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ABSTRACT
Various terminal control schemes are applied to a proposed slender reentry vehicle,
controlled by two separately-articulating flaps. The flap deflections are summarized
as symmetric and asymmetric flap deflections; the former manipulates the drag, lift-
curve slope, and static margin; the latter controls the vehicle trim characteristics.
The control problem is interesting because the static margin can be actively con-
trolled from statically stable in pitch to statically unstable in pitch. Deflection limits
on the flaps present a control saturation that must be considered in control system
design. A baseline, angle of attack tracking linear-quadratic servo (LQ-servo) con-
troller is detailed, including an analysis of actuator dynamics and a lead compensator.
Desired time response characteristics and robustness to center of pressure uncertainty,
reduced control effectiveness, and external pitch accelerations drive the selection of a
symmetric deflection at specified points on the reentry trajectory. A hybrid switching-
linear controller (SLC) is developed to reduce the peak overshoot and settling time.
A saturated control drives the phase plane trajectory toward a region of satisfactory
linear control, where the LQ-servo controller is properly initialized and controls the
phase plane trajectory to the reference command. SLC does not provide appreciable
robustness gains compared to the LQ-servo controller. A model-reference adaptive
controller is described. Saturation effects prevent the adaptive controller from pro-
viding additional robustness. A method to adaptively control both the symmetric
and asymmetric flap deflections is proposed.

Thesis Advisor: John J. Deyst, Jr., Professor of Aeronautics and Astronautics
Thesis Supervisor: Laurent Duchesne, C.S. Draper Laboratory
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Nomenclature

[ac qc]T centroid of unsaturated control region

a angle of attack [rad]

q dynamic pressure [N/m 2]

61 deflection of flap 1 [deg]

62 deflection of flap 2 [deg]

Aa excess commanded asymmetric control deflection [deg]

( asymmetric flap deflection [deg]

68 symmetric flap deflection [deg]

e slope of final error integral curve Is]

F, error integral adaptation rate

'Yair ratio of specific heats for air lunitless]

a commanded control deflection [deg]

K adaptive state gain

kI adaptive integrated error gain

A control effectiveness uncertainty

L, state adaptation rate matrix

A open loop dynamics matrix



B input matrix

C output matrix

e model-reference error vector

K full-state feedback gain matrix

Q state weighting matrix

R control weighting matrix

r position vector

u input vector

V velocity vector

x state vector

y output vector

C£ Lyapunov function

AP gravitational constant [m3 /s 2

WE rotation rate of Earth [rad/s]

p atmospheric density [kg/m 3 ]

Xcg9 normalized center of gravity location [unitless]

XcP normalized center of pressure location [unitless]

a speed of sound, vi5arRT [m/s]

Aref reference closed-loop dynamics matrix

CL lift coefficient [unitless]

CM pitching moment coefficient [unitless]

CD drag coefficient [unitless]

CLo zero-angle lift coefficient [unitless]

CL lift-curve slope [1/rad]



CMo zero angle pitching moment coefficient [unitless]

CMA pitch static stability derivative [1/rad]

CMq pitch damping derivative [1/rad]

D drag [N]

dref reference length [m]

e integrated tracking error [rad-s]

eo initial error integral [rad-s]

el, final error integral [rad-s]

F, weight [N]

g gravitational acceleration [m/s 2]

gm gain margin [dB]

gmdes desired gain margin [dB]

L lift IN]

1 vehicle length [m]

M Mach number [unitless]

m vehicle mass [kg]

m* control switching curve slope

mP magnitude of peak overshoot [%]

q pitch rate [rad/s]

q* saturated control switching curve

qS nonlinear-linear switching curve

R ideal gas constant for air [kg-K ]

r reference angle of attack command [rad]

Ro distance from center of Earth to vehicle [m]



Re radius of Earth [m]

Sref reference area [m2 ]

Sflap effective area of flap [m2 ]

SM static margin [unitless]

T air temperature [K]

tr 10%-90% rise time [sec]

ts 5% settling time [sec]

trdes desired rise time [sec]

tol specified tolerance

V velocity Im/s]

Xd downrange distance Im]



Chapter 1

Background

1.1 Motivation

The advent of man-made reentry vehicles can be found in the Cold War, when ten-

sion between the Soviet Union and United States led both countries to develop bal-

listic missiles and manned space exploration programs. With reentry vehicle experi-

ence compounding, the technology was applied to additional pursuits: reconnaissance

satellites, the Galileo Jovian atmosphere probe, numerous Martian landers. The pur-

suit of these systems necessitated investigation into high-Mach flow, viscous-inviscid

interactions, rarefied atmospheric dynamics, high-temperature materials, and other

aerospace environments previously unexplored.[1] The rigorous demands of atmo-

spheric reentry environment often drive vehicle designs, which vary from the conical

capsules of Project Mercury, Gemini, and Apollo to the winged Space Shuttle and

X-15.
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With recent developments in thermal-protections systems [2], previously im-

practical reentry vehicle shapes are now viable. This effort considers a class of slender

reentry vehicles (SRVs). Depending on vehicle design parameters, the SRV may be

statically stable or unstable in pitch. If the vehicle is in fact unstable, a flight control

system is necessary for vehicle operation. Furthermore, a reentry flight control sys-

tem permits a greater payload-delivery footprint. The SRV considered in this effort

is controlled by articulating flaps rather than conventional fins or reaction motors.

Control flaps are advantageous over conventional fins that project from the vehicle

body when severe control surface ablation is expected. Reaction motors must carry

a sufficient supply of fuel to induce moments on the vehicle over the course of the

entire reentry, severely limiting payload carriage and vehicle dimensions. The diffi-

culties with control flaps lie in their small deflection envelope and potentially reduced

time response; the vehicle payload and sizing constraints also limit the flap deflec-

tions. Consequently, satisfactory time response characteristics in the face of control

saturation is an important consideration in this control system development.

Various reentry guidance and control methods have been suggested and em-

ployed for both operational and proposed systems. The Gemini and Apollo capsules

utilized offset centers of gravity to trim at nonzero angles of attack, while reaction

motors provided limited control over the landing footprint.1] More recently, a time-

varying linear quadratic control was applied to low lift/drag reentry vehicles [3],
while Dukeman applied standard linear quadratic regulator guidance scheme to the

X-33.14] Bibeau and Rubinstein discussed nonlinear trajectory and guidance plan-

ning schemes.15] The control of some reentry vehicles, including the SRV considered

in this effort, is often motivated by statically unstable systems. Sinar et al. discussed

a spin-stabilized reentry controlled with dynamic inversion and proportional-integral-

derivative (PID) control.16] Winged reentry vehicles, like the reusable United States

Space Shuttle and Russian Energia/Buran, are often attractive because they permit

great control over landing areas. The successors to both of these systems are generally

manned vehicles flown to a conventional landing on a conventional runway. An adap-

tive controller for the Horus winged reentry vehicle was proposed by Mooij et al.[7]
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A similar, Shuttle-like winged reentry vehicle was discussed by Lu in his proposed

nonlinear reference drag profile controller.[8] Shtessal et al. utilize a sliding controller

for yet another reusable launch vehicle.[9] Burkhardt and Schoettle applied predictive

guidance schemes to ballistic reentry vehicles controlled to specified landing sites.[10]

The historic stumbling blocks to high-speed vehicles are the "unknown-unknowns"

described by Bertin.[1] While a significant amount of computational and wind tun-

nel tests and simulations can be conducted, high-speed flight is difficult to model,

and previously unconsidered variations often become apparent. Bertin points out the

Space Shuttle pitching moment was not well understood before the maiden STS-1,
requiring a body flap deflection twice the value predicted during ground testing and

the approach and landing flight testing. Casey points out slender reentry vehicles are

susceptible to large changes in pitching moment coefficient from small ablation.[11]

These difficulties motivate the need for a controller with robustness to a (potentially)

poorly-modeled plant.

1.2 Research Objectives

This effort aimed to develop a controller for a variable-stability slender reentry vehicle

controlled by independently articulating flaps with significant deflection limits. The

vehicle has two control inputs: symmetric and asymmetric flap deflection. The former

changes the drag, lift-curve slope, and static margin; the latter changes the zero-angle

lift and moment coefficients (trim conditions). Various simplifications are made to

reduce the scope of this thesis, speed simulation time, and provide better insight into

certain challenges inherent to slender reentry vehicles. Specifically, research objectives

are as follows:
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* To define an operating environment for a "typical" slender reentry vehicle and

select representative design points for controller design and analysis.

* To simplify vehicle aerodynamics to a two input, single output system that

tracks angle of attack commands while maintaining critical nonlinearities and

limitations.

* To set the symmetric deflection (and thus static margin) at specified flight

conditions so performance and robustness are satisfactory.

* To design a "baseline" tracking controller using well-established control design

methods to understand system performance and control difficulties.

* To design a controller that improves upon the time response and robustness of

the baseline controller.

* To identify shortcomings of the system and recommend further investigation to

improve robust performance of slender reentry vehicle control.

1.3 Thesis Organization

Chapter 2 defines the aerodynamic characteristics of the SRV and defines the 3 de-

grees of freedom for longitudinal motion of a generic unpowered vehicle in a rotating

coordinate frame. The variable stability characteristics of the SRV are discussed, as

are the trim angle of attack limits imposed by control surface saturation.

Chapter 3 develops a Linear Quadratic Servo (LQ-servo) controller for angle

of attack reference commands. After a simplification of the dynamics, three design

points are selected along the ballistic trajectory. The progression of vehicle perfor-

mance as actuator dynamics and a lead compensator are added to the system is
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detailed. Robustness to static margin uncertainty and reduced control effectiveness

is considered. Optimal symmetric deflection control inputs are selected at each flight

condition.

Chapter 4 discusses the development of a hybrid switching-linear controller

(SLC) to improve upon the Linear Quadratic Servo performance. The phase plane

of the linear controller is analyzed to understand the difficulty of switching between

saturated controls. This phase plane analysis motivated a switch logic that toggles

between commanded saturated controls and the LQ-servo controller previously de-

veloped. A method to initialize the integrated tracking error software state is also

developed and implemented.

Chapter 5 details a model-reference adaptive controller. In an attempt to

provide additional robustness to the SRV, an adaptive controller is designed. A dual-

input adaptive controller method is proposed as a baseline for future research.

Chapter 6 draws conclusions from this research effort and suggests areas of

further investigation.
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Chapter 2

Problem Formulation

Before the terminal control can be devised, the vehicle aerodynamics and operat-

ing environment must be sufficiently defined. To simplify final control design, only

longitudinal motion is considered, resulting in a 3 degrees of freedom (3DoF) model

(pitch, downrange, and altitude). The aerodynamics are defined as quasi-linear (lin-

ear for constant Mach number and control deflections) over a sufficiently small range

of angles, although the reentry dynamics are certainly highly nonlinear with large

variations in Mach number and geopotential altitude inherent to a high-Mach reentry

profile.

2.1 Vehicle Aerodynamics Model

The slender reentry vehicle (SRV) is controlled by two separately articulating flaps on

the upper and lower aft sections of the vehicle, as shown in Figure 2.1. A quasi-linear
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Figure 2.1: Slender reentry vehicle (not to scale)

aerodynamics model approximates the angle of attack in the range ±100. Outside

this range, the quasi-linear model is no longer assumed to be valid.

