q(iTs)) + c(q((i + 1)Ts))] + T 3 x O(T 2)

i=O
k- 1

= Ts 2 {E[c(Q(iTs))]+E[c(Q((i+ 1)Ts))]} + O(Ts)
i=0

kTs Ts
= Ts E[c(Q(iTs))]- c(qo) - E [c(Q(k))] + O(Ts).

i=O

The conclusion follows by taking inf first on the fluid model policies, then on the stochastic
model policies.

Moreover, as the size of the jumps A(k),B(k) becomes small, while keeping the same rates
ai, p i (x)), we expect the behavior of the stochastic system to approach the behavior of the fluid
system (see, e.g., [87]). Fig. 7-5 gives an example of queue trajectories obtained for a stochastic
system and for its fluid approximation, using the optimal feedback policy computed for the fluid
model in the previous section.

7.6 Conclusion

We have presented here joint trajectory optimization and scheduling problems for a server serving
remotely the jobs arriving at spatially separated queues. The approach using fluid models simplifies
some of the computational difficulties we faced in the previous chapter using the more detailed
controlled Markov chain approach. The relationship between fluid models and discrete stochastic
models are the same as for standard stochastic networks. In particular, stability of the fluid model
as in section 7.3 should imply stability of the controlled random walk model. The precise derivation
of this result is left for future work. The draining problem has also shown that a feedback solution
for the fluid model can provide a useful policy for a stochastic model.
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Figure 7-5: Examples of trajectories of the queues for the stochastic draining problem with Bernoulli
service variables, and for its deterministic fluid approximation (top). The optimal feedback policy
of the fluid model was used in both cases to control the server.

143



There are numerous possible research directions and extensions, such as completing the trajec-
tory optimization problem for the average and discounted cost criterion when arrivals occur, consid-
ering the optimization problem with more queues and more complicated vehicle dynamics, treating
models with several vehicles possibly sharing their resources, etc. Fluid models could potentially
offer a powerful modeling tool to obtain insight into complicated spatiotemporal task assignment
problems, such as the ones arising in UAS control.
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Chapter 8

Conclusion and Future Directions

8.1 Summary

In this thesis we present optimization-based approaches to some high-level problems arising in
the control of UVS. Typical problems in this context involve scheduling tasks dynamically while
simultaneously solving difficult motion planning problems. This thesis proposes ways of solving
these problems while mitigating the computational challenges involved.

In a static environment, the typical problem that the UVS operator faces is to design trajectories
for the vehicles through a set of waypoints, which is a variant of the TSP. Chapter 2 proposes
new algorithms for the TSP for the Dubins vehicle (DTSP). An operator using these algorithms for
UAVs can expect improved performance over the standard practice of solving the Euclidean TSP, in
particular when the vehicles are operating at high speed in a restricted space.

In dynamic environments, scheduling problems, that is, deciding where each vehicle should
be and when, are superimposed to the path planning problem. In fact, these scheduling problems
are already typically intractable, and chapters 4 and 5 first considers them independently of the
path planning problem. In particular, we provide new closed form formulas for the Whittle index
in a discrete event detection problem as well as a one-dimensional continuous filtering problem,
both with multiple sensors and multiple targets. We derive a bound on the achievable performance
that allows us to verify the high performance of the Whittle heuristic for these problems. In the
multidimensional case of the filtering problem, we show that this bound can be computed by a
tractable convex program involving linear matrix inequalities. Finally, we demonstrate that the
performance of a new family of periodic switching policies approaches the bound arbitrarily closely.

In the final part of the thesis, we return to our original objective of combining the path planning
and scheduling problems. In chapter 6, we start from the scheduling problem based on the restless
bandit model, and add switching penalties to model the costs incurred when the vehicles change
location. We propose a heuristic and a performance bound that extend a previously proposed so-
lution for the standard RBP. Moreover, we give a new interpretation of this heuristic in terms of
approximate dynamic programming methods. We see however that as a consequence of the addi-
tion of switching costs, the computational issues increase significantly and the performance is not
as satisfactory as for the previous sensor scheduling problems. Moreover, we would like to model
more complicated and realistic scenarios, for which the MDP approach seems to lead to intractable
formulations.

