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Abstract

Robotic motion planning is a hard problem for robots with more than just a few
degrees of freedom. Modern probabilistic planners are able to solve many problems
very quickly, but for difficult problems, they are still unacceptably slow for many
applications. This thesis concerns the use of previous planning experience to allow
the agent to generate motion plans very quickly when faced with new but related
problems.

We first investigate a technique for learning from previous experience by simply
remembering past solutions and applying them where relevant to new problems. We
find that this approach is useful in environments with very low variability in obstacle
placement and task endpoints, and that it is important to keep the set of stored plans
small to improve performance. However, we would like to be able to better generalize
our previous experience so we next investigate a technique for learning parameterized
motion plans.

A parameterized motion plan is a function from planning problem parameters to
a motion plan. In our approach, we learn a set of parameterized subpaths, which we
can use as suggestions for a probabilistic planner, leading to substantially reduced
planning times. We find that this technique is successful in several standard mo-
tion planning domains. However, as the domains get more complex, the technique
produces less of an advantage. We discover that the learning problem as we have
posed it is likely to be intractible, and that the complexity of the problem is due to
the redundancy of the robotics platform. We suggest several possible approaches for
addressing this problem as future work.
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Chapter 1

Introduction

In recent decades, autonomous agents have contributed substantially in many areas

of modern life. They have allowed us to explore other planets, increased productivity

in industrial settings, and provided life-saving tools for law enforcement and military

personnel. So far, truly autonomous robots have been most successful in environments

that can be carefully constrained, as on a factory floor, or when the tasks to be

performed require a small number of actuators, as in planetary exploration. For more

complicated tasks, the control is generally done either completely or in part by a

human operator.

As the capabilities of autonomous robots increase, we see the promise of robotic

elder care, search and rescue agents, and machines to take care of myriad tedious or

noxious tasks. However, these tasks are complicated and dynamic, requiring many

actuators and the ability to deal with changing environments. Further, even with

state-of-the-art hardware, robots face uncertainty in both their sensors and their

actuators. Together these properties add up to a very difficult engineering challenge.

In this thesis, we investigate the use of machine learning to adapt general-purpose

techniques to specific robotic platforms and environments. The goal is to enhance

performance so that otherwise time-consuming computations can be done quickly,

allowing the agent to keep up with real-time demands.

An important element for achieving success in such complex endeavors is the abil-

ity to take a high-level description of a task and generate low-level motor commands



that obey the constraints imposed by the task goals coupled with the agent's envi-

ronment. Motion planning provides a framework for doing this transformation, and

many successful general-purpose motion planning techniques have been developed.

We have chosen to focus on the generation of complete motion plans, rather than the

use of local or behavioral controllers alone. Local controllers have proven to be robust

to environmental complexities, but they are susceptible to local optima, and so are

not well suited to the complicated tasks we would like to address. Nonetheless, such

local solutions are often an important piece of a global planner.

Motion planning is particularly important and challenging when the agent has

a large number of degrees of freedom to control. There is strong evidence that the

time required to solve motion planning problems exactly grows exponentially with

the number of the agent's actuators (Reif, 1979; Canny, 1988). Even assuming that

the environment is completely known, and that it does not change appreciably over

time, motion planning for many degrees of freedom is a hard problem, and solving

it often takes more time than is available for an agent acting in the world. If the

problem is further compounded by the fact that the state of the environment may

change while planning takes place, or that the environment may be only partially or

imperfectly sensed, slow planning solutions become unacceptable. If we can speed up

the planning process, we could hope to plan repeatedly as we observe changes in or

new information about the environment.

Since it is known that complete motion planning solutions are hard to find, much

of the recent focus in motion planning has been on probabilistic sampling-based tech-

niques. The development of these techniques has greatly increased the complexity of

problems that can be solved in reasonable time. Nonetheless, with a large number

of actuators, there are still many problems that cannot be solved in real time. It is

on these difficult problems that our work is focused. Since existing general-purpose

planners are too slow in solving difficult tasks but perfectly usable for many easier

tasks, our aim is to use these planners to generate solutions to planning problems for

a specific robot, doing particular types of difficult tasks, and then use these solutions

as training data to learn to solve similar problems very quickly.



1.1 Motion planning terminology

Motion planning problems are generally described in terms of a robot's actuators, or

degrees of freedom. A full specification of each of the robot's d degrees of freedom is

known as a configuration, c = (1, 2 ., cd), where each Oi might be the angle for a

joint, for example. Planning problems are given as a start and goal configuration (cs

and cg, respectively) in a particular environment, which generally includes obstacles:

any non-robot objects with which the robot should not collide. The environment is

often assumed to be static, meaning that the obstacles do not move, for the duration

of a particular planning problem, even if the environment is actually dynamic. We will

discuss ways in which dynamic environments are explicitly addressed in section 2.2.1.

The space of all possible robot configurations is known as the robot's configuration

space C (Lozano-Perez & Wesley, 1979). Some configurations are invalid because they

would cause the robot to collide with itself, and other are invalid because of collisions

with the obstacles. The space of collision-free configurations is Cf,,ee,. If the entire

space of collision-free configurations is known, then the planning problem is reduced

to path planning for a point. As we will discuss further in chapter 2, computing the

configuration-space free space, or an approximation to it, is an important piece in

most motion planning algorithms.

A motion plan, or path, is a sequence of configurations p = (cl, c2, ..., Cn). The

plan is meaningful only in conjunction with some controller for interpolating between

configurations, U(cl, C2, t) = Ci for t E [0, 1], where u(cl, c2 , 0) = c1 and (cl,C2, 1) =

c2. This controller is typically a linear interpolator, but more complex controllers can

be used, so long as they are deterministic. Given a path and a controller, a complete

robot motion from the first to the last configuration is completely specified.

The output from a motion planner is a path that is known to be collision-free

in the current environment, or failure to find such a path. A path is collision-free

if each of the configurations ci are collision-free (ci G Cfree), as well as the paths

between each consecutive configuration, or path segments: u(Ci, Ci+, t) E Cfree for

all t E [0, 1]. It would seem that even verifying that a path segment is collision-free



would be computationally intractable since t is continuous, so there are an infinite

number of configurations between the two endpoints. However, for a given robot, it

is known that when the robot moves linearly between two configurations c and c', no

point on the robot moves more than p maxi[l,n] 10i - O'l, where p is a property of the

robot and can generally be computed ??. This, combined with the ability to compute

the smallest distance between the robot and the obstacles, allows us to avoid further

subdividing a segment that could not possibly move far enough to cause collision.

In practice, a small A0 is often used to approximate the necessary granularity for

collision checking on path segments.

1.2 Learning motion plans

As we will discuss in more detail in section 2.2.3, there are a number of classes

of planning problems that are still intractable for existing general motion planning

algorithms. Our goal is to focus on these difficult problems and use learning techniques

to summarize solutions to these problems so that they can be generated quickly when

encountered in the future. Our motivation draws from both practical considerations,

and some general observations about the way that people seem to develop motion

skills.

As we will argue in chapter 3, both an agent's environment and the tasks it is ex-

pected to complete tend to be somewhere between completely static and completely

random. Static environments with repetitive tasks lend themselves to offline pro-

cessing or hand-engineered planning solutions. Completely arbitrary environments

require the full power of a general planner. In contrast, if the environment changes

over time but contains some regularities, a natural solution is one that learns based

on previous experience to solve quickly the types of problems it actually needs to

solve in environments it is actually likely to see. We'd like to avoid representing the

entire space of problems.

For robotics platforms with more than just a few degrees of freedom, there are

typically many possible solutions to a given planning problems. We'd like to abvoid



representing the entire space of solutions. Another motivation behind learning from

previous experience is that we don't need to be able to solve each problem in every

possible way. Required planning time on hard problems grows exponentially with

the number of degrees of freedom that a robot has, but as the number of degrees

of freedom increases, so does the redundancy of the robot. Once we have found a

solution to one problem, if we are able to adapt that solution to novel but related

problems, we don't need to concern ourselves with the myriad other ways that we

could have solved these new problems. Just as people typically maneuver themselves

so that their manipulation task is placed comfortably in front of them, we'd like our

robot to develop a repertoire of "comfortable" motions that it can use to solve a wide

range of difficult tasks.

A different way to avoid solving the general planning problem is to hand-design

controllers for particular platforms and particular problems. This has proven quite

successful in the case of industrial robots. However in non-industrial settings, often

the task and environment are insufficiently known at design time. Learning allows

the system to adapt to specific platforms and environments without knowing their

details in advance.

There is also evidence that something like motion plan learning is done by humans.

While there is a great deal of controversy among neuroscience researchers surround-

ing the optimization criteria used in generating motion plans, and the space in which

humans plan their motor control, it is clear that predictive planning does take place.

Furthermore, there is evidence that internal models are used for planning, and that

these models are learned over time given experience (Flanagan, Vetter, Johansson, &

Wolpert, 2003; Kawato, 1999; Krakauer, Ghilardi, & Ghez, 1999; Wolpert & Flana-

gan, 2001). This observation is not intended to suggest that our work is meant to

model human motion planning; with so little consensus among researchers in the field,

it would seem premature. Rather, it is an inspiration for trying to build a system

that can learn from experience in a similar way, since humans are so successful at

learning to control our complex, many degree-of-freedom manipulators.



1.3 Thesis overview

In this work, we investigate several approaches to learning from previous motion

planning experience, and describe the effectiveness of each approach and the lessons

learned for future work. In chapter 3 we start with the most basic type of learning:

memorization. We propose a technique designed to limit the amount of memorization

needed to store necessary motion plans for environments with regularities, both in the

obstacle placement, and in the tasks. We find that we are able to provide significant

speedup in domains that have low entropy, both in the endpoint configurations, and in

the obstacles placement, and that we can enhance the speedup by taking measures to

limit the number of stored paths. However we find that the technique is unsatisfyingly

inflexible, and does not allow for the level of generalization to a wide variety of tasks

that we would like.

Chapter 4 describes an approach that assumes a parameterization of difficult tasks,

and learns a function from task parameters to partial motion plans. The technique

addresses the non-functional nature of data generated by probabilistic planners for a

redundant robot, and is quite successful on a class of problems for which a discrete

set of functions can be discerned. However, we discover a distinct class of problems

for which the data is less easily partitioned into separate functions, and for which this

technique does less well.

In chapter 5 we go on to further investigate the difficulties raised in the previous

chapter. We identify several sources of difficulty in the domains that are mo chal-

lenging for the clustering algorithm described in chapter 4. We also discuss several

standard machine learning techniques that seem applicable to these challenges, and

explain why each does not properly address the problem.

Chapter 2 provides an overview of related work, and chapter 6 overviews the

conclusions we draw from our investigations, and provides some suggestions for future

work in this area, as well as some preliminary results for an implementation of some

of this work.



Chapter 2

Related work

Motion planning has a long history of research. This chapter provides a very brief

overview of the motion planning techniques that have been developed, with an empha-

sis on the more recent innovations (section 2.1). In section 2.2 we discuss approaches

that particularly address problems that are related to the focus of our work. Sec-

tion 2.3 reviews work that applies machine learning to the problem of generating

robot motion.

2.1 Background

The notion of configuration space was introduced by Lozano-Perez (1979), and has

been widely used since then. Several exact methods for computing solutions to both

general and specific motion planning problems were developed (Donald, 1984; Lozano-

Perez, 1983, 1987; Reif & Sharir, 1994). However, in the general case, such exact solu-

tions are intractable, so approximate representations of the collision-free configuration

space were developed. There is work involving both sampling-based and deterministic

approximations, but sampling-based techniques have met with a great deal of success

and have since become widespread. Initially, these sampling-based techniques were

primarily intended for static environments, but as sampling techniques have improved

and computers have became more powerful, it has become possible to apply similar

sampling-based techniques to solve many problems quite quickly, even in changing



environments. We will provide an overview of several of the more prominent tech-

niques for configuration-space free space approximation here, with a focus on more

recent work, and work most closely related to ours. For more detailed descriptions,

there are a number of excellent survey papers and textbooks available, particularly

for earlier work (Latombe, 1991; LaValle, 2006; Hwang & Ahuja, 1992).

2.1.1 Roadmaps

As discussed in section 1.1, the motion planning problem can be transformed into

the simpler problem of planning the motion of a point if the configuration-space free

space is known. Thus, many motion planning techniques, particularly those that deal

with arbitrarily complicated robots, are primarily concerned with computing and

representing the configuration-space free space (or, equivalently, the configuration-

space obstacles).

A common structure used to represent the approximate free space of the robot is

known as a roadmap. A roadmap is a graph of nodes in which each node represents a

collision-free configuration of the robot. Given a deterministic controller for moving

the robot between configurations, an edge can be placed in the graph between any

pair of configurations for which the motion determined by the controller is collision

free. Once a roadmap for a particular environment has been built, it may be possible

to find a path between the query start and goal configurations cs and cg by finding a

collision-free connection between each of cs and c9 and nodes in the graph, and then

finding a path through the graph between the two connector nodes. Alternatively,

the graph may fail to contain nodes that can be connected to the query nodes.

2.1.2 Multiple-query roadmaps

In completely static environments, a roadmap can be constructed during an offline

phase, and then saved for online queries that must be answered quickly. Since the

roadmap is built prior to the planning queries, time can be spent to assure that the

graph is a good approximation of the free space so that query nodes are likely to



connect to the graph easily. Early roadmap techniques were deterministic, and are

briefly reviewed in 2.1.4, but it was found that the general motion planning problem

is intractable for many degrees of freedom (Canny, 1988; Reif & Sharir, 1994), and

randomized techniques were developed.

These probabilistic techniques tend to solve easy problems very quickly, and are

therefore more practical than previous approaches which require planning time expo-

nential in the number of degrees of freedom, even given problems that permit many

possible solutions, a property that should make solutions easy to find. One early

idea was the probabilistic roadmap. In the initial probabilistic roadmap work, the

roadmap was built by choosing a random free configuration and then trying to connect

it to the closest nodes already in the graph (Kavraki, Svestka, Latombe, & Overmars,

1996).

Refinements of the probabilistic roadmap approach worked to try to keep the

roadmap small while maintaining good coverage of the free space. The intuition

behind these modifications is that there may be parts of the configuration space

that are both important for connecting the free space, and unlikely to be sampled

randomly. If the free space were sampled uniformly with density high enough to

ensure coverage of these tricky areas, the number of nodes in the graph might grow

large enough to make searching the graph prohibitively slow.

More precisely, any place in the free space that is highly constrained in all direc-

tions (in configuration space), sometimes called a narrow passage, has these proper-

ties. Several techniques were developed to address this issue, such as visibility-based

techniques (Sim6on, Laumond, & Nissoux, 2000), bridge sampling (Hsu, Jiang, Reif,

& Sun, 2003) and free-space dilation (Hsu, Sinchez-Ante, 1. Cheng, & Latombe,

2006). We will discuss these in more detail in section 2.2.3. While these sampling

techniques were originally intended to speed up the construction and search time for

multiple-query roadmaps, several methods have become competitive with techniques

that were designed to be used for single queries.



2.1.3 Single-query planners

Multiple query roadmaps are required to build as complete a representation of the

connected free space as possible, since they are built with no information about the

particular start and goal queries that the roadmap will face; since the roadmap is built

before the time-critical query period, this is a reasonable goal. However, this approach

relies on the assumption that the robot's environment remains static between planning

queries, which is an unreasonable assumption in many applications. Single-query

approaches, on the other hand, do not assume that the environment is static, but

instead build a new roadmap for each individual query, using the information about

the actual start and goal configuration to guide the exploration of the free space. If

there are large regions of the free space which need not be represented at all to answer

a particular query, these techniques try to avoid including them in the roadmap.

An early tool for this type of query was the potential field approach (Khatib,

1986; Barraquand, Langois, & Latombe, 1992), in which the robot is pushed by the

potential field toward the goal and away from obstacles, and related local control

approaches (Faverjon & Tournassoud, 1987a). Control with potential fields alone is

extremely susceptible to local optima, but a randomized approach can be used to

probabilistically recover from such problematic regions. The potential field can also

be used as an alternate sampling technique in the general framework of multiple-query

probabilistic roadmaps (Barraquand, Kavraki, Latombe, Li, Motwani, & Raghavan,

1997). Potential fields as a global planning technique are quite sensitive to parameter

changes, and so are more frequently used as a local controller that is used by an

algorithm with a more global vision(Faverjon & Tournassoud, 1987b).

The Ariadne's Clew algorithm combines a search strategy, which focuses on finding

the goal configuration, with an exploration strategy that builds a representation of

the free space local to particular landmarks (Mazer, Ahuactzin, Talbi, & Bessiere,

1998). Mazer et al. found that they could significantly improve performance by using

obstacle surface information to guide the sampling, which made the algorithm more

likely to produce sample trajectories that pass through narrow corridors. Another



early single-query approach was based on the multiple-query probabilistic roadmap,

with the primary modification being that collision checking is done lazily (Bohlin &

Kavraki, 2000).

Two techniques which have proven very successful on a wide range of problems

is the single-query bi-directional lazy (SBL) planner (Sanchez & Latombe, 2001) and

the rapidly-exploring random tree (RRT) (LaValle, 1998). Both of these techniques

still use a roadmap representation to approximate the free space, and they build the

roadmap probabilistically, but rather than building the roadmap to explore the space

optimally for multiple queries, the goal is to connect the start and goal queries as

quickly as possible. Each method uses a pair of tree-shaped roadmaps, one rooted at

each of the start and goal query configurations.

In the SBL planner, developed by Sanchez and Latombe, the tree is grown by

sampling near an existing node in the tree. The samples are generated close to one

another and assumed to be collision free until a full proposal path between the start

and goal configurations has been generated. At that time, the path is checked for

collision, and colliding segment, if found, are removed from the tree(s). This process

continues until a proposal path is found to be collision free. Our work uses the SBL

planner both as a benchmark and as a component of our algorithm, described in

chapter 4, so this planner will be discussed in more detail there.

