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Abstract

As unmanned aerial vehicles (UAVs) take on more prominent roles in aerial missions,
it becomes necessary to increase the level of autonomy available to them within the
mission planner. In order to complete realistic mission scenarios, the UAV must be
capable of operating within a complex environment, which may include obstacles and
other no-fly zones. Additionally, the UAV must be able to overcome environmental
uncertainties such as modeling errors, external disturbances, and an incomplete situa-
tional awareness. By utilizing planners which can autonomously navigate within such
environments, the cost-effectiveness of UAV missions can be dramatically improved.

This thesis develops a UAV trajectory planner to efficiently identify and execute
trajectories which are robust to a complex, uncertain environment. This planner,
named Efficient RSBK, integrates previous mixed-integer linear programming (MILP)
path planning algorithms with several implementation innovations to achieve provably
robust on-line trajectory optimization. Using the proposed innovations, the planner is
able to design intelligent long-term plans using a minimal number of decision variables.
The effectiveness of this planner is demonstrated with both simulation results and
flight experiments on a quadrotor testbed.

Two major components of the Efficient RSBK framework are the robust model
predictive control (RMPC) scheme and the low-level planner. This thesis develops
a generalized framework to investigate RMPC affine feedback policies on the distur-
bance, identify relative strengths and weaknesses, and assess suitability for the UAV
trajectory planning problem. A simple example demonstrates that even with a con-
ventional problem setup, the closed-loop performance may not always improve with
additional decision variables, despite the resulting increase in computational com-
plexity. A compatible low-level troller is also introduced which significantly improves
trajectory-following accuracy, as demonstrated by additional flight experiments.

Thesis Supervisor: Jonathan How
Title: Professor
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Chapter 1

Introduction

The unmanned aerial vehicle (UAV) has taken a more prominent role in aerial missions

over the last decade, as emerging technology has enabled its successful operation in

more complex scenarios. The primary advantage of the UAV is the absence of a human

occupant, often resulting in simpler vehicle designs and less expensive production

compared to manned vehicles. Furthermore, UAVs can be used to perform missions

which may be too dangerous for a human presence, such as military operations in

hostile territory or long-duration reconnaissance. In addition to these scenarios, UAVs

may also be used for search-and-rescue, traffic and weather monitoring, and urban

surveillance.

Even as new capabilities are developed, a diverse collection of UAVs has already

been deployed for a variety of mission scenarios. Some of the current bounds of

UAV operation are demonstrated by the vehicles shown in Figs. 1-1 to 1-4. The

Northrop Grumman RQ-4 Block 10 Global Hawk (Fig. 1-1) is one of the largest

UAVs currently in deployment, with a mass of 12,000 kg and a 35-m wingspan. With

a range of over 20,000 kilometers, the Global Hawk UAV can provide real-time imaging

for broad mission-level intelligence, surveillance, and reconnaissance (ISR) [2]. The

General Atomics Aeronautics Systems Mariner (Fig. 1-2), used for persistent ISR

in maritime environments, can perform missions exceeding 45 hours in duration [3].

The Composite Engineering AQM-37 (Fig. 1-3), used to simulate supersonic ballistic

missile threats, has a ceiling of over 35 kilometers [4].



Figure 1-1: Northrop Grumman Figure 1-2: General Atomics Aero-
RQ-4 Block 10 Global Hawk nautics Systems Mariner

Figure 1-3: Composite Engineering Figure 1-4: AeroVironment WASP
AQM-37 II

At the other extreme is the development of "micro" air vehicles (MAVs), capable

of providing squad-level support in local and possibly cluttered environments. One

such vehicle already in operation is the 290-gram AeroVironment WASP II (Fig. 1-4).

Though hand-launched, the WASP II MAV can use data from the Global Positioning

System (GPS) to navigate autonomously within a 2-kilometer radius. Each of these

UAVs has found a useful role in aerial missions, but their impact remains limited by

the amount of autonomy which can be achieved with current capabilities.

1.1 Motivation

In order to complete realistic mission scenarios, the UAV must be capable of operating

within complex and/or uncertain environments. The environment may include several

types of no-fly zones, associated with physical obstacles, radar sites, and other threats

to the vehicle. The predicted vehicle model, typically used to develop a control

: ;x i

ti-



strategy, may be subject to internal uncertainties (such as modeling errors) and/or

external uncertainties (such as wind) which cause the vehicle to deviate from its

expected trajectory. The vehicle's knowledge of its environmental constraints may

be incomplete and/or uncertain, depending on the vehicle's ability to perceive its

surroundings. Because the UAV's situational awareness may change over time, its

ideal trajectory may change, as well. For example, the UAV may identify and begin

to execute a specific trajectory, only to later discover an obstacle which renders that

trajectory infeasible.

Given this environmental uncertainty, it is often necessary to identify UAV tra-

jectories through on-line plan generation, rather than an off-line pre-calculation. For

this reason, most UAV missions currently require extensive human support to mon-

itor UAV subsystems, track mission progress, react to environmental changes, and

possibly fly the vehicle remotely. However, with typical operator-to-vehicle ratios of

at least 2:1 [5], this paradigm limits the cost-effectiveness of UAV missions. Though

the threat to human operators is removed, a UAV mission often requires significantly

expanded operations compared to an equivalent mission with a manned vehicle.

A critical need in UAV research, then, is to improve mission cost-effectiveness by

identifying ways to increase the level of autonomy. With appropriate health manage-

ment tools, a UAV could analyze its own subsystem data and respond appropriately

to off-nominal conditions or system failure. A team of UAVs could make decisions

on how to complete a task list through collaborative, decentralized assignment algo-

rithms. Similarly, each UAV, given a task, should be able to use its own situational

awareness to design efficient, robust trajectories to mission waypoints. By increasing

the sophistication of those tasks which can be achieved autonomously, it is possible

for UAVs to perform more complex missions at lower costs.

This thesis uses a hierarchical decomposition, shown in Fig. 1-5 [1], to subdi-

vide the full UAV planning problem into several sub-tasks. Such a decomposition

decouples many of the fundamental planning challenges, allowing each to be pursued

independently. In Fig. 1-5, each block in the top row represents a planner sub-

problem, which receives as input available environmental data and results from the
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Figure 1-5: Hierarchical decomposition of the multi-UAV planning problem [1]

previous subproblem. The Mission Planning subproblem identifies a set or sequence

of tasks which best satisfy some top-level mission objectives, while the Task Assign-

ment subproblem assigns a UAV or sub-team of UAVs to complete each task. The

Trajectory Design subproblem uses these task-level waypoints to identify a feasible

trajectory waypoint plan for each UAV. Finally, the Vehicle Controllers subproblem

includes a trajectory generator to compute an interpolated reference trajectory, as

well as a controller which uses deviations from this reference to compute the actuator

inputs sent to the vehicle. This thesis focuses on the final two planner tasks in Fig.

1-5, Trajectory Design and Vehicle Controllers.

The objective of this thesis is to develop a UAV trajectory planner to efficiently

identify and execute trajectories which are robust to complex, uncertain environ-

ments. This planner utilizes disturbance feedback, such that the UAV can safely op-

erate near constraint boundaries without risk of violation. Every trajectory plan iden-

tified by the planner includes guaranteed long-term feasibility, regardless of whether

additional optimizations are performed. A cost map, approximating the cost to reach

the goal from specific points in the environment, allows the UAV to identify intelligent

plans with short planning horizons. A variety of implementation refinements are also

identified to improve the planner's efficiency.

Using the planner outlined in this thesis, a UAV is capable of autonomously

following optimal trajectories, regardless of its initial environmental awareness. The

trajectory plans can be designed to be optimal with respect to a variety of performance

objectives, such as minimum-time and minimum-fuel criteria. The planner includes



mechanisms which allow the UAV to react to perceived changes in the environment in

real-time. A low-level vehicle controller structure which encourages accurate tracking

of the optimal waypoint plans is included within this framework.

The work in this thesis exclusively considers the trajectory planning problem for

a single vehicle. Because the Task Assignment subproblem assigns task waypoints

to each vehicle, a single UAV typically does not need to consider the intentions of

other UAVs unless they directly influence its own actions. Previous research [6-10]

has considered both centralized and de-centralized trajectory planning for teams of

UAVs; however, since the boundary between this work and the Task Assignment

subproblem is rather nebulous, it is not considered further here.

1.2 Literature Review

While many techniques are available for addressing the trajectory planning prob-

lem [11], this thesis builds upon work in two specific disciplines, robust model pre-

dictive control and mixed-integer linear programming. A review of the literature for

each field is given below.

1.2.1 Robust Model Predictive Control

Model predictive control (MPC), which originated within the processing industry [12],

has received renewed attention in recent decades as advances in computational power

have enabled its use for control of systems with faster dynamics [13]. In MPC, a

model of predicted system behavior is used to optimize an open-loop, finite-horizon

input sequence which satisfies a set of explicit constraints. This optimization may

be performed iteratively, in a formulation also known as receding horizon control

(RHC). Because constraints are encoded directly into the optimization, MPC-based

controllers can operate at or near constraint boundaries while maintaining long-term

stability. In the presence of uncertainty, however, these controllers may perform

poorly or drive the system out of the feasible region. It is thus important to con-

sider approaches which incorporate knowledge of uncertainty within the optimization,



collectively known as robust model predictive control (RMPC).

In the RMPC formulation, the optimized input sequence must satisfy all con-

straints subject to an unknown but bounded disturbance sequence. This disturbance

is often represented as a parametric uncertainty or additive uncertainty, and may be

internal or external to the system. Throughout this thesis, a linear system model

subject to additive disturbances is used.

Early work in RMPC identified ways to "robustify" the original MPC formulation

by modifying the constraints and objective in the presence of disturbances. Ref. [14]

uses constraints on the terminal optimization step and horizon length to guarantee

robust feasibility; terminal constraints remain a critical component of most feasibility

proofs. Ref. [15] develops a minimax objective function, which identifies the input

sequence that minimizes the worst case cost over all possible disturbance sequences.

Ref. [16] provides a survey of early RMPC developments.

Though it guarantees robust feasibility, the open-loop RMPC optimization is sub-

ject to large regions of infeasibility because it attempts to optimize over every possible

disturbance sequence [13]. A more effective approach is to utilize feedback at future

optimization steps, as knowledge of the disturbance realization becomes available. It

is possible to optimize over arbitrary feedback policies by enumerating all possible

worst case disturbance sequences [17]. However, the complexity of such approaches

grows exponentially with the problem size, limiting their usefulness in an on-line

optimization.

A typical compromise is then to optimize over a specific class of feedback poli-

cies. Several parametrizations of feedback policies have emerged in the literature [16],

collectively demonstrating an important tradeoff between complexity and conserva-

tiveness. In this thesis, the focus is placed on affine feedback policies, which combine

linear feedback on future states and/or disturbances with a vector of open-loop per-

turbations. A critical difference among available affine approaches is whether the

feedback term is optimized on-line or off-line.

Constraint tightening (CT) policies guarantee robustness by iteratively tighten-

ing system constraints a priori, retaining margins used to reject future disturbances



with feedback. By selecting the feedback policy off-line, the decision space of the

on-line optimization remains the same as the nominal MPC formulation, allowing for

efficient computation. The notion of retaining margins for future feedback was orig-

inally developed as an input set-aside term [18]. More recent formulations consider

both state and input constraints, and expand the original setup to allow constant

state feedback [19], time-varying state feedback [20, 21], and time-varying distur-

bance feedback [22, 23]. The off-line feedback policy can be selected by the user to

satisfy various design criteria, such as maintaining large feasibility regions.

Another class of affine RMPC approaches has arisen from the use of linear ma-

trix inequalities (LMI) to frame the robust optimization problem. As with previous

minimax formulations [15], LMIs can be used to minimize the worst case cost over

all possible disturbance sequences. While early work with LMIs focused on systems

with model uncertainty [24], recent literature has identified similar formulations for

systems with additive disturbances [25]. Ref. [26] makes the important observation

that the optimization over the full affine feedback policy space is convex. The addi-

tional degrees of freedom afforded by allowing decision variables in the feedback term

can significantly reduce the predicted cost, with the tradeoff of increased problem

complexity.

The ideas in Ref. [26] have recently been connected with work in Ref. [27] to create

another class of RMPC policies, referred to here as affine feedback parametrization

(AFP). The AFP approach involves directly inserting the affine feedback policy into

both the constraints and the objective function. A variety of objective functions have

been considered to complement the worst case LMI of Ref. [26], such as disturbance

free cost [28] and expected cost [29]. An important recent theoretical result is the

identification of an equivalence relationship between state feedback and disturbance

feedback AFP policies, overcoming the difficulties associated with the non-convex

policy space for state feedback [28].

This thesis uses a generalized RMPC framework and simulation results to in-

vestigate the aforementioned classes of affine feedback policies. While these policies

differ significantly in both their derivation and the extent of the on-line optimization,



theoretical results are provided to show that they are actually closely related. A

set of numerical simulations are performed to identify the strengths and weaknesses

of each approach, with particular emphasis on the tradeoff between complexity and

conservativeness.

1.2.2 Mixed-Integer Linear Programming

Mixed-integer linear programming (MILP) provides a very general framework for

modeling problems involving both discrete decisions and continuous variables. A

linear program is transformed into a MILP by requiring at least one of the decision

variables to satisfy an integer (typically binary) value. MILP-based optimization has

recently been identified as a suitable candidate for modeling UAV planning problems,

which may involve non-convex environments, collision avoidance, waypoint sequences,

and other logical and/or temporal constraints [30-32]. MILP can also be applied to

control applications such as plume impingement [33], spacecraft formation flight [34],

hybrid systems [35-37], and task assignment [6, 38-41].

For trajectory planning problems involving long distances or time intervals, a

cost map approximating the cost-to-go from specific points in the environment can

be used to design short but intelligent trajectories which help preserve the prob-

lem's scalability [42]. One straightforward way to generate this cost map applies a

shortest-path algorithm to a visibility graph representation of the environment. For

a two-dimensional environment, the graph consists primarily of obstacle vertices [42];

approximate extensions to a three-dimensional environment have also been consid-

ered [43]. If appropriate, the cost map can also be modified to ensure that the

optimal paths identified through the visibility graph are dynamically feasible [44, 45].

Using this cost-to-go approximation, the planner is capable of identifying local min-

ima "dead ends" within the environment and avoiding them, even if they are beyond

the vehicle's current planning horizon.

If a MILP trajectory planner uses short horizon lengths and/or lacks full knowl-

edge of the obstacle environment, it may lead the UAV into dangerous regions where

it cannot safely maneuver away. To address this, several papers have identified con-



straints which can be added to the trajectory optimization in order to guarantee

vehicle safety. One option is to require the planner to repeatedly generate both the

locally optimal solution and a "rescue path" with guaranteed feasibility [461. Alterna-

tively, the planner can require each plan to end in a terminal basis state where it can

remain indefinitely, such as a zero-velocity state for full-stop vehicles [46] or a loiter

circle for no-stop vehicles [47]. A side benefit of this guarantee is the classification of

the trajectory planner as an anytime algorithm, wherein optimization can be halted

at any time without loss of feasibility.

Because constraint tightening can be generalized to a non-convex environment [21,

22], it can also be integrated within the MILP path planning problem. Several vari-

ations of this integration have been considered for both single UAVs and teams of

UAVs [8, 48, 49]. A recent variation of the planner, the Robust Safe But Knowledge-

able (RSBK) algorithm [50], extends this integration to also include the previously-

mentioned cost map and guaranteed-safety constraints. A critical component of this

algorithm is a parametrization of the terminal invariant set which allows its on-

line selection. A decentralized version of the RSBK algorithm has also been devel-

oped [10, 23], based on existing work with decentralized safety algorithms [9].

This thesis aims to develop an autonomous trajectory planner by integrating much

of the theoretical work on MILP path planning with several innovations developed

to improve implementation efficiency. In particular, this planner, named Efficient

RSBK, connects and extends the RSBK algorithm of Ref. [10] and the Variable MILP

algorithm of Ref. [51]. The Variable MILP algorithm uses a variety of techniques to

enhance optimization efficiency, including variable timestep lengths [52], reachable

horizon bounds, linear interpolation points, and non-linear trajectory correction.

1.3 Objectives

The primary objective of this thesis is to design and demonstrate an autonomous UAV

system capable of planning and executing robust trajectories which satisfy a collection

of success criteria, including safety, optimality, and efficiency. These success criteria



are defined below, after the problem statement is established.

The secondary objective of this thesis is to identify the relative strengths and

weaknesses of a collection of RMPC feedback policy types, as well as key theoretical

relationships. Because RMPC is a critical component of the robust path planner,

the analysis used towards this objective also informs the selection of an appropriate

RMPC policy type for the trajectory planner.

1.3.1 Problem Statement

Consider a single UAV operating within a three-dimensional environment. The tra-

jectory planning problem for this UAV is characterized by the following statements:

* The vehicle is modeled as a discrete-time state space model, subject to an

unknown but bounded additive disturbance.

* The vehicle's position, p E IRa , is required to remain within a set of convex

environmental bounds. The vehicle's velocity v E IR and input acceleration

a E Rm are also subject to possibly non-convex constraints, arising from safety

considerations and/or hardware limitations.

* The environment may contain a finite number of convex no-fly zones, which are

assumed here to be static. Each no-fly zone may be encoded using either hard

constraints or soft constraints, depending on its nature.

* The set of no-fly zones may not be fully known by the vehicle at any point in

time. However, it is assumed that environmental knowledge is accurate within

some detection radius Rd of the vehicle. If the vehicle is assumed to have perfect

knowledge of its environment, Rd = +0o.

* At any given timestep, the vehicle has been assigned a particular goal waypoint

PG, which may be associated with a goal velocity vG and/or other factors, such

as an arrival time.

* The objective function may be a combination of several factors, such as min-

time terms, state and input weights, and penalties for violating soft constraints.



1.3.2 Success Criteria

Given the problem statement defined in the previous section, the effectiveness of

the trajectory planner developed in this thesis is measured in terms of the following

success criteria:

1. All hard constraints are satisfied by the vehicle at all timesteps and for all

possible disturbance sequences. Soft constraints should be satisfied as often as

possible, in accordance with the penalties for each in the objective function.

2. The resulting trajectories achieve good (if not optimal) performance, as mea-

sured by the factors within the objective function.

3. The planner is capable of real-time operation, such that the optimization can

sufficiently and rapidly respond to environmental changes.

4. The planner avoids churning: the qualitative characteristics of the trajectory

plan do not change in the absence of new information.

5. The low-level vehicle controller follows its input waypoint plan as closely as

possible, with particular emphasis placed on arriving at waypoints on time.

1.3.3 Contributions

Each chapter of this thesis offers unique contributions in pursuit of the overall objec-

tives. These contributions are summarized below.

Chapter 2: A comprehensive analysis of affine feedback policies in robust

model predictive control is performed, using a generalized RMPC framework

and simulation results. Multiple theoretical and numerical relationships be-

tween policy types are developed to establish a full characterization of the un-

derlying theory for RMPC affine feedback policies. The strengths and weak-

nesses of each policy type are identified, as well as some of the fundamental

challenges in implementing them. Particular emphasis is placed on the tradeoff

between problem complexity and conservativeness.



* Chapter 3: A novel MILP-based planner is introduced which is capable of

satisfying the first four success criteria defined above. This planner, named

Efficient RSBK, connects the RSBK algorithm of Ref. [101 with the Variable

MILP algorithm of Ref. [51]. Several additional refinements are proposed, such

as Selective CT, variable-density constraint selection, and the use of a detection

radius. With these refinements, the planner is shown to maintain robust feasibil-

ity under a general disturbance CT policy. These results are presented for both

an arbitrary vehicle model and more traditional UAV dynamics. Simulation

results demonstrate the effectiveness of the planner.

* Chapter 4: A low-level vehicle controller is proposed which significantly im-

proves waypoint-following accuracy compared to previous approaches, satisfying

the final success criterion. This vehicle controller includes several refinements,

such as spline-based waypoint interpolation, high-order reference tracking, and

drag feedforward. The effectiveness of these refinements is demonstrated with

quadrotor flights in the RAVEN testbed (Section 4.2). Finally, a fully-integrated

Efficient RSBK implementation is demonstrated on RAVEN, satisfying all suc-

cess criteria on an actual UAV system.

