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The genetics of the sexually dimorphic deaths of the C. elegans CEM neurons
by

Hillel Tsvi Schwartz

Submitted to the Department of Biology in Partial Fulfillment
of the Requirements for the Degree of DOCTOR OF PHILOSOPHY

The cells of metazoan organisms possess the capability to commit a form of
cellular suicide known as programmed cell death or apoptosis. The proper control of this
endogenous death program is essential to animal development and to the prevention of
disease. To better understand how individual cells are developmentally specified to die,
I studied the survival decision of a single cell type in the nematode Caenorhabditis
elegans, the CEM neurons. The CEMs die during hermaphrodite embryogenesis and
survive and function as sensory neurons in males. I identified 144 independent mutant
strains in which the CEM neurons of hermaphrodites survive, including 52 mutants in
known cell-death genes and 67 mutants generally defective sex determination. Another
29 screen isolates displayed a new defect of transcriptional derepression, the
green pharynx phenotype. From these isolates and from additional screens, I defined a
set of seven genes that function to prevent inappropriate gene expression.

From the isolates causing CEM survival I identified two new sex-determination
proteins, the PLZF-like transcription factor TRA-4 and the F-box protein SEL-10;
demonstrated that the neurogenesis genes vab-3 Pax6 and cnd-1 NeuroD are required
for aspects of the CEM fate, including CEM death, and likely function together in this
process and in other aspects of C. elegans development, a cooperative relationship
likely to be evolutionarily conserved; and identified the Bar family homeodomain
transcription factor gene ceh-30 as specifically promoting CEM survival.

The CEM neurons of males lacking ceh-30 inappropriately undergo programmed
cell death. In the CEMs of hermaphrodites, ceh-30 is directly repressed by TRA-1, a
transcription factor that acts as the last step in the sex-determination pathway to
promote a hermaphrodite identity. The cell-protective function of ceh-30 is specific to
the CEM neurons, and ceh-30 is expressed in and acts cell-autonomously in the CEMs
to promote their survival. Expression of the mouse ceh-30 homolog Barhll can restore
CEM survival to ceh-30 mutants. In mice lacking Barhl1, as in ceh-30 mutants, a
specific class of sensory neuron is generated normally differentiates, but subsequently
inappropriately undergoes apoptotic cell death.

Protection of the CEM neurons by ceh-30 does not require CED-9, the sole
member of the multidomain Bcl-2 family in C. elegans. By contrast, other regulators of
the survival decisions of specific cells in C. elegans act through transcriptional control of
the CED-9 inhibitor egl-1. Mammalian regulation of cell death is similarly almost entirely
mediated through members of the multidomain Bcl-2 family. The evolutionarily
conserved cell-protective function of ceh-30 therefore probably defines a previously
unknown mechanism capable of promoting cell survival both in nematode development,
in the sensory neurons required for hearing in the mouse and likely in humans.

Thesis Advisor: H. Robert Horvitz
Title: Professor of Biology
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Introduction to programmed cell death

Metazoan organisms exist as organized populations of differentiated cells, each

contributing to, or at least not greatly diminishing, the survival of the greater organism.

One important aspect of the lives of the cells that make up the larger metazoan

organism is the deaths of some of those cells: cells are generated that make no

contribution to the organism, and there are circumstances under which the continued

survival of certain cells can be deleterious to the organism they inhabit. To ensure that

cells die when they no longer serve a purpose or when their survival endangers the

organism of which they are a part, cellular programs exist by which the cells can die

efficiently and in a manner that minimizes consequences to the host organism. Improper

regulation of these cell-death programs, causing the survival of cells that should have

died or the deaths of cells that should survive, can impair animal development and

health (VAUX and KORSMEYER 1999; LOCKSHIN and ZAKERI 2007).

Reproducible patterns of cell death in animal development were observed early

in the modern study of biology, in tissue sculpting during amphibian and insect

morphogenesis (reviewed by CLARKE and CLARKE 1996). This reproducible patterns of

cell death was termed "programmed cell death" (LOCKSHIN and WILLIAMS 1965). Electron

microscopic characterization of cell deaths led to the description of a process, termed

'apoptosis', characterized by contraction of cellular volume, chromatin condensation,

and preservation of cytoplasmic organelle integrity (KERR et al. 1972). The apoptotic cell

undergoes fragmentation into membrane-bounded fragments that rapidly undergo

phagocytosis by adjacent cells. This rapid removal of intact cellular fragments of



apoptotic cells has been proposed to prevent an inflammatory response (SAVILL and

HASLETT 1995).

Many important discoveries in the field of programmed cell death originated in

studies in the nematode C. elegans. C. elegans offers a powerful platform for

experimental genetics: the animals are optically transparent throughout development,

permitting the direct observation of cell divisions and cell deaths in the developing

animal; C. elegans has an invariant somatic cell lineage in which each cell has a

described cell fate; and C. elegans exist as males and self-fertilizing hermaphrodites

that are each capable of generating more than 300 self-progeny, with a three-day

generation time (BRENNER 1974; SULSTON 1976; SULSTON and HORVITZ 1977; KIMBLE

and HIRSH 1979; SULSTON et al. 1983). Examination of the developing ventral nerve

cord of C. elegans revealed that some cells were generated only to rapidly undergo

programmed cell death; lineal equivalents of the same cells at other positions along the

anterior-posterior axis survived, leading to the hypothesis that the cell-death fate was

used to prune cells the functions of which were not required at a given location

(SULSTON 1976).The programmed deaths that occur in the ventral nerve cord of

C. elegans have ultrastructural characteristics similar to those seen in apoptotic cell

death (ROBERTSON and THOMPSON 1982). Determination of the complete somatic cell

lineage of C. elegans showed that, as part of an invariant pattern of cell divisions, a

completely reproducible pattern of somatic cell deaths was observed: of 1090 cells

generated in the hermaphrodite, precisely 131 undergo programmed cell death; another

21 cells die in male development that either do not die in hermaphrodite development or

are never generated in the hermaphrodite (SULSTON and HORVITZ 1977; KIMBLE and
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HIRSH 1979; SULSTON et al. 1980; SULSTON et al. 1983). This process, in which specific

cells are determined by their lineal identity to undergo programmed cell death, after

which they are engulfed and degraded by their neighbors, is presented

diagrammatically in Figure 1A. The germ cell lineages of C. elegans are not invariant,

and the germ cells, unlike somatic cells, undergo cell death that cannot be predicted

from lineal identity, subject to both stochastic and checkpoint controls (reviewed by

STERGIOU and HENGARTNER 2004).

In this Introduction I describe advances in our understanding of the means by

which cell identity is coupled to the regulation of cell survival in C. elegans and discuss

the implications of these findings for our understanding of apoptotic cell death in

mammalian development and disease.

Apoptosis is an evolutionarily conserved program of cellular suicide

The gene ced-3 (ced, cell death abnormal) was first identified through mutations

that caused the disappearance of persistent cell corpses normally seen in ced-1 mutant

animals defective in the engulfment and removal of dying cells (ELLIS and HORVITZ

1986). In animals lacking ced-3 function, cells that normally die instead survive and

differentiate; as loss of ced-3 function prevents cells from dying, the cells do not

become persistent corpses in ced-1 mutant animals (ELLIS and HORVITZ 1986). A

second gene, ced-4, was similarly found to be required for programmed cell death

(ELLIS and HORVITZ 1986). The ced-3 and ced-4 mutants demonstrated for the first time

that genes existed the primary purpose of which was to cause cell death (HORVITZ

2003). The existence of such mutants settled a long-standing question by
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demonstrating that cells undergoing programmed cell death were not simply failing to

survive; rather, animals possess a genetic program to actively promote programmed

cell death. ced-3 and ced-4 were shown to act within the dying cells, in a form of cellular

suicide (YUAN and HORVITZ 1990).

The first molecularly identified gene shown to regulate apoptotic cell death was

the human oncogene Bcl-2 (MCDONNELL et al. 1989; HOCKENBERY et al. 1990). Bcl-2 is

the founding member of a family of proteins conserved from nematodes to humans.

Bcl-2 family members possess one or more of four Bcl-2 homology domains (BH1, BH2,

BH3 and BH4 domains) (reviewed by MERRY and KORSMEYER 1997). Bcl-2 is subject to

translocations that cause it to be overexpressed in B cells, leading to follicular leukemia

(TsuJIMOTo et al. 1984). Overexpression of Bcl-2 was found to be a potent inhibitor of

apoptotic cell death (VAUX et al. 1988; MCDONNELL et al. 1989; HOCKENBERY et al.

1990). Transgenic overexpression of Bcl-2 was similarly shown to reduce the number of

programmed cell deaths in the nematode C. elegans (VAUX et al. 1992); this reduction in

the number of cell deaths was caused by the survival of cells that in the wild type

undergo programmed cell death (HENGARTNER and HORVITZ 1994b). Bcl-2 was therefore

demonstrated to promote cell survival by a mechanism evolutionarily conserved

between humans and nematodes.

Genetic studies of C. elegans identified a gain-of-function mutation defining the

gene ced-9. Increased ced-9 function causes the survival of cells normally programmed

to die (HENGARTNER et al. 1992). Loss-of-function (If) mutations in ced-9 have the

opposite effect: they cause the inappropriate activation of cell death in cells normally

programmed to survive, resulting in lethality (HENGARTNER et al. 1992). All defects



associated with loss of ced-9 function are prevented when programmed cell death is

blocked by loss-of-function mutations in ced-3 or in ced-4, demonstrating that ced-9

acts as an upstream negative regulator of the cellular suicide program (HENGARTNER et

al. 1992). Molecular identification of ced-9 showed it to encode the C. elegans homolog

of the human cell-protective oncogene Bcl-2 (HENGARTNER and HORVITZ 1994b). Bcl-2

can be substituted for CED-9 in animals lacking ced-9 function (HENGARTNER and

HORVITZ 1994b).

ced-3 encodes a a cysteine protease that cleaves after aspartate, a member of

the family of proteins now named caspases (YUAN et al. 1993; ALNEMRI et al. 1996; XUE

et al. 1996). The identification of the CED-3 caspase as a critical effector of

programmed cell death provided the first molecular mechanism of programmed cell

death and prompted the discovery that mammalian caspases perform similar functions

in apoptosis (MIURA et al. 1993; HORVITZ 2003). Caspase activation is now considered a

defining feature of apoptotic cell death (THORNBERRY and LAZEBNIK 1998; NICHOLSON

1999). ced-4 encodes an adaptor protein that promotes the activity of the CED-3

procaspase in cell-killing in C. elegans, when expressed in mammalian cells and in vitro

(YUAN and HORVITZ 1992; SHAHAM and HORVITZ 1996; CHINNAIYAN et al. 1997a;

CHINNAIYAN et al. 1997b; Wu et al. 1997; YANG et al. 1998). Biochemical reconstitution

of the cell-death process in lysates from human HeLa cells identified a counterpart of

CED-4, called Apaf-1, that promotes the activation of Caspase 9 (Zou et al. 1997). The

antiapoptotic protein CED-9 binds CED-4 and CED-9 inhibits the ability of CED-4 to

promote CED-3 activation in vivo (SHAHAM and HORVITZ 1996; CHINNAIYAN et al. 1997b;

SPECTOR et al. 1997).



The remaining member of the evolutionarily conserved core pathway for the

execution of programmed cell death is the BH3-only protein EGL-1 (CONRADT and

HORVITZ 1998). Like ced-3 and ced-4, egl-1 function is required for essentially all

somatic cell deaths in C. elegans. Unlike ced-3 and ced-4, egl-1 acts upstream of ced-9:

loss of egl-1 function has no protective effect against programmed cell death in animals

lacking ced-9 function (CONRADT and HORVITZ 1998). Mammalian BH3 proteins, the

counterparts of EGL-1, similarly act as upstream inhibitors of the protective functions of

members of the multidomain Bcl-2 family (reviewed by WILLIS and ADAMS 2005). EGL-1

is one of two BH3-only proteins known to function in apoptotic cell death in C. elegans;

the other, CED-13, has been found to function only in the C. elegans germline

(SCHUMACHER et al. 2005). EGL-1 binds CED-9 and disrupts the CED-9-CED-4

interaction (CONRADT and HORVITZ 1998; DEL PESO et al. 1998). This core pathway, in

which EGL-1 acts to release CED-4 from inhibition by CED-9, whereupon CED-4

promotes CED-3 activation, has been reconstituted in vitro using recombinant proteins

(YAN et al. 2004). The evolutionarily conserved core genetic pathway for the execution

of programmed cell death is presented in Figure 1B.

Cell-killing mechanisms supplement the core cell-death execution pathway to

achieve a wild-type pattern of programmed cell death in C. elegans

In addition to the core pathway for the execution of programmed cell death, a

number of genes and cellular processes have been identified that promote programmed

cell death in C. elegans. These additional activities that promote programmed cell death

include the killing function of the bifunctional cell-death regulator ced-9 Bcl-2



(HENGARTNER and HORVITZ 1994a), the timing factor ced-8 (STANFIELD and HORVITZ

2000), the death-promoting activity provided by engulfment of dying cells (HOEPPNER et

al. 2001; REDDIEN et al. 2001), and the killing function provided by a subset of the

synthetic multivulva (synMuv) genes (REDDIEN et al. 2007). The latter three cell-killing

activities are all independent of the Bcl-2 homolog CED-9 and all four are independent

of the BH3-only protein EGL-1, which acts upstream of ced-9 to induce programmed

cell death.

Cell-specific regulation of which cells survive could be achieved by regulation of

the core pathway for the execution of programmed cell death. Each of these cell-killing

functions that supplements the core cell-death-execution pathway offers an additional

mechanism for the cell-specific regulation of programmed cell death, other than

regulation of the core pathway for the execution of programmed cell death. A central

role for one of these additional death-promoting activities in the control of a specific

programmed cell death has already been shown for one cell type: mutations that block

the engulfment and removal of dying cells by their surviving neighbors cause the

survival of both the B.alapaav and B.arapaav cells; normally one member of this pair of

cells dies in the development of the C. elegans male (SULSTON et al. 1980; HEDGECOCK

et al. 1983). Mutations that block the engulfment of cell corpses can also cause the

infrequent survival of ventral cord neurons normally fated to die in the C. elegans

hermaphrodite (REDDIEN et al. 2001).

Regulation of programmed cell death in insects and in vertebrates
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In vertebrates, most regulation of apoptotic cell death is transduced through

members of the Bcl-2 superfamily. The Bcl-2 superfamily includes pro-survival proteins

that contain all four Bcl-2 homology domains; pro-apoptotic proteins that contain the

BH1, BH2, and BH3 Bcl-2 homology domains; and the pro-apoptotic BH3-only proteins.

The BH3-only proteins promote apoptosis by interaction with multidomain Bcl-2 family

members (WANG et al. 1996; SATTLER et al. 1997). The cell-killing BH3-only proteins of

vertebrates are controlled by transcriptional activation, by post-transcriptional

modification, and by localization (reviewed by PUTHALAKATH and STRASSER 2002; DANIAL

2007). The human transcription factor p53 has been shown both to activate the

transcription of the BH3-only genes PUMA and Noxa and to directly bind the

multidomain Bcl-2 family members Bcl-2 and Bcl-XL and inhibit their protective functions

(ODA et al. 2000; NAKANO and VOUSDEN 2001; Yu et al. 2001; MIHARA et al. 2003;

CHIPUK et al. 2004). The BH3-only protein EGL-1 fills a similar function in the core

pathway for the execution of programmed cell death in C. elegans.

The multidomain Bcl-2 family members of vertebrates are regulated

transcriptionally (GRUMONT et al. 1999; MAYO and BALDWIN 2000; CORY and ADAMS

2002) and by post-translational modification (CHANG et al. 1997; CHENG et al. 1997;

YAMAMOTO et al. 1999). Although there is no clear evidence for similar regulation of

programmed cell death in the C. elegans soma, transcriptional and post-translational

control of the multidomain Bcl-2 family member CED-9 has been reported in controlling

the survival of cells in the C. elegans germline. The Rb homolog lin-35 promotes

germline cell death by repressing ced-9 expression and is required for radiation-induced

cell death in the C. elegans germline (SCHERTEL and CONRADT 2007). The Pax



transcription factor genes pax-2 and egl-38 promote Bcl-2 expression and cell survival

in the C. elegans germline (PARK et al. 2006). A Ras/MAPK signaling pathway promotes

stochastic cell death in the C. elegans germline that is independent of the two BH3-only

proteins known to function in C. elegans germline cell death but is inhibited by the Bcl-2

homolog CED-9, suggesting that phosphrylation of CED-9 or an unidentified regulator of

CED-9 may control cell survival in the C. elegans germline (GUMIENNY et al. 1999;

SCHUMACHER et al. 2005).

Another regulatory mechanism, one that does not act through the Bcl-2

superfamily, is the most prominent and extensively characterized death regulatory

mechanism not found in C. elegans: regulation of apoptosis by the IAP (Inhibitor of

ADoptosis) proteins and their inhibitors the IBM (lIAP-Binding Motif) proteins (reviewed

by YAN and SHI 2005; STELLER 2008). IAP proteins bind to caspases and either inhibit

their activity or target them for degradation (SHI 2004). The Drosophila IAP gene DIAPI

is required to prevent lethality caused by ectopic activation of apoptotic caspases (HAY

et al. 1995; WANG et al. 1999). The mammalian IAP proteins XIAP, clAP1 and clAP2

block caspase activity in vitro and when overexpressed (DEVERAUX et al. 1997; RoY et

al. 1997). The C. elegans genome encodes two IAP proteins. Loss-of-function

mutations and overexpression of the two C. elegans IAP proteins have no demonstrated

effect on programmed cell death (SPELIOTES 2000).

IBM proteins are activators of apoptosis that bind directly to the IAP proteins to

release caspases from inhibition (reviewed by SHI 2002). The Drosophila IBM proteins

Hid, Grim, Reaper and Sickle are required for essentially all programmed cell death

during Drosophila development (reviewed by STELLER 2008). The Drosophila IBM
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proteins are subject to transcriptional and post-translational control in development and

in response to cellular injury (BERGMANN et al. 1998; BRODSKY et al. 2000; JIANG et al.

2000; LOHMANN et al. 2002). The mammalian IBM proteins Smac/DIABLO and

Omi/HtrA2 promote caspase activation by relieving inhibition by IAP proteins in vitro (Du

et al. 2000; VERHAGEN et al. 2000; MARTINS et al. 2002; VERHAGEN et al. 2002). Studies

of knockout mice suggest that members of the Bcl-2 superfamily are critical regulators

of apoptotic cell death in mammalian development (MOTOYAMA et al. 1995; LINDSTEN et

al. 2000; WEI et al. 2001) but that the IAP and IBM proteins play only minor roles as

regulators of apoptotic cell death in mice (HARLIN et al. 2001; OKADA et al. 2002; JONES

et al. 2003; POTTS et al. 2003; MARTINS et al. 2004; CONZE et al. 2005; CONTE et al.

2006). By contrast, the IAP and IBM proteins of Drosophila are required for essentially

all apoptosis (WHITE et al. 1994; STELLER 2008), but Bcl-2 superfamily members play

only minor roles in the regulation of apoptosis in Drosophila (SEVRIOUKOV et al. 2007).

Another mammalian protein, ARTS, similarly acts as an inhibitor of IAP proteins, despite

its lacking an IBM motif (LARISCH et al. 2000; GOTTFRIED et al. 2004). ARTS is frequently

lost in cancer (ELHASID et al. 2004) and mice with reduced ARTS function show

upregulation of IAPs and a predisposition to lymphoma (KISSEL et al. 2005). There are

no known C. elegans homologs of the IBM proteins or ARTS.

Cell-specific regulation of non-apoptotic deaths in C. elegans

In addition to the apoptotic deaths of cells that normally die in C. elegans

development, a number of cell deaths that occur only in mutant animals and one

specific cell death that occurs in wild-type development have been shown to be
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genetically and morphologically distinguishable from normal programmed cell deaths.

Many of the non-apoptotic cell deaths that have been described occur only in specific

cells, reflecting either cell-specific expression of a toxic gene product or that different

cells are differentially sensitive to the activation of these non-apoptotic cell-death

programs. Gain-of-function mutations causing channel hyperactivation in neurons can

cause those cells to die in a process that has been proposed to be a C. elegans model

of necrosis or excitotoxicity (DRISCOLL and CHALFIE 1991; SHREFFLER et al. 1995;

TREININ and CHALFIE 1995; BIANCHI et al. 2004). Cell death that occurs by this necrotic

mechanism is not affected by loss-of-function mutations of egl-1, ced-4 or ced-3 or by a

gain-of-function mutation of ced-9, mutations that prevent essentially all apoptotic cell

deaths (CHUNG et al. 2000). Mutations in the genes lin-24, lin-33 and pvl-5 cause the

inappropriate deaths of the Pn.p hypodermal blast cells (FERGUSON and HORVITZ 1985;

FERGUSON et al. 1987; JOSHI and EISENMANN 2004; GALVIN et al. 2008). The deaths of

the Pn.p cells in these mutants are characterized by morphological changes distinct

both from programmed cell deaths and from the neuronal deaths caused by channel

hyperactivation (SULSTON and HORVITZ 1977; CHALFIE and SULSTON 1981; GALVIN et al.

2008). In a critical difference from apoptotic cell deaths, the deaths of the Pn.p

hypodermal blast cells in pvl-5, lin-24, and lin-33 mutants are insensitive to loss of

function of either of the core cell-killing genes egl-1 or ced-4 (JOSHI and EISENMANN

2004; GALVIN et al. 2008). Unlike the Pn.p cell deaths of lin-24 or lin-33 mutants, the

Pn.p cell deaths of pvl-5 mutants are strongly suppressed by increased ced-9 function

and by loss of ced-3 function, suggesting that the similar Pn.p death phenotypes of



these mutants may reflect different underlying cell-death mechanisms (JOSHI and

EISENMANN 2004; GALVIN et al. 2008).

One atypical non-apoptotic cell death has been described that takes place in

wild-type C. elegans development, the death of the linker cell in male development.

Unlike the nonapoptotic cell deaths that have been described as occurring in C. elegans

mutants, the linker cell dies in wild-type development. The linker cell is specifically

generated in male C. elegans. The linker cell is part of the somatic gonad, and during

larval development the linker cell migrates to lead the extension of the developing

gonad. After completing its migration, the linker cell dies in adult C. elegans males

(KIMBLE and HIRSH 1979; SULSTON et al. 1980). The death of the linker cell is not

significantly prevented by mutations causing complete loss of egl-1, ced-4 or ced-3

function or by a mutation causing increased ced-9 function, mutations that prevent

essentially all other somatic cell deaths in C. elegans (ABRAHAM et al. 2007). The dying

linker cell is engulfed in a process independent of the engulfment genes that function in

the removal of apoptotic cells (ABRAHAM et al. 2007); this is fairly surprising, as the

engulfment genes function in the removal both of apoptotic and of necrotic cells and

promote the deaths of the Pn.p cells in lin-24, lin-33, and pvl-5 mutants (CHUNG et al.

2000; JOSHI and EISENMANN 2004; MANGAHAS and ZHOU 2005; GALVIN et al. 2008). The

death of the linker cell has ultrastructural characteristics that differ from apoptotic cell

deaths in C. elegans but that may be similar to some neuronal deaths that normally

occur in vertebrate development (ABRAHAM et al. 2007). The adult-specific death of the

male linker cell is strongly blocked by loss of function of the zinc finger transcription



finger gene lin-29, which is required for other adult-specific cell fates in C. elegans

(ROUGVIE and AMBROS 1995; ABRAHAM et al. 2007).

Regulation of programmed cell death in specific cells by transcriptional control of

the upstream killing gene egl-1

The first cell-specific defect in the regulation of programmed cell death to be

identified was a gain-of-function (gf) mutant of egl-1 in which the HSN neurons of

hermaphrodites inappropriately died (TRENT et al. 1983). The hermaphrodite-specific

HSN neurons are required for egg laying by hermaphrodites; in males, the HSN

neurons die during embryogenesis (SULSTON et al. 1983; TRENT et al. 1983). The

activation of programmed cell death in the HSN neurons of egl-1(gf) hermaphrodites

results from mutations in an egl-1 regulatory site that is bound by TRA-1 (tra, sexual

transformer), a member of the GLI family of transcription factors (ZARKOWER and

HODGKIN 1992; CONRADT and HORVITZ 1999). TRA-1 is the final gene in the C. elegans

sex determination pathway and acts in the hermaphrodite to prevent expression of male

sexual characteristics (HODGKIN 2002). As discussed above, the BH3-only killer gene

egl-1 is the first gene in the core pathway for the execution of programmed cell death

and is required for essentially all somatic programmed cell deaths that occur in

C. elegans development; the egl-l(gf) phenotype indicates that the sexually dimorphic

survival of the HSNs is determined by transcriptional control of this upstream cell-killing

gene.

Genetic screens seeking suppressors of the HSN death seen in egl-1(gf)

phenotype identified two genes, eor-1 and eor-2 (eor, egl-1 suppressor, DiO uptake



defective, raf enhancer) (HOEPPNER et al. 2004). eor-1 encodes a zinc finger

transcription factor with homology to the human tumor suppressor PLZF; eor-2 encodes

a nuclear protein without recognizeable functional domains but with limited homology to

a family of proteins found in fungi and metazoans (HOWARD and SUNDARAM 2002;

HOEPPNER et al. 2004). The HSN-protective effects of eor-1 and eor-2 mutations, like

the HSN-protective effects of loss of egl-1 function, require the function of the Bcl-2

homolog CED-9, and eor-1 and eor-2 have been proposed to promote HSN death by

transcriptional activation of egl-1 (HOEPPNER et al. 2004). For a schematic of the genetic

pathway controlling the deaths of the HSN neurons and the cell-specific pathways

controlling other apoptotic cell deaths, see Figure 2.

A series of genetic and molecular studies have identified a pathway for the

cell-specific control of the deaths of the lineal sisters of the NSM neurons ("NSM

sisters"); again, this pathway controls the deaths of the NSM sisters by regulating

transcription of the upstream BH3-only killer gene egl-1. The first genes in this pathway

to be identified were ces-1 and ces-2 (ces, cell death specification) (ELLIS and HORVITZ

1991). A gain-of-function mutation in ces-1 prevents the deaths of the NSM sisters and

the sisters of the 12 neurons, cells that die during wild-type development (ELLIS and

HORVITZ 1991). Loss of ces-2 function similarly causes the NSM sisters to survive.

When their deaths are prevented, the NSM sisters become serotonergic cells similar to

the NSM neurons (ELLIS and HORVITZ 1991; SZE et al. 2000; THELLMANN et al. 2003).

Strikingly, ces-1 is required for loss of ces-2 function to protect the NSM sisters; ces-2

therefore acts upstream of ces-1 in controlling the deaths of the NSM sisters (ELLIS and

HORVITZ 1991). Animals lacking ces-1 function appear grossly wild-type.



ces-1 and ces-2 encode transcription factors: CES-1 is a member of the Snail

family of transcriptional repressors, and CES-2 is similar to the human bZIP

transcription factor HLF (METZSTEIN et al. 1996; METZSTEIN and HORVITZ 1999). The

ces-1 gain-of-function mutation alters a site bound by CES-2 in vitro (METZSTEIN and

HORVITZ 1999), and a ces-1::yfp reporter is upregulated in the neuroblast that generates

the NSM and NSM sister in animals lacking ces-2 function (HATZOLD and CONRADT

2008). An egl-1 transcriptional regulatory region was found to be required for egl-1

expression in the NSM sisters and for the deaths of the NSM sisters (THELLMANN et al.

2003). This region contains four consensus binding sites for members of the Snail

family of transcription factors: mutations targeting these sites abolish the ability of loss

of ces-2 function to protect the NSM sister cells, suggesting that in ces-2 mutants and in

ces-l(gf) mutants CES-1 binds to these egl-1 regulatory sites and represses egl-1

transcription to prevent NSM sister death (THELLMANN et al. 2003). Consistent with the

hypothesis that ces-1 acts through transcriptional regulation of egl-1, increased ces-1

function has no significant effect on NSM sister survival in animals lacking the Bcl-2

homolog CED-9, the target of EGL-1 (METZSTEIN and HORVITZ 1999). Larger disruptions

that target the consensus Snail family binding sites also affect overlapping E-boxes,

which are binding sites for bHLH proteins. These mutations that also affect the E-boxes

prevent egl-1 transcription and cell killing in the NSM sisters (THELLMANN et al. 2003).

Loss of function of either of the bHLH transcription factor genes hlh-2 or hlh-3 causes

NSM sister cell survival, and a heterodimer of HLH-2 and HLH-3 can bind these egl-1

regulatory E-boxes in vitro (THELLMANN et al. 2003). A fifth gene, dnj-1, encoding a



member of the MIDA-like family of proteins, acts with ces-2 to prevent ces-1 expression

in the NSM sister and to promote NSM sister death (HATZOLD and CONRADT 2008).

The deaths of one additional pair of cells have been shown to be regulated by

transcriptional control of egl-1: loss-of-function mutations in the homeodomain

transcription factor genes mab-5 and ceh-20 cause survival of the P11 .aaap and

P12.aaap cells of the ventral nerve cord that die in wild-type development (Liu et al.

2006). mab-5 and ceh-20 loss-of-function mutations prevent expression of an egl-l::gfp

reporter in the P1 .aaap and P12.aaap cells. Consistent with mab-5 and ceh-20 acting

to control egl-1 expression in the P11 .aaap cell, a MAB-5-CEH-20 complex binds

in vitro to an evolutionarily conserved egl-1 regulatory site required for the death of the

P1 l.aaap cell (Liu et al 2006). Although mab-5 and ceh-20 are required for egl-l::gfp

expression in the P12.aaap cell, this defined MAB-5-CEH-20 binding site is not required

for the death of the P12.aaap cell, suggesting that mab-5 and ceh-20 function at a

different site or act indirectly to promote egl-1 expression and cell killing in the P12.aaap

cell.