2.1.1 Control Surfaces

Each control surface, 61 and 62, can be deflected continuously in the range 10,10]

degrees. These control saturations result from packaging limitations in a slender,

conical reentry vehicle. Negative deflections are not possible, as this requires the

control surface moving beneath the surface of the vehicle. Furthermore, maximum

control deflections are limited not only by actuator range, but also by the high-Mach

environment. Control deflections greater than 10 degrees may cause rapid control

surface ablation. These control saturations are integral to the control system design.

I
IIII
IIIII
III
II

V

c'e
c

c'
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Rather than express the control deflections as 61 and 62, symmetric and asym-

metric control deflections are selected as the control inputs. Symmetric control deflec-

tion is assumed to affect the drag coefficient, lift-curve slope, and longitudinal static

stability derivative. It is defined as

1
6S - (61+ 62)2

(2.1)

The asymmetric control deflection is assumed to impact the vehicle trim capabili-

ties by changing the zero-angle-of-attack lift and pitching moment coefficients. It is

defined as
6a = 62 - 61 (2.2)

From these definitions of

that shown in Figure 2.2.

6, and 6a, the control saturation envelope is modified to

Five degrees provide the maximum range of asymmet-

Figure 2.2: Control limits

ric deflection, while the minimum and maximum symmetric deflections provide no

asymmetric deflection capability.

W
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2.1.2 Drag Coefficient

The drag coefficient, CD, is defined as

A D

C pV2Sref
(2.3)

The SRV drag coefficient is a function of Mach number and the symmetric flap
deflection. For Mach numbers between 3 and 8, the drag coefficient is approximated

CD = CDo (M) + CD6(M) Ss (2.4)

Note for a constant Mach number, the drag coefficient is only affected by 6,s.

2.1.3 Lift Coefficient

The lift coefficient, CL is defined as

CL 
L

-pV2Sref
(2.5)

The SRV lift coefficient is a function of Mach number, 6s, and a as follows:

CL CLo(M, a) + CLo (M, 6s) a (2.6)

The lift-curve slope is dependent on the symmetric flap deflection. Similar to
Equation 2.4,

CLo = CLoo (M) + CL a (M) s2

CHAPTER 2.

(2.7)
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Constant Mach numbers yield a lift-curve slope that is only a function of symmetric

flap deflection.

The zero-angle lift coefficient is assumed to be a function of asymmetric flap

deflection at constant Mach numbers. The flap is modeled as a flat plate in supersonic

flow at an angle of attack equal to 6,. From [12], this leads to

4 6)CL J 6a)
V - M2- 1 1800

Sflap
Sref

(2.8)

where Sflap is the effective area of the flaps.

2.1.4 Pitching Moment Coefficient

The pitching moment, CM, is defined as

A

(2.9)
CM pV2Srefdref

Similar to Equation 2.6, CM is determined as

CM = CMo(M, ,a) + CMh,(M, 6s)a + CMq(M)q d (2.10)

where CA,q is the pitch damping derivative. This term is strictly negative.

The ratio of pitch stability derivative and lift-curve slope is the vehicle static

margin:

SM = CM.,S11 r (2.11)
U/
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A positive static margin indicates static stability, while zero and negative static
margins indicate neutral static stability and static instability, respectively.

The static margin is a function of Mach number as well as symmetric flap
deflection, determined as

SM = ( c  (M) + ( cp  (M)s def (2.12)

where 1 is the vehicle length and - and -P are the normalized center of gravity and
center of pressure locations, respectively. For a constant Mach number, increasing 6,
increases -, moving the static margin from ahead of the center of gravity to behind
the center of gravity (unstable to stable), as shown in Figure 2.3

center of gravity
Xc / [-]

Figure 2.3: Variability in the center of pressure

I



2.1. VEHICLE AERODYNAMICS MODEL

o

C vs a

a Ideg]

Figure 2.4: Pitching coefficient as 6, varies, constant Mach number

Combining Equations 2.7, 2.11, and 2.12, the longitudinal static stability

derivative is a quadratic function of 6, for a constant Mach number:

CA' - [c,0 0 (M)+ CLQ(M)6 8] (L1)'0 (M)+

+ (s- ), (M)6s - j-J d]1  (2.13)

The zero-angle pitching moment coefficient is found by applying Equation 2.8

at the centroid of the flap location (Xflap/1):

CMO = ( ) ( Sfap Xflap X __ 1 (2.14)
-M6 V 1180 \Sref/ \ 1) dref

Consequently, CMo is linear in 6a and zero only when 6 a is zero. Figure 2.4 shows the

pitching moment coefficient versus angle of attack for a constant Mach number and

symmetric deflection. Note the variation in 6a changes only the value of CMo, the

y-intercept of the pitching moment coefficient.
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2.2 Equations of Motion

The longitudinal equations of motion are developed below for a generic, unpowered
vehicle traveling in a rotating coordinate frame. For exoatmospheric flights at high
Mach numbers, centripetal and Coriolis effects are often non-negligible; consequently,
they were included in this development.

Following the development in [13], a stationary atmosphere is assumed. Equa-
torial, easterly flights were considered, although the development is equally valid
for westerly flights if the sign of the Earth's rotation (wE) is made negative in the

subsequent development of the equations of motion.

Figure 2.5 shows the coordinate system used in the following development.

The angle between the inertial x-axis and the position vector from the center of
the Earth to the vehicle, 4, changes with both the tangential component of vehicle
velocity (in the rotating coordinate frame), and the rotation rate of the Earth, wE.
In other words,

d V cos W+ E (2.15)
dt : Ro

Within the (rotating) Earth-fixed (EF) reference frame, 4) is defined as

S= V cos y1 o= (2.16)
Ro

Note that i (D ). The EF and inertial reference frames are identical if WE is ZerO.
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. V

Figure 2.5: Coordinate systems (North Pole points out of the page)

The position vector, r, is

r= Ro
cos (4)

sin (()

The local velocity vector (velocity "seen" be the vehicle), expressed in the EF

reference frame, is
sin (y - D)

cos (Q - 4)

(2.17)

V=V (2.18)
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Then, the time derivative of the local velocity vector is

sin (' - I))

cos (' - ()
+ V

- cos (

sin ('y

cos (Q - 1)

- sin (~ - 4))

where #4 is defined in Equation 2.16.

The standard relation between time derivatives of vectors in inertial and ro-

tating frames is
(dr

(dt inertial

(dro

dt rotating
+w x r

In this case, w is simply WE. Hence, the inertial velocity, VI is

V I = V + wE x r

where V is the EF velocity vector observed by the vehicle (Equation 2.18).

Taking the time derivative of Equation 2.21 gives

dV1
dt J = V + 2WE X V + WE x (WE x r)

(2.20)

(2.21)

(2.22)

since WE is constant.

The gravitational force acting on the vehicle is given by

F, = -mg(h)
cos )

sin J

v =v[ +

(2.19)

CHAPTER 2.

(2.23)
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and g(h) is
(I\

gn) = (RE + h) 2

The inertial aerodynamic forces, drag (D) and lift (L), are given by

D = -D cos(n -)
cos ( - 1)

L=L[
cos(7 - 4)

- sin (' - 4)

According to Newton's second law, EF = mV. This vector equation can be

expressed as its inertial x- and y-components:

D L
-- sin ( - ) + - cos (7 - () - g(h) cos I =

m m

V sin ( - )) + V cos ( ) - ) - V4 cos (7 - )) -

(2.27)-2VwE cos (y - D) - RoWE 2 COS (I
D L

--- cos ( - -) - sn (Y - 1) - g(h) sin l =
m m

V cos (7 - () - Vy sin (7 - I) + VI sin (' - )) +

+2VWE sin (3y - 4) - RoWE 2 sin 4 (2.28)

(2.24)

(2.25)

(2.26)
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Solving Equations 2.27 and 2.28 for V and ~ gives

WnRo) sin - qSrefCD(M , 6,s)

1

V
Ro 2

E2 Ro) cos y + qSrefCL(M, 6a,

(2.29)

6s) 16m

+ -R cos 7 + 2WE
Ro

(2.30)

For equatorial flight, the total pitching moment is unchanged between inertial

and local coordinate frames (see [131). Consequently, the 3 degrees-of-freedom (3DoF)

longitudinal equations of motion are Equations 2.29 and 2.30 and

1 = pVSdre,,f2

RE
id = V cos 7

Ro
h = Vsin 7

S=q

CM(M, 6a, 6s)
+ dref C, (M))

2V ~q(~

with auxillary equations

(2.35)

(2.36)

(2.37)

(2.38)

I pV2
2

Ro = RE + h

The interested reader is directed to [13] for a complete development of the

6DoF equations of motion, as well as [14] for additional background in modeling

( 1
(2.31)

(2.32)

(2.33)

(2.34)

CHAPTER 2.
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2.3. BALLISTIC TRAJECTORY

atmospheric flight.

2.3 Ballistic Trajectory

A slender reentry vehicle with a fixed symmetric deflection follows a ballistic tra-

jectory similar to that presented in Figures 2.6 and 2.7. The 1976 U.S. Standard

Atmosphere is modeled, and the data are obtained from MATLAB/SIMULINK sim-

ulations employing the built-in ODE15s solver.[15][16 ] Note the peak dynamic pres-

Ballistic Reentry, 8s = 10 deg

M6

E

4

3

Cq_

.
E9
32

time [sec]

Figure 2.6: Velocity and dynamic pressure

trajectory, 6 , - 10 degrees

histories for a slender reentry vehicle on a ballistic

sure occurs shortly before impact and does not correspond with peak Mach number,

but rather the sharply increasing density as the vehicle descends. Figure 2.7 demon-

strates a nearly linear flight path angle, -y, while the angle of attack and pitch rate

oscillate rapidly until the dynamic pressure increases. This is characteristic of a lightly

damped, marginally stable system.
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Ballistic Reentry, 8s = 10 deg

0.5

-0.5

-4

time [sec]

Figure 2.7: Flight path angle, angle of attack, and pitch rate histories for a slender reentry
vehicle on a ballistic trajectory, S, = 10 degrees

2.4 Maximum Trim Angle of Attack

At a trimmed angle of attack, all pitch rates are zero; that is,

q=0

From Equations 2.10 and 2.31,

atrim =-
CM,

(2.39)

However, the limits in control surface deflections (see Figure 2.2) limit the combina-
tions of 6a and s available to trim the vehicle at a specified angle of attack. Figure
2.8 presents a typical example of these limitations for a constant Mach number. The
large trim angle of attack is only available for 6, between 3.8 and 5.9 degrees, while

"t
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reduced values of IaltrimI permit larger ranges in 6,. The trim curves in Figure 2.8

intersect at the symmetric deflection corresponding to zero static margin (neutral

static stability), where (theoretically) infinite values of actrim are available. However,

the linearized dynamics are not assumed to be valid for al > 100 (see Section 2.1).

Contours of Constant a(xtrm
constant Mach Number

8s [deg]

Figure 2.8: Contours of constant atrim as 6, and 6, vary; constant Mach number
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Chapter 3

Baseline Control Design

To better understand the challenges and limitations of Slender Reentry Vehicle (SRV)

control, a linear controller is designed to respond to step commands in angle of attack.