The rapidly-exploring random tree (RRT) was first proposed by Lavalle as a new

way to generate a multiple-query roadmap (LaValle, 1998), but then used as the key

piece of a successful single-query planner (Kuffner & Lavalle, 2000). The idea behind

the tree structure is that it is grown by sampling a random configuration and then

taking a step from the closest node in the tree toward the random configuration.

This allows the tree to explore the space more rapidly than it would by taking small

random steps from existing nodes. However, it also avoids generating many samples

that are far from the existing tree and therefore likely to be impossible to connect.

The RRT-connect single-query planning algorithm involves again growing a tree from

each of the start and goal nodes, and then trying to connect the trees to one another.

RRTs have been used successfully in several different systems, including a system



for controlling a humanoid robot (Asfour, Azad, Vahrenkamp, Regenstein, Bierbaum,

Welke, Scr6eder, & Dillman, 2008) and a planner for completely deformable environ-

ments (Rodriguez, Lien, & Amato, 2005). A comparison of the RRT algorithm and

the A* search algorithm for planning on self-reconfigurable robots find that in prac-

tice the RRT is much faster (Brandt, 2006). Several variants of the RRT planner

have been shown to be resolution complete (meaning that the planner is guaranteed

to find a solution that falls within a specified tolerance) (Cheng & Lavalle, 2002), and

an RRT variant has been used a subcomponent in a multiple-query planner (Bekris,

Chen, Ladd, Plaku, & Kavraki, 2003). A number of systems have been developed to

address specific planning difficulties by modifying the RRT-connect algorithm, several

of which we discuss in section 2.2.3.

Other single-query planners have also been developed. The main distinction of

each one is the sampling technique(s) used to generate the nodes in the roadmap.

For example, two systems use entropy, or information gain, to determine the most

informative places to sample (Burns & Brock, 2005b; Rodriguez, Thomas, Pearce,

& Amato, 2006). Hsu introduced the notion of expansive spaces, and developed a

two-tree sampling method that he proves will, with high probability, produce a good

approximation of the free space, given assumptions about the expansiveness of the

space (Hsu, Latombe, & Motwani, 1999). However, his work points out that when a

space is not expansive, it tends to produce difficult planning problems that are not

solved quickly by probabilistic techniques. As we will cover in detail in section 2.2.3,

several different sampling techniques have been developed for specifically addressing

the problem of non-expansive spaces, or spaces containing narrow passages. Thomas

et al. propose a technique that chains samplers together to produces higher quality

samples than the individual samplers would produce alone (Thomas, Morales, Tang,

& Amato, 2007). Machine learning techniques have also been employed to choose

between sampling strategies; we will see these in detail in section 2.3.

Simion et al. have extended the notion of roadmap planner to include ma-

nipulation planning, which includes interactions with the objects to be manipu-

lated (Simeon, Laumond, Cortes, & Sahbani, 2004). This work builds roadmaps



in extended configuration spaces, sometimes including parameters describing the in-

teraction of the robot and manipulation object. These roadmaps are used to generate

plans for moving the robot toward a grasp position, grasping the object, moving it to

a new location (re-grasping if necessary), and releasing the object at some target pose.

This system shows the flexibility of the roadmap technique, in that it can applied to

extended configuration spaces to solve a wider range of problems than collision-free

motion planning. However, this technique still requires more time than would be

feasible in a changing environment. Nonetheless, such an algorithm could be used to

provide training data to a general motion learning algorithm that could then be used

to generate plans in real time.

2.1.4 Deterministic approximations

Most of the work described so far has been probabilistic. However, there has also

been work done on deterministic approximations of free space. In fact, Lavalle et al.

argue that the apparent advantage of sampling-based techniques is in fact not evident

in the general case, but only in environments designed to showcase the strengths of

particular sampling strategies (Lavalle, 2004).

Early techniques for building roadmap representations of the configuration-space

free space were deterministic, and built roadmaps to cover the space completely. Cell

decomposition techniques divided the free space into cells, and then placed roadmap

nodes along the boundaries between the cells (Schwartz & Sharir, 1983). Generalized

Voronoi diagrams were used to generate roadmap nodes along the medial axes of the

free space, meaning that they are maximally far from obstacles (O'Duinlaing & Yap,

1985).

A number of early approaches represented the free space by computing the configuration-

space obstacles, either exactly or approximately. An algorithm by Lozano-P6rez

computes a conservative estimate of the configuration-space obstacles by taking the

union of recursively computed lower-dimensional slices of the obstacles (Lozano-Perez,

1987). Other techniques determine equations for the configuration-space obstacle

boundaries (Donald, 1984; Ge & McCarthy, 1989). Boundary equations have been



computed for a number of robot platform types, but they are in general difficult to

compute; more importantly, computing the intersections necessary to use the equa-

tions to do planning is very complicated. Algorithms for computing configuration-

space obstacles use mechanisms such as growing the obstacle according the robot's

configuration (Lozano-Perez & Wesley, 1979), computing swept volume of robot

paths, using Jacobian-based information (Paden, Mess, & Fisher, 1989), and others.

These techniques were found to be too expensive, and more approximate techniques

were developed.

In work by Lindemann and Lavalle (Lindemann & Lavalle, 2004), the rapid explo-

ration property of the RRT is found to be caused by the Voronoi bias of the sampling

technique: nodes with larger Voronoi regions are more likely to be expanded. They

propose a similar algorithm based on explicit computation of the Voronoi diagram

of the tree. Note that this use of the Voronoi diagram (which is constructed with

respect to the search tree) is different from the Voronoi diagram used to compute the

medial axis of the free space (which is constructed over the free space).

2.2 Related problem areas

In this section, we review motion planning work that relates specifically to the prob-

lems we address with our work. Since the primary motivating forces for speeding up

planning have to do with dynamic environments and sensor and actuator uncertainty,

we first review approaches that have been proposed within the motion planning frame-

work for dealing explicitly with these issues. Then we review techniques intended to

focus on the "narrow passage" problem, as this is has been shown to be the primary

cause of difficulty in motion planning problems.

2.2.1 Modeling dynamic obstacles

One way to address dynamic obstacles is to generate a complete plan given a particular

configuration of obstacles, and then adapt the plan as the obstacles move ??. Potential

fields, or another local approach can be used to adapt the path locally to the changes



in obstacle location. New queries still require a complete plan as a starting place,

which may be out of date by the time it is generated.

More recently, another class of flexible roadmap techniques have been proposed

which combine the flexible path idea with the roadmap. These roadmaps allow the

nodes and edges of the roadmap to move dynamically in response to changes in

the environment (Yang & Brock, 2006; Gayle, Sud, Lin, & Minocha, 2007; Sud,

Gayle, Guy, Anderson, Lin, & Manocha, 2007). These approaches rely on fairly

powerful local controllers that are able to move the nodes and edges of the graph to

accommodate changes in obstacle position, without disrupting the global constraints

that allow the graph to be useful. Such controllers exist for mobile robots, or even

groups of mobile robots, where the relationship between the configuration space of

the robot and the obstacle space is fairly simple, but in the more general case, this

can be a prohibitively difficult prolem.

Several previous authors have suggested the use of a structure, sometimes called

a dynamic roadmap, that is intended to bridge the gap between single- and multiple-

query planners (McLean & Laugier, 1996; Leven & Hutchinson, 2002; Kallmann

& Matarid, 2004). This structure is essentially the same as our task distribution

roadmap (described in chapter 3), though the way we construct it is different from

previous work. It is similar to a multiple-query roadmap, with the addition of edge

labels that indicate the volume that would be swept out by the robot as it follows

the path represented by the edge. This allows for fast collision-checking along the

edges of the roadmap so that edges can be invalidated quickly as obstacles move

through the environment. Like a multiple-query roadmap, it avoids rebuilding the

roadmap from scratch, but it is not limited to completely static environments. Our

work with this data structure focuses on a new way of constructing the roadmap in

order to take advantage of environmental regularities to avoid growing a roadmap

that is exponentially large in the number of the robot's degrees of freedom.

Jaillet and Simeon work with a structure that is very similar to a dynamic

roadmap, except that edges are labeled based on the position of dynamic obsta-

cles that interfere with the path corresponding to the edge ((2004)). New obstacle



placements are compared to previously colliding ones and if they are the same, the

edge is considered blocked. This requires that all the possible colliding positions of

each obstacle be separately considered before the edge is completely labeled. Com-

puting the swept volume directly gets at the same information, but in an obstacle

independent way. If the number of possible positions for the obstacles is small, then

it is slower to check the entire swept volume than to compare a few obstacle locations.

A common technique for dealing with dynamic obstacles is to incoporate time into

the configuration-space roadmap (?). Alternatively, planning can be done with the

obstacles represented in the robot's velocity space (Fiorini & Shiller, 1998). These

techniques typically require that the trajectory of the obstacles is known or can be

predicted. One time-extended roadmap technique by van den Berg and Overmars

(2004) was proven effective in real-world applications in which the dynamic obstacles

move cyclicly or are controlled by a single planner (as in multiple robot planning

problems). If the planner is able to find a solution very quickly, then the measured

velocities of the obstacles can be used to predict their immediate trajectories, and

then continuous replanning can be used to generate the robot's motion (Hsu, Kindel,

Latombe, & Rock, 2002). This is currently feasible only in low-dimensional configu-

ration spaces.

Several techniques have been developed to take advantage of prior partial infor-

mation about how the dynamic obstacles will move, without requiring that their

full trajectories be known in advance. For example, techniques can leverage knowl-

edge about a predetermined set of obstacle placements (LaValle & Sharma, 1997;

Nieuwenhuisen, van den Berg, & Overmars, 2007). In a specific scenario involving

two manipulators and a conveyor belt carrying parts to be manipulated, the problem

can be decomposed into several lower-dimensional problems, each of which can be

solved quickly (Li & Latombe, 1997). Again, while such information is sometimes

available, there are many examples in which we could have no a priori information

about the possible or likely placements of the obstacles.

If the only information that is known about the obstacle motion is the maximum

speed with which they may move, one approach is to generate plans that are guar-



anteed to be collision free regardless of how the obstacles move (van den Berg &

Overmars, 2006). It may be that no such path exists, however. Another possibility

is to generate plans that are guaranteed to have sufficient clearance from the moving

obstacles that the robot could avoid collision by simply stopping until it is safe to

move (Alami, Simeon, & Krishna, 2002). However, these technique are applied only

to mobile robots, and it is not clear how to extend them to the more general case.

Li and Shie (2002) operate in environments similar to those we consider, and

also leverage the results from previous planning experience. Their approach involves

saving the rapidly-exploring random trees (RRTs) from single-query instances in a

"forest", and then invalidating nodes according to obstacle position before using the

forest to compute a path with the new obstacle locations. The technique is similar

in some ways to the DRM, but there is no attempt to make collision-checking for the

forest fast, so it is unclear whether it will scale up well with increasing degrees of

freedom.

2.2.2 Uncertainty

Another motivation for fast planning is that while motion planning techniques often

assume perfect knowledge of the world, real robot systems generally involve uncer-

tainty in the positions of the robot and the obstacles, and often the geometry of the

obstacles as well, due to errors in control, sensing, or models used for planning. One

way to address this, and the one we have chosen, is continuous replanning. This

approach requires that the planning loop be fast enough that a plan can be made in

real time with the best information currently available, to be replaced quickly with

a new plan when new information is learned that may invalidate the old plan. The

advantage of continuous replanning is that the uncertainty need not be explicitly

represented or reasoned about; considering all possible outcomes often generates a

paralyzingly large number of possible plans in worlds with substantial uncertainty,

and acting according to the best plan for the most likely state of the world is success-

ful in many settings. However, representing uncertainty explicitly allows the agent

to take actions that are based on that uncertainty, such as information gathering ac-



tions, which may be necessary in certain types of problems. In this section we review

the techniques that have been developed in the area of motion planning for dealing

explicitly with uncertainty.

Early planning work addressed uncertainty through the use of preimages (Lozano-

Perez, Mason, & Taylor, 1984; Latombe, 1988). The preimage of a region of the con-

figuration space, R can be informally described as all the regions of the configuration

space from which some controller can be guaranteed to reach R, given a model of the

uncertainty in the system. Given the ability to "backchain", or produce a region's

preimage, a plan can be generated in response to a start/goal query by backchaining

from the query's goal until a preimage is produced that contains the start.

Subsequent work found that these techniques, which thoroughly investigate the

possibilities raised by the system's uncertainty, are in general trying to solve an in-

tractable problem (Canny, 1989). This indicates that some kind of compromise must

be made if a control strategy is to be computed in reasonable time: we must make

and exploit assumptions about the robotic platform or the sources of uncertainty in

the system, possibly by introducing modifications to the environment, or relax our

requirements for soundness and/or completeness. One proposal along these lines in-

volves creating "islands of perfection", or regions of the state space that can be sensed

exactly (Lazanas & Latombe, 1995). This compromise allows for successful planning

in low degree-of-freedom mobile robots, but it does not seem to scale up to more

complicated high degree of freedom manipulators.

A more recent approach frames the manipulation problem as an instance of a

partially observable Markov decision process (POMDP) (Hsiao, Kaelbling, & Lozano-

P6rez, 2007). An overview of the POMDP framework is outside the scope of this re-

view, but the benefit beyond the approaches described so far is that solving a POMDP

provides an control strategy that is optimal with respect to some reward function,

taking the uncertainty in its observations into account. For example, if the agent

could take a few non-goal-directed information-gathering actions, and then reach the

goal quickly given its newfound clarity, it will choose this policy over one that always

moves towards the goal, but requires more, smaller steps due to uncertainty. How-



ever, the generality of the approach again comes at a cost; POMDPS are, in general,

very difficult to solve. Approximate approaches have significantly increased the size of

problem that can be solved in reasonable time, but high degree-of-freedom platforms

in complicated environments are still beyond their reach. Note, too, that the work

done by Hsiao et al. addressed manipulation problems, rather than a collision free

motion planning problem; it is reasonable to expect that uncertainty will need to be

modeled fairly carefully when the robot is required to be in close contact with the

objects in the world. We believe that collision-free planning is less likely to demand

the same degree of precision in reasoning about uncertainty, and therefore lends itself

more readily to continuous replanning.

Rather than trying to solve an entire POMDP, Chakravorty and Saha instead treat

the motion planning problem as an instance of a fully observed Markov decision pro-

cess (MDP), meaning that all of the uncertainty is captured in the state transitions,

but the state can be sensed accurately by the agent (Chakravorty & Saha, 2007). The

technique uses a hierarchy that does high-level planning via dynamic programming

and low-level planning with an RRT, and achieves better performance than either of

these technique alone. However, the test platform is a low degree-of-freedom mobile

robot, and it is less clear how to build such a hierarchy in the general case.

Another recent approach adds uncertainty information to the traditional motion

planning roadmap (Burns & Brock, 2007). Each edge in the roadmap has an associ-

ated utility as well as a cost which is computed based on the estimated likelihood of

failure. Then the A* search algorithm is used to find minimum cost paths through

the graph. This technique allows for paths to be found when more traditional prob-

abilistic roadmap approaches would fail due to the noise in the world. However, the

additional computation that must be done to find paths that will succeed with high

probability makes the approach too slow for high degree-of-freedom robots in dynamic

environments.

An enormous amount of research has been done in the area of simultaneous lo-

calization and mapping, which is intended to use noisy sensor data to build a map

of the robot's surroundings, while also probabilistically situating the robot in the



map (Durrant-Whyte & Bailey, 2006; Bailey & Durrant-Whyte, 2006). This work

has been very successful in the realm of mobile robots, allowing them to navigate in

noisy, dynamic environments without becoming confused about their location. How-

ever, solving the SLAM problem only goes part of the way toward solving the general

motion planning problem: it tells the robot where it is, but nothing about how to

behave. In the case of mobile robots, the policy is often (though not always) reason-

ably easy to determine, given an accurate estimate of the robot's pose. This problem

becomes much trickier in the case of manipulators, which have a more complicated

mapping from workspace to configuration space. Also, as the number of degrees of

freedom go up, so do the number of samples needed to have a good estimate of the

probability distribution over the robot's state. In fact, if one assumes that the density

of samples is what determines the accuracy of the distribution estimate, the number

of required samples goes up exponentially in the number of the robot's degrees of

freedom.

2.2.3 Narrow passage sampling

It has been argued quite persuasively that the problem of narrow passages in config-

uration space is the source of difficulty in the most time-consuming planning prob-

lems(Hsu et al., 1999). In response to this, there have been a number of techniques

proposed for increasing the proportion of samples in the constrained regions of the

free space, thereby allowing the graph to remain small but to have high likelihood

of containing the necessary connections. This issue exists for both multiple- and

single-query planners, and so many of these sampling techniques are relevant in both

realms. In some cases the expense of the sampling technique may make it less feasible

for single-query settings, since the cost is paid for each query, so the technique may

cost more time than it saves. Nonetheless, the general properties desired in a sam-

pling strategy for combating the narrow passage problem are largely shared between

the two scenarios. These strategies can be divided into two broad categories: filtering,

or rejection sampling methods, in which samples are generated and then discarded,

and retraction methods, in which samples are modified.



Rejection sampling

The idea behind rejection sampling in this context is to generate samples normally,

but to be selective about which samples are actually used in the roadmap, thereby in-

creasing the proportion of samples with desiable properties. This allows the roadmap

to have many samples where they are actually necessary and few redundant sam-

ples. However, the time required to generate the samples may be very large, as many

samples may need to be rejected for each useful sample.