Cell-specific control of sensitivity to activation of cell death caused by loss of the

protective function of the Bcl-2 homolog CED-9

As discussed above, the Bcl-2 homolog CED-9 provides an essential

anti-apoptotic cell-protective function. Loss of ced-9 function causes ectopic cell death

and lethality. Strong loss-of-function mutations in the downstream killing genes ced-4 or

ced-3 suppress the lethality caused by loss of ced-9 function. Weak mutations in ced-4

and ced-3 have been identified that permit most programmed cell deaths to occur but
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can suppress the lethality caused by loss of ced-9 function (HENGARTNER and HORVITZ

1994a; SHAHAM et al. 1999; HERSH 2002; REDDIEN 2002). Animals that lack ced-9

function and are weakly defective in the downstream killer gene ced-3 show significant

cell death that is restricted almost completely to cells that normally die in the wild type

(HENGARTNER and HORVITZ 1994a). Thus, regulation of programmed cell death by

developmental lineage can occur independently of ced-9. Since loss of egl-1 function

has no effect in the absence of ced-9 function (CONRADT and HORVITZ 1998), this

ced-9-independent regulation of cell survival must also be independent of egl-1 and of

its transcriptional regulators.

Loss of ced-9 causes activation of the cell-death program similar to that caused

in cells fated to die by expression of the BH3-only pro-apoptotic protein EGL-1. For

example, the HSNs of ced-9(n16531f) hermaphrodites and the egl-1-expressing HSNs of

egl-1(n1084gf) hermaphrodites undergo programmed cell death (DESAI et al. 1988;

CONRADT and HORVITZ 1999). Similarly, loss of ced-9 function and egl-1 over-expression

each cause relocalization of CED-4 from the mitochondria to the nuclear periphery, a

proposed early step in programmed cell death (CHEN et al. 2000). The

ced-9-independent regulation of cell death seen in ced-9(null); ced-3(weak) double

mutant animals can therefore be considered to be a regulation of sensitivity to an

activated cell-death program: cells normally programmed to die are more sensitive to an

activated cell-death program than are cells normally programmed to survive.

The first identified mechanism that couples cell identity and ced-9-independent

regulation of sensitivity to programmed cell death is transcriptional regulation of ced-3 in

the tail spike cell by by the homeodomain transcription factor PAL-1, a homolog of



Drosophila Caudal and mouse Cdx1. Reduced pal-1 function causes the tail spike cell,

which dies in the wild type during embryogenesis, instead to survive, even in animals

completely lacking ced-9 function (MAURER et al. 2007). A ced-3::gfp reporter is

upregulated in the tail spike cell beginning roughly 30 minutes prior to its death; when

the death of the tail spike cell is prevented by loss of ced-3 function, high-level

expression of the ced-3::gfp reporter persists in the undead tail spike cell through

adulthood (MAURER et al. 2007). Expression of the ced-3::gfp reporter in the tail spike

cell requires pal-1, and PAL-1 can bind an element within the ced-3::gfp reporter

required for expression in the tail spike cell. It has therefore been proposed that the tail

spike cell contains an activated cell-death program, and that late in the differentiation of

the tail spike cell PAL-1 transcriptionally upregulates ced-3 to render the tail spike cell

sensitive to this activated cell-death program (MAURER et al. 2007).

I have identified another cell-specific ced-9-independent regulator of sensitivity to

apoptotic cell death, the Bar homeodomain transcription factor CEH-30. ceh-30 is

required for the male-specific survival of the CEM neurons. In males, the CEM neurons

function in the detection of hermaphrodites (CHASNOV et al. 2007); the CEM neurons of

hermaphrodites die during embryogenesis (SULSTON et al. 1983). The Bar

homeodomain transcription factor CEH-30 and the Groucho homolog UNC-37 promote

CEM survival in males; in the CEM neurons of hermaphrodites, ceh-30 is

transcriptionally repressed by TRA-1 (PEDEN et al. 2007; SCHWARTZ and HORVITZ 2007).

Sex determination, acting through ceh-30, can control CEM survival in animals

completely lacking ced-9 function (SCHWARTZ and HORVITZ 2007). For diagrammatic

representation of the pathways controlling tail spike and CEM death, see Figure 2.
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There are striking similarities between the death of the tail spike cell and the

deaths of the CEM neurons in hermaphrodites. Both the tail spike cell and the CEM

neurons are generated some hours before they die and show morphological or

ultrastructural signs of differentiation prior to their deaths (J. Sulston and J. White, as

cited by HORVITZ et al. 1982; SULSTON et al. 1983). By contrast, the great majority of

cells programmed to die during C. elegans development die and are engulfed by their

neighbors within 30 minutes of their generation by cell division (SULSTON and HORVITZ

1977; SULSTON et al. 1983). Engulfment of a dying cell by its neighbors has been

observed to begin even before the division that generates the dying cell is complete

(ROBERTSON and THOMPSON 1982). Both the tail spike cell and the CEM neurons are

unaffected by the killing function of ced-9, and both cell types are only partially

protected against cell death by a ced-9 gain-of-function mutation that almost completely

blocks the programmed cell deaths of other cells (HENGARTNER and HORVITZ 1994a;

MAURER et al. 2007; SCHWARTZ and HORVITZ 2007). Given these similarities, it is

tempting to speculate that the ced-9-independent mechanisms that control the

sensitivity of the tail spike cell and the CEM neurons to their activated cell-death

programs might be similar and that both might involve the transcriptional regulation of

ced-3.

The same ced-3::gfp reporters used in studies of the tail spike cell death are

expressed not only in cells normally fated to die but also in cells that survive in wild-type

development (MAURER et al. 2007). ced-4 is also expressed in most or all cells in

C. elegans development (CHEN et al. 2000). As cell death in animals lacking ced-9 and

weakly defective in ced-3 is largely restricted to cells that normally die in the wild-type,



these cells must be protected from activation of the cell-death program by loss of ced-9

function despite their apparently expressing ced-3 and ced-4. It therefore appears likely

that mechanisms remain to be identified that function to reduce the sensitivity to

programmed cell death of cells normally programmed to survive other than the ced-3

regulation seen in the tail spike cell. If CEH-30 does not control ced-3 expression, the

transcriptional targets of CEH-30 may determine whether cells that express ced-3 and

ced-4 are sensitive to the an activated cell-death program

Genes that regulate specific cell survival decisions have additional non-death

functions in C. elegans development

Nearly every gene that has been found to control the programmed deaths of

specific cells also has been found to control aspects of C. elegans development other

than programmed cell death. The first mutants identified as defective in the deaths of

specific cells, egl-l(gf) and ces-2(f), defined cell-death-regulatory functions of genes

that have additional functions in development. egl-1(gf) mutations that specifically

promote HSN death in the hermaphrodite define a role for the transcription factor TRA-1

in directly controlling the sexually dimorphic deaths of the HSN neurons (CONRADT and

HORVITZ 1999). This feminizing effect of TRA-1 is not specific to the HSN neurons:

TRA-1 is required for all other aspects of the hermaphrodite sexual identity (ZARKOWER

and HODGKIN 1992). ces-2 mutants are defective not only in the deaths of the NSM

sisters but also in morphogenesis of the duct cell (WANG and CHAMBERLIN 2002).

As additional genes that control the survival decisions of specific cells in

C. elegans have been identified, nearly all have been found to be genes already known



to perform other roles in development; for a complete list, see Table 1. These genes

and their additional roles in development include EOR-2 and the PLZF homolog EOR-1,

which promote the deaths of the HSN neurons and also function in Raf signaling and in

neuronal differentiation (HOWARD and SUNDARAM 2002; HOEPPNER et al. 2004); the

bHLH transcription factor HLH-2, which promotes the deaths of the NSM sister cells and

is also an essential gene required during embryogenesis (KRAUSE et al. 1997;

THELLMANN et al. 2003); the homeodomain transcription factors MAB-5 and CEH-20,

which promote the deaths of the P1 l.aaap and P12.aaap neurons and function in

patterning of the animal (WANG et al. 1993; Liu and FIRE 2000; Liu et al. 2006); the

Caudal homolog PAL-1, which promotes the death of the tail spike cell and functions in

posterior patterning (EDGAR et al. 2001; MAURER et al. 2007); and UNC-37, a homolog

of the transcriptional repressor Groucho, which promotes the survival of the CEM

neurons and functions to determine motor neuron identity (PFLUGRAD et al. 1997; PEDEN

et al. 2007). The Bar homeodomain transcription factor CEH-30 is required for CEM

neuron survival, and no other defects have been seen in animals lacking ceh-30

function (PEDEN et al. 2007; SCHWARTZ and HORVITZ 2007). Animals lacking both ceh-30

and its close homolog ceh-31 display a locomotion defect not seen in animals lacking

either one of the two Bar homeodomain transcription factor genes, suggesting that the

two related proteins function redundantly in aspects of neuronal development other than

promoting the survival of the CEM neurons (see Chapter 2). It seems likely that further

studies of specific cell deaths will similarly identify genes that control these survival

decisions and have additional functions in C. elegans development.



One area of particular interest in the overlap between the regulation of

programmed cell death and other aspects of development in C. elegans is the

generation of cells by asymmetric cell division. Asymmetric cell division is critical to the

establishment of cell diversity (HORVITZ and HERSKOWITZ 1992). Asymmetric cell

divisions are critical to C. elegans development, including the earliest patterning events

in the first cell division (reviewed by COWAN and HYMAN 2004). Cells that die in

C. elegans development are always the products of an asymmetric cell division, with the

small daughter being the one that dies (SULSTON and HORVITZ 1977; SULSTON et al.

1983). Mutations that disrupt the asymmetric divisions of these neuroblasts can alter the

fates of both daughters, including preventing the programmed cell deaths of the

daughters normally fated to die (GUENTHER and GARRIGA 1996; FRANK et al. 2005;

CORDES et al. 2006) and causing the deaths of the daughters normally fated to survive

(SINGHVI et al. 2008). At least two factors have been identified, ham-1 and pig-1, that

appear to function only in the divisions of neuroblasts that generate one cell fated to live

and one cell fated to die, suggesting that these cell divisions are subjected to special

controls (FRANK et al. 2005; CORDES et al. 2006). The asymmetric cell divisions that

generate cells programmed to die are in at least one case closely linked to the

transcriptional control of the core pathway for the execution of programmed cell death:

CES-1 directly represses egl-1 expression in the NSM sister and increased ces-1

function prevents the asymmetry of the neuroblast division that generates the NSM and

the NSM sister (HATZOLD and CONRADT 2008). CES-1 homologs in the fruit fly

D. melanogaster also regulate the asymmetry of cell divisions (ASHRAF and IP 2001; CAI

et al. 2001).
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Genes that regulate the survival decisions of specific cells in C. elegans have

mammalian homologs that similarly function to control cell survival

In the preceding sections I have described the identification of 13 genes that

function to specifically control 13 apoptotic cell deaths in C. elegans development. All 13

of these genes encode nuclear proteins, and at least 11 of the 13 encode transcription

factors. All have mammalian homologs. Importantly, not only the sequences of these

proteins but also their roles as regulators of apoptotic cell death appear to be

evolutionarily conserved. In addition to having homologs that have been shown to

regulate apoptosis, genes that control specific cell deaths in C. elegans have homologs

that have been implicated in cancer: genes that promote apoptosis are likely to inhibit

tumor progression, and genes that prevent apoptosis are likely to promote tumor

progression.

Mice lacking PLZF, a homolog of the HSN death-promoting factor eor-1, have

reduced apoptosis in limb bud development (BARNA et al. 2000). The NSM

sister-specific death factor HLH-2 (THELLMANN et al. 2003) is homologous to the

mammalian bHLH transcription factor E2A, which can cause apoptosis when

overexpressed in cultured cells (ENGEL and MURRE 1999). Loss of E2A function can

cause lymphoma (YAN et al. 1997), and E2A may inhibit tumor development by

promoting apoptosis (LIETZ et al. 2007). pal-I specifically promotes tail spike cell death

(MAURER et al. 2007) and is homologous to Cdx2, which is frequently found to be lost in

intestinal tumors (CHAWENGSAKSOPHAK et al. 1997; AOKI et al. 2003; BONHOMME et al.

2003). Glil, A homolog of the HSN-specific cell-death inhibitor TRA-1 is overexpressed



in the majority of basal cell carcinomas and overexpression of Glil can cause epithelial

tumor formation (DAHMANE et al. 1997).

The best example of conservation of a pathway that controls cell-specific

apoptosis in the regulation of apoptotic cell death in mammals is found in the genes that

control the deaths of the NSM sister cells, in particular ces-1 and ces-2. The human

CES-2 homolog HLF is subject to translocations that cause Acute Lymphoblastic

Leukemia (ALL) (INABA et al. 1992). As a result of these translocations, a fusion protein

is overexpressed in B cells; this fusion protein contains the DNA binding domain from

HLF, homologous to the DNA-binding domain of CES-2, but in place of the

transcriptional repression domain found in HLF the fusion protein contains a

transcriptional activation domain from the transcription factor E2A (INABA et al.

1996).This fusion oncogene can therefore increase the expression of targets normally

repressed by HLF function. Overexpression of this fusion oncogene blocks cell death in

pro-B cells, just as loss of ces-2 function blocks the programmed cell deaths of the the

NSM sister cells (ELLIS and HORVITZ 1991; INABA et al. 1996; METZSTEIN et al. 1996).

The E2A-HLF fusion protein that blocks pro-B cell death induces expression of the

CES-1 homolog Slug (INUKAI et al. 1999); this relationship is analogous to the increased

ces-1 expression in the NSM sisters of animals lacking the HLF homolog CES-2

(HATZOLD and CONRADT 2008). Just as CES-1 binds near and transcriptionally

represses the BH3-only killer gene egl-1, Slug binds to and represses the transcription

of the BH3-only killer gene Puma (Wu et al. 2005). Thus, the entire ces-2-ces-1-egl-1

pathway that controls the deaths of the NSM sister cells is conserved in the

E2A-HLF-Slug-Puma pathway. By blocking cell death, the E2A-HLF oncogene causes
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ALL, highlighting the importance of this evolutionarily conserved cell-death-regulatory

pathway in our understanding of human disease. Another cell-specific regulator of

C. elegans apoptosis, ceh-20, which promotes the deaths of the P1 .aaap and

P12.aaap cells, encodes a homolog of Pbxl, which like HLF is subject to translocations

that give rise to a form of ALL (KAMPS et al. 1990; NOURSE et al. 1990).

The cell-death regulation function of the Bar homeodomain transcription factor

ceh-30 is also evolutionarily conserved. Mice lacking the ceh-30 homolog Barhll are

born healthy but progressively lose both their sensory cochlear inner ear hair cells and

consequently their ability to hear (LI et al. 2002). Expression of Barhl1 in ceh-30 mutant

males restores survival of the CEM neurons, indicating that the target specificity of

these Bar homeodomain transcription factors is evolutionarily conserved. Mice lacking

Barhl1 also display defects similar to those seen in mice lacking the neurotrophin

survival factor NT-3 (LI et al. 2004) as well as increased apoptosis of neurons of the

superior colliculus (LI and XIANG 2006). It seems likely that the sensory hair cell neurons

of Barhll mutant mice, like the CEM neurons of ceh-30 mutants, lack protection from

apoptotic cell death. An evolutionarily conserved function of the Bar homeodomain

transcription factors in regulating the survival of sensory neurons might be particularly

notable, because ceh-30 is able to regulate the survival of the male-specific CEM

neurons independently of the Bcl-2 homolog CED-9 (SCHWARTZ and HORVITZ 2007);

similar regulation of cell survival by Barhl1 independently of the Bcl-2 superfamily would

yield new insights into the control of apoptosis in mammalian development and disease.
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Conclusion

In my thesis work, I have investigated the mechanisms that determine the cell

fates and in particular the survival or death decisions of specific neurons in C. elegans

development. My work began as genetic screens investigating the survival decisions of

specific cells and has indeed identified at least one gene that controls programmed cell

death in a cell-specific manner. This work has also led to my discovering of

mechanisms that control other aspects of the fates of these cells, including genes that

determine sexual identity, genes that function to prevent inappropriate gene expression,

and a gene that regulates the cell cycle to prevent improper cell division.

In Chapter II, I present genetic screens I performed to identify mutants defective

in the hermaphrodite-specific programmed cell deaths of the CEM sensory neurons,

and my investigation of the mutants I recovered, mutants that identified genes that

function to determine the CEM neuron fate, to establish the sexual identity of the

animal, and specifically to control CEM survival.

In Chapter III, I describe my identification of the Bar homeodomain transcription

factor gene ceh-30 as a CEM-specific regulator of CEM survival, and show that ceh-30

acts by a novel and possibly evolutionarily conserved mechanism independent of the

core cell death pathway genes egl-1 and ced-9 to promote CEM neuron survival.

In Chapter IV, I describe my characterization of a phenotype of inappropriate

gene expression that arose from my screens for mutants defective in CEM neuron

death, including additional screens that I performed with undergraduate student Dawn

Wendell to recover additional mutants that share this transgene misexpression
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phenotype and my cloning of three genes that function to prevent inappropriate gene

expression.

In Chapter V, I describe work I did together with undergraduate student Johanna

Varner to characterize a mutant I isolated in screens I had performed to investigate the

programmed death of a different cell, the sister of the PVD neuron. This work

demonstrated a highly cell-specific function of the mitotic exit network gene cdc-14.

In Chapter VI, I describe a collaboration with Sibylle Jager and Barbara Conradt

to characterize an altered-function mutant of the protein degradation factor sel-10O. This

work demonstrated that sel-10O functions to promote feminization and led to our

proposing a molecular mechanism for the action of sel-10O in determining sexual identity.

In five Appendices, I describe possible future directions for work to extend some

of the results presented in this thesis; present the complete details of screens that I and

undergraduate students working with me performed, highlighting some mutants and

phenomena of particular interest that have not been substantially pursued; and include

a review I wrote describing methods for the analysis of programmed cell death and two

papers to which I made minor contributions.
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Table 1. Regulators of specific programmed cell deaths in C. elegans

Cell(s)
HSN

neurons
HSN

neurons
HSN

neurons
NSM, 12
sisters
NSM

sisters
NSM

sisters
NSM

sisters
NSM

sisters
P11,P12.a

aap
P11,P12.a

aap
Tail spike

cell
CEM

neurons
CEM

neurons

Linker cell

A list of genes known to regulate specific programmed cell deaths in C. elegans.

Homologs, functions in the regulation of cell death, and other known functions are

indicated. References are: I (CONRADT and HORVITZ 1999), 2 (ZARKOWER and HODGKIN

1992); 3 (HOEPPNER et al. 2004); 4 (HOWARD and SUNDARAM 2002); 5 (ELLIS and

HORVITZ 1991); 6 (METZSTEIN and HORVITZ 1999); 7 (THELLMANN et al. 2003);

8 (HATZOLD and CONRADT 2008); 9 (METZSTEIN et al. 1996); 10 (WANG and CHAMBERLIN

2002); 11 (KRAUSE et al. 1997); 12 (Llu et al. 2006); 13 (WANG et al. 1993); 14 (Llu and

FIRE 2000); 15 (MAURER et al. 2007); 16 (EDGAR et al. 2001); 17 (SCHWARTZ and
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gene

tra-1

eor-1

eor-2

ces-1

ces-2

dnj- 11

hlh-2

hlh-3

mab-5

ceh-20

pal-I

ceh-30

unc-37

lin-29

Homolog

GLI3

PLZF

KIAA1205

Slug

HLF

MIDA1

Daughterless

Achaete-scute

Hox genes

Pbxl

Caudal

Barhll

Groucho

Zinc finger txn.
factors

Function in cell death

Inhibits HSN death. Regulates
egl-1.

Promotes HSN death.
Likely regulates egl-1.

Promotes HSN death.
Likely regulates egl-1.

Inhibits NSM and 12 sister
death. Regulates egl-1.

Promotes NSM sister cell death.
Inhibits ces-1.

Promotes NSM sister cell death.
Inhibits ces-1.

Promotes NSM sister cell death.
Regulates egl-1.

Promotes NSM sister cell death.
Regulates egl-1.

Promotes P11,P12.aaap death.
Regulates egl-1.

Promotes P11,P12.aaap death.
Regulates egl-1.

Promotes tail spike cell death.
Regulates ced-3.

Promotes CEM survival. Does
not require ced-9.

Promotes CEM survival

Promotes adult-specific linker
cell death

Other functions

Sex determination

Ras and Wnt signaling.
Neuronal development.
Ras and Wnt signaling.
Neuronal development.

Asymmetric cell division

Duct cell morphogenesis.
Asymmetric cell division.
Asymmetric cell division.
Morphogenesis, viability.

Embryogenesis

Unknown

Posterior cell fates

Mesoderm patterning

Posterior cell fates

Unknown

Motor neuron identity

Promotes adult cell fates
i

Ref

1,2

3,4

3,4

5,6,
7,8

5,6,8
9,10

8

7,11

7

12,
13
12,
14

15,
16

17,
18

18,
19
20,
21



HORVITZ 2007); 18 (PEDEN et al. 2007); 19 (PFLUGRAD et al. 1997); 20 (ABRAHAM et al.

2007), 21 (ROUGVIE and AMBROS 1995)



Figure legends

Figure 1

An evolutionarily conserved core pathway for the execution of programmed cell death.

A. Programmed cell death can be broken into four conceptually separate steps: a

healthy cell I specified to undergo programmed cell death, the cell is killed in the

execution phase of programmed cell death, the dying cell is engulfed by its neighbors,

and the engulfed cell is degraded. B. The evolutionarily conserved core pathway for the

execution of programmed cell death. The BH3-only protein EGL-1 binds the Bcl-2

homolog CED-9 and inhibits its protective function. Released from inhibition by CED-9,

the adaptor protein CED-4, a homolog of Apaf-1, promotes the activation of the caspase

CED-3. Active CED-3 performs the cell-killing function.

Figure 2

Genetic pathways reflecting the current models of how genes control specific apoptotic

deaths in C. elegans. Note that in the majority of these cells the identified cell-specific

regulators act as regulators of the upstream cell-killing gene egl-1. In the tail spike cell,

pal-1 acts downstream of egl-1 and ced-9 by direct transcriptional regulation of ced-3. In

the CEM neurons, ceh-30 acts downstream of egl-1 and ced-9; because the cell-death

target of ceh-30 is not known, dotted lines are drawn from ceh-30 to ced-4, to ced-3,

and independently of both ced-4 and ced-3 directly to cell death. See text for details.
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Chapter II

A genetic pathway that controls the sexually dimorphic cell deaths

of the C. elegans CEM neurons

Hillel T. Schwartz and H. Robert Horvitz



Abstract

The male-specific CEM sensory neurons of C. elegans function in the detection

of hermaphrodites. The homologous cells in hermaphrodites undergo programmed cell

death. To understand how the sexually dimorphic CEM neurons are determined to

follow their proper developmental program, establish their sexual identity, and

specifically undergo programmed cell death in hermaphrodites, we screened for mutant

hermaphrodites in which the CEM neurons inappropriately survive. We identified 144

independent mutations that cause the presence of CEMs in hermaphrodites. Of these

mutations, 52 are alleles of genes known to function in the execution of all programmed

cell deaths and at least 67 cause masculinization of hermaphrodites. Four mutations

defined the gene tra-4, which encodes a zinc-finger transcription factor required for

complete masculinization. Three gain-of-function mutations defined the Bar

homeodomain transcription factor gene ceh-30, a critical regulator of CEM survival. Five

isolates carried mutations in genes that determine neuronal fates, vab-3 Pax6 and

cnd-1 NeuroD, which specify multiple aspects of the CEM neuron identity and act

together in the establishment of head morphology. Based on our studies, we propose a

genetic pathway for the control of the sexually dimorphic deaths of the CEM neurons.



Introduction

Cells generated during animal development adopt specific fates. One important

cell-fate decision that cells make is whether to survive or to undergo a controlled

process of programmed cell death called apoptosis. When the proper developmental

control of apoptosis is lost, excessive or insufficient apoptosis can occur, resulting in

pathological consequences. In humans, excessive cell death is associated with

immunodeficiency and with neurodegenerative diseases (RATHMELL and THOMPSON

2002; YEO and GAUTIER 2004). Conversely, the failure of cells to properly undergo

apoptosis is a hallmark of some autoimmune disorders and of cancer (WEAVER and

CLEVELAND 2005; BIDERE et al. 2006).

Cells specified to die undergo a process of cell death that is evolutionarily

conserved from nematodes to mammals. Key insights into the core pathway for the

execution of programmed cell death came from genetic studies of C. elegans

(METZSTEIN et al. 1998). In C. elegans, the cell-death process is initiated by the

expression of the BH3-only killer gene egl-1 (egl, egg-!aying defective) (CONRADT and

HORVITZ 1998). EGL-1 binds to CED-9 (ced, cell death abnormal), the sole multidomain

Bcl-2 family member in C. elegans (HENGARTNER and HORVITZ 1994b). CED-9 provides

an essential cell-protective function and a secondary function that can promote cell

killing (HENGARTNER et al. 1992; HENGARTNER and HORVITZ 1994a). Binding of CED-9 by

EGL-1 inhibits the cell-protective function of ced-9 and activates the adaptor molecule

CED-4 Apaf-1 (YUAN and HORVITZ 1992; CHEN et al. 2000; YAN et al. 2004). CED-4, like

its mammalian homolog Apaf-1 (Zou et al. 1997), promotes the cell-killing activity of

cysteine proteases known as caspases (SHAHAM and HORVITZ 1996; YANG et al. 1998).
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The C. elegans caspase activated by CED-4 is encoded by ced-3 (YUAN et al. 1993),

the most downstream gene in the core pathway for cell killing.

In contrast to the wealth of information about how cells committed to die progress

through apoptosis, little is known about the developmental mechanisms that specify

whether cells are to survive or to die. In mammals, the protection of developing neurons

by neurotrophic signals and the induction of apoptosis in immune system cells that

recognize self-antigens have been described (WEAVER and CLEVELAND 2005; BIDERE et

al. 2006). In C. elegans, 1090 somatic cells are generated in the hermaphrodite, of

which 131 undergo programmed cell death (SULSTON and HORVITZ 1977; KIMBLE and

HIRSH 1979; SULSTON et al. 1983). Another 21 somatic cells that either do not die or are

never generated during hermaphrodite development die during male development.

Fourteen genes that exert cell-specific control over fourteen of these 152 cell deaths

have been described; all are believed to encode transcription factors (ELLIS and HORVITZ

1991; METZSTEIN et al. 1996; CONRADT and HORVITZ 1999; METZSTEIN and HORVITZ

1999; THELLMANN et al. 2003; HOEPPNER et al. 2004; Liu et al. 2006; ABRAHAM et al.

2007; MAURER et al. 2007; PEDEN et al. 2007; SCHWARTZ and HORVITZ 2007; HATZOLD

and CONRADT 2008). Mutations in mammalian homologs of many of these cell-specific

regulators of apoptosis can contribute to disease. For example, ces-1 and ces-2 (ces,

cell death specification), C. elegans genes that specifically regulate the deaths of the

sister cells of the NSM neurons (ELLIS and HORVITZ 1991; METZSTEIN et al. 1996;

METZSTEIN and HORVITZ 1999), have human homologs that can regulate B cell survival

in humans, and translocations altering the ces-2 homolog HLF cause Acute

Lymphoblastic Leukemia (INABA et al. 1996; Wu et al. 2005).



To better understand the control of the survival decisions of specific cells and the

interactions between this decision and other aspects of the cell-fate decision, we

performed large-scale genetic screens for mutants defective in the specification of four

cell deaths, those of the CEM neurons of hermaphrodites, and examined the

contributions of known regulators of programmed cell death to this decision. The CEM

neurons are generated in both males and hermaphrodites and in hermaphrodites but

not in males undergo programmed cell death during embryogenesis; the CEM sensory

neurons of males survive and function in the detection of mating partners (SULSTON et

al. 1983; CHASNOV et al. 2007). We describe studies that led to our identification of two

genes, the CDC4 homolog sel-10O and the PLZF homolog tra-4, that function to establish

sexual identity of the CEM neurons and of the entire animal; two genes, the Pax6

homolog vab-3 and the NeuroD homolog cnd-1, that function to establish multiple

aspects of the CEM identity and that cooperate in head morphogenesis. We also

expand our characterization of the Barh1l homolog ceh-30, which we previously

identified as a CEM-specific survival factor in work arising from the screens we describe

here (SCHWARTZ and HORVITZ 2007) and which we now report acts redundantly with its

close homolog ceh-31 in the establishment of CEM identity. We find that genes that

regulate the survival decision of the CEM neurons are also required to specify other

aspects of the CEM neuron identity. Finally, we propose a pathway for the survival

decision of the CEM neurons.

Results

Genetic screens for mutant hermaphrodites with surviving CEMs
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To identify genes that control the fate determination and the sex-specific

apoptotic deaths of the CEM neurons, we performed genetic screens for mutant

hermaphrodites in which the normally male-specific CEM neurons had failed to die. To

facilitate these screens, we used the cell-fate reporter pkd-2::gfp, which expresses in

the CEM neurons of males and in selected neurons of the male tail that are not

generated in hermaphrodites (BARR and STERNBERG 1999). The pkd-2::gfp reporter

expresses in the surviving CEMs of partially masculinized hermaphrodites and in the

undead CEMs of hermaphrodites defective in programmed cell death (Figure 1)

(SCHWARTZ and HORVITZ 2007). Using three pkd-2::gfp reporter transgenes, each

integrated on a different chromosome, we screened more than 150,000 hermaphrodite

F2 progeny of EMS-mutagenized animals (at least 75,000 mutagenized haploid

genomes). On the basis of their arising from different pools of independently

mutagenized Pos, their differing mutant phenotypes, and the results of complementation

tests, mapping experiments, and DNA sequences (see below), 189 strains were

identified as containing independent mutations causing pkd-2::gfp expression or

autofluorescence in hermaphrodites and were saved for further analysis. Of these 189

screen isolates, 45 had pkd-2::gfp expression in hermaphrodites but did not contain

apparent surviving CEM neurons or had autofluorescence independent of the pkd-2::gfp

reporter; these isolates are described in Chapter IV and in Appendix II. The 144

independent isolates that displayed apparent CEM survival are listed in Table 1.