1.4 Approach

This thesis is structured as follows. Chap. 2 performs a theoretical and numerical

analysis of RMPC affine feedback policies, and gives results suggesting the strengths

of each approach. Chap. 3 introduces the Efficient RSBK trajectory planning algo-

rithm, including several simulation results. Chap. 4 develops the low-level vehicle

controller, and demonstrates both the low-level controller and the Efficient RSBK

planner through hardware demonstrations on the RAVEN testbed. Finally, Chap. 5

offers concluding remarks and suggestions for future work.



Chapter 2

Affine Feedback Policies in Robust

Model Predictive Control

2.1 Introduction

Perhaps the most critical element of a robust trajectory planner is the guarantee of

long-term feasibility in the presence of uncertainty. One way to achieve this guarantee

is through robust model predictive control (RMPC), in which a model of predicted

system behavior is used to optimize a finite-horizon input sequence or policy which

satisfies a set of constraints for all possible disturbances. RMPC is an attractive choice

for trajectory planning problems, as it can directly encode complex constraints and

maintain feasible operation close to constraint boundaries. However, there are many

RMPC formulations available for achieving robustness. The appropriate choice for

the trajectory planner depends on a variety of factors, such as optimization runtime

and cost-based performance.

This chapter uses a generalized RMPC framework and simulation results to inves-

tigate two classes of affine feedback policies on the disturbance, constraint tightening

(CT) [22] and affine feedback parametrization (AFP) [28]. Policies of this type have

been shown to subsume the set of feasible state feedback policies [22] while possessing

a convex policy space [28]. However, these two approaches differ significantly in both

their derivation and the extent of the on-line optimization. In particular, using a sim-



ple theoretical result, it is shown that these two approaches differ most significantly

in the number of decision variables in the on-line optimization. Each decision vari-

able contributes an additional degree of freedom in the optimization, which increases

the problem complexity but could potentially improve performance. Both theoretical

and simulation results are presented which show that, as expected, these additional

decision variables reduce the cost predicted by the optimization objective function.

On the other hand, simulation results are also presented which demonstrate that

the closed-loop cost incurred does not always improve with additional decision vari-

ables, even when using a conventional terminal cost-to-go and feedback. This leads

to the interesting observation that, depending on the problem setup, deviations from

the predicted cost may be sufficient to modify the cost ranking among policy types.

Furthermore, combined with the computational ranking, this difference may be suf-

ficient to influence the choice between these feedback policies. This is demonstrated

on a set of examples for several forms of the objective function, including expected

cost [29] and worst case cost via linear matrix inequalities (LMI) [26].

This chapter is structured as follows. Section 2.2 gives the problem statement and

the nominal MPC formulation. Section 2.3 reviews the CT and AFP formulations

within a generalized framework. After introducing several forms of the objective

function in Section 2.4, these formulations are then compared through numerical

simulations in Section 2.5. Finally, Section 2.6 offers concluding remarks.

2.2 Preliminaries

2.2.1 Notation

The set Nj denotes nonnegative integers up to and including j, while the set Nij

denotes nonnegative integers between i and j inclusive. The symbol I, denotes the

p x p identity matrix, while the symbol 1, denotes a p-vector of ones. The operators

0, D, and 0 denote the Pontryagin difference, Minkowski sum, and Kronecker tensor

product, respectively. Finally, E and tr denote the expectation and trace, respectively.



2.2.2 Problem Statement

Consider the linear time-invariant dynamics with an additive disturbance and output

constraints,

Xt+l = Axt + But + Gwt, (2.1)

Yt = Cxt + Dut E Sy, (2.2)

wt E Sw, (2.3)

where xt E RI" is the state, ut E R m is the input, yt E R p is the output, and wt E RI " is

an additive disturbance acting on the state. This disturbance is unknown at current

and future timesteps, but is known to fall within the convex and compact set S,,

which contains the origin in its interior. This is a more general form of the additive

disturbance than the form used in Refs. [22, 28], in which n, = n and G = I,.

The output is to remain constrained within the polytopic set S,, which contains the

origin in its interior. It is assumed that (A, B) is stabilizable and that the full state

is available at all timesteps.

In model predictive control, prediction steps are considered at timestep t for the

timesteps t through t + N, where N is the user-specified horizon length. It is often

useful to concatenate the state, input, disturbance, and output into the vectors

x = [XT XTdli ... XTNit], u = [u T 11u T " Ut N lt] (2.4)

w = [w wt + 1  Wt+N-1 = [Y T Yt+llt *.. N-lt] , (2.5)

respectively, where in x, u, and y, the left subscript is the predicted timestep and

the right subscript is the current timestep.

The overall goal using RMPC is to robustly satisfy the constraints (2.2) at all

times and for all disturbances w E S., while minimizing the infinite-horizon cost

Sf (t, 'ut), (2.6)
t=O



where f(., -) >- 0. This infinite-horizon RMPC optimization, with feedback, is ap-

proximated by the repeated on-line solution of the finite-horizon problem

N-1

min J(xt) = fN(Xt+NIt) + 1 f(xt+jlt, ut+jlt)
j=0

s.t. xt+j+llt = Axt+jlt + But+jlt + Gwt+j,

ut+jlt = pj(xtlt, . . , xt+jlt, ,. .- , wt+j-1), (2.7)

Yt+jlt = Cxt+jlt + Dut+jlt E Sy V wj E S, V j E NN-1,

Xtlt = Xt,

Xt+NIt E St,

where fN(') >- 0 is the approximate infinite-horizon cost-to-go from the terminal state,

St is the terminal set, and jLj V j E NN-1 is the feedback policy to be identified by

the optimization. The feedback policy space is typically constrained to some specific

class of feedback policies (Section 2.3). It is assumed that St is polytopic and contains

the origin in its interior. Because SY and St are polyhedral, they can also be written

in the inequality forms

SY = {yE RPI Eyy < fy}, (2.8)

St = {x E R' I Etx < ft}, (2.9)

where f, E RCY and ft E Rct

Model predictive control (MPC) employs the use of a receding horizon, such that

the finite-horizon problem (2.7) is solved repeatedly. At each timestep t, the RMPC

optimization (2.7) is performed using the current measurement of the state xt; the

first optimized input ut = ut t is then applied to the system (Algorithm 2.1). The

terminal set St is typically chosen by the designer to satisfy certain feasibility and/or

convergence criteria, as discussed throughout this chapter.

A primary objective of this analysis is to compare RMPC approaches in terms

of both their predicted cost and the actual closed-loop cost incurred. The incurred



Algorithm 2.1. Receding Horizon MPC
1: fort= Otot = o do
2: Take measurement of current state: Xtt = xt
3: Solve MPC optimization (2.7)
4: Apply first input: ut = ut
5: end for

cost at time t is defined as the portion of the infinite-horizon cost (2.6) realized from

previous timesteps,

t-1

Jt= E f(xj, uj). (2.10)
j=0

The predicted cost at time t includes the estimate of the remaining cost-to-go from

the objective function in (2.7), and is defined as

Jt = t + J*(xt). (2.11)

In practice, it is most useful to consider the predicted cost at timestep t = 0, before

any inputs have been applied; this can be written simply as J*(xo) and is hereafter

referred to as the predicted cost.

2.2.3 Nominal MPC

Because of the unknown disturbances w, the optimization (2.7) cannot be directly

implemented as presented. The MPC formulations in this and subsequent sections

thus add appropriate restrictions to render the problem tractable. The simplest form

of the RMPC optimization (2.7), referred to as the nominal formulation, assumes that

wj - 0 V j E Nt,t+N_1 and no feedback is applied. However, since this assumption is

clearly not true due to (2.1), this naive approach is not robust.

In the absence of disturbances, long-term feasibility can be proven for the nominal

receding horizon problem by associating the terminal set St with a terminal control

policy u = i(x) which satisfies a set of invariance and feasibility criteria, reviewed

below.



Theorem 2.1 (nominal feasibility). Suppose that St and r are defined such that

Ax + B(x) E St V x E St, (2.12)

Cx + Dr(x) E S, V x C St. (2.13)

If wj - 0 V j E Noo and (2.7) is feasible at timestep t = 0, then a system operating

under Algorithm 2.1 satisfies its constraints at all timesteps.

Proof. Suppose that (2.7) is feasible at timestep t. For the optimization at timestep

t + 1, construct the candidate solution

ut+j+llt+l = ut+j+llt, V j NO,N-2, (2.14)

xt+j+llt+l = xt+j+llt, V j E N,N-1, (2.15)

ut+Nt+l = K(Xt+Nit), (2.16)

Xt+N+llt+l = Axt+Nlt+l + But+Nlt+l. (2.17)

In the absence of disturbances, it is clear that (2.14) and (2.15) satisfy the output

constraints (2.2) using the final N- 1 inputs and N states from the previous solution.

Since Xt+Nlt E St, then by (2.12) xt+N+llt+l E St, and by (2.13) the output constraints

(2.2) are satisfied for the final optimization step. Thus the optimization at timestep

t + 1 is feasible. Since (2.7) is assumed to be feasible at t = 0, it is therefore feasible

for all timesteps. 0

With proper selection of the cost-to-go fN(XN), convergence to the origin in the

absence of disturbances can also be proven.

Theorem 2.2 (nominal convergence). If, in addition to the assumptions on

Theorem 2.1, fY satisfies the condition

fN(Ax + Br(x)) - fN(x) < -f(x, r(x)) V x E St, (2.18)

then the system converges asymptotically to the origin.



Proof. The proof utilizes the objective function as a Lyapunov function, and can be

found in Refs. [13, 26], among other sources. (

2.3 Disturbance RMPC Policies

This section briefly reviews CT policies [18, 19, 21, 22] and AFP policies [28, 29] for

RMPC. As stated in Section 2.1, these paradigms use the notion of affine disturbance

feedback at future timesteps, written as

j-1

S= E M,iot+i + vj, V j E NN-1, (2.19)
i=0

where Mj,i is the linear disturbance feedback and vj is the affine perturbation; the

summation bounds are necessary for causality. The key differences between the

paradigms are the restrictions on Mj,i, and whether feedback is computed off-line

or on-line. An equivalence relationship between the two approaches is proven in

Section 2.3.3.

2.3.1 Constraint Tightening

Constraint tightening policies guarantee robustness by tightening system constraints

a priori, retaining margins used to reject future disturbances through a feedback

policy [18, 19]. Recent research has extended the approach in Ref. [19] to allow time-

varying state feedback [21] and disturbance feedback [22], the type reviewed in this

section.

In Disturbance CT, the linear disturbance feedback policy M7 V j E N1,N-1

is selected off-line to tighten the constraints S, and St. The affine perturbations

vj V j e NN-1 are then optimized as an open-loop input sequence in (2.7). In this

manner, the decision space of the on-line optimization remains the same as nominal

MPC, allowing for efficient computation.

Because of the tightening, it is necessary to distinguish the output constraints in

(2.7) at each step. The output constraints at optimization step j, indicated by Sylj,



are defined by the recursion [22]

Sylo = S,,

Sj+l = Slj e (CL + DM +,)SW, V j NN-2, (2.20)

where the Lj are the transition matrix series

Lo = G,

Lj+i = AL + BM 1, V j E NN- 2. (2.21)

Note that G = I, in Ref. [22]. Additionally, the terminal constraint in (2.7) is replaced

with the constraint

Xt+Nlt E SxIN = S t e LN-lSw. (2.22)

This tightening recursion remains valid if the convexity assumptions on St and/or Sy

are removed [21]. This is particularly useful in trajectory planning, where obstacles

often result in a non-convex physical environment (Chap. 3).

There are several options available for selecting the disturbance policy MO off-

line. It has been shown that all state feedback policies can be expressed using distur-

bance feedback (see Remark 2.1 below). Thus one option is to select the equivalent

disturbance form of "useful" state feedback policies, such as LQR or nilpotent poli-

cies [21]. Alternatively, because the set of admissible disturbance feedback policies

is convex [28], an off-line optimization may be performed to identify an appropriate

feedback policy. Ref. [22] proposes an optimization which maximizes the allowable

disturbance bounds while maintaining a non-empty terminal set, a necessary condi-

tion for a feasible optimization.



Theorem 2.3 (CT robust feasibility). Suppose St and n are defined such that

Ax + Br(x) + LN-_1 E St V x St, VwE Sw, (2.23)

Cx + D,(x) E SyIN-1 V x E St. (2.24)

If (2.7) is feasible at timestep t = 0, then a system operating under Algorithm 2.1

with Disturbance CT satisfies its constraints at all timesteps.

Proof. This proof closely follows the proof of Theorem 2.1, particularly in the con-

struction of a candidate solution. In this case, the candidate solution takes the form

Uttj+lit+1 = Ut+j+lt + Mjo+lWt, V j NN-2, (2.25)

xt+j+lit+l = St+j+lit + Ljwt, V j E NN-1, (2.26)

Ut+Nit+l = (xt+Nlt), (2.27)

Xt+N+llt+l = Axt+Nlt+l + BUtNlt+N+l. (2.28)

The full proof can be found in Ref. [23]. 0

Remark 2.1. (relation to previous CT) Under State CT, a state feedback policy of

the form Kj V j E NN_1 is applied instead of disturbance feedback [21]. Ref. [22]

shows that the set of Disturbance CT policies strictly subsumes the set of State CT

policies. In particular, any State CT policy can be rewritten as a Disturbance CT

policy through the relation

Mj+1 = KLj, V j e NN-2, (2.29)

where L is defined as in Ref. [22]. Furthermore, the version of State CT in Ref. [21]

has been shown to strictly subsume the set of feasible policies in Ref. [19]. These two

formulations are thus omitted from this analysis for brevity.

Remark 2.2. (CT convergence) No robust convergence theorems have been explicitly

demonstrated for Disturbance CT. However, a theorem has been proven for State CT

which ensures robust convergence to a target set [21]; based on Remark 2.1, an analog



for Disturbance CT can likely be proven.

2.3.2 Affine Feedback Parametrization

Now consider the AFP approach for RMPC [28], built on the parametrization results

from Refs. [26, 27]. In this approach, the feedback law (2.19), written in the stacked

form

u = Mw + v, (2.30)

where M is lower block triangular, is inserted directly into the optimization (2.7). In

contrast to CT, which uses feedback to "pre-stabilize" the system, AFP includes M

in the set of on-line decision variables. The additional degrees of freedom afforded by

these decision variables can significantly reduce the predicted cost, with a tradeoff of

increased problem complexity.

To apply this feedback law, first note that the constraints in (2.7) can be written

in the stacked form

x = Axo +Bu+ Gw, (2.31)

y = Cx+Du, (2.32)

Ezy < f, VwESN ,  (2.33)

where

0 0 . 0

B 0 ... 0

AB B ... 0

AN-1B AN-2B ... B

0 0 ..--- 0

G 0 --. 0

AG G ... 0

AN-1G AN-2G ... G

, (2.34)B = , G=



In

A

A 2

AN

1N 0 fy ]
ft _

EY [IN Y Ey O
0 Et

L _j
(2.35)

C = IN C, D = IN 0 D, and S N = S, x S, x ...- S,. Combining (2.30)-(2.33)

yields the single vector constraint

Fv + (FM + G)w f+ Hzo V w E SN , (2.36)

where F = EYCB + EYD, G = EYCG, and H = -EYCA. Since this constraint must

be satisfied for all disturbance sequences, it must also be satisfied for the worst case

disturbance sequence. Thus, without loss of generality, the constraint (2.36) can be

rewritten as

Fv + max (FM + G)w < fy + Hxo,
wSe

(2.37)

where the maximization is performed row-wise. There are several ways to rewrite

this maximization to form a well-posed optimization problem; Ref. [28] details the

appropriate steps if S, is polyhedral and/or an affine norm-bounded set.

Theorem 2.4 (AFP robust feasibility). Suppose that St and n are defined such

that

Ax + Bk(x) + Gw

Cx + D (x)

VXE St, V w Sw

Vx E St.

If (2.7) is feasible at timestep t = 0, then a system operating under Algorithm 2.1

with AFP satisfies its constraints at all timesteps.

(2.38)

(2.39)



Proof. See Ref. [13]. KO

The presence of M in the on-line optimization adds N(N - 1)mn,/2 decision

variables to the problem, and thus can dramatically increase the problem complexity

for long horizon lengths. One alternative is to require M to be block Toeplitz, such

that the applied disturbance feedback is time-invariant [26]. This restriction reduces

the number of added decision variables to (N - 1)mn,, improving the problem scala-

bility while maintaining robust feasibility. In the extreme case, M can be completely

determined off-line, which reduces the problem complexity to that of the nominal

case.

Remark 2.3. (AFP convergence) Ref. [28] provides a proof of input-to-state stability,

which implies that the system converges to the origin if the initial state is feasible and

the disturbance w is either equivalent to or approaching zero over time. Furthermore,

because S,, is bounded, boundedness of the resulting state sequence can also be

guaranteed. Note that (2.18) is the only additional assumption necessary for this

property.

2.3.3 Equivalence

In (2.37), the maximization term operates on the product of (FM + G), a lower

block triangular matrix, and the disturbance w. Since lower rows in this constraint

correspond to later timesteps, this form suggests that some type of disturbance tight-

ening takes place in AFP. The following proposition confirms that, under appropriate

assumptions on M and SxIN, AFP and CT policies are equivalent.

Proposition 2.5 (CT-AFP equivalence). Suppose SxIN is given. Then the

following two policies are equivalent in the sense that they yield the same solution:

* Disturbance CT, using disturbance feedback policy MO V i E N1,N-1

* AFP, with M fixed off-line according to the relation

M, i = M i V j G N1,N_1, Vi E Nj_1



Proof. In (2.20), each subsequent tightened set is formed by a Pontryagin differ-

ence between the previous set and the image of S, under a matrix. Since the image

of a polyhedral set and the Pontryagin difference between polyhedral sets are both

polyhedral [53], the subsequent sets can be characterized as

S = {y E R P I Ey fj} Vj E NN_ 1

= {yERP Ie y fji, VieNj} VjENN_1,

where eT is the ith row of Ej and fji is the ith element of fj. Substituting the explicit

form of (2.21) into (2.20) yields Sylj+ = Sylj LjS , where

Li = CAJ + DM, 1 + CAj-iBM°O.
i=1

Let hu(v) denote the support function of U at vector v. Applying Theorem 2.3 and

the properties of the support function in Ref. [53], as well as the fact that S, is

compact:

Sylj+l = {y E RP I e P Ty fji - hL s, (eji), i E N }

= y E RP I e Ty fji - hs,(LTej), i E N}

= {yER IP j ey _ fj,- sup (ejiLjw), i E Nc}
wESw

= {YE RPl Ey f- max xEL

Thus Ej = Ey Vj E NN-1 and

fj+1 = fj - max EyLjw.
wESw



By defining the block Toeplitz matrix

0 0 ..- 0

Fo  0 ... 0

F1  Fo ... 0

FN-1 FN-2 "... FO

where Fj = ELj, the CT constraints (2.20) can be written in the form

Fu < f, + Hxzo - max Aw,
wESN

where some notation from (2.36) is used. It is straightforward to show that A =

FM + G from (2.36) if Mj,i = M'_ i V j E N1,N-1, V i E Nj-1, verifying the

equivalence. 0

Proposition 2.5 is only valid when the same tightened terminal set SxlN is used for

each policy (Section 2.5.2). Because the criteria for robust feasibility differ for each

approach, this may not be the case, in general.

2.4 Objective Function

Because the previous robust feasibility and convergence results depend only on a

general form of the objective function, the user maintains some freedom in selecting

a formulation appropriate for the problem at hand. However, the objective function

as presented in (2.7) is inadmissible, since future states depend on a sequence of

disturbances which is not known at the time of the optimization. In this section, three

formulations which remove dependence on an unknown w are considered: assuming

w = 0 within the objective function, taking the expectation over w, or considering

the worst case.