The notion of visibility can be used to determine whether or not a sample should

be included in the roadmap (Simdon et al., 2000). The visibility domain of a con-

figuration is made up of all of the other free configurations to which a collision-free

connection exists. Visibility-based techniques ensure that the entire configuration

space is visible to at least one node in the graph, while keeping the total number of

nodes small, making it as fast as possible to search.

Work by Yershova et al. also uses the notion of visibility to bias sampling, but in

a different way (Yershova, Jaillet, Simdon, & LaValle, 2005). Their approach modifies

the RRT algorithm so that nodes that are near obstacle boundaries are allowed to

expand only to nearby configurations, rather than configurations chosen uniformly

at random. In this way, they avoid wasting time trying to expand parts of the tree

that are very likely to be in collision, and instead focus on expanding nodes that can

expand into free space, which increases the likelihood of sampling in narrow passages.

There are several techniques for narrow passage sampling motivated by the in-

tuition that samples near obstacles are more likely to be in narrow passages. The

Gaussian sampling strategy is designed to sample near obstacles by first finding a sam-

ple that is in collision, and then sampling some distance d away from the colliding

sample, where d is normally distributed (Boor, Overmars, & van der Stappen, 1999).

A similarly motivated technique, known as the bridge test, generates samples until

two colliding samples are found, with a non-colliding sample in between them (Hsu

et al., 2003). In both cases, the non-colliding sample is added to the roadmap.

Another technique uses the notion of manipulability to determine which samples



are kept (Leven & Hutchinson, 2003). Manipulability is derived from the end effector

Jacobian, and is a measure of the robot's ability to move the end effector from a

given configuration. The technique rejects samples that have higher manipulability,

motivated by the idea that many low-manipulability configurations are in constrained

parts of the configuration space.

Other techniques use features of the workspace (rather than configuration space)

to help determine where to sample. Work by van den Berg and Overmars uses

a cell decomposition of the workspace to estimate the likelihood that each region

in the workspace is part of a narrow passage, and uses that information to choose

the positional part of a mobile robot's configuration, while sampling the orientation

uniformly (van den Berg & Overmars, 2005). A related approach by Kurniawati

and Hsu uses a triangulation of the workspace to bias the sampling of part of the

configuration (Kurniawati & Hsu, 2004). In both cases, the technique is applied only

to mobile robots and free-flying rigid objects, where the decomposition of the position

and the orientation of the robot is easy. It is less clear how these techniques could be

applied to complex manipulators.

Sample retraction

The primary motivation behind retraction techniques is that sampling near the me-

dial axis of the free space leads to more narrow passages samples. This is a similar

motivation to the approximate free space representations that use the Voronoi decom-

position of the free space to choose milestones (O'Dinlaing & Yap, 1985). Wilmarth,

Amato, and Stiller (1999) demonstrate the connection between medial axis sampling

and narrow passage sampling, and then propose an algorithm that can retract free-

space samples, as well as some colliding samples, to the medial axis. However, this

technique relies on the ability to compute, for a given configuration which may or

may not be in collision, the distance to the closest point that is on the boundary

between colliding and non-colliding configurations. These clearance and penetration

depth computations are not, in general, tractable. An extension of this work proposes

approximations for each of these operations (Lien, Thomas, & Amato, 2003).



Saha and Latombe suggest that configurations that are barely colliding are both

easily and fruitfully retracted toward the medial axis (Saha & Latombe, 2005). Thus,

they generate roadmaps that are likely to contain such configurations by shrinking the

models of either the robot, the obstacles, or both. Once this roadmap is constructed,

the colliding configurations can be retracted by just a small amount. Hsu et al.

provide a more efficient algorithm for doing this free space dilation (Hsu et al., 2006).

Another retraction method involves the medial axis not of the configuration-space

free space, but the workspace free space, which is generally lower dimensional (Holle-

man & Kavraki, 2003). The idea is to choose some points on the robot (handle points)

and try to find configurations in which those points are close to the medial axis of

the workspace. This method requires the ability to adjust configurations to move the

handle points closer to the workspace medial axis, not an easy problem in general.

2.3 Machine learning

There have been several contributions to the motion planning literature that involve

learning in some way. In this section we review the various ways that machine learning

has been applied to the task of planning robot motion. We first review techniques that

apply machine learning within the context of traditional motion planning techniques

like those we have seen so far, and then we discuss learning techniques for generating

policies rather than complete motion plans.

2.3.1 Remembering plans

In chapter 3, we describe a simple learning technique that remembers previous so-

lutions to help speed up subsequent queries. Chen proposed an approach that uses

a slow planner to to generate plans that can then be adapted by a fast planner

when similar problems are encountered again (Chen, 1997). Similar work by Caselli

and Reggiani proposes remembering solutions to previous planning problem in a

roadmap (Caselli & Reggiani, 2000). However, unlike our work, this work is done

in a static environment, and therefore does not need to address the need for general-



ization of old plans to new environments.

Other approaches involve re-using previous planning experience by repairing an

RRT roadmap (Ferguson, Kalra, & Stentz, 2006) or a forest of RRTs (Li & Shie,

2002) in real time as the environment changes. These approaches show considerable

improvement over the standard RRT in the case of mobile robots. Ferguson et al.'s

system is even able to plan effectively for a twenty-degree-of-freedom system of ten

mobile robots. However, even with a large number of degrees of freedom, the config-

uration space of mobile robots has simple relationships to the workspace that do not

hold for complicated manipulators, so we believe this technique is likely to be less

effective in a manipulator domain.

The planning literature in artificial intelligence includes work on recalling and

combining previous plans, in particular (Haigh & Veloso, 1995; Haigh, Shewchuk,

& Veloso, 1997) deals with routes through a city map. This work addresses similar

issues to the ones addressed in this thesis but the different constraints in the domains

lead to solutions that are considerably different.

2.3.2 Biasing sampling

Given the wide variety of sampling methods that have been proposed for generat-

ing probabilistic roadmaps, another active research area is centered on determining,

based on experience, which sampling method is most appropriate for the current envi-

ronment and planning problem. Work by Morales et al. computes features of regions

of the workspace that are used as input to a classifier. The classifier then learns to

predict an appropriate planner type for the particular region (Morales, Tapia, Pearce,

Rodriguez, & Amato, 2004). Hsu et al. propose a technique in which the sampling

distribution is a weighted sum of several component distributions, and the weights

are adapted based on their effectiveness (Hsu, Sinchez-Ante, & Sun, 2005). Another

adaptive technique by Kurniawati and Hsu uses both workspace information and

sampling history to determine the sampling distribution.

Burns and Brock propose a method that builds a probabilistic model of the free

space and then uses that model to bias sampling (Burns & Brock, 2005a). Learned



functions are used to predict whether or not a configuration is in collision, and whether

or not the path between two configurations is in collision. Locally weighted regression

(LWR) is used for both of these learning problems (Atkeson, Moore, & Schaal, 1997).

The input to the learned function is either a configuration or a path between two

configurations, and the output in both cases is a prediction, along with a variance on

the prediction, for whether the input is in collision. The model is then used to bias

sampling by choosing samples that decrease the model's variance. Related work by

the same authors uses an estimate of the collision probability of a configuration to

compute the expected utility of the sample, and bias sampling in favor of high utility

configurations (Burns & Brock, 2005c).

Work by Kalisiak and van de Panne uses a classifier to learn whether or not

planning problems are possible (Kalisiak & van de Panne, 2007). The input to the

classifier is sensor input from rangefinder sensors, the output is whether or nor the

current planning problem is possible in the environment represented by the sensor

readings. This function is learned by a support vector machine (SVM) with a radial

basis function kernel. This viability oracle is then used to guide sampling away

from configurations that are perhaps not in collision, but believed to be impossible.

Another approach by Hauser et al. also learns to predict the likelihood that an edge

in the roadmap will be collision free, though in the context of manipulation planning

for a climbing robot (Hauser, Bretl, & Latombe, 2005). The output from the learning

is then used both to bias both the sampling and the roadmap search.

2.3.3 Learning control policies

Reinforcement-learning methods (Sutton & Barto, 1998) have been used for learning

a policy, which maps from the robot's current pose to an incremental action, such

as joint velocities. The desired behavior of the robot is then expressed as a reward

function, based on the state and action. The learning problem is then to find a policy

which optimizes the expected (possibly discounted) reward.

Reinforcement learning faces two particular challenges in addressing robot mo-

tion planning: the state and action spaces are both continuous and high dimensional.



Many reinforcement learning algorithms learn a value function over the states and

actions, and then choose the action by finding the one with the maximal value; both

parts of this are more difficult in high-dimensional continuous spaces. In continuous,

but low-dimensional spaces, one possible approach is to simply discretize the action

space and use a tight control loop. Using this approach, Randlov and Alstrom (1998)

produced an algorithm that successfully learned to ride a bicycle. Also using dis-

cretized reinforcement learning, Nikovski and Nourbakhsh (2002) were able to learn

a policy for balancing an inverted pendulum based on visual feedback.

Other approaches deal with the continuous spaces directly. Smart and Kaelbling

(2000) propose estimating the value function using locally weighted regression (Atke-

son et al., 1997) to approximate the value function, and an iterative algorithm to find

the best action. (Peters & Schaal, 2007) have recently proposed a reinforcement learn-

ing technique specifically designed to control manipulator-type robots. This work uses

expectation maximization to find the parameters that maximize the expected reward

of a stochastic policy.

These policy learning techniques typically assume a static environment, or only

a small amount of variability in the obstacles (e.g. doors that might be open or

closed). The emphasis is on having an optimal (or near-optimal) control reaction for

every input state. In the presence of obstacles, however, it may be less important to

have optimal control than to have control that explicitly plans for obstacle locations.

Also, when reinforcement learning is used to produce a controller directly, the desired

behavior of the system is built into the policy via the reward function, so it is generally

not easy to transfer the learned controller to perform a different task. As we will see

in the next section, reinforcement learning can also be applied to the problem of

learning inverse kinematics, which is one way to address the issue of multiple desired

behaviors.

Outside of the reinforcement learning framework, there has been work done on

the general problem of learning controllers. Recent work by Grollman and Jenkins

(2008) compares the use of two different regression techniques, locally-weighted pro-

jection regression and sparse online Gaussian process regression, on a control policy



learning problem on a robotic dog platform. They report success on several problems

where a controller can be used to generate training data for the learner. However,

for complicated tasks they use human demonstration to generate the training data,

which creates problems for the function approximators. This is because the humans

may choose to solve the task different in different instances, generating inconsistent

training data. We will address this particular problem in more detail in chapter 4.

In the context of animation, Cooper, Hertzmann, and Popovid (2007) use data

generated by humans doing a particular motion task while wearing a motion capture

system, and use this data to learn a control policy for an animated humanoid. This

work uses active learning, building a controller based on the data so far, and then

querying the human demonstrator for help on tasks at which the controller performs

poorly.

2.3.4 Learning inverse kinematics

Learning can also be applied to the problem of inverse kinematics: a transformation

from a Cartesian-space description of a desired pose to a set of robot parameters that

achieve the pose. A closely related problem is the mapping from Cartesian motions

of a point on the robot (often the endeffector) to robot parameter motions. It is

sometimes useful to represent the mapping from some transformation of the Cartesian

position, such as the apparent position of the endeffector in an image of the robot. In

each case, knowing this relationship allows for planning to be done in the workspace

(or image space), which is lower dimensional than the robot's configuration space.

When the robot has the same number of degrees of freedom as the Cartesian

constraints on the motion, the inverse of the Jacobian matrix can be used to determine

the required joint motions. However, when the robot has more degrees of freedom

than it needs, the Jacobian is singular. This is a substantial challenge for learning

inverse kinematics, and one that we will discuss in our work as well, is the need to

resolve redundancies for overactuated robots.

There is a long history of models for learning inverse kinematics. Some approaches

involve learning a mapping from action effects, or Cartesian motions of the endeffec-



tor, to joint motions. These techniques all share the weakness that they generally fail

to converge when faced with redundant platforms, as two very different joint motions

may lead to the same endeffector motion (?) A more robust approach, sometimes

called resolved motion rate control (RMRC), learns a mapping from endeffector mo-

tion and current robot pose to joint motion (Whitney, 1969; Jordan & Rumelhart,

1992; D'Souza, Vijayakumar, & Schaal, 2001). This approach generates a unique in-

verse kinematics solution, but that limits the motion of the robot to the one learned

solution, so it is unable to adapt to novel task constraints, such as obstacles.

Molina-Vilaplana et al. (2004) developed a system that uses a network of radial

basis functions to learn the inverse kinematics for a redundant manipulator. They

are able to use the learned inverse kinematics to perform simple reaching motions

in obstacle free environments. In the SURE_REACH system proposed by Butz,

Herbort, and Hoffmann (2007), a hierarchical system of networks is used to learn

multiple inverse kinematics solutions. They then use a heuristic to adapt motions to

obstacles at run time.

In work by Lopes and Santos-Victor (2006), the joints of the arm are categorized

into either redundant and non-redundant for a particular desired motion of the end-

effector (described, in this case, as the perceived motion of the endeffector in images

of the arm). The redundant joints are then included in the input to the function,

and only the non-redundant joints are predicted. Training data is generated by using

gradient descent on a cost function based on the accuracy of the endeffector posi-

tion and some desired criterion for the redundant degrees of freedom (such as energy

minimization), and locally-weighted regression is used to approximate the function.

Reinforcement learning has also been applied to the inverse kinematics problem.

As with policy learning, these techniques generally do not address the issue of obstacle

avoidance. Planning a path for the endeffector that does not collide with obstacles

is relatively easy, and learning the inverse kinematics allows the robot to turn that

path into joint motions quickly, but it does not guarantee that the rest of the robot

will not collide with the obstacles.



2.4 Summary

This review of previous work in the area of motion planning is far from a compre-

hensive survey of the field, thanks to the many years of fruitful research that has

been done over the last thirty years. It is primarily focused on techniques that strive

to address similar concerns as our work: generating collision-free motion plans in

environments that require fast planning times, either because the objects in the envi-

ronment are dynamic, or because their locations are partially or imperfectly sensed.

Our work aims to bring machine learning techniques to bear on the problem of motion

planning, in a way that is as yet unexplored.
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Chapter 3

Motion plan recall

The most straight-forward way to learn from previous experience is simply to remem-

ber every successful solution to problems encountered in the past. Given this memory

of problems and their solutions, solving a new problem involves finding similar prob-

lems stored in memory, and using a previous solution, or combination of previous

solutions, to come up with a new, related answer. In general, one expects that this

simple learning strategy may require an unreasonably large number of solutions to be

stored in memory, making it too slow to find relevant solutions. In this chapter, we

investigate ways to make this learning technique tractable for the problem of learning

motion plans in regular environments.

Our overall method remembers previously computed solutions by maintaining a

data structure, called a task distribution roadmap (TDR). The roadmap contains

connected paths and their swept volumes. Given a new task instance, the system

uses the swept volumes, along with the obstacle locations, to determine what portion

of the roadmap is collision-free for this task instance. Ideally, that subset of the

roadmap can then be used to quickly find a path, just as a roadmap is typically used

in a static environment. In the general case, one expects that such a roadmap will

have to be exponentially large, and therefore slow to search, to guarantee that it

is sufficiently likely that a solution will be found in the collision-free subset of the

roadmap. In this chapter we discuss the assumptions we believe can be reasonably

made about some real-world environments, and how to leverage these assumptions to



build a TDR that can be used efficiently.

3.1 Environmental Regularities

If the environment in which the agent operates is truly arbitrary, in that obstacles can

occupy any possible region of the space, and the agent may be required to plan motions

between any possible configurations, remembering previous solutions exactly will not,

on average, help speed up the planning process. We know that the general motion

planning problem is PSPACE-hard (Canny (1988)), so without some restriction on

the general case, we can not expect to improve matters simply by caching solutions.

However, more often than not, environments contain obstacles that are not com-

pletely randomly placed. For example, a given office environment typically contains

desks and tables that do not move at all, and chairs that move reasonably freely, but

typically stay in one plane (that is, not floating) and are often loosely constrained to

a particular region (perhaps in front of a desk). Completely different environments

often include similar components that one might hope to interact with in a consis-

tent way, such as tables that have slightly different heights or doorways that are not

identical but require a similar motion to go through. Lastly, in dynamic environ-

ments obstacles will likely change location smoothly over time. A plan that worked

successfully a minute ago is likely to be useful again now.

Further, the tasks that the agent is required to solve may be similar from instance

to instance. This is obviously true if the agent is simply performing a task repeat-

edly, but operating in a changing environment. More interestingly, if the obstacle

placement in the environment has regularities, and the agent needs to manipulate the

items in the environment, then the tasks will exhibit similar regularities. It is these

environmental regularities, both in obstacles placement and in task specification, that

we wish to leverage with the task distribution roadmap.



3.2 Using the Task Distribution Roadmap

As mentioned in chapter 2, the TDR data structure has been proposed in previous

work (McLean & Laugier, 1996; Leven & Hutchinson, 2002; Kallmann & Matari6,

2004). But in each instance, the goal of the work is ultimately quite different from

ours, which leads to a different strategy for constructing the roadmap. We believe

that the potential leverage of a memory-based technique relies on discovering and

exploiting environment regularities. Thus, our goal is to capture the common cases,

and only the common cases, in order to strike an optimal balance between the time

taken to search the TDR and the likelihood that a solution will be found in the

roadmap. Their goal is to construct, off-line, a complete roadmap that is essentially

exhaustive, in that it contains paths that are near every possible path that the robot

can execute. Given this structure, they use it to do planning in essentially the same

way we do.