Isolates that showed apparent CEM neuron survival in hermaphrodites were

examined for gross phenotypes consistent with a sexual transformation from a

hermaphrodite to a male sexual identity. Fifty isolates showed partially penetrant CEM



survival in hermaphrodites and segregated a substantial proportion of male progeny

(roughly one in four). These 50 isolates were therefore classified as likely to be carrying

heterozygous mutations dominantly causing weak masculinization, including CEM

neuron survival, and recessively causing essentially complete masculinization. Such

dominant weak masculinization and recessive strong masculinization is caused by

strong loss-of-function mutations in the sex determination genes tra-1 and tra-2 (tra,

sexual transformer), genes that are required for the hermaphrodite sexual identity

(HODGKIN 2002); such haploinsufficiency for complete expression of the hermaphrodite

sexual identity has been previously observed for the sexually dimorphic survival of the

HSN neurons in animals heterozygous for the strong tra-2 loss-of-function mutation

n196 (TRENT et al. 1983; DESAI and HORVITZ 1989). Twelve additional isolates did not

segregate completely masculinized progeny but did have other gross phenotypic

defects consistent with a partial masculinization: the isolates possessed

pkd-2::gfp-expressing cells in the tail and/or expressed a Pvl (protruding vulva)

phenotype similar to that seen for intersex animals (date not shown).

Isolates that had apparent surviving CEM neurons in hermaphrodites and did not

show gross indications of sexual transformation were tested for complementation with

loss-of-function mutations in the cell-death genes egl-1, ced-4, and ced-3. From these

and other experiments (see below), 48 isolates were identified as being alleles of ced-3

or ced-4. The remaining 34 isolates - those that did not show obvious signs of sexual

transformation and that by complementation did not appear to be alleles the

programmed cell death genes ced-3 and ced-4 - were examined for the penetrance of

their CEM survival phenotype, their anterior pharynxes were scored for the
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inappropriate survival of cells that should normally undergo programmed cell death, and

the sizes and morphology of their B cells in L1 larvae were examined. The B cells

provide an easy assay with which to detect somatic masculinization: the B cells of of

male L1 larvae are larger than those of L1 hermaphrodites and have a distinctive

morphology (see Materials and Methods). Seventeen of the remaining screen isolates

were selected for further analysis because they had strong CEM survival phenotypes,

had been mapped to positions distinct from any genes known to function in

programmed cell death or in sex determination, or in the case of three allelic isolates

because additional defects indicative of a motor neuron defect suggested broadly acting

functions in neuronal differentiation or survival. These 17 isolates were found to contain

mutations in the genes ced-9, sel-lO, tra-4, ceh-30, cnd-1, and vab-3. A list of all

molecularly identified mutations isolated in the pkd-2::gfp screens for hermaphrodites

with surviving CEM neurons is shown in Table 2. A partial characterization of the

remaining unidentified mutations that did not cause apparent defects in programmed

cell death and did not cause obvious defects in sexual identity is shown in Table 3.

ced-3 mutations define a common allelic series in the CEM neurons and in other

tissues

One ced-3 allele recovered in the screens, ced-3(n4707), was found not to

contain any detectable mutation in the ced-3 coding sequence, splice junctions, or

within the 2,359 bp upstream of the ced-3 start codon. ced-3(n4707) failed to

complement ced-3(n717) and mapped to a ~373 kb interval containing ced-3 (see

Materials and Methods). Because ced-3(n4707) did not alter the ced-3 coding



sequence, it was possible that in this mutant the expression of ced-3 might be affected

in a specific subset of cells fated to undergo programmed cell death, including the CEM

neurons. To address this issue, the strength of the cell-death defect caused by

ced-3(n4707) was examined in three assays (Table 4): survival of the CEM neurons of

hermaphrodites; suppression of the Egl phenotype caused by inappropriate HSN death

in egl-1(n1084gf) hermaphrodites; and survival of additional cells in the anterior

pharynx, a tissue that can contain up to 16 surviving cells possessing at least ten

distinguishable cell fates (HENGARTNER and HORVITZ 1994a). The strength of the

ced-3(n4707) killing defect in these assays was compared to a series of ced-3 missense

mutations associated with intermediate defects in cell killing: ced-3(n2436, n2438,

n2877, and n2921) (Table 4). It was found that in each of the three tissues tested, these

five partial-loss-of-function alleles of ced-3 could be ordered in the same allelic series.

As the four additional ced-3 partial-loss-of-function alleles caused changes in the CED-3

protein sequences that would similarly affect CED-3 in all cell types, it is likely that the

apparent noncoding mutation ced-3(n4707) affects the level of ced-3 expression

similarly in multiple tissues or in all tissues, rather than in a specific subset of cells that

includes the CEM neurons.

The noncoding egl-1 allele n4908A specifically affects the deaths of the CEM

neurons

The egl-1 allele n4908A is a noncoding 309 bp deletion that was recovered as a

targeted deletion that spans a site required for eg-1 cell-killing function in the Pn.aap

lineage (B. Galvin and H.R.H., personal communication). We found that the
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egl-1(n4908A) mutant does not affect all programmed cell deaths: specifically,

egl-1(n4908A) does not cause the survival of extra cells in the anterior pharynx

(Table 5A). No protective effect of egl-1(n4908A) was seen in this tissue even in

ced-3(n2427) animals weakly defective in programmed cell death, a sensitized genetic

background previously shown to facilitate the detection of extremely weak defects in cell

killing (STANFIELD and HORVITZ 2000; REDDIEN et al. 2001; REDDIEN et al. 2007). We

found that the egl-1 noncoding deletion n4908A blocked the deaths of the CEM neurons

in hermaphrodites and in males specifically defective in CEM neuron survival

(Table 5B). The BH3-only protein EGL-1 has previously been shown to promote

programmed cell death in a process dependent on the cell-protective Bcl-2 homolog

CED-9 (CONRADT and HORVITZ 1998). As would be expected for a mutation affecting

egl-1 function, the protection of the CEMs by n4908A was entirely dependent on ced-9

function (Table 5C). egl-1(n4908A) therefore disrupts egl-1 function in a limited number

of cell types that includes the Pn.aap cells and the CEM neurons but not the cells of the

anterior pharynx. Because egl-1(n4908A) is a noncoding mutation, it seems likely this

deletion removes a site required for the binding of the egl-1 locus by an unidentified

factor that promotes egl-1 expression in the CEM neurons. A single nucleotide change

within the same region that prevents the deaths of the Pn.aap neurons (B. Galvin and

H.R.H., unpublished results) does not affect CEM survival, suggesting that two different

sites with in the region deleted by n4908A function to controls these two programmed

cell deaths.
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New ced-9(gf) mutations affecting the EGL-l-interacting surface of CED-9 prevent

the deaths of cells programmed to die

Four of our mutations - n4081, n4698, n4700, and n4713 - semidominantly

caused partial CEM survival in hermaphrodites and were not identified as being allelic

with loss-of-function mutations in the cell-death genes ced-3, ced-4, or eg-1 by

complementation tests. We found that each of these four mutations semidominantly

caused survival of extra cells in the anterior pharynx and caused survival of Pn.aap

neurons fated to die in the developing ventral nerve cord (Table 6 and data not shown).

Each of these four mutations mapped close to the right of unc-32 I///, a position

consistent with that of the cell-death protective gene ced-9 (data not shown). We

determined the DNA sequence of ced-9 in these mutants and identified a predicted

G169R missense mutation in n4700 and identical lesions, each causing a predicted

G173D missense mutation, in the independently isolated mutations n4081, n4698, and

n4713. The published crystal structure of the CED-9-EGL-1 protein interaction interface

(YAN et al. 2004) indicates that these mutations could have effects very similar to those

of the canonical ced-9 gain-of-function (gf) mutation, n1950, which causes the change

G169E (HENGARTNER and HORVITZ 1994a) and disrupts the interaction surface for

binding between the BH3-only cell-killing protein EGL-1 and the Bcl-2 homolog CED-9

(DEL PESO et al. 2000; YAN et al. 2004).

In addition to the assays shown in Table 6, ced-9(n4700gf) and ced-9(n4713gf)

completely suppressed the egg-laying defect caused by inappropriate HSN neuron cell

death in eg-1(n1084gf) hermaphrodites (data not shown) and suppressed the presence

of persistent cell corpses in the heads of newly hatched ced-1(e 1875) larvae defective



in the engulfment and removal of cell corpses (5.3 ± 1.7 corpses for

ced-1; ced-9(n4700gf) and 2.8 ± 1.4 corpses for ced-1; ced-9(n4713gf), compared to

25.8 ± 2.1 corpses for ced-1; error is standard deviation, n = 10). ced-9(n4700gf) and

ced-9(n4713gf) therefore prevent the majority of programmed cell deaths. Despite

preventing most programmed cell deaths, ced-9(n4700gf) and ced-9(n4713gf) cause

only partial survival of the CEM neurons (Table 6). Similarly, although in most tissues

the canonical ced-9 gain-of-function allele n1950 causes a defect in programmed cell

death similar to those caused by strong loss-of-function mutations in egl-1, ced-3 or

ced-4 (HENGARTNER and HORVITZ 1994a; CONRADT and HORVITZ 1998), ced-9(nl950gf)

causes only partial protection of the CEM neurons of hermaphrodites, significantly

weaker than that caused by loss of egl-1, ced-3 or ced-4 (SCHWARTZ and HORVITZ

2007).

Only some contributors to cell killing function in the programmed deaths of the

CEM neurons

We tested mutations in genes previously shown to contribute to the cell-killing

process in C. elegans to determine whether they similarly contribute to the deaths of the

CEM neurons in hermaphrodites. One such function is provided by the Bcl-2 homolog

ced-9, which in addition to its essential function as a negative regulator of programmed

cell death also has a secondary function as a weak activator of programmed cell death

(HENGARTNER and HORVITZ 1994a). As previously reported (SCHWARTZ and HORVITZ

2007), loss of the bifunctional cell-death regulator ced-9 caused by the null mutation

ced-9(n2812) did not enhance the cell-killing defect caused by the weak ced-3



loss-of-function mutation n2427 in the CEM neurons (Table 7). We observed similar

results with another null allele of ced-9 and with other weak alleles of ced-3 (data not

shown). Thus, although ced-9 has a killing function in other programmed cell deaths

and ced-9(gf) mutations block most cell deaths, in the CEM neurons the ced-9 killing

function is not detected and ced-9(gf) mutations are only partially effective in protecting

the CEM neurons of hermaphrodites. Thus, ced-9 mutations behave differently in the

deaths of the CEM neurons than in most programmed cell deaths.

A set of genes that includes members of the synMuv (synthetic Multivulva)

genes, which encode transcriptional regulators, contribute to programmed cell death in

multiple tissue types (REDDIEN et al. 2007). We tested mutations in two of these genes,

the DP homolog dpl-I and the zinc-finger gene mcd-1, and found that loss-of-function

mutations in neither dpl-I nor mcd-1 enhanced the partial CEM survival caused by the

weak ced-3 loss-of-function mutation n2427 (Table 7). We combined the ced-9 null

mutation n2812 with either the dpl-I loss-of-function mutation or the mcd-1

loss-of-function mutation, thereby generating mutant strains defective in two

mechanisms shown to promote cell killing and to act independently of and additively

with each other in other cell types (REDDIEN et al. 2007). No enhancement of the weak

cell-killing defect caused by ced-3(n2427) in the CEM neurons of hermaphrodites was

observed in these multiply mutant strains (data not shown). We tested two other

mechanisms previously shown to provide minor roles in cell killing, the timing factor

ced-8 XK (STANFIELD and HORVITZ 2000) and the cell-corpse engulfment gene

ced-7 ABC1 (HOEPPNER et al. 2001; REDDIEN et al. 2001). As seen in other tissues,
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these two mechanisms contributed to the programmed cell deaths of the CEM neurons

of hermaphrodites (Table 7).

In addition to egl-1, a second BH3-only gene, ced-13, has been identified and

observed to promote programmed cell death in the germline of C. elegans

(SCHUMACHER et al. 2005). We tested whether ced-13 contributes to the deaths of the

CEM neurons (Table 8). To maximize our ability to detect the contribution of an EGL-1

family member in CEM death, we performed these assays in ceh-30(n4289A) males,

which are sensitized such that significant protection of the CEM neurons can be

observed in animals that lack a single copy of egl-1, i.e. in animals heterozygous for the

egl-1 loss-of-function mutation n1084 n3082. In this genetic background, no protective

effect was seen to be caused by a deletion of ced-13, even in animals heterozygous for

egl-1(n1084 n3082), indicating that the BH3-only gene ced-13 does not contribute to the

deaths of the CEM neurons.

In short, we find a sharply reduced role for ced-9 in the regulation of CEM neuron

survival, including a complete absence of the ced-9 killing activity seen in other cell

types; that the cell-killing activity provided by members of the synMuv genes in other

cell types has no apparent effect role in the CEM neurons; and that the ced-8 and

engulfment-mediated cell-killing activities that contribute to other programmed cell

deaths similarly promote CEM neuron death.

sel-10(gf) and the new gene tra-4 control CEM programmed cell death by acting

within the sex determination pathway
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One of our isolates, n3717, semidominantly caused both CEM neuron survival

and a strong defect in egg laying in hermaphrodites. n3717 mapped to LGV between

rol-4 and par-I (data not shown). Epistasis experiments showed that null mutations in

fem-1, fem-2, and fem-3 (fem, feminization), genes required for masculinization,

completely suppressed the masculinization caused by n3717 (Table 9) (JAGER et al.

2004). A null mutation in her-1, a gene required for masculinization that acts upstream

of the fem genes, did not affect the CEM survival caused by n3717 (Table 9) (JAGER et

al. 2004). These results suggested that n3717 causes CEM survival by acting within the

sex determination pathway, downstream of her-I and upstream of the fem genes. The

masculinization caused by n3717 was subtle and gross defects were limited to CEM

survival and a defect in egg laying, so that n3717 was not identified early in the

examination of screen isolates as being defective in sex determination and

consequently was not set aside. Further mapping, complementation, and sequencing

experiments identified n3717 as a mutation in sel-10 (sel, suppressor or enhancer of

lin-12), a gene also known as egl-41. The subsequent characterization of SEL-10 in sex

determination has been described elsewhere (JAGER et al. 2004).

n3715, n3716, n4724, and n4726 are allelic mutations that caused a strong,

recessive CEM survival phenotype and a severe egg-laying defect in hermaphrodites

(Table 10A and data not shown). We mapped this locus on LGX between the markers

unc-2 and Ion-2, distinct from any gene previously identified as functioning in sex

determination or as a regulator of programmed cell death. The CEM survival caused by

n3715 and n3716 was suppressed by mnDp57 and by yDp14, genomic duplications that

include sequence from this interval (data not shown). Epistasis experiments with null
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mutations of genes required for masculinization (her-1, fem-1, fem-2, and fem-3)

indicated that the CEM survival in n3715 and n3716 hermaphrodites was independent

of her-I and was suppressed by loss of fem-1, fem-2 or fem-3 function (Table 10B),

suggesting that the gene defined by n3715 acts downstream of her-I and upstream of

the fem genes, within the sex determination pathway. Consistent with their causing a

partial defect in sex determination, both alleles enhanced the partially masculinized

phenotypes caused by the weak sex determination mutations tra-2(e1875),

tra-2(n1106), and tra-3(e2333) (data not shown). Similarly to sel-10(n3717), the

masculinization caused by n3715 and n3716 was subtle and gross defects were limited

to CEM survival and a defect in egg laying, so that n3715 and n3716 were not identified

early in the examination of screen isolates as being grossly defective in sex

determination. GROTE and CONRADT (2006) independently performed genetic screens

for mutations causing CEM survival in hermaphrodites and identified mutations allelic

with n3715. Together with Grote and Conradt, we agreed to have the locus named

tra-4.

tra-4 encodes a C2H2 transcription factor required for complete feminization

We identified a ~119 kb interval containing tra-4(n3715) by polymrphism mapping

(see Materials and Methods). All five transgenic lines generated from a pool containing

two cosmids within this interval, F53B1 and F58G12, rescued the CEM survival

phenotype of n3715. These two cosmids are predicted to contain seven genes

(http://wsl90.wormbase.org); a transgene containing the single predicted gene F53B 1.1

rescued the CEM survival phenotype of n3715 (see Materials and Methods). We
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identified missense mutations in F53B3.1 for each of the four alleles n3715, n3716,

n4724, and n4726 by DNA sequence determination (Table 2 and Figure 2).

tra-4 is predicted to encode a 543 amino acid protein with seven zinc finger

domains (FINN et al. 2006). As initially noted by GROTE and CONRADT (2006), TRA-4 is

related to the human proto-oncoprotein transcription factor PLZF, possessing homology

to the zinc fingers and the N-terminal RD2 repressor domain of hPLZF (see Figure 2).

hPLZF is a transcription factor that binds DNA and recruits transcriptional repressor

complexes; translocations that fuse hPLZF to the retinoic acid receptor cause acute

promyelotic leukemia (ZELENT et al. 2001; reviewed by KELLY and DANIEL 2006). Two of

the four tra-4 missense alleles, n3715 and n4724, disrupt residues in the zinc finger

consensus sequences that are conserved with human PLZF (Figure 2). The other

missense alleles, n3716 and n4726, each mutate an amino acid within a TRA-4 region

that is not part of any predicted motif and not conserved in PLZF (Figure 2). n3716 and

n4726 might disrupt protein stability rather than interfering with the function of a

particular domain or might affect a functional domain not recognized by current motif

identification algorithms.

Control of CEM survival and CEM identity by the Bar homeodomain transcription

factor genes ceh-30 and ceh-31

As we have previously reported (SCHWARTZ and HORVITZ 2007), three of the

screen isolates, n3713, n3714, and n3720, defined the gene ceh-30. These mutations

cause increased ceh-30 function in hermaphrodites by disrupting a regulatory binding

site for TRA-1, a transcriptional repressor that acts in hermaphrodites to prevent
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masculinization (HODGKIN 1987). ceh-30 encodes a Bar family homeodomain

transcription factor specifically required for CEM survival in males and can protect the

CEM neurons of animals completely lacking the function of the Bcl-2 homolog ced-9.

We proposed that ceh-30 acts downstream of or in parallel to ced-9 to control whether

the CEM neurons are sensitive to the activation of programmed cell death (SCHWARTZ

and HORVITZ 2007).

Although animals completely lacking ceh-30 function are strongly defective in

CEM neuron survival in males, these animals retain some sexual dimorphism for CEM

survival, with 17% of ceh-30(n4289A) males and 0% of ceh-30(n4289A) hermaphrodites

possessing surviving CEMs (n = 71 and 60, respectively; see Table 11). One candidate

to provide the remaining protective function in the CEM neurons of ceh-30

loss-of-function (If) males is ceh-31, which encodes the only other predicted Bar family

homeodomain protein in C. elegans. ceh-31 is adjacent to ceh-30 in the genome: their

coding regions are separated by less than 5 kb, an interval that contains no predicted

genes. CEH-31 is closely related to CEH-30, with 52% identity across the entire

predicted proteins and a homeodomain differing by only one amino acid (of glutamatic

acid for aspartic acid). CEH-30 is more closely related to CEH-31 than either is to Bar

homeodomain proteins in non-nematodes. We isolated two deletion alleles: the 1240 bp

deletion ceh-31(n4893A), which removes the entire predicted ceh-31 homeodomain of

ceh-31 and is likely a null allele; and a 7771 bp deletion, nDf65, which removes the

coding regions of both ceh-30 and ceh-31 and is not predicted to affect any other

identified genes (see Materials and Methods). Loss of ceh-31 function did not prevent



CEM neuron survival in males and did not promote CEM neuron survival in

hermaphrodites (Table 11).

Males lacking both ceh-30 and ceh-31 were less likely to contain

pkd-2::gfp-expressing CEM neurons than were males lacking ceh-30 and retaining

ceh-31 function (Table 11B and data not shown). Unlike the CEM neurons of animals

lacking ceh-30, the CEM neurons of animals lacking both ceh-30 and ceh-31 were not

completely restored by blocking programmed cell death using loss-of-function mutations

in ced-3, ced-4, or egl-1: 8-10% of cell-death-defective nDf65 males were missing CEM

neurons (Tables 11 and Sl). ceh-30 can act in parallel to ced-9 Bcl-2 to promote CEM

survival, and although ced-3 is normally required for CEM death it is possible that

ceh-30 acts downstream of or in parallel to ced-3 to promote CEM survival (SCHWARTZ

and HORVITZ 2007). If this were the case, animals doubly mutant for ceh-30 and ceh-31

and defective in programmed cell death might be missing some CEMs because of a

ced-3-independent cell death mechanism derepressed in the CEM neurons of animals

lacking both ceh-30 and ceh-31. To determine whether the CEM neurons of

ceh-30 ceh-31 double mutant animals might be dying by a ced-3-independent

mechanism, we examined ced-1(e1875); ced-3(n717); nDf65 larvae defective both in

programmed cell death and in the engulfment and removal of cell corpses. We

examined hermaphrodites, as at least 80% of cell-death-defective nDf65

hermaphrodites were missing CEM neurons, compared to fewer than 20% of cell-death

defective hermaphrodites possessing wild-type copies of ceh-30 or ceh-31 (Tables 11

and Sl). Newly hatched ced-1(e1875); ced-3(n717); nDf65 larvae did not have an

increased number of cell corpses compared to ced-1(e 875); ced-3(n717) larvae
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(0.3 ± 0.5 and 0.2 ± 0.4 corpses, respectively; mean + SD, n = 10). Because no extra

ced-3-independent cell corpses were seen in animals lacking both ceh-30 and ceh-31,

suggesting that the missing CEM neurons were not dying independently of ced-3, we

propose that the CEM neurons of ceh-30 ceh-31 double mutants were not properly

generated. The missing CEMs of cell-death-defective ced-3(n717); nDf65 animals were

restored by a transgene containing a wild-type copy of ceh-30 (Table 11A), suggesting

that this defect of CEM fate determination is caused by the loss of ceh-30 and ceh-31

rather than by a separate linked mutation.

vab-3 Pax6 and cnd-1 NeuroD are required for CEM death in hermaphrodites and

for other aspects of CEM fate determination

Two complementation groups were defined by mutations that caused the

presence of pkd-2::gfp-expressing neurons in the heads of approximately 50% of

hermaphrodites: n3721 and n3723 on LGX; and n3786, n3787, and n4744 on LGIII

(Table 12A). The nuclear positions of the pkd-2::gfp expressing cells of these mutant

hermaphrodites and their process morphologies were more variable than those of the

CEM neurons of hermaphrodites defective in programmed cell death or the CEM

neurons of ceh-30(n3714gf) hermaphrodites specifically defective in CEM death (data

not shown). If the pkd-2::gfp-expressing cells of these mutants were cells other than the

CEMs ectopically expressing the pkd-2::gfp reporter as a result of a cell-fate

transformation, it might be expected that in males or in ced-3(n717) hermaphrodites

both the CEMs and the transformed cells would express the pkd-2::gfp reporter.

Examination of mutant males and of double mutants between ced-3(n717) and n3721,
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n3723, or n3786 did not show the presence of supernumerary pkd-2::gfp-expressing

cells (data not shown). The extra pkd-2::gfp-expressing cells in these mutant

hermaphrodites were therefore surviving CEM neurons.

We mapped n3721 to a 258 kb interval on LGX (see Materials and Methods).

Both the n3721 and the n3723 mutant strains caused a defect in head morphology at

very low penetrance, reminiscent of the defects caused by loss-of-function of the

C. elegans Pax6 homolog vab-3, which lies within the same interval. The canonical

allele vab-3(e648), believed to be a null mutation (CINAR and CHISHOLM 2004), caused

weak CEM survival in hermaphrodites similar to that in n3721 and n3723 animals

(Table 12A). n3721 and n3723 failed to complement vab-3(e648) for CEM survival (data

not shown). As part of a survey of vab-3 alleles, CINAR and CHISHOLM (2004) identified

vab-3 mutations in both n3721 and n3723: n3721 is a mutation in the fifth splice donor

site, and n3721 is a mutation in the third splice donor site (Table 2).

vab-3 mutants were originally isolated on the basis of defect in head morphology

and transformation of neuronal cell fates (LEWIS and HODGKIN 1977). vab-3 was

subsequently found to specify cell fates in sensory organs (ZHANG and EMMONS 1995)

and in the rectal epidermis (CHAMBERLIN and STERNBERG 1995) and to be required for

the proper migration of gonadal precursors (NISHIWAKI 1999) and for proper axonal

migration (ZALLEN et al. 1999). Molecular characterization of vab-3 revealed that it

encodes the C. elegans homolog of the mammalian gene Pax6 and the

D. melanogaster gene eyeless (CHISHOLM and HORVITZ 1995). The Pax6 family of

transcription factors were first identified as functioning to specify the developing eye in

Drosophila and in mice, but in both organisms family members are broadly expressed in



the central nervous system and play numerous roles in the establishment of neuronal

cell fate and, in mammals, in pancreatic development (SIMPSON and PRICE 2002).

We mapped n3786 and n3787 to LGIII between dpy-17 and Ion-1. In addition to

causing CEM survival in hermaphrodites, these mutations caused a fully penetrant

recessive reverse kinker Unc (unc, uncoordinated locomotion) defect. A pool of three

cosmids rescued the Unc phenotype caused by n3786 (see Materials and Methods).

The genes on these cosmids include the NeuroD homolog cnd-1. The canonical allele

cnd-1(ju29) caused CEM survival and locomotion defects similar to those caused by

n3786 and n3787 and failed to complement both alleles for locomotion and for CEM

survival (Table 12A and data not shown). Determination of DNA sequences identified

mutations in cnd-1 in n3786, n3787, and n4744 mutant animals (Table 2). We also

identified the canonical unc-131 mutation jd19, which was reported to map to a position

overlapping with cnd-1 (K. Oomen and W. Walthall, personal communication), as failing

to complement cnd-1(ju29). Through determination of DNA sequences we identified

jd19 as being a predicted R17opal nonsense mutation in cnd-1.

cnd-1 and its mammalian homolog NeuroD encode bHLH transcription factors

(LEE et al. 1995a; HALLAM et al. 2000). NeuroD was initially identified as a mammalian

bHLH cDNA able to transform nonneuronal ectodermal cells to neurons when

expressed in Xenopus embryos (LEE et al. 1995a). Further work has shown that NeuroD

is required for pancreas development and acts broadly in neuronal development

(reviewed by CHAE et al. 2004). The C. elegans NeuroD homolog CND-1 is expressed

in neuroblasts and developing neurons, and cnd-1 mutants have numerous motor

neuron defects, including in the motor neuron number, cell-fate marker expression and



process morphology (HALLAM et al. 2000). CND-1 and NeuroD share a conserved bHLH

domain and an additional 42 amino acid motif C-terminal of the bHLH domain (LEE et al.

1995b; HALLAM et al. 2000); the bHLH motif is the only domain in CND-1 that is

recognized by domain prediction software (FINN et al. 2006). The missense mutation

cnd-1(n4744), which caused a CEM survival phenotype as strong as those of the

predicted cnd-1 null alleles n3786 and jd19 (Table 12A), is predicted to cause the amino

acid change L42F, altering a residue in the first helix of the bHLH motif that is

conserved between C. elegans CND-1 and its mouse homolog NeuroD.

In addition to causing CEM survival in hermaphrodites, both vab-3 mutant males

and cnd-1 mutant males were missing CEMs (Table 12B). The defect in these mutant

males is not one of CEM survival, as the CEM neurons of these mutant males were not

restored when programmed cell death was blocked by the mutation ced-3(n717)

(Table 12B). Similarly, ced-3(n717) hermaphrodites defective in programmed cell death

and mutant for either vab-3 or cnd-1 possessed fewer CEM neurons than

hermaphrodites defective in programmed cell death normally do (Tables 11A, 12A).