In this and subsequent sections, the objective function is chosen to be quadratic

A =



in the state and input, such that

fN(x) = ( - XG)TP(x -- G), (2.40)

f(x, U) = ( - XG)Q(X - XG) + (u - uG)TR(U - UG), (2.41)

where P, Q, R >- 0, and xG and uG represent an equilibrium state and input to

be tracked, respectively. Inserting (2.40)-(2.41) along with (2.30)-(2.31) into the

objective function of (2.7) yields the stacked cost

J(xt) = (Axo + BMw + By + Gw - XG)TQ(AXo + BMw + By + Gw - XG)

+(Mw + v - UG)TR(Mw + V - UG), (2.42)

where XG = 1 N+1 0 XG, UG = 1 N 0 UG, Q IN 0 Q 0 and R R.
0 P

(Note that (2.30) can be used to represent either RMPC policy type, in accordance

with Proposition 2.5.) The linear terminal control law u = r,(x) = Kx is selected

off-line by the designer, and should be stabilizing. The terminal cost-to-go matrix P

is found using the steady-state relation for unconstrained linear control,

P = Q + KTRK + (A + BK)TP(A + BK). (2.43)

For more information on P and K, see Section 2.5.2.

2.4.1 Disturbance Free Cost

The simplest form of the objective function disregards the disturbances in the objective

function, i.e. w - 0. Applying w - 0 to (2.42) results in the "optimistic" objective

function used in Refs. [22, 28],

Jdf(Xt) = (AxZ + BV - XG)TQ(Axo + By - XG)

+(V - UG)TR(V - UG). (2.44)



This approach is still robustly feasible, since the disturbances remain accounted for

in the constraints.

2.4.2 Expected Cost

Ref. [29] considers an alternative cost formulation which takes the expected cost over

all possible disturbances, i.e.

Jex(Xt) = Ewes, [J(xt)]. (2.45)

Assume that the disturbances w are independent and identically distributed between

timesteps, with E[w] = 0 and E[wwT] = C,; by assuming the disturbance to be

zero-mean, all terms linear in w in (2.42) evaluate to zero under the expectation.

Indeed, it is straightforward to show that the expected objective function in this case

is simply the disturbance free cost (2.44) plus several quadratic disturbance terms,

Jex(Xt) = Jdf(t) + tr(MT(BTQB + R)MCw)

+ tr(2CG T QBM) + tr(GTQGCw), (2.46)

where C, = IN 0Cw. Despite the apparent complexity of (2.46), it is still a quadratic

cost function. Note that the only possible decision variables in the additional terms

arise through M; thus the disturbance free cost solutions and expected cost solutions

are equivalent for those policies in which M is fixed off-line. For those policies in

which M is not fixed, it may be possible to select a new policy which decreases the

overall expected cost.

2.4.3 Worst Case Cost

A cost metric extensively researched in the literature considers the minimization of

the worst case cost over all possible disturbances. The ideal approach would be to



optimize with the arrival of each new measurement, such that [17]

Jw(xt) = min max -- min max J(xt),
Utlt Wt Ut+N-llt Wt+N-1

(2.47)

but such an approach is computationally intensive, at best. A tractable alternative

considered in Ref. [26] groups the inputs and disturbances, such that

Jw (xt) = min max J(xt).
u w

(2.48)

By applying an epigraph,

Jwc (xt) = minT 0o,
U

s-t. J(Xt) < TO,

(2.49)

the original objective function can be converted into an LMI, as is common in many

robust optimization problems [24]. It can be shown (see Ref. [26] for details) that the

LMI for the cost (2.42) can be written as

TO- lTi

Axo + By - XG

v - UG

0

(*)

Q-
1

0

(BM + G)T

subject to the additional constraints Ti > 0 V i E NI,nN. Here the diag operator

indicates the placement of the Ti scalars along the diagonal, while (*) represents the

appropriate term for symmetry. Because of the LMI (2.50), a semidefinite optimiza-

tion must be performed. Furthermore, nN+ 1 decision variables and nN inequality

constraints are added to the optimization through these constraints.

(*)

(*)

R-

M T

(*)

(*)

diag Ti

_ 0, (2.50)



2.5 Analysis and Simulation

In this section, theoretical and simulation results are presented to investigate the

relationship between CT and AFP policies, with emphasis on complexity and the

cost metrics noted in Section 2.2.2. After introducing the numerical example, the

terminal sets are compared, followed by the cost and complexity. From Proposition

2.5, it is clear that the RMPC policies considered here are distinguished only by the

constraints on SxIN and the extent to which M is allowed to be adjusted in the on-line

optimization. As a result, a key distinguishing feature of these policies is the number

of on-line decision variables, a point emphasized throughout this section.

Though the simulation results in this section consider only a few specific examples,

only a single example is necessary to demonstrate the main result of this section: the

predicted cost may not be an accurate predictor of actual closed-loop performance, in

general. The simulations use conventional forms of the terminal set, cost-to-go, and

control law found in the literature, as well as a relatively large prediction horizon.

Similar conclusions can be drawn from other realistic examples, possibly involving

more states/inputs or other additional complexities.

Nine MPC controllers are considered in the simulation results which follow, for a

variety of objective functions and disturbance realizations. Note that all approaches

use &Kil, defined in Section 2.5.2, as the terminal control law n(x) = Kx.

* Nominal: nominal MPC; disturbances are present but ignored

* CT-LQR: Dist. CT, using constant state feedback policy Kqr

* CT-Nil: Dist. CT, using constant state feedback policy Knil

* CT-Opt: Dist. CT, using the off-line optimization in Ref. [22] with s = 5

* AFP-Full: AFP, with no additional restrictions

* AFP-BT: AFP, with the restriction that M be block Toeplitz

* AFP-Fix-LQR: AFP, with the restriction that M be fixed to equivalent policy

of CT-LQR



* AFP-Fix-Nil: AFP, with the restriction that M be fixed to equivalent policy

of CT-Nil

* AFP-Fix-Opt: AFP, with the restriction that M be fixed to equivalent policy

of CT-Opt

2.5.1 Numerical Example

(Note: The example presented here is heavily based on the setup in Section 2.5.1 of

Ref. [20].)

Consider the discrete model for a one-dimensional double integrator system (dt = 1

second) with an additive disturbance acting on the input acceleration,

1 1 0.5 0.5
Xt+1 = t + t + Wt, (2.51)

0 1 1 1

where xt = Pt vt is the state (pt is the position; vt is the velocity), ut is the

(acceleration) input, and wt is the additive disturbance, which is unknown a priori

but guaranteed to fall within the oo-norm-bounded set

S, = {w j IIw oo 1}. (2.52)

The quantity y is the disturbance level, here set to 0.3. Using an acceleration not to

exceed a magnitude of 1, the system is to satisfy unity constraints on the position

and velocity magnitude: 10 0
Yt = 0 1 Xt + 0 u t E Sy, (2.53)

0 0 1

S, = {y I IoYoII < 1}. (2.54)

The system begins at the initial condition xo = 0.5 0.5 , a position of +0.5



meters and a velocity of +0.5 m/s. The objective is to regulate the system about the

origin, which is a zero-input equilibrium point: (xG, UG) = 0.

The MPC optimization uses a horizon length N of 10, along with respective state

and input quadratic costs

1 10
Q R = 100.

1000 0 1

These costs correspond to a relatively large weight on the acceleration, compared to

the position and velocity. The objective function may use a disturbance free cost, an

expected cost, or a worst case cost (Section 2.4).

Each comparison in this section averages results from 20 simulations, with the

same disturbance sequence applied to every RMPC controller in each. Each sim-

ulation consists of 50 consecutive applications of Algorithm 2.1, executed once per

timestep. The disturbance realization calculated for the simulated actual system re-

sponse is distributed either uniformly within S, or among the vertices of S,, i.e. +1

and -1. If the disturbances are uniformly distributed, the mean is 0 and the variance

is 1/3 (C, = 1/3). If the disturbances are vertex-only, then the mean is 0 and the

variance is 1 (C, = 1).

2.5.2 Terminal Sets

In a receding horizon implementation, the terminal set must be chosen based on

criteria which guarantee robust feasibility, and possibly robust convergence. However,

with these criteria in place, the designer is free to choose any terminal set which

satisfies these criteria. This section explores the possible terminal sets for the system

in Section 2.5.1, based on the criteria provided in Sections 2.3.1 - 2.3.2.

While the criteria for robust feasibility vary with each approach, they typically

require invariance and feasibility criteria on the terminal set St and terminal control

law u = Kx [13]. Since the terminal control law has been assumed to be linear, the



CT robust feasibility criteria (2.22)-(2.24) can be simplified as

(A + BK)x + LN-lw E St VwE S, V x E St, (2.55)

(C + DK)x E SIN_- V x E St, (2.56)

SxIN = St e LN-S; (2.57)

recall that SxIN denotes the tightened terminal constraints. Similarly, the appropriate

AFP criteria (2.38)-(2.39) under a linear terminal control law are

(A+BK)x+Gw E St VwES, Vx eSt, (2.58)

(C + DK)x E S, Vx E St, (2.59)

SxIN = St e LoSw e ... e LN-Sw. (2.60)

Note that the transition matrices Li used in (2.60) are determined on-line for AFP-Full

and AFP-BT. Neither of the resulting tightened terminal sets SxIN is more restrictive

for all problem setups, given the same feedback policy. In particular, (2.56) is more

restrictive than (2.59), but (2.59) and (2.60) are more restrictive than (2.55) and

(2.57), respectively.

Two choices are considered here for the terminal cost-to-go matrix P and control

law K(x) = Kx. One possible choice is the discrete LQR solution for (A, B, Q, R),

K = Klqr [ -0.0030 -0.0780 ]. However, this terminal control law yields an

infeasible terminal set for every RMPC policy type being considered, and thus is

not used. Instead, the following simulation results use the 2-step nilpotent policy

suggested in Ref. [20], K = Knil _ [ -1 -1.5 ]. Its corresponding terminal cost-

to-go is found using the steady-state relation (2.43); for this problem,

P 200.0 200.0
Pnil =

200.0 250.0

All simulation results which follow use K = Kniz and P = Pnil.

Even using Knil as the terminal controller, several of the RMPC policy types being



considered are not feasible for this setup. The CT-LQR policy does not have a feasible

terminal set, due to poor disturbance attenuation in (2.55) and significant constraint

tightening in (2.56). Furthermore, the AFP-Fix-LQR and AFP-Fix-Opt policies,

despite having a feasible terminal set, do not have a feasible initial optimization.

Since the first optimization must be feasible for robust feasibility, this excludes these

approaches from further consideration. This leaves six remaining feasible policies:

Nominal (MPC), CT-Nil, CT-Opt, AFP-Full, AFP-BT, and AFP-Fix-Nil.

Given a persistent disturbance, any cost-to-go of the form (2.40) is likely to be

a poor approximation of the true cost-to-go. Nonetheless, it is useful in satisfying

stability criteria such as (2.18), and is the conventional choice in the literature. More

complex forms of the cost-to-go have been considered to improve this approximation;

see the Appendix for details.

The terminal set St for each policy type is chosen to be the maximal robust con-

trol invariant (RCI) set using K = Kni and satisfying that policy's corresponding

feasibility criteria. In the nominal MPC case, only control invariance is necessary.

The terminal set center (xv, uv) is chosen to coincide with the origin. This is appro-

priate for this particular problem, since it coincides with the goal (xz, UG), and such

coincidence is typically necessary to prove robust stability or recover stability in the

absence of disturbances.

2.5.3 Cost

The following results compare the predicted cost and average incurred cost, as defined

in Section 2.2, of each MPC and RMPC policy using a disturbance free objective (Sec-

tion 2.4.1), expected objective (Section 2.4.2), or worst case objective (Section 2.4.3).

The disturbance realization is either uniformly distributed in S, or constrained to the

vertices of S,. Since the type of objective function and disturbance realization both

influence the optimization itself, a separate simulation must be performed for each

selection. This implementation uses the CLP solver [54] for quadratic programs and

the SeDuMi solver [55] for semidefinite programs through the YALMIP interface [56],

as well as functionality from several toolboxes [57, 58].



For a single optimization, relationships between the objective function, and hence

the predicted cost, for each approach can be constructed based on the constraints

and the resulting size of the policy space. For example, the relationship

J* (t)AFP-Fix-Nil > J*(xt)AFP-BT > J*(xt)AFP-Full (2.61)

is valid for each form of the objective function, since each policy is more restrictive

moving from right to left. This is a simple consequence of the more general state-

ment that if two optimizations differ only in the number of available free decision

variables, the optimization with more decision variables should identify an equal or

lower optimal cost.

This section makes similar comparisons for the entire collection of RMPC ap-

proaches being considered, which differ most significantly in the number of available

on-line decision variables. Proposition 2.5 has demonstrated that, aside from differ-

ences in SxIN, each policy type differs only in the number of on-line decision variables

allowed through M. When the number of on-line decision variables is increased, there

is a near-certain resulting increase in computational complexity (Section 2.5.4). It is

then a reasonable hypothesis that the RMPC approaches with more decision variables

(AFP-Full, then AFP-BT) should be able to "trade off' this increased computation

time to achieve better performance (i.e. lower costs) than the approaches with fewer

decision variables (CT-Nil, CT-Opt, and AFP-Fix-Nil). This is especially valid for

the predicted cost, which is identified through a single optimization.

For the incurred cost, the situation is not quite as clear, since this cost is the

summation of terms collected from multiple optimizations through Algorithm 2.1.

Nonetheless, it is reasonable to hypothesize that the relationships for the predicted

cost also carry over the incurred cost. In particular, increasing the number of on-line

decision variables should lead to a trade-off in the increased computational effort ver-

sus a decrease in the incurred cost, according to this hypothesis. However, the results

that follow demonstrate that this hypothesis, referred to hereafter as the decision

variable hypothesis (DVH) for brevity, is not always correct.
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Figure 2-1: Sample position trajectories using Nominal MPC ('X' indicates loss of
feasibility).

Nominal MPC

Because the Nominal MPC formulation performs particularly poorly compared to

the RMPC formulations, it is considered separately from the main results. Note that

because the Nominal MPC formulation ignores disturbances completely, the choice of

objective function is irrelevant; it always yields the same result subject to the same

disturbance realization.

When subject to a uniform disturbance realization (Fig. 2-1(a)), the Nominal

MPC formulation goes infeasible during 18 of the 20 simulations, while all simulations

go infeasible for the vertex-only disturbance realization (Fig. 2-1(b)). Nominal MPC

performs poorly in this scenario primarily due to a combination of two factors. First,

the Q/R ratio is sufficiently small that the MPC optimization allows significant state

deviations in order to minimize input usage. Second, because Nominal MPC ignores

disturbances, the optimization is not prevented from selecting trajectories which fall

on or near constraint boundaries. For this problem, the limiting constraint is the

position pt boundary; the MPC optimization will occasionally select plans where one

or two optimization steps fall directly on this boundary. Such plans clearly have a

high risk of becoming infeasible if an aggravating disturbance is realized.

The Nominal MPC formulation's behavior in the initial timesteps of each simula-

0 0 10 20 30 40 50

)Z-



tion is particularly revealing . Recall that the system begins with an initial position of

+0.5 m and velocity of +0.5 m/s; gone unchecked, the system will bypass the upper

position boundary after 1 timestep. In the optimization at the first timestep, the

Nominal MPC formulation selects a weaker corrective input (-0.27) than the RMPC

approaches (between -0.55 and -0.44), which maintains a "buffer" on the constraint

boundary to ensure robust feasibility. Under the uniform disturbance realization (Fig.

2-1 (a)), five of the Nominal MPC simulations become infeasible after two timesteps,

due to consecutive positive disturbances. Under the vertex-only disturbance realiza-

tion (Fig. 2-1(b)), 11 Nominal MPC simulations become infeasible after just one

timestep, since in those cases the first disturbance realized is +1.0. Nearly all of the

other simulations become infeasible at later timesteps due to similar circumstances.

It is worth noting that the two Nominal MPC simulations which do remain fea-

sible, indicated by a green 'O' in Fig. 2-1(a), by far have the lowest predicted and

incurred costs compared to all RMPC approaches considered. Nominal MPC also

has a significant runtime advantage under the worst case objective function, since it

does not need the computationally expensive LMI setup (Section 2.4.3). By ignoring

disturbances, Nominal MPC is the least conservative approach - but to the extent

that it is rarely feasible. Clearly, robust MPC must be applied to this problem for

successful operation, rather than MPC or classical control schemes.

Disturbance Free Objective

Fig. 2-2 compares the predicted cost J*(xo) and the incurred cost J50, averaged over

20 simulations, for each policy type using a disturbance free objective function. Fig.

2-2(a) shows results for a uniform disturbance realization, while Fig. 2-2(b) shows

results for a vertex-only disturbance realization. Note that all RMPC simulations

from this point forward maintain robust feasibility at all timesteps, as expected.

From Fig. 2-2, it is clear that the incurred cost is significantly larger than the

predicted cost for all policies, especially for the vertex-only disturbance realization.

This suggests, as discussed in Section 2.5.2, that the cost-to-go term fN(XN) does

not accurately predict the future incurred cost. This is hardly surprising, since the
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Figure 2-2: Minimization of Disturbance Free Cost

quadratic cost-to-go ignores constraints and all future disturbances.

The DVH is accurate for the predicted costs for both disturbance realizations.

(Because the objective function ignores disturbances, the predicted costs are the same

for each policy for both types of disturbance realization.) In both instances, AFP-Full

has the lowest predicted cost, followed by AFP-BT, CT-Nil/AFP-Fix-Nil, and finally

CT-Opt. This is consistent with the number of on-line decision variables, as AFP-Full

has the most, followed by AFP-BT and the nominal-complexity CT policies. Finally,

note that CT-Nil and AFP-Fix-Nil achieve equal predicted costs. Both approaches

share the same feedback policy by construction, and because Knil is nilpotent, the

terminal constraints (2.55)-(2.57) and (2.58)-(2.60) are equivalent. Since these are the

only two factors distinguishing any of these RMPC policies, CT-Nil and AFP-Fix-Nil

are equivalent throughout these simulation results.

To see why this predicted cost ranking occurs, recall that the objective function

for this problem (ignoring the extremely small state costs) is

N-1

J*(xo) _ 200p210 + 4 00pNIOVNIO + 250vo 10 + S 100u210

j=0

The terminal cost terms are a very small portion (< 10%) of the total predicted

cost for every RMPC approach, as they all drive the state close to zero by the final



Table 2.1: Predicted Cost, First Two Inputs (Disturbance Free Objective)
RMPC Type uolo ulo 100(u 0o +210o )

CT-Nil -0.482 -0.153 25.6

CT-Opt -0.549 -0.153 32.5
AFP-Full -0.443 -0.184 23.0
AFP-BT -0.471 -0.154 24.5
AFP-Fix-Nil -0.482 -0.153 25.6

optimization step. Indeed, almost the entire predicted cost is concentrated into the

first two optimization inputs, when the system is trying to recover from a poor initial

condition. The values of u0 0oo and ullo, as well as their associated cost (compare with

Fig. 2-2(a)), are given in Table 2.1. AFP-Full, with the most decision variables, does

the best job of distributing the necessary initial input to stay feasible while minimizing

the cost. CT-Opt, whose off-line optimization is designed to maximize disturbance

handling, not predicted cost, has the highest predicted cost for these terms.

On the other hand, the DVH is not accurate for the incurred cost for both distur-

bance realizations. In fact, the order is completely inverted: CT-Opt has the lowest

incurred cost, followed by CT-Nil/AFP-Fix-Nil, AFP-BT, then AFP-Full. This rank-

ing directly contradicts the DVH, which suggests that AFP-Full might have the lowest

cost, followed by AFP-BT.

To demonstrate why the incurred cost ranking becomes inverted, consider Fig. 2-

3, which shows the position and velocity history for each RMPC controller for one of

the simulations; other simulations are similar in form. Because the AFP controllers

have more available on-line decision variables than CT, they are able to identify

trajectory plans which come closer to the constraint boundaries while maintaining

robust feasibility. The AFP controllers choose to execute these trajectories in an effort

to minimize control usage, the dominant term in the objective function. However,

because the objective function ignores disturbances, the AFP trajectories do not plan

ahead for the inputs which may accrue from reacting to unforseen disturbances. While

this also affects the CT controllers, they tend to stay closer to the origin, and thus

require less reactive input to correct for aggravating disturbances. While this does

not occur for every aggravating disturbance, the long-term results average towards
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Figure 2-3: Sample state history and current state plan for each RMPC approach after
50 timesteps have been completed, using a disturbance free objective and uniform
disturbance realization. The nominal policy becomes infeasible at timestep 10.

lower incurred costs for the CT policies. Clearly, these deviations can be sufficient

in general to influence the selection of a cost-minimizing RMPC policy, especially

considering differences in computational complexity (Section 2.5.4).