After a simplification of the equations of motion, rapid development and analysis

of this controller is accomplished to identify linear controller strengths as well as

weaknesses that could be corrected with more advanced controllers.

Confining analysis to angle of attack tracking leads to a dual-input, single

output system. Rather than actively controlling both inputs, this chapter treats

symmetric deflection as a parameter and discusses how symmetric deflection can be

set based on a performance/robustness trade.
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3.1 Simplification of the Equations of Motion

As presented in Section 2.2, six differential equations represent the longitudinal mo-
tion of the vehicle:

V - 2 - Weo sin 7 - 1pV2SCD(M, )m
S+ pVSC(M

[ ( -2 pV2SCL( , a

+ Ro cos + 2we

q = pVSdre. CM(M, 6a, 6s) +

RE
Yd = V cos Ro

h = V sin y

S= q

dref C1

The SRV has two control inputs, 6, and 6a; 6, enters the pitch dynamics
nonlinearly (see Equation 2.13). For a constant Mach number, Equation 3.3 is ap-
proximately a second-order differential equation. From Equation 2.35,

d= q - (3.7)

While 7 is certainly nonzero, it is nearly linear in time for a ballistic reentry, as
shown in Figure 2.7. Furthermore, this effort assumes - does not change significantly

in relation to the (faster) controller; that is, j 0. Consequently, is nearly zero;
thus,

(3.8)

6j q (3.9)

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)
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Assuming

generated angles

the major task of the control system is to track guidance system-

of attack, the pertinent equation of motion reduces to

= Co (M) + C (M)61 (xcP)(M)+

+ I 1(M) drefa + 2V

4 1r a Sflap Xflap Xc pV2Sd
S Sref 1 1 2Iyy

(3.10)

For a constant Mach number and altitude, Equation 3.10 is of form

a = (al + a26, + a 3 6, 2) a a 4& + bd6a (3.11)

where 6s and 5
a are the control inputs and a and & are the states. Further inspection

shows a plant that is nonlinearly dependent on the symmetric control deflection, 5s,

with 6s coupling with the angle of attack, a.

3.2 Controller Development

Treating 6, as a parameter, Equation 3.11 is a linear, second-order differential equa-

tion of form

k = Ax + Bu

with output y

y = Cx

(3.12)

(3.13)

In this case, the only output is angle of attack, so C is [1 0].
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Since the matrix A is a function of 6,, the open-loop poles of the system

vary with symmetric deflection. Figure 3.1 shows the open-loop pole locations for

a constant Mach number and altitude. Increasing the symmetric deflection alters

x+-- = 10 deg

X

x

x

x

x

xX - = d.......... ..... ... X ..... .. ..... XX

X- 10 deg
is

8s = 0 deg

•.X -... X ..K .... ......4vxxx ~ ~

0
real axis

Figure 3.1: Variation in pole location with
to scale)

6, for a constant Mach number and altitude (not

the system from statically unstable to statically stable. Furthermore, static stability

increases with increasing Mach numbers.112 ]

Optimal control schemes for problems of this type are well-established. The

reader is directed to the large body of literature addressing optimal linear control

(e.g., [171,[18],1191).

8s = 0 deg

- 1~xccO

03)
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The linear quadratic regulator (LQR) optimizes the cost function

J = [XQX + UT Ru] dt (3.14)

where Q and R are diagonal weighting matrices that are positive semidefinite and

positive definite, respectively.[18] The control, u, that minimizes Equation 3.14 is

u = -Kx = -R-1BTPx (3.15)

where P is symmetric and satisfies the algebraic Riccati equation

0 = PA + ATP + Q - PBR-1BTP (3.16)

The LQR is inherently robust for linear systems: gain margins are guaranteed to be

(2, oc) and phase margins greater than ±600.[19] Of course, control saturations are

inherently nonlinear; these will be treated later.

LQR is insufficient for the tracking problem because it drives all system states

to zero; replacing LQR with LQ-servo by augmenting the states with

eI = (r - a()) d (3.17)

allows tracking of a reference angle of attack. This augments Equation 3.12 to

xA o B o= x + u+ r (3.18)
e -C 0 0 1

LQ-servo is better suited than direct feedforward of the reference signal to the tracking

problem when control deflection limits are present. Since e1 integrates the tracking

error from zero time, and fof (x)dx = 0 , the control response is less aggressive and

unlikely to immediately saturate from a step tracking command.
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50

40

20

10

3 3.5 4 4.5 5
Mach number [-]

5.5 6 6.5

Figure 3.2: Reentry profile

For a given flight condition (Mach number and altitude), linear control gains

are generated for symmetric deflections in the range [2,8] degrees. Values of 6, out-

side this range give very little 6a, since flap deflections are limited to [0,10] degrees

(see Section 2.1.1). Consequently, they are assumed to be of little use in reference

tracking. Three flight conditions are evaluated, as shown in Table 3.1 and Figure 3.2.

Table 3.1: Flight conditions selected for analysis of the SRV
Mach altitude (km)

3.5 0
6.3 20
5.3 50

To simplify the performance/robustness trade for variations in symmetric de-

flection, the 10% to 90% rise time, tr, for a one degree step command is selected

as the primary indicator of tracking performance (see Figure 3.3 and the following

section).[20] A constant rise time for all symmetric deflections sets a time domain per-

formance standard, easing the subsequent robustness analysis. Presumably, tracking

illyi Plirr^^"'

_4g SI I
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performance becomes more critical as the vehicle descends and remaining flight time

decreases. Thus, the desired rise time decreased as the vehicle descended. At the

whole number symmetric deflections on [2,8] degrees, the weighting matrices Q and

R are chosen such that the loop gain margin is 6 (15.6 dB) and the rise time met the

desired threshold. Q is a 3x3 matrix with nonzero terms on the main diagonal:

q, 0 0
Q = 0 qq 0

-0 0 q,,

With a single control input, R is scalar; fixing R at unity left three degrees of freedom

in the search. The diagonal terms of Q are initialized according to Bryson's rule [17],

and a bisection search algorithm determined a Q such that

Itr - trdes I gm - gmdes < 1 (3.19)
2 to[ - trdes tol . gmdes

where tol is a specified tolerance. The bisection search algorithm ceased as soon as

Equation 3.19 is satisfied.

3.3 Results

At each flight condition, whole-number symmetric deflections between 2 and 8 de-

grees are considered. At each symmetric deflection, a single controller (i.e., set of

LQ-servo gains) is selected according to the development in Section 3.2. Employ-

ing MATLAB/SIMULINK and the built-in ODE15s solver[15][161, the vehicle track-

ing performance with the LQ-servo controller is simulated. Then, each controller's

performance and robustness are compared, allowing selection of an ideal symmetric

deflection.
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The ensuing development follows an incremental build-up of the system:

1. The system without actuator dynamics.

2. The system with a first-order actuator.

3. The system with a first-order actuator and lead compensator.

The gains determined in Step 1 are held constant throughout the ensuing de-

velopment. This process highlights the difficulties associated with the plant itself ver-

sus those difficulties arising out of unmodeled actuator dynamics and plant/actuator

interactions.

The optimal LQ-servo gains, found using the method described in Section

3.2, are employed to track step commands from 1 to 10 degrees. Rather than com-

pare numerous time responses, three quantifiable time response characteristics are

selected: 20]

* 10% to 90% rise time, tr

* 5% settling time, t,

* magnitude of peak overshoot, mp

Figure 3.3 shows these values on a sample time response to a unity step command. The

rise time indicates how quickly the systems responds to an input command; generally,

a low time response is desirable. In this effort, the rise is fixed to standardize the time
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Figure 3.3: Sample time response showing
shoot (mp) for a unity step command
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responses of various configurations (see Section 3.2). The settling time indicates how
long it takes the response to stay "close" to the commanded value. Once again, a low
settling time is usually desirable. An infinite settling time can be encountered if the
system approaches a limit cycle with an oscillation about the reference command. The
magnitude of the peak overshoot is the maximum difference between the reference
command and the time response, often expressed as percent of the reference command.
A small peak overshoot is often desirable; large peak overshoots often indicate near-
instability. However, an overdamped system exhibits zero peak overshoot; in many
cases, this is not desirable because overdamped systems can have high rise times.
Consequently, low rise time and low peak overshoot can be antagonistic. These three
time response characteristics summarize the time response in a concise, quantifiable
form.

The step response characteristics for the Mach 3.5, 0 km altitude case and
representative symmetric deflections can be found in Figure 3.4. Rise times are within

Step from a = 0
M = 3.5 alt = 0 km

baseline

300

1001

10

E

1

S6 6 x X X
2 3 4 5 6 7 8 92 3 4 5 6 7 8 9

r [deg]
9 10

Figure 3.4: Time response characteristics
km altitude

for step commands from 0 degrees, Mach 3.5, 0

I I _

- -

I I
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10% of the specified value for the 1 degree step (the design condition). Settling times

less than 250% of the desired rise time for the zero-altitude case; additionally, settling

times are lower for lower symmetric deflections (reduced static stability). However,
the 4 degree symmetric deflection configuration cannot track reference commands

greater than 6 degrees; reference commands greater than 6 degrees result in controller

saturation. The vehicle is statically unstable at Mach 3.5 and 4 degrees of symmetric

deflection; without further control authority, the system remains unstable. The peak

overshoot is consistently below 6%. The 4 degree symmetric deflection minimized

peak overshoot for the range of commands it sucessfully tracked.

The step response characteristics for the Mach 6.3, 20 km altitude case and

representative symmetric deflections is found in Figure 3.5. Once again, rise times

Step from a = 0
M - 6.3 alt = 20 km

baseline

S120

so. l = -

F

A A A A A

3 4 5 6 7

0 8s=4deg x 6s=5deg *

0PQ?

8 9

8s = 6 deg

J ....... .......... ........

1 2 3 4 5 6

E

r [deg]

Figure 3.5: Time response characteristics for step commands
km altitude

from 0 degrees, Mach 6.3, 20

are within 10% of the specified value for the range of commands shown. The 6

degrees of symmetric deflection configuration is unable to track commands greater

than 7 degrees. Control saturation limits the tracking performance for this case.

Isoo= lE I

""'l

I
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The remaining representative symmetric deflections (4 and 5 degrees) show similar

performance across the range of reference commands shown. Peak responses are

negligible. This may motivate a faster desired rise time in later research, although

low dynamic pressure and control saturation limits may prove to be the limiting

factors.

The step response characteristics for the Mach 5.3, 50 km altitude case are

shown in Figure 3.6. The limited range of reference commands that may be tracked

Step from o = 0
M = 5.3 aft = 50 km

baseline
140

1 o .. ... .... -
80
60

1 1.5 2 2.5 3 3.5 4 4.5 5

0 8s= 4deg x 8s= 5deg 8s=56deg

300

200-
f ×

1 1.5 2 2.5 3 3.5 4 4.5 5

101 , , 1 1

1.5 2 2.5 3
r [deg]

3.5 4 4.5 5

Figure 3.6: Time response
km altitude

characteristics for step commands from 0 degrees, Mach 5.3, 50

is immediately apparent. Symmetric deflections outside the range shown failed to

track commands greater than 5 degrees. Rise times remain within 10% of the desired

value. Settling times increase for all cases shown as the magnitude of the reference

command increases. Likewise, peak overshoot increases from less than 5% for 1 degree

commands to well over 10% for 5 degree commands. Again, control saturation limits

the system performance.