3.2.1 Task Distribution Roadmap

Consider a robot with n degrees of freedom, operating in an m-dimensional workspace,

W. Let C be the n-dimensional configuration space of the robot when there are no

obstacles present. A task distribution roadmap is a pair (N, E), where N C C is a

set of nodes and E is a set of edges. Each edge, (Cl, c2, v(Ci, C2)) represents a simple

(e.g. straight line) path between two configurations in N: cl and C2 . Each edge is

annotated with its swept volume, v(cl, c2), which is the subset of the workspace W

that includes every point occupied by any part of the robot during its traversal of

the simple path from cl to c2. This can be represented using a grid in the workspace,

and marking any grid cell that is touched during the traversal as being part of the

swept volume. This representation is conservative, in that it overestimates the swept

volume, but we can correct for the conservatism when it is used. Figure 3-1 shows

an illustration of the task distribution roadmap structure for a snakelike robot. Note

that a grid in the workspace is feasible, as it has only three dimensions, whereas

discretizing the configurations space is, in general, not feasiable.



Figure 3-1: Top: A snake-like robot with six degrees of freedom that is anchored

to the floor and surrounded by cylindrical obstacles. Bottom: An illustration of the

task distribution roadmap structure. Nodes contain overhead views of the robot and

obstacles. Two edges are labeled with the swept volumes of the robot as it moves

between the configurations (in green) and the grid cells occupied by obstacles (in red).

The left edge is collision-free for this configuration of obstacles, and right is not.
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3.2.2 Querying the TDR

A planning task instance t = (s, g, O) consists of start and goal configurations, s and

g in C, and a set of obstacles O, which is a subset of W. A task instance specification

t can be given directly to the planner, which will eventually return a solution path

in the form of a sequence of configurations (s, Cl, ... , cn, g) such that the simple path

between each successive pair of configurations is collision-free in Ct, the subset of C

that is not in collision with any of the obstacles O in task instance t.

We can also attempt to solve a planning problem using the TDR R directly.

We will begin by describing the most conceptually straightforward version of the

algorithm, then discuss a variation that is much more computationally efficient.

1. Given a set of obstacles Ot, we need to temporarily remove any edge (cl, c2 , v) E

R for which v n Ot # 0, that is, for which the swept volume is overlapping with

the obstacles. This test is done in the workspace and can be done efficiently with

a grid-based representation of v and Ot. Let Rt be the TDR R with colliding

edges and nodes removed. Note that the resulting Rt could be disconnected (in

the sense that not every node is reachable from every other node).

2. The next step is to see whether st and gt can be connected, by simple paths,

to nodes in Rt. This is done by sorting the nodes in Rt according to distance

(in configuration space) from st (and similarly for gt). Starting with the closest

node, each simple path between st and the node configuration is checked for

collisions in Ot. This process ends when a collision-free simple path from st to

a node in Rt is found. If such a path cannot be found for both st and gt, the

process fails, and the planner is called directly on the problem.

3. If nodes n, connecting to st and ng connecting to gt are found, then we search

Rt for a path between n, and ng; if such a path is found, it is returned as a

solution. If there is no such path, then the planner is called.

4. If, on the other hand, only one endpoint can be connected to the graph with

a simple path, then we take the node n in R that is closest to other endpoint



and invoke the planner to find a path from n to the other endpoint. The idea is

that this may be a much simpler planning problem than finding a path all the

way from the start to the goal. Again, if the planner fails at this problem, then

we simply call the planner on the original task instance.

In fact, rather than computing the entire Rt up front, by invalidating all edges, we

perform a process of lazy edge invalidation during the search to see whether n, and

n, can be connected. During that search, any edge for which v does not overlap Ot

is retained; but because the representation of v may be conservative, if it looks like

the swept volumes might overlap, we do an actual collision check to verify whether

that is the case.

There are a number of other alternative search strategies that might be reasonable,

including finding all (or more than one) nodes that can be directly connected to st

and gt, and performing a search with multiple initial and goal states. We did not

experiment with these in detail.

This algorithm is expected to return a solution in every case that the original

planning algorithm would have. In the worst case, when the TDR cannot be used to

generate even part of a solution to the problem, it will take longer than the planner

would have, because of the added overhead in trying to use the TDR first. However,

if the TDR contains all or most of a successful path, and the path is small, then it

can be expected to run much more quickly.

3.3 Learning the Task Distribution Roadmap

Previous uses of a data structure that is similar to our TDR (McLean & Laugier,

1996; Leven & Hutchinson, 2002; Kallmann & Matarid, 2004) have been intended to

apply to all possible task instances for a particular robot and so they have been built

off-line, independently of any distribution over tasks. We build the roadmap as an

on-line process while solving instances drawn from a particular task distribution.



3.3.1 Augmenting the TDR

Whenever the planner generates a new path, (cl,... ,cn), we use it to augment the

existing TDR, R. The most straightforward approach is to simply add each config-

uration on the path, ci, to N, and add an edge (c, cai+,,v(ci, ci+l)) to E for each

consecutive pair of configurations in the path. All by itself, this does not make the

TDR too much more useful: it will contain the new path, and be able to use it in its

entirety, but will not be able to use just a part of it very effectively. Instead, we want

to connect the new path to R: we must find some collision-free segments between one

configuration in the new path and a node in the existing TDR. For each configuration

ci in the new path, we add k additional edges, connecting ci to other configurations

in N. For each ci, we consider the configurations c in N in order of their distance to

ci, and check to see whether the simple path from ci to c is collision-free. If so, then

an edge (ci, c, v(ci, c)) is added to E. This done until ci has k edges, or all of the c

have been exhausted.

3.3.2 Decreasing swept volume

Our goal in adding paths to the TDR is to try to increase the "coverage" of the TDR;

that is, to make it so that future planning problems are more likely to be solvable

within the TDR. So, in adding new nodes and edges, we would like to increase the

coverage as much as possible. An edge (Cl, C2, v) can be used in a new planning task

instance with obstacles Ot whenever Ot n v = 0; the smaller we can make v, the more

likely it is that this condition will be true for a new task instance. So, the TDR can

be improved by decreasing the swept volume of the edges that are added to it.

Ideally, one could call the planner with a criterion of producing paths with low

swept volume. This is a very difficult optimization problem, however, and would

make the planner completely computationally infeasible. Instead, we perform post-

processing on the solution path received from the planner to reduce its swept volume.

There are many possible strategies for doing this, including possibly adding new

configurations to the plan, but in this paper, we take a very simple approach that



Figure 3-2: Example of decreasing the swept volume of a path by removing a node,
in a problem for a robot with a fixed base and five revolute joints in a 2D workspace.

The middle row of the figure shows three successive configurations of the robot. The

top row shows the swept volume of each linear segment of the path followed by the

union of the swept volumes. The bottom row shows the swept volume when the

second configuration is omitted. We can see that the swept volume is smaller when

the second configuration is removed.

only considers removing configurations from the path.

One simple greedy approach is to remove configurations from the path if doing

so decreases the swept volume without compromising the path's validity. Figure 3-2

shows an example of a short path from which one node can be removed to substantially

decrease the swept volume of the whole path. However, it is not always the case that

removing a node decreases the swept volume. Figure 3-3 shows an example of a

path for which removing a node would increase the swept volume. Not only must we

examine the swept volume of the entire path every time we are considering removing

a node, but there are an exponential number of path subsets that might have the

smallest swept volume, and considering them all is clearly not feasible. If we consider

removing only one node at a time, we may miss opportunities to remove multiple

nodes at once, since removing them individually may not improve the swept volume.

Figure 3-4 shows an example path for which this is true. So, a simple top-down



Figure 3-3: Removing the middle node from this path increases the swept volume.

Just because removing a node does not cause a collision does not mean that it de-

creases the swept volume of the path.

strategy can easily fail to find the optimal swept volume. Similarly, if we consider

only multiple nodes at once, we may also stray from optimal, as demonstrated by

Figure 3-5. So, a simple bottom-up strategy will also typically fail to find the optimal

swept volume.

Since looking at the full set of subsets is infeasible for paths longer than about ten

configurations, we considered several approximations. By experimenting with each

method on paths that were short enough to find near-optimal solutions, we deter-

mined empirically that a top-down approach, in which subsets of decreasing length

are considered for removal, was a reasonable compromise on running time and amount

of swept volume reduction. We also considered a bottom-up case in which individual

nodes are first considered for removal, and then increasingly large pieces of the path

are looked at. Another method was to choose two random configurations in the path

and remove the section in between if it was found to decrease the volume. Figure 3-6

shows the results of our experiments comparing several methods of decreasing the

swept volume.



we build the TDR based on a distribution of task instances, we can let the task= 14,

Figure 3-4: This path shows that removing only one node at a time may cause us tomiss opportunities to remove multiple nodes. The swept volume for the whole pathis shown at the top. Below that is the swept volume if the fourth configuration isskipped, which is slightly higher than leaving the configuration in. Similarly removingonly the second node is worse than leaving it in. However, removing both, as shownin the bottom swept volume, gives by far the smallest swept volume.

3.3.3 Deciding when to augment the TDR

The problem of choosing an appropriate size for the TDR, in order to optimize average
computation time, is an interesting one. As the size of the TDR increases, its coverage
increases, and so the likelihood of finding the solution to a new problem within the
TDR increases. At the same time, however, the time taken to search for a solution
within the TDR increases. If we allow the TDR to grow without bound, the overall
algorithm will become slower than calling the planner.

As we will discuss further in section 3.4.3, this is a serious issue in off-line dynamic
roadmap (DRM) construction (as in (McLean & Laugier, 1996; Leven & Hutchinson,
2002; Kallmann & Matari6, 2004)), because the DRM needs to be prepared to acceler-
ate any task instance that appears, which argues that it needs to have high coverage,
but the associated size risks very slow search times within the roadmap. Because
we build the TDR based on a distribution of task instances, we can let the task
distribution guide which parts of the configuration space need more dense sampling.

The most naive approach to building the TDR would call the planner on some
initial "training" set of task instances drawn from the task distribution and put all of
the solutions into the TDR. This will result in a very large TDR with lots of solutions
that are relatively redundant.



Figure 3-5: This path shows that we do not always want to remove the largest possible
subset of nodes. Removing both the second and third configurations does decrease
the swept volume (shown on the bottom), but not by nearly as much as removing
just the second configuration (shown in the middle).

A more effective approach is to take the task instances sequentially and use a

process similar to one frequently used in nearest-neighbor algorithms, in which a

solution is only added if the current TDR was unable to solve the problem. This

ensures that the structure isn't redundant and significantly decreases the size, and

therefore the searching time, of the TDR.

There is a further benefit to this approach. In a domain for which there are many

possible solutions to a given task instance or set of task instances (for example, due to

redundancy in the robot), a non-sequential approach would tend to add all possible

solutions. However, in a sequential approach, once the planner has found a particular

solution to a problem, that same solution (or similar ones) will be applied to similar

problems, and the rest of the solution space need never be explored or represented.

3.4 Experiments

The goal of our experiments is to test the value of the TDR-based planning (TDRP)

approach. We used a relatively simple environment in order to be able to experiment

in detail with variations on robot complexity and task distributions.
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Figure 3-6: Results of experiments for decreasing swept volume of a path. The time
for the brute-force optimal algorithm is not shown because it was generally around
15-20 seconds. The bottom graph shows the ratio !, where v, is the swept volume of
the original path, and v8 is the swept volume of the path after applying the algorithm.
The top-down approach is the best of the non-optimal solutions, since it takes less
time and arrives at a path with a smaller swept volume than the others.

3.4.1 Task Distribution

Our experiments were performed with a planar revolute robot arm with a fixed base.

We considered four, five, six, and eight degrees of freedom. A six-degree-of-freedom

example of the robot with several cylindrical obstacles in the workspace is shown

in Figure 3-1. A planning problem consists of a start and goal configuration, and

an obstacle placement (they are all of fixed radius). While the obstacles are moved

between each planning problem presentation, they are static while the planning is

being carried out.

As we discussed in section 3.1, we are interested in looking at task distributions

with some variability in task instances (in both start and goal configurations and

obstacle placement), but also some regularities. We therefore constructed task distri-

butions that allowed us to control each of these aspects of the distribution individually.

We also wanted to test the methods in task distributions with lots of variation and

distributions with less variation. The distributions over obstacle positions, starting

positions of the end effector, and goal positions of the end effector are all mixtures of



Gaussian distributions in the x and y dimensions of the workspace.

We are primarily interested in handling problems that are typically difficult for the

single-query planner, so we construct a process, described below, for creating tasks

that is biased in favor of difficult problems. This is less true as the variability of the

world increases.

Each experiment is run on multiple task distributions with similar distributional

parameters. The experimental protocol, then, is to start by specifying a set of hy-

perparameters, ko, 0, ke, and ae, specifying the number of clusters of obstacles (ko)

and the standard deviation of points generated by a cluster from its mean ( 0o), and

the number of clusters of end-points (ke) and the standard deviation of the endpoint

clusters (cre). Now, to generate a task distribution, T, with no obstacles, we

* Choose ke cluster means for clusters of end-effector locations, P ,... . , ; the

mean of each endpoint location is chosen to require the arm to be nearly fully

extended, and the positions are uniformly spaced around the robot to reduce

the percentage of trivial planning problems (in which the start and goal are

connected by a simple path)

* Draw ko cluster means for the location each obstacle: y l . Ik , ,lo .. no0 l ,n

uniformly at random from the x, y workspace.

Given a task distribution, T, to draw a particular task instance t, we

* Draw cluster indices js uniformly in {1,... , ke} and j, uniformly in {1,..., ke}

for the start and goal positions; Reject if ji = jg.

* Draw a start position x, ys from a Gaussian distribution with mean p3 and

standard deviation ~e, and goal position xg, y, from a Gaussian distribution

with mean p g and standard deviation ae.

* For each obstacle o, draw a cluster index jo uniformly in {1,..., ko}.

* For each obstacle o, draw an obstacle position xo, yo from a Gaussian distribution

with mean 4 o
j and standard deviation co. If the obstacle collides with either



the start or the goal configurations, reject. If sampling with mean p13jo fails

more than 10 times, resample the mean (previous step).

* If a position that does not collide with the start and goal configurations cannot

be found for at least one obstacle after 10 attempts, resample the endpoint

configurations.

Figure 4-4 shows four different task distributions. Each distribution is illustrated

by overlaying five task instances drawn according to the distribution.

3.4.2 Algorithms

We compare results on a number of different versions of planning algorithms.

Single-query planner The SBL single-query probabilistic roadmap planner (Sanchez

& Latombe, 2001) from the Stanford Motion Planning Kit.

Offline DRM The DRM is a TDR generated off-line in the absence of obstacles

as in (McLean & Laugier, 1996; Leven & Hutchinson, 2002; Kallmann & Matarid,

2004), with a fixed size chosen experimentally.

All previous plans The TDR is built on-line, keeping all the plans found in pre-

vious task instances, up to the same fixed size as the offline DRM.

Necessary previous plans The TDR is built on-line, keeping only plans from

tasks in which the existing TDR could not solve the problem.

Reduced swept volume In addition to only keeping the necessary previous plans,

the plans are modified to reduce their swept volume. This is the full TDRP as

described in Section 3.3.

All the results in this paper are for k = 10, that is, we attempt to connect each

configuration in the roadmap to 10 other configurations.



3.4.3 Impact of learning

Our first set of experiments is designed to test each TDRP component's ability to take

advantage of environmental regularities. Therefore, we fixed each of the variability

parameters described above to small values. Our workspace was a 10 by 10 square,

with an obstacle and endpoint distribution illustrated in figure 4-4A.

Before performing the experiment to compare each algorithm, we needed to de-

termine an appropriate size for the offline DRM. The number of nodes in any roadmap

technique generates a tradeoff between searching the roadmap quickly (small roadmap)

and finding many solutions in the roadmap (larger roadmap). We experimented with

many sizes for the offline roadmap, and found that for our problems, there was no

clear best size: if the roadmap is large enough to have low probability of giving up

and calling the planner, it takes so long to search the graph that it is not a clear win

over calling the planner in the first place. Figure 3-7 shows this tradeoff for our eight

degree-of-freedom robot. Since there did not appear to be a size that was best, we

chose a fairly small size (see above) so that our roadmaps could be built in reasonable

time.

The results are shown in Figure 3-8. The results for each number of degrees of

freedom is the average of 10 trials with different obstacle and start/goal distributions,

drawn from the same hyperparameters; each trial involved 100 planning queries. The

roadmaps (both off-line and on-line) were built anew for each trial. In each of the

TDR cases, the learning phase was run "to convergence", that is, until a large number

of consecutive problems were solved by the TDR.

Note that building the TDR on-line and remembering all the paths substantially

reduces the average time to solve a planning query, but the worst-case time is still

high. The roadmap contains many redundant plans, and so therefore fails, at its

predetermined maximum size, to contain solutions to a high enough percentage of

new problems, so it must resort to the single-query planner for many problems.

On the other hand, when we keep only the necessary paths, we see that both the

average time and the worst-case time are substantially reduced. Interestingly, if we
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look at the size of the roadmap that is built, we find that while the average size is

smaller than the predetermined size chosen for the roadmap of all previous plans,

there are some roadmaps that actually grow to be larger. Thus we conclude that the

performance advantage is due both to keeping the graph small (and therefore fast to

search) when small size is adequate, and to growing the graph sufficiently to cover

the space of planning problems when the environment requires it.

Lastly, we consider the effect of reducing the swept volume of each path added

to the roadmap. The figure shows a substantial reduction in both the average and

worst-case planning times. Both of these outcomes are due to the fact that decreasing

the swept volume of a path makes it more likely that the path will be useful in future

planning problems, and therefore allows the graph to stay small while still containing

many relevant solutions.