Expected Objective

Fig. 2-4 compares the predicted cost J*(xo) and the incurred cost J50 , averaged over

20 simulations, for each policy type using a expected objective function. Fig. 2-4(a)

shows results for a uniform disturbance realization, while Fig. 2-4(b) shows results

for a vertex-only disturbance realization.

It is immediately clear that the predicted costs now provide a more accurate ap-
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Figure 2-4: Minimization of Expected Cost

proximation of the incurred cost, compared to the disturbance free case (Fig. 2-2).

This is due to the additional disturbance-based terms in the objective function (2.46),

which varies with the type of disturbance realization. The predicted cost does a rea-

sonable job approximating the incurred cost for the uniform disturbance realization,

though it still underestimates the incurred cost for the vertex-only disturbance real-

ization.

As anticipated in Section 2.4.2, for those policies in which M is fixed, the expected

incurred cost is the same as the disturbance free incurred cost (Fig. 2-2), and the

increase in predicted cost is equal to the additional terms in (2.46). This is not case the

case for AFP-BT and AFP-Full, which identify new solutions in order to decrease the

total predicted cost. The predicted cost relationships for each disturbance realization

differ from the disturbance free case only in that CT-Opt now achieves the second-

lowest predicted cost.

There are two key indicators in the results of Fig. 2-4 which suggest that the

expected objective function is capable of making more accurate predictions than the

disturbance free objective function. First, note that the qualitative predicted cost

ranking precisely matches the qualitative incurred cost ranking for both disturbance

realizations. While this result clearly is not sufficient to make a similar claim for other

problems, it does suggest that the expected objective is superior to the disturbance

-
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free objective in predicting behavior for this system.

Second, observe that AFP-Full and AFP-BT utilize the expected objective func-

tion to significantly decrease their incurred costs. In particular, whereas AFP-Full

previously had the highest incurred costs (Fig. 2-2), with the expected objective it

now achieves the lowest incurred costs of the RMPC approaches considered. The

simulation trajectories corroborate these findings (Fig. 2-5). Unlike the disturbance

free cost (Fig. 2-3), the AFP approaches in Fig. 2-5 have additional information about

the disturbance environment within their objective functions. Under this optimiza-

tion, the AFP approaches select a plan which still minimizes control usage but also

regulates the system much closer to the origin, reducing the input needed to react to

large disturbances.

Worst Case Objective

Fig. 2-6 compares the predicted cost J*(xo) and the incurred cost J5 0 , averaged over

20 simulations, for each policy type using a worst case objective function. Fig. 2-6(a)

shows results for a uniform disturbance realization, while Fig. 2-6(b) shows results

for a vertex-only disturbance realization.

As expected for a worst case metric, the predicted costs have increased signifi-

cantly, and in many cases exceed the corresponding incurred costs. Note that be-

cause both disturbance realizations have the same worst case disturbance sequence,

the predicted costs are again equal for each approach in Fig. 2-6(a) and Fig. 2-6(b).

Qualitatively, the predicted cost relationship for both disturbance realizations is

the same as those for the expected cost. Again, AFP-Full has the lowest predicted

cost, followed by CT-Opt, AFP-BT, and finally CT-Nil/AFP-Fix-Nil. However, the

incurred cost relationship has changed significantly. The most obvious distinction is

that AFP-Full, as with the disturbance free objective, has the highest incurred costs.

Here, the margin between AFP-Full and the other approaches is significant. This

clearly violates the DVH, and again suggests that in the general case, J*(xo) may not

be a reliable predictor of closed-loop performance.
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Figure 2-5: Sample state history and current state plan for each RMPC approach

after 50 timesteps have been completed, using a expected objective and uniform

disturbance realization. The nominal policy becomes infeasible at timestep 10.

2.5.4 Complexity

Each RMPC optimization can be represented as either a quadratic program or a

semidefinite program, depending on the objective function used (Section 2.4). Thus

the most reliable theoretical measures of an optimization's complexity are the number

of decision variables and the number of inequality constraints. Table 2.2 compares

the number of decision variables and inequality constraints for each policy using a

quadratic objective function, for both the general case and the simulation example

of Section 2.5.1. The additional constraints for the semidefinite program are equal in

size for all approaches, and thus are not addressed here.

For the simulation example, M contributes only 45 additional decision variables

V IV
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Figure 2-6: Minimization of Worst Case Cost

to AFP-Full and 9 to AFP-BT. The remaining V, decision variables are necessary,

along with N,ca constraints, to define the maximization in (2.37) for an infinity-

norm-bounded disturbance set with linear constraints [28]. On the other hand, the

AFP-BT-Fixed policy does not need these extra variables or constraints, since its

maximization can be evaluated off-line. Note the dramatic increase in complexity by

simply allowing M to be optimized on-line.

Fig. 2-7 compares the average simulation runtime over all 20 simulations for each

feasible RMPC policy for the six cases considered in the previous section. All problems

were solved on a 2.59-GHz computer with 512 MB of RAM.

Clearly, there is a runtime advantage for the policies of nominal complexity (CT-

Nil, CT-OPT, and AFP-Fix-Nil) compared to the policies with more decision variables

(AFP-Full and AFP-BT). For each problem considered in the previous section, the

nominal-complexity policies are the fastest, followed by AFP-BT, then AFP-Full.

This is consistent with all previous analysis and the number of degrees of freedom

available for each optimization type.

The worst case objective function leads to imposing simulation runtimes, even

for the nominal-complexity policies, because of the need to perform a semidefinite

optimization. However, even the quadratic programming approaches can have long

runtimes - note that the expected-cost runtimes for AFP-Full are similar to the worst

i
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Table 2.2: Problem Complexity, Quadratic Objective
RMPC General General Sim Sim
Type # Vars. # Cons. # Vars. # Cons.

CT-Nil mN Ca 10 44

CT-Opt mN ca 10 48
AFP-Full mN + V,+ (N, + 1)ca 515 966

mnN(N - 1)/2

AFP-BT mN + V,+ (Nw + 1)ca 479 966
(N - 1)mn,

AFP-Fix-Nil mN ca 10 46

Ca = cyN + ct

ca if Sw 1-norm-bounded

V = nwNca if S, oc-norm-bounded
cwNca if S, polyhedral

= 2nwN if S, 1- or oo-norm-bounded
N c,N if S, polyhedral

case-cost runtimes for AFP-BT. This seems to suggest that the expected cost results

in a particularly hard problem for AFP-Full.

Fig. 2-7, when considered alongside Figs. 2-2, 2-4, and 2-6, represents visually the

important tradeoff between complexity and conservativeness - though this tradeoff

has been shown to be invalid for the incurred cost, in general.

2.6 Conclusion

This chapter investigated the relationship between CT and AFP policies for RMPC,

through an extended theoretical and numerical analysis. It is clear that in general,

AFP policies achieve lower predicted costs, while CT policies can be optimized with

lower runtimes. However, while there are nice theoretical properties relating the CT

and AFP paradigms, these properties do not accurately reflect closed-loop behavior

using receding horizon control. A simple, conventional example has shown that de-

spite significant increases in computational complexity, additional decision variables

do not always improve, and sometimes degrade, the closed-loop performance of the

RMPC policies. Of the objective functions considered for the example, the expected
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Figure 2-7: Average simulation runtime for each combination of objective function

and disturbance realization considered above

objective appears most capable of predicting the actual incurred cost, and enables

the AFP approaches to recover an incurred cost advantage relative to CT approaches.

Nonetheless, deviations from the cost-to-go estimate have been shown to be possibly

significant enough to influence the choice of a cost-minimizing controller, in general.



Appendix: Extending the Cost-to-Go

The objective of this appendix is to provide some preliminary analysis of how to

better approximate the infinite-horizon cost in the RMPC optimization (2.6) using

the cost-to-go function fN(').

Suppose that beyond the first N timesteps, the system only applies the linear

terminal control law I(x) = Kx as its sole control strategy. Since this control law has

been selected in CT and AFP to satisfy all constraints within the terminal set, where

the system must arrive after N timesteps, the constraints can be effectively ignored

beyond the horizon length N.

The objective here is to compute the cost incurred beyond timestep N, using the

control law u = Kx and ignoring all constraints. Of course, due to the persistent

disturbances, the infinite-horizon cost will typically be infinite; instead, consider the

finite-horizon cost

M-1

= XN+tQXN+t + UN+tRUN+t, (2.62)
t=O

with cost-to-go horizon length M; later this cost will be extended via M - o00.

Substituting u = Kx into the system model (2.1) yields

Xt+1 = ACLXt + Gwt, (2.63)

where ACL = A + BK. Similarly, substituting u = Kx into the cost function (2.62)

yields

M-1

J= SX+tQCLXN+t, (2.64)
t=O

where QCL = Q + KTRK. Concatenating the state and disturbance as

-]Tx = xT x¢ 1 TT (2.65)
SN N+ 1  ..XN+M-1 (26)

w = w T ... WN+M-2 T, (2.66)
WN+1

N+M 2



respectively, then the cost can be written simply as

J = xTQx,

where Q = IM 0 QCL-

It is straightforward to show that

x = AXN + Gw,

where

In

ACL

A2CL

ACL 1

0

G

ACLG

Substituting (2.68) into (2.67) yields

J = (AXN + Gw)TQ(AXN + Gw)

= xATQAxN + 2xTATQGw + wTGTQGW.

Next, this appendix considers how to apply this cost for each type of objective

function.

Disturbance Free Cost

Assuming w - 0, (2.70) becomes

Jdf = xTNATQAxN.

(2.67)

(2.68)

(2.69)

(2.70)

AM-2G A-3GCL CL

(2.71)



Suppose that P = ATQA. Using (2.69), note that

M-1

P - (E/At )Tg lit
P = ACL T CLACL.

t=0
(2.72)

Now suppose M -* oo, such that

(2.73)P = Z(AcL) QCLAcL;
t=O

this will be finite if ACL is asymptotically stable. By multiplying and adding terms

to both sides, the resulting relationship is

QCL + A LPACL QCL + A L ACL) OCLAcL ACLS(At  
t CLQCLAL)

=AL) QCLAL = P,
t=O

Q + KTRK + (A + BK)TP(A + BK) = P. (2.74)

But this is precisely the steady-state relationship (2.43) already being used to identify

P. This validates the choice of P for the disturbance free objective, even taking post-

horizon disturbances into account. Note that because the disturbances are assumed

to be zero within the objective function, this infinite-horizon cost is actually finite.

Expected Cost

Take the expectation of (2.70), such that

JeX = E [T ATQAXN + 2xTATQGw + wTGTQGw]. (2.75)

The first term is independent of the disturbance and can be taken out of the objective.

Because the disturbances are assumed to be independent and zero-mean, the second



term is equal to zero. Thus

Jex= XPXN + tr [GTQGC], (2.76)

where Cw = IM-1 0 C,, and P = ATQA, as with the disturbance free cost.

In the current formulation of this objective function, only the first term of (2.76)

is included as the cost-to-go. Yet the second term of (2.76) contains no decision

variables, and thus has the nice property that it is fixed off-line. If this term is added

to the objective function for each RMPC approach, a fixed quantity will be added to

each predicted cost, but the incurred costs will remain the same.

As M - oc, the second term in (2.76) becomes infinite; is there a finite choice for

M that makes sense? A smart choice for this setup would be to choose M such that

N + M equals the number of iterations of Algorithm 2.1, i.e. 50 in Section 2.5.

Worst Case Cost

Finally, consider the worst case cost problem, modeled as

J = xTPXN + max 2xATQGw + wTGTQGw (2.77)

w

s.t. w E SM- 2

Assuming S, is polyhedral, the maximization is a convex optimization which is

quadratic in w. However, because of the presence of XN, this optimization cannot be

solved for a specific value off-line.



Chapter 3

Robust Trajectory Planning using

Mixed-Integer Linear

Programming

3.1 Introduction

This chapter proposes a trajectory planner which applies mixed-integer linear pro-

gramming (MILP) to identify optimal, robust trajectories. Mixed-integer linear pro-

gramming provides a very general framework for describing and solving problems

which involve discrete decisions as well as continuous variables. Recent research has

identified a variety of algorithms for effective MILP-based UAV trajectory planning;

see Section 1.2.2 for a summary. When possible, the results in this chapter are pre-

sented for a generalized problem formulation, to emphasize the versatility of this

approach.

The planner proposed in this chapter integrates and refines two recently-developed

MILP planning algorithms. The first is the Robust Safe but Knowledgeable (RSBK)

algorithm [10, 23, 50], which itself integrates notions of vehicle safety and an intelligent

cost-to-go map with CT (Section 2.3.1) for robustness. The second algorithm is

Variable MILP [51, 59], which includes several features designed for efficient on-line



MILP optimization in three-dimensional environments. When combined, these two

algorithms represent many of the key innovations necessary for a UAV to effectively

and autonomously plan trajectories in an uncertain environment.

This planner, named Efficient RSBK, also introduces several novel refinements

to improve problem efficiency. Refinements to the 2-norm approximation, referred to

here as variable-density constraint selection, strategically allocate constraints in order

to reduce the total number of constraints without significantly impacting performance.

A detection radius is modeled to represent a UAV's incomplete situational aware-

ness. Additionally, the Selective CT technique, which allows CT to be performed on

problems with varying timestep lengths, is proposed. Though this technique cannot

guarantee a feasible optimization at every timestep, it does ensure robust constraint

satisfaction at specified timesteps with a limited number of decision variables.

This chapter is structured as follows. Section 3.2 presents the problem statement,

an extension of the problem posed in Section 2.2.2. Section 3.3 justifies the choice of

CT for achieving robustness to disturbances, and poses a general form of the robust

MILP trajectory planning problem. Section 3.4 briefly reviews the RSBK algorithm

within the context of this formulation. Section 3.5 proposes a set of refinements to

the RSBK approach; these refinements are either applications of Variable MILP [51]

or are novel features proposed by this thesis. Several refinements require a more

specific formulation of the vehicle model, and are introduced in Section 3.6. The

effectiveness of this algorithm is demonstrated through a series of simulations in

Section 3.7, followed by concluding remarks in Section 3.8.



3.2 Problem Statement

Consider the linear time-invariant dynamics with an additive disturbance and output

constraints,

xt+1 = Axt + But + Gwt, (3.1)

Yt = Cxt + Dut E Sy, (3.2)

wt E Sw, (3.3)

where xt E Rn is the state, ut E R m is the input, yt E RP is the output, and wt E Rnw

is an additive disturbance acting on the state. This disturbance is unknown at current

and future times, but is known to lie within the polytopic set

S, = {w I Ew < f,}, (3.4)

which contains the origin in its interior. It is assumed that (A, B) is stabilizable and

that the full state is available at all timesteps. The timesteps t E N. are assumed to

have the fixed duration b. The system's objective is to achieve the goal state xG.

The output is to remain constrained within the bounded but non-convex set S,;

in Chap. 2, S, was assumed to be polytopic and contain the origin in its interior.

Without loss of generality, this set can be described as a convex environment Sylo

containing a set of convex avoidance regions. To render the problem tractable for a

MILP optimization engine, assume that there are a finite number of avoidance regions,

and that both the environmental and avoidance constraints are polyhedral. Suppose

the i-th avoidance region is denoted by S , and define the polyhedral constraints

SO = {yE RP I EOy }, (3.5)

S = {y E RP I Ey < f} V i E N1,Nob, (3.6)

where fo E no, f E 1n V i E N1,Nobs, and Nobs is the number of obstacles/avoidance



regions. Then the output constraint (3.2) is equivalent to the relation

t+t G S1 (3.7)Yt+jlt E S V N1,NobYt+jt 5  ViE NiINobS

This general form may include environmental bounds, physical obstacles, velocity and

acceleration bounds, and many other types of constraints.

3.3 CT-Based Trajectory Planning Formulation

In this section, a general form of the robust MILP trajectory planning problem is

posed. This formulation uses receding horizon control (RHC) over a fixed planning

horizon of length N, and does not require a specific form of the vehicle dynamics.

However, due to the presence of disturbances in (3.1), it is necessary to incorporate

RMPC techniques to maintain robust feasibility.

Of the RMPC techniques analyzed in Chap. 2, Disturbance CT (Section 2.3.1)

is selected here as the most viable approach for on-line path planning. Because the

disturbance feedback policy M° V i E N1,N-1 is selected off-line, the tightened con-

straints can be computed off-line, preventing an increase in the complexity of the

on-line optimization. In this manner, the decision space of the on-line optimization

remains the same as nominal MPC, allowing for efficient real-time computation. Sec-

tion 2.5.3 has indicated that in general, higher-complexity policies may not necessarily

achieve a lower incurred cost, despite this significant increase in computational com-

plexity. Perhaps most significantly, CT is the only approach considered which allows

non-convex constraints, a necessary prerequisite for operation in obstacle fields.



Algorithm 3.1. RHC-MILP with CT
1: Compute CT tightening sets (3.13)-(3.14)
2: fort=0tot=oodo
3: Take measurement of current state: Xtlt = xt
4: Solve optimization (3.8)-(3.12)

5: Apply first input: ut = Ul t
6: end for

The robust MILP trajectory planning problem can be written in the general form

min
U.lt

s.t.

N-1

J(xt) = fN(xt+Nlt) + S f( t+jlt, ut+jlt)
j=O

xt+j+llt = Axt+jlt + But+jlt,

Yt+jlt = Cxt+jlt + Dut+jlt E Sylj V j E NN-1,

Xt+Nlt E SxJN,

XtIt = Xt,

(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

where the CT tightened constraint sets Sylj , clarified below, may be non-convex, and

SxIN is subject to the criteria (2.22)-(2.24) for constraint tightening, repeated here:

Xt+Nlt

Ax + BK(x) + LN-lW

Cx + DK(x)

SxlN = St E LN-1Sw,

St VxESt, VwES.,

SyIN-1 V X E St.

This optimization is performed repeatedly, in accordance with Algorithm 3.1.

Because the output constraints (3.10) are non-convex, special care must be taken

in applying the tightening sequence (2.20). Since the environmental constraints So

are convex, the original form of (2.20) can be used,

so
o

So o

solj E ( C L + D M j +, ) S w , VE NN-2. (3.13)

The avoidance regions, however, must be expanded, instead of tightened, since they are



to be avoided. It is straightforward to show that this can be accomplished by simply

replacing the Pontryagin difference operation with the Minkowski sum operator:

Sylo = S , Vi E N,Nobs)
SiDM +1  NN_2 i . (3.14)

ylj+ = SYlj e (CLj + DM )S, V NN-2 V 1,Nob. (3.14)

Denote the tightened forms of the polyhedral environmental and obstacle con-

straints as

So y E {y R I E y foi}V, j e N-2, (3.15)
Si 
SYj = {y RP Eyly fy}, V j E NN-2 V N1,Nobs. (3.16)

For the system to satisfy the avoidance region constraints (3.16) for the ith obstacle, it

is only necessary that at least one of the row constraints not be satisfied. This "OR"

condition is effectively captured in the MILP formulation by using binary variables.

In particular, the constraints for avoiding the tightened obstacle Sy can be written

in the linear form

EYvjyt+jlt > ftUl - Mb, (3.17)
ni

b,  _ ni - 1, (3.18)
l=1

where b = bi ... bij , the bi are scalar binary variables constrained to the set

{0, 1 }, and M is sufficiently large to ensure a constraint is satisfied if its corresponding

binary variable is 1. If at least one of the row constraints for SYl is not satisfied, the

binary variable in the corresponding row of (3.17) can be feasibly set to 0, ensuring

satisfaction of (3.18).

In Ref. [23], the constraint set S, is allowed to be non-convex, but the details of this

implementation are left for a specific example involving velocity/acceleration bounds,

obstacles, and a two-step nilpotent terminal control policy. None of the formulation

in the following two sections requires a specific form of the vehicle dynamics.