Thus, in addition to having CEMs that often failed to die in hermaphrodites and having

CEMs apparently defective in nuclear position and process morphology, these mutants

often failed to have pkd-2::gfp-expressing CEMs at all. The CEM neurons of both vab-3

and cnd-1 mutants thus showed a number of partially expressive defects in the

establishment of their cell fates: they were often not generated, or at least not

detectable using pkd-2::gfp, and, when present, the CEM neurons of both vab-3 and

cnd-1 mutants were often defective in nuclear position, process morphology and cell

death.



vab-3 Pax6 and cnd-1 NeuroD act together in the establishment of head

morphology

We observed that animals lacking cnd-1 NeuroD had a weakly penetrant defect

in head morphology reminiscent of the defects seen in vab-3 mutants (Table 13 and

Figure 3). The weak vab-3 alleles n3721 and n3723 caused similar defects in head

morphology at low penetrance (Table 13). Loss of cnd-1 strongly enhanced the head

morphology defects caused by weak alleles of vab-3. For example, 1% of cnd-1(n3786)

and 6% of vab-3(n3723) animals were Vab, but 53% of cnd-l(n3786); vab-3(n3723)

double mutants were Vab (n>100; see Table 13). We did not observe similar

enhancement of weak vab-3 morphology defects when these weak vab-3 alleles were

combined with mutations in a number of other genes, including mutations causing

defects in locomotion, in body size or in CEM fate determination (data not shown).

vab-3 Pax6 and cnd-1 NeuroD function in parallel to ceh-30 to inhibit CEM neuron

survival

The survival of CEM neurons in hermaphrodites caused by loss of vab-3 function

was not affected by loss of any of the fem genes, and the survival of CEM neurons in

hermaphrodites caused by loss of cnd-1 function was not affected by loss of fem-2

(Table 14A and data not shown); the fem genes are the most downstream genes

required for masculinization (HODGKIN 2002). Both cnd-1 and vab-3 mutations protected

the CEM neurons of hermaphrodites completely lacking the function of the Bcl-2

homolog ced-9 (Table 14B). Because loss of ced-9 function causes ectopic cell death
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and lethality, the ced-9(if) animals examined were homozygous for the extremely weak

cell-death-execution mutation ced-3(n2923) (SHAHAM et al. 1999). Although it permits

most programmed cell death to occur normally (SHAHAM et al. 1999), ced-3(n2923)

suppressed the lethality caused by loss of ced-9 Bcl-2 function, permitting the

maintenance and examination of strains completely lacking ced-9. ced-3(n2923) caused

a very low baseline level of CEM neuron survival (Table 14B). The CEM survival caused

by vab-3 and cnd-1 mutations was weaker in animals lacking ced-9 function than in a

wild-type genetic background (Tables 12A and 14B and data not shown), which

suggests that a portion of the cell-protective effect of vab-3 and cnd-1 mutations is lost

in animals lacking ced-9 Bcl-2. Thus, vab-3 and cnd-1 act downstream of or in parallel

to sex determination and act at least partly in parallel to ced-9 Bcl-2 to promote CEM

death in hermaphrodites.

Because cnd-1 and vab-3 mutants had similar defects in the CEM neurons and

caused similar levels of CEM survival in hermaphrodites, the two genes might act at a

similar point within the pathway for CEM cell death. Reduction of vab-3 function did not

enhance the survival of CEM neurons of hermaphrodites completely lacking cnd-1

function (Table 12A). The lack of enhancement in double mutants might suggest that

the two genes act in a common pathway. However, tests for dependence of the CEM

survival phenotypes caused by mutations in vab-3 and cnd-1 on the CEM-specific

cell-survival factor ceh-30 revealed a significant difference between vab-3 and cnd-1:

the survival of CEM neurons conferred by reduction of vab-3 function was completely

unaffected by loss of ceh-30 function, while the survival conferred by complete loss of

cnd-1 function was greatly reduced in animals lacking ceh-30 function (Table 14C).
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cnd-1(If); ceh-30(If) double mutant hermaphrodites showed significantly more CEM

survival than either wild-type or ceh-30(f) hermaphrodites, but the CEM survival

phenotype caused by loss of cnd-1 function was not as cleanly epistatic to ceh-30 for

CEM survival as is the vab-3 phenotype.

Discussion

Large-scale genetic screens identifed mutants defective in the deaths of the CEM

neurons

From our screens, we identified 144 independent mutations causing CEM

survival in hermaphrodites. Through complementation tests, mapping, and DNA

sequence determination, we identified 52 alleles of genes known to function in all

programmed cell deaths in C. elegans: 32 alleles of ced-3, 16 alleles of ced-4, and four

gain-of-function alleles of ced-9. The recovery of multiple ced-3 alleles, ced-4 alleles,

and ced-9(gf) mutations indicates that these screens were done on a scale sufficient to

recover mutations in most genes required to prevent CEM survival in hermaphrodites.

However, the screen failed to isolate any alleles of egl-1, a gene required for CEM

death in hermaphrodites. egl-1, which encodes a protein only 106 amino acids in length,

presents a small target for mutagenesis. Although the recovery of four gain-of-function

mutations of ced-9 indicates that mutations altering at least one small target were

repeatedly recovered, genes that like egl-1 that present small targets or are not easily

mutated by EMS could easily have been missed.

Some mutations causing CEM neuron survival in hermaphrodites might not have

been recovered in these screens because of the screen design. If the



maternally-provided function of a gene required for CEM death were sufficient to rescue

the defect caused by zygotic loss of gene function, no mutations would have been

recovered. Mutations that recessively caused CEM survival in hermaphrodites but also

caused additional defects resulting in sterility or maternal-effect lethality also could not

be recovered, as the candidate would not have generated viable progeny. Mutations

that altered the fates of the CEM neurons so as both to prevent their programmed cell

deaths and to block their expression of the cell-fate reporter pkd-2::gfp similarly could

not be recovered. Importantly, screen isolates defined five genes that had not been

previously molecularly characterized or that were not previously known to function in the

establishment of sexual identity or the determination of the CEM neuron fate:

sel-10 CDC4, tra-4 PLZF, ceh-30 Barhll, vab-3 Pax6, and cnd-1 NeuroD.

A pathway for the control of CEM survival by determination of the CEM cell fate

and establishment of sexual identity

We propose that there are at least four major categories of genes that affect the

deaths of the CEM neurons: genes that function in the establishment of sexual identity,

genes that establish the identity of the CEM neurons, and genes that function within the

cell death program to cause cell killing, and genes that function in a cell-specific fashion

to determine whether the CEM neurons are sensitive to an activated cell-death program

(see Figure 4A). Below we discuss the genes that function to determine the sexually

dimorphic survival of the CEM neurons, place them into these four major categories,

and propose a pathway for the regulation of CEM neuron survival (Figure 4B).
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A subset of mechanisms that promote somatic cell death in C. elegans function in

the deaths of the CEM neurons

The genes regulating the process of programmed cell death in C. elegans have

been extensively studied (reviewed in METZSTEIN et al. 1998; LETTRE and HENGARTNER

2006). The deaths of the CEM neurons are in many ways identical to other cell deaths

in the soma of C. elegans; in particular, the core pathway of genes that function in the

execution of programmed cell death is required for the deaths of hermaphrodites' CEM

neurons (SCHWARTZ and HORVITZ 2007). We found that partial-loss-of-function

mutations in ced-3 impaired the deaths of the CEM neurons to degrees that

corresponded to their defects in other cell types. As reported for other programmed

somatic cell deaths, the deaths of the CEM neurons required the BH3-only killer gene

egl-1 but not the egl-1 homolog ced-13.

egl-1 is required for the deaths of the CEM neurons, indicating that egl-1 is

expressed in the CEMs. Because sex determination and ceh-30 can regulate CEM

survival in parallel to egl-1 and ced-9, egl-1 expression in the CEMs need not be

sexually dimorphic to achieve sex-specific death of the CEM neurons. If egl-1

expression in the CEMs is sexually dimorphic - if egl-1 is not normally expressed in

males - then this downregulation of egl-1 expression in male CEMs must be dependent

on ceh-30 function to explain the egl--dependent CEM death seen in males lacking

ceh-30 function; this possible regulation is indicated with a dotted line in Figure 4A. The

first clue towards the identification of additional factors regulating egl-1 expression in the

CEM neurons comes from the noncoding mutation egl-l(n4908A). egl-l(n4908A)

removes a site specifically required for the deaths of the Pn.aap cells (B. Galvin and
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H.R.H., unpublished results) and causes a CEM-specific death defect, suggesting that

the deleted sequence includes a binding site for a factor that promotes egl-1 expression

specifically in the CEM neurons or in a subset of dying cells including the CEM neurons.

Despite the similarities between the programmed cell deaths of the CEM neurons

in hermaphrodites and other previously studied somatic cell deaths in C. elegans, the

programmed deaths of the CEM neurons are distinctive in several ways: the CEM

deaths occur hours after the CEMs are generated by cell division (SULSTON et al. 1983),

after the CEMs have migrated and shown signs of differentiation (HORVITZ et al. 1982

and references therein). By contrast, most cells fated to die in C. elegans adopt a

corpse-like morphology and are removed within an hour of the cell division that created

them (SULSTON and HORVITZ 1977; ROBERTSON and THOMPSON 1982; SULSTON et al.

1983); engulfment of a cell by its neighbors can even begin before the division that

generates the dying cell is complete (ROBERTSON and THOMPSON 1982). One other

programmed cell death in C. elegans, that of the tail spike cell, bears some striking

similarities to the deaths of the CEM neurons: like the deaths of the CEMs, the death of

the tail spike cell occurs hours after the tail spike cell is generated, shows no evidence

of the killing function of ced-9 Bcl-2 and is only partially prevented by the ced-9

gain-of-function n1950 (MAURER et al. 2007). It has been proposed that the tail spike cell

death is caused by temporally controlled transcriptional upregulation of the cell-killing

gene ced-3 (MAURER et al. 2007); similarly, ceh-30 might promote CEM neuron survival

by cell-specific transcriptional repression of ced-3.

In addition to the core pathway of genes required for all programmed cell death in

C. elegans, at least four separate classes of genes have been identified that provide
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functions contributing to, but not required for, the programmed deaths of most or all

cells. These include the cell-killing function of the bifunctional cell-death gene ced-9

(HENGARTNER and HORVITZ 1994a), the cell-death-promoting factor ced-8 (STANFIELD

and HORVITZ 2000), engulfment-mediated cell killing (HOEPPNER et al. 2001; REDDIEN et

al. 2001) and the promotion of cell killing by selected members of the synMuv genes

(REDDIEN et al. 2007). Although each of these mechanisms has been shown to cause

defects in a broad range of cells that normally die, the factors determining whether and

to what degree cells are susceptible to their killing functions have not been widely

explored. We found that loss of the timing factor ced-8 or of the cell-corpse engulfment

gene ced-7 enhanced a weak cell-death defect in the CEM neurons, consistent with

these genes acting to promote the deaths of the CEM neurons. As each of the

death-promoting functions of ced-8 and the engulfment genes have been shown to

promote cell killing independently of ced-9 Bcl-2 function (STANFIELD and HORVITZ 2000;

REDDIEN et al. 2001), we propose that these genes act similarly in the control of CEM

neuron survival (Figure 4B).

As we have previously reported (SCHWARTZ and HORVITZ 2007), the cell-killing

function of the bifunctional cell-death regulator ced-9 Bcl-2 does not appear to

contribute to the deaths of the CEM neurons. Similarly, we observed no cell-killing

function for the synMuv genes in the CEM neurons. The cell-killing functions of ced-9

and of the synMuv genes have previously been observed to contribute to the

programmed deaths of several cell types in the anterior pharynx, of the Pn.aap cells of

the ventral nerve cord and the sisters of the PVD neurons in the postdeirid sensory

structure (REDDIEN et al. 2001; REDDIEN 2002; REDDIEN et al. 2007).
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The mechanisms underlying the differences between the programmed deaths of

the CEM neurons of hermaphrodites and the deaths of other cell types are not

understood. Given that certain mechanisms known to contribute to cell killing in other

tissues of C. elegans apparently do not function in the CEMs, further examination of cell

death of the CEM neurons and of other previously unexamined cell types might similarly

reveal new contributors to the process of cell killing.

sel-10 CDC4 and tra-4 PLZF contribute to the determination of sexual identity

The largest single class of mutants with surviving CEM neurons in

hermaphrodites comprised the 67 isolates in which the CEM neuron survival was

associated with other indications of partial sexual transformation of multiple somatic

tissues from a hermaphrodite to a male sexual identity. Of these isolates, 50 showed

dominant CEM survival in hermaphrodites, with recessive complete or nearly complete

masculinization, a phenomenon seen for strong loss-of-function alleles of tra-1 and

previously observed for strong loss-of-function alleles of tra-2 (TRENT et al. 1983; DESAI

and HORVITZ 1989). Five screen isolates defined two genes, sel-lO and tra-4, which had

not previously been established to have roles in sex determination. Loss of function of

either either sel-10 or tra-4 causes weak masculinization of both the soma and the

germline (JAGER et al. 2004; GROTE and CONRADT 2006 and see Results), and mutants

in either sel-10 or tra-4 cause synthetic masculinization when combined with weak

mutants in the canonical sex-determination genes tra-2 and tra-3. Further investigation

of tra-4 by GROTE and CONRADT (2006) revealed the existence of an entire class of

genes providing a weak contribution to the establishment of the hermaphrodite identity,
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and it seems likely that additional genes exist, similar to sel-10 and tra-4, that weakly

contribute to the establishment of sexual identity in C. elegans.

The masculinized phenotypes of sel-lO and tra-4 mutants are independent of

her-1 and are completely suppressed by loss of the fem genes. Based on these genetic

interactions and on molecular data suggesting that SEL-10 directly regulates the

stability of FEM-1 and FEM-3, we proposed that sel-10 acts genetically upstream of

fem-1 and fem-3 (JAGER et al. 2004). The placement of tra-4 within the sex

determination pathway is less clear. GROTE and CONRADT (2006), in their independent

cloning and characterization of tra-4, obtained similar epistasis data with her-1 and the

fem genes, and additionally observed that loss of tra-4 can enhance the mating

efficiency of animals completely lacking tra-1 function. On the basis of this observation,

Grote and Conradt proposed that tra-4 acts downstream of the fem genes and in

parallel to tra-1 to promote female development and further proposed that the observed

suppression of the tra-4 mutant phenotype in fem mutants is a consequence of

increased tra-1 function in these feminized animals (GROTE and CONRADT 2006).

The enhancement of the masculinized phenotype of a tra-1 null mutant by loss of

tra-4 reported by GROTE and CONRADT (2006) is highly salient and their resulting model

is certainly plausible. However, it has long been known that elements placed in the sex

determination pathway upstream of tra-1 also act in parallel to tra-1 to prevent complete

masculinization, including the X-chromosome dosage gene xol-1 (HODGKIN 1980;

HODGKIN 2002). TRA-1 and TRA-2 can physically interact, and this interaction has been

proposed to suggest the existence of feminizing activity within the sex-determination

pathway that circumvents the normal role within that pathway of the fem genes (LUM et
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al. 2000). These observations have led to the proposal that subsidiary mechanisms

exist by which genes acting upstream within the sex determination pathway can

promote feminization in parallel to tra-1 (HODGKIN 2002). Despite these proposals for

additional functions in sex determination, the core sex determination pathway has

continued to be drawn in accordance with the main genetic interactions of sex

determination mutants and not their subsidiary relationships. Considered similarly, tra-4

would be regarded as principally acting within the sex determination pathway, upstream

of the fem genes (Figure 4B).

The CEM cell survival regulator ceh-30 Barhll promotes CEM survival and acts

redundantly with its homolog ceh-31 in CEM fate determination

In previously published work arising from the screens reported here (SCHWARTZ

and HORVITZ 2007), we identified the Bar family homeodomain transcription factor

ceh-30 Barhl1 as a regulator of CEM survival. ceh-30 specifically controls the survival

decisions of the CEM neurons, acting downstream of sex determination and upstream

of the execution of programmed cell death. ceh-30 therefore occupies a central role

within the genetic pathway for the control of CEM survival (Figure 4V).

Males lacking ceh-30 function were strongly defective in CEM survival, but

ceh-30(n4289A) animals retained significant sexual dimorphism for CEM survival. One

candidate to provide the remaining CEM survival function in ceh-30(n4289A) males is

the ceh-30 homolog ceh-31, encoding the only other Bar family homeodomain protein

predicted in C. elegans. CEH-31 has a predicted homeodomain almost identical to that

of CEH-31, suggesting that CEH-30 and CEH-31 may share transcriptional targets.
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Loss of ceh-31 function did not affect CEM survival either in hermaphrodites or in

males, but we found that males lacking both ceh-30 and ceh-31 displayed a loss of

CEM neurons more severe than that of males lacking only ceh-30. Unlike the missing

CEM neurons of ceh-30(If) males, however, the CEMs lost in ceh-30 ceh-31 double

mutants were not completely restored by blocking programmed cell death. The CEM

neuron deaths of animals lacking ceh-30 required egl-1 and ced-3 function, indicating

that egl-1 and ced-3 act downstream of or in parallel to ceh-30 to promote CEM death.

However, loss of egl-1 had no effect on CEM survival in animals lacking both ced-9 and

ceh-30. Thus, ceh-30 acts in parallel to egl-1 (and to ced-9), and not upstream of egl-1.

No similar mutant background exists that could permit us to determine whether ceh-30

might also act in parallel to ced-3, so it is possible that the CEM neurons of

ceh-30 ceh-31 animals die in a ced-3-independent manner. However, no persistent cell

corpses were seen in animals that lacked both ceh-30 and ceh-31 and also lacked both

the cell-killing gene ced-3 and the cell-corpse engulfment gene ced-1. This suggests

that the CEM neurons of the ceh-30 ceh-31 double mutants did not die independently of

ced-3, although it remains possible that the CEMs of ceh-30 ceh-31 double mutants

died independently of ced-3 and then became cell corpses that did not possess the

distinctive Nomarski morphologies of cells killed by ced-3 or of cells killed by other

known mechanisms in C. elegans (ELLIS et al. 1991; CHUNG et al. 2000; JOSHI and

EISENMANN 2004). We propose that the Bar homeodomain transcription factor gene

ceh-30 acts to promote CEM neuron survival in males and we additionally propose that

ceh-30 acts redundantly with the homologous gene ceh-31 to promote other aspects of

the CEM neuron identity. Thus, the CEM neurons of males lacking ceh-30 failed to

107



survive, and some CEM neurons of animals lacking both ceh-30 and ceh-31 failed to

properly differentiate.

The deletion removing both ceh-30 and ceh-31 is associated with a weak kinker

Unc phenotype (data not shown). This locomotion defect is similar to locomotion defects

seen in animals defective in specification of motor neuron identity (MILLER et al. 1992) or

in the development of neuronal lineages (PRASAD et al. 1998; HALLAM et al. 2000;

CAMERON et al. 2002), and is not seen in animals that retain the function either of ceh-30

or of ceh-31. We previously observed expression of a rescuing ceh-30::gfp reporter in

neurons other than the CEMs (SCHWARTZ and HORVITZ 2007). The kinker Unc

phenotype of nDf65 animals might indicate that ceh-30 and ceh-31 act redundantly to

establish the fates of neurons in addition to the CEMs. Other genes that have been

identified as controlling specific cell death decisions in C. elegans also perform

additional functions in other tissues: ces-2, egl-20, eor-1, eor-2, hlh-2, hlh-3, mab-5,

pal-1, and tra-1 both regulate specific cell deaths and also act in the differentiation other

cells (METZSTEIN et al. 1996; CONRADT and HORVITZ 1999; HOWARD and SUNDARAM

2002; WANG and CHAMBERLIN 2002; THELLMANN et al. 2003; HOEPPNER et al. 2004; Liu

et al. 2006; MAURER et al. 2007). As all of these genes encode transcription factors,

their possessing multiple functions in multiple tissues is not surprising.

Of the two Bar homeodomain transcription factors in C. elegans, only ceh-30 is

required to promote the survival of the CEM neurons. This difference might result from

differences in the expression of ceh-30 and ceh-31 during CEM neuron development.

Animals lacking ceh-30 and animals lacking both ceh-30 and ceh-31 retain a CEM

sexual dimorphism, even when programmed cell death was blocked by loss of ced-3
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function. Therefore, there must exist a factor in addition to the Bar homeodomain

proteins that acts in a sexually dimorphic fashion to regulate CEM differentiation or to

regulate CEM survival independently of ced-3. One candidate is the Groucho homolog

unc-37, which functions with ceh-30 to promote CEM survival in males (PEDEN et al.

2007). We similarly find that males with reduced unc-37 function show a weak reduction

in the number of surviving CEM neurons, and that the missing CEMs of unc-37 mutant

males are restored when a ced-3(n717) mutation is added to block programmed cell

death (Table S2). PEDEN et al. (2007) showed that UNC-37 can physically interact with

CEH-30, likely via the N-terminal FIL motif of CEH-30; homeodomain proteins in other

organisms have been shown to recruit transcriptional repression complexes, including

Groucho (CHOI et al. 1999; JIMENEZ et al. 1999).

vab-3 Pax6 and cnd-1 NeuroD function in CEM fate determination and cooperate

in the establishment of head morphology

From our screen, we identified the previously characterized genes vab-3 Pax6

and cnd-1 NeuroD as functioning to promote CEM death. Animals defective in vab-3 or

in cnd-1 each displayed a range of defects in the CEM neurons: the neurons were often

not present; when present, they were frequently mispositioned or showed aberrant

process morphology; and they often failed to die appropriately in hermaphrodites. We

propose that vab-3 and cnd-1 mutants are weakly defective in the establishment of

CEM cell identity. Both vab-3 and cnd-1 function in a range of neuronal cell-fate

decisions in C. elegans development (ZHANG and EMMONS 1995; ZALLEN et al. 1999;

HALLAM et al. 2000), and both genes have mammalian homologs that function broadly in
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the establishment of cell fates in the central nervous system (CHAE et al. 2004; OsuMI et

al. 2008). Because vab-3 and cnd-1 mutants showed similar phenotypes, because both

vab-3 and cnd-1 functioned downstream of or in parallel to both ced-9 and ceh-30 to

promote CEM neuron death, and because hermaphrodites mutant for both vab-3 and

cnd-1 possessed defects in the CEM neuron identity that were not enhanced beyond

those seen in either single mutant, including a similar degree of CEM survival in

hermaphrodites, we propose that vab-3 and cnd-1 work together in establishing CEM

identity.

Other aspects of the vab-3 and cnd-1 mutant phenotypes also suggest that the

two genes cooperate in C. elegans development. Animals lacking cnd-1 function

displayed at low penetrance a variable defect in head morphology reminiscent of the

defect seen at high penetrance in animals completely lacking vab-3 function. Loss of

cnd-1 function strongly enhanced the head morphology defects of animals weakly

defective in vab-3 function. Conversely, the strong loss-of-function allele vab-3(e648),

an early nonsense mutation proposed to completely abolish pax-6 function (CHISHOLM

and HORVITZ 1995; CINAR and CHISHOLM 2004), was associated with a weak kinker Unc

phenotype in outcrossed strains, a defect perhaps related to the strong kinker Unc

phenotype seen in animals lacking cnd-1 function (data not shown). vab-3 and cnd-1

are therefore likely to provide similar and mutually redundant functions in multiple

aspects of C. elegans development. In this context, it is noteworthy that some aspects

of the mutant phenotypes of mice lacking the vab-3 homolog Pax6 and of mice lacking

the cnd-1 homolog NeuroD are strikingly similar, in particular the defects in pancreas
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development and insulin production observed in mice lacking either Pax6 or NeuroD

(NAYA et al. 1997; SANDER et al. 1997).

Genes that function to determine CEM neuron identity might also directly control

CEM survival

In addition to the genes that we and others have identified as controlling CEM

survival, genes have been identified that are required to establish the CEM neuron

identity. The POU domain transcription factor gene unc-86 functions in the

establishment of numerous neuronal cell identities in C. elegans, including those of the

CEM neurons (FINNEY and RUVKUN 1990; SHAHAM and BARGMANN 2002). PEDEN et al.

(2007) reported that UNC-86 might directly bind the ceh-30 locus and promote ceh-30

expression in the CEM neurons. Loss-of-function mutants of the helix-loop-helix

transcription gene lin-32, which functions to establish the identities of multiple neurons

in C. elegans, frequently lack CEM neurons (ZHAO and EMMONS 1995; SHAHAM and

BARGMANN 2002).

Both mutants defective in CEM fate determination and mutants more specifically

defective in CEM survival, such as ceh-30 or unc-37, cause the absence of CEM

neurons in males and in masculinized hermaphrodites. The two classes can be

distinguished because in mutants of the latter class the CEM neurons can be restored

by the addition of mutations that prevent programmed cell death. With the identification

and characterization of genes that function to control the deaths of the CEM neurons,

significant overlaps appear between the genes that control CEM survival and genes that

function to determine CEM identity. vab-3 and cnd-1 mutants are weakly defective in
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multiple aspects of the CEM fate, such that the CEM neurons are often not properly

generated in these mutants, and when generated often fail to properly die in

hermaphrodites. ceh-30 mutants appear to be specifically defective in the survival of the

CEM neurons, but animals lacking both ceh-30 and the homologous gene ceh-31 show

additional defects in the establishment of CEM identity, and might show broader defects

in neuronal development. UNC-86, which is required for the presence of

pkd-2::gfp-expressing CEM neurons in ceh-30(gf) hermaphrodites and in animals

defective in programmed cell death (data not shown), might directly regulate ceh-30 to

promote its CEM-protective function (PEDEN et al. 2007). Some of these overlapping

relationships might be evolutionarily conserved; for example, the mouse ceh-30

homolog Barhl1 is required for the survival of sensory neurons in the inner ear (LI et al.

2002), and the mouse cnd-1 homolog NeuroD is required for the proper generation and

survival of sensory neurons in the inner ear (KIM et al. 2001). As further relationships

are established among genes that control the survival of the CEM neurons and between

these genes and the genes that function to establish CEM neuron identity, similar gene

networks might well be found that act to control neuronal identity, function, and survival

in mammals.
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Materials and Methods

C. elegans genetics

C. elegans strains were derived from the wild-type strain N2 (Bristol, England)

and cultured using standard conditions (BRENNER 1974), except that the bacterial strain

HB101 was provided as a food source. A list of mutations used is given below. The

following mutations were used and are described by (RIDDLE et al. 1997) unless

otherwise noted: LGI cfi-l(ky651) (SHAHAM and BARGMANN 2002), dpy-5(e61),

unc-37(e262); LGII dpl-1(n3380), dpy-10(e128), mcd-l(n4005A) (REDDIEN et al. 2007),

rol-6(e187), unc-4(e120), tra-2(e1875, n1106), unc-52(e444); LGIII ced-4(n1162),

ced-7(n1892), ced-9(n2812), ced-9(n3400) (SCHWARTZ and HORVITZ 2007), cnd-1(ju29)

(HALLAM et al. 2000), dpy-1(s2171), dpy-17(e164), dpy-18(e364), fem-2(e2105),

Ion-1(e43, e185), tra-1(e1099), unc-32(e189), unc-49(e382), unc-69(e587),

unc-86(n846), unc-131(jd19) (K. Oomen and W. Walthall, personal communication);

LGIV unc-5(e53), fem-1(e1965), fem-3(e1996); ced-3(n717, n2427, n2438, n2443,

n2436, n2877, n2921) (SHAHAM et al. 1999), tra-3(e2333); LGV dpy-11(e224),

egl-l(n1084), egl-1(n1084 n3082) (CONRADT and HORVITZ 1998), egl-l(n4908A) (B.

Galvin and H.R.H., unpublished results), her-l(hvl y101), him-5(e1467), par-l(b274),

rol-4(sc8), unc-76(e911); and LGX ced-8(n1891), ced-13(tm536) (SCHUMACHER et al.

2005), ceh-30(n4289A) (SCHWARTZ and HORVITZ 2007), dpy-3(e27), dpy-6(e14),

lin-15(n765), Ion-2(e678), unc-2(e55), unc-9(e 101), unc-18(e81), vab-3(k121, k143,

e648) (NISHIWAKI 1999), nls106 [lin-11::gfp] (REDDIEN et al. 2001). The

extrachromosomal ceh-30 rescuing transgene nEx1165 has been previously described,

as "ceh-30 genomic locus" (SCHWARTZ and HORVITZ 2007). The translocation nT1 [IV; V]
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with the dominant marker deg-3(n754) (TREININ and CHALFIE 1995) or qls51 (SIEGFRIED

et al. 2004) was used to balance fem-1 and fem-3. The balancer chromosome sC1 with

the recessive marker dpy-1(s2171) (PILGRIM et al. 1995) was used to balance fem-2.

The balancer chromosome mnCl with the recessive markers dpy-10(el28) and

unc-52(e444) (HERMAN 1978) was used in some strain constructions. The chromosomal

duplications mnDp57 (X:I) and yDpl4 (X:I) (MENEELY and NORDSTROM 1988; AKERIB and

MEYER 1994) both span tra-4. The genomic deficiency sDf23 (REINER et al. 1995) failed

to complement cnd-1(n3786) for CEM survival and for locomotion, and the genomic

duplications nDp2 and sDp3 (ROSENBLUTH et al. 1985; FINNEY et al. 1988)

complemented cnd-1(n3786) for both its locomotion and CEM survival defects (data not

shown).

Polymorphism mapping was performed essentially as described (WICKS et al.

2001). ced-3(n4707) was mapped to the right of unc-30 on LGIV using visible markers

and using polymorphisms to the right of 1231 on K10D11 and left of 25818 on W02A2,

a ~373 kb interval that includes the ced-3 locus. The mapping of sel-10(n3717) has

been described (JAGER et al. 2004). tra-4(n3715) was mapped to the right of unc-2 and

the left of Ion-2 on LGX using visible markers and polymorphisms to the right of 12743

on F55F1 and to the left of 24830 on F53B3, a ~93 kb interval. The mapping of ceh-30

mutations has been described (SCHWARTZ and HORVITZ 2007). vab-3(n3721) was

mapped to the right of dpy-6 and the left of unc-9 using visible markers and using

polymorphisms to the right of 10699 on R07E3 and to the left of 16547 on F57C7, an

interval of ~258 kb that contains the vab-3 locus. cnd-1(n3786) was mapped between

the visible markers dpy-17 and Ion-I, an interval of approximately 370 kb.
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Transgenesis and generation of integrated pkd-2::gfp reporters

Germline transformation was performed as described (MELLO et al. 1991). Two

cosmid pools were injected to attempt rescue of the Unc phenotype of cnd-l(n3786):

F21H11, K10D2, and ZC155; and ZC155, C34E10, and ZC395. The second pool gave

a single line that showed rescue of the Unc phenotype of cnd-l(n3786). Two cosmid

pools were injected to attempt rescue of the CEM survival phenotype of tra-4(n3715):

F55F1 and C14A11; and F58H12, F53B3, and C15D2. The second pool gave five lines

that rescued the CEM survival phenotype caused by tra-4(n3715). Cosmids were

injected at 5 ng/jil each for rescue of cnd-l(n3786). Cosmids were injected at 25 ng/ tl

each for rescue of tra-4(n3715) with 50 ng/tl P76-16B (BLOOM and HORVITZ 1997) as a

co-injection marker. The plasmid ppkd-2::gfpl (BARR and STERNBERG 1999) was

injected at a concentration of 100 ng/pl together with the lin-15-rescuing co-injection

marker pL15EK (CLARK et al. 1994) at a concentration of 50 ng/[l into a lin-15(n765)

strain. A suitable transgenic line was chosen, and integrated using an established

protocol (SHAHAM and HORVITZ 1996) using approximately 900 F, progeny. From this,

seven independent chromosomally integrated versions of the pkd-2::gfp transgene were

recovered: nls125 X, nis128 II, n1s129 IV, nis130 IV, nls131 III, nls132 X, and nls133 I.

nls125 X could not be separated from a linked mutation causing a recessive kinker Unc

phenotype. Each of the five autosomal integrated transgenes showed tight linkage to a

marker used in their mapping (dpy-5 I, rol-6 II, unc-32 III, or unc-5 IV) such that

recombinants could not be readily obtained between them; it is therefore possible that
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each suppresses recombination on parts of their respective chromosomes, including the

cluster-linked markers used in their mapping.