3.4.4 Dealing with Disorder

Our second set of experiments is designed to see how the TDR copes with increasing

variability in both the motion endpoints and the obstacle placements. We therefore

tried increasing each while holding the other at a fixed, small value, and then tried

increasing both simultaneously -first a little, and then a great deal, as seen in Figure

4-4.

We find that the TDR is very robust to increasing variability of start and goal

locations, and is still advantageous in the face of high varying obstacle positions.

Figure 3-10 shows, for the task distributions in figure 4-4A through D, the average

ratio of the single-query planner time and the TDR planning time as a function of the

number of planning problems that have been seen. Figure 3-11 shows the percentage

of the time that the solution is found in the roadmap, rather than giving up and

calling the planner.

In addition we carried out an experiment with a very highly varying task distri-

bution (shown in figure 4-4E), because we antipcated that a roadmap approach, even

one that is carefully constructed, would fail to show any advantage when the world

was very random, and might in fact hurt. What we find is that since the robot is
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Figure 3-9: Example task distributions: A. Low variability B. Increased start/goal

variability. C. Increased ostacle variability. D. Increased obstacle and endpoing vari-

ability. E. High variability
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Figure 3-10: Ratio tsqp/ttdr of the planning time required by the single-query planner,tsqp and that required by the TDR ttdr as a function of the number of planningproblems seen by the TDR. The thin black line shows a ratio of 1.0 for reference. Theletters in the legend refer to the task distributions shown in figurefig:envs.
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Figure 3-11: The probability that the solution is found in the TDR as a function of
the number of planning problems seen.

redundant, meaning many problems have multiple possible solutions, the roadmap is

able to capture at least one solution to enough problems that it achieves a 2X speedup

over the SBL planner.

As expected, we see that the TDR is able to provide more substantial speedup

when the tasks have lower entropy. It is interesting to note that the performance of

the TDR relative to the planner is more flat than the probability of finding solutions

in the graph, as a function of the number of training examples, particularly in the

low-entropy cases. This is because there is a lot of speedup when the graph is small,

but contains a reasonably high percentage of answers. As more training data is seen,
the contribution of each point is less evident, as it makes it incrementally more likely

that a similar problem will now have a solution in the graph, but makes the graph

larger and therefore slower to search.



3.5 Conclusions

Our experiments show that it is possible to get significant improvements in the

running time of a single-query motion planner in related tasks by building a task-

distribution roadmap, which captures a relatively small set of paths that are useful

for the tasks. There are a number of directions to extend this work and we briefly

discuss some of these here.

First, there are a number of simple improvements that could be made to the TDR

to decrease the time needed to find an answer if it is in the graph. Since the time

required to get an answer from the TDR depends on the size of the graph, a number

of techniques could be used to keep the number of nodes and edges small. One idea is

to prune nodes and edges that are not found to be useful after additional experience.

In addition, the time required to find nearest neighbors in the graph can be decreased

by storing the nodes in a KD-tree or some other appropriate data structure.

The most interesting aspect of this work was the demonstration that some attempt

to generalize a path before committing it to memory can decrease the number of

solutions that must be remembered in order to answer queries quickly. However,

there remain some questions as to the best way to perform this operation. First,

since decreasing the swept volume of paths before inserting them was very useful

both in decreasing the overall size of the graph, and in increasing the likelihood that

the graph will be useful for new planning problems, it might prove even more useful

to simply generate plans with smaller swept volume to start with. Thus, working to

bias the planner in favor of small paths might prove a fruitful direction. In fact, we

should bias the paths to have small swept volume in areas where obstacles frequently

appear.

Our approach for decreasing the swept volume could also be improved upon. For

example, because we were interested in running many experiments quickly, we con-

sidered only removing nodes from the path to decrease its volume. Paths could al-

most certainly be improved more by also considering the judicious addition of nodes.

Platform-based heuristics could also be used to improve the process. Lastly, swept



volume may not be the only worthwhile property to consider when working to gener-

alize solutions; something like manipulability might also be used in this way.

As our results showed, the TDR can solve some very hard problems very quickly,

but when the agent is faced with hard problems only occasionally, the overhead of

the TDR may be a liability in terms of average time needed to solve the problems

faced. One method for alleviating this problem might be to develop a fast way to tell

whether a planning problem is likely to be difficult for the single-query planner. We

might then hope to get the best of both worlds.

A clear weakness of the TDR is that there is no abiltiy to modify a path from the

graph that doesn't quite work in the current circumstances, but would require only

small modifications. One possible way to address this within the task distribution

roadmap framework would be allowing pieces of the roadmap to move locally in

response to changes in the environment, since local changes are often reasonably

easy to compute. Since our work on the task distribution roadmap presented in this

chapter, this idea of a flexible roadmap has been explored by others (Yang & Brock,

2006; Gayle et al., 2007). Rather than extending the task distribution roadmap to

deal with the lack of flexibility, however, we have chosen to address the issue with a

technique that combines the desire to focus on the difficult problems and the notion

of a parameterized path. This technique is described in the next chapter.
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Chapter 4

Predicting partial paths

The primary weakness of the memorization technique described in the previous chap-

ter was that a small change in the environment can cause very large regions of the

solution memory to be invalid. To address this, we would instead like to learn a

parameterization of the old solutions that allows us to adapt them quickly to similar

but novel problems. Also, since existing probabilistic techniques already deal quite

effectively with easy planning problems (those that do not contain narrow passages in

configuration space), we would like to focus not just on the difficult problems, but on

the difficult parts of the difficult problems. Thus a natural parameterization would

be one that characterizes the narrow passage in input space.

In general, such parameters may not be easy to find: seemingly harmless regions

of the workspace can correspond to narrow passages in configuration space. How-

ever, there are common difficult problems that do have identifiable features in the

workspace. A small hole that the robot is requires to move or reach through, or a

pre-grasp configuration that has an object enclosed in the robot's hand are exam-

ples of such configuration-space narrow passages. Given a set of tasks such as these,

we will use the notion of a "task template", or a parameteric description (in the

workspace) of a particular instance of the task.

Even given a small set of narrow-passage tasks, it will still be difficult in many

real-world applications to identify the appropriate parameters from the robot's sensor

input. One possible scenario for obtaining task template parameters might involve



Figure 4-1: A task template for a doorway task. Left: Parameterization of the
template. Right: Application of task tmplate to a complex environment. Start and
goal configurations for a mobile 2-degree of freedom robot are shown below and above
the door (in red).

teleoperation of the robot, in which a human operator could fit the template to a

particular instance. In general, we do not expect that extracting task parameters from

sensor data automatically will be easy. This thesis does not address this issue; instead

we assume the ability to derive problem parameters in some way, and investigate the

possible utility of such parameters in solving the motion planning problem. Figure 4-

1 shows an example of how a task template that describes a tight doorway might be

instantiated.

Our approach involves learning a function from task template parameters to a

partial motion plan that is relevant to solving the overall task. This plan segment

is then passed to a modified version of the SBL planner (Sanchez & Latombe, 2001)

which is then able to solve the full planning problem more quickly. The training data

for the learning algorithm is generated by using the unmodified SBL planner to solve

task template instances, and then extracting the difficult part of the plan.

4.1 Generating training data

For each task template, we assume a source of training task instances of that template.

These instances might be synthetically generated at random from some plausible

X'Y~



distribution, or be drawn from some source of problems encountered in the world in

which the robot will be operating.

We begin with a set of task instances, tl,... ,t, where each task instance is a

specification of the detailed problem, including start and goal configurations and a

description of the workspace obstacles. These descriptions will generally be non-

parametric in the sense of not having a fixed size. We will convert each of these tasks

and their solution paths into a training example, (xi, yi), where xi is a parametric

representation of ti and yi is a path segment. Intuitively, to get x' we instantiate the

task template for the particular task at hand. In the case of the doorway example

this means identifying the door, and finding its position and orientation, Xd,,oor, Ydoor

and 0 door

We assume that each t' in the training set is "labeled" with a parametric descrip-

tion xz. To generate the yi values, we begin by calling the single-query planner on

task instance ti . If the planner succeeds, it returns a path p = (cl, ..., c) where the

c's are configurations of the robot, connected by straight-line paths.

We do not, however, want to use the entire path to train our learning algorithm.

Instead we want to focus in on the parts of the path that were most difficult for the

planner to find, so we will extract the most constrained portion of the path, and use

just this segment as our training data. Algorithm 4.1 shows an outline of the way in

which the most constrained path segments are extracted. We describe the algorithm

below.

Before we analyze the path, we would like to reduce the number of unnecessary

configurations generated by the probabilistic planner, so we begin by smoothing the

path. This process involves looking for non-colliding straight-line replacements for

randomly selected parts of the path, and using them in place of the original segment.

Since we are interested in judging the extent to which each configuration in the

path is constrained, we need to be careful when smoothing the path. In general,

replacing segments with straight-line segments whenever possible tends to generate

paths that go very close to obstacles, even when it is not necessary. This may make it

appear that some configurations are more constrained than they need to be. Thus, we



Algorithm 4.1 EXTRACTCONSTRAINEDSEGMENTS(path, length) : subpaths

1: smoothPath = SMOOTHPATHCHECKCLEARANCE(path)
2: resampledPath = RESAMPLEPATH(smoothPath, d)
3: constrainedList = MEASURECONSTRAINED(resampledPath)
4: t = min(constrainedList) *p + max(constrainedList)*(1.0-p)
5: constrainedSegs = SEGMENTSABOVETHRESH (constrainedList,

resampledPath, t)
6: for all segment E constrainedSegs do
7: subpath = ADJUSTPATHLENGTH(segment, length)
8: if COLLISIONFREE(subpath) and

(PLANNERTIME() > IO*PLANNERTIME(segment)) then
9: subpaths.ADD(subpath)

10: end if
11: end for

are careful, while smoothing, to replace segments only with staight-line paths that do

not decrease the clearance, or minimum distance between the robot and an obstacle.

We also want to sample the paths at uniform distance intervals, so that paths

that follow similar trajectories through the workspace are similar when represented as

sample sequences. Thus, we first resample the smoothed path at a higher resolution,

generating samples by interpolating along p at some fixed distance between samples,

resulting in a more finely sampled path.

Given this new, finely sampled path p', we now want to extract the segment that

was most constrained, and therefore difficult for the planner to find. In fact, if there

is more than one such segment, we would like to find them all. For each configuration

in the path, we draw some number of samples from a normal distribution centered

on that configuration (sampling each degree of freedom independently). Each sample

is checked for collision, and the ratio of the number of colliding samples to the total

number of samples is used as a measure of how constrained the configuration is.

We then set a threshold to determine which configurations are tight, and find the

segments of contiguous tight configurations. Our outputs need to have a fixed length

1, so for all segments less than 1, we resample the path at appropriate granularity.

For segments with length greater than 1, we skip configurations as appropriate.

Lastly, we want to avoid adding points to our data set that are not actually helpful.



We can judge this by calling the planner with the proposed path segment, and adding

the segment to our list only if the planning time is significantly improved. In this way,

we extract each of the constrained path segments from the solution path. Each of

these, paired with the parametric description of the task, becomes a separate training

example.

4.2 Learning from successful plans

Each of our n training instances (zX, yi) consists of a task-template description of the

world, x i , described in terms of m parameters, and the constrained segment from a

successful path, yi, as described above. The configurations have consistent length d

(the number of degrees of freedom that the robot has), and each constrained segment

has been constructed to have consistent length 1, therefore yi is a vector of length Id.

At first glance, this seems like a relatively straightforward non-linear regres-

sion problem, learning some function f* from an m-dimensional vector x to an Id-

dimensional vector y, so that the average distance between the actual output and

the predicted output is minimized. However, although it would be useful to learn

a single-valued function that generates one predicted y vector given an input x, our

source of data does not necessarily have that form. In general, for any given task

instance, there may be a large set of valid plans, some of which are qualitatively

different from one another.

For instance, members of different homotopy classes should never be averaged

together. Consider a mobile robot going around an obstacle. It could choose to go

around either to the left of the obstacle, or to the right. In calling a planner to solve

such problems, there is no general way to bias it toward one solution or the other; and

in some problems there may be many such solutions. If we simply took the partial

paths from all of these plans and tried to solve for a single regression function f from

x to y, it would have the effect of "averaging" the outputs, and potentially end up

suggesting partial paths that go through the obstacle.



Figure 4-2: Top: Different strategies proposed for the same environment. The strat-

egy on the left has the arm trailing the base (indicated by the black circle), while

the strategy on the right goes through arm first. Bottom: Suggested partial paths

generated by the same strategy for different environments.

4.2.1 Mixture model

To handle this problem, we have to construct a more sophisticated regression model,

in which we assume that data are actually drawn from a mixture of regression func-

tions, representing qualitatively different "strategies" for negotiating the environ-

ment. Figure 4.2.1 shows strageies relevant for solving our doorway example with

a 6 degree-of-freedom mobile arm. Note that the two suggestions generated by dif-

ferent strategies for the same environment are incompatible: the average of the two

strategies produces a colliding path.

We learn a generative model for the selection of strategies and for the regression

function given the strategy, in the form of a probabilistic mixture of h regression

models, so that the conditional distribution of an output y given an input x is

h

Pr(ylx) = Pr(ylx, s = k) Pr(s = klx)
k=1

where s is the mixture component responsible for this example.



Figure 4-3: Data with linear regression (left) and mixture regression (right) fits.

Figure 4-3 illustrates a data set with this non-functional property in which the x

and y are one dimensional. In the first frame, we show the best single linear regression

line, and in the second frame, a mixture of linear regression models. It is clear that

a single linear (or non-linear, for that matter) regression model is inappropriate for

this data.

For each strategy, we assume that the components of the output vector are gen-

erated independently, conditioned on x; that is, that

Id

Pr(ylx , s = k) = -I Pr(yjlx, s = k)
j=1

Note that this applies to each configuration on the path as well as each coordinate

of each configuration. Thus, the whole partial path is being treated as a point in an

id-dimensional space and not a sequence of points in the configuration space. The

parameter-estimation model will cluster paths such that this independence assump-

tion is satisfied, to the degree possible, in the model.

Then, we assume that each yj has a linear dependence on x with Gaussian noise,

so that

Pr(yjlx, s k = ex (ypjk )2

jk2 2 jk

where aji is the standard deviation of the data in output dimension j of strategy k

from the nominal line, and wjk is an m-dimensional vector of weights specifying the

dependence of the mean of the distribution of yj in strategy k on x as the dot product

of wjk and x.



It would be possible to extend this model to contain non-linear regression models

for each mixture component, and it might be useful to do so in the future. However,

the current model can approximate a non-linear strategy function by using multiple

linear components.

In our current model, we assume that Pr(s = klx) is actually independent of x

(we may wish to relax this in future), and define rk = Pr(s = k). So, finally, we

can write the log likelihood of the entire training set LL(c, w, 7r), as a function of the

parameters a, w, and -r, (note that each of these is a vector or matrix of values), as

n h la 1 (y - wjk " i)2

log -k exp - 2
i=1 k=1 j=1 2Ok

We will take a simple maximum-likelihood approach and attempt to find values of a,

w, and r that maximize this likelihood, and use that parameterization of the model

to predict outputs for previously unseen values of x.

The model described in this section is essentially identical to one used for clustering

trajectories in video streams (Gaffney & Smyth, 1999), though their objective is

primarily clustering, where ours is primarily regression.

4.2.2 Parameter estimation

If we knew which training points to assign to which mixture component, then the

maximum likelihood parameter estimation problem would be a simple matter of

counting to estimate the l7k and linear regression to estimate w and u. Because

we don't know those assignments, will will have to treat them as hidden variables.

Let 4 = Pr(si = k x i , yi) be the probability that training example i belongs to mix-

ture component k. With this model we can use the expectation-maximization (EM)

algorithm to estimate the maximum likelihood parameters.

We start by doing an agglomerative clustering of a subset of our data. The

point-to-point distance metric used for the clustering is Euclidian distance on the

concatentation of xz and yi. Cluster distance is computed as the distance between

the means of the clusters. We cluster until we have as many clusters as we want



mixture components, and then for each component we initialize q4 to be high if the

point (xi, y i ) is in the correponding cluster, and low otherwise. We cluster enough

of our data to ensure that each component has enough points to make the linear

regession required in the M step described below be well-conditioned.

In the expectation (E) step, we temporarily assume our current model parameters

are correct, and use them and the data to compute the responsibilities:

7k Pr(yi xi , si = j)
:=  h 1 raPr(yixisi a)

In the maximization (M) step, we temporarily assume the responsibilities are cor-

rect, and use them and the data to compute a new estimate of the model parameters.

We do this by solving, for each component k and output dimension j, a weighted

linear regression, with the responsibilities 7k as weights. Weighted regression finds

the weight vector, wjk, minimizing

Z k(wjk"x- YJ)

When the regression is numerically ill-conditioned, we use a ridge parameter to reg-

ularize it.

In addition, for each mixture component k, we re-estimate the standard deviation:

1

(i jk i

Finally, we reestimate the mixture probabilities:

I n

i=1

This algorithm is guaranteed to find models for which the log likelihood of the

data is monotonically increasing, but has the potential to be trapped in local optima.

To ameliorate this effect, our implementation does random re-starts of EM and selects

the solutions with the best log likelihood.



The problem of selecting an appropriate number of components can be difficult.

One standard strategy is to try different values and select one based on held-out

data or cross-validation. In this work, since we are ultimately interested in regression

outputs and not the underlying cluster structure, we simply use more clusters than

are likely to be necessary and ignore any that ultimately have little data assigned to

them.

4.3 Using the model

Given the model parameters estimated from the training data, we can generate sug-

gested partial paths from each strategy, and use those to bias the search of a sample-

based planner. In our experiments, we have modified the SBL planner to accept

these suggestions, but we expect that most sample-based planners could be similarly

modified. We describe the way in which we modified the SBL planner below.