E
II
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3.3.1 Linear Gain and Phase Margins

The reference to angle of attack transfer function gain and phase margins for all three

flight conditions are shown in Figure 3.7. These robustness margins ignore the effects

of control saturation. Control saturation can be a problem if the system is statically

unstable (i.e., low values of 6,). A statically stable system can cope with control

saturation, although tracking performance may be diminished. Control saturation

effects are discussed in subsequent sections. Gain margins are all between 14.5 and

+ +

15 a

0
145

.5
C

a
C'a
C

2 3 4 5 6 7
0 M=3.5,0km 0 M=6.3,20km + M=5.3,50km

80.

00L75L
aS7 0 - .. .....

0~
6!t I

5

8S [deg]

Figure 3.7: Gain and phase margins for
transfer functions as 6S varies

the reference command to angle of attack loop

16.5 dB, satisfying the design criteria of Section 3.2, while phase margins are greater

than 60 degrees. It is interesting to note the 13 degree rise in phase margin as 6,

increases for the Mach 6.3, 20 km altitude case. Increasing symmetric deflection

decreases phase margin 5 degrees at 0 km, and has little effect at 50 km.

.+ +
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3.3.2 Initial Robustness Analysis

Although controller development assumed perfect knowledge of the plant dynamics,

the vehicle may be poorly modeled. Three uncertainties are considered. First, the

center of pressure location is likely to be known within some (possibly large) tolerance.

Second, the extreme reentry environment may cause control surface ablation, reduc-

ing control effectiveness. Third, asymmetric vehicle ablation may create a nonzero

pitch acceleration (moment) that modifies the trim condition. These three effects are

examined below for 1 degree step commands.

The effects of variations in the center of pressure location and control surface

effectiveness are summarized in Figures 3.8, 3.9 and 3.10. Here, 0% variation in Xp

is the nominal case; that is, there is zero variation in the center of pressure from ideal.

Conversely, 100% control effectiveness indicates the controls are operating with 100%

of their nominal performance. For maximum system robustness, high tolerances of

Xcp variation and low allowable control effectiveness are desired. The nonlinear in-

stability limit represents where the closed-loop system diverges; in practice, nonlinear

instability is defined to be jal > 200. The center of pressure may be unknown from

unmodeled aerodynamic effects, vehicle ablation, poorly modeled flight conditions,

etc.; thus, it is important to understand the bounds on center of pressure knowledge.

The allowable center of pressure variations are correlated with the linear instability

limits (i.e., when the closed-loop poles cross the jw axis). Exceptions to this occur

when the system is very statically unstable (low values of 6,): then, the saturation

limits keep the control system from providing closed-loop stability. The control sat-

uration limits are where the SRV can no longer trim at the reference command (see

Section 2.4).

The control surface effectiveness limits are important, especially in the face

of unmodeled flap ablation during reentry. At the 0 km altitude case, the system is
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M = 3.5 aft = 0 km
Maximum Center of Pressure Excursion from Nominal

3 4 5 6 7

1 0 nonlinear instability limit + linear instability limit 0 steady-state saturation limit

10

. 6

uJ

.1:

Minimum Control Effectiveness Limit

6 72 3 4 5

s [deg]

Figure 3.8: Allowable variation in center of pressure location and reduction in control effec-

tiveness, step command from 0 to 1 degree, Mach 3.5, 0 km altitude

M = 6.3 alt = 20 km
Maximum Center of Pressure Excursion from Nominal
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Figure 3.9: Allowable variation in center of pressure location and reduced control effective-

ness, step command from 0 to 1 degree, Mach 6.3, 20 km altitude
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M = 6.3 alt = 20 km
Maximum Center of Pressure Excursion from Nominal

_ 25

20

15

10

0

O nonlinear instability limit + linear instability limit 0 steady-state saturation limit
Minimum Control Effectiveness Limit

80

6S [deg]

Figure 3.10: Allowable variation in center of pressure location and reduced control effective-
ness, step command from 0 to 1 degree, Mach 5.3, 50 km altitude

relatively intolerant of reduced control effectiveness. This intolerance is closely related
to the linear instability of the closed-loop system. Increased 6, permits lower control
effectiveness before reaching instability. Higher Mach numbers may remain stable
for decreased values of control effectiveness, but these high Mach numbers occur at
higher altitudes during the reentry. Consequently, dynamic pressures are reduced and
overall control effectiveness is likewise reduced. Thus, control saturation limits are
reached sooner in the face of reduced control effectiveness, even though these may
not be destabilizing. This is apparent in the cases at 20 and 50 km altitude: for large
symmetric deflections (greater static stability), the control saturation limit is reached
before the trajectories diverge.

The influence of an external pitch acceleration (specific moment) is evaluated
and shown in Figures 3.11, 3.12, and 3.13. This is considered because asymmetric
ablation may cause an external pitching moment on the vehicle. At high dynamic
pressures, the controls are more effective at reducing an external moment, while

0
nn

3 4 567
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lower dynamic pressures reduce control effectiveness. In the presence of tight control

deflection limits, even a small external acceleration (on the order of 15 deg/s 2) can

cause control saturation and instability. The case at 20 km (Figure 3.12) is especially

12000
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M = 3.5 at = 0 km
Limits on Constant, Nonzero Additive Pitch Acceleration

o o o
-

O Mn Allowable External Torque
0 Max Allowable External Torque
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Figure 3.11: Robustness

Mach 3.5, 0 km altitude

to external pitch acceleration, step command from 0 to 1 degree,

interesting. The other two cases are fairly constant across the range of 6s, but the

intermediate altitude shows a minimum performance for symmetric deflections near 3

and 4 degrees. Robustness to external pitch accelerations is gained when symmetric

deflections are decreased to 2 degrees or increased to 8 degrees.

Robustness for reference commands greater than 1 degree is also considered.

Plots similar to Figures 3.8-3.13 for step commands from 0 to 10 degrees can be

found in Appendix A; they are omitted here for the sake of brevity. The robustness

of larger step commands will be revisited in subsequent sections of this chapter.

Thus far, the robustness analysis highlighted three separate behaviors. First,

static instability coupled with poor plant knowledge (center of pressure variation,

I

-.- v,.,
6 7 8
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M = 6.3 alt = 20 km
Limits on Constant, Nonzero Additive Pitch Acceleration

2 3 4 5

8s [deg]
6 7 8

Figure 3.12: Robustness to external pitch acceleration, step command from 0 to 1 degree,
Mach 6.3, 20 km altitude

M = 5.3 alt = 50 km
Limits on Constant, Nonzero Additive Pitch Acceleration
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Figure 3.13: Robustness to external pitch acceleration, step command from 0 to 1 degree,
Mach 5.3, 50 km altitude
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reduced control effectiveness, external pitching moment) can lead to control surface

saturation, effectively eliminating the active control. Thus, the system becomes un-

stable. Second, if the control saturates but the vehicle is statically stable, the distur-

bance does not destabilize the system; however, the off-nominal plant cannot track

reference commands. Finally, sufficient control authority can exist to compensate for

the plant disturbance. Then, the vehicle becomes unstable when the linear robustness

bounds reach zero and the closed-loop poles cross the jw axis.

As might be expected, larger reference commands require better plant knowl-

edge to maintain sufficient tracking and closed-loop stability. Furthermore, greater

total control effectiveness (i.e., higher dynamic pressures) are more tolerant of off-

nominal plants.

3.3.3 Actuator Dynamics

The addition of a first-order actuator of the form P decreased the performance of thes+p
system, especially at lower altitudes where the short period dynamics are significantly

faster. Figure 3.14 demonstrates the loss of gain and phase margin for the Mach 3.5,

0 km altitude case (compare to Figure 3.7). The margins at 20 and 50 km are largely

unchanged because the plant dynamics are significantly slower than the actuator

dynamics.

The vehicle time response characteristics at Mach 3.5, 0 km altitude are sum-

marized in Figure 3.15. Similar graphs for the additional two flight conditions studied

are shown in Appendix A. These are omitted here because performance does not

change significantly for these cases.
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Figure 3.14: Gain and
transfer functions as 6,

phase margins for the reference
varies, 1st order actuator modele

command to angle of attack loop

Figure 3.15 summarize the vehicle's time response characteristics with actuator

dynamics modeled. The appearance of faster rise times in Figure 3.15 contrasts the

increased settling times. Additionally, peak overshoots are increased, especially as

the magnitude of the reference command increases. The 1 degree step response for 4

degrees of symmetric deflection is shown in Figure 3.16. Both the 4 and 6 degrees of

6, demonstrate a reduced tracking capability; the former reduces from a maximum of

6 degrees angle of attack to 4 degrees, while the latter reduces from 10 degrees to 9

degrees angle of attack. The loss of gain and phase margin corresponds to a general

reduction in system stability. The phase lag added by the actuator, coupled with the

stringent control saturations and a statically unstable plant, limit the performance of

these cases. Even the 8 degrees of symmetric deflection configuration suffers reduced

settling time and increased peak overshoot for large reference commands. Recall

the aerodynamic approximations are only valid for al < 10 degrees; a large peak

overshoot may push the pitching moment into a highly nonlinear region that is not

well-modeled.
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Step from oL = 0
M = 3.5 alt = 0 km

change in time response with 1st order actuator
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Figure 3.15: Time response characteristics for step commands from 0 degrees, Mach 3.5, 0

km altitude, 1st order actuator modeled
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Figure 3.16: 1 degree step response with actuator, Mach 3.5, 0 km altitude
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Figure 3.17 reveals the robustness to center of pressure variation is reduced for
all cases to approximately 10% (compare to Figure 3.8). The robustness to external

S 5

4

2

>

M = 3.5 alt = 0 km
Maximum Center of Pressure Excursion from Nominal

2 3 4 5 6 7 8
O nonlinear instability limit + linear instability limit 0 steady-state saturation limit

;F 10

6

1 4

(2IB

Minimum Control Effectiveness Limit

3 4 5

5S [deg]
6 782

Figure 3.17: Allowable variation in center of pressure location and reduced control effec-
tiveness, step command from 0 to 1 degree, Mach 3.5, 0 km altitude, 1st order actuator
modeled

pitch accelerations is also reduced, as shown in Figure 3.18.

As previously mentioned, the actuator dynamics did not significantly affect
the Mach 6.3, 20 km case or the Mach 5.3, 50 km case. The robustness summaries of
these cases with the actuator dynamics included are shown in Appendix A

3.3.4 Addition of Lead Compensator

To eliminate the oscillatory effect of actuator dynamics on vehicle tracking perfor-
mance, a lead compensator of the form ', a < b, is added. A simple pole-zero can-
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M = 3.5 alt = 0 km
Limits on Constant, Nonzero Additive Pitch Acceleration

o 0
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o Max Allowable External Torque
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Figure 3.18: Robustness
Mach 3.5, 0 km altitude,

to external pitch acceleration, step
1st order actuator modeled

command from 0 to 1 degree,

cellation is not desirable because actuator dynamics are not likely to be well-known.

Rather, the lead compensator is designed to regain the phase loss the actuator added

(see Figure 3.19). If the actuator includes significant additional dynamics beyond

the first-order actuator modeled, the performance shown below is overly optimistic.