Genetic screens and initial classification of screen isolates

We performed three screens, each of approximately 20,000 mutagenized haploid

genomes. Each screen used a different one of three pkd-2::gfp integrants: n/s133 I,

n/s128 II, or nls130 IV. In these screens, hermaphrodites were mutagenized with EMS

according to standard methods (BRENNER 1974). Mutagenized P0 animals were placed

on Petri plates containing NGM agar seeded with HB101 bacteria as a food source: four

animals on a seeded 6 cm plate or 32 animals on a seeded 10 cm plate. After 6 days at

200C, the plates were bleached for approximately 11 minutes with periodic gentle

vortexing in 2M NaOH with 12.5% HOCI solution (from a stock with 5% available

chlorine) to recover F2 eggs, which were then allowed to hatch in S medium in the

absence of food. One aliquot of 300-400 animals from each 6 cm plate or six such

aliquots from each 10 cm plate were put on seeded 6 cm plates and grown at 22.50C for

four days before screening. All isolates were labeled to identify the group of

mutagenized Pos from which they originated. 189 independently mutagenized pools of

mutagenized animals were screened, and mutants were isolated from 105 of these

pools. All screen isolates were maintained at 22.50C by picking three phenotypic

hermaphrodites in each generation from which to obtain the next generation and were

maintained in this fashion until frozen stocks had been established and confirmed by

test thaws. After isolates had been assigned to phenotypic classes and subjected to

complementation tests and mapping experiments (see below), 52 isolates had mutant
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phenotypes and/or complementation data indistinguishable from those of another

isolate recovered from the same group of mutagenized Pos. In such cases, only one of

these redundant strains from each Po group was retained, leaving 189 independent

screen isolates.

Of the 189 final screen isolates, 45 had phenotypes recognizably distinct from

CEM survival (see Appendix II). The remaining 144 with phenotypes consistent with

CEM survival were examined using a fluorescence-equipped dissecting microscope for

defects typical of masculinization of hermaphrodites: mutations dominantly causing

CEM survival and recessively causing essentially complete masculinization, mutations

causing the presence of pkd-2::gfp-expressing cells in the tail or other tail

masculinization, mutations causing a Pvl (protruding vulva) phenotype. EgI and Dpy

phenotypes, which can result from partial defects in sex determination or dosage

compensation, were not considered necessarily to be indicators of sexual

transformation. Isolates that displayed CEM survival in hermaphrodites but did not show

such gross defects indicative of sexual transformation were classified as candidates to

be defective in programmed cell death, weakly defective in sex determination or

defective either in the determination of the CEM fate or the specification of CEM cell

death. These isolates were mated with males homozygous for the pkd-2::gfp transgene

used in their isolation, and the F1 males resulting from these crosses were mated with

three dpy-5; nls128 strains, each homozygous for ced-3(n717), ced-4(n1162), or

egl-1(n1084 n3082). A minimum of 16 cross-progeny hermaphrodites from each cross

were examined for CEM survival using pkd-2::gfp. When complementation tests with an

isolate appeared to show failure to complement either none or more than one of the
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three cell-death genes tested, the tests were repeated at least once. Isolates with

ambiguous complementation results and isolates for which F1 cross-progeny males

were unable to mate were examined for the presence of extra neurons in the anterior

pharynx using Nomarski microscopy as described below; eight Ced isolates were

identified in this fashion and were later determined to be four gain-of-function alleles of

ced-9, three alleles of ced-3, and one allele of ced-4 that had initially escaped detection.

Remaining isolates were considered candidates to be specifically defective in the

deaths of the CEM neurons, and those with a suitably high penetrance of CEM survival

were mapped against cluster-linked markers. This mapping necessarily used markers

for only five of the six C. elegans chromosomes, excluding the chromosome on which

was integrated the transgene used in isolating the mutant, as the integrated transgenes

used in these screens were found not to readily recombine with cluster-linked markers

on their respective chromosomes, making the inclusion of such markers in the mapping

impractical. Isolates mapping to LGI and isolates with pkd-2::gfp-expressing neurons in

positions more consistent with those of the URA neurons than the CEM neurons were

tested for their ability to complement cfi-1(ky651) I; loss of cfi-1 function causes the

URA neurons to adopt morphology similar to that of the CEM neurons and to express

the pkd-2::gfp cell fate reporter (SHAHAM and BARGMANN 2002). Candidates were

selected from among the remaining isolates on the basis of their phenotypic strength,

their map positions, and interesting pleiotropies associated with them and were

subjected to additional analysis to identify the genes mutated in these isolates. Isolates

that were not assigned to any identified gene were examined for the morphology of their

B cells in L1 larvae (see below).
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Determination of DNA sequences and DNA manipulation

DNA sequences were determined using an ABI DNA Sequencer model 377, an

ABI Genetic Analyzer 3100, and by Gene Gateway (Hayward, CA). For single-gene

rescue of tra-4(n3715), genomic DNA corresponding to nucleotides 4096 through 12003

of F53B3 was amplified by PCR genomic (Advantage cDNA; BD Biosciences) from

proteinase K-treated N2 animals. This fragment contains the single gene F53B3. 1,

including 2654 bp 5' of the predicted start codon and 1958 bp 3' of the predicted stop

codon.

Isolation of deletion mutations

A library of mutagenized C. elegans was screened for deletions as previously

described (JANSEN et al. 1997). Two deletions were isolated: ceh-31(n4893A), which

removes from 22645 to 27984 of cosmid C33D12 (all references to cosmid C33D12

sequence refer to nucleotides of accession number U64600), and nDf65, which

removes from 21388 of cosmid C33D12 to 1119 of cosmid F52E4 (accession number

U56964). ceh-31(n4893A) removes part of the first exon and the entire second exon of

ceh-31, including the predicted homeobox and BARC domains. nDf65 removes the

complete coding sequences of both ceh-30 and ceh-31 but not any other predicted

genes. We used PCR to confirm that sequences present in the wild type are missing in

ceh-31(n4893A) and nDf65 homozygotes. ceh-31(n4893A) and nDf65 were each

outcrossed at least two times for the X chromosome and four times for the autosomal

genome prior to strain construction and analysis.

119



Determination of C. elegans phenotypes

Animals were examined for gross developmental defects using dissecting and

Nomarski microscopy. Programmed cell death in the anterior pharynx was quantified

using Nomarski microscopy as described (SCHWARTZ 2007); at least ten animals were

examined for each genotype. Survival of Pn.aap cells was quantified using the

lin-11::gfp reporter n/s106 as described (REDDIEN et al. 2001). Corpse number in the

heads of L1 larvae was determined as described (YUAN and HORVITZ 1992). The Vab

defect of abnormal head morphology was scored in mixed-stage young larvae under

500x magnification using a dissecting microscope. The size and morphology of the B

cells of L1 larvae were examined using Nomarski microscopy (SULSTON and HORVITZ

1977). The B cells of males and of masculinized L1 larvae are significantly larger than

those of hermaphrodites and, unlike the B cells of hermaphrodites, contain a single

large nucleolus when seen using Nomarski microscopy. This difference in B cell nuclear

size and morphology corresponds with sexual dimorphism of the B cell fate: the

hermaphrodite B cell does not divide, while the male B cell is a blast cell that, through

seven rounds of cell division, generates 47 cells (SULSTON and HORVITZ 1977). The B

cells of ced-9(gf), ceh-30(gf), cnd-1(lf), and vab-3(If) L1 larvae did not display

morphology abnormal for L1 hermaphrodites (data not shown). Programmed cell death

in the CEM lineage was assessed using a fluorescence-equipped dissecting

microscope (M2BIO; Kramer Scientific, Valley Cottage, NY) to detect pkd-2::gfp

expression in the cell bodies of CEM neurons or by using Nomarski microscopy as

described (SCHWARTZ 2007).

120



Acknowledgments

We Brendan Galvin and Niels Ringstad for comments about the manuscript; Beth

Castor, Shannon McGonagle, and Elissa Murphy for assistance with determination of

DNA sequences and for the identification of candidate deletions; Na An for help with

strains; Brendan Galvin for the unpublished allele egl-1(n4908A); Bill Walthall for

unc-131(jd19); Kiyoji Nishiwaki for vab-3(k121) and vab-3(k143); Yishi Jin for cnd-

1(ju29) and for unpublished information about the cnd-1 defect in head morphology;

Nese Cinar and Andrew Chisholm for identification of the vab-3 mutations in n3721 and

n3723; Alan Coulson for cosmid clones; the Caenorhabditis Genetics Center, which is

funded by the NIH National Center for Research Resources (NCRR), for strains;

Maureen Barr and Paul Sternberg for ppkd-2::gfpl; and the C. elegans Genome

Sequencing Consortium and the Genome Sequencing Center at Washington University

in St. Louis for genomic sequence and for the identification of polymorphisms in

CB4856. This work was supported by the Howard Hughes Medical Institute. H.T.S. was

supported in part by a David H. Koch Graduate Fellowship. H.R.H. is an Investigator of

the Howard Hughes Medical Institute and is David H. Koch Professor of Biology at MIT.

121



References

ABRAHAM, M. C., Y. Lu and S. SHAHAM, 2007 A morphologically conserved nonapoptotic

program promotes linker cell death in Caenorhabditis elegans. Dev Cell 12: 73-

86.

AKERIB, C. C., and B. J. MEYER, 1994 Identification of X chromosome regions in

Caenorhabditis elegans that contain sex-determination signal elements. Genetics

138: 1105-1125.

BARR, M. M., and P. W. STERNBERG, 1999 A polycystic kidney-disease gene homologue

required for male mating behaviour in C. elegans. Nature 401: 386-389.

BIDERE, N., H. C. Su and M. J. LENARDO, 2006 Genetic disorders of programmed cell

death in the immune system. Annu Rev Immunol 24: 321-352.

BLOOM, L., and H. R. HORVITZ, 1997 The Caenorhabditis elegans gene unc-76 and its

human homologs define a new gene family involved in axonal outgrowth and

fasciculation. Proc Natl Acad Sci U S A 94: 3414-3419.

BRENNER, S., 1974 The genetics of Caenorhabditis elegans. Genetics 77: 71-94.

CAMERON, S., S. G. CLARK, J. B. McDERMOTT, E. AAMODT and H. R. HORVITZ, 2002

PAG-3, a Zn-finger transcription factor, determines neuroblast fate in C. elegans.

Development 129: 1763-1774.

CHAE, J. H., G. H. STEIN and J. E. LEE, 2004 NeuroD: the predicted and the surprising.

Mol Cells 18: 271-288.

CHAMBERLIN, H. M., and P. W. STERNBERG, 1995 Mutations in the Caenorhabditis

elegans gene vab-3 reveal distinct roles in fate specification and unequal

cytokinesis in an asymmetric cell division. Dev Biol 170: 679-689.

122



CHASNOV, J. R., W. K. So, C. M. CHAN and K. L. CHOW, 2007 The species, sex, and

stage specificity of a Caenorhabditis sex pheromone. Proc Natl Acad Sci U S A

104: 6730-6735.

CHEN, F., B. M. HERSH, B. CONRADT, Z. ZHOU, D. RIEMER et aL, 2000 Translocation of C.

elegans CED-4 to nuclear membranes during programmed cell death. Science

287: 1485-1489.

CHISHOLM, A. D., and H. R. HORVITZ, 1995 Patterning of the Caenorhabditis elegans

head region by the Pax-6 family member vab-3. Nature 377: 52-55.

CHOI, C. Y., Y. H. KIM, H. J. KWON and Y. KIM, 1999 The homeodomain protein NK-3

recruits Groucho and a histone deacetylase complex to repress transcription. J

Biol Chem 274: 33194-33197.

CHUNG, S., T. L. GUMIENNY, M. O. HENGARTNER and M. DRISCOLL, 2000 A common set

of engulfment genes mediates removal of both apoptotic and necrotic cell

corpses in C. elegans. Nat Cell Biol 2: 931-937.

CINAR, H. N., and A. D. CHISHOLM, 2004 Genetic analysis of the Caenorhabditis elegans

pax-6 locus: roles of paired domain-containing and nonpaired domain-containing

isoforms. Genetics 168: 1307-1322.

CLARK, S. G., X. LU and H. R. HORVITZ, 1994 The Caenorhabditis elegans locus lin-15, a

negative regulator of a tyrosine kinase signaling pathway, encodes two different

proteins. Genetics 137: 987-997.

CONRADT, B., and H. R. HORVITZ, 1998 The C. elegans protein EGL-1 is required for

programmed cell death and interacts with the Bcl-2-like protein CED-9. Cell 93:

519-529.

123



CONRADT, B., and H. R. HORVITZ, 1999 The TRA-1A sex determination protein of C.

elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell

death activator gene. Cell 98: 317-327.

DEL PESO, L., V. M. GONZALEZ, N. INOHARA, R. E. ELLIS and G. NUNEZ, 2000 Disruption

of the CED-9.CED-4 complex by EGL-1 is a critical step for programmed cell

death in Caenorhabditis elegans. J Biol Chem 275: 27205-27211.

DESAI, C., and H. R. HORVITZ, 1989 Caenorhabditis elegans mutants defective in the

functioning of the motor neurons responsible for egg laying. Genetics 121: 703-

721.

ELLIS, R. E., and H. R. HORVITZ, 1991 Two C. elegans genes control the programmed

deaths of specific cells in the pharynx. Development 112: 591-603.

ELLIS, R. E., D. M. JACOBSON and H. R. HORVITZ, 1991 Genes required for the

engulfment of cell corpses during programmed cell death in Caenorhabditis

elegans. Genetics 129: 79-94.

FINN, R. D., J. MISTRY, B. SCHUSTER-BOCKLER, S. GRIFFITHS-JONES, V. HOLLICH et al.,

2006 Pfam: clans, web tools and services. Nucleic Acids Res 34: D247-251.

FINNEY, M., and G. RUVKUN, 1990 The unc-86 gene product couples cell lineage and cell

identity in C. elegans. Cell 63: 895-905.

FINNEY, M., G. RUVKUN and H. R. HORVITZ, 1988 The C. elegans cell lineage and

differentiation gene unc-86 encodes a protein with a homeodomain and extended

similarity to transcription factors. Cell 55: 757-769.

124



GROTE, P., and B. CONRADT, 2006 The PLZF-like Protein TRA-4 Cooperates with the

Gli-like Transcription Factor TRA-1 to Promote Female Development in C.

elegans. Dev Cell 11: 561-573.

HALLAM, S., E. SINGER, D. WARING and Y. JIN, 2000 The C. elegans NeuroD homolog

cnd-1 functions in multiple aspects of motor neuron fate specification.

Development 127: 4239-4252.

HATZOLD, J., and B. CONRADT, 2008 Control of apoptosis by asymmetric cell division.

PLoS Biol 6: e84.

HENGARTNER, M. O., R. E. ELLIS and H. R. HORVITZ, 1992 Caenorhabditis elegans gene

ced-9 protects cells from programmed cell death. Nature 356: 494-499.

HENGARTNER, M. 0., and H. R. HORVITZ, 1994a Activation of C. elegans cell death

protein CED-9 by an amino-acid substitution in a domain conserved in Bcl-2.

Nature 369: 318-320.

HENGARTNER, M. 0., and H. R. HORVITZ, 1994b C. elegans cell survival gene ced-9

encodes a functional homolog of the mammalian proto-oncogene bcl-2. Cell 76:

665-676.

HERMAN, R. K., 1978 Crossover suppressors and balanced recessive lethals in

Caenorhabditis elegans. Genetics 88: 49-65.

HODGKIN, J., 1980 More sex-determination mutants of Caenorhabditis elegans. Genetics

96: 649-664.

HODGKIN, J., 1987 A genetic analysis of the sex-determining gene, tra-1, in the

nematode Caenorhabditis elegans. Genes Dev 1: 731-745.

125



HODGKIN, J., 2002 Exploring the envelope. Systematic alteration in the sex-

determination system of the nematode Caenorhabditis elegans. Genetics 162:

767-780.

HOEPPNER, D. J., M. O. HENGARTNER and R. SCHNABEL, 2001 Engulfment genes

cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature

412: 202-206.

HOEPPNER, D. J., M. S. SPECTOR, T. M. RATLIFF, J. M. KINCHEN, S. GRANAT et al., 2004

eor-1 and eor-2 are required for cell-specific apoptotic death in C. elegans. Dev

Biol 274: 125-138.

HORVITZ, H. R., H. M. ELLIS and P. W. STERNBERG, 1982 Programmed cell death in

nematode development. Neuroscience Commentaries 1: 56-65.

HOWARD, R. M., and M. V. SUNDARAM, 2002 C. elegans EOR-1/PLZF and EOR-2

positively regulate Ras and Wnt signaling and function redundantly with LIN-25

and the SUR-2 Mediator component. Genes Dev 16: 1815-1827.

INABA, T., T. INUKAI, T. YOSHIHARA, H. SEYSCHAB, R. A. ASHMUN et al., 1996 Reversal of

apoptosis by the leukaemia-associated E2A-HLF chimaeric transcription factor.

Nature 382: 541-544.

JAGER, S., H. T. SCHWARTZ, H. R. HORVITZ and B. CONRADT, 2004 The Caenorhabditis

elegans F-box protein SEL-10 promotes female development and may target

FEM-1 and FEM-3 for degradation by the proteasome. Proc Natl Acad Sci U S A

101: 12549-12554.

JANSEN, G., E. HAZENDONK, K. L. THIJSSEN and R. H. PLASTERK, 1997 Reverse genetics

by chemical mutagenesis in Caenorhabditis elegans. Nat Genet 17: 119-121.

126



JIMENEZ, G., C. P. VERRIJZER and D. IsH-HOROWICZ, 1999 A conserved motif in

goosecoid mediates groucho-dependent repression in Drosophila embryos. Mol

Cell Biol 19: 2080-2087.

JOSHI, P., and D. M. EISENMANN, 2004 The Caenorhabditis elegans pvl-5 gene protects

hypodermal cells from ced-3-dependent, ced-4-independent cell death. Genetics

167: 673-685.

KELLY, K. F., and J. M. DANIEL, 2006 POZ for effect - POZ-ZF transcription factors in

cancer and development. Trends Cell Biol 16: 578-587.

KIM, W. Y., B. FRITZSCH, A. SERLS, L. A. BAKEL, E. J. HUANG et al., 2001 NeuroD-null

mice are deaf due to a severe loss of the inner ear sensory neurons during

development. Development 128.

KIMBLE, J., and D. HIRSH, 1979 The postembryonic cell lineages of the hermaphrodite

and male gonads in Caenorhabditis elegans. Dev Biol 70: 396-417.

LEE, J. E., S. M. HOLLENBERG, L. SNIDER, D. L. TURNER, N. LIPNICK et al., 1995a

Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-

helix protein. Science 268: 836-844.

LEE, J. E., S. M. HOLLENBERG, L. SNIDER, D. L. TURNER, N. LIPNICK et al., 1995b

Conversion of Xenopus ectoderm into neurons by NeuroD, a basic helix-loop-

helix protein. Science 268: 836-844.

LETTRE, G., and M. O. HENGARTNER, 2006 Developmental apoptosis in C. elegans: a

complex CEDnario. Nat Rev Mol Cell Biol 7: 97-108.

127



LEWIS, J. A., and J. A. HODGKIN, 1977 Specific neuroanatomical changes in

chemosensory mutants of the nematode Caenorhabditis elegans. J Comp Neurol

172: 489-510.

LI, S., S. M. PRICE, H. CAHILL, D. K. RYUGO, M. M. SHEN et al., 2002 Hearing loss

caused by progressive degeneration of cochlear hair cells in mice deficient for

the Barhl1 homeobox gene. Development 129: 3523-3532.

Liu, H., T. J. STRAUSS, M. B. POTTS and S. CAMERON, 2006 Direct regulation of egl-1

and of programmed cell death by the Hox protein MAB-5 and by CEH-20, a C.

elegans homolog of Pbx1. Development 133: 641-650.

LUM, D. H., P. E. KUWABARA, D. ZARKOWER and A. M. SPENCE, 2000 Direct protein-

protein interaction between the intracellular domain of TRA-2 and the

transcription factor TRA-1A modulates feminizing activity in C. elegans. Genes

Dev 14: 3153-3165.

MAURER, C. W., M. CHIORAZZI and S. SHAHAM, 2007 Timing of the onset of a

developmental cell death is controlled by transcriptional induction of the C.

elegans ced-3 caspase-encoding gene. Development 134: 1357-1368.

MELLO, C. C., J. M. KRAMER, D. STINCHCOMB and V. AMBROS, 1991 Efficient gene

transfer in C.elegans: extrachromosomal maintenance and integration of

transforming sequences. Embo J 10: 3959-3970.

MENEELY, P. M., and K. D. NORDSTROM, 1988 X chromosome duplications affect a

region of the chromosome they do not duplicate in Caenorhabditis elegans.

Genetics 119: 365-375.

128



METZSTEIN, M. M., M. O. HENGARTNER, N. TSUNG, R. E. ELLIS and H. R. HORVITZ, 1996

Transcriptional regulator of programmed cell death encoded by Caenorhabditis

elegans gene ces-2. Nature 382: 545-547.

METZSTEIN, M. M., and H. R. HORVITZ, 1999 The C. elegans cell death specification

gene ces-1 encodes a snail family zinc finger protein. Mol Cell 4: 309-319.

METZSTEIN, M. M., G. M. STANFIELD and H. R. HORVITZ, 1998 Genetics of programmed

cell death in C. elegans: past, present and future. Trends Genet 14: 410-416.

MILLER, D. M., M. M. SHEN, C. E. SHAMU, T. R. BURGLIN, G. RUVKUN et al., 1992 C.

elegans unc-4 gene encodes a homeodomain protein that determines the pattern

of synaptic input to specific motor neurons. Nature 355: 841-845.

NAYA, F. J., H. P. HUANG, Y. QIU, H. MUTOH, F. J. DEMAYO et al., 1997 Diabetes,

defective pancreatic morphogenesis, and abnormal enteroendocrine

differentiation in BETA2/neuroD-deficient mice. Genes Dev 11: 2323-2334.

NISHIWAKI, K., 1999 Mutations affecting symmetrical migration of distal tip cells in

Caenorhabditis elegans. Genetics 152: 985-997.

OsuMI, N., H. SHINOHARA, K. NUMAYAMA-TSURUTA and M. MAEKAWA, 2008 Pax6

Transcription Factor Contributes to Both Embryonic and Adult Neurogenesis as a

Multifunctional Regulator. Stem Cells.

PEDEN, E., E. KIMBERLY, K. GENGYO-ANDO, S. MITANI and D. XUE, 2007 Control of sex-

specific apoptosis in C. elegans by the BarH homeodomain protein CEH-30 and

the transcriptional repressor UNC-37/Groucho. Genes Dev 21: 3195-3207.

129



PILGRIM, D., A. MCGREGOR, P. JACKLE, T. JOHNSON and D. HANSEN, 1995 The C.

elegans sex-determining gene fem-2 encodes a putative protein phosphatase.

Mol Biol Cell 6: 1159-1171.

PRASAD, B. C., B. YE, R. ZACKHARY, K. SCHRADER, G. SEYDOUX et al., 1998 unc-3, a

gene required for axonal guidance in Caenorhabditis elegans, encodes a

member of the O/E family of transcription factors. Development 125: 1561-1568.

RATHMELL, J. C., and C. B. THOMPSON, 2002 Pathways of apoptosis in lymphocyte

development, homeostasis, and disease. Cell 109 Suppl: S97-107.

REDDIEN, P. W., 2002 Phagocytosis promotes programmed cell death and is controlled

by Rac signaling pathway in C. elegans. Ph. D. Thesis, Massachusetts Institute

of Technology, Cambridge, MA.

REDDIEN, P. W., E. C. ANDERSEN, M. C. HUANG and H. R. HORVITZ, 2007 DPL-1 DP, LIN-

35 Rb and EFL-1 E2F act with the MCD-1 zinc-finger protein to promote

programmed cell death in Caenorhabditis elegans. Genetics 175: 1719-1733.

REDDIEN, P. W., S. CAMERON and H. R. HORVITZ, 2001 Phagocytosis promotes

programmed cell death in C. elegans. Nature 412: 198-202.

REINER, D. J., D. WEINSHENKER and J. H. THOMAS, 1995 Analysis of dominant mutations

affecting muscle excitation in Caenorhabditis elegans. Genetics 141: 961-976.

RIDDLE, D. L., T. BLUMENTHAL, B. J. MEYER and J. R. PRIESS, 1997 C. elegans II (Cold

Spring Harbor Laboratory Press, Cold Spring Harbor, New York).

ROBERTSON, A. M. G., and J. N. THOMPSON, 1982 Ultrastructural study of cell death in

Caenorhabditis elegans. J Embryol Exp Morphol 67: 89-100.

130



ROSENBLUTH, R. E., C. CUDDEFORD and D. L. BAILLIE, 1985 Mutagenesis in

Caenorhabditis elegans. II. A spectrum of mutational events induced with 1500 r

of gamma-radiation. Genetics 109: 493-511.

SANDER, M., A. NEUBUSER, J. KALAMARAS, H. C. EE, G. R. MARTIN et al., 1997 Genetic

analysis reveals that PAX6 is required for normal transcription of pancreatic

hormone genes and islet development. Genes Dev 11: 1662-1673.

SCHUMACHER, B., C. SCHERTEL, N. WITTENBURG, S. TUCK, S. MITANI et al., 2005 C.

elegans ced-13 can promote apoptosis and is induced in response to DNA

damage. Cell Death Differ 12: 153-161.

SCHWARTZ, H. T., 2007 A protocol describing pharynx counts and a review of other

assays of apoptotic cell death in the nematode worm Caenorhabditis elegans.

Nature Protocols 2: 705-714.

SCHWARTZ, H. T., and H. R. HORVITZ, 2007 The C. elegans protein CEH-30 protects

male-specific neurons from apoptosis independently of the Bcl-2 homolog CED-

9. Genes Dev 21: 3181-3194.

SHAHAM, S., and C. I. BARGMANN, 2002 Control of neuronal subtype identity by the C.

elegans ARID protein CFI-1. Genes Dev 16: 972-983.

SHAHAM, S., and H. R. HORVITZ, 1996 Developing Caenorhabditis elegans neurons may

contain both cell-death protective and killer activities. Genes Dev 10: 578-591.

SHAHAM, S., P. W. REDDIEN, B. DAVIES and H. R. HORVITZ, 1999 Mutational analysis of

the Caenorhabditis elegans cell-death gene ced-3. Genetics 153: 1655-1671.

131



SIEGFRIED, K. R., A. R. KIDD, 3RD, M. A. CHESNEY and J. KIMBLE, 2004 The sys-1 and

sys-3 genes cooperate with Wnt signaling to establish the proximal-distal axis of

the Caenorhabditis elegans gonad. Genetics 166: 171-186.

SIMPSON, T. I., and D. J. PRICE, 2002 Pax6; a pleiotropic player in development.

Bioessays 24: 1041-1051.

STANFIELD, G. M., and H. R. HORVITZ, 2000 The ced-8 gene controls the timing of

programmed cell deaths in C. elegans. Mol Cell 5: 423-433.

SULSTON, J. E., and H. R. HORVITZ, 1977 Post-embryonic cell lineages of the nematode,

Caenorhabditis elegans. Dev Biol 56: 110-156.

SULSTON, J. E., E. SCHIERENBERG, J. G. WHITE and J. N. THOMSON, 1983 The embryonic

cell lineage of the nematode Caenorhabditis elegans. Dev Biol 100: 64-119.

THELLMANN, M., J. HATZOLD and B. CONRADT, 2003 The Snail-like CES-1 protein of C.

elegans can block the expression of the BH3-only cell-death activator gene egl-1

by antagonizing the function of bHLH proteins. Development 130: 4057-4071.

TREININ, M., and M. CHALFIE, 1995 A mutated acetylcholine receptor subunit causes

neuronal degeneration in C. elegans. Neuron 14: 871-877.

TRENT, C., N. TSUING and H. R. HORVITZ, 1983 Egg-laying defective mutants of the

nematode Caenorhabditis elegans. Genetics 104: 619-647.

WANG, X., and H. M. CHAMBERLIN, 2002 Multiple regulatory changes contribute to the

evolution of the Caenorhabditis lin-48 ovo gene. Genes Dev 16: 2345-2349.

WEAVER, B. A., and D. W. CLEVELAND, 2005 Decoding the links between mitosis,

cancer, and chemotherapy: The mitotic checkpoint, adaptation, and cell death.

Cancer Cell 8: 7-12.