For a new planning problem with task-template description x, each strategy k

generates a vector yk = Wk - x that represents a path segment. However, in the new

planning environment described by x, the path segment may have collisions. We

want to avoid distracting the planner with bad suggestions, so we collision-check each

configuration and each path between consecutive configurations, and split the path

into valid subpaths. For example, if y is a suggested path, consisting of configurations

(ci,.. ., C15), imagine that configuration c5 collides, as do the paths between c9 and c 0o

and between cio and c11 . We would remove the offending configurations, and split the

path into three non-colliding segments: (ci ... c4 ), C6 ... c9), and (cit ... c15). All of

the non-colliding path suggestions from each strategy are then given to the modified

SBL planner, along with the initial start and goal query configurations.

The original SBL planner searches for a valid plan between two configurations

by building two trees: T, rooted at the start configuration, and Tg, rooted at the

goal configuration. Each node in the trees corresponds to a robot configuration, and

the edges to a linear path between them. At each iteration a node, n, from one



of the trees is chosen to be expanded.' A node is expanded by sampling a new

configuration nnew that is near n (in configuration space) and collision-free. In the

function CONNECTTREES, the planner tries to connect Ts and T, via nnew. To do

this, it finds the node nclose in the other tree that is closest to nnew. If nclose and

nnew are sufficiently close to one another, a candidate path from the start to the goal

through the edge between nnew and nclose is proposed. At this point the edges along

the path are checked for collision. If they are all collision-free, the path is returned. If

an invalid edge is found, the path connecting the two trees is broken at the colliding

edge, possibly moving some nodes from one tree to the other.

We extended this algorithm slightly, so that the query may include not only start

and goal configurations, c, and cg, but a set of h path segments, (pi, ... , Ph), where

each path segment pi is a list of configurations (cil, ... , cir). Note that r may be less

than 1, since nodes in collision with obstacles were removed. We now root trees at the

first configuration cil in each of the path segments pi, adding h trees to the planner's

collection of trees. The rest of the configurations in each path segment are added as

linear descendants, so each suggestion tree starts as a trunk with no branches.

Importantly, the order of the suggestions (barring those that were thrown out due

to collisions) is preserved. This means that the suggested path segments are poten-

tially more useful than a simple collection of suggested collision-free configurations,

since we have reason to believe that the edges between them are also collision-free.

The original SBL algorithm chose with equal probability to expand either the start

or goal tree. If we knew that the suggestions were perfect, we would simply require

them to be connected to the start and goal locations by the planner. However, it

is important to be robust to the case in which some or all of the suggestions are

unhelpful. So, our planner chooses between the three types of trees uniformly: we

choose the start tree and goal tree each with probability 1/3, and one of the k previous

path trees with probability 1/(3k). When we have generated a new node, we must

1The SBL planning algorithm has many sophisticated details that make it a high-performance
planner, but which we will not describe here, such as how to decide which configuration to expand.
While these details are crucial for the effectiveness of the planner, we did not alter them, and so
omit them for the sake of brevity.



now consider which, if any, of our trees to connect together. Algorithms 4.2 and 4.3

show pseudo-code for this process. The overall goal is to consider, for each newly

sampled node nnw, any tree-to-tree connection that nnew might allow us to make,

but still to leave all collision checking until the very end, as in the SBL planner.

Texpand is the tree that was just expanded with the addition of the newly sampled

node nnew . If Texpand is either the start or goal tree (T and Tg respectively), we first

try to make a connection to the other endpoint tree, through the CONNECTTREES

function in the SBL planner. If this function succeeds, we have found a candidate

path and determined that it is actually collision free, so we have solved the query and

need only return the path.

If we have not successfully connected the start and goal trees, we consider making

connections between the newly expanded tree and each of the previous path trees, Ti.

The MERGETREES function tries to make these connections. If a connection can be

made between the new node new and a node nconnect in some tree T, Ti is restructured

so that nconnect is the root of the tree, and then attached to n,,, combining the two

trees into one. The paths between these trees are not checked for collisions at this

point. As mentioned above, the original algorithm has a distance requirement on two

nodes in different trees before the nodes can be considered a link in a candidate path.

We use the same criterion here. If the new node is found to be close enough to a

node in another tree, we reroot Ti at node nclose, and then graft the newly structured

tree onto Texpand at node nnew. If one connection is successfully made, we consider no

more connections until we have sampled a new node.

4.4 Experiments

We have experimented with task-templates in several different types of environment,

to show that learning generalized paths in this way can work, and that the proposed

partial paths can be used to speed up single-query planning. We found that the

technique was quite successful in several environments, and improves planning time

significantly in all of our domains, but provides less improvement in the more difficult

domains. We present the results in each domain here, and then investigate the more



Algorithm 4.2 TRYCONNECTIONS(nnew, Texpand): Boolean

1: success +- false
2: if Texpand Tg then

3: success - connectTrees(nnew,Texpand, Ts)
4: else if Texpand == Ts then
5: success <- connectTrees(new,Texpand, Tg)
6: else
7: for previous path trees Ti Z Texpand do
8: merged <- mergeTrees(nnew, Texpand,Ti)

9: if merged then
10: break

11: end if

12: end for
13: end if
14: return success

Algorithm 4.3 MERGETREES(Rnew, Texpand, Telim) Boolean

1: nclose - Telim.CLOSESTNODE(nnew)
2: success +-- CLOSEENOUGH(nclose, nnew)
3: if success then
4: REROOTTREE(nclose, Teiim)

5: GRAFTTREE(nnew, nclose, Texpand, Telim)

6: end if



challenging domains in greater detail in chapter 4. The simplest environment is

depicted in figure 4-2, and the rest are shown in figure 4-4. Each illustration shows

the obstacle placement and the start and goal locations for a particular task instance.

The simplest environment is the doorway environment. It is just a wall with a hole

in it, where the location and orientation of the wall changes. The robot is a mobile

arm with a variable number of links in the arm, so that we can carefully explore how

well the algorithms scale. Experiments done in this very simple domain were intended

to be a proof of concept for both the generalized path learning from probabilistically

generated paths, and the integration of suggested paths with the SBL planner.

The doorway in this domain, and the following one, is parameterized by the x, y

position of the door, and the angle of the wall relative to horizontal. We chose a tight

spot segment length of 7 for this domain, and we allowed EM to use 8 clusters.

The cluttered doorway domain extends the doorway domain slightly by introduc-

ing random obstacles during testing. The task template for this domain is the same

as for the previous one, and in both cases training data was gathered in the absence

of obstacles. Since randomly placing obstacles may completely obscure the door, we

report planning times only for problems for which either the planner alone, or the

modified planner, was able to find a solution.

The "bug trap" domain is a fairly standard motion planning challenge. This

domain increases the required accuracy of the suggestions, as the hallway for getting

out of the trap is long and narrow. The bug trap domain was parameterized by the

angle of rotation of the trap around the center. Rather than using the raw angle,

we used the sine and cosine of the angle, as the function function from the input

parameters to the z and y degrees of freedom is simpler in that space. We also used

degree three polynomial features, as we found experimentally that this feature space

worked the best.

The angle and zig zag corridors are designed to show that the learning algorithm

can learn more complicated path segments. These domains are tricky because the

constrained portion is more complicated than in the previous examples. This means

the learning is more difficult, because the training data must be well-aligned in order



(a) (b)

(c) (d)

(e)

Figure 4-4: Four types of environment for experimental testing. The robot in each

environment is a planar mobile arm with varying num of degrees of freedom, from 4

to 7. We will refer to the domains as (a) cluttered doorway, (b) bug trap, (c) zig zag

corridor, (d) angle corridor, and (e) gripper.



for the function approximator to generalize across them appropriately.

Each of these domains was parameterized by the y position of the tunnel, and an

angle, 0. In the angle corridor case, 0 represents the acuteness of the bend in the

tunnel, and in the zig-zag corridor, the 0 is the angle from horizontal of the tunnel.

For these domains we found that using the angle 0 alone, and not the sine and cosine

worked better. In chapter 5 we explain why we think this is the case.

Finally, the gripper domain involves a robot with different kinematics, that has to

have a substantially different configuration in going through the tight spot from that

at the goal. We did experiments with narrow, wide, and medium-width holes in the

wall through which the gripper must reach, to see how this parameter of the domain

effected the difficulty of the problem. The input parameterization included the x-y

position of the whole in the wall, the angle of the wall from horizontal, and the x-y

position of the target.

Since our algorithm generates high-quality suggestions for speeding up planning,

we compared our suggestions to those generated by the bridge test, a standard sam-

pling technique that tends to generate samples in narrow passages (Hsu et al., 2003).

The bridge test is a rejection sampling technique outlined in algorithm 4.4. We chose

the variance used in the Gaussian sampling step in line 5 by hand.

Algorithm 4.4 BRIDGETESTSAMPLE() : sample
1: found = false

2: while not found do
3: Pick cl from C uniformly at random
4: if COLLIDES(cl) then
5: Pick c2 - N(cl, cr)
6: if COLLIDES(c2) then

7: p = midpoint between cl and c2
8: found = not COLLIDES(p)
9: end if

10: end if
11: end while
12: return p

When our algorithm generated s suggested subpaths, each consisting of a subpath

of I configurations, we generated both s and s * 1 bridge samples, and used both sets



as suggestions for the planner. We wanted to allow the bridge test to generate enough

samples to be useful, but not so many that it distracted the planner. We report the

best of the two bridge sample times. We also neglect the time spent to generate the

bridge samples, as we are primarily interested in evaluating the utility of the samples

to the planner, and so did not optimize the bridge test sampling in any way. We

note, however, that there is a not insubstantial cost associated with generating a large

number of bridge samples in our domains, as there are few narrow passages relative

to the size of the space. With our simple implementation, we required anywhere from

a few seconds to a few minutes to generate the number of samples required to get the

reported speedup.

A summary of the results in these domains is shown in figure 4-5. We compare

the time spent by the unmodified SBL planner to the time required by the modified

SBL planner supplied with bridge test suggestions and suggestions generated by our

partial-path-suggestion algorithm. For each test, all algorithms were applied to the

same planning problem. Each time measurement was an average of 10 training trials,

in which the model was trained on 300-500 data points (except on the simple grip-

per experiment, which used 2000), and then tested on 100 planning problems. The

running times for the partial-path-suggestion algorithm include the time required to

generated the suggestions. We discuss the results for each domain in detail below.

4.4.1 The door task

The experiments in the simple door domain show that the suggestions can dramat-

ically decrease the running time of the planner, with speed-ups of approximately 2,

8, 31 and 78 for the different number of degrees of freedom. For the robots with 4, 5,

and 6 degrees of freedom, both methods returned an answer for every query. In the

7-DOF case, the unmodified planner found a solution to 99% of the queries, while

the suggestions allowed it to answer 100% successfully within the allotted number

(100,000) of iterations.

When obstacles were added to the doorway domain, the partial path suggestions

are still helpful, but provide less leverage than the in uncluttered doorway domain.



domain # average average average speedup
train- planner time with time with with sug-
ing time bridge partial gestions
pts samples path sug-

gestions
4 DOF door 300 0.44 s 0.21 s 0.20 s 2X
5 DOF door 300 1.6 s 0.29 s 0.20 s 8X
6 DOF door 300 9.5 s 0.86 s 0.30 s 31X

7 DOF door 300 67.5 s 7.3 s 0.86 s 78X

6 DOF cluttered door 300 39.8 s 48.7 4.8 s 8X

4 DOF bug trap 1000 11.0 s 3.65 s 0.32 s 34X

4 DOEF angle corr. 500 4.7 s 1.7 s 0.75 s 6X

4 DOF zig-zag corr. 500 28.55 s 10.12 s 4.01 s 7X

simple gripper narrow 2000 155.13 s 147.70 s 78.05 s 2X

simple gripper med. 2000 18.1 s 17.4 s 9.7 s <2X

simple gripper wide 2000 7.2 5.2 4.3 s <2X

Figure 4-5: Planning performance results.

Figure 4-6 shows two partial path suggestions, one of which is only slightly useful to

the planner. Nonetheless, the suggestions do, on average, speed up the planner by a

factor of over 8.

The comparison to the bridge test is interesting. In the low degree-of-freedome

cases, the bridge test provides assistance to the planner that is comparable to our par-

tial path suggestions (leaving aside the time required to generate the bridge samples),

but the samples provided by the bridge test are less useful as the number of degrees

of freedom go up. While the bridge test has proven very useful in generating narrow

passage sample for rigid bodies, it is much more difficult to find these useful samples

when robot becomes more complicated. Similarly, when the obstacles are added to

the domain, the bridge test becomes distracted by the narrow passages between the

obstacles. In most cases, these suggestions distract the planner from the more crucial

narrow passage of the doorway. Figure 4-7 shows examples of samples which fulfill

the bridge criteria, but are not as useful to the planner.



Figure 4-6: Partial path suggestions generated by our algorithm for the cluttered

doorway domain, with colliding configurations removed. The example on the left will

clearly be very useful to the planner; it contains 5 collision-free configurations, and

the endpoints of the partial path have the robot completely on either side of the door.

However the partial path suggestion on the right is less helpful. The planner solves

this problem on average in 2.8 seconds, whereas the suggestions allow it to be solved

in 1.4 seconds, a 2X speedup.

Figure 4-7: Suggestions generated by the bridge test. On the left is an example of

how the higher degree-of-freedom platform caused difficulty for the bridge test. This

sample is indeed in the narrow passage, but it is unlikely to be useful to the planner

nonetheless. On the right we see that many of the samples generated by the bridge

test are near the distractor obstacles rather than in the doorway.
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Figure 4-8: Different ways that the function clustering is useful. In each figure, thebold line represents a function that generates good solutions at that input, and thedashed line represents a function that generates non-useful partial paths. On the left,the function clustering is distinguishing the multiple solution types, each of whichgenerates good solutions over the whole input space. In the middle, the functionclustering divides up the input space, and each region of the input space is coveredby just one function. On the right is a more realistic scenario, in which the functionclustering finds functions that cover overlapping parts of the input space, but do notcover the whole space individually.

4.4.2 The bug trap and 4-DOF angle corridor

The bug trap and low degree-of-freedom angle corridor domains were both solved
almost completely by the partial path suggestions, in the sense that at least one
suggestion was collision-free and went from one side of the tight spot to the other.
In both cases, the function clustering performs the duel duty of distinguishing the
different solution types for a particular input, and dividing the input space across
several clusters, as illustrated in figure 4-8. Figures 4-9 and 4-10 show the result of
two clusters applied to two different problem instantiations, for each of the two do-
mains. In both domains, there were several clusters that generated completely useless
suggestions for all inputs. However, in the presence of the high quality suggestions
such as those shown here, those useless suggestions did not distract the planner.

4.4.3 6-DOF angle and zig zag corridors

In the higher degree-of-freedom angle and zig zag corridors domains, the suggestions
still produced substantial speedup, but it was not always the case that at least one
suggestion was entirely collision-free as in the previous domains. In these more chal-
lenging domains, there were often holes left when the colliding configurations were



problem 2

cluster 1

cluster 2

Figure 4-9: Two different strategies for solving the bug trap domain, applied to

two different problem instances. The solution generated by cluster 2 for problem 2

includes a few colliding configurations in the middle of the path, but is useful to the

planner nonetheless.

problem 1



problem 2

cluster 1

cluster 2 45

Figure 4-10: Two different strategies for solving the low degree-of-freedom angle cor-ridor domain applied to two different problem instances. In this case, both solutions
are non-colliding in both problem instantiations.
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Figure 4-11: Suggestions generated by two strategies for three problem instances.

removed that had to be filled in by the planner, lessening the overall speedup. Fig-

ure 4-11 shows two strategies applied to three different problem instances. The first

two problem instances are solved by the suggestions, but the third is not solved com-

pletely by any of the suggestions. When the colliding configurations are removed,

these paths will have a gap in the middle that must be filled in by the planner.

In the zig zag environment, the suggestions were almost never completely collision-

free, thus the substantial reduction in speedup relative to the other domains. Figure 4-

12(a-b) shows a useful and a less useful suggestion. In the first case, there are two

places where the removal of colliding configurations will require the planner to patch

the path. In the second case, while the path is roughly the right shape, almost the

entire path is in collision, meaning that it will not help the planner at all. Predictions

such as these suggest that a fast way to adapt nearly-correct solutions should produce

better results.

It is easy to see why the bridge test again produced less useful samples than the

partial paths suggestion. An example of the bridge test samples is shown in figure 4-

12(c). The bridge test again produces samples in the narrow passage that are difficult

to one another, and is also distracted by irrelevant corners.

problem 1 problem 3
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Figure 4-12: Two partial path suggestions (a-b) and bridge test samples (c) generatedfor the zig zag corridor environment. The path suggestion on the left contains only afew colliding configurations, while the suggestion in the middle is almost completelycolliding.

4.4.4 Simple gripper

In the gripper case, we find that the suggestions always contain a few colliding config-
urations, but they are helpful enough to the planner that the time is cut by a factor of
two. The fact that the suggestions provide greater speedup than the bridge samples
suggests that it is useful to generate even a few sequences of samples that have high
likelihood of having collision-free connections, relative to individual samples. Fig-
ure 4-13 shows a subpath suggested by our algorithm. Figure 4-14 shows examples
of a useful sample and a distracting sample, both generated by the bridge test.

4.5 Conclusions

Our experiments show that by predicting a subpath of configurations that have high
likelihood of collision-free connections between them, we can substantially speed up
the planner. The suggested path samples have higher utility to the planner, both
because they are more likely to be connected to one another, and because they are
focused in the particular narrow passage that the robot is required to go through to
solve the planning problem. Obviously the comparison is somewhat unfair, as the
bridge test has no access to our task parameters, but it is a valuable demonstration
that such information can be used effectively if it is available.