However, effective design of a lead compensator may still mitigate actuator-induced

difficulties. The gain and phase margins for the system are presented in Figure 3.20.

The LQ-servo gains previously determined are unchanged; all changes in performance

from that depicted in Section 3.2 result from the addition of the actuator and com-

pensator. The gain margins for all cases are improved; recall the phase margin for

6, = 2 degrees at Mach 3.5, 0 km altitude is negative with the addition of the actuator

(see Figure 3.14). Note the time response is improved (Figure 3.21).

3.3. RESULTS

12000

[0000

8000

6000

4000

2000

0

-200
4OO0

I



CHAPTER 3. BASELINE CONTROL DESIGN

8 -1o
i-20

= -30

-40

* 0

. -45

-90

- c

actuator pole
Frequency (rad/sec)

Figure 3.19: Bode plot for 1st order actuator, lead compensator, and their series
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M= 3.5 alt = 0 km 85 = 4

Step Response

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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Figure 3.21: 1 degree step response, Mach 3.5, 0 km altitude, 1st order

compensator

actuator and lead

3.3.5 LQ-servo Performance at M - 3.5, 0 km Altitude

The time response summary for Mach 3.5, 0 km altitude with the actuator and lead

compensator is presented in Figure 3.22. The rise times are increased for all cases

shown, although the settling times are improved. The settling times for small reference

commands and 8 degrees of symmetric deflection are improved approximately 50%.

Peak overshoots are less than 8%, compared to over 20% for the actuator alone.

Additionally, 4 degrees of symmetric deflection still cannot track reference commands

greater than 6 degrees.

Compare the robustness to center of pressure location and control effectiveness

for 1 and 10 degree step commands (Figures 3.23 and 3.24). The smaller reference

command is limited by the linear instability limit, while the larger reference command

3.3. RESULTS
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Step from x = 0
M = 3.5 alt = 0 km

change in time response with 1st order actuator and lead compensator
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Figure 3.22: Time response characteristics for step commands from 0 degrees, Mach 3.5, 0
km altitude, actuator and lead compensator modeled

CHAPTER 3.

S

t
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Figure 3.23:
effectiveness,
compensator

Allowable variation in center of pressure location and reduction in control

step command from 0 to 1 degree, Mach 3.5, 0 km altitude, actuator and lead

modeled
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Figure 3.24: Allowable variation in center of pressure location and reduction in control

effectiveness, step command from 0 to 10 degrees, Mach 3.5, 0 km altitude, actuator and

lead compensator modeled
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has its robustness limits tied to controller saturation. Note symmetric deflections un-

der 5 degrees are unstable for a 10 degree command. This is apparent since the

allowable variation in Xc, is negative, indicating the nominal case (zero variation) is

unstable. Additionally, these symmetric deflections require more than 100% of avail-

able control authority. Consequently, the flaps saturate and are unable to stabilize

(or control) the system for 6, less than 5 degrees.

Figures 3.22 show a decrease in rise time and an improvement in robustness

to static margin uncertainty and reduced controller effectiveness, compared to the

baseline case (Figure 3.4). However, this is misleading: the actuator is modeled as an

ideal, 1st order exponential rise. In fact, the actuator may have additional dynamics,
and these dynamics may be poorly modeled or unknown. While it is unreasonable to

assume the lead compensator can totally eliminate all undesired actuator effects, it

can be effective at reducing the severity of these effects.

The robustness to external pitch accelerations for 1 and 10 degree step com-

mands are shown in Figures 3.25 and 3.26.

As might be expected, the controller is more capable of tracking a smaller

reference command in the face of an external pitching moment. Recall symmetric

deflections under 5 degrees are unstable in tracking the 10 degree reference command.
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M = 3.5 alt = 0 km
Limits on Constant, Nonzero Additive Pitch Acceleration
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Figure 3.25: Robustness
Mach 3.5, 0 km altitude,

x 1'0

to external pitch acceleration, step command from 0 to 1 degree,
actuator and lead compensator modeled
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Figure 3.26: Robustness to external pitch acceleration, step command

Mach 3.5, 0 km altitude, actuator and lead compensator modeled
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3.3.6 LQ-servo Performance at M 6.3, 20 km Altitude

The time response summary for Mach 6.3, 20 km altitude is presented in Figure 3.27.
The 6 degree 6, configuration is unstable for commands greater than 7 degrees, and

C

E

Step from a = 0
M = 6.3 alt = 20 km

change in time response with 1st order actuator and lead compensator

120-

80-
60 -

1 2 3 4 5 6 7 8 9 10

O 8s =4deg x 8s=5deg * 8s=6deg

300

10

S9 10
r [deg]

Figure 3.27: Time response characteristics for step commands from
km altitude, actuator and lead compensator modeled

0 degrees, Mach 6.3, 20

the large settling time at 7 degrees indicate this case is highly oscillatory. The cases
for 4 and 5 degrees of symmetric deflection show little variation in rise time, settling
time, or peak overshoot for the range of step commands presented. Peak overshoots
are minimal.

The robustness to center of pressure variation and control effectiveness for 1
and 10 degree steps is shown in Figure 3.28 and 3.29. From a stability point of
view, symmetric deflections of 7 and 8 degrees provide the greatest robustness to
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Figure 3.28: Allowable variation in center of pressure location and reduction in control

effectiveness, step command from 0 to 1 degree, Mach 6.3, 20 km altitude, actuator and lead

compensator modeled
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variation in static margin when reference commands are small. However, Figure 3.28
also demonstrates that a reduction in control surface effectiveness (i.e., control surface
ablation) for 6, greater than 5 degrees can result in control surface saturation before
instability is reached, even for a 1 degree reference command. In such a configuration,
the vehicle would remain stable but unable to track the reference command.

For a step command from 0 to 10 degrees, 2 and 3 degrees of symmetric
deflection are unstable (negative value of variation in X,), while over 5 degrees of
symmetric deflection are stable but require over 100% control effectiveness to meet
steady-state tracking requirements. The 10 degree step responses for three symmetric
deflections are shown in Figure 3.30. For 6 degrees of symmetric deflection, the

M = 6.3 alt = 20 km
Step Response

time [sec]

Figure 3.30: 10 degree step response, Mach 6.3, 20 km altitude, actuator and lead compen-
sator modeled

flaps saturate and control system is unable to provide any additional damping to the
statically stable system, resulting in oscillations and inability to track the reference
command.

-8. =3
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The vehicle's robustness to external pitch accelerations for both 1 and 10

degree step commands is summarized in Figure 3.31 and 3.32. For the 1 degree step,

a minimum pitch acceleration rejection band is still present between 3 and 4 degrees

of symmetric deflection. For a 10 degree step, symmetric deflections greater 5 degrees

provide similar levels of external pitching moment rejection.

In the face of plant uncertainty, small reference commands may be better suited

to symmetric deflections of 7-8 degrees, while large reference commands clearly favor

5 degrees of symmetric deflection.
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M = 6.3 alt = 20 km
Limits on Constant, Nonzero Additive Pitch Acceleration
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Figure 3.31: Robustness to external pitch acceleration, step command

Mach 6.3, 20 km altitude, actuator and lead compensator modeled
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Figure 3.32: Robustness to external pitch acceleration, step command from

Mach 6.3, 20 km altitude, actuator and lead compensator modeled
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3.3.7 LQ-servo Performance at M = 5.3, 50 km altitude

The time response summary for Mach 5.3, 50 km altitude with both the actuator and

lead compensator modeled is shown in Figure 3.33. The low dynamic pressure still

Step from ( = 0
M = 5.3 alt = 50 km

change in time response with 1st order actuator and lead compensator

,

1.5 2 2.5 3 3.5 4 4.5 5

r [deg]

Figure 3.33: Time response characteristics for step commands from 0

km altitude, actuator and lead compensator modeled

degrees, Mach 5.3, 50

limits the maximum reference command to 5 degrees. The settling times and peak

responses demonstrate marked increases as the magnitude of the reference command

increases.

Figure 3.34 demonstrates a slight advantage to 6, of 5 degrees for off-nominal

static margins, while Figure 3.35 shows no change in external pitch acceleration ro-

bustness. Figure 3.35 also shows the system is poorly-suited to cope with external

torques at the Mach 5.3, 50 km altitude flight condition. The robustness to center
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of pressure variation appears to be highly correlated with control surface saturation
limits. At 50 km, low dynamic pressure severely limits control authority, and controls
are more likely to saturate than at higher dynamic pressures.

M = 5.3 alt = 50 km
Maximum Center of Pressure Excursion from Nominal

80 8

S 40

02 3 4 5 6 7 8
O nonlinear instability limit + linear instability limit 0 steady-state saturation limit

Minimum Control Effectiveness Limit

80

40 0

+[]cJ
2 3 4 5 6 7 8

8s [deg]

Figure 3.34: Allowable variation in center of pressure location and reduction in control
effectiveness, step command from 0 to 1 degree, Mach 5.3, 50 km altitude, actuator and lead
compensator modeled

In terms of tracking performance, this flight condition represents the most
difficult case. The vehicle is only able to track small reference commands. Robustness
is markedly lower at this flight condition. However, ablation effects may be negligible
at this point during the reentry since dynamic pressures are low. It is possible large
changes in angle of attack are not likely to be commanded at this phase of reentry.
On the other hand, the guidance system is likely to command a constant, near-zero
angle of attack until higher dynamic pressures and external sensor feedback (i.e., GPS,
etc.) are available to command more aggressive trajectories. The guidance scheme
for such a reentry vehicle must consider this limitation, especially if a linear controller
is employed.
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Figure 3.35: Robustness to external pitch acceleration, step command from

Mach 5.3, 50 km altitude, actuator and lead compensator modeled
0 to 1 degree,

3.4 Linear Control Conclusions

The linear controller tracked small commanded angles of attack well when the vehicle

aerodynamics are well known. The addition of a 1st order actuator reduced perfor-

mance when vehicle dynamics are fast (e.g., at 0 km altitude), but a lead compensator

demonstrated its ability to recover much of the actuator-induced phase lag. The con-

troller handled some degree of control effectiveness reduction. However, variations

in static margin, either from poorly-modeled center of pressure or movement in the

center of gravity from ablation, limited the effectiveness of the LQ-servo controller.

Much of the LQ-servo robust performance difficulties arose from saturation in the

control surface deflections-this nonlinearity is hard to overcome with a linear SISO

system. The control saturations are reached when larger angles of attack are com-

manded, especially at low dynamic pressures. The remainder of this effort sought to

improve the performance over the LQ-servo controller.

3.4. LINEAR CONTROL CONCLUSIONS

o MinAllowable Extemal Torque
0 Max Allowable External Torque

o o O O O
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At this point, the linear controller for each Mach/altitude combination is fixed

to provide a "baseline" to evaluate other controllers. At each flight condition, Table

3.2 shows the selected symmetric deflection: While somewhat arbitrary, an emphasis

Table 3.2: Selected 6, for each flight condition
Mach altitude (km) 6, [deg]

3.5 0 8
6.3 20 5
5.3 50 5

is placed on time response and robustness to static margin uncertainty (allowable

variation in XP). In any case, an "optimal" value of symmetric deflection for the

LQ-servo controller can be further investigated in the future, possibly improving the

performance of the control schemes presented later in this effort.