132



WICKS, S. R., R. T. YEH, W. R. GISH, R. H. WATERSTON and R. H. PLASTERK, 2001 Rapid

gene mapping in Caenorhabditis elegans using a high density polymorphism

map. Nat Genet 28: 160-164.

Wu, W. S., S. HEINRICHS, D. Xu, S. P. GARRISON, G. P. ZAMBETTI et al., 2005 Slug

antagonizes p53-mediated apoptosis of hematopoietic progenitors by repressing

puma. Cell 123: 641-653.

YAN, N., L. Gu, D. KOKEL, J. CHAI, W. LI et al., 2004 Structural, Biochemical, and

Functional Analyses of CED-9 Recognition by the Proapoptotic Proteins EGL-1

and CED-4. Mol Cell 15: 999-1006.

YANG, X., H. Y. CHANG and D. BALTIMORE, 1998 Essential role of CED-4 oligomerization

in CED-3 activation and apoptosis. Science 281: 1355-1357.

YEO, W., and J. GAUTIER, 2004 Early neural cell death: dying to become neurons. Dev

Biol 274: 233-244.

YUAN, J., and H. R. HORVITZ, 1992 The Caenorhabditis elegans cell death gene ced-4

encodes a novel protein and is expressed during the period of extensive

programmed cell death. Development 116: 309-320.

YUAN, J., S. SHAHAM, S. LEDOUX, H. M. ELLIS and H. R. HORVITZ, 1993 The C. elegans

cell death gene ced-3 encodes a protein similar to mammalian interleukin-1 beta-

converting enzyme. Cell 75: 641-652.

ZALLEN, J. A., S. A. KIRCH and C. I. BARGMANN, 1999 Genes required for axon

pathfinding and extension in the C. elegans nerve ring. Development 126: 3679-

3692.

133



ZELENT, A., F. GUIDEZ, A. MELNICK, S. WAXMAN and J. D. LICHT, 2001 Translocations of

the RARalpha gene in acute promyelocytic leukemia. Oncogene 20: 7186-7203.

ZHANG, Y., and S. W. EMMONS, 1995 Specification of sense-organ identity by a

Caenorhabditis elegans Pax-6 homologue. Nature 377: 55-59.

ZHAO, C., and S. W. EMMONS, 1995 A transcription factor controlling development of

peripheral sense organs in C. elegans. Nature 373: 74-78.

Zou, H., W. J. HENZEL, X. LIU, A. LUTSCHG and X. WANG, 1997 Apaf-1, a human protein

homologous to C. elegans CED-4, participates in cytochrome c-dependent

activation of caspase-3. Cell 90: 405-413.

134



Table 1. Screen isolates with surviving pkd-2::gfp-expressing CEM neurons in the
hermaphrodite

Class Gene(s) Isolates Alleles
n3452a, n3453a, n3454a, n3458 , n3534a, n354 6b, n35 47b
n 3 5 4 8 b, n3 5 4 9 b, n 3 5 70b , n35 71b, n 3 5 74

b, n3575C, n3576c,

Cell death ced-3 32 n3577, n3578c, n3579a, n3580a, n3 6 12
b, n3614c, n3615c,

n3616c, n3618a, n3619a, n3695c, n3820a, n3821c, n4 079b,

n4699c, n4706c, n4707c, n4727c
n3455a, n3456a, n3457a, n3459c , n3460c, n3532c, n3533a,

Cell death ced-4 16 n3550b, n3551c, n3 5 72b, n35 73 b, n3 613 b, n3617, n3620a,
n 3 6 21 b, n4080a

Cell death ced-9 4 n4081a, n4698c, n4 700b, n4713b
CEM fate cnd-1 3 n3786a, n3787 , n4744b
CEM fate vab-3 2 n3721a, n3723a

OEM-specific ceh-30 3 n3713 c, n3714c, n3720a
survival

Sex sel-10 1 n3717 c
determination

SexSex tra-4 4 n3715 c, n3716 c, n4 724b, n4726bdetermination
n3 8 19 ac , n4084a' e, n4085 //a'e , n4657, e, n4658b'e, n 4 6 5 9 b'e,
n46 6 0b

'e, n4 6 61be, n4 6 62 b,e, n4 6 6 3 b,e, n4 6 6 4 b,e, n4665b,e,
n4 6 67b,e, n4 6 6 8 b,e, n4 6 69b,e, n4680a,e , n4681a,e, n4682ae,
n4683a,e, n4684a,e, n4686a,e, n4687a,e , n4688a,e, n4 6 8 9b,e

Sex n4690be, n 4 6 91b,e, n4692ce, n4693ce, n4694ce, n4695ce'
N.D. 62 n4701a'e, n4702 /F e, n4703b,e, n4704a,d, n4708c' e, n4709ce,

determination n47 10c,d, n4714c0 e, n4715c,e, n4717e, n4718a,e , n4719c,e,

n4720c,e, n4721ce, n4722 a d , n4 7 2 3 cd, n4728c e, n 4 73 0a,d,

n4 7 31c d, n4 732c d, n4733a,e , n4 7 3 4 b,e, n4735ce, n4736c,e,

n4 7 3 7a ,d, n 4 73 8 a,d, n4 73 9 b,e, n4 742cd, n4745c,e, n4746a,e,

n 4 75 5 b,e , n4 75 8 a,d

n3788b, n3793 fc, n4082a, n4083b, n4679 V , n4685c,
Undetermined N.D. 17 n4697b, n4711c, n4 712b, n4740a, n4 741 b, n4 74 8b, n4749a,

n4750c, n4752a, n4 75 6b, n47578

Isolated in a
Isolated in a

C Isolated in a

MT10729
MT10739
MT10742

nls128
nls130

II background.
IV background.

nls133 I background.
LIely interleX uone oi more oLr e following aaditUonal pnenotypes ouservea in mne
mutant strain: pkd-2::gfp-expressing neurons in the tail, Pvl, Egl, Dpy)

e Mutation apparently dominantly causes CEM survival in hermaphrodites and
recessively causes essentially complete masculinization.

A complete list of mutations causing apparent survival of the CEM neurons in

hermaphrodites isolated in our screens. Mutations are organized by class: mutations

affecting all programmed cell deaths, mutations affecting multiple aspects of the CEM
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identity, mutations specifically affecting the CEM survival decision, mutations affecting

multiple aspects of sex determination, and mutations whose defects have not been

determined. Mutations are assigned to specific genes where possible. N.D., not

determined. The mutations that were molecularly identified are detailed in Table 2. The

17 mutations in the 'undetermined' class are described in more detail in Table 3.
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Table 2. Molecularly identified mutations from the pkd-2::gfp screen for CEM survival

DNA Sequence Substitution
Gene Allele Position Wild-type Mutant or aberration
ced-3 n4699 6825 AGgtactt AGatactt Exon 7 splice donor
ced-3 n4727 7007 GCT GTT A423V

n408lgf
ced-9 n4698gf 12134 GGT GAT G173D

n4713gf
ced-9 n4700gf 11590 GGA AGA G169R
sel-10 n3717 12613 GGA GAA G567E
tra-4 n3715 7380 CAT TAT H345Y
tra-4 n3716 7290 CAC TAC H375Y
tra-4 n4724 6750 TGT TAT C418Y
tra-4 n4726 7283 TGT TAT C377Y

n3713gf disrupts TRA-1
ceh-30 n3714gf 22027 gggtggtc gagtggtc binding site

n3720gf binding site
cnd-1 n3786 15172 CGA TGA R200pal
cnd-1 n3787 14667 CAA TAA Q76ochre
cnd-1 n4744 15106 CTC TTC L42F
vab-3 n3721 15993 AGCgtgagt AGCgtgaat Exon 5 splice donor
vab-3 n3723 14340 CGGgtaagt CGGataagt Exon 3 splice donor

Position refers to nucleotides in the DNA sequence of the cosmid on which the gene

resides (in order of gene appearance, with accession numbers: C48D1 Z81049,

T07C4 Z29443, F55B12 Z79757, C33D12 U64600, C34E10 U10402, and

F14F3 Z49937). Sequences from the coding strands from wild-type and mutant animals

are shown, with the affected nucleotide underlined; for missense and stop mutations,

the wild-type and mutant sequences of the relevant codon are shown. Coding

nucleotides are shown in uppercase, and noncoding nucleotides are shown in

lowercase.
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Table 3. Phenotypes associated with unidentified mutations affecting CEM survival.

Extra cells in
Isolate anterior pharynx (n)

0.1 ± 0.3 (30)
(12)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(10)
(12)
(10)

Large B cells
No (0/14)

Yes
Yes

No
No

Yes
Yes
Yes

No
Yes

No
Yes
Yes
Yes

No
Yes
Yes

(11/20)
(13/15)
(0/15)
(0/15)
(7/15)
(12/15)
(7/15)
(0/15)
(8/15)
(0/15)
(11/15)
(11/15)
(13/15)
(0/15)
(10/15)
(10/15)

In this and other tables, CEM survival was score

CEM survival in hermaphrodites (%)
None DORV DANDV n

n3788
n3793 I
n4082
n4083
n4679 V
n4685
n4697
n4711
n4712
n4740
n4741
n4748
n4749
n4750
n4752
n4756
n4757

described in Materials and Methods. When CEM survival was scored using a dissecting

microscope, the left and right ventral CEMs could not readily be distinguished from each

other and the left and right dorsal CEMs could not readily be distinguished from each

other; CEM survival was therefore assessed for ventral CEMs and for dorsal CEMs. The

resulting numbers were found to be reproducible and sensitive to changes in the degree

of CEM death or survival. In this and in other tables, D OR V denotes animals in which

dorsal or ventral CEMs, but not both, were observed and indicates animals displaying

only weak CEM survival; D AND V denotes animals in which both dorsal and ventral

CEMs were observed and indicates animals showing strong CEM survival. All strains

were homozygous for the pkd-2::gfp reporter transgene used in their isolation (for a list,

see Table 1). The strain containing n3793 was outcrossed twice and was homozygous
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56 42 2 60
17 44 38 63
54 46 0 67
53 46 1 68
75 24 1 80
88 10 1 67
85 14 1 85
85 13 2 85
72 25 3 68
75 24 1 67
78 22 0 60
78 21 2 63
69 30 1 70
72 22 5 59
88 12 0 60
87 13 0 90
55 42 3 64

d using a pkd-2::gfp reporter as



for Ion-2(e678). The other strains were not outcrossed. Number of extra cells in the

anterior pharynx, B cell morphology, and CEM survival were assessed as described in

Materials and Methods.
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Table 4. ced-3 alleles affect cell death to corresponding degrees in different tissues

ced-3 Extra cells in anterior Suppression of CEM survival in herm. (%)
allele pharynx ± SD (n) egl-1(nlO84gf) none D OR V D AND

V
wild-type 0.0 + 0.0 (10) 0% (n=68) 98 1 0

n2438 0.8 ± 0.8 (16) 22% (n=60) 62 38 0
n4707 4.4 + 0.7 (15) 53% (n=100) 34 50 16
n2436 6.1 + 1.9 (15) 100% (n=82) 14 58 28
n2877 7.0 + 1.5 (10) 100% (n=73) 0 22 78
n2921 7.9 + 2.3 (10) 100% (n=72) 0 42 58
n717 12.0 + 1.1 (20) 100% (n=60) 0 0 100

Numbers of extra cells in the anterior pharynx for n2877 and for n2921 are taken from

SHAHAM et al. (1999). Suppression of egl-1(n1084) was determined as percent non-EgI

at 24 hours post-L4. CEM neuron survival in hermaphrodites was scored as described

in animals homozygous for the pkd-2::gfp reporter nls133 using at least 50 animals per

genotype. Herm., hermaphrodites.
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Table 5. The noncoding mutation egl-1(n4908A) specifically controls the survival of the
CEM neurons.

A. egl-1(n4908A) does not affect the number of programmed cell deaths in the anterior
pharynx

Genotype Extra cells in anterior pharynx ± SD
wild-type 0.0 + 0.0
egl-1(n4908A) 0.1 + 0.0
ced-3(n2427) 1.6 ± 1.4
ced-3(n2427); egl-1(n4908A) 1.2 + 0.9

B. egl-1(n4908A) prevents the deaths of the CEM neurons in hermaphrodites and
protects male CEMs lacking the protective function of ceh-30.

Animals with CEM survival (%)
Genotype Sex None DORV DANDV n

wild-type Herm. 100 0 0 60
egl-1(n1084 n3082) Herm. 0 7 93 60
egl-1(n4908A) Herm. 0 17 83 77
wild-type Male 0 0 100 60
ceh-30(n4289A) Male 79 21 0 48
egl-1(n1084 n3082); ceh-30(n4289A) Male 0 0 100 63
egl-1(n4908A); ceh-30(n4289A) Male 0 0 100 60

C. Control of CEM survival by egl-1(n4908A) requires the function of ced-9 Bcl-2.
Genotype in the presence of Animals with CEM survival (%)

nls133; ced-9(n2812); ced-3(n2427) Sex None D OR V D AND V n
wild-type Herm. 75 25 0 60
egl-1(n4908A) Herm. 70 30 0 63
wild-type Male 0 18 82 60
egl- 1(n4908A) Male 0 23 77 48
ceh-30(n4289A) Male 25 60 15 60
egl-1(n4908A); ceh-30(n4289A) Male 18 78 3 61

A. Number of extra cells in the anterior pharynx was determined as described in

Materials and Methods. Error, standard deviation. Ten animals of each genotype were

examined. Genotypes were as listed. If egl-1(n4908A) interfered with programmed cell

death in all cells, it would be expected to cause the presence of extra cells in the

anterior pharynx, especially in a genetic background sensitized by the weak cell-killing

mutant ced-3(n2427).
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B. Animals were homozygous for the pkd-2::gfp reporter nls133. Animals mutant for

egl-1 were homozygous for him-8(e 1489). Other animals were homozygous for

him-5(e1467). Genotypes were otherwise as listed. Herm., hermaphrodite.

C. Animals were homozygous for the pkd-2::gfp reporter nls133. Animals containing

egl-1(n4908A) were homozygous for him-8(e 1489). Other animals were homozygous for

him-5(e1467). Genotypes were otherwise as listed. Herm., hermaphrodite.
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Table 6. New ced-9 gain-of-function mutations block programmed cell death in multiple
tissue types.

extra cells
ced-9 in anterior Extra surviving CEM survival in herm. (%)

genotype pharynx Pn.aap cells (n) none D OR V D AND n
V

wild-type 0.0 + 0.0 0.0 ± 0.0 (40) 99 1 0 70
n4700gfl+ 4.3 + 1.3 4.9 + 0.3 (40) 30 69 1 71
n4700gf 10.2 + 0.9 4.9 + 0.4 (40) 6 87 7 85
n4713gfl+ 6.6 ± 1.3 4.8 ± 0.4 (54) 18 82 0 65
n4713gf 11.0 + 1.4 4.9 + 0.3 (40) 0 68 32 77

Assays were performed as described in Materials and Methods. The new ced-9(gf)

alleles n4698 and n4081 are not included in the table as each causes a mutation

identical to that caused by ced-9(n4713gf). Ten animals of each genotype were scored

for the number of extra cells in the anterior pharynx. Animals heterozygous for ced-9(gf)

were also heterozygous for dpy-11(e224) unc-76(e911) (anterior pharynx assay), for

unc-76(e911) (Pn.aap assay), or for unc-49(e382) (CEM assay). Animals scored for

Pn.aap survival were homozygous for the lin-11::gfp reporter nls106. Animals scored for

CEM neuron survival were homozygous for the pkd-2::gfp reporter nls130. Genotypes

were otherwise as indicated. Error, standard deviation. Herm., hermaphrodites.
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Table 7. Testing known contributors to cell killing for a role in CEM neuron death

ced-3
genotype
wild-type

ced-3(n2427)
ced-3(n2427)
ced-3(n2427)
ced-3(n2427)
ced-3(n2427)
ced-3(n2427)

ced-3 enhancer
mutation

none
none

ced-9(n2812)
dpl-1(n3380)
mcd- I(n4005)
ced-8(n1891)
ced-7(n 1892)

CEM
none
100
62
64
67
67
27
13

survival in hermaphrodites
D OR V D AND V

0
38
35
33
33
73
83

Animals were homozygous for the pkd-2::gfp reporter nls133. Genotypes were

otherwise as indicated.
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n

100
128
136
117
126
109
112



Table 8. The EGL-1 homolog CED-13 does not contribute to the deaths of the CEM
neurons.

CEM survival in males (%)
Genotype None DORV DANDV n

wild-type 0 0 100 50
ceh-30(n4289A) 80 20 0 99

ceh-30(n4289A) ced-13(tm536A) 86 14 0 78
egl-l(n1084 n30821+); ceh-30(n4289A) 53 36 10 58
egl-1(n1084 n30821+); ceh-30(n4289A) ced-13(tm536A) 54 37 10 114
egl-1(n 1084 n3082); ceh-30(n4289A) 0 0 100 52
egl-l(n1084 n3082); ceh-30(n4289A) ced-13(tm536A) 0 0 100 51

All animals were homozygous for the pkd-2::gfp reporter nls133. Animals wild-type for

egl-1 were homozygous for him-5(e1467). Animals heterozygous for

egl-1(n1084 n3082) were heterozygous for both him-5(e1467) and him-8(e1489).

Animals homozygous for egl-l(n1084 n3082) were homozygous for him-8(e 1489).

Genotypes were otherwise as indicated.
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Table 9. sel-lO acts within the sex determination pathway to promote CEM survival.

CEM survival in hermaphrodites (%)
Genotype None D ORV D AND V n

wild-type 99 1 0 152
sel-10(n3717) 0 2 98 122
her- (hvl y101) 99 1 0 174
her-1(hvl y101) sel-10(n3717) 2 8 90 136
fem-1(e 1965) 100 0 0 110
fem-1(e1965); sel-10(n3717) 98 2 0 165
fem-2(e2105) 99 1 0 142
fem-2(e2105); sel-10(n3717) 99 1 0 133
fem-3(e1996) 99 1 0 131
fem-3(e1996); sel-10(n3717) 92 8 0 131

All animals were homozygous for the pkd-2::gfp reporter nls133. Genotypes were

otherwise as indicated. The fem-1(e1965) and fem-3(e 1996) homozygotes scored were

the progeny of crosses between femlnT1 [qls51] males and fem homozygous females;

thus, half were XX females, and half were XO females. fem-2(e2105) homozygotes

scored were the self-progeny of maternally-rescued fem-2(e2105) mothers.
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Table 10. tra-4 acts within the sex determination pathway to control CEM neuron
survival.

A. tra-4 acts recessively to prevent CEM neuron

Genotype
wild-type
tra-4(n37151+)
tra-4(n37161+)
tra-4(n37151+)
tra-4(n37161+)
tra-4(n3715)
tra-4(n3716)
tra-4(n4724)
tra-4(n4 726)
tra-4(n37151n3716)
tra-4(n47241n3716)
tra-4(n4 726/n3 716)

Maternal genotype
wild-type
wild-type
wild-type

tra-4(n3715)
tra-4(n3716)
tra-4(n3715)
tra-4(n3716)
tra-4(n4724)
tra-4(n4726)
tra-4(n3716)
tra-4(n3716)
tra-4(n3716)

survival. in hermaphrodites.
CEM survival in hermaphrodites (%)
None

99
99
98
48
71

0
0
0
0
0
0
0

DORV
1
1
2

44
27
22
22
11
23
20
19
20

D AND V
0
0
0
8
2

78
78
89
77
80
81
80

n
77
74
88
79
45
65
74
71
79

106
59
71

B. tra-4 acts within the sex

Genotype
her-I(hvl y101); tra-4(n37'
her-1(hvl y101); tra-4(n37
fem-1(e1965); tra-4(n3715)
fem-1(e1965); tra-4(n3716)
fem-2(e2105); tra-4(n3715)
fem-2(e2105); tra-4(n3716)
fem-3(e1996); tra-4(n3715)
fem-3(e1996); tra-4(n3716)

determination pathway to control CEM neuron survival.
CEM survival in hermaphrodites (%)

None DORV DANDV n
15) 1 28 71 68
16) 0 41 59 69

95 5 0 38
100 0 0 111
98 2 0 81
97 3 0 79

100 0 0 69
100 0 0 107

A. Animals contained the pkd-2::gfp reporters nls130 or nls133. Heterozygous animals

were also heterozygous for unc-76(e911). Genotypes were otherwise as indicated.

B. Animals were homozygous for the pkd-2::gfp reporter nls133. Genotypes were

otherwise as indicated. The fem-1(e1965) and fem-3(e1996) homozygotes scored were

the progeny of crosses between femlnT1 [qls51] males and fem homozygous females;

thus, half were XX females, and half were XO females. fem-2(e2105) homozygotes

scored were the progeny of maternally-rescued fem-2(e2105) homozygotes.
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Table 11. ceh-30 and ceh-31 act synthetically in CEM fate determination.

A. ceh-30 ceh-31 double mutants are defective in CEM differentiation in hermaphrodites
CEM survival in hermaphrodites (%)

Genotype None DORV DANDV n
wild-type 100 0 0 60
ceh-30(n3714gf) 3 29 68 63
ceh-30(n4111 n37141f) 97 3 0 116
ceh-30(n4289A) 100 0 0 60
ceh-31(n4893A) 100 0 0 65
nDf65 100 0 0 60
ced-3(n717) 0 12 88 60
ced-3(n717); ceh-30(n4111 n37141f) 0 10 90 60
ced-3(n717); ceh-30(n4289A) 0 5 95 60
ced-3(n717); ceh-31(n4893A) 0 18 82 63
ced-3(n717); nDf65 2 81 17 63
ced-3(n717); nDf65; Ex[ceh-30(+)] 2 18 80 60

B. ceh-30 ceh-31 double mutants are weakly defective in CEM differentiation in males
CEM survival in males (%)

Genotype None D OR V D AND V n
wild-type 0 0 100 60
ceh-30(n3714gf) 0 0 100 61
ceh-30(n4111 n37141f) 44 33 23 66
ceh-30(n4289A) 83 14 3 71
ceh-31(n4893A) 0 0 100 52
nDf65 92 8 0 49
ced-3(n717) 0 0 100 60
ced-3(n717); ceh-30(n4111 n37141f) 0 0 100 60
ced-3(n 717); ceh-30(n4289A) 0 0 100 60
ced-3(n717); ceh-31(n4893A) 0 0 100 60
ced-3(n717); nDf65 0 10 90 60

A. The deficiency nDf65 removes ceh-30 and ceh-31. All animals were homozygous for

nls133 and for him-5(e1467). Animals containing the ceh-30(+) transgene nEx1165

were also homozygous for unc-76(e9 11), complemented by the transgene. Genotypes

were otherwise as indicated. Similar data obtained with the cell-death-defective mutants

egl-1(n1084 n3082) and ced-4(n1162) are presented in Table S1.

B. The deficiency nDf65 removes ceh-30 and ceh-31. All animals were homozygous for

nls133 and for him-5(e1467). Genotypes were otherwise as indicated. Similar data
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obtained with the cell-death-defective mutants egl-1(n 1084 n3082) and ced-4(n1162)

are presented in Table S1.
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Table 12. vab-3 Pax6 and cnd-1 NeuroD promote CEM differentiation and CEM death.

A. cnd-1 NeuroD and vab-3 Pax6 mutati

Genotype
wild-type
cnd-1(n3786)
cnd- (n3787)
cnd-1 (n4 744)
cnd-1(jd19)
cnd-1(u29)
vab-3(n3721)
vab-3(n3723)
vab-3(e648)
cnd-1(n3786); vab-3(n3721)
cnd- (n3786); vab-3(n3723)
cnd- (n3787); vab-3(n3721)
cnd- (n3787); vab-3(n3723)
cnd-1(n3786); ced-3(n717)
cnd-1(n3787); ced-3(n717)
ced-3(n717); vab-3(n3721)
ced-3(n717); vab-3(n3723)

ons cause CEM survival in hermaphrodites.
CEM survival in hermaphrodites (%)

None DORV DANDV n
100 0 0 60
57 41 1 75
56 44 0 77
56 44 0 72
54 44 1 68
61 39 0 72
58 42 0 72
36 64 0 80
53 45 2 64
54 45 1 76
48 48 4 75
60
52

0
0
0
0

40
45
31
35
22
34

0
3

69
65
78
66

90
75
55
74
72
70

B. cnd-1 NeuroD and vab-3 Pax6 males fail

Genotype

to properly
CEM!

None D
wild-type
ced-3(n717)
cnd-1(n3 786)
cnd-l(n3786); ced-3(n717)
cnd-1(n3787)
cnd-1(n3787); ced-3(n717)
cnd-l (id9)
vab-3(n3721)
ced-3(n717); vab-3(n3721)
vab-3(n3723)
ced-3(n717); vab-3(n3723)
vab-3(e648)

0

generate CEM neurons.
presence in males (%)
OR V D AND V

0 100
100

4 96
19 81
20 80

72
75
68
68
62
94 1

27

n
60
60
60
57
84
74
60
03
48
68
46
66

A. All animals were homozygous for the pkd-2::gfp reporter nls128, nls130, or n/ls33.

Animals homozygous for cnd-1(jd19) were also homozygous for Ion-1(e43). Some

animals contained him-5(e1467) or him-8(e1489). Genotypes were otherwise as

indicated.
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B. All animals were homozygous for the pkd-2::gfp reporter nls128 or nls133. Some

animals contained him-5(e1467) or him-8(e 489). Genotypes were otherwise as

indicated.
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Table 13. Loss-of-function

morphology defect caused

mutations in cnd-1 NeuroD strongly enhance the head

by weak mutations in vab-3 Pax6

cnd- 1(+)
cnd-1(n3786)
cnd-1(n3787)
cnd-1 (jd9)

vab-3(+)
0% (300)
1% (142)
3% (115)
7% (173)

vab-3(n3721)
1%(125)

23% (120)
17% (119)
16% (154)

vab-3(n3723)
6% (264)

53% (135)
54% (139)
49% (124)

Percentages indicate penetrance of abnormal morphology of the heads of larvae

examined at 500x magnification using a dissecting microscope. The number of larvae

examined for each genotype is indicated in parentheses. All animals were homozygous

for the pkd-2::gfp reporter n1s128. cnd-1(jd19) animals were homozygous for Ion-1(e43).

Genotypes were otherwise as indicated by the labels on the rows and columns.
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Table 14. vab-3 Pax6 and cnd-1 NeuroD function in parallel to ceh-30 and to ced-9.

A. cnd-1 NeuroD and vab-3 Pax6 act downstream of or in parallel to sex determination
to promote CEM death.

. . ... ... . /0)

Genotype
cnd-1(n3786)
fem-2(e2105) cnd-1(n3786)
vab-3(n3721)
fem-2(e2105); vab-3(n3721)
vab-3(n3723)
fem-2(e2105); vab-3(n3723)

CEM
None

59
54
43
55
48
47

survival in hermaphrodites
D ORV D AND V

36 4
46 0
54 3
44
52
53

B. cnd-1 NeuroD and vab-3 Pax6 act downstream of or in parallel to ced-9 to promote
CEM death.

Genotype
wild type
ced-3(n2923)
ced-9(n2812); ced-3(n2923)
cnd-1(n3786) ced-9(n2812); ced-3(n2923)
ced-9(n2812); ced-3(n2923); vab-3(n3723)

CEM survival in hermaphrodites (%)
None DORV DANDV n

99 1 0 100
98 2 0 159
98 2 0 200
86 13 1 300
83 17 0 214

C. cnd-1 NeuroD and vab-3 Pax6 acts downstream of or in parallel to ceh-30 to promote
CEM death.

Genotype
wild-type
cnd-1(n3786)
cnd-1(n3786); ceh-30(n4111 n3714)
cnd- (n3786); ceh-30(n4289A)
cnd-1(jdl9)
cnd-1(d19); ceh-30(n4111 n3714)
cnd- 1idI9); ceh-30(n4289A)
vab-3(n3723)
ceh-30(n4111 n3714) vab-3(n3723)
nDf65 vab-3(n3723)
vab-3(e648)
ceh-30(n4111 n3714) vab-3(e648)
ceh-30(n4289A) vab-3(e648)

CEM survival in hermaphrodites (%)
None DORV DANDV n

99 1 0 100
61 38 1 181
88 12 0 68
98 2 0 80
52 48 1 164
92 8 0 170
87 13 0 78
34 58 8 95
52 44 4 77
54 45 1 102
43 53 4 171
54 41 6 69
50 47 3 248

A. All animals were homozygous for the pkd-2::gfp reporter nls128. fem-2(e2105)

animals were the self-progeny of maternally rescued fem-2(e2105) homozygotes.

Genotypes were otherwise as indicated.
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B. All animals were homozygous for the pkd-2::gfp reporter nls133. Genotypes were

otherwise as indicated.

C. All animals were homozygous for the pkd-2::gfp reporter nls133. cnd-1(jd17) animals

were homozygous for Ion-1(e43). All cnd-1 mutant animals were homozygous for

him-5(e1467). All animals homozygous for ceh-30(n4111 n3714) were homozygous for

Ion-2(e678). Genotypes were otherwise as indicated.
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Table SI. ceh-30 and ceh-31 act synthetically in CEM fate determination.