Figure 4-13: A relatively helpful gripper subpath suggestion. Left: full suggestion;

right: suggestion with colliding configurations removed. Much of the path is in col-

lision, but there are several key non-colliding configurations that are helpful to the

planner.

Figure 4-14: Two samples generated by the bridge test. The sample on the left is

clearly not useful, while the one of the right is better.



One issue that would need to be addressed in order for this technique to be useful

in more realistic settings is the question of determining the problem parameters.

For our experiments, we assumed that the parameters were simply observable. The

problem of detecting and parameterizing hard planning problems with actual robot

sensors is clearly a difficult one.

An interesting point about the results is that while the technique shows substantial

speedup in each of the experimental domains, it produces lower quality suggestions in

three of the domains: the six-degree-of-freedom angle corridor, the zig zag corridor,

and the gripper domains. The suggestions in these domains are more likely to include

colliding configurations, leading to lower speedup, as the planner has to fill in the

gaps left by the colliding samples. In chapter 5 we delve into the specific challenges

presented by these domains in detail, and make some proposals for future work to

address them.



Chapter 5

Problem Characterization

While the technique described in the last chapter met with success on standard mo-

tion planning problems, it was less successful on the more interesting problems, and

so seems unlikely to be applicable in more realistic scenarios. In particular, in the

angle corridor (with higher degrees of freedome), the zig zag corridor, and the gripper

domains, our function clustering algorithm generated solutions that, while somewhat

useful to the planner, had relatively high probability of containing colliding configu-

rations. In this chapter, we explore the problem more carefully to understand what

makes it challenging for traditional machine learning techniques.

5.1 Function existence

Our goal is to learn at least one function from the space of planning problem parame-

ters (which we will call the input space), to the space of useful partial paths (which we

will call the solution space). Given a planning problem, a partial path is considered

useful if it is collision free and allows the planner to solve the planning problem in at

most a tenth of the planning time required by the planner alone. Let I be the input

space, P be the space of partial paths, and S C P be the solution space. Then for

a function f : I - P, we will say that f covers If C I if for all i E If, f(i) E S.

We will say that a set of functions F = fj covers the space if for every input i E I,

f(i) E S for some function finF.



The entire enterprise of learning a function from the problem parameters to a

useful partial path relies on the assumption that at least one such function exists,

and that our hypothesis class is sufficient for representing the function. The function

clustering algorithm allows the input space to be split up, with each function poten-

tially covering a different subset of the input space, but all parts of the input space

must be covered by some function. The first possible explanation for our algorithm's

difficulty in some of our experimental domains is that there is, in fact, no such func-

tion. Further, if such a function does exist, it may be too complex to be represented

by a function within our hypothesis class.

5.1.1 Zigzag corridor

In all of the domains that involve the mobile arm robot, as well as the zigzag corridor

domain, there is a rigid transform that will map any solution for a particular input

into a good solution for any other input, which implies a linear function over the

input space, given the right parameterization of the problem.

Our zig zag corridor has two degrees of freedom, the vertical location of the cor-

ridor, Yc, and the angle of the corridor, 0c. Consider a successful path p = c1 , c2, ...c,

that was generated with yc = 0 and ~, = 0. Let cj be one configuration in the path.

For our mobile robot, this configuration would be (zxr, , r, 0, ...cd-2), where d is the

number of degrees of freedom. Now we have a new input in which yc and O are non-

zero. Let r= .x + y. The transformed configuration c' = (, y , y', , ..., m) for

the new input is:

X = r cos Oc

y = r sin Oc + y

00 = 0 + Oc



Figure 5-1: Partial paths generated from a linear function of the input space, for

several different inputs.

Thus, with a parameterization that includes (ye, 0c, sin 0c, cos 0 ), there is a linear

function of the parameters that determines a useful path. Figure 5-1 shows paths

generated from a linear function of the input, applied to several different inputs.

5.1.2 Simple gripper

The simple gripper domain is much harder to analyse. Given our parameterization of

the planning problems, it is certainly the case that no linear function of the parameters

will produce useful paths over the whole input space. However, one might hope that

several linear functions might represent solutions to parts of the input space, covering

the whole space together. More likely, a polynomial function of the input space, or

several of them, might be able to represent a good function. The very reason for

trying to learn such a function is that this is a difficult function to write by hand.

However, there is some evidence that a relatively small number of continuous

functions could cover the space effectively. If we change the planning problem only

slightly, we can use potential fields to push a nearby solution into the space of valid

solutions for the new planning problem. We can require that the change in input

c from the original input il to the new input i2 be small. Small enough, in fact,

that using potential fields to adjust the original solution sl results in a new solution

s 2 , such that linearly interpolating sl and s2 over the region [i1 , i 2] always yields a



valid solution. When we can find no c small enough, we concede defeat, and we are

interested in the largest region of the input space that we are able to cover in this

way.

Given a distance r over which we are able to find a smooth function, we can

find the volume of the input space that would be covered if we assumed that the

function applies equally in all directions from the starting location (the volume of an

n-dimensional sphere with radius r), and compare that volume to the total volume

of the input space. Using this back-of-the-envelope calculation, we find evidence that

with about 8 functions, we should be able to cover the full input space in the 6-DOF

angle corridor domain. This calculation suggests that the gripper domain may require

more like 100 functions to cover the whole space.

The questions of whether a small number of smooth functions could be expected

to cover the entire input space is still an open one. Given that we have not been able

to find a small set of functions that cover the space, we cannot say with certainty that

one exists. However, intuitively, the gripper is designed to be able to manipulate (in

2-dimensional space) effectively over its workspace, so we expect that we can move

smoothly from one solution to another.

5.2 Function clustering complexity

Since we believe that a continuous function of sufficient simplicity exists, the difficulty

must lie in clustering the data into discrete functions. Here we investigate the com-

plexity of this problem in the simple zigzag corridor case. We begin by considering

the solution space for a fixed planning problem.

For a fixed input i, let Si be the solution space for that input; that is, the set of

useful partial paths for all planning problems described by i. Two solutions si, s' E Si

are connected if there exists a continuous curve between the solutions that is contained

entirely in Si. Our solution paths are represented as points in a high-dimensional space

with dl dimensions where d is the number of the robot's degrees of freedom, and 1 is

the number of configurations in the path. Figure 5-2 shows a cartoon solution space



solution space

Ube

Figure 5-2: Example solution
space. The solution space is
made up of two disconnected re-
gions, S1 and S2, each of which is
path-connected. The region S1

partial path space is convex, whereas S2 is not.

for a two-dimensional path, which could be either a path with two configurations for

a one-degree-of-freedom robot, or a path with one configuration for a two-degree-of-

freedom robot. Any two solutions si, s' E S or s2, S' E S2 are connected. However,

any two solutions sl E S1 and s2 E S2 are not connected, since any path between the

two solutions would have to leave S.

Let's consider the ramifications of a non-convex solutions space for a clustering

algorithm. Figure 5-3 (left) shows a non-convex solution space that has been clustered

into three regions. One of the regions, R2 happens to be convex but regions R 1 and

R3 are non-convex.

Now consider what happens when we sample from each cluster, and find the means

of our samples. Figure 5-3 (middle, right) shows some possible samples, along with

the average of the samples. Clearly it is possible, giving a lucky set of samples, to

produce an average which is within the region, but it is not guaranteed. In fact, unless

the centroid of the region falls within the region, in the limit of infinite samples, the

average is increasingly likely to fall outside of the region.

Our clustering technique is trying to cluster our solution samples such that the

mean of each cluster is a also a valid solution. While a clustering such as the one

shown in the middle of figure 5-3 would be acceptable, given that particular data set,

we can only guarantee that all the data in a cluster can be averaged if each cluster



Figure 5-3: A non-convex solution space that has been clustered into three regions

(left). Region R 2 is convex, while regions R 1 and R 3 are not. The middle and right

show two sets of samples from the solution space, along with the mean of each cluster

(circled). In the middle is a lucky set of samples, for which the mean in both non-

convex regions falls in the solution space. On the right is a less fortunate set of

samples. In this case the average is not a valid solution for this input.

is convex. The quality of a particular clustering is higher the more likely it is that a

random sample of points from that cluster will have a mean that is also in the solution

space. Thus, the best clustering is one that divides the space into convex regions. If

the space is divided up in this way, we know that we can sample our data however

we like, average those data points that fall into the same cluster, and each cluster

will produce a valid solution. We define our clustering problem to be the problem

of finding a (possibly soft) assignment of our data to groups, such that all points in

each group are in one convex region of the solution space.

In general there are many ways to divide a non-convex space S into a convex

covering, or a set of convex regions Ci such that U{}Ci = S. Figure 5-4 shows two

ways to break a non-convex space into convex regions. Note that the data points

could belong to more than one cluster (that is, the clusters may be overlapping); the

important thing is that each cluster is convex. Among the various possible convex

coverings, we prefer one with fewer convex sets, for reasons that we will discuss.

Finding the minimal convex covering for a polygon is known to be NP-hard (Culberson

& Reckhow, 1994). In our case the problem is still harder; the solution space is not

known to be polygonal, and we have no description for the solution space, just the



Figure 5-4: Two possi-
ble convex coverings for
a non-convex space.

ability to sample from it.

5.2.1 Zigzag corridor

Now let's consider what happens to the solution space as it varies over the problem

parameter space. We start by investigating the zigzag corridor domain. As we dis-

cussed earlier, the zigzag domain has the property that any solution sl for an input

il can be mapped to a solution s2 for input i2. Thus, for a set of solutions S 1 for

input il, there is a linear function that maps S1 into a set of solutions for i2. It can

be easily shown that if C1 c S1 is a convex subset of S1, then the function mapping

points from S 1 to S2 induces a convex subset C2 C S2.

Let n be the dimensionality of the input space, and dl be the dimensionality of

the solution space, where d is the number of the robot's degrees of freedom and 1

is the length of the subpaths we are learning. Given a convex solution set for a

particular input i, Ci, any solution s E Ci can be mapped linearly to a solution for

any other input. This means that the space of Ci x I is also a convex space. For a

two-dimensional configuration space, one can visualize this as a linear extrusion of a

convex space, as illustrated by figure 5-5

Since a convex solution set for a fixed input is a cross-section of a convex space

over the input space, we still have the same criterion for a good cluster: all the points

in one cluster should be in a convex set of solutions. In the zigzag domain, we are

looking for a set of linear functions that cover the input space. Here we assume that

we assume that we don't already know the linear function, as ask how much data
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c(0  Figure 5-5: A convex solution set as it
varies over the input space, given the lin-
ear mapping from a solution for one input
to a solution at another.

we need in order to guarantee that we have enough to find such a function, and how

hard the clustering problem is once we have the data.

Since the input space has dimensionality n, we need n + 1 points to define one

function. We can choose any n + 1 points in a convex region, and this will define a

function that is valid over the convex hull of the inputs. If we have a convex cover

for a fixed input, each convex region in the cover, along with our linear mapping

from one solution to another, defines a convex space. There is some minimal convex

covering for the entire I x S space that requires k convex regions. Thus there is a

minimal convex covering for the whole space with k convex regions. If we sample n

points from one of these convex regions, that defines a function that covers the space

between the sample inputs.

Thus, with carefully chosen inputs, and sampled solutions, we require just n + 1

points that are all sampled from one of our k convex regions. To ensure that we have

at least that many points in at least one convex region, we need nk + 1 points. If

we try to find a good function with fewer data points, we may be forced to average

incompatible points together in every cluster, leading to no good functions. Given

that we have nk + 1 points, we now have to determine which points should determine



Figure 5-6: Two solutions spaces (for fixed input) with the same number of regions
in the minimal convex covering, but different convexity. If any subset of regions on
the right were grouped together as one cluster, it remains likely that points sampled
from that cluster would have a valid mean. On the left, however, it is far more likely
that incorrect clustering would lead to clusters with invalid means.

our function. There are (kn)! possible subsets of n + 1 points to consider.

For the domains in which our function clustering algorithm was successful, the

input space had dimensionality 4 (doorway domain), 3 (angle corridor domain), and

2 (bug trap domain). The zigzag corridor similarly has input dimension 4. Thus,

the increased difficulty of the zigzag domain must be attributable to the highly non-

convex shape of the solution space. We do not know the minimum number of convex

regions reguired to cover the solution space in each domain, but we can estimate a

commonly accepted metric for convexity: the probability that two randomly chosen

solutions are visible to one another.

The notion of convexity as a metric quantity is illustrated in figure 5-6. Here we

see two spaces, each of which has the same number of regions in the minimal convex

cover (4), but the space on the right is far more likely to produce clusters with valid

means, even if the clustering is not strictly convex. Thus, we would expect the space

on the right to be easier to cluster well enough, even if not perfectly.

If we measure the convexity of each domain by estimating the probability that

two randomly chosen solutions are interpolable, we see in figure 5-7 that the zig zag

domain has much lower convexity than the other domains. In figure ??, we can see

experimentally that the non-convexity manifests itself in the ease with which solutions

for a fixed input can be clustered by EM. We conclude that the non-convexity of the
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Figure 5-7: Convexity results. Left: the measured convexity for each domain. The
convexity for the zig zag domain is markedly lower than the other domains, explaining
the difficulty of the domain. Right: The probability that a cluster generates a valid
prediction, as a function of the number of clusters used by EM to cluster solutions
for one input (averaged over 6 inputs).

zig zag domain is main source of difficulty.

5.2.2 Simple gripper and angle corridor

The analysis of the previous section suggests that the zigzag corridor domain should

be roughly the same difficulty as the simple gripper, but we find that, even with

four times as much data, the function clustering algorithm is substantially less suc-

cessful in the gripper domain. Similarly the higher degree-of-freedom angle corridor

appear likely to be easier than the zig zag corridor, but performs about the same.

Understanding the difficulty of the gripper and angle corridor cases is made more

challenging by the fact that we do not know that a linear function exists that maps

one solution to another. In fact, we know that such a function does not exist.

Let us consider how we might try to find a linear function of the input space

that covers as much of the input space as possible. If we choose a function over

the input space, the solution space around the function's prediction at each input

is not necessary convex, even if we know that it is convex at one particular input.

Figure 5-8 shows some example solutions spaces surrounding a linear function for a

two dimensional solution space and a one-dimensional parameter space.
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Figure 5-8: Two solution spaces produced by a linear function of the input space.
On the left the function produces valid solutions over the whole input range, but the
distance between the function's prediction and the edge of the solution space varies
over the input range. The solution space for a fixed input surrounding the function
is not necessarily convex. On the right is a linear function where the solution space
dwindles to nothing, so the function does not cover the whole input range.
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Figure 5-9: An illustration of the largest convex region surrounding one linear function
(left) or multiple linear functions (right) used to cover the input space.

We can still use the criterion we developed previously for a good clustering: all

points assigned to a cluster are from a convex region of the I x S space. However,

since we now have no guarantee that the edges of the space are linear, we no longer

know that we can use the size of the minimal convex cover to guarantee that we have

enough points to define at least one good function. The size of the convex region that

surrounds the function is now limited by the size of the smallest convex region that

the function passes through. Figure 5-9(left) illustrates this idea. Thus, we will need

to sample more points to ensure that we have enough from a particular convex region

to define a function. We could intead choose to approximate the function with several

linear segments in the hopes that each one will be contained in a larger convex region,

and therefore be easier to sample from (as illustrated in figure 5-9(right), but this

again increases the number of samples that we need, since it increases the number of

functions that we need to define.
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5.3 Possible approaches

While we have argued that the function clustering technique is likely to fail on complex

problems due to the intrinsic difficulty of the problem, what about another technique?

We have reason to believe that a small set of contiunous functions should be sufficient

for predicting solutions over the whole input space, so it seems reasonable to think

that there might be some other way to find such a set of functions. Here we discuss

some of the standard machine learning techniques that appear most relevant to our

problem.

5.3.1 Finding a nicer space

One idea is to find a space in which our problem is easier. One common way to

transform one space into another is via dimensionality reduction. Not only might

we then have a lower dimensional space, which we've shown to be important to the

complexity of the problem, but we might have a space in which our solution space is

more convex, making an approximate solution more acceptable.

Unfortunately, we can't do dimensionality reduction on the full I x S space, since

we need to represent a function from I to S. Imagine that we have been able to find

a new space A by reducing the dimensionality of I x S. Now we need to learn a

function that maps some subspace AI of A to another subspace As of A, and we need

to be able to map an input in our original space i E I to a point in AI and then map

the resulting point in As back to a point s E S. Thus the complete space is not an

appropriate target for dimensionality reduction.

We might instead consider reducing the dimensionality of our solution space, giv-

ing us a new output space O for our function. We can then learn a function f : I -* O

and then map each output point back to the original space. This means that we need

to be able go backwards from the new space to our original space, something that

most dimensionality reduction algorithms are not designed to do. Locally linear em-

bedding ((Roweis & Saul, 2000)) and ISOMAP ((Tenenbaum, de Silva, & Langford,

2000)), for example, produce embeddings from which the original data can be recon-
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structed, but the reconstruction requires finding the nearest neighbors of a point to

be mapped back to the original space. Since this step takes place at planning time

for us, the process of un-embedding the data is too slow.

Another possibility is principle components analysis. Limited experiments with

our data indicated that reconstructing the original data with a subset of the com-

ponents found by PCA was insufficient: paths that originally did not collide were

mapped to colliding paths when components were not used in reconstruction. Fur-

ther, since PCA simply scales and rotates the original space, it is unlikely to be able

to make a highly non-convex space more convex, which is what we need in order to

make our problem more tractable.

5.3.2 Classification

Another attribute of our problem is that it is possible to generate bad data (non-useful

or colliding partial paths) as well as data from the solution space. We might imagine

that using the bad data in some way would allow us to better determine which points

belong together. If we have a data set with labelled good and bad points, we could

use the substantial body of work which has been done on the problem of classification.