Chapter 4

Hybrid Switching-Linear Controller

The baseline Linear Quadratic Servo (LQ-servo) controller presented in Chapter 3

performed well for small step commands in the presence of perfect plant uncertainty.

However, control saturation limits presented nonlinearities that limited tracking per-

formance or introduced instabilities to the system. In an effort to exploit the perfor-

mance of the LQ-servo controller but gain robust performance, a multi-mode, hybrid

switching-linear controller (SLC) is developed.

4.1 Motivation

The difficulty of the linear controller commanding large steps in a lies in switching

from one saturated command to the other. Many of the trajectories greatly exceed
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10 degrees angle of attack. In Section 2.1, the aerodynamic model was only assumed
valid for a I < 10 degrees. Consequently, these large overshoots may pose a significant
problem. Consider the phase plane for a 10 degree angle of attack reference command
(Figure 4.1). The trajectory that begins at 5 degrees angle of attack is of particular

Phase Plane, r= 10 lOdeg
M- 3.5 tO0 kmn 8 deg

a[deg]

Figure 4.1: Phase plane for 10 degree reference command, M
degrees

3.5, 0 km altitude, s

interest. The initial behavior is in the "wrong direction"; that is, the initial behavior

of the vehicle is to begin a negative pitch rate, even though a positive pitch rate
is clearly desirable to increase the angle of attack to 10 degrees. Additionally, the
control switches between saturation limits twice before remaining within the control
deflection bounds (see Figure 4.2). As a result, the peak overshoot is significant, as
is control activity. This "wrong direction" behavior results from the tracking error
integral, ei, being initialized to zero. It must "wind up" enough to trim the vehicle

at 10 degrees. The zero initial condition is sufficient when the initial angle of attack
is likewise zero, but nonzero initial angles of attack must initialize el at a nonzero
value. The LQ-servo controller previously developed does not have a mechanism to
accomplish this.
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.5

Figure 4.2: Step response from 5 to 10 degrees, M = 3.5, 0 km altitude, 6, = 8 degrees

The SLC developed has two distinct modes. The first mode is completely

saturated control at either the positive or negative limit of 6a. Switching between

these two is based on a switching curve in the phase plane. The second mode is the

LQ-servo controller previously developed, with the switch occurring along another

curve in the phase plane. The qualitative control strategy is to drive the phase plane

trajectory as rapidly as possible into the LQ-servo control region, which causes the

system to converge to the reference command. The advantage of this approach is that

small commands take advantage of the linear controller's performance and robustness,

while larger commands bypass the linear controller when it would be saturated and

possibly near instability or a limit cycle.
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4.2 Phase Plane Analysis

For each flight condition with the linear controller in place, the phase plane of initial
conditions can be subdivided into three stable regions. The first region is stable with
satisfactory tracking performance but possibly saturated controls during the transient
response. Here, "satisfactory" tracking performance is defined by two criteria:

* rise time (10% to 90% of commanded value) meets specification, within 5%

* settling time (between 95% and 105% of commanded value) less than 4 rise
times

The second region is stable, but does not meet the tracking parameters specified
above. The third region is denoted by totally unsaturated controls. This last region
represents a completely linear system; as such, the inherent LQR stability margins
apply (see Section 3.1). Admittedly, this final region is very small in relation to
the other regions, often appearing as a line segment. The 5 and 10 degree reference
commands at Mach 5.3, 50 km altitude do not show regions of unsaturated control.

These three regions can be seen in Figures 4.3-4.5. Unstable initial conditions
are those points without any marker.

A controller can exploit the unsaturated control conditions if all trajectories
could be controlled to this region. It is interesting to note the unsaturated region does
not necessarily correspond with the commanded angle of attack, especially with large
reference commands. Recall, the states ac and q were augmented with the integral
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Figure 4.3: Phase plane of stable initial conditions, LQ-servo, M
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Figure 4.4: Phase plane of stable initial conditions, LQ-servo, M = 6.3, 20 km altitude, 6,

= 5 degrees
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plane of stable initial conditions, LQ-servo, M = 5.3, 50 km altitude, 6,

of the tracking error, e1 (Equation 3.17). Thus, the phase plane is actually three
dimensional. Consider the a-e 1 phase plane presented in Figure 4.6. Regardless of the
initial angle of attack, all stable trajectories converge to a single, steady-state value of
e1 . Compare Figure 4.6 and Figure 4.7, which is for a 10 degree reference command.
The steady-state value of e1 is nonzero, but stable trajectories still converge to a point
in the 3-dimensional state space. For convergence to a constant reference command,
the steady-state value of q is always zero.

While these phase plane trajectories are three dimensional, the third dimension
is a software state. That is, e, can be initialized to any value desired. As noted in
Section 4.1, the LQ-servo controller does not have a method to initialize e1 to nonzero
values.

Figure 4.5: Phase
= 5 degrees
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Phase Plane, r = 0 deg
M = 3.5 alt = 0 km = 8 deg

a [deg]

Figure 4.6: Zero pitch rate phase
0 km altitude, 6, = 8 degrees

plane, ej vs a for a 0 degree reference command, M

Phase Plane r = 10 deg
M = 3.5 alt = 0 km 68 = 8 deg

a [deg]

Figure 4.7: Zero pitch rate phase plane, eI vs a for a 10 degree reference command, M

3.5, 0 km altitude, 6, = 8 degrees

3.5,
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4.3 Switching Control Design

To improve upon the LQ-servo's performance in tracking large step commands, a

Switching Linear Controller (SLC) was developed. The SLC employed one of two

control strategies. The first strategy employed a saturated nonlinear controller. Its

purpose is to rapidly position the system to a state where the linear controller performs

well. The second control strategy was the previously-developed LQ-servo controller,

with an appropriate initialization of the state ej.

Observing Figures 4.3, 4.4, and 4.5, a negative trend is apparent through

the unsaturated control region of initial conditions. If the phase plane trajectory

reaches these points, it converges without control saturation to the reference condition.

Decreasing initial values of a indicate increased initial values in initial q and vice versa.

For example, Figure 4.3, r = 0, shows a narrow region of unsaturated controls that

intersects the points (-30,250°/s), (00,00/s), and (3o,-250'/s). Similarly, the additional

flight conditions and reference commands demonstrate regions where increasing a

strictly decreases q. A linear approximation of this trend gives

q* = m*(a - r) (4.1)

where m* is the slope of the switching line. Given a state [a q], the value of q*

can be calculated. If q > q*, the control should be (amax, while q < q* indicates the

control should be - 6 amax, The purpose of this control is to drive the trajectory to

the linear region as quickly as possible. This is similar to the classic minimum-time

problem in constrained optimal control (e.g., 118]).

The centroid of the unsaturated control region (arithmetic mean of all points

within this region) varies with the value of the reference command. Let the centroid
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offset from the origin, [ac  qc]T, be

a[ = A Jr (4.2)

Since this centroid is within the unsaturated control region of initial conditions,

initializing e1 to zero results in a satisfactory time response.

At this point, it may be reasonable to expect another curve defines the reset

of the error integral, ei. That is, the q* curve defines the switch between saturated

controllers, while a separate curve defines the initialization of the LQ-servo controller

state el (integrated tracking error). Defining this integral reset curve as the line that

passes through [ac qc]T and [r 0]T (the reference command) gives

q = (aC - r) (4.3)

While the saturated nonlinear controller is active, the state ei is irrelevant. However,

ei must be properly initialized upon intersection with the qs curve. To accomplish

this, assume the steady-state value of the error integral, designated elf, is a linear

function of the reference command:

el, = Er (4.4)

Note Equation 4.4 is nonzero only for nonzero values of reference commands, which

agrees with Figures 4.6 and 4.7.

Now, elo must be parameterized along the reset line, qS. At the reference

condition, e o = elf = cr. At the point [ac qc]T (unsaturated region centroid),

elo = 0. The initialization of the error integral, elo, is then

E
eIO = I - Aa ( a - 20r) (4.5)
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Upon implementation, trajectories are controlled by the saturated control until

the phase plane trajectory intersects the qS curve (Equation 4.3). At this point, the

error integral state, ei, is initialized to the value determined by Equation 4.5; the

linear controller then controls the trajectory to the reference command. In practice,

the initial nonlinear control is resumed each time the reference trajectory changes:

Or

This reset limits the guidance commands to constant angles of attack (step com-

mands), and the frequency of these steps must be sufficiently low so steady-state

tracking can be achieved. However, the controller reset method can be altered in the

future to match the implemented guidance scheme.

A challenge of switching controllers occurs when the control input "chatters"

along the switching boundary, oscillating between the minimum and maximum de-

flections. Presumably, this control chattering could continue without the control

architecture switching to the linear controller, as in Figure 4.8. This chattering can

be remedied by setting the switching curve slope, m* (see Equation 4.1), to the slope

of the q' curve (Equation 4.3). Effectively, this prevents the control from switching

between saturated deflections by defining one switching curve. One initially saturated

input controls the phase plane trajectories, followed by a switch (along the common

q*-qS switching curve) to the linear controller with proper initialization of e.
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Phase Plane
M = 3.5, alt = 0 km, 8s = 8 deg

c [deg]

Figure 4.8: Phase plane showing chattering about switching line, M = 3.5, 0 km altitude,
6, = 8 degrees

4.4 Results

Simulations were conducted to evaluate the relative performance of the Switching Lin-

ear Controller (SLC) and the Linear Quadratic Servo (LQ-servo) controller. All sim-

ulations were conducted in MATLAB/SIMULINK using the built-in ODE15s solver.

[15][16]

4.4.1 Mach 3.5, 0 km altitude

Once again, consider a step from 5 degrees to 10 degrees for the Mach 3.5, 0 km

altitude flight condition. The phase planes for the LQ-servo controller and SLC are
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Phase Plane
M = 3.5, alt = 0 kin, s = 8 deg

4 5 6 7

a [deg]
8 9 10 11

Figure 4.9: Phase plane, SLC and LQ-servo, Mach 3.5, 0 km altitude, 6, 8 degrees

presented in Figure 4.9. The initial negative pitch rate is eliminated, as is a significant
portion of the overshoot. The time responses are compared in Figure 4.10. Since the
linear controller initializes e, to 0, this integral must "wind up" enough to maintain
a nonzero angle of attack. When the commanded angle of attack is greater than this
initial angle of attack, the linear controller will tend to return to 0 degrees angle of
attack until el reaches a sufficient value to overcome this negative pitch rate. The
SLC eliminates this "wind up" by directly initializing e, to an appropriate value. As
expected, 6, saturates until the phase plane trajectory intersects the ei reset curve,
when the LQ-servo controller is activated. Control activity is reduced over the linear
controller, as is the peak overshoot and settling time.

Consider the especially difficult case of a step from -10 degrees to 10 de-
grees, presented in Figure 4.11. The magnitude of the peak overshoot is reduced
approximately 90%, resulting in a much more favorable time response for the SLC.
Furthermore, the peak overshoot extends very little into angle of attacks greater than
10 degrees, where the aerodynamic model may break down.
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0.3 0.4 0.5
time [sec]

0.6 0.7 0.8 0.9

Figure 4.10: Time response to a step command from 5 to 10 degrees, SLC and LQ-servo,
Mach 3.5, 0 km altitude, 6S
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Figure 4.11: Time response to a step command from -10 to 10 degrees, SLC and LQ-servo,

Mach 3.5, 0 km altitude, 6, = 8 degrees
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Although the switching controller improved the time response characteristics
over the LQ-servo controller, it did not provide significant robustness benefits at
Mach 3.5 and 0 km altitude. Since the SLC incorporated the previously developed
LQ-servo control scheme, the LQ-servo robustness bounds affect the SLC robustness
bounds. Figure 4.12 summarizes the stability limits of center of pressure uncertainty
and reduced control surface effectiveness.