Algorithm 3.2. RSBK
1: Compute CT tightening sets (3.13)-(3.14)
2: Compute cost-to-go map
3: fort= tot= oo do
4: Take measurement of current state: xtJt = xt
5: If environment has changed, perform lines 1-2
6: Solve optimization (3.19),(3.9)-(3.12),(3.21)-(3.25)
7: Apply first input: ut = u t

8: end for

3.4 Robust Safe but Knowledgeable (RSBK) Al-

gorithm

The RSBK algorithm [10, 23, 50] integrates multiple recently-proposed techniques for

MILP-based trajectory optimization, resulting in a planner which can react to several

kinds of uncertainty while guaranteeing robust feasibility. The algorithm builds on

existing research which incorporates CT-based robustness with MILP trajectory plan-

ning [8, 48, 49], and has been demonstrated for both state-based [50] and disturbance-

based [23] feedback. The following sub-sections review two of the algorithm's other

features, trajectory safety and cost-to-go mapping. The RSBK algorithm is given in

Algorithm 3.2.

3.4.1 Trajectory Safety

A planner is said to achieve trajectory safety if any trajectory identified by the plan-

ner is guaranteed to be feasible at all future timesteps, regardless of the length of the

planning horizon. Trajectory safety has been successfully achieved using MILP tra-

jectory planning [9, 46, 47] by requiring the terminal state to fall within a basis state,

defined as a state or sequence of states in which the vehicle can remain at all future

timesteps without violating constraints. Common forms of the basis state include

a zero-velocity position for full-stop vehicles (e.g., helicopters and quadrotors) and

loiter circles for no-stop vehicles (e.g., airplanes) [47]. MILP-based trajectory safety

may also be achieved by computing both an optimal solution and a feasible "rescue



path" at each planning interval [46].

There is a strong relationship between the basis state and the notions of invariant

sets [60, 61] and robust invariant sets [57, 62] using in RMPC. This relationship has

been exploited by algorithms using CT, including RSBK, to identify arbitrary basis

states. Using CT, because the terminal state is already constrained to lie within

the robust positively invariant set St defined by (2.23)-(2.24), any solution to the

optimization (3.8)-(3.12) can be used to ensure trajectory safety. In particular, this

is achieved by constructing the candidate solution (2.25)-(2.28), which is guaranteed

to be robustly feasible at the following timestep. Thus, the terminal set acts as a

basis state.

In the RSBK algorithm, the terminal set is allowed to be parameterized as a

"decision variable," such that the objective (3.8) takes the form

min J(xt) (3.19)
U-.It,SxN

s.t. (3.9) - (3.12).

While a maximal robust invariant set [63] ensures the largest feasible region, compu-

tation of such a set is often intractable in a non-convex environment. Alternatively,

traditional forms of the basis state such as hover points and loiter circles can be used.

Nonetheless, it remains a non-trivial task to ensure constraint satisfaction of these

parameterized terminal sets in the presence of disturbances. One useful option is use

a nilpotent control policy, such that LN-1 = 0; in this case, the set St need only be

nominally invariant.

Note that trajectory safety implies that RSBK is an anytime algorithm, such

that the actual optimization is not necessary for feasibility once a single feasible

solution has been found. As long as the vehicle is operating in a portion of the

environment in which it has perfect knowledge (Section 3.5.3), it is guaranteed to

satisfy all constraints.



3.4.2 Cost-to-Go Map

The RSBK algorithm also incorporates an intelligent cost-to-go which uses the phys-

ical layout of the environment to estimate the cost of a full trajectory to the goal.

The resulting cost map allows for efficient computation of short, detailed plans, while

incorporating knowledge of future decisions. This idea was originally proposed in

Ref. [42] for two-dimensional environments, then expanded in Refs. [44, 45] to include

feasibility guarantees and Ref. [43] to incorporate a three-dimensional environment.

Because of the robust feasibility and trajectory safety guarantees already included

in RSBK, it is not necessary for the cost map to include a feasible trajectory to the

goal; it should simply provide a reasonable approximation of the remaining cost. The

Efficient RSBK algorithm constructs this cost map using the algorithm proposed in

Refs. [23, 43] and summarized below.

The cost map assigns a cost estimate to a set of visibility graph nodes, including

the start, goal, and certain points on the obstacle boundaries. For a 2-D environment,

inclusion of the obstacle vertices is sufficient; however, for three-dimensional environ-

ments, the shortest path is more likely to pass obstacles on their edges, instead [64].

For this reason, it is appropriate to sample points along the edges to be included in

the cost map calculation. In Ref. [43], a node is placed on each obstacle vertex at

ground level (z = 0) and at each midpoint of edges above ground level (z > 0).

Once the visibility graph nodes have been selected, a linear program is used to

identify mutually visible pairs of nodes, which are then connected via an edge [23].

Each edge is associated with a cost metric which estimates the actual cost incurred

traversing the edge. Here, a simple weighted distance metric is used,

d(xj, xk) = rdJXj - XkIJ2, (3.20)

where Td > 0. A network optimization algorithm, such as Djikstra's algorithm, is

then used to associate each node m with a minimum cost Cm to the goal from that

node (Fig. 3-1).

The trajectory ultimately identified by the RSBK optimization includes three
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Figure 3-1: Sample cost-to-go map; minimum-cost paths are indicated by blue edges.

components: the trajectory over the planning horizon N, a path from the terminal

state to a cost map node, and the shortest path on the visibility graph from that node

to the goal (Fig. 3-2). The cost of the second portion is found using the distance

metric (3.20), while the cost of the third portion is the cost Cm identified previously.

By assigning a binary variable to each possible cost map node, the optimization can

identify the cost-minimizing node on-line [42]. The resulting cost-to-go function and

constraint set is

Ncp

fyN(xt+jlt) = d(xt+jlt, xv,) + E bCm, (3.21)
m=1

NCp

Zv, = " ", (3.22)
m=1
Ncp

1 = bM, (3.23)
m=1

bv E {0,1} V m E Nl,Ncp,

where xi, is the selected cost point, Ncp is the total number of map nodes, and x.
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Figure 3-2: Sample RSBK Cost Map Plan

and C, are the position and cost of the m-th map node, respectively. The weighted

2-norm d(xt+jlt, xvis) must be approximated using linear constraints; see Section 3.5.4.

Because the selected cost point xvi, is to be visible from the terminal state Xt+Nlt,

the line-of-sight path connecting them (Fig. 3-2) should be free of obstacles. This can

be checked by enforcing the obstacle constraints at N, interpolated sample points on

the path, such that

E [(1 + I Xt+Nlt + N + l Vi > f - Mb, (3.24)

ni

(V e E N,NI , V i ,NXbs) b ' < ni- 1, (3.25)
/=1

where = bVi ... by i ]Tis a vector of binary variables, and N,,Xb indicates the
[ el enj

upper bound of those avoidance regions which correspond to physical obstacles in the

environment (and are assumed to come first in the list of avoidance regions).



Algorithm 3.3. Efficient RSBK
1: Compute CT tightening sets (3.13)-(3.14)
2: Compute cost-to-go map
3: fort=0Otot=oodo
4: Take measurement of current state: xt t = xt
5: If environment has changed, perform lines 1-2
6: Perform Algorithm 3.5
7: Solve optimization (3.19),(3.9)-(3.12),(3.21)-(3.25),(3.31)-(3.33)
8: Apply first input: ut = utlt
9: end for

3.5 Refinements

The following two sections introduce the Efficient RSBK algorithm, an extension of

the RSBK algorithm which incorporates elements of Variable MILP [51] and several

novel refinements. Each of these refinements is discussed in turn below; Section 3.6

considers further extensions which require a more specific form of the system dynamics

(3.1)-(3.2). The Efficient RSBK algorithm is given in Algorithm 3.3.

3.5.1 Selective CT

A key component of the Variable MILP algorithm [51] is the ability to vary the

timestep lengths over the course of the plan. In this manner, a detailed plan can be

developed in the short term, while a coarse plan is used in the far term (Fig. 3-3),

where environmental knowledge is less certain and the plan waypoints are less likely

to be used. However, this idea is difficult to apply to a CT-based algorithm such as

RSBK, which requires the iterative modification of a candidate solution to guarantee

robust feasibility [22]. If the timesteps are not evenly spaced, the state-space model

(3.1) is generally not fixed, and the constraint-checked timesteps for one optimization

may not align properly with those timesteps for the next optimization.

For the first, optional refinement, referred to as Selective CT, a state-space model

corresponding to a fixed timestep length 6 can be used to model variable timestep

lengths by grouping together adjacent steps. To optimize a trajectory over a planning

horizon of A seconds, [A/6] steps are necessary; however, the constraints S.lj need
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Figure 3-3: Sample trajectory plan constructed using Variable MILP or its robust

analog, Efficient RSBK

not be enforced at every step. Instead, they can be applied only for those timesteps

within the set Nc, which is assumed to contain the initial state xtIt. Variable timesteps

can then be modeled by requiring each input between elements of Nc to be equal to

the element preceding it, i.e.

ut+jlt = ut+j-llt V j ' Nc; (3.26)

a similar approach is considered in Ref. [33]. In this case, the constraints (3.9)-(3.10)

now take the form

xt+j+llt = Axt+jlt + But+jlt, (3.27)

Yt+jlt = Cxt+jlt + Dut+jlt E Sylj V j E Nc, (3.28)

One downside of this approach, and the reason Selective CT is considered an op-

tional refinement, is that the optimization (3.19) cannot be guaranteed to be feasible

at subsequent timesteps, due to the misalignment of constraint-checked timesteps be-

tween successive optimizations. Because of this, Algorithm 3.3 cannot be used with

Selective CT. However, with an alternative form of the algorithm, Algorithm 3.4, the



Algorithm 3.4. Efficient RSBK with Selective CT
1: Compute CT tightening sets (3.13)-(3.14)
2: Compute cost-to-go map
3: for t = 0 to t = oo do
4: Take measurement of current state: xtlt = xt

5: Update candidate solution (2.25)-(2.28) using disturbance wt
6: If environment has changed, perform lines 1-2
7: Perform Algorithm 3.5
8: Solve optimization (3.19),(3.26)-(3.28),(3.11)-(3.12),

(3.21)-(3.25),(3.31)-(3.33)
9: if optimization is completed do
10: Apply first input: ut = u*lt
11: else do
12: Apply input from candidate solution: ut = itlt
13: end if
14: end for

system can be guaranteed to robustly satisfy all constraints at timesteps where they

were initially checked and beyond the planning horizon N, even if the optimization

itself is not always feasible.

Theorem 3.1 (Selective CT robust constraint satisfaction). If the optimiza-

tion in line 8 of Algorithm 3.4 is feasible at timestep t = 0, then a system operating

using Algorithm 3.4 satisfies its constraints for all timesteps j E Nc or j > N.

Proof. This proof builds off of the proof of robust feasibility for Disturbance CT

(Theorem 2.3, Ref. [23]), referred to as the DCT proof below for clarity.

Suppose the optimization in line 8 of Algorithm 3.4 is feasible at timestep t. This

means that the output constraint (3.28) is satisfied at timesteps t + j, V j E Nc,

the terminal constraint (3.11) is satisfied at timestep t + N, and the initial constraint

(3.12) is satisfied at timestep t. At the next timestep t + 1, construct the candidate

solution (2.25)-(2.28) (line 5 of Algorithm 3.4).

Using the DCT proof as a guide, mane of these constraints can be proven to be

satisfied by the candidate solution formed at timestep t + 1. Clearly, since the state

constraint (3.8) is still being enforced at every timestep, the initial constraint (3.12) is

satisfied at timestep t + 1. For the output constraint (3.28), the DCT proof indicates



the relationship

Yt+j+llt E Sylj+l = Yt+j+llt+l E Sylj V j E NN-2. (3.29)

This implies that the output constraint (3.28) is still satisfied at timesteps t+j, V j E

Nc/{O} - the same as in the previous optimization, minus the timestep already passed.

For the terminal constraint (3.11) and timestep t + N, the DCT proof indicates

the relationship

Xt+Nlt E SxIN = xt+N+I+1 SxIN) (3.30)
Yt+NIt+l SylN-1-

This implies not only that the terminal constraint (3.11) is satisfied at timestep t+N+

1, but also that the output constraint (3.28) is satisfied at timestep t+N. In summary,

if the output constraints are satisfied at timestep t for timesteps t+j, V j E Nc, then

they are also satisfied at timestep t + 1 for timesteps t + j, V j E (Nc UN})/{0o}.

Suppose the candidate solution (2.25)-(2.28) continues to be updated at subse-

quent timesteps, and that system inputs are applied from the candidate solution

alone (line 12 of Algorithm 3.4). Then, given that the optimization in line 8 of Algo-

rithm 3.4 is feasible at timestep t, the output constraints will be satisfied for timesteps

t + j, V j E Nc or j > N. The proof is completed by simply setting t = 0. O

Note that the constraint tightening sets (3.13)-(3.14) are still computed for all time-

steps, since (1) subsequent tightening steps, including those at timesteps in Nc,

depend on all previous tightening steps, and (2) intermediate tightening steps are

actually used in the construction of the candidate solution.

Since Theorem 3.1 does not guarantee that optimizations at future timesteps will

be feasible, there is no obvious guarantee that Algorithm 3.4 can successfully move

beyond the first feasible optimized trajectory plan at t = 0. However, in practice, this

approach does achieve comparable performance to Algorithm 3.3, where constraints

are enforced at every timestep; see Section 3.7.

Algorithm 3.4 modifies Algorithm 3.3 by not only including (3.26)-(3.28), but by



allowing the system to default to the input generated by the candidate solution if

the optimization is infeasible or takes too long to complete. This is the form of the

optimization actually implemented (Section 3.7.1). In subsequent sections, the Nc

terminology is used regardless of whether Selective CT is applied; if it is not, assume

Nc = {0,1,...,N-1}.

3.5.2 Linear Interpolation Points

Another refinement used from Variable MILP [51] is the notion of linear interpolation

points, placed between timesteps (here, j E Nc) to check for obstacle avoidance. For

most trajectory planning problems, it is necessary to extend the obstacle bounds

to prevent the vehicle from "cutting corners" between discrete timesteps (Section

3.6.2). However, because this expansion distance is proportional to the timestep

spacing, it may become overly restrictive, and possibly remove feasible trajectories,

during coarse portions of the trajectory plan. Linear interpolation points provide a

means for reducing the size of this expansion distance without adding additional state

variables to the problem formulation.

To incorporate linear interpolation points in the Efficient RSBK formulation, the

additional constraints

E[( e__ e >
E 1 1 1 -t+Nca_ + St+N f -lM , (3.31)

ni

(V j E Nc\{0}, V e N,, V i E N ) ie < n- 1, (3.32)
l=1

are added, where b: = [ ... T is a vector of binary variables, Nclj indi-

cates the jth timestep contained in Nc, and NJ is the number of interpolation points

placed between timesteps Nclj-1 and Nclj. Better trajectory approximations may

be achieved through non-linear interpolation [51], though it is not considered further

here.



3.5.3 Detection Radius

If the UAV does not have perfect knowledge of its environment, it has been assumed

(Section 1.3.1) that it does have perfect knowledge within some detection radius Rd >

0. If the vehicle discovers previously-unseen obstacles, then the previous solution to

the MILP optimization may become infeasible, jeopardizing long-term feasibility and

the anytime algorithm status bestowed by trajectory safety (Section 3.4.1). For this

reason, it is necessary for the planning horizon trajectory to remain fully within the

region of perfect knowledge.

For simplicity, assume that the detection region is implemented as an 00-norm

bound centered at the initial state xt, such that the region of perfect knowledge for a

particular optimization is given by the "detection box"

Sdet = X I I- xt, < Rd}. (3.33)

Because this constraint is convex and polyhedral, it can easily be added to the set of

system constraints by combining it with the environmental constraints So
y-

If the vehicle's situational awareness is restricted to the detection box, obstacles

are added to the RSBK optimization only if some portion of the obstacle enters this

detection box, indicating that the obstacle has been detected by the UAV. When this

occurs, the cost-to-go map needs to be recomputed to account for these new obstacles

(line 5 of Algorithms 3.3-3.4).

3.5.4 Variable-Density Constraint Selection

One of the critical challenges in using linear programming to model trajectory plan-

ning problems is finding an appropriate approximation for 2-norms. The 2-norm may

be used to represent constraints such as bounds on absolute velocity and acceleration,

distances between points, radar sites, and other constraints. Using many constraints,

a 2-norm can be modeled quite accurately with linear programming, but at the ex-

pense of increased computational complexity. Conversely, a 2-norm modeled with few

constraints may result in the trajectory favoring the (inaccurate) corners of the coarse
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2-norm approximation, leading to suboptimal trajectories. This section introduces a

novel approach for utilizing this tradeoff between complexity and optimality, referred

to here as variable-density constraint selection (VDCS).

Suppose that points in three-dimensional space are represented by the ordered

triple x = (x, y, z). A typical 2-norm constraint can be represented by

IIx 212<R = X2 +y 2 + z 2 2 , (3.34)

where R is a positive scalar. This particular constraint is centered at the origin; the

extension to non-zero origins is straightforward. One simple way to approximate this

2-norm with linear constraints is to sample planes tangent to points on the boundary

of this sphere. At the point p = (Px, Py, Pz), where p + p2 + p = R 2 , the equation of

the tangent plane inequality is simply

pxx + pyy + pzz < R. (3.35)

While this approach does create an outer approximation of the 2-norm, this over-

approximation can be minimized by sampling a large number of well-spaced points

around the sphere.

I .

Ilr -~- I



A traditional technique for approximating the 2-norm samples constraints using

a spherical geometry representation,

cos 27ri n + sin 2i i( y + cos ( )z< R (3.36)

V i E N1,D/2, V j E N1,D,

where the discretization level D is a positive, even constant. This approach uses D 2/2

constraints, and converges to a perfect sphere as D --+ o00.

While an accurate 2-norm is often necessary to achieve useful, smooth trajecto-

ries, the number of constraints needed to model the full sphere can quickly become

excessive. In many cases, one or more 2-norm approximations may be necessary at

every constraint-checked timestep. However, a detailed representation of the 2-norm

is typically not necessary in every direction. For example, consider a 2-norm con-

straint on the velocity magnitude (Section 3.7), for a vehicle moving towards some

goal waypoint. The optimized velocity is most likely to fall on the portion of the

2-norm approximation aligned with the linear segment connecting the vehicle with

the goal. Conversely, constraints on the opposite side of the 2-norm approximation

are extremely unlikely to be enforced, and need not be as closely spaced.

Using this logic, the Efficient RSBK algorithm applies a variable-density 2-norm

approximation scheme, VDCS, which couples a coarse 2-norm approximation with

additional regions of closely-packed constraints aligned with "directions of interest."

These high-density regions are characterized by four parameters:

* the direction of interest, d = (dr, dy, dz), assumed to be a unit vector;

* the number of constraint rings surrounding this vector on the 2-norm approxi-

mation, NR;

* the angular spacing of the constraint rings, OR; and

* the discretization level of each constraint ring, DR.

The approach begins with a low-D 2-norm approximation using spherical geometry,

as in Fig. 3-5(a). Additional constraints are built around each direction of interest by



Algorithm 3.5. VDCS
Inputs: D, d, NR, OR, DR
P: set of sampled 2-norm points/constraints

1: P +- (3.36)
2: P -d
3: for i = 1 to i = NR do
4: r -- random unit vector in RI3

5: r (d x r)/Id x r|
6: r - d rotated about r by angle ORi
7: forj = 1 to j = DRdo
8: P r
9: r -- r rotated about d by angle 27/DR
10: end for
11: end for

constructing NR "constraint rings," spaced On radians apart, and sampling equally-

spaced constraints from each ring with the discretization level DR.

The VDCS construction process is summarized in Algorithm 3.5, which assumes

a single direction of interest d. All rotations (lines 6 and 9) are performed using

quaternions. Note line 4, in which p is initialized to a random unit vector; this

direction is chosen randomly to minimize undesirable symmetry in the resulting 2-

norm approximation. The algorithm builds the 2-norm approximation using D 2/2 +

NRDR + 1 constraints: D 2/2 for the coarse approximation, NRDR for the constraint

rings, and 1 for the direction d itself.