Hence the goal of the last chapter is to propose a modeling framework that can provide insight
into the complicated spatiotemporal scheduling problems involved in controlling UVS. Using a
fluid approximation of the dynamics of the environment, and despite the generality of the network
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control problem considered, we show that a simple geometric condition allows us to determine if a
given system is stabilizable and to construct stabilizing policies, at least for the fluid model. These
policies simultaneously describe a trajectory for a vehicle and the allocation of its resources, such
as on-board sensors or communication receivers.

8.2 Future Work

Research in motion planning and mission planning have each led to powerful methods for solving
problems in their own domain. Separate research has been encouraged by the standard hierarchical
structure of robot controllers, which is probably unavoidable to a certain degree. As demonstrated
in chapter 2, there is great benefit to gain from a better integration of the motion planner of an UVS
with the mission planner. Using a satisfying approximation of the vehicle dynamics such as the
Dubins model in the higher layers of the robot controller can lead to improved decisions overall
at a reasonable computational cost. The integration of simplified vehicle models in other decision
problems solved by UVS controllers besides the TSP should be pursued. In particular, there are
few models that integrate simultaneously the motion planning problems and dynamic scheduling
problems as they arise in UVS control.

New ways to capture the path planning component of the UVS mission planning problem more
realistically than in chapter 6 with reasonable computational cost need to be developed. The point
of view of chapter 7 was that the model of the environment used by the decision making level can
be simplified as well. Important open research questions were mentioned there, in particular related
to trajectory optimization, but the fluid approximation seemed to offer valuable insight.

Different ways to integrate the UVS controller layers exist. Among them are:

1. solving the mission planning problem independently of the vehicle dynamical characteristics
and forcing its solution on the system by calling the motion planner only after the plan has
been decided;

2. simplifying the motion planning problem and adding it directly to the mission planning prob-
lem, possibly calling a more precise motion planner later to execute the plan; and

3. simplifying both the motion planning problem and the model of the environment used by the
decision making layer and solving the combined problems simultaneously.

In general, a sound approach to UVS controller design would use in the higher layers a (proba-
bly conservative) abstraction of the vehicle model used by the lower layers, which would guarantee
certain properties necessary to the correct execution of the plan by these lower layers. For example,
if we know that an UAV can always follow the Dubins trajectories for a certain value of the Du-
bins turning radius larger than the UAV's own turning radius, we can safely use that model at the
mission planning level. Hence approach 2 above is preferable to approach 1 in general. More work
is needed however to choose the right vehicle model abstractions and solve the more complicated
problems arising at the higher level. We expect that approach 3 will be useful here. Indeed, there
has apparently been little work done so far on a robust control approach to mission planning. A sim-
plified model of the environment could be used to design a nominal mission plan, and uncertainties
and unmodeled characteristics of the problem could be accounted for by appropriate hedging and
modification of the nominal controller. For example, we have proposed for the problem discussed in
chapter 7 designing the nominal controller using a fluid approximation of the environment. Robust
MDPs (see e.g. [96]) could be used in this framework as well if one still wants to keep models
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based on controlled Markov chains for control design, but this requires the development of appro-
priate model reduction techniques for MDPs in order to start with a nominal model of reasonable
complexity. Much work remains to be done in this direction, in terms of modeling, so that cer-
tain guarantees about the mission objectives can be satisfied, in terms of developing actual robust
controller design methods, as well as evaluating the conservatism of this approach.

Finally, UVS are likely to remain supervised by humans. Future work could try to use some of
the scheduling techniques presented in this thesis to improve the integration of the operator in the
system, in particular to manage the operator's cognitive load and the ranking of tasks requiring his
attention.
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