Step from ao = 0
M = 3.5 alt = 0 km

Maximum Center of Pressure Excursion from Nominal

-JM 2(

U
.C

. 9.15105

0 '

1 2 3 4 5 6 7 8 9

Minimum Control Effectiveness Limit

I O switching instabilitylimit
xI LQ-servo instability limit

0 5 0~ 0 8 0 0 Q 0 9 0

2 3 4 5 6 7 8 9 10
r [deg]

Figure 4.12: Robustness comparison of the SLC and LQ-servo from a =
reference commands, Mach 3.5, 0 km altitude, 6, - 8 degrees

0 deg for various

A summary of the improvement in rise time, settling time, and peak overshoot
is presented in Figure 4.13. Rise times increased slightly, but settling times were
reduced to 60 percent of the LQ-servo settling time. The SLC also provided a slight
reduction in peak overshoot.
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Step from c = 0
M = 3.5 alt = 0 km

4'2A ...
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6 11iio -

1001

100
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3 4 5

2 3 4 5 6
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E
E
E

0

9 10

9 10
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Figure 4.13: Time response characteristics for the SLC as a percent of the LQ-servo Char-

acteristics for various step commands from 0 degrees, Mach 3.5, 0 km altitude, 6, = 8

degrees

4.4.2 Mach 6.3, 20 km altitude

For 5 degrees of symmetric deflection, a step command from 0 to 10 degrees was

tracked well by the LQ-servo controller (see Figure 3.30). The SLC matched this

performance well (Figures 4.14 and 4.15), but improved on the performance of a step

from 5 to 10 degrees (Figures 4.16 and 4.17). This highlights the elimination in the

"wind up" period describes in Section 4.4.1.

-- -- -- ---

--
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Phase Plane
M = 6.3, alt = 20 km, 8s = 5 deg

oc [deg]

Figure 4.14: Phase plane, step command from 0 to 10 degrees, SLC and LQ-servo, M
20 km altitude, 6S 5 degrees

Time Response
M - 6.3, at = 20 km, 8s = 5 deg

0 0.5 1 1.5 2
time [sec]

2.5 3 3.5

Figure 4.15: Time response to a step command from 0 to 10 degrees, SLC and LQ-servo,
Mach 6.3, 20 km altitude, 6s = 5 degrees
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Phase Plane
M = 6.3, alt = 20 km, 8s = 5 deg

ac [deg]

Figure 4.16: Phase plane, step command from 5 to 10 degrees, SLC

6.3, 20 km altitude, 6s = 5 degrees

and LQ-servo, Mach

Time Response
M = 6.3, alt = 20 km, Ss = 5 deg

time [sec]

Figure 4.17: Time response to a step command from 5 to 10 degrees, SLC and LQ-servo,

Mach 6.3, 20 km altitude, 6, = 5 degrees
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When commanding a step from -10 to 10 degrees, the LQ-servo's overshoot is
eliminated with the SRC (Figures 4.18 and 4.19).

Phase Plane
M = 6.3, ait = 20 km, Ss = 5 deg

a [deg]

Figure 4.18: Phase plane, step command from -10 to 10 degrees, SLC and LQ-servo, Mach
6.3, 20 km altitude, 6, = 5 degrees

The SLC did not provide any additional robustness over the LQ-servo con-
troller; a summary of the allowable center of pressure excursion and control effective-
ness reduction is shown in Figure 4.20

A summary of the improvement in rise time, settling time, and peak overshoot
is presented in Figure 4.21. Except for the 1 degree step, the rise times and settling
times were reduced up to 15 and 30 percent, respectively. Peak responses were almost
unchanged.
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Figure 4.19: Time response to a step command from -10 to

Mach 6.3, 20 km altitude, b, = 5 degrees
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Figure 4.20: Robustness comparison of the SLC and LQ-servo from a = 0 deg for various

reference commands, Mach 6.3, 20 km altitude, 6, = 5 degrees
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Step from (x = 0
M = 6.3 alt = 20 km
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Figure 4.21: Time response characteristics for the SLC as a percent of the LQ-servo Char-
acteristics for various step commands from 0 degrees, Mach 6.3, 20 km altitude, 6, = 5
degrees
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4.4.3 Mach 5.3, 50 km altitude

Consider a step command from 0 to 5 degrees at Mach 5.3, 50 km altitude. The

phase plane and time responses for the LQ-servo and SLC are shown in Figures 4.22

and 4.23, respectively. Although the SLC increased the rise time from the LQ-servo,

Phase Plane
M = 5.3, alt = 50 km, Ss = 5 deg

a [deg]

Figure 4.22: Phase plane, step command from 0 to 5 degrees, SLC and LQ-servo, M = 5.3,
50 km altitude, 6S = 5 degrees

settling time and peak overshoot were sharply reduced.

Recall the LQ-servo controller was unable to stabilize a step from 0 to 10

degrees (see Section 3.3.7). The SLC does stabilize and track a 10 degree step, albeit

after a long transient period. In fact, the SLC provides a measure of robustness at

Mach 5.3 and 50 km altitude when large steps are commanded, although robustness

at smaller reference commands is somewhat diminished (Figure 4.26).
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0 0.5 1 1.5 2 2.5
time [sec]

3 3.5 4 4.5 5

Figure 4.23: Time response to a step command from 0 to 5 degrees, SLC and LQ-servo, M
5.3, 50 km altitude, 6, 5 degrees

Phase Plane
M = 5.3, alt = 50 km, 8s = 5 deg

0*

ca [deg]

Figure 4.24: Phase plane, step command from 0 to 10 degrees, SLC and LQ-servo, M
50 km altitude, 6, = 5 degrees
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A summary of the improvement in rise time, settling time, and

is presented in Figure 4.27. The SLC tends to increase rise times

Step from o( = 0
M = 5.3 alt = 50 km

50

peak overshoot

for values of r

0 0

1 2 3 4 5

150

50- o

r [deg]150

4 0 0 050 -

1 2 3 4 5 9 10

r [deg]

Figure 4.27: Time response characteristics for the SLC
acteristics for various step commands from 0 degrees,
degrees

as a percent of the LQ-servo char-
Mach 5.3, 50 km altitude, 6s = 5

between 3 and 5 degrees, but settling time is significantly reduced. The LQ-servo
controller was unable to track step commands above 5 degrees without instability;
this is reflected in the near zero-values of rise time, settling time, and peak response
in Figure 4.27.
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4.5 SLC Conclusions

A hybrid switching/linear controller (SLC) was developed to improve the time re-

sponse over the linear controller. The initial phase of this controller saturates the

control input to drive the phase plane trajectory to the switching line as rapidly as

possible. At the switching line, the software state, ei, is initialized to an appropriate

value, and the LQ-servo controller controls the vehicle until the reference state is

reached.

The SLC improved the time response over the LQ-servo controller, especially

for large reference inputs. The peak overshoot and settling time were significantly

decreased. The SLC was more capable at handling irregular initial states (e.g., a step

from 5 to 10 degrees) because of its error integral initialization scheme. Additionally, it

allowed the vehicle to track a 10 degree step command at Mach 5.3 and 50 km altitude,

which was not possible with the LQ-servo controller. Finally, the SLC provided this

flight condition with some measure of robustness to uncertainty in center of pressure

location and control surface effectiveness. The SLC did not provide any robustness

benefits in static margin or control effectiveness for the Mach 3.5/0 km altitude or

Mach 6.3/20 km altitude cases.
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Chapter

Model Reference Adaptive Controller

The Linear Quadratic Servo controller developed in Chapter 3 performed well with

perfect plant knowledge; however, performance was degraded with reduced knowledge

of the aerodynamics. A model-reference adaptive controller (MRAC) was developed

to exploit the performance of the nominal controller while maintaining flexibility in

the face of plant uncertainty.

5.1 Theoretical Background

The author assumes the reader has a general understanding of Lyapunov stability and

Lyapunov functions. The relevant definitions, theorems, and proofs relating to these

topics can be found in the extensive literature on nonlinear systems (e.g., 121],122]).
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Figure 5.1: Model-Reference Adaptive Control Framework

The model reference control framework is pictured in Figure 5.1. The qual-
itative control strategy involves running a "reference" model that exhibits desired
time-response characteristics. The reference states and plant states are compared to
form an error vector. Ensuring the error dynamics have a stable equilibrium point at
e = 0 guarantees the plant will converge to the (favorable) reference model behavior
after some transient. This stable error equilibrium is guaranteed by adjusting the
gains according to dynamics that satisfy a Lyapunov function.

5.2 Adaptive Control Design

The initial adaptive control design chose 6, as a fixed parameter, leaving the state
differential equation in the form of Equation 3.12, and 6, is the sole input. This
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development follows that outlined in [23] and [24]. Assuming the control input is of

form

a = -- kTX + kIeI (5.1)

where e1 is defined in Equation 3.17, the plant can be modeled as

x = Ax + AB (-~ Tx + kIe) (5.2)

The matrix A is constant but not well-known, B is well-known, and A is positive

but unknown. This limit on A allows a reduced control effectiveness (the nominal

value for A is 1), but does not allow control reversals.

The reference model is set as the nominal LQ-servo control with closed loop

dynamics

5xref = Aref + Bkee, (5.3)

where Aref represents the nominal closed-loop dynamics

Aref = Anom - BKLservo (5.4)

and ke is the nominal LQ-servo gain on the error integral.

Forcing e (the error between the reference model and plant) to zero implies

that the real plant converges to the (stable and well-performing) reference plant.

Assuming there exist (unknown) constant gains K* and k* such that

Aref = A - ABK*T (5.5)

ke = Ak* (5.6)
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the error dynamics can be written as

e= X - Xref

= Ax - ArefXref + AB (-KTx + kleI) - Bkeei

= Arefe - ABKTx + ABkje (5.7)

with

K= - K*

k = p - kI t

Choosing the positive-definite Lyapunov function

L= ee e (5.8)

gives

S= eTArefe + eT (-ABkTX + ABkiei) (5.9)

The term eTArefe is negative definite since the eigenvalues of Aref are necessarily

left of the jw axis (see Equation 5.3), but the remainder of Equation 5.9 is not

necessarily negative definite (or even zero). Consequently, the Lyapunov function

must be augmented:

£= (eTe + A K + AF i2 (5.10)

where the adaptation rates, Fx and FI, are positive definite (and thus their inverses

are positive definite [25]). Fx is a diagonal matrix with nonzero terms on the main

diagonal. Now,

= eTArefe + eT (-ABKTX + ABkrei) + AKT ;K + AFI I k k (5.11)
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To ensure 5.11 is negative definite, the adaptation law is chosen as

K = eTBFxx

kI = -eTBrFei
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(5.12)

(5.13)

5.3 Initial Results

The single input (6a) adaptive controller described in Section 5.3 fails to provide a

significant benefit to the SRV robustness. Figure 5.2 compares the robustness to cen-

ter of pressure location and control effectiveness for the LQ-servo controller (Chapter

3) and the adaptive controller. The adaptive controller provides an additional 3%

F~20J
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a k
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a I
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5 9.5
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Figure 5.2: Robustness comparison of the MRAC and LQ-servo from a = 0 deg for various

reference commands, M = 3.5, 0 km altitude, 6s = 8 degrees, 1 MHz adaptation rate

of center of pressure robustness for the 1 degree step, but no additional robustness
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at larger steps. Furthermore, the minimum allowable controller effectiveness is un-
affected. The gains stabilize at steady-state values in the face of center of pressure
uncertainty; however, the total gain variation is of the order 10' percent. Increasing
the adaptation rate increases allowable center of pressure variation and thus greater
gain variation, but the adaptation rate cannot be increased without bound. Proces-
sor speed, unmodeled structural modes, and unmodeled delays all limit the maximum

adaptation rate that can be sucessfully implemented on an actual system.[21 ]

Control surface saturation limits the adaptive controller and LQ-servo alike.
If both the adaptive and LQ-servo systems demand an asymmetric deflection outside
the deflection bounds, tracking will be similarly limited. A more effective approach

may be to control 6, rather than fix it at the deflection determined in Chapter 3.