To demonstrate this technique, consider a 2-norm approximation with D = 6,

d = (1,0,0), NR = 4, OR = 7r/18, and DR = 8. Fig. 3-5(a) shows a side view of

the 2-norm approximation if only the coarse representation using (3.36) is considered.

Figs. 3-5(b) - 3-5(c), on the other hand, show two orthogonal views of the 2-norm

approximation with the regional constraints also added. As shown, this hybrid ap-

proach successfully integrates regions of widely-spaced and closely-spaced constraints.

Additionally, by using the same discretization level DR for each constraint ring, the

constraint density naturally increases moving towards d (Fig. 3-5(c)). Note that only

50 constraints have been used to construct this approximation, compared to 288 in

Fig. 3-4.
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The regional constraint parameters are easily adjusted to customize the nature of

the regional constraints for the problem being considered. By increasing DR from 8

to 16, a better regional 2-norm approximation can be achieved for a region of fixed

size (Fig. 3-6(a)). By increasing OR from ir/18 to 7r/9, the same number of constraints

can be used to better approximate a larger region of the 2-norm (Fig. 3-6(b)). In

fact, if NR and OR are chosen such that NROR = 27r, the entire circle can be sampled

using constraint rings. Fig. 3-6(c) demonstrates this by increasing NR from 4 to 18;

note the overall asymmetry of the 2-norm approximation.

3.6 Model-Specific Refinements

Several additional refinements from Variable MILP are included in the Efficient RSBK

framework which require a specific form of the vehicle state and/or dynamics. After

these are provided, the additional refinements, obstacle expansion and obstacle reach-

able horizon, are discussed below. Note that although these refinements are discussed

in the context of a single vehicle type, it is straightforward to apply these concepts

to other vehicles.

3.6.1 Vehicle Dynamics

Consider a simple hovering vehicle with double integrator dynamics, often a reason-

able approximation of a helicopter or quadrotor (Section 4.1). The vehicle state x

and input u are broken down into the components

S=[ pT vTl, u = a, (3.37)[ T
p = pX Py pz , a = ax aza , (3.38)

v= vX vy Vz , (3.39)

where p, v, and a are the position, velocity, and acceleration vectors, respectively, and

each subscript indicates the coordinate direction. The state-space model (3.1)-(3.2)
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takes the form

I. 1362 .2 31
Xt+1 = [ 3 Xt + [r u + Wt, (3.40)

03 13 63 6I3

13 03 031
Yt = 03 13 t + 03 ut; (3.41)

03 03 13

note that this is simply the extension of (2.51) to three dimensions. If the output

constraints SY are decoupled between the state and input, (3.41) allows CT tightening

to be decoupled as well. In this case, suppose Sx and S. represent the decoupled state

and input constraints, respectively; then (2.20) can be rewritten as

Sxlo = Sx,

SXli+1 = Sxz e LSw, V i E NN-2,

SUlo = SU,

Sui+l = Suli E M+lSw, V i E NN-2,

If this decoupling is appropriate for the problem setup, it can dramatically decrease

the complexity of the CT tightening implementation.

The vehicle has a maximum and minimum velocity and acceleration constraint in

each coordinate direction, resulting in a set of convex, rectangular constraints. The

environment is also assumed to be rectangular, with a maximum position in each

coordinate direction. This set of constraints can be represented as

13 03 03

03 13 03

03 03 13

-13 03 03

03 -13 03

03 03 -13

Pmax

Vmax

amax

-Pmin

-Vmin

-amin

(3.42)Er-10Y f0



The velocity and acceleration are also subject to magnitude constraints

I1v112 5 Vmax, Ilall2 _ Amax. (3.43)

Finally, the environment contains a set of physical obstacles S' V i E N1,Nob, which

are to be avoided.

3.6.2 Obstacle Expansion

In order to ensure that the UAV using Efficient RSBK does not violate any con-

straints at any point on its trajectory, constraints must be tightened according to

three specific factors. All constraints must be tightened using the CT algorithm (Sec-

tion 3.2) to achieve robustness to the additive disturbances in (3.40). Any position

constraint must be tightened to account for the vehicle size, such that the vehicle can

be represented as a point mass operating within a configuration space. Finally, any

non-convex obstacles in the environment must also be expanded to prevent "corner-

cutting," in which the trajectory plan is feasible at two consecutive discrete timesteps

but intersects an obstacle between them.

There are multiple ways to prevent corner-cutting from taking place; the time- and

velocity-based representation from Variable MILP [51] is used here. Each obstacle at

optimization step j is expanded by the distance

dsafelj = =6VUi (3.44)

Here S6 is the time interval between optimization step j and the previous step in

which the obstacle constraints were checked, and can be reduced significantly by the

use of linear interpolation points (Section 3.5.2). The quantity VIj represents the

maximum speed attainable by the vehicle at optimization step j, based on the initial

velocity and the maximum/minimum acceleration bounds at each timestep.



3.6.3 Obstacle Reachable Horizon

Due to the constraints on the vehicle's position and velocity in (3.42)-(3.43), the UAV

can only reach points within some finite region at a given optimization step. Just as

each timestep is identified with a maximum attainable speed for (3.44), each timestep

can also be associated with a maximum position horizon. This expanding rectangular

box, proposed as part of Variable MILP [51], provides an outer bound on the set of

positions the vehicle can reach at any given timestep.

A key advantage of this representation is that only those obstacles which inter-

sect this box after the expansions in Section 3.6.2 need to be included in the MILP

formulation [51]. Because those obstacles fully outside the box are guaranteed to be

avoided, they will not affect the optimization solution, and can be removed from the

optimization completely. This approach removes variables and constraints associated

with these obstacles, potentially resulting in a significant runtime savings. Note,

however, that all obstacles must still be included for those portions of the trajectory

beyond the planning horizon, including the line-of-sight and cost map trajectories

(Fig. 3-2).

If a detection radius is applied, it can essentially be treated as an additional

reachable horizon, see Section 3.5.3.

3.7 Simulation Results

In this section, the effectiveness of the Efficient RSBK algorithm is demonstrated for

several simulation examples.

3.7.1 Implementation

The Efficient RSBK algorithm is implemented in the form of Algorithm 3.4. The

algorithm is written entirely in Java [65], and is solved using ILOG CPLEX 9.0 [66].

All optimizations were performed on a 2.00-GHz computer with 1 GB of RAM.

Each MILP optimization is constructed using the "warm start" approach [51],



wherein all components which are fixed for every optimization are added first and

maintained through the planning process. For example, using VDCS, the coarse 2-

norm using D is typically fixed during the warm start, while the direction of interest -

and its related regional constraints - are unique to each optimization. In this manner,

only essential operations are performed during each algorithm iteration, minimizing

the time necessary to find a solution.

Simulated UAV behavior is based on the low-level controller introduced in Section

4.3, which sends vehicle state data to the MILP planner at 2 Hz. The simulated UAV

is based on (3.40); controller gains have been selected to simulate realistic quadrotor

behavior (Section 4.1).

3.7.2 Results

Consider the vehicle model from Section 3.6.1. The disturbances are bounded by the

set S, of (3.4), where

E, , fw WmaxT -WminT , Wmax Wmin = 7 ,-la

and 7 = 0.06 is the disturbance level. A nilpotent control policy M' V j E N1,N-1

is applied, such that the terminal basis state for trajectory safety (Section 3.4.1) is

simply a hover point, i.e.

Vt+NIt = 03.

For simplicity, all obstacles are represented as three-dimensional boxes; the general-

ization to arbitrary obstacles is straightforward and does not introduce any theoretical

complications.

The trajectory planner uses the objective function

f(-) = rpPt+jlt + rvVt+jlt + raAt+jlt + rzbjz. (3.45)



Here Pt+jlt, Vt+jlt, and At+jlt represent 2-norm upper bounds on the position, velocity,

and acceleration, respectively,

IIPt+jlt - PGll2 -Pt+jlt, IIVt+j tll2 < Vt+t, Ilat+jl1t12 At+jit, (3.46)

where PG is the goal position; these 2-norms are approximated as specified in Section

3.5.4 in order to pose them as linear constraints. The discretization levels D are 12

for the position, 20 for the velocity, 16 for the acceleration, and 12 for the cost-to-go

distance norm; for now, VDCS is not used. The binary bj represents an optional

altitude penalty constraint at each timestep,

hmax > zt+jlt - Mb;, (3.47)

where hmax is the desired altitude ceiling. Finally, rp = 1, r, = 0.1, ra = 0.1, and

rz = 800 are positive scalar weights which can be adjusted by the operator. (In the

cost-to-go distance norm, rd = 1.)

The vehicle's size, modeled off of a Draganflyer quadrotor (Section 4.1), is 80 x

80 x 15 cm3 . Most of the remaining simulation parameters introduced throughout

this chapter are stated below:

Pmin -6 -6 0 , Pmax = 6 6 6 ,

Vmin= -0.5 -0.5 -0.5 ], Vmax = 0.5 0.5 0.5 ,

amin = -0.5 -0.5 -0.5 , amax = 0.5 0.5 0.5 ,

Vmax = 0.5, Amax = 0.5,

6 = 1, Rd = 2.5,

N = 4.

Ten separate simulation scenarios are presented below. The properties of each sim-

ulation, including average solve time, number of constraints, and number of variables,

are summarized in Table 3.1.



Table 3.1: Efficient RSBK Solution Properties
Figure N Select. Alt. VDCS? Det. Avg. Solve Mean # Mean #
Ref. CT? Pen.? Rad.? Time (ms) Cons. Vars.
3-7 9 No No No No 969 3851 205

3-8 9 No Yes No No 723 3858 213

3-9 16 No No No No 1672 6866 330

3-10 16 No Yes No No 1423 6881 345

3-11 16 Yes No No No 1041 3960 308

3-12 16 Yes Yes No No 729 3970 318

3-13(a) 16 Yes No Yes No 893 2914 308

3-13(b) 16 Yes Yes Yes No 650 2922 317

3-14 16 Yes No Yes Yes 406 2951 293

3-15 16 Yes Yes Yes Yes 433 2959 301

Fig. 3-7 shows the state history and trajectory plan at four specific timesteps

for a simulated vehicle using the Efficient RSBK algorithm to navigate to a goal

waypoint, obstructed by an obstacle. In this scenario, no altitude penalty is enforced,

and perfect knowledge of the environment is available to the vehicle. Furthermore,

Selective CT is not applied: Nc = (0, 1, 2, 3, 4, 5, 6, 7, 8}. The vehicle identifies a path

directly over the obstacle to the goal, as indicated by the optimal trajectory plan at

each timestep shown. The resulting smooth trajectory, shown in its entirety in Fig. 3-

7(d), satisfies all hard constraints at every timestep, despite the disturbances present

within the simulation.

Despite using a relatively large planning horizon, the first optimization (Fig. 3-

7(a)) has such small timesteps that it is unable to see the goal xG from its terminal

state xt+NIt. Instead, the terminal state is connected via line-of-sight to a cost map

node located on top of the obstacle. Since the cost-to-go in this case is the sum of

both this line-of-sight path and the cost map value, the optimization next seeks to

position itself where it can see the goal directly. This can be observed in Fig. 3-7(b):

the vehicle ascends at a higher rate than necessary to avoid the obstacle, so that the

goal can be seen from the terminal state. Once this has been achieved, the trajectory

reorients itself to follow the shortest path to the goal (Fig. 3-7(c)). Nonetheless, a

"bump" remains in the overall trajectory (Fig. 3-7(d)).

Table 3.1 indicates an average optimization solve time for this scenario of 969

ms, which is slightly shorter than the timestep length of 1 second. However, some
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of the initial optimizations do take longer than this timestep length. When this is

the case, the vehicle is required to proceed beyond the first waypoint before receiving

an updated trajectory plan, per line 12 of Algorithm 3.4. Since Efficient RSBK is

an anytime algorithm, however, long-term feasibility is maintained regardless of the

optimization duration.

Fig. 3-8 shows a scenario in which the waypoints of Fig. 3-7 are reversed - the

start and goal are interchanged - but an altitude penalty is enforced at a height of

3 meters. Since the obstacle is also 3 meters high, this forces the trajectory planner

to select a path around the obstacle, rather than over it, in order to minimize the

trajectory cost. As in Fig. 3-7, the resulting trajectory (Fig. 3-8(d)) is smooth and

satisfies all hard and soft constraints, including the altitude penalty. Additionally,

no churning takes place: once the trajectory planner has committed to follow a path

to the left, subsequent optimizations choose the same direction. However, the first

optimization (Fig. 3-8(a)) is again unable to see the goal from the terminal state. A

bump can be observed in its trajectory (Fig. 3-8(c)) where the vehicle cuts to the left

in order to see the goal from its terminal state quickly.

Otherwise, the scenarios of Figs. 3-7 and 3-8 are relatively similar: the mean

number of variables and constraints differ by less than 10 (Table 3.1), corresponding

to the altitude penalty constraints and related binary variables. The average solution

time is actually 25% smaller in this case than without the altitude penalty, despite

the additional variables and constraints. This may be attributable to a reduction in

the number of "directions" the planner can pursue. While the first scenario (Fig. 3-7)

gives the trajectory planner significant freedom to select an optimal path, the second

scenario (Fig. 3-8) restricts this freedom to a choice between moving left and moving

right.

Figs. 3-9 and 3-10 show the state history and trajectory plan at four specific

timesteps for the same scenarios as Figs. 3-7 and 3-8, respectively, but with the

planning horizon N increased from 9 to 16. As expected, the first optimization for

each scenario (Figs. 3-9(a) and 3-10(a)) is now able to see the goal position xG from

the terminal state without significant deviations from the shortest path.
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However, the additional degrees of freedom afforded by the extended horizon

length dramatically increase the complexity of the optimization. As noted in Ta-

ble 3.1 for each scenario, the average solution time and number of constraints have

nearly doubled compared to N = 9, while the number of variables has increased

by over 50%. In particular, the variance in the optimization runtimes has increased

significantly: the initial optimizations for each scenario may take much less than a

second or several seconds to complete.

These large variations in solution time can pose significant problems for the op-

timization engine, which has to measure the state of the vehicle (line 4 of Algorithm

3.4) before the optimization is performed (step 8 of Algorithm 3.4). To compensate,

the implementation used here propagates the measured state forward based on a

moving-average estimate of how long the optimization might take. If successive op-

timizations have significantly different solve times, there may be large discrepancies

between the predicted and actual vehicle state once an optimization has terminated.

As Figs. 3-9 - 3-10 indicate, these disagreements may be significant enough to

result in sub-optimal or even infeasible trajectories. For both scenarios, the first opti-

mization solve time is much larger than the second, causing the second optimization

to significantly overestimate the vehicle's progress. In this case, the vehicle may have

to act quickly and erratically to catch up. In Fig. 3-9(b), all constraints are satisfied,

but the trajectory has an unnecessary vertical deviation as the vehicle passes over

the obstacle. In Fig. 3-10(b), the lateral deviation is significant enough to cause the

UAV to violate the obstacle constraints.

It is thus clear that unnecessarily complex scenarios can lead to complications

which undermine Efficient RSBK's guarantee of robust feasibility for a realistic im-

plementation. The next four simulations show the significant improvements in per-

formance achieved by introducing Selective CT and VDCS, each of which removes

constraints and variables from the optimization.

Figs. 3-11 and 3-12 show the resulting trajectory plans for the same scenarios

as Figs. 3-9 and 3-10, respectively, but with Selective CT allowed; in particular,

Nc = {0, 1, 2, 3, 4, 6, 8, 10, 13}. Linear interpolation points are used at the seven opti-
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mization steps where the constraints are no longer being checked. By using Selective

CT, the output constraints are only checked at 9 timesteps, but the planning horizon

is still sufficiently long for the terminal state xt+Nlt to see the goal XG during the first

optimization (Fig. 3-11(a)). In Figs. 3-11(a) - 3-11(b), it can be observed that the

final two waypoints in each trajectory plan are closer in proximity than their prede-

cessors, despite having the longest timestep length in the plan (3 seconds). This is

due to the enforcement of trajectory safety, which requires a deceleration in the final

optimization steps in order for the final state to be a zero-velocity basis state.

Even though Theorem 3.1 cannot guarantee robust feasibility for the MILP opti-

mization, in practice it remains feasible for these scenarios and the simulation results

which follow. In fact, compared to Figs. 3-9 - 3-10, the resulting trajectories are

significantly smoother, and robustly satisfy all constraints. This is largely due to the

significant decrease in problem complexity which results by not enforcing constraints

at seven of the optimization steps (Table 3.1). In fact, the complexity of these scenar-

ios is only incrementally larger than Figs. 3-7 - 3-8, which check constraints at the

same number of optimization steps but have a much shorter total planning horizon

N. Because the problem complexity has decreased so significantly, the solution times

for successive optimizations have become more consistent, allowing the optimization

engine to better predict and plan for the state's future location.

Figs. 3-13(a) and 3-13(b) show the final trajectories resulting from the same

scenarios as Figs. 3-11 and 3-12, respectively, but with the original velocity 2-norm

approximation replaced with the VDCS scheme of Section 3.5.4. In the first two

scenarios, the velocity magnitude constraint is represented as a standard 2-norm

approximation with D = 20, corresponding to 200 constraints at each timestep. For

VDCS in Fig. 3-13, D = 6, d = p - pG, NR = 4, OR = r/9, and DR = 8. These

parameters correspond to the 2-norm approximation shown in Fig. 3-6(b), oriented

in the direction from the vehicle to the goal for each optimization.

As seen in Fig. 3-13, the resulting trajectories have not degraded appreciably

in quality compared to Figs. 3-11 - 3-12; both are relatively smooth and satisfy

all constraints. The trajectory in Fig. 3-12(d) avoids the obstacle to the right,
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Figure 3-11: Flying over an obstacle using Efficient RSBK with Selective CT.
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Figure 3-12: Flying around an obstacle using Efficient RSBK with Selective CT.
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Y Position (m)

X Position (m)

(a) Flying over an obstacle, Optimization 14

Y Position (m)

(b) Flying around an obstacle, Optimization 14

Figure 3-13: Efficient RSBK with both Selective CT and VDCS.
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while the trajectory in Fig. 3-13(b) avoids it to the left. However, because the

problem geometry is symmetric with respect to the axis connecting the start and

goal, either direction is equally cost-effective. On the other hand, there are significant

improvements in complexity obtained by using VDCS. Table 3.1 indicates that for

both scenarios with VDCS added, the mean number of constraints has decreased by

over 1000, while the average solution time has decreased by 12-14%.

Finally, Figs. 3-14 and 3-15 show the same scenarios as Figs. 3-13(a) and 3-13(b),

respectively, but with the assumption of perfect environmental knowledge removed.

Instead, the vehicle must use a detection radius of 2.5 meters, indicated by a red

box in the figures, to navigate and identify obstacles. As noted in Section 3.5.3, the

vehicle must remain within its detection box during each Efficient RSBK optimization

to ensure long-term feasibility. This is indeed the case at every timestep for these

scenarios.

At the first timestep, t = 0 (Figs. 3-14(a) and 3-15(a)), the vehicle is not aware

of the obstacle, and chooses a trajectory which unknowingly aims directly for it. If

the trajectory were not constrained to stay within the detection radius, the optimal

trajectory would be infeasible, due to the invisible obstacle it intersects. After two

timesteps, the obstacle is detected in both scenarios (Figs. 3-14(b) and 3-15(b)),

forcing the planner to recompute the cost-to-go map (line 6 of Algorithm 3.4) and

identify a new trajectory which avoids the obstacle. Because of the changing levels of

situational awareness, the resulting trajectories (Figs. 3-14(d) and 3-15(d)) are not

quite as smooth as those in previous scenarios. However, all hard and soft constraints

are still satisfied for both scenarios.

An interesting consequence of the detection radius approach is a decrease in the

average solution time over the course of the trajectory, compared to scenarios involv-

ing a perfect situational awareness. In fact, both scenarios using a detection radius

have solution times at least 30% faster than any other scenario considered (Table 3.1).