A. ceh-30 ceh-31 double mutants are defective in CEM differentiation in
hermaphrodites.

CEM survival in hermaphrodites (%)
Genotype None D OR V D AND V n

egl- 1(n 1084 n3082) 0 7 93 60
egl-1(n1084 n3082); ceh-30(n4111 n37141f) 0 22 78 67
egl-1(n1084 n3082); ceh-30(n4289A) 0 14 86 66
egl-1(n1084 n3082); ceh-31(n4893A) 0 27 73 67
egl-1(n1084 n3082); nDf65 2 87 11 63
ced-4(n 1162) 0 6 94 63
ced-4(n1162); ceh-30(n4111 n37141f) 0 16 84 62
ced-4(n1162); ceh-30(n4289A) 0 13 87 61
ced-4(n1162); ceh-31(n4893A) 0 14 86 63
ced-4(n1162); nDf65 2 81 17 63

B. ceh-30 ceh-31 double mutants are weakly defective in CEM differentiation in males.
CEM survival in males (%)

Genotype None D OR V D AND V n
egl-1(n1084 n3082) 0 0 100 62
egl-1(n1084 n3082); ceh-30(n4111 n37141f) 0 0 100 65
egl-1(n1084 n3082); ceh-30(n4289A) 0 0 100 63
egl-1(n1084 n3082); ceh-31(n4893A) 0 0 100 60
egl-1(n1084 n3082); nDf65 0 9 91 67
ced-4(n 1162) 0 0 100 60
ced-4(n1162); ceh-30(n4111 n37141f) 0 0 100 60
ced-4(n1162); ceh-30(n4289A) 0 0 100 60
ced-4(n1162); ceh-31(n4893A) 0 0 100 60
ced-4(n1162); nDf65 0 8 92 60

A. The deficiency nDf65 removes ceh-30 and ceh-31. All animals were homozygous for

nls133. Animals homozygous for egl-1(n1084 n3082) were homozygous for

him-8(e 1489). Animals homozygous for ced-4(n 1162) were homozygous for

him-5(e 1467). Genotypes were otherwise as indicated.

B. The deficiency nDf65 removes ceh-30 and ceh-31. All animals were homozygous for

nls133. Animals homozygous for egl-1(n1084 n3082) were homozygous for

him-8(e 1489). Animals homozygous for ced-4(n1162) were homozygous for

him-5(e1467). Genotypes were otherwise as indicated.
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Table S2. Loss of unc-37 function causes the inappropriate deaths of CEM neurons in

males.

Animals with CEM survival (%)
Genotype Sex None D OR V D AND V n

wild-type Herm. 100 0 0 50
unc-37(e262) Herm. 100 0 0 103
ced-3(n717) Herm. 0 4 96 73
unc-37(e262); ced-3(n717) Herm. 0 3 97 100
wild-type Male 0 0 100 50
unc-37(e262) Male 0 12 88 101
ced-3(n717) Male 0 0 100 50
unc-37(e262); ced-3(n717) Male 0 0 100 100

Animals were homozygous for the pkd-2::gfp reporter nls128 and for him-8(e1489).

Genotypes were otherwise as listed. Herm., hermaphrodite.
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Figure Legends

Figure 1

pkd-2::gfp is expressed in the "undead" CEM neurons of hermaphrodites when their

deaths are prevented by a defect in programmed cell death. (A) There is no strong

expression of pkd-2::gfp in the head of a wild-type hermaphrodite. (B) Strong pkd-2::gfp

expression is observed in the CEM neurons of ced-3(n717) hermaphrodites defective in

programmed cell death. The heads of transgenic animals are shown, using composite

images that combine multiple focal planes of fluorescence and visible-light micrographs.

Anterior is to the left, and ventral is down.

Figure 2

TRA-4 is a conserved protein possessing homology to the human transcription factor

PLZF. Each pair of residues identical between the two proteins is surrounded with a

black box. Each pair of residues similar between the two proteins is surrounded with a

dark gray box. A light gary box indicates the position of the N-terminal RD2 domain of

hPLZF. Black lines under the protein sequence indicate the positions of the seven

predicted zinc fingers. The positions and natures of the identified tra-4 missense

mutations are shown. This figure is modified from Figure 1D of GROTE and CONRADT

(2006).

Figure 3

Loss of cnd-1 causes a weak head morphology defect that is enhanced by weak

loss-of-function mutations in vab-3. Images are Nomarski micrographs of the heads of
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young larvae, showing examples of the variable and severe defects in head morphology

seen at low penetrance for animals lacking cnd-1 function or weakly defective in vab-3

function, and at high penetrance for animals strongly defective in vab-3 function or

animals doubly homozygous for a strong loss-of-function mutation in cnd-1 and a weak

loss-of-function mutation in vab-3. Genotypes were as indicated within the panel, except

that animals were also homozygous for the pkd-2::gfp cell-fate reporter nls128.

Figure 4

Developmental and genetic pathways for the sexually dimorphic survival decision of the

CEM neurons. See Discussion for more information. (A) The survival decision of the

CEM neurons can be expressed as the result of four processes: establishment of CEM

identity, determination of sexual identity, the execution of programmed cell death, and

the determination of whether the cells are sensitive to an activated cell death program.

The CEM neuron identity establishes both that the cells will contain an activated cell

death program and that the cells possess a program that responds to sexual identity to

determine whether the cells are sensitive to activation of programmed cell death. (B) A

genetic pathway for the sexually dimorphic survival decision of the CEM neurons.

Genes mutated in screen isolates described in this work are highlighted in red. As part

the CEM neuron identity, the cell-death execution pathway is activated; this

CEM-specific activation is caused by a factor that binds within the site deleted by

egl-1(n4908A) to cause transcriptional activation of the BH3-only killer gene egl-1. CEM

neuron identity separately acts through unc-86, vab-3 and cnd-1 to promote the

possession of a program that responds to sexual identity to control whether the CEM
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neurons are sensitive to this activated cell-death program. This program is controlled by

the CEM-specific survival factor ceh-30. ceh-30 is also directly controlled by the sex

determination pathway. Together, CEM neuron identity and sexual identity act through

ceh-30 to regulate CEM survival independently of egl-1 BH3-only and ced-9 Bcl-2

function, by controlling sensitivity to the activation of programmed cell death. If egl-1 is

inactive in the CEMs of males, this sex-specific repression of egl-1 is controlled by

ceh-30; alternatively, egl-1 could be expressed both in the CEMs of hermaphrodites and

of males, and sexual dimorphism of CEM neuron survival could be achieved by ceh-30

acting independently of egl-1 and ced-9.
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independently of the Bcl-2 homolog CED-9
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Abstract

The developmental control of apoptosis is fundamental and important. We report

that the Caenorhabditis elegans Bar homeodomain transcription factor CEH-30 is

required for the sexually dimorphic survival of the male-specific CEM sensory neurons;

the homologous cells of hermaphrodites undergo programmed cell death. We propose

that the cell-type-specific anti-apoptotic gene ceh-30 is transcriptionally repressed by

the TRA-1 transcription factor, the terminal regulator of sexual identity in C. elegans, to

cause hermaphrodite-specific CEM death. The established mechanism for the

regulation of specific programmed cell deaths in C. elegans is the transcriptional control

of the BH3-only gene egl-1, which inhibits the Bcl-2 homolog ced-9; similarly, most

regulation of vertebrate apoptosis involves the Bcl-2 superfamily. By contrast, ceh-30

acts within the CEM neurons to promote their survival independently of both egl-1 and

ced-9. Mammalian ceh-30 homologs can substitute for ceh-30 in C. elegans. Mice

lacking the ceh-30 homolog Barhl1 show a progressive loss of sensory neurons and

increased sensory-neuron cell death. Based on these observations, we suggest that the

function of Bar homeodomain proteins as cell-type-specific inhibitors of apoptosis is

evolutionarily conserved.
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Introduction

Programmed cell death, or apoptosis, is a widespread feature of animal

development. Abnormalities in apoptosis can have pathological consequences.

Reduced cell death can cause the survival of unnecessary or unwanted cells, such as

neurons that have not made appropriate synaptic connections (reviewed by Yeo and

Gautier 2004) or cells that could be dangerous if they were to survive, such as immune

cells that recognize self-antigens (Bidere et al. 2006) and cells that have escaped

controls on their proliferation (Weaver and Cleveland 2005). Increased programmed cell

death is associated with a broad variety of human disorders, including

immunodeficiency and neurodegenerative diseases (reviewed by Rathmell and

Thompson 2002; Krantic et al. 2005).

A core pathway for the cell-killing step of apoptosis is conserved from nematodes

to humans; key insights concerning this pathway have come from investigations of

programmed cell death in C. elegans (Metzstein et al. 1998). In this core pathway, cells

are killed by a cysteine protease called a caspase; in C. elegans, this caspase is CED-3

(ced, cell death abnormal) (Yuan et al. 1993). Caspase activity is promoted by an

adaptor molecule, called CED-4 in C. elegans (Yuan and Horvitz 1992; Shaham and

Horvitz 1996) and Apaf-1 in mammals (Zou et al. 1997). CED-4 and Apaf-1 activation is

regulated by multidomain members of the CED-9 Bcl-2 superfamily. CED-9 is the sole

multidomain Bcl-2 family member in C. elegans and provides both anti-apoptotic and, to

a lesser extent, pro-apoptotic activities (Hengartner and Horvitz 1994a; Hengartner and

Horvitz 1994b). Multidomain members of the Bcl-2 superfamily are regulated by

BH3-only proteins; in C. elegans, the BH3-only protein EGL-1 (egl, egg-laying defective)
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is required for essentially all somatic programmed cell deaths (Conradt and Horvitz

1998).

Despite a detailed knowledge of this core pathway for apoptosis, less is known

about how cells are developmentally determined to die. In mammals, the regulation of

programmed cell death in the developing immune system by recognition of self-antigens

(reviewed by Bidere et al. 2006) and in the developing nervous system by neurotrophic

signals has been described (reviewed by Weaver and Cleveland 2005). In C. elegans,

131 cells die during hermaphrodite development; during male development another 21

cells die that in hermaphrodites either do not die or are never generated (Sulston and

Horvitz 1977; Kimble and Hirsh 1979; Sulston et al. 1983). Nine genes that exert

cell-specific control over eight of these 152 cell deaths have been described (Ellis and

Horvitz 1991; Metzstein et al. 1996; Conradt and Horvitz 1999; Metzstein and Horvitz

1999; Thellmann et al. 2003; Hoeppner et al. 2004; Liu et al. 2006). These nine genes

are believed to regulate cell death by cell-specific transcriptional regulation of the

BH3-only killer gene egl-1, which acts to inhibit the Bcl-2 homolog CED-9. Mutations in

human counterparts of these cell-specific regulators of apoptosis can contribute to

disease, particularly to cancer. For example, ces-1 and ces-2 (ces, cell death

specification), C. elegans genes that specifically regulate the deaths of the sister cells of

the NSM neurons, have human homologs that can regulate B cell survival in humans,

and translocations altering the ces-2 homolog HLF cause Acute Lymphoblastic

Leukemia (Inaba et al. 1996; Wu et al. 2005).

We have studied the survival decision of one of the two classes of neurons

sexually dimorphic for programmed cell death in C. elegans, the CEM (cephalic male)
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neurons. The presumptive CEM neurons die during hermaphrodite embryogenesis but

survive in males to become sensory neurons (Sulston et al. 1983; Chasnov et al. 2007).

We report that the gene ceh-30 encodes a cell-type-specific anti-apoptotic

homeodomain transcription factor. ceh-30 is directly regulated by the sex determination

pathway to control the sex-specific survival of the CEMs. The anti-apoptotic function of

ceh-30 involves a novel mechanism that is independent of the Bcl-2 homolog CED-9

and the BH3-only cell-killing gene egl-1. The anti-apoptotic function of ceh-30 is

conserved in its mammalian counterparts Barhll and Barhl2; mice lacking Barhll suffer

from progressive deafness, likely because of increased apoptosis of sensory hair cells

of the inner ear.

Results

ceh-30 gain-of-function mutations cause CEM neuron survival in hermaphrodites

and act downstream of sex determination

The cell-fate reporter pkd-2::gfp is expressed in the male-specific CEM neurons

as well as in some male-specific tail neurons (Barr and Sternberg 1999) (Figure 1A, B).

We found that pkd-2::gfp was expressed in hermaphrodite CEM neurons when the

programmed deaths of these cells were prevented either by weak masculinization or by

a defect in cell death (Figure 1C, D; Table 1A). We used pkd-2::gfp as a marker of CEM

survival in screens for mutant hermaphrodites in which the CEM neurons survived

(H.T.S. and H.R.H., unpublished results). Among the isolates we recovered were three

mutations, n3713, n3714, and n3720, each of which semidominantly causes CEM

survival in hermaphrodites (Table 1 and Figure 1E). No other defects were seen in
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these three mutant strains. The pkd-2::gfp-expressing CEM neurons of these mutant

hermaphrodites more closely resembled those seen in cell-death-defective

hermaphrodites than those seen in weakly masculinized hermaphrodites: the intensity

of GFP expression and the process morphologies and nuclear positions of the CEMs

were more variable in hermaphrodites defective in cell death than in males or in partially

masculinized hermaphrodites (data not shown); this latter observation is consistent with

previous electron microscopic examination of ced-3(n717) hermaphrodites, which found

variability in the processes of undead CEM neurons (White et al. 1991). We mapped the

three mutations to the left end of a six map unit interval on LGX and found that the three

mutations acted similarly (Table 1A and date not shown). We showed that the three

mutations are in the same gene, which we later determined to be ceh-30 (ceh,

C. elegans homeobox) (see below).

We performed gene dosage experiments and concluded that n3713 and n3714

are gain-of-function (gf) mutations (Tables 1B and S1). Adding either of two large

genomic duplications mnDp57 and yDp14, each of which carries an extra copy of the

ceh-30 region, did not cause increased CEM survival in wild-type hermaphrodites, and

adding wild-type ceh-30 copies to n3713 or n3714 mutants neither enhanced nor

suppressed their semidominant CEM survival phenotypes. The latter result indicates

n3713 and n3714 do not cause loss-of-function (If) or dominant-negative activity and

must therefore cause a gain-of-function activity, resulting in either altered or ectopic

gene function. Data presented below concerning the wild-type function of ceh-30 and

the nature of the ceh-30(gf) mutations are consistent with the hypothesis that the
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gain-of-function mutations cause ectopic expression of the wild-type gene product in the

CEMs of hermaphrodites.

One way mutations can cause CEM survival in hermaphrodites is by partial

masculinization, so that the CEMs adopt their male fate of survival in animals that are

nonetheless predominantly hermaphrodites. Unlike the mutation sel-10(n1077), which

causes CEM survival by partial masculinization (Desai and Horvitz 1989; Jager et al.

2004), ceh-30(gf) mutations did not enhance the somatic masculinization caused by the

weak tra-2 (tra, sexual transformer) alleles e1875 and n1106 (data not shown). Thus,

ceh-30(gf) does not act broadly to promote masculinization. Both n3713gf and n3714gf

protected the CEMs of animals completely feminized by null mutations in the fem

genes, which are the final genes required for masculinization in the sex determination

pathway (Tables 1C and S2) (Hodgkin 2002). Therefore, ceh-30(gf) mutations act to

cause CEM neuron survival downstream of or in parallel to all genes required for

masculinization.

Loss of ceh-30 function causes CEM neurons in males to undergo programmed

cell death

We sought intragenic suppressors of ceh-30(n3714gf) and recovered one

mutation, n4111, that proved to be an allele of ceh-30 (Table 2A; see Materials and

Methods and below). ceh-30(n4111 n3714) caused an effect opposite to that caused by

ceh-30(gf): whereas ceh-30(n3714gf) hermaphrodites have normally male-specific CEM

neurons, ceh-30(n4111 n3714) males lack CEM neurons, as do normal hermaphrodites

(Table 2B). The CEM-deficient phenotype of ceh-30(n4111 n3714) males is recessive:
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tra-(lIf); ceh-30(n4111 n37141+) males did not lack CEMs (tra-1(if) can be used to

cause animals with two X chromosomes to develop as males), and the CEM-deficient

phenotype of ceh-30(n4 111 n3714) males was complemented by the genomic

duplications mnDp57 and yDpl4 (Table S3 and data not shown). Experiments detailed

below demonstrated that n4111 causes a loss of gene function. The missing CEM

neurons of ceh-30(n4111 n3714) males were not restored by a null mutation in tra-1

(Tables 2B and S4). tra-1 is the most downstream gene in the sex determination

pathway (Hodgkin 2002), indicating that ceh-30 does not act within the sex

determination pathway to cause CEMs to adopt their male fate of survival. The missing

CEM neurons of ceh-30(n4111 n3714) males were completely restored by loss of

function of egl-1, ced-4, or ced-3, genes required for programmed cell death (Tables 2B

and S4). The missing CEMs of ceh-30(If) males are therefore generated as in wild-type

males and then inappropriately undergo programmed cell death.

CEH-30 is an evolutionarily conserved Bar homeodomain transcription factor

We mapped n3714gf to a 25 kb interval on the cosmid C33D12 and established

an overlapping but less well defined position for n4111 (see Materials and Methods).

ceh-30(n4111 n3714) males transformed with the overlapping cosmids C13G6 and

C33D12 were rescued for CEM survival (Figure 2A; data not shown). Examination of

the genomic sequence corresponding to these cosmids revealed that an intron of the

gene ceh-30 contains a consensus binding site for the transcription factor TRA-1, which

is required to repress male sexual fates (Zarkower and Hodgkin 1993) (see Figure 2D).

We determined the DNA sequence of ceh-30 in our mutants and found that
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n4111 n3714 animals but not the n3714 parental strain had a mutation in the predicted

ceh-30 coding sequence, changing codon 21 from glutamine to an ochre stop codon. All

three independently isolated ceh-30(gf) mutants had an identical mutation altering an

evolutionarily conserved predicted TRA-1 binding site in the second intron of ceh-30

(Figure 2D). This mutation is equivalent to one known to prevent TRA-1 from binding to

a regulatory site in vitro and to prevent transcriptional repression by tra-I in vivo

(Conradt and Horvitz 1999). Similarly, we found that TRA-1A could bind the site

mutated by n3714gf in gel-shift experiments and that this binding was prevented by the

addition of excess unlabelled wild-type probe but was very poorly competed by excess

unlabelled probe containing the n3714gf mutation (Figure 2E). The nature of the ceh-30

gain-of-function mutations is consistent with the results of our gene-dosage experiments

and suggests a model in which the gain-of-function mutations release ceh-30 from a

negative regulation that represses ceh-30 expression in hermaphrodites.

Our isolation of a ceh-30 deletion mutation, n4289A, confirmed that n4111

causes loss of ceh-30 gene function. ceh-30(n4289A) removes the second exon, which

encodes most of the predicted homeodomain (see below), and is predicted to cause a

frameshift after amino acid 61 if the first and third exons are spliced together (Figure

2B). We found that ceh-30(n4289A) caused males to lack CEM neurons (Tables 2B and

S4 and Figure 1E) and failed to complement ceh-30(n4111 n3714) for CEM survival in

tra-1 XX males (Table S3). The transgene BSK-ceh-30, which contains the ceh-30

genomic locus (see Supplemental Data), complemented the CEM survival defects of

both ceh-30(lf) mutants (Fig. 2A, Table 2C, and data not shown). A version of the

rescuing transgene modified to contain the n3714gf mutation in the TRA-1 binding site
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of ceh-30 (BSK-ceh-30(n3714)) caused CEM survival in hermaphrodites (data not

shown).

We performed a cis-trans test to confirm our hypothesis that n3714gf is an allele

of ceh-30. Specifically, we asked if the noncoding mutation n3714gf causes CEM

survival by activating ceh-30 in cis. We found that the n3714gf semidominant phenotype

of CEM survival in hermaphrodites required only one functional copy of ceh-30 and that

this functional wild-type copy of ceh-30 must be the copy in cis to n3714gf: 76% of

n3714gfl+ and 78% of n3714gfln4289A hermaphrodites had surviving CEMs, but only

4% of n4111 n3714gfl+ hermaphrodites had surviving CEMs (n > 100; Table S5).

n3714gf therefore affects the same gene as the ceh-30 loss-of-function mutation n4111,

proving n3714gf is an allele of ceh-30.

ceh-30 encodes a homolog of the Drosophila homeodomain transcription factors

BarH1 and BarH2 (Kojima et al. 1991; Higashijima et al. 1992a) and their murine

counterparts Barhll and Barhl2 (Bulfone et al. 2000). The 237 amino acid predicted

CEH-30 protein is 64% identical to human Barhll from amino acids 85 to 180 of

CEH-30 (Figure 2C). This homology includes both the homeodomain, which contains a

phenylalanine-to-tyrosine substitution characteristic of the Bar subclass of

homeodomains (Kojima et al. 1991), and a 22 amino acid motif immediately C-terminal

of the homeodomain; our BLAST searches indicated that homologs of this motif are

found only in Bar homeodomain proteins, and we have named it the BARC motif (Bar

homeodomain C-terminal motif; see Table S6). A ceh-30 minigene including ceh-30 5'

and 3' sequences and 625 bp of ceh-30 intron 2 (see Supplemental Data) rescued the

defect in CEM survival of ceh-30(n4289A) males as effectively as did the original
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genomic construct (Table 2C). We tested whether the protective function of CEH-30 is

evolutionarily conserved with that of its mammalian homologs by replacing the ceh-30

cDNA of this construct with murine Barhll or Barhl2 cDNAs. Both of the resulting

transgenes rescued the CEM survival defect of ceh-30(n4289A) males (Table 2C).

ceh-30 acts cell-autonomously in the CEM neurons to promote their survival

A ceh-30 genomic construct into which gfp had been inserted (see Supplemental

Data) rescued ceh-30(n4289A) for CEM survival (Table S7) and caused GFP

expression in the nuclei of many neurons in the three-fold embryo and in as many as a

dozen neurons in larvae. We did not observe GFP expression in the CEMs of male

larvae, indicating that any ceh-30 expression in the CEM neurons is likely to be weak or

transient. The ventral CEM neurons of 1.5-fold stage masculinized embryos, which can

be identified by their positions within the embryo, expressed ceh-30::gfp (see Figure

S1). Expression in the dorsal CEMs cannot be as readily examined. We conclude that

ceh-30 is expressed transiently in embryonic CEMs.

We tested whether ceh-30 acts cell-autonomously in the CEMs to promote their

survival by examining animals that developed from zygotes carrying an

extrachromosomal ceh-30(n3714gf) transgene marked with a pan-neuronal

unc-119::mStrawberry reporter to identify neurons containing the transgene. In males, in

which the transgene is not required for CEM neurons to survive, 18.9% (n=477) of

CEMs lacked the transgene as a result of mitotic loss. In hermaphrodites, only one of

719 surviving CEMs lacked the transgene, indicating that the CEMs die unless

prevented from doing so by a ceh-30(gf) transgene (the single hermaphrodite CEM that
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did not contain the transgene can be explained by the low frequency of spontaneous

CEM survival that occurs in wild-type hermaphrodites: in 185 hermaphrodites, one

surviving CEM of a possible 740 was seen using pkd-2::gfp expression as an assay).

Thus, ceh-30 protected only those CEMs that retained the transgene, indicating that

ceh-30 functions in the CEM neurons.

ceh-30 acts specifically to control the life vs. death decision of the CEM neurons

We tested the ability of ceh-30 mutations to modify the deaths of cells other than

CEMs. The partial loss-of-function alleles ced-4(n3158) and ced-3(n2427) each cause a

weak defect in cell death and provide a sensitized genetic background in which weak

effects on apoptosis can readily be detected (Reddien et al. 2001). In these sensitized

backgrounds, we found no effect of ceh-30 mutations on programmed cell deaths in the

anterior pharynx or of the Pn.aap cells (Table 3A, B). To assess more broadly the extent

of cell death in ceh-30 mutants, we used a ced-1(If) mutation to cause persistence of

cell corpses (Hedgecock et al. 1983). ceh-30(If) did not change the number of persistent

cell corpses in the head, while ceh-30(gf) might have caused a slight reduction in

corpse number (Table 3C); a reduction of about one corpse would be consistent with

the only effect of ceh-30(gf) on cell death being that of CEM survival, given that there

are four CEM neurons and our observation that ced-1(lf) causes 24% (n = 10) of

embryonic cell deaths to persist into larval development as corpses. The numbers of

neurons in the male and hermaphrodite ventral nerve cords were also unaffected by

mutations in ceh-30 (Table 3C). In short, these assays did not demonstrate any function

outside the CEM neurons for ceh-30 in the regulation of either cell death or cell number.
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The sex determination pathway and ceh-30 act independently of ced-9 Bcl-2 to

control CEM neuron survival

To examine how ceh-30 protects the CEM neurons and, in particular, where

ceh-30 interfaces with the evolutionarily conserved core cell-killing pathway, we tested

whether the anti-apoptotic gene ced-9 is required for CEM survival in ceh-30(n3714gf)

hermaphrodites. Specifically, we asked if the putative null allele ced-9(n2812), a

Q46amber mutation (Hengartner and Horvitz 1994b), would suppress the CEM survival

caused by ceh-30(n3714gf). Loss of ced-9 Bcl-2 function causes ectopic activation of

programmed cell death, resulting in lethality. Mutations that block the cell-death

pathway downstream of ced-9, such as in the ced-3 caspase, can suppress this

lethality. The weak mutation ced-3(n2427), which suppresses ced-9(n2812) lethality and

slightly reduces the amount of programmed cell death but allows many programmed cell

deaths to occur normally (Hengartner and Horvitz 1994a), can be used to examine the

regulation of cell death in strains lacking all ced-9 Bcl-2 function. We found that in a

ced-9(n2812); ced-3(n2427) background, the CEMs showed nearly normal sexually

dimorphic regulation of their decision to undergo programmed cell death decision: most

CEMs survived in males (no males lacked CEMs, and only 23% showed partial CEM

survival; n=71), and most CEMs died in hermaphrodites (none showed strong CEM

survival, and only 20% showed partial CEM survival; this survival can by attributed to

the weak protective effect of ced-3(n2427); n=89) (Table 4 and data not shown). In the

absence of ced-9 function, as in a wild-type background, ceh-30(n3714gf) caused CEM

survival in hermaphrodites (40% showed strong CEM survival and 52% showed partial
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CEM survival; n=60), and ceh-30(If) mutations caused the CEM neurons of males to die

(22% lacked CEMs and 75% showed only partial CEM survival; n=63). Similar results

were observed using a second putative null allele of ced-9, n3400, and using other

weak alleles of ced-3 (n2446, n2447, and n2923; data not shown). Loss of egl-1

BH3-only function, which prevents CEM death in wild-type animals, had no effect on

CEM death in the absence of ced-9 function (Table 4). This result is consistent with

previous findings indicating that egl-1 acts through ced-9 Bcl-2 to perform its cell-killing

function (Conradt and Horvitz 1998). The sexually dimorphic control of CEM survival

therefore does not require regulation of ced-9 or of egl-1.

Discussion

The Bar-class homeodomain gene ceh-30 acts as a switch for the sexually

dimorphic survival of the CEM neurons

Our studies of the genetic control of the death of the sexually dimorphic CEM

sensory neurons of C. elegans have identified a novel mechanism by which sex

determination regulates specific programmed cell deaths during nervous system

development. This regulation depends on the control by sex determination of a

previously uncharacterized gene, the evolutionarily conserved Bar homeodomain gene

ceh-30, that acts as a genetic switch in determining the survival decision of the CEM

neurons (shown diagrammatically in Figure 3). ceh-30 gain-of-function mutations cause

the CEMs of hermaphrodites to survive as they do in males. These ceh-30

gain-of-function mutations disrupt a binding site for TRA-1, the terminal regulator of

sexual identity in C. elegans, and likely prevent the TRA-1-mediated transcriptional
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repression of ceh-30 in hermaphrodites. A model for how TRA-1 regulates ceh-30

expression and CEM neuron survival is shown in Figure 3A.

ceh-30 functions in the CEM neurons to promote their survival

We observed expression of a rescuing ceh-30::gfp transgene only in neurons.

Bar homeodomain proteins in other organisms are similarly expressed primarily in the

nervous system (Higashijima et al. 1992b; Saito et al. 1998). Most cells that express

ceh-30 do so only transiently: many more neurons show detectable ceh-30::gfp

expression in embryos than in larvae or adults. We observed ceh-30::gfp expression in

the CEMs of embryos, but not in those of larvae, indicating that ceh-30 expression in

the CEMs is transient, and occurs during embryonic development, the stage at which

CEM neurons of die.

Consistent with our observation that ceh-30 is expressed in the CEM neurons,

we found strong indications that ceh-30 functions cell-autonomously in the CEMs: CEM

survival in hermaphrodites caused by a ceh-30 gain-of-function transgene was

dependent on the presence of the transgene in the surviving CEMs. The mechanism by

which ceh-30 gain-of-function protects hermaphrodite CEMs conceivably could differ

from that by which ceh-30 normally protects male CEM neurons; experiments to test

whether ceh-30 acts in the CEMs of males were not feasiblebecause of background

survival of CEM neurons in ceh-30(n4289A) males. It seems likely that the requirements

for ceh-30(gf) function in hermaphrodite CEMs are similar to those for normal ceh-30

function in male CEMs. From these considerations and from our observation of the

178



expression of ceh-30 in the CEMs of embryos, we conclude that ceh-30 likely acts

cell-autonomously to cause CEM survival.

ceh-30 acts specifically to control the survival of the CEM neurons

The effects of ceh-30 on CEM survival could reflect a specific function for ceh-30

in the CEM neurons or a particular sensitivity of the CEMs to a general defect in the

regulation of programmed cell death. We therefore tested for effects of ceh-30 on other

programmed cell deaths, using assays known to be sensitive to subtle defects in

programmed cell death and assays that examined the consequences of the generation

and survival decisions of a large number of cells (see Table 3). These experiments did

not reveal any function for ceh-30 in the regulation of cell death or cell number other

than for the CEM neurons. Nonetheless, ceh-30::gfp is expressed in and ceh-30 might

regulate the fates of neurons other than the CEMs, especially if such a role were to be

concealed by redundancy. We found no additional defects in ceh-30 mutants or in

animals doubly mutant for ceh-30 and for ces-1, tra-1, eor-1, or eor-2, genes known to

regulate other specific programmed cell deaths (Ellis and Horvitz 1991; Conradt and

Horvitz 1999; Hoeppner et al. 2004).