5.4 Dual-input Adaptive Control

In the presence of controller saturation, Equation 5.2 can be written as

= Ax + AB(a + ) (5.14)

where 6 a is the commanded control deflection and

Aa = 6a - 6a (5.15)

Thus, Aa is nonzero when the commanded control deflection, 6a, is outside the
saturation limits. Alternately,

a - aax sat a (5.16)
( amax
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and

sate = { 1,

-1,
>1

<1

The single-input MRAC indicated control saturation hampered both LQ-servo

and adaptive control of the SRV. Ajami, Hovakimyan, and Lavretsky employ the

excess control, Aa, to modify the reference states in the presence of saturation.24 ] For

the SRV, it may be beneficial to use the excess control to manipulate the symmetric

deflection.

The dual-input adaptive control sought to eliminate controller saturation; that

is, A a - 0. The dynamics of the excess control are simply

Aa = 3a - Sa (5.17)

Recalling the definitions of symmetric and asymmetric flap deflections (Equa-

tions 2.1 and 2.2) and the allowable range for each flap is 10,10] degrees gives

6La.= 2 (10- 6s)
68 5

6s > 5
(5.18)

and -
6

max = 
5
amin

The obvious Lyapunov candidate function is

(5.19)= a2

which is nonzero only when the excess control is nonzero.
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Consider the case where Aa < 0, which corresponds to 6
a > 6

amax. Then,

Aa = ,amax - 6a (5.20)

Now consider the case where Aa > 0; that is, a < -bamax:

Aa = - 6
amax - 6a (5.21)

The time derivative of 6
ama can be expressed as

a-26,,

6, <5

6, > 5
(5.22)

which is undefined at s = 5. To overcome this, defining (6 aax = 0 at 6, = 5 gives

6amax = 26ssign (5 - 6,) (5.23)

Then the time derivative of the Lyapunov candidate function in Equation 5.19

2£= 2 , Aal sign (6, - 5)- A'ada (5.24)

To ensure Equation 5.24 is negative definite, the obvious choice for 6, is

6, = -ks IAa sign (6s - 5) + l6asign (6, - 5) signAa (5.25)

where ks > 0.
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Inspection of Equation 5.25 reveals a singularity at 6, = 5 degrees that is

stable only when a and 6 a have the same sign. This is satisfied in two cases:

* 6, is at the negative saturation limit AND the commanded deflection is increas-

ing

* 6a is at the positive saturation limit AND the commanded deflection is decreas-

ing

Obviously, these conditions are not guaranteed. Furthermore, the sign (6s - 5) terms

in Equation 5.25 ensure the symmetric deflections cannot move upon reaching 5 de-

grees.

In the future, it may be possible to augment the Lyapunov function in Equation

5.19 with additional terms to remove the singularity at 6, = 5.

5.5 Adaptive Control Conclusions

A model-reference adaptive controller was developed to control the asymmetric de-

flection while maintaining a fixed symmetric deflection. This single-input, single-

output system approach paralleled the approach developed in the previous chapters.

The adaptive control failed to provide any additional appreciable robustness over the

baseline LQ-servo controller of Chapter 3. Small gains in robustness to center of

pressure variation were demonstrated for small reference commands and clock speeds
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of 1 MHz. The control saturation effects that limited the linear controller likewise
hampered the effectiveness of the adaptive controller.

In an initial attempt to alleviate some saturation problems, an additional
adaptive controller was designed to drive the control saturation to zero. The control
scheme presented above was unsuccessful at ensuring stability, but a similar approach
may prove useful in future work. The major difficulty in designing such a dual-input

adaptive controller is the choice of a satisfactory Lyapunov function candidate and
associated control strategy.

The dual-input adaptive controller presented treated the control of the asym-
metric deflection, 6 a, as independent of the symmetric deflection, ds. Then, 6, was

modulated to alleviate the saturation on 6a. A more suitable approach may be to

treat both inputs simultaneously.
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Chapter 6

Conclusions

6.1 Summary

The primary objective of this research was to design an angle of attack tracking

controller for a variable-stability slender reentry vehicle (SRV). The vehicle was con-

trolled by two flaps mounted near the base of the 2-dimensional, wedge-shaped (or

3-dimensional, conical) vehicle. These flaps altered both the pitch static stability

and trim characteristics of the vehicle through two separate control inputs: symmet-

ric flap deflection and asymmetric flap deflection, respectively. This flap controlled

configuration had significant control deflection limits that introduced nonlinearity to

the system. Additionally, the symmetric deflection input entered the equation of mo-

tion nonlinearly and coupled with the angle of attack. In practice, the aerodynamic

data of the SRV may be poorly known. Specifically, this effort assumed the center

of pressure location may be poorly known, control surfaces may experience ablation
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and reduced effectiveness, and asymmetric ablation may induce a nonzero pitching
acceleration (specific moment) on the vehicle.

A linear quadratic servo (LQ-servo) tracking controller was designed that aug-
mented the two pitch states (angle of attack and pitch rate) with the integrated
tracking error. Three design points along a typical ballistic reentry trajectory were
selected for controller analysis: Mach 5.3 and 50 km altitude, Mach 6.3 and 20 km
altitude, and Mach 3.5 and 0 km altitude. The LQ-servo was selected because it
enjoys guaranteed stability and robustness margins in the absence of nonlinearities.
For whole-number symmetric deflections from 2 degrees to 8 degrees, the LQ-servo
was designed to meet a specified rise time and gain margin. Robustness to center of
pressure variation, reduced control effectiveness, and unmodeled pitch accelerations
were determined. The addition of a first order actuator reduced vehicle tracking per-
formance when vehicle dynamics were relatively fast (high dynamic pressures). A
lead compensator demonstrated the ability to alleviate some of the actuator-caused
performance degradation. Robustness to center of pressure variation at high dynamic
pressures was correlated with the linear instability limits, while nonlinear control
saturation effects limited the robustness at low dynamic pressures or large reference
commands. Additionally, low dynamic pressure reduced the the system tolerance for
less effective controls and external pitch accelerations. A symmetric deflection was
selected at each flight condition that maximized robustness and demonstrated favor-
able time responses at both 1 degree and 10 degree step commands in reference angle
of attack.

A hybrid switching linear controller (SLC) was designed to exploit the favor-
able performance of the LQ-servo but improve the time response and robust per-
formance, especially for large reference commands. The LQ-servo phase plane was
analyzed for regions of satisfactory and unsatisfactory performance. A region of satis-
factory, unsaturated LQ-servo performance was determined, and a linear initialization
of the integrated tracking error was designed along this region. Outside the LQ-servo
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region, a saturated controller employs the maximum deflection to drive the phase

plane trajectory to the LQ-servo region. The SLC reduced settling times, especially

for large reference commands and nonzero initial angles of attack. The SLC did not

provide additional robustness for the Mach 3.5, 0 km altitude or Mach 6.3, 20 km

altitude case; however, the SLC did allow large reference commands to be tracked at

Mach 5.3, 50 km altitude that were unstable with the LQ-servo controller.

With the goal of improving robustness, a model-reference adaptive controller

(MRAC) was developed. The MRAC attempted to match the performance of the

nominal system controlled by the LQ-servo controller. The adaptive controller did not

provide additional robustness over the LQ-servo controller because control saturation

effects continued to limit performance. An initial attempt to design a dual-input

adaptive control for both the symmetric and asymmetric deflections was described;
however, the Lyapunov candidate function and control scheme did not guarantee

stability for all symmetric deflections.

6.2 Recommendations Future Research

The SLC was dependent on accurate center of pressure knowledge (up to 2% of the

length for large reference commands). In reality, the static margin is not likely to be

known a priori within these margins. Consequently, on-line estimation of the static

margin may be necessary. A small angle of attack oscillation command may be useful

in estimation of the static margin. With a more accurate static margin, the control

strategy (LQ-servo gains, switching curve, etc.) may be adjusted on-line as static

margin knowledge improves.
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An adaptive controller may be useful in adjusting to plant uncertainty, but the

single-input controller developed was still limited to flight profile-scheduled symmetric

deflections. Furthermore, the control saturations still limited the adaptive controller.

It may be possible to design an adaptive controller that manipulates the symmetric

deflection based on control saturation. The dual-input scheme similar to that pre-

sented in Section 5.4 can potentially provide a means to control both symmetric and

asymmetric deflections during reference-command tracking. On the other hand, it

may be beneficial to design a controller that simultaneously controls both 6, and 6a,

rather than employing independent adaptations. An adaptation on the SLC switching

line and integrated tracking error initialization may provide additional robustness.
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Appendix A

Additional Graphs
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Figure A.1: Allowable variation in center of pressure location and reduction in control

effectiveness, step command from 0 to 10 degrees, Mach 3.5, 0 km altitude
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APPENDIX A. ADDITIONAL GRAPHS
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Figure A.2: Robustness to external pitch acceleration, step command from 0 to 10 degrees,
Mach 3.5, 0 km altitude
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Figure A.3: Allowable variation in center of pressure location and reduction in control
effectiveness, step command from 0 to 10 degrees, Mach 6.3, 20 km altitude
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Figure A.4: Robustness to external pitch acceleration, step command from 0 to 10 degrees,
Mach 6.3, 20 km altitude
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Figure A.6: Robustness to external pitch acceleration, step command from 0 to 10 degrees,
Mach 5.3, 50 km altitude
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Figure A.7: Time response characteristics for step commands from 0 degrees, Mach 6.3, 20
km altitude, 1st order actuator Modeled
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Figure A.9: Robustness to external pitch acceleration, step
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Step from oL = 0
M = 5.3 alt = 50 km

change in time response with 1st order actuator
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Figure A.10: Time response characteristics
km altitude, 1st order actuator Modeled
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Figure A.11: Allowable variation in center of pressure location and reduction in control
effectiveness, step command from 0 to 1 degree, Mach 5.3, 50 km altitude, 1st order actuator
modeled
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Figure A.12: Robustness to external pitch acceleration, step

Mach 5.3, 50 km altitude, 1st order actuator modeled
command from 0 to 1 degree,
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