Because the optimal trajectory must remain within the detection radius, the freedom

of the algorithm in selecting trajectories is severely reduced. Additionally, only those

obstacles in close proximity to the vehicle need to be considered, making the detection
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Figure 3-14: Flying over an obstacle using Efficient RSBK with a detection radius

(red box).

107

Y Position (m)



Y Position (m)

(a) Optimization 1

; Trajectory PlanProjected StateLine-of-igt
Visibiy Pont
Start
Goal

- State History
+ Current State

-4 -2 0 2
Y Position (m)

(c) Optimization 5

-4 -2 0 2
Y Position (m)

(b) Optimization 3

(d) Optimization 14

Figure 3-15: Flying around an

(red box).
obstacle using Efficient RSBK with a detection radius

108

Projected State
Line-of- t

G oal
- State History

Cnrent State

7

4 6

.6

A -- - I



box a de facto obstacle reachable horizon (Section 3.6.3). This approach can be quite

useful for limiting the scope of the MILP optimization in cluttered environments,

since the cost map is available to help plan long-term trajectories.

3.8 Conclusions

This chapter has presented the Efficient RSBK trajectory planner, which integrates

existing and novel MILP-based planning techniques to quickly compute robust tra-

jectories within complex and uncertain environments. Selective CT allows the set

of input decision variables to cover larger planning horizons with a minimal increase

in complexity, though the guarantee of an always-feasible optimization is lost. The

VDCS scheme re-allocates constraints such that they are sufficient for good trajectory

behavior where needed, and sparse for low complexity elsewhere. Simulation results

show the advantages of incorporating both theoretically-inclined and implementation-

inclined algorithms. By reducing the complexity of the MILP optimization, this

planner demonstrates robustness and validates the techniques being used for efficient

real-time planning.
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Chapter 4

Experimental Results

In this chapter, hardware experiments are performed with quadrotors in the Real-time

indoor Autonomous Vehicle test ENvironment (RAVEN) [67] to demonstrate the tra-

jectory planner components introduced in this thesis. The flight results include tests

of a novel low-level control scheme, introduced in this chapter, as well as validation

of the MILP-based trajectory planner from Chap. 3, Efficient RSBK. The low-level

controller includes several significant improvements to the previous design within the

RAVEN software architecture which improve overall trajectory following and enable

tracking of aggressive maneuvers. While the low-level controller has been designed

specifically for a quadrotor vehicle, many of its design principles can be applied to

other vehicle types. The objective of these flight results is to verify the goals stated

in Chap. 1 are satisfied by the integrated vehicle planning and control architecture.

The structure of this chapter is as follows. Section 4.1 introduces the quadrotor

hardware and establishes the system model used by the low-level controller. The

RAVEN testbed is introduced in Section 4.2, while the low-level controller is presented

in Section 4.3. Hardware flight demonstrations are detailed in Sections 4.4 and 4.5 for

the low-level controller and Efficient RSBK, respectively. Finally, Section 4.6 offers

concluding remarks.
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Figure 4-1: Draganflyer Quadrotor Figure 4-2: X-UFO Quadrotor

ZI

XI

Figure 4-3: Quadrotor Model, at Zero-Angle Orientation

4.1 The Quadrotor

Though the work in this thesis is applicable to any UAV, the results in this chapter

focus on the quadrotor vehicle. A quadrotor uses four rotor blades in a cross configu-

ration to achieve hover and maneuvering with minimal gyroscopic effects. Quadrotors

are desirable for smaller-scale missions due to their simple design, maneuverability,

yaw-stable configuration, and vertical takeoff and landing (VTOL) capabilities [68].

The hardware results in this chapter focus on two specific quadrotors, the Draganflyer

(Fig. 4-1) and the X-UFO (Fig. 4-2).

A linearized version of the quadrotor dynamics is now derived, based heavily on

work in Refs. [1, 68]. Consider the model of the quadrotor in Fig. 4-3, with (x1 , yi, zI)

defining the inertial coordinate frame and (XB, YB, ZB) defining the quadrotor's body

axes. Here L is the maximum distance between the quadrotor's center of mass and

a rotor axis, while Q2i is the angular velocity of rotor i. Assume that the vehicle is

symmetric, such that Ixy = Ixz = Iyz = 0. Finally, assume that the configuration

shown in Fig. 4-3 corresponds to a roll ¢, pitch 0, and yaw b all equal to zero.

Suppose the Euler angles are propagated using the small-angle assumption [1];
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then the quadrotor dynamics are given by

I-I J L
Iy - Iz Jr 9 + 6ro,, (4.1)

Ix Ix Ix
I -I Jr L
= z x "r + y pitch, (4.2)

IY IY IY

I + - yaw, (4.3)

1
XE = (sin cos'1 - cos sin8sin')-6 coll, (4.4)m

1
YE = (- sin sine - cos Csin cos ) -6 ol, (4.5)m

1
ZE = -+ (COS COS)-6 coll, (4.6)

m

where I,, I,, and Iz are the body moments of inertia, Jr is the rotor blade moment

of inertia, and Q is the net rotor angular rate,

Q = Q 1 + Q 3 - Q2 - 4 . (4.7)

The inputs 6 ron, 6 pitch, 6yaw, and 5con are referred to as the roll, pitch, yaw, and

collective, respectively, and are related to the rotor angular rates through the non-

linear relation

6 roll

6 pitch

6 yaw

6 colI

0 -b 0 b

b 0 -b 0

d -d d -d

-b -b -b -b

(4.8)

where b is the rotor thrust factor and d is the rotor drag factor.

To identify a simplified form of the vehicle dynamics, assume that Q = 0 and

Ix = I, due to vehicle symmetry. Applying the small-angle assumption to the Euler
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angles and angular rates, the vehicle dynamics (4.1)-(4.6) become

L L 1
- roll, = 6 pitch, 6yaw, (4.9)

1 1 1
X E -= Ecoll, YE= -- 6coll, ZE = -9 + coll. (4.10)

m m m

By linearizing the collective about the equivalent gravity force [68],

Jcoll = mg + colln, (4.11)

and dropping small terms, (4.9)-(4.10) are simplified to the set of equations

L
~= - roll, XE = g, (4.12)

L
0 = -pitch, E = -gO, (4.13)

1-

ZE = 
6coll, (4.14)

1
'= 1Syaw. (4.15)

Note that the dynamics have decoupled into four separate subproblems, one per row,

each with its own unique input. Each component of the translational and rotational

dynamics can be modeled separately as a simple double integrator. This is the model

used by the low-level controller (Section 4.3) to control the UAV.

4.2 RAVEN Testbed

The Real-time indoor Autonomous Vehicle test ENvironment (Fig. 4-4) is a testbed

designed for the execution of missions by teams of UAVs [1, 67, 69, 70]. By decom-

posing UAV missions into the hierarchy specified in Fig. 1-5, the RAVEN software

architecture maintains a modular format amenable to incremental upgrades and en-

hancements. The software autonomously manages low-level tasks such as navigation

and tasking, allowing operators to focus on higher-level objectives. The testbed is
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Figure 4-4: RAVEN Testbed

also outfitted with health management tools which reduce the risk of vehicle failure

within the testbed [71, 72].

State data is provided to the vehicles within RAVEN by the Vicon Position-

ing System [73], a global metrology system consisting of infrared LED cameras and

lightweight reflective markers. These markers are individually attached to vehicles

(see Figs. 4-1 - 4-2) in order to create a uniquely detectable configuration for each.

Eighteen cameras placed around the room (see Fig. 4-4) record the locations where

light is reflected. A central processing unit then assimilates each camera's obser-

vations to identify the state of each marker configuration in the room. This state

data is produced and filtered at 100 Hz and is generally quite accurate, with a static

error rarely exceeding 0.4 millimeters [1]. With its non-intrusive state estimation

system and controlled environment, the RAVEN testbed promotes rapid prototyping

of vehicles and control algorithms.

Within the RAVEN software architecture, the Vehicle Controller (see Fig. 1-5) is

further decomposed into several smaller components (Fig. 4-5). With the exception

of the Reference Controller output, all inputs and outputs of the Vehicle Controller

components are waypoints of some form. All waypoints include a position as well

as a heading command (typically zero), but may also include a velocity command

and/or arrival time. The User Interface and Vehicle Manager are discussed below;

the Trajectory Generator and Reference Controller are grouped together as the low-
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Figure 4-5: RAVEN Vehicle Controller Architecture

level controller and are discussed in detail in Section 4.3.

4.2.1 User Interface

A graphical user interface is used by the operator to monitor progress and declare

tasks, either through an external planner or by the user directly. If the vehicle way-

points are provided by an external trajectory planner, such as Efficient RSBK, a

"black box" within the interface forwards waypoints xT P to the Vehicle Manager and

provides Vicon state data to the external planner at 2 Hz. The user can also declare

tasks directly, through the user interface's real-time graphical representation of the

environment (Fig. 4-6). Within this environment, the user can select vehicles and

issue vehicle-specific commands, such as waypoints x W .

4.2.2 Vehicle Manager

The Vehicle Manager handles many of the vehicle's administrative needs, including

health and task management. The manager receives and processes task messages

from the user interface, monitors the status of current tasks, and maintains a list

of future tasks to be performed. Each task is associated with one or more current

waypoints x C which the vehicle is to approach in some sequence. Whenever a task is

in progress, the manager uses a set of threshold criteria to determine when to move

to the next waypoint in the queue. These criteria depend on the type of waypoint

task being considered, and are discussed further in the following section.
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Figure 4-6: RAVEN Visualization Environment

4.3 Low-Level Controller

This section introduces a low-level control scheme designed to encourage accurate

waypoint tracking and enable following of aggressive trajectories. After establish-

ing the task termination criteria used by the Vehicle Manager (Section 4.2.2), the

Trajectory Generator and Reference Controller are each discussed.

The UAV software architecture uses two specific types of waypoint tasks: speed-

based waypoints and time-based waypoints. Speed-based waypoints, built into the

original RAVEN architecture [1], are used by the vehicle while hovering or moving

to a waypoint at a fixed speed. A speed-based waypoint is specified by a desired

position pw, heading ow, and traverse speed vw, and is used for all tasks except

fly-to-waypoint tasks. Time-based waypoints, on the other hand, dictate that the

vehicle arrive at a waypoint position Pw with a desired velocity vw at a specific

arrival time A seconds in the future. The low-level controller for this waypoint type

is a novel contribution to the software architecture, and is used whenever the vehicle

is completing a fly-to-waypoint task. Note that all time-based waypoint tasks have

an assumed heading Ow = 0. Finally, either type of waypoint task may include an

additional command to clear the current UAV task list before being added.
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4.3.1 Termination Criteria

The Vehicle Manager (Section 4.2.2) uses termination criteria, dependent on the

waypoint type, to indicate when the UAV has "arrived" at each assigned waypoint.

Speed-based waypoint tasks are monitored using a three-dimensional distance thresh-

old, such that if the vehicle comes within some minimum distance of the waypoint the

task is considered completed. This criterion is appropriate for speed-based waypoints

because the tasks which use it typically favor arrival positional accuracy over precise

following of a reference trajectory.

Since time-based waypoints are each associated with an arrival time, a task is

considered complete once its arrival time has been reached, regardless of the UAV's

state. With this criterion, tasks are completed at user-specified times, and rely on

the low-level controller to track waypoints accurately. This condition is particularly

useful when the UAV is to follow a specific sequence of waypoints. If a distance

threshold criterion were to be used, a late arrival at one waypoint may invalidate

the arrival times at subsequent waypoints, leading to jittery motion and possibly

dangerous behavior. By making the tasks independent of the vehicle location, a se-

quence of waypoints can be provided to the Vehicle Controller to "pre-load" arbitrary

trajectories.

4.3.2 Trajectory Generator

The Trajectory Generator uses a single input waypoint xCw to generate a detailed

reference trajectory XR(t) for the reference controller. There are several reasons why

this additional level of hierarchy is necessary for the planner. First, because the

waypoint may be associated with arrival commands, such as a velocity and/or time,

the waypoint alone does not provide sufficient degrees of freedom for the controller

to meet the waypoint specifications. Second, this hierarchy allows the trajectory-

following problem to be decoupled into two disparate components: a relatively slow

(- 1 Hz) trajectory planner which optimizes coarse trajectories in real-time, and

a relatively fast (50 Hz) low-level controller which interpolates those results into a
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finely-grained trajectory to track.

The trajectory generator for speed-based tasks uses a so-called "carrot controller,"

in which the reference position PR is moved toward the goal at the specified traverse

speed vw. At each controller iteration, with a timestep spacing of 6, PR is moved

a distance of vw 6 in the direction pw - p, where p is the UAV's current position.

If the dot product (Pw - p) - (pw - PR) is negative, the waypoint has been passed

and the reference is set directly to the waypoint, PR = pw. This approach moves

the reference linearly towards the goal, and cannot explicitly incorporate an arrival

velocity or time.

The trajectory generator for time-based waypoints builds a time-parametrized

cubic spline connecting the initial position and velocity with the final position and

velocity at the specified time. While more complex than the speed-based trajectory

generator, this approach can be used to construct realistic interpretations of complex

waypoint behavior, especially if the UAV needs to smoothly transition through a

sequence of waypoints.

Because the spline formulation is independent and identical for all three coordinate

dimensions, only the x-coordinate is described here; the y-coordinate and z-coordinate

formulations follow immediately. Consider a vehicle at position PxI with velocity vxl

which is scheduled to arrive at the position PxG with velocity vxG after the time

interval A. Model the reference trajectory as a cubic function,

pxR(t) = a 3t 3 + a2t 2 + alt + ao, (4.16)

where ai V i E N3 are coefficients to be identified. Without loss of generality, assume

that the arrival time is t = 0; then the constraints on the reference trajectory are

- a3A3 + a2A 2 - a 1A + a 0 = PxI, (4.17)

3a3 A2 - 2a 2A + a = vxI, (4.18)

ao = PxG, (4.19)

a l = vxc. (4.20)
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This system of equations can be uniquely solved for any A > 0, yielding the coeffi-

cients

a 3

a 2

a,

ao

2/A 3  1/A 2 -2/A 3  1/A 2

3/A 2  1/A -3/A 2  2/A

0 0 0 1

0 0 1 0

PxI

PxG

VxG

(4.21)

For this approach, only one spline needs to be considered at a time. Whenever

a new task is initiated, the vehicle manager uses (4.21) to generate the spline coef-

ficients for each coordinate dimension. For the first spline in a sequence, the initial

position pI, velocity vi, and time t1 are taken from the most recent available vehicle

state data. For subsequent waypoints, these quantities are assigned the position, ve-

locity, and time of the previous waypoint in the list. In this manner, the time-based

trajectory generator can build complex, continuously differentiable trajectories con-

sisting of piecewise cubic interpolations. In both cases, the final position PG, velocity

VG, and time tG are taken from the waypoint task itself. Once a spline has been

initialized, the trajectory generator can identify its reference position at any time by

evaluating (4.16) for each dimension using the current time.

4.3.3 Reference Controller

The Reference Controller uses the reference trajectory XR(t) from the Trajectory

Generator to calculate quadrotor control inputs at 50 Hz, based on the model (4.12)-

(4.15). The four inputs, con, 6 roll, pitch, and 6yaw, are normalized to the range

[-1, +1], where 0 is the nominal trim and ±1 are full deflections in either direction.

The RAVEN baseline controller, used for speed-based waypoints, applies LQR

control to (4.12)-(4.15) with an integrator state added to each decoupled subsystem.

In the LQR calculations, a relatively large cost is placed on the angular position,

while a relatively small cost is placed on the angular rate [1]. The resulting control
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laws are

oll = Kzg Kzi (PzR - z) + KzP(PzR - z) - Kzdzi , (4.22)

6 roll = Kyg [Ky (PyR - y) + K(pyR - y) - Kyd + KrpO + Krdl ,(4.23)

6 pitch Kxg [Kxi (PxR - X) + Kxp(PxR - x) - Kxdi + Ktp + KtdA ,(4.24)

6yaw - Kw Kwi (OR - 0) + Kwp( R - V) - Kwd ] 
;  (4.25)

5yaw Kr ~(4.25)

the gains are not edited in this thesis and thus are omitted for brevity. Note that

gravity is not explicitly included in (4.22), but is balanced by integrator error buildup

in (4.22) during the first moments of flight.

While this controller has been demonstrated to yield good performance for pure

hover, it is not sufficient for effective tracking of more aggressive maneuvers. In

(4.22)-(4.24), only the position is tracked by the controller; the velocity, Euler angles,

and angular rates are all regulated to zero. This can lead to poor performance when

tracking trajectories require high speeds and/or large bank angles. For this reason,

the time-based reference controller modifies (4.22)-(4.24) to include velocity and Euler

angle tracking.

Consider the derivatives of the reference trajectory (4.16) for the x-direction (the

y- and z- directions are similar),

d
vxR(t) = -pxR(t) = 3a 3t2 + 2a 2 t + a1 , (4.26)

d2
axR(t) = d PxR(t) = 6a 3t + 2a 2. (4.27)

The addition of velocity tracking to (4.22)-(4.24) is straightforward:

- KzdZ -+ Kzd(VzR- z), (4.28)

-Kyd -) Kyd(vyR - l), (4.29)

-Ka -+ Kxd(VxR - ). (4.30)
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This formulation allows both waypoint types to use the same controller. For example,

if a speed-based waypoint is issued, (4.22)-(4.24) are recovered by simply setting

VR = 0.

For angular tracking, it is necessary to relate the pitch angle 0 and roll angle 4 with

the reference acceleration terms, aR and ayR. Suppose that the quadrotor intends

to achieve an acceleration of aR in some reference direction via an input acceleration

av at the tilt angle a (Figure 4-7). In order to maintain altitude, the vehicle must

satisfy the constraints

avcos a = g, (4.31)

av sin a = aR, (4.32)

where g is acceleration due to gravity. Dividing (4.32) by (4.31) yields

aR 1 aR

tan a = a a = tan- 1  (4.33)
9 9

Finally, the accelerations must be converted from the inertial frame (x!, yi) into the

body frame (XB, YB) (Fig. 4-3), using the relation

B sin cos x

LYB cos V - sin VJL YI

Combining (4.33) and (4.34) yields the angle-acceleration relationships

=- tan- 1 ax (4.35)
g

= tan- 1 ay (4.36)
9

The corresponding tracking substitutions in (4.23)-(4.24) are

KtpO -- Ktp( + tan-laR (4.37)

Krpq -+ Krp -1tanl ayR (4.38)
IN,
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av

Figure 4-7: Derivation of Angle Tracking

During flight tests, it has been observed that the quadrotor often slows down faster

than predicted when moving from an angle towards a waypoint (to speed up) to an

angle away from a waypoint (to slow down). This loss of momentum often causes the

vehicle to deviate significantly from the reference trajectory, resulting in large errors

at the time of arrival (Section 4.4). To correct this, a drag feed-forward (DFF) term

may be added to the reference acceleration terms,

aff = Kxg2sgn(x), (4.39)

af = K, a 2sgn(y), (4.40)

where sgn(.) is +1 for positive inputs, -1 for negative inputs, and 0 otherwise.

Remark 4.1. (angular rate tracking) While angular rate tracking could also be

used in (4.23)-(4.24), it is actually counterproductive for a cubic-based reference.

Because the reference position (4.16) is a cubic function, the derivative of the reference

acceleration (4.27) is a non-zero constant,

aR(t) = 6a 3. (4.41)

However, this reference neglects an impulse necessary at each boundary, correspond-

ing to the discontinuities at the boundaries of (4.27). As a result, such a tracking
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term actually works against the efforts of the other controller components. Given this

result, and the fact that the angular rate gain is already the smallest for each control

law [1], angular rate tracking is not included.

Remark 4.2. (MILP simulation) The simulation model used in Chapter 3 is based

on the low-level design described in this section and operates at the same frequencies.