The sex determination pathway regulates ceh-30 to control sensitivity to

programmed cell death independently of the Bcl-2 homolog CED-9

Animals lacking the Bcl-2 homolog ced-9 showed essentially wild-type regulation

of the CEM survival decision, specified by sexual identity and mediated by the control of

ceh-30. This ced-9-independent regulation of CEM survival differs from the regulation of
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other specific cell deaths in C. elegans, which are controlled by the transcriptional

regulation of the BH3-only killer gene egl-1, which in turn acts through ced-9 (Conradt

and Horvitz 1998; Metzstein and Horvitz 1999; Thellmann et al. 2003; Hoeppner et al.

2004; Liu et al. 2006). Previous results indicated that regulation of programmed cell

death can occur independently of ced-9: animals lacking ced-9 function and weakly

defective in the downstream killer gene ced-3 show significant cell death, restricted

almost completely to cells that normally die in the wild type (Hengartner and Horvitz

1994a). How cell-specific regulation of programmed cell death can occur independently

of ced-9 has been until very recently completely unknown. Besides ceh-30, the only

gene demonstrated to act in this process is the transcriptional regulator pal-1, recently

shown to control the programmed cell death of the tail spike cell (Maurer et al. 2007).

Other evidence indicates that the regulation of CEM neuron survival is atypically

independent of ced-9. The ced-9 gain-of-function mutant n1950, which in other assays

is nearly completely defective in programmed cell death in the soma (Hengartner and

Horvitz 1994a), caused only moderate CEM survival (Table S8). Also, the cell-killing

function of ced-9 (Hengartner and Horvitz 1994a; Reddien et al. 2001) appears not to

significantly affect CEM survival, as ced-9(lf) did not enhance the CEM survival caused

by any of several weak ced-3 loss-of-function mutants (Tables 1A and 4 and data not

shown).

The ced-9 Bcl-2-independent inhibition of CEM neuron death by ceh-30 is

unlikely to be mediated by any well-established death regulatory mechanism. In general

the regulation of caspase-mediated cell death involves members of the Bcl-2

superfamily (reviewed by Kuwana and Newmeyer 2003). The principal exception is the
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regulation of caspases by the IAP (inhibitor of apoptosis) proteins, which directly inhibit

caspase function and are themselves regulated by IAP inhibitors such as the Drosophila

proteins Hid, Grim, and Reaper and the mammalian proteins Smac/DIABLO and ARTS

(Bergmann et al. 1998; Wang et al. 1999; Du et al. 2000; Goyal et al. 2000; Verhagen

and Vaux 2002; Gottfried et al. 2004). Loss-of-function and overexpression of the two

C. elegans IAP genes have no apparent effect on cell death (Speliotes 2000), and we

found that animals lacking both C. elegans IAP genes showed no reduction in the ability

of increased ceh-30 function to prevent the apoptotic deaths of CEM neurons of

hermaphrodites (Table S9). Other activities shown to regulate apoptotic cell death

independently of the Bcl-2 superfamily, including ligand-mediated activation of

caspase 8 and calpain-mediated regulation of caspase 12 (reviewed by Benn and Woolf

2004), have no obvious parallels in C. elegans. Another conceivable mechanism to

account for ced-9 Bcl-2-independent regulation of cell death is the cell-cycle regulation

of Apaf-1 transcription by the DP-E2F heterodimer (Moroni et al. 2001); however, we

found that a loss-of-function mutation in the only DP homolog, dpl-1, did not affect CEM

survival (data not shown), suggesting that this mechanism is not important for CEM

survival. Maurer et al. (2007) recently reported that the programmed death of the tail

spike cell in C. elegans is effected by transcriptional regulation of the caspase gene

ced-3. This report, which includes effects of ced-9 Bcl-2 mutations similar to those we

found in the CEM neurons, suggests a mechanism by which ceh-30 might control CEM

survival. We performed experiments using a ced-3::gfp reporter similar those of Maurer

et al. (2007) and failed to observe up-regulation of ced-3 in the surviving CEMs of

ced-3(n717) hermaphrodites (data not shown). We could have missed sexually
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dimorphic ced-3 expression in the CEMs in these experiments because of the

developmental stages we examined or because elements necessary for the appropriate

transcriptional control of ced-3 were not included in the reporter construct.

The loss of ced-9 causes an activation of programmed cell death similar to that

caused by expression of the BH3-only pro-apoptotic protein EGL-1. For example, the

HSNs of ced-9(n16531f) hermaphrodites and the egl-1-expressing HSNs of

egl-1(n1084gf) hermaphrodites undergo programmed cell death (Desai et al. 1988;

Conradt and Horvitz 1999). Similarly, the ced-9 loss and egl-1 over-expression each

cause relocalization of CED-4 from the mitochondria to the perinucleus, a proposed

early step in programmed cell death (Chen et al. 2000). ceh-30 therefore protects by

rendering cells that have activated programmed cell death less sensitive to this

activation. A schematic representation of such a desensitizing effect of CEH-30 is

shown in Figure 3C.

A genetic pathway for the regulation of CEM neuron survival

A proposed genetic pathway for the control of CEM neuron death is shown in

Figure 3D. First, CEM neuron identity is established; one aspect of this identity is the

activation of programmed cell death. The activation of CEM programmed cell death

includes expression of the pro-apoptotic BH3-only protein EGL-1, which is required for

somatic programmed cell deaths in C. elegans (Conradt and Horvitz 1998), including

the deaths of the CEMs of hermaphrodites (Table 1A). Sexual identity, established by

tra-1 activity, controls ceh-30 activity. ceh-30 then acts downstream of or in parallel to

ced-9 BcI-2 to establish whether the CEM neurons are sensitive to the activation of
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programmed cell death. In other words, ceh-30 activity defines the sensitivity of the

CEM neurons to the initiation of programmed cell death. How ceh-30 exerts a

cell-specific anti-apoptotic function independently of ced-9 Bcl-2 remains to be

determined.

The deaths of the CEM neurons in hermaphrodites normally require egl-1

function. As described above, we have shown that ceh-30 protects the CEMs from

programmed cell death by acting downstream of or in parallel to egl-1 and ced-9. In

addition to the regulation of CEM survival by ceh-30 downstream of or parallel to egl-1

and ced-9, it is possible that the sexually dimorphic deaths of the CEM neurons are also

regulated at the level of egl-1 transcription, as are other cell-type-specific cell deaths.

We could not directly assess egl-1 expression in the CEM neurons, as our egl-l::gfp

reporters were not expressed in the CEM neurons of cell-death-defective larvae or in

early embryonic CEM neurons (see Supplementary Data). egl-1 might be expressed

equivalently in the CEM neurons of both sexes, in which case the sexual dimorphism of

CEM survival is established entirely by the function of ceh-30 to alter the sensitivity of

the CEMs to the death-inducing effects of egl-1, as described above. Alternatively, the

sex determination pathway might also regulate egl-1 expression in the CEMs, so that in

hermaphrodite CEMs express egl-1 but in male CEMs do not. Importantly, the CEM

neurons of ceh-30(lf) males died in an egl-1-dependent fashion. Thus, egl-1 is active in

the CEMs of ceh-30(If) males. If egl-1 is normally off in male CEMs, repression of egl-1

expression in male CEMs must be dependent on ceh-30. We conclude that the

regulation of egl-1 expression in the CEMs by sexual identity, if it occurs, is performed
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by ceh-30. We depict this possible regulation of egl-1 in the CEMs by sexual identity by

a dotted line from ceh-30 to egl-1 in Figure 3D.

The novel anti-apoptotic function of ceh-30 is evolutionarily conserved

Parallels exist between the specific apoptotic loss of the C. elegans CEM

sensory neurons caused by a loss of ceh-30 function and the reported consequence of

deleting the homologous murine gene Barhll: Barhl1 deletion mice are born healthy and

able to hear, but progressively lose both their hearing and their sensory cochlear inner

ear hair cells (Li et al. 2002). Similar to the sensory hair cells of Barhll mice, but

atypically for C. elegans cells that undergo programmed cell death, hermaphrodite

CEMs persist for hours and show signs of differentiation (the extension of ciliated

processes) prior to their apoptotic deaths (J. Sulston and J. White, as cited by Horvitz et

al. 1982). Mice deleted for the Barhll gene also display defectssimilar to those seen in

mice lacking the neurotrophin survival factor NT-3 (Li et al. 2004), as well as increased

apoptosis of neurons of the superior colliculus (Li and Xiang 2006). It seems likely that

the sensory hair cell neurons of Barhll mutant mice, like the CEM neurons of ceh-30

mutants, lack protection from apoptotic cell death. Barhl2 has been reported to be a

possible positive regulator of cell death in Xenopus (Offner et al. 2005), raising the

possibility that in different contexts Bar homeodomain proteins might be able to regulate

targets involved in apoptosis either to promote or to prevent cell death.

Barhl1 and Barhl2 transgenes rescued the CEM survival defect of ceh-30 mutant

males. These genes therefore encode proteins that retain the functions and target

specificity of CEH-30. We conclude that C. elegans and vertebrate Bar homeodomain
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proteins likely share a conserved biological role as cell-type-specific regulators of

programmed cell death. We suggest that vertebrate Bar proteins act to prevent

neurodegeneration of certain neuron types and that the ectopic expression or increased

activity of vertebrate Bar proteins might inhibit apoptotic cell death and promote

oncogenesis. The novel mechanism by which ceh-30 acts to prevent CEM neuron death

together with the apparent conservation of the role of ceh-30 in regulating cell survival

suggests that further investigation of ceh-30 and its vertebrate homologs might reveal a

new evolutionarily conserved mechanism for the regulation of apoptotic cell death.
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Materials and Methods

C. elegans genetics

C. elegans strains were derived from the wild-type strain N2 and cultured using

standard conditions (Brenner 1974). The mutations used are listed in Supplemental

Material.

We performed two screens using EMS mutagenesis (Brenner 1974) to identify

revertants of n3714gf. In the first, F1 progeny of mutagenized n/s133; unc-2

ceh-30(n3714) lon-2 hermaphrodites were placed singly on Petri plates, and the

progeny of 523 Fls were examined for decreased penetrance of the n3714 phenotype

of CEM survival in hermaphrodites. Suppressors were tested for linkage to n3714 by

outcrossing. In the second screen, mutagenized nls133; unc-2 ceh-30(n3714) Ion-2

hermaphrodites were mated with n1s133; him-5 males, 1960 larval hermaphrodite F1

cross-progeny were placed singly on Petri plates, and their progeny were assessed for

CEM survival. The only suppressor closely linked to n3714, n4111, came from the

second screen. Adding a wild-type copy of the locus with the chromosomal duplications

mnDp57 or yDpl4 did not complement n41 11 for suppression of ceh-30(n3714gf) (data

not shown), indicating that n4111 does not cause loss-of-function in a second locus

required to support the n3714gf phenotype.

ceh-30(n3713, n3714, and n3720) were mapped to the left end of the unc-2 lon-2

interval on LGX using standard methods. ceh-30(n3714) was mapped between

nucleotide 3383 on C33D12 (all references to cosmid C33D12 sequence refer to

nucleotides of accession number U64600) and 801 on F52E4 (accession number

U56964) using 124 Lon recombinants recovered after crossing nls133; unc-2
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ceh-30(n3714) Ion-2 hermaphrodites with males containing LGX from the Hawaiian

strain CB4856 (Wicks et al. 2001). ceh-30(n4111 n3714) was mapped to the right of

14788 on M02F4 (accession number U41548) using 127 Lon and 86 Unc recombinants

recovered after crossing nls133; unc-2 ceh-30(n4111 n3714) Ion-2 hermaphrodites with

males containing LGX from the Hawaiian strain and further genotyping those

recombinants that had broken left of 22142 on F52E4. None of these recombinant

chromosomes contained n3714gf in the absence of n4111.

Isolation of ceh-30(n4289)

A library of mutagenized C. elegans was screened for deletions in ceh-30 as

previously described (Jansen et al. 1997). The deletion n4289, which removes from

22227 to 22893 of cosmid C33D12, was recovered. We used PCR to determine that

sequences present in the wild type are missing in ceh-30(n4289A) homozygotes.

ceh-30(n4289A) was outcrossed three times for the X chromosome and five times for

the autosomal genome prior to strain construction and analysis.

DNA and RNA manipulations and generation of transgenic animals

DNA sequence determination was performed using an ABI DNA Sequencer

model 373, an ABI Genetic Analyzer 3100 and by Gene Gateway (Hayward, CA). DNA

constructs used are described in Supplemental Data. All germline transformation

experiments were performed using the co-injection marker P76-16B (Bloom and Horvitz

1997) at 50 ng/pl as described (Mello et al. 1991). Cosmids and genomic and cDNA

constructs were injected at 20 ng/pl, and reporter constructs were injected at
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concentrations from 2.5 to 50 ng/i. Embryonic ceh-30::gfp expression was examined

using embryos masculinized by tra-2(n 1106).

Total RNA from N2 and him-5 was isolated using Trizol (Invitrogen, Carlsbad,

CA). 5' RACE and 3' RACE were performed using appropriate reagents (Invitrogen).

RNA ligase-mediated 5' RACE was performed essentially as described (Maruyama and

Sugano 1994) using appropriate reagents (Invitrogen; Epicentre, Madison, WI; New

England Biolabs, Beverly, MA). The 5' end of the ceh-30 transcript was also isolated by

PCR with ceh-30-specific and vector-specific primers from cDNA libraries provided by

Shai Shaham and by Zheng Zhou (personal communications). The 5' ends determined

using each of these methods were essentially identical and did not contain a

splice-leader sequence. The vector BSK-ceh-30-Sn (see Supplemental Data) was used

to express the ceh-30 cDNA and to express mouse Barhll and Barhl2 cDNAs (gifts of

Shengguo Li and Mengqing Xiang), and these constructs were used to obtain the data

shown in Table 2C.

Gel mobility shifts and competition experiments

Gel mobility shift experiments were performed essentially as described

(Zarkower and Hodgkin 1993; Conradt and Horvitz 1999). Probes were generated by

PCR using the primers CGTCATCATCAAATTTTCACC and

AATGATGTTTTTATGTCGCAACT for ceh-30 and the primers

CTGTTCCAGCTCAAATTTCCA and AACAAGTATCAGGCGGCATC for egl-1 controls

(not shown). TRA-1A protein was generated by in vitro transcription and translation of a

full-length tra-IA cDNA (plasmid pDZ118, a gift from David Zarkower). 1.5 1pl of
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reticulocyte lysate, 0.5-1 ng of 32P-labeled probe, and 0, 10x, 100x, or 1000x unlabeled

competitor were incubated at room temperature for one hour before electrophoresis

through 4% acrylamide gels in 0.5X TBE.

Analysis of C. elegans phenotypes

Animals were examined for gross developmental defects using dissecting and

Nomarski microscopy. In determining cell-autonomy of the CEM survival caused by the

pBSK-ceh-30(n3714gf) transgene, we used animals rescued for the Unc-76 phenotype.

Programmed cell death in the anterior pharynx was quantified using Nomarski

microscopy as described (Hengartner et al. 1992). Survival of Pn.aap cells was

quantified using lin-11::gfp as described (Reddien et al. 2001). Corpse number in the

heads of L1 hermaphrodites was scored as described (Yuan and Horvitz 1992). The

number of neuronal nuclei in a region of the ventral nerve cords of late L4 larvae and

young adults was determined following staining with DAPI as described (Sulston and

Horvitz 1981; Fixsen 1985). Programmed cell death in the CEM lineage was assessed

using a fluorescence-equipped dissecting microscope (M2BIO; Kramer Scientific, Valley

Cottage, NY) to detect pkd-2::gfp expression in the cell bodies of CEM neurons or by

using Nomarski microscopy as described (Schwartz 2007). The ventral CEMs of

1.5-fold stage embryos were identified by reference to Figure 8C of Sulston et al.

(1983); the positions of the dorsal CEMs is less distinctive, and these cells were not

examined.
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Supplemental Materials and Methods

C. elegans genetics

The following mutations were used and are described by Riddle et al. (1997)

unless otherwise noted: LGI: ces-1(n703 n1434), ced-1(e1735); LGII: tra-2(e1875,

n1106), dpl-l(n3380) (Reddien et al. 2007); LGIII: tra-1(e1099), fem-2(e2105),

ced-4(n1162), ced-4(n3158) (Reddien et al. 2001), ced-9(n1950, n2812, n3400)

(Reddien et al. 2007); LGIV: fem-1(e1965), fem-3(e1996); ced-3(n717, n2427, n2446,

n2447, n2923) (Shaham et al. 1999), him-8(e1489), eor-1(cs28) (Rocheleau et al.

2002); LGV: egl-l(n2248, n1084 n3082) (Conradt and Horvitz 1998), him-5(e1467),

unc-76(e911), bir-l(n3329) (Speliotes 2000), bir-2(okl04) (Speliotes 2000); and LGX:

unc-2(e55), ceh-30(n3713, n3714, n3720, n4111, n4289) (this study), lon-2(e678),

eor-2(cs42) (Rocheleau et al. 2002), n/s106 (Reddien et al. 2001). n/s133 I and nls128

II are chromosomally integrated versions of pkd-2::gfp, each marked with a lin-15(+)

marker (H.T.S. and H.R.H., unpublished results). ceh-30(n3713) and ceh-30(n3714)

were generated by different mutagenized Pos of the strain MT1 0742 nls133, and

ceh-30(n3720) was isolated after mutagenesis of the strain MT10729 nls128. Each of

the chromosomal duplications mnDp57 (X:l) and yDp14 (X:l) (Meneely and Nordstrom

1988; Akerib and Meyer 1994) spans ceh-30. No reported chromosomal deficiencies

eliminate ceh-30. nT1 [IV; V] with the dominant marker qls51 (Siegfried et al. 2004) was

used to balance fem-1, fem-3, and bir-1. sCI (Pilgrim et al. 1995) was used to balance

fem-2. qC1 (Austin and Kimble 1989) was used to balance tra-1. Strains constructed

using the integrated eg/l-::gfp reporters bc/sl and bc/s37 (Thellmann et al. 2003) were

examined for gfp expression in the CEMs of wild-type male larvae, cell-death-defective
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ced-3(n717) hermaphrodite larvae, ceh-30(n3714gf) hermaphrodite larvae,

cell-death-defective ced-3(n717); ceh-30(n4289A) male larvae, cell-death-defective

ced-3(n717) embryos, masculinized tra-2(n1106) embryos, masculinized

cell-death-defective tra-2(n1106); ced-3(n717); ceh-30(n4289A) embryos, and

ceh-30(n3714gf) embryos. egl-l::gfp expression was not observed in the CEM neurons

of larvae or in the CEM neurons of 1.5-fold stage embryos, the stage at which the CEM

neurons can readily be identified on the basis of their positions within the embryo.

Generation of DNA constructs

The ceh-30 rescuing construct pBSK-ceh-30 contains genomic DNA

corresponding to 17761 through 26079 of C33D12, amplified by PCR (Advantage

cDNA; BD Biosciences, Mountain View, CA) from proteinase K-treated N2 and cloned

using endogenous Clal and Avrll sites into a modified Bluescript vector (Stratagene, La

Jolla, CA) digested with Clal and Spel. pBSK-ceh-30 contains 4205 bp of the ceh-30

locus 5' of the ceh-30 ATG and 2456 bp of the ceh-30 locus 3' of the ceh-30 stop

codon. As a control for ceh-30 rescue, the mutated construct pBSK-ceh-30-STOP, with

two stop codons inserted at position 22,649 of C33D12, was used. A Hindlll fragment of

pBSK-ceh-30 was replaced with sequence amplified by PCR from a ceh-30(n3714)

mutant to generate the construct pBSK-ceh-30(n3714). Mlul and Pstl sites were

introduced by PCR at sites in pBSK-ceh-30 corresponding to C33D12 21784, 22029,

22518, 23477, and 23604; a gfp cassette with appropriate restriction sites added was

amplified from pPD95.02 (provided by Andrew Fire) and cloned into the modified

rescuing constructs; the third of these, called ceh-30::gfp, rescued ceh-30(n4289A) for
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CEM survival in males and caused GFP expression. unc-119::mStrawberry was

generated by cloning a PCR product corresponding to 1193 through 3559 of cosmid

M142 (accession number Z73428) into a modified PD95.70 (provided by Andrew Fire),

the gfp cassette of which had been replaced with mStrawberry (Shaner et al. 2004). A

ced-3::gfp reporter containing 2066 bp of promoter sequence was generated by cloning

a PCR product corresponding to 11115 through 13189 of cosmid C48D1 into PD95.70.

A version of pBSK-ceh-30 lacking introns was unable to rescue ceh-30(n4289)

for CEM survival (data not shown). Successful minigene constructs were made by

placing into this intronless version a PCR product containing most of the missing

second intron at any of three positions: 1.0 or 2.1 kb downstream of the coding

sequence in an Afll site or a SnaBI site, respectively, or 0.5 kb upstream in an EcoRV

site. The addition of this intronic sequence restored the rescuing activity of these

constructs; this finding is consistent with data suggesting that sequences in the second

intron are required for ceh-30 function (P. Grote and B. Conradt, personal

communication; E. Peden and D. Xue, personal communication). The plasmid with

intronic sequence inserted at the SnaBI site in the same orientation as in its original

position was modified by adding Spel and Sphl sites to replace the sequence from just

after the second codon of ceh-30 to just before the last four codons and the stop codon

of ceh-30. This plasmid, named BSK-ceh-30-Sn, was used as an expression vector for

ceh-30, mBarhll, and mBarhl2 cDNAs.

Examining embryonic CEM neurons for ceh-30::gfp expression
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As described in Materials and Methods, The ventral CEMs of 1.5-fold stage

embryos can be identified by their stereotyped positions within the embryo with

reference to Figure 8C of (Sulston et al. 1983); the positions of the dorsal CEMs are

less distinctive, and we did not examine these cells. To test for ceh-30::gfp expression

in embryonic CEMs, tra-2(n1106); unc-76(e911) animals were transformed with

ceh-30::gfp and the co-transformation marker P76-16B. The tra-2 mutation n 1106 was

used to avoid difficulties in distinguishing male embryos from hermaphrodite embryos.

tra-2(n 1106) causes partial masculinization of hermaphrodites, including a very strong

CEM survival phenotype. The CEM survival caused by tra-2(n1106) requires ceh-30

function (data not shown), indicating that in these masculinized animals ceh-30 must be

expressed where its function is required to promote CEM neuron survival. Thus, the

tra-2(n 1106) mutation enabled us to examine ceh-30 expression in embryos in which

the CEM neurons are fated to survive and in which ceh-30 is functioning to protect

these neurons from apoptotic cell death. An example of ceh-30::gfp expression in an

embryonic ventral CEM can be seen in Figure S1.
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Table 1. A ceh-30 gain-of-function mutation causes survival of the sexually dimorphic
CEM neurons by acting downstream of or in parallel to the sex determination pathway

A. Mutations in the ceh-30 locus semidominantly cause CEM survival.
CEM survival (%)

Genotype Sex None DORV DANDV n=
wild-type Herm. 100 0 0 60
wild-type Male 0 0 100 60
tra-2(n 1106) Intersex 0 8 92 60
egl- 1(n 084 n3082) Herm. 0 7 93 60
ced-4(n 1162) Herm. 0 6 94 63
ced-3(n2427) Herm. 85 15 0 113
ced-3(n717) Herm. 0 10 90 60
ceh-30(n3713gf)+ Herm. 22 72 7 60
ceh-30(n3714gf)+ Herm. 22 70 8 60
ceh-30(n3720gf)l+ Herm. 25 67 8 60
ceh-30(n3713gf) Herm. 0 47 53 60
ceh-30(n3714gf) Herm. 0 42 58 60
ceh-30(n3720gf) Herm. 0 48 52 60
ceh-30(n3713gfln3714gf) Herm. 0 50 50 60
ceh-30(n3713gf/n3720gf) Herm. 2 47 52 60

B. The ceh-30 mutation n3714 acts by gain-of-function to cause CEM neuron survival.
CEM survival in hermaphrodites (%)

Genotype ceh-30 locus None D ORV DAND V n=
wild-type + /+ 100 0 0 60
yDpl4 + + + + 100 0 0 60
ceh-30(n3714)1+ gf /+ 28 68 3 60
yDp14/+; ceh-30(n3714)/+ gf/+ / + 30 65 5 60
ceh-30(n3714) gf / gf 0 48 52 100
yDpl4/+; ceh-30(n3714) gf / gf / + 3 53 44 68
yDpl4; ceh-30(n3714) gf / gf / + / + 2 57 42 60

C. Gain of ceh-30 function promotes CEM survival downstream of or parallel to the fem
genes.

CEM survival in hermaphrodites (%)
Genotype None DORV DANDV n=

wild-type
ceh-30(n3714gf)
fem-I (e 1965)
fem-1(e1965); ceh-30(n3714gf)
fem-2(e2105)
fem-2(e2105); ceh-30(n3714gf)
fem-3(e1996)
fem-3(e 1996); ceh-30(n3714gf)

100

98
5
99

3
100

12

0
45

2
55

1
84
0
43

0
55

0
40

0
14
0

45

60
60
60
60

139
110
60
60
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A. In this and other tables, CEM survival was scored using a pkd-2::gfp reporter as

described in Materials and Methods. When CEM survival was scored using the

dissecting microscope, the left and right ventral CEMs could not readily be distinguished

from each other and the left and right dorsal CEMs could not readily be distinguished

from each other; CEM survival was therefore assessed for ventral CEMs and for dorsal

CEMs. The resulting numbers were found to be reproducible and sensitive to changes

in the degree of CEM death or survival. In this and in other tables, D OR V denotes

animals in which dorsal or ventral CEMs, but not both, were observed and indicates

animals displaying only weak CEM survival; D AND V denotes animals in which both

dorsal and ventral CEMs were observed and indicates animals showing strong CEM

survival. All animals were homozygous for nls133. Otherwise, the genotypes of the

animals analyzed were as listed, except for the heterozygotes, which were

heterozygous for unc-2(e55) and Ion-2(e678). Maternal genotype did not affect the

results concerning the heterozygotes (data not shown). tra-2(n1106) hermaphrodites

are weakly masculinized (Desai and Horvitz 1989). ced-3(n2427) and ced-3(n717)

animals are weakly and strongly defective in programmed cell death, respectively

(Shaham et al. 1999). Herm., hermaphrodite. tra-2(n1106) XX animals are largely

hermaphroditic with some male characteristics, including CEM survival.

B. All animals were homozygous for nls128. Otherwise, genotypes were as listed,

except that when the chromosomal duplication yDpl4 was present the strain was also

homozygous for unc-2(e55) and Ion-2(e678), and the ceh-30(n3714)+ strain was

heterozygous for unc-2(e55) and Ion-2(e678). ceh-30 locus, number of wild-type (+) and

mutant (gf) copies of the locus in each strain. An expanded version of this table,

examining all of the same dosage conditions using the duplication mnDp57 and using

the allele ceh-30(n3713gf), is shown in Supplementary Material (Table SI).
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C. All animals were homozygous for n/s133. Otherwise, the genotypes of the animals

analyzed were as listed. The fem-1(e1965) and fem-3(e 1996) homozygotes scored

were the progeny of crosses between femlnT1[qls51] males and fem homozygous

females; thus, half were XX females and half XO females. fem-2(e2105) homozygotes

scored were the progeny of maternally-rescued fem-2(e2105) homozygotes. An

expanded version of this table including similar results obtained using ceh-30(n3713gf)

is shown in Supplementary Material (Table S2).
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Table 2. The BarH homeodomain gene ceh-30 protects CEM neurons from apoptosis
and this function is evolutionarily conserved.

A. ceh-30(n4111) is a linked suppressor of ceh-30(n3714gf).
CEM survival in hermaphrodites (%)

Genotype None DORV DANDV n=
wild-type 98 2 0 100
ceh-30(n3714gf) 0 33 67 60
ceh-30(n4111 n3714) 98 2 0 60
ceh-30(n3714gf)/+ 15 67 19 81
ceh-30(n3714gfln4111 n3714) 13 68 19 120
ceh-30(n4111 n3714)/+ 97 3 0 120

B. The CEM neurons of ceh-30(lf) males inappropriately undergo programmed cell
death.

CEM survival in males (%)
Genotype None DORV DANDV n=

wild-type 0 0 100 60
ceh-30(n3714gf) 0 0 100 61
ceh-30(n4111 n37141f) 44 33 23 66
ceh-30(n4289A) 83 14 3 71
tra-1(e1099) 0 0 100 46
tra-1(e1099); ceh-30(n4111 n37141f) 51 47 2 45
egl-1(n1084 n3082) 0 0 100 62
egl-1(n1084 n3082); ceh-30(n4111 n37141f) 0 0 100 65
ced-3(n717) 0 0 100 60
ced-3(n717); ceh-30(n4111 n37141f) 0 0 100 60

C. The CEH-30 homologs mBarhl1 and mBarhl2 can rescue ceh-30(n4289A) for CEM
survival.

CEM survival in males (%)
ceh-30(n4289A) transgene: None DORV DANDV n=

No transgene
ceh-30 genomic locus
No cDNA insert
ceh-30 cDNA
mBarhll cDNA
mBarhl2 cDNA

42
26
43
36
53
48

A. All animals were homozygous for nls133. Otherwise, the genotypes of the animals

analyzed were as listed, except for the heterozygotes, which were heterozygous for

unc-2(e55) and Ion-2(e678).
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B. All animals were homozygous for nls133, and all animals not homozygous for

tra-1(e1099) were homozygous for him-5(e1467) or, in the case of strains containing

egl-1(n1084 n3082), for him-8(e 1489). The genotypes of the animals analyzed were

otherwise as listed. tra-1(e1099) homozygous animals were the self-progeny of

tra-1(e1099)1qC1 heterozygotes. An expanded version of