However we still need, in the end, to generate solutions as a function of the input

parameters, so our problem is not strictly one of classification alone. While we have

labels for whether each point is good or bad, we don't have any information about

which good points can be safely used together to determine a function. Nonethless,

we might expect that we could find separators in the full I x S space, and then use

the data in each separated regions to do regression. We could use a decision tree

to find multiple separators, or we could use a class of separators that is capable of

separating our data with just one separator, such as an SVM with a radial basis

kernel. Figure 5-10 shows how this process might go.

However, to arrive at the useful separators in figure 5-10, we would need to have

just the right class of separators. Figure 5-11 shows what several classfication tech-

niques would likely produce on the same data shown in figure 5-10. Each of the

classification techniques is able to perfectly separate the data, but leaves us with no
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Figure 5-10: An example of how a classification algorithm might find separators
that allow us to cluster our data and then use regression to find a function for each
cluster. On the left is the original data (good and bad data points in green and red.
respectively), along with the solution space (in grey) and two functions which would
be valid over the whole input space. Middle left: set of linear separators that might
be found by a classification algorithm. Middle right: the clustering of good data
induced by the separators. Far right: The predictions of each cluster, along with the
original solution space. Clearly the function associated with cluster 1 is good enough,
which those associated with clusters 2 and 3 are not good over a substantial part of
the input space.

useful distinctions between the different types of good data.

5.3.3 Generating better data

The source of difficulty for our learning algorithm seems to be the large number of

incompatible solutions that must be teased apart when the set of training solutions is

generated more or less randomly from the space of solutions. However, we would be

content to learn just one or a few strategies for solving each parameterized problem.

A natural question, then, is whether it would be possible to generate training data

that is drawn from just one or a few solution types. This should allow us to generate

much less data, and make our function clustering job much easier.

The challenge in trying to generate data that is consistent with a few strategies is

that we don't know the underlying function for any of the strategies: this is precisely

the problem we are trying to solve. Nor do we know a way, given an instance of

particular strategy at input i, to generate another instance of that same strategy at

a new input i'. Nonetheless, if we could generate data that represents fewer underly-

ing strategies, we might hope to improve the performance of our function clustering

algorithm. Here we explore several ideas for achieving this.

One possibility is to bias the planner that we use to generate data so that it
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Figure 5-11: Several perfect classifications of the data (top: separators; bottom:
predictions and solution space), each of which leads to a bad clustering from the
perspective of our regression task. Left: quadratic separators. Middle: radial basis
function separator. Right: decision tree separator.

will generate data that is less varied. Or, given plans generated by the unbiased

planner, we could post-process the plans to canonicalize them in some way. We could

perhaps optimize some quality of the paths, such as the distance of each configuration

from a preferred configuration, or the total distance (possibly in configuration space)

travelled by the path. We did not explore this option in depth. It is challenging,

in the general case, to arrive at a mechanism for biasing the planner that does not

interfere with its ability to find solutions to hard problems. Post-processing paths

seems more feasible, but there is an open question about what we could optimize

that would make our learning problem easier. It is easy to imagine an optimization

that would create data that exemplify fewer underlying strategies, but where each

strategy is difficult to represent.

Another possibility is to generate just a few solutions and then use heuristics to

adjust the solutions to new inputs. We might hope that the set of solutions generated

from adapting one solution might all fall into the same category of solution, and

therefore be suitable for using as function approximation training data.

It is possible to use potential fields ?? to adapt a solution s which is valid for input
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i to a nearby input i + c when c is fairly small. A possible approach is to start with

a small number of solutions, and, by taking small steps in the input and adapting

the solutions appropriately, generate a data set consisting of compatible paths. We

found that using potential fields was not a promising direction. If e was very small,

then the potential field technique was able to successfully adapt the solutions, but

progress was made over the input space so slowly that we were not able to cover the

5-dimensional input space of the gripper. If E is increased to make faster progress, the

potential field method either fails to adapt the solutions, or has to alter the solutions

so much that they are no longer compatible.

5.3.4 Incremental learning

Another idea is to use incremental learning to decrease the total number of types of

solutions generated and learned. Pseudocode for this idea is shown in algorithm 5.3.4.

The idea is to generate solutions randomly by calling the planner only when we are

unable to either predict a solution or adapt a prediction, again using potential fields.

Algorithm 5.1 INCREMENTALLEARN(batchSi ze, numBatches) predictor

1: predictor = 0

2: data = []
3: for i from 1 upto numBatches do
4: for j from 1 upto batchSize do
5: problem = NewPlanningProblem()
6: for k from 1 upto NumPredictions(predictor) do
7: prediction = Predict(predictor, k)
8: if goodSolution(prediction) then
9: data.append (problem, prediction)

10: end if
11: end for
12: end for
13: predictor = makeTrainPredictor(data)
14: end for
15: return predictor

We found that this algorithm was also unable to gain traction on the problem.

Figure 5-12 illustrates why the techniqe is unsuccessful. When we have only a few

randomly generated samples for training, we are most likely to learn a function based
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Figure 5-12: An illustration of an incremental learner. In each, the thick lines rep-

resent the solution space. Left: some number of samples are randomly generated.

Middle: the learner is trained on the existing data. Right: proposed solutions are

generated according to the learned function, and then adapted. The illustration shows

the problem with such a technique.

on points in a non-convex region of the solution space, meaning that the function

predicts invalid solutions over much of the input space. When we adapt these pre-

dictions, we have guarantee, or even reason to believe, that the adapted predictions

will lie within convex solution regions that contain points we already have.

5.3.5 Function parameter search

Another idea is to simply search in the space of function parameters for a function

that adequately covers the input space. If we use the number of correct predictions

as a scoring metric, we could hope to do stochastic gradient descent in the space of

regression parameters.

The space of parameters is quite large, as the partial paths typically have length 15

and the platforms have at least four degrees of freedom. Thus, with a 4-dimensional

input space, we have 240 parameters. Clearly starting with a random set of parame-

ters and taking steps in parameter space is unlikely to be successful. Instead, we can

take steps in parameter space by adding, removing, and altering points in a regres-

sion training set. That is, let the data set determine the parameters and take steps

through the parameter space by changing the data set.

In our implementation, we selected initial parameters by using potential fields

applied to one solution to generate similar solutions to nearby problems. Once we
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had initial parameters, we considered several search step, and used a scoring metric

to evaluate the steps. Each search step is a change to the data set which will generate

new regression parameters. The score for a particular setting of the parameters is

simply the success rate on a pre-determined set of test inputs.

We consider several possible search steps. For a set of training points T =

{(ij, sj)}, where ij is a particular input and sj is a valid solution at input ij, regression

determines parameters that define a function f across the whole input space. One

possible search step is to simply remove a point from T. Another simple step would

be to replace the point (ij, sj) with the current prediction at that input: (ij, f(iW)).

More complicated steps involve adding new points to the training set. Let p(i, s)

be a the result of applying potential fields to a partial path s, giving a new partial

path s' that is valid for input i. This function will only produce valid solutions of

the original solution s is a valid solution to some input ij that is close to i. One

possible search step is to choose a new input inew that is not currently represented in

T, find a nearby point (ij, sj) E T, and add the point (inew,p(inew, sj)) to T. We can

also adapt the current prediction using the regression parameters, instead of a nearby

point in the training set: (inew,p(f(inew))). Each of these potential search steps is

scored, and then the step with the highest score is taken.

We applied this approach primarily to the zig zag domain, since we were confident

of the existance of a linear function that covers the entire input space. Our experi-

ments with this technique confirmed that the space of parameters contains many local

optima. Initially we used greedy search, taking only steps that improved the score.

This approach got stuck fairly quickly, with parameters that we good very locally,

but failed to generalize across the input space at all. Using simulated annealing we

were able to find parameters that covered a larger region of the input space, but we

were still not able to find parameters for a single linear function over the whole space,

despite the fact that they are known to exist.
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5.4 Summary

From the investigations in this chapter, we conclude that the problem of learning

functions from problem descriptions to useful motion plans is made difficult by the

very large number of possible solutions for each input. Even in cases where simple

functions are known to exist, it is likely to be intractible to completely represent

the space of solutions, particularly in more realistic domains. It will be necessary

to find a way to limit the set of solutions we use as training data for our function

approximation algorithm.

We further conclude that the problem of learning motion plans involves challenges

that are different from those addressed by traditional machine learning techniques.

The next chapter suggests some techniques that we believe are more likely to be

helpful in continuing work on this topic.
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Chapter 6

Conclusions and future work

In this thesis, we have investigated the feasibility of learning to predict motion plans,

using plans generated by a probabilistic planner as training data. We first inves-

tigated simply remembering previous solutions in a roadmap designed to adapt to

the distribution of planning problems the agent encountered. While this technique

provided an improvement over planning from scratch in domains with very regular

distributions of obstacles and tasks, we found that it was not able to generalize to

new tasks sufficiently well.

We next proposed an approach for generalizing previous planning experience by

using that experience as data for learning a regression from some task parameters

to a partial path that provides significant leverage to a single-query planner. Here

we found that while the number of useful partial paths is small in comparison to the

entire space of partial paths (and therefore hard to find), it is large tnough that it is

infeasible to represent them all.

Since we do not require more than a few parameterized partial paths if each

is applicable to a wide range of parameters, this discovery does not immediately

exclude the possibility of learning a sufficient number of parameterized partial paths.

However, without actually knowing the appropriate parameters for functions from

problem parameters to useful partial paths, it is not possible to generate data that is

guaranteed to be consistent with a small set of such functions. The primary result of

this work is to conclude that learning parameterized motion plans requires finding a
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way to represent only a compatible subset (or a few compatible subsets) of solutions.

6.1 Future work

We have demonstrated that learning to solve interesting planning problems requires

limiting the portion of the solution space that is represented. Here we suggest some

avenues for future work in this area that seem more likely to be successful, in light

of our understanding of the problem. We first suggest two techniques that would

make the approximation problem less exacting, and then two techniques designed to

address the complexity issue discussed in the last chapter that is due to the many

incompatible solution types in more complex domains.

6.1.1 Suggestion adaptation

The suggestions produced by our function clustering algorithm were often very close

to being extremely useful to the planner, in that a small number of configuration

were in collsion, and often the collisions were not very severe. This suggests that

there might be a way to adapt the solutions at planning time so that they contain

fewer colliding configurations. One possibility is to again investigate the use of po-

tential fields to quickly adapt suggestions before passing them on to the planner.

Preliminary investigations into this possible technique suggest that the potential field

implementation would have to be carefully optimized in order to fix suggestions fast

enough.

6.1.2 Obstacle or robot dilation (free space contraction)

One technique that has been used to speed up planning in problems with configuration-

space narrow passages, is one of freespace dilation (Hsu et al., 2006). In this approach,

the obstacles or the robot are shrunk, making the freespace more expansive and the

planning problems easier. Once a plan has been found in this easier space, it is

adapted to the real, more difficult space if possible.
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We could apply the inverse operation for our problem: make the narrow passages

even more narrow, and use data generated by solving the resulting more challenging

problems as training data for our function approximator. This process would generate

data with greater clearance from obstacles when the robot and/or obstacles were

normal size, meaning that the function approximator would have more room for error

in approximating the data set.

Preliminary experimentation with this technique showed some promise, but there

is more work to be done before the technique can be generally applied. First, while

the proposed approach would certainly increase the quality of the suggestions, in

that they would be less likely to collide, it does not address the complexity problem

of having too many possible solutions to represent. Also, it is not easy to know

how much the free space can be contracted before the problem becomes too hard or

impossible. Nonetheless, such a technique could be used in conjunction with some of

the other proposed future work directions to make the approximation problem easier.

6.1.3 Canonicalization

One promising direction would be canonicalization of paths. Humans are highly

redundant, and nonetheless manage to learn motion strategies for complex motions.

While there is no consensus about what criterion humans use to select from the myriad

possible solutions, it is clear that we do something reasonably consistent. While we

have not yet investigated this possibility, it seems a fruitful direction for research. The

difficulty is in choosing a method for canonicalizing that restricts the data enough to

make the learning problem tractible, while still retaining all of the global properties

that make each training point useful.

It might also be possible to bias the planning process toward some canonical set of

solutions. Here the challenge is to restrict the data enough while striving not to make

the planning problems themselves intractible or impossible. In the doorway task, for

example, we could require the robot to go through the door with the arm in front

of the robot, and that would eliminate the primary source of redundant solutions.

However, if we make this restriction more generally, we may not be able to solve
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planning problems in domains that perhaps require that the arm sometimes trail the

robot. This is an area that warrants more research.

6.1.4 Problem decomposition

We have done some preliminary work on an algorithm designed to decompose the

problem into individual waypoint configurations. Restricting the clustering problem

to deal with one configuration at a time avoids the exponential blowup in the num-

ber of possible solutions, making the clustering tractible. The difficulty in solving

subproblems locally is that the solution to each subproblem must contribute to the

global goal of generating a subpath that is helpful to the planner. To address this,

we still generate whole useful subpaths as training data, but then train each slot in

the subpath independently.

Algorithm 6.1 shows pseudocode for the waypoint learning algorithm. For each

step in the subpath, starting with the final configuration, training data is generated

by solving planning problems and finding the narrow passage, as described in 4.1.

The training data is then clustered and predictors are trained for each cluster. We

then choose a set of learners that adequately cover the input space, and remove the

rest, to avoid exponential blowup. Then this process is repeated for the previous step

in the path. When the training data is collected, each training point is tested to see

whether it connects to one of the retained predictors at the next step, and if not, it

is discarded.

Once predictors for each step of the subpath are learned, we have a must more

constrained planning problem. Pseudocode for solving this problem is shown in al-

gorithm 6.2. For step i in the subpath, we need consider connections between all

possible predictions between the previous (i - 1) step and this one. If we associate

a cost with colliding connections between configurations, and a higher cost with col-

liding configurations, we can, at each step, find the lowest-cost connection. We then

use the lowest-cost path as a suggestion for the planner.

Preliminary results with this technique in the higher degree-of-freedom angle and

zig zag corridor domains indicate that the approach has promise. We find that while
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Algorithm 6.1 LEARNWAYPOINTS(length) : predictors

1: predictors = []
2: for i from length downto 1 do
3: data = []
4: for j from 1 upto ptsPerCluster * numClusters do
5: problem = NewPlanningProblem()
6: solution = GetSolution(problem, length)
7: if i == length or connectsTo(solution[i],predictors[O]) then
8: data.push(problem, solution[i])
9: end if

10: end for
11: clusters = clusterData(data)
12: predictor = TrainLearners(clusters)
13: predictor = cullBadLearners(predictor)
14: predictors.push (predictor)
15: end for

16: return predictors

Algorithm 6.2 PREDICTPATH(predictors) : path

1: paths = [[]]
2: for all predictor in predictors do
3: newPaths = [[]]
4: for i from 1 upto NumPredictions(predictor) do
5: minCost = oc
6: waypoint = Predict(predictor, i)
7: for all path in paths do
8: p = path
9: cost = PathCost(p, waypoint)

10: if cost < minCost then
11: minCost = cost

12: if connectsTo(p, waypoint) then
13: p.push(waypoint)
14: end if

15: bestp = p
16: end if

17: end for

18: new Paths.push(bestp)
19: end for

20: paths = newPaths
21: end for

22: return LowestCostPath(paths)
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the average planning time using the generated suggestions is slower than those using

the full-path function cluster algorithm described in chapter 4, the median time is

much lower. Using the new technique, perfect subpaths are predicted more than half

of the time. However, in a number of cases, no useful prediction is generated. We hope

to improve the technique so that it generates perfect solutions a higher percentage of

the time, and so that it generates at least partially useful suggestions all of the time,

as did the full subpath learning technique. On possible simple approach would be to

combine the two techniques: the waypoint generation technique could propose very

high quality suggestions when possible, and when it fails, the less-than-perfect but

still useful suggestions from the full subpath learners could step in.

It is less clear that the technique will be successful in the simple gripper case, and

this is the most interesting area for further exploration with this approach. When the

set of predictors for a particular step in the subpath is chosen, commitments are made

to solving the problem with a small set of strategies. Since this commitment is made

using a local criterion, it is possible that the rest of the subpath will be impossible

to learn. In the angle and zig zag corridor domains, this does not seem to be the

case, but it remains to be seen whether or not this is a problem in the simple gripper

domain.

6.2 Lessons Learned

Here we summarize the lessons learned during the course of this work. Since the work

remains somewhat unfinished, we hope that continuing work in the area of learning

motion plans will benefit from our investigations.

* Memorization of motion plans for later use in similar environments can be effec-

tive in low-entropy environments, but it is important to keep the set of stored

motion plans as small as possible. However, memorization and reuse of motion

plans does not generalize well enough to be applicable in more realistic domains.

* A more flexible approach involves learning a function from problem parameters
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to useful subpaths that can be used by a probabilistic planner to find a solution

more quickly. For significantly redundant robotic platforms, representing the

whole space of useful partial paths is intractible. A learning technique for motion

plans in this setting will need to find a way to restrict the solutions space so

that learning is possible. We suggest some possible future avenues addressing

this issue in section 6.1.

* Learning motion plans is a regression problem with the additional constraint

that the full output space is too large to represent completely. This makes the

problem fundamentally different from those addressed by apparently relevant

existing machine learning techniques.

* To make progress in learning parameterized motion plans, the most important

problem to solve seems to be the exponential blowup in the number of solutions

that is caused by the need for motion plans to be compatible along the whole

length of the path. Preliminary work suggests that a technique designed to learn

each step of the path independently, but using a global usefulness criterion for

data generation, may address this problem effectively.
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