The spline-based trajectory generator is essentially kept intact. The vehicle dynamics

(4.12)-(4.15) are further simplified by inserting (4.35)-(4.36), applying the small-angle

assumption, and removing all angular dynamics:

= a_, (4.42)

y = ay, (4.43)
1

z = -az, (4.44)
m

where the mass of the Draganflyer is used for m. The reference controller uses (4.22)-

(4.24) with the angular terms removed and (4.28)-(4.30) included:

a = Kxg Kxi (PR - x) + Kp(PR - x) - Kxd(VR - (4.45)

ay = K, K J(PyR - y) + Ky(Py- y) - Kd(VyR - )] , (4.46)

az = K 9 Kzi (PzR - z) + Kzp(PzR - z) - Kd(zR- (4.47)

4.4 Flight Results: Low-Level Controller

In this and the following section, flight results are demonstrated using the Draganflyer

and X-UFO quadrotors in the RAVEN testbed. The low-level controller of Section

4.3 is demonstrated in this section, followed by flight results using Efficient RSBK in

Section 4.5.
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4.4.1 Stationary Hover

In the first flight test, the quadrotor is to hover at the point (0.0, 0.0, 1.5)-m for

five minutes. This task uses the speed-based low-level controller, and is a useful

demonstration of that controller's ability to hold a specific position. Figs. 4-8 and

4-9 show the resulting deviation in each coordinate direction for the Draganflyer and

X-UFO, respectively. Error boxes are marked for the 75th and 100th percentile of

deviation in each coordinate direction. Note that a similar test is performed in Ref. [1].

It is clear from Figs. 4-8 and 4-9 that the existing low-level control structure en-
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ables the quadrotors to achieve stationary hover with high accuracy. For the duration

of the 5-minute flight, both vehicles remain within a 20-cm error box centered on the

waypoint. Furthermore, both vehicles remain within a 7.5-cm error box for at least

75% of the flight duration. While both vehicles behave similarly, the bounding boxes

for the X-UFO (Fig. 4-9) are slightly smaller than those for the Draganflyer (Fig. 4-

8). This data is used in Section 4.5 to approximate the disturbance environment for

these vehicles.

4.4.2 Single-Dimension Tests

The next series of flight tests compares the effectiveness of each type of low-level

control scheme following simple trajectories. In these tests, the vehicle is instructed

to move back and forth along each coordinate axis, over distances not exceeding 1

meter. A new waypoint task is sent to the vehicle every ten seconds; each waypoint

task is to be performed over a time interval of A = 4 seconds, followed by a 6-second

rest period. Since this arrival time is not compatible with the speed-based controller,

its waypoints are sent to the vehicle manually, with traverse speeds vw chosen such

that the reference arrives at the waypoint approximately 4 seconds after the task is

initiated.

Fig. 4-10 shows the reference and actual position and velocity profiles for the Dra-

ganflyer quadrotor using the speed-based controller. First, observe that while the

position reference consists of straight-line segments, the velocity reference remains at

zero throughout all trajectories. This is accurate, since the speed-based controller

regulates all velocity components to zero. However, these two references are contra-

dictory, and work against each other during maneuvers.

As a result, the vehicle tends to lag significantly behind the reference position

profile (Fig. 4-10(a)) for most waypoints. In some instances, the reference arrives

at the waypoint before the vehicle has covered even half the distance; the vehicle

then may not arrive for up to 4 more seconds. This is supported by the vehicle's

velocity profile (Fig. 4-10(b)). For the tasks where the vehicle is to maneuver 1 meter

in 4 seconds, the desired traverse speed is 0.25 m; however, the velocity profile only
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Figure 4-10: Position and velocity profile for the Draganflyer quadrotor following a

simple trajectory using the speed-based low-level controller. Note the times - each

dimension is tested individually and in succession.
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reaches this speed around the time when it should already be at the goal.

The z-controller, on the other hand, does achieve better performance compared to

the other dimensions. While the vehicle still exhibits some lag and overshoots most

waypoints, the vehicle arrives at each waypoint at or before the designated time.

Additionally, its velocity profile remains relatively static during each task, near the

desired traverse speed.

Fig. 4-11 shows the same results for the Draganflyer quadrotor, but using the

time-based controller either with or without DFF. Here, the position reference is a

continuously differentiable curve, with a cubic spline preceding each waypoint. (An

additional waypoint is placed just before the beginning of each maneuver, instructing

the vehicle to "hold position" for 6 seconds.) Additionally, the velocity reference is

now a non-zero quadratic profile during each maneuver, rather than zero.

It is immediately clear in Fig. 4-11(a) that position tracking has improved signif-

icantly, compared to results with the speed-based controller. Regardless of whether

DFF is used, the vehicle is within 20 cm of each waypoint at the designated arrival

time. Once the arrival time has passed, very little overshoot is observed. Indeed,

the only trajectory with any significant overshoot is the z-controller, though its over-

shoot is significantly smaller here than in Fig. 4-10(a). However, the z-controller also

demonstrates the best arrival accuracy: the vehicle is within 12 cm of each waypoint

at the designated arrival time.

A notable concern in the flight results for the x- and y-position without DFF is that

the position tends to lag behind the reference during the second half of the maneuver,

causing the vehicle to undershoot waypoints. Fig. 4-11(b) demonstrates a consistent

reduction in speed which occurs whenever the vehicle begins to decelerate. This

suggests that the vehicle actually slows down faster than predicted by the approximate

vehicle model (4.12)-(4.15), and motivates the usage of the drag feed-forward terms

(4.39)-(4.40). Fig. 4-11(a) demonstrates that by using DFF with Kdrag = 1.0, the

arrival accuracy is significantly improved, with the vehicle arriving within 6 cm of

each waypoint at the designated arrival time.

Finally, Fig. 4-12 shows the same test as Fig. 4-11, but using the X-UFO with
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Figure 4-11: Position and velocity profile for the Draganflyer quadrotor following a

simple trajectory using the time-based low-level controller, both with and without
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the time-based controller. By comparison to Fig. 4-11, the position tracking, and

especially the velocity tracking, are superior. Using the same drag feedforward as with

the Draganflyer, i.e. Kdrag = 1.0, some overshoot is observed in the x- and y-position.

However, for the purposes of this thesis, this result is often a preferable alternative

to undershooting position waypoints. For this reason, all maneuvers performed in

subsequent flight results, including Section 4.5, use the time-based controller with

the drag feed-forward term.

4.4.3 Advanced Trajectories

The time-based low-level controller also demonstrates strong tracking performance

for waypoint sequences which require high speeds and/or complex trajectories to be

successfully navigated. A key advantage of the time-based controller is the ability to

build arbitrary smooth reference curves by sending the vehicle controller waypoints

sampled from the curves. The effectiveness of this approach in constructing complex

maneuvers is demonstrated in the following flight results.

Suppose the vehicle is to fly on a circular path with a radius of R meters and

a period of T seconds. This trajectory can be approximated for the time-based

low-level controller by sampling N equally-spaced waypoints around the circle, with

arrival times spaced T/N seconds apart and a velocity of magnitude

Vc =2 (4.48)
T

tangent to the circle at that point. Since cubic segments are used to interpolate

between these waypoints, accurate approximations of a circular path can be achieved

for small values of N. Fig. 4-13 compares the approximate reference circle (N = 4)

used below to the exact circle it represents.

Fig. 4-14 shows the reference and actual trajectory for an X-UFO using the time-

based low-level controller to fly three circular laps in RAVEN [70]. Each circle is

centered at the point (0.0, 3.3, 1.5)-m, with R = 1.5, N = 4, and T = 24 (Fig. 4-

14(a)) or T = 15 (Fig. 4-14(b)). Because the reference trajectory assumes the vehicle
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Figure 4-13: Spline-based Circle Approximation, N = 4

begins and ends with a zero velocity, some of the reference trajectory components

at the top of each figure compensate by "pulling" the reference trajectory within

the circle there. For T = 24 (Fig. 4-14(a)), the controller exhibits excellent tracking

performance, with a maximum deviation of 10 cm. As the period decreases to T = 15

(Fig. 4-14(b)), tracking performance does begin to degrade. However, even in this

case, the vehicle is able to approximate a circular trajectory with a relatively high

speed (Vc = 0.63 m/s). In both cases, the vertical z-deviation never exceeds 6 cm

during any of the 3 laps.

Much of this tracking performance is maintained even if the quadrotor is moving

in all three dimensions. Fig. 4-15 shows the flight results for the X-UFO flying in a

circle with R = 1, N = 4, and T = 16, but tilted 45 degrees about the -x-axis. The

resulting tracking accuracy for this trajectory is similar to the circle in Fig. 4-14(b),

which has a slightly shorter period and a larger radius. Finally, Fig. 4-16 shows

the reference and actual trajectories for the Draganflyer flying a complex trajectory,

involving two revolutions of a helix followed by a vertical descent down the middle.

Note that in this figure, the reference trajectory is bounded from above at a height

of 2.5 meters, due to the physical boundaries of the RAVEN room as specified in

the trajectory generator. Nonetheless, the influence of the velocity tracking term in

(4.22) is significant enough that the quadrotor's altitude exceeds 2.5 meters anyway,
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Figure 4-14: X-UFO following a circular reference trajectory for 3 laps using the time-

based low-level controller. The circle is centered at (0.0, 3.3, 1.5) m with a radius of

1.5 meters.
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in order to achieve the downward velocity of the next waypoint. This, in particular,

emphasizes how the additional tracking terms (4.28)-(4.30) assist in the tracking of

aggressive maneuvers.

4.5 Flight Results: Efficient RSBK

This section presents flight results using the X-UFO quadrotor in RAVEN with the

Efficient RSBK algorithm, integrated with the low-level controller proposed in this

chapter. The intent of these results is to show that even with the advanced logic

built into the Efficient RSBK algorithm, the approach remains capable of effective

real-time performance in an actual implementation.

The speed-based low-level control formulation has two major limitations which

make it unsuitable for the Efficient RSBK implementation. In both simulation and

hardware experiments, the vehicle response time is sufficiently slow that the vehicle

only ever achieves a fraction of the commanded speed. Additionally, there is no system

in place to ensure the vehicle remains on schedule, making MILP replanning extremely

difficult to properly execute. Indeed, the time-based controller does a superior job

recovering the "intent" of the MILP planner's discrete waypoints by weaving them

together into a smooth, well-defined reference trajectory.

In this scenario, the vehicle is instructed to move back and forth between two

waypoints spaced 3.5 meters apart and separated by an obstacle of size 0.5 x 2.5 x 2.0

mI. The vehicle's shortest path takes it over the obstacle; however, an altitude

penalty may be imposed at 2 meters, forcing the X-UFO to navigate around the

obstacle. Perfect knowledge of the environment is assumed, and the VDCS scheme

introduced in Fig. 3-13 is used.

Many of the parameters specified in Section 3.7 are also used here. However, the

position, velocity, and acceleration constraint bounds have changed, as well as the
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timestep formulation:

Pmin= -2.5 -2.5 0 ]T Pmax= 2.5 2.5 3 ,

Vmin = -0.0.4 -0.4 -0.4 ,] Vma = 0.4 0.4 0.4 ]

amin = -0.4 -0.4 -0.4 , amax = 0.4 0.4 0.4

Vmax = 0.4, Amax = 0.4,

= 2, N =7,

Nc = {0, 1, 2, 3, 4, 5, 6, 7}.

All other parameters are the same as in Section 3.7. In fact, the disturbance level -y in

that section was chosen experimentally to approximate the disturbance environment

indicated by Figs. 4-8 - 4-9 for the quadrotors.

Fig. 4-17 shows the results from a single flight of the X-UFO in RAVEN, in which

the Efficient RSBK algorithm is used to guide the UAV between the two waypoints.

When moving from the right waypoint to the left waypoint, the aforementioned al-

titude penalty is enforced, while the penalty is relaxed when moving in the opposite

direction. Each type of maneuver was performed five times, resulting in five "loops"

moving around the obstacle.

As Fig. 4-17 indicates, the combined Efficient RSBK / low-level controller im-

plementation is capable of following high-performance, robustly feasible trajectories.

For both scenarios, the planner is able to not only identify the optimal trajectory,

but also follow it with reasonable accuracy. The maneuver over the obstacle is partic-

ularly consistent, possibly due to superior tracking accuracy in the z-direction. The

average optimization solve time is 364 ms over the obstacle and 502 ms around it,

demonstrating a capability for on-line rapid response to a dynamic environment.

Finally, Fig. 4-18 shows the actual motion of the X-UFO within the RAVEN

testbed, moving over and around the obstacle.
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Figure 4-17: Ten applications of the Efficient RSBK algorithm on the X-UFO in a
single flight. The UAV is instructed to alternate between two waypoints (yellow),
flying either above (blue) or around (red) the obstacle.

4.6 Conclusions

The flight results in this chapter demonstrate that the MILP-based planning and

control architecture developed throughout this thesis can be successfully implemented

in a realistic hardware environment. The Efficient RSBK algorithm cannot perform

its optimization sufficiently fast to directly feed waypoints into the vehicle controller;

thus it is crucial that the low-level controller be able to reasonably interpolate and

follow the planner's waypoint sequence. The time-based low-level controller in this

chapter is designed for this purpose. Flight results show that this controller is capable

of guiding a UAV through a complex sequence of waypoints with accurate position

tracking, velocity tracking, and arrival times. Further flight tests integrating this

low-level control scheme with Efficient RSBK verify that this planner can identify

and track robustly feasible trajectories in a real-world, uncertain environment.
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Figure 4-18: Composite photos showing sample trajectories followed by the X-UFO
using Efficient RSBK.
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Chapter 5

Conclusion

This thesis has presented a UAV trajectory planner which integrates existing tech-

nologies with novel refinements to identify robust, efficient trajectories in complex

and uncertain environments. This planner, named Efficient RSBK, is guaranteed to

satisfy all constraints at every timestep, yet minimizes the problem complexity by in-

cluding only those core components necessary to maintain this robust feasibility. The

effectiveness of this approach in identifying and following optimal trajectories has

been thoroughly demonstrated, both in simulation and in an actual implementation

using quadrotors in the RAVEN testbed.

Each chapter has explored a specific component of this planner which is neces-

sary for trajectory planning in realistic scenarios. Chapter 2 explored a collection

of techniques in RMPC, a means for guaranteeing robust feasibility in the presence

of disturbances. Theoretical analysis has shown that these approaches, which are

tractable for on-line optimization, are actually quite similar in form, with a key dif-

ference being the number of available on-line decision variables. Simulation results

suggest that the CT formulation possesses a runtime advantage by maintaining the

complexity of nominal MPC, while the AFP formulation holds an advantage in closed-

loop performance if paired with an expected objective function.

Chapter 3 detailed the MILP-based planner, Efficient RSBK, which encodes the

UAV problem constraints and identifies a coarse, high-level trajectory plan, given an

input waypoint. By incorporating the RSBK algorithm, Efficient RSBK robustly sat-
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isfies constraints with a guarantee of trajectory safety, while techniques from Variable

MILP allow problems with long planning horizons to be modeled using a small num-

ber of degrees of freedom. Novel refinements, such as Selective CT and VDCS, give

the operator freedom to place constraints and decision variables only where needed

in the problem formulation.

Finally, Chapter 4 introduces a low-level planner which ensures that the intent of

Efficient RSBK's output waypoint plans is actually carried out by the UAV, through

reference-tracking accuracy. Its trajectory generator interpolates between sparse way-

points to create a high-fidelity reference trajectory, while the reference controller in-

cludes velocity and even angular tracking to achieve all intended maneuvers.

The viability of this approach is most easily demonstrated by verifying that the

success criteria established in Section 1.3.2 are being met. Simulation and hardware

results have shown that whenever the optimization can accurately predict the state's

future location, all hard and soft constraints are satisfied at all desired timesteps,

regardless of the disturbance realization (#1). These trajectories exhibit "expected"

behavior, in the sense that they follow logical, shortest-path approaches to waypoints

with minimal deviation (#2). With all refinements in place, the trajectory planning

algorithm has been shown to achieve solution times at or below the chosen timestep

length, indicating viability for real-time planning (#3). Once the planner has selected

a direction to guide the vehicle, it maintains that direction until new obstacles are

perceived (#4). Finally, Sections 4.4-4.5 have demonstrated that it is possible to

accurately follow complex trajectories generated by the trajectory planner (#5).

In summary, the planner developed in this thesis demonstrates a growing level

of maturity in the fields of RMPC and MILP-based trajectory planning, which will

continue to enhance the autonomous capabilities of UAVs and expand the scope of

their missions.
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5.1 Future Work

Several key issues and topics have emerged from this work which merit further re-

search, and are each discussed in turn below.

5.1.1 Disturbance-Aware Cost-to-go

Since a key advantage of RMPC is the conversion of an infinite-horizon control prob-

lem into a tractable finite-horizon control problem, the selection of an accurate cost-

to-go is of critical importance. As described in Chap. 2, many modern RMPC ap-

proaches still use conventional forms of the cost-to-go which disregard disturbances

and constraints, but can be used to satisfy some stability criteria. However, without

an accurate model of the cost-to-go, the predicted cost may not accurately represent

the actual incurred cost (Section 2.5.3).

A simple approximation of the cost-to-go which incorporates some notion of the

disturbance environment would be a useful tool for future RMPC applications. Some

preliminary analysis of this type has been performed in the Chap. 2 Appendix.

There, results suggest that the conventional (e.g. quadratic) form of the cost-to-go is

sufficient for the disturbance free and expected objectives, if the terminal control law

is assumed to be applied at all timesteps beyond the horizon N. However, a broader

analysis should be performed which considers arbitrary forms of terminal control and

explores alternative ways to compute the cost-to-go, such as dynamic programming

and multi-parametric quadratic programming. A truly useful approximation should

incorporate some knowledge of disturbances and constraints, without significantly

increasing the complexity of the on-line optimization.

5.1.2 Expansion of RMPC Analysis

While the theoretical and numerical analysis in Chap. 2 has offered several insights

relating CT and AFP approaches, it is relatively narrow in scope: only affine feed-

back policies are considered. While affine approaches provide a useful balance of on-

line feedback design with problem complexity, there are other available approaches
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which are similarly useful. A broader analysis might incorporate several other mod-

ern RMPC approaches of comparable complexity, such as triple mode RMPC [74]

and tubes [75]. Additional benchmarks may also be applied to identify performance

bounds, such as minimax MPC [17]. By identifying the fundamental theoretical dif-

ferences separating available approaches, it may be possible to establish a core set

of RMPC principles which enables it to reach a comparable level of maturity with

nominal MPC [13].

5.1.3 Intelligent Selection of Cost-to-Go Nodes

Because the shortest path between two points in a non-convex environment does

not generally pass through obstacle vertices [64], the original extension of the MILP

visibility graph cost-to-go [42] to three dimensions places a graph node at each obstacle

edge midpoint [45]. While adding additional nodes to the visibility graph does not

necessarily lead to significant improvements in accuracy [45], it may be possible to

increase the utility of these nodes by reallocating their locations based on the locations

of the start and goal. For example, by sampling planes which contain both the start

and goal, obstacle edges which intersect these planes are good candidates for visibility

graph nodes, since the shortest path might reasonably pass through or near these

points. Fig. 5-1 shows a possible allocation of visibility graph nodes for an obstacle

intersected by two sample planes.

5.1.4 Aerobatic Quadrotor Control

Flight experiments in RAVEN have shown that if the circle test in Fig. 4-14 is

performed for T = 8 seconds, the motion is sufficiently quick to drive the vehicle

unstable. However, the specific demands on the quadrotor at any one time instant

are within the vehicle's capabilities: a speed of 1.18 m/s and a bank angle of 5.4

degrees. For more aggressive maneuvers, the simplifying small-angle assumptions

used in Section 4.1 to allow LQR control may no longer be accurate. In this case, an

alternative, possibly non-linear, controller may be preferable.
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Figure 5-1: Possible allocation of obstacle nodes for the cost-to-go visibility graph,
based on the locations of the start (red circle) and goal (yellow star, behind obstacle).

There are several ways in which the time-based low-level controller (Section 4.3)

might be modified to enable more aerobatic maneuvers. Heading tracking may be

useful in improving trajectory feasibility; in the circle test, for example, the quadrotor

may achieve better performance by maintaining a fixed heading with respect to the

center of the circle. Advanced controllers which could be considered include non-

linear control and adaptive control, as well as hybrid control, which could augment

the existing controller with a library of pre-programmed, agile maneuvers [35, 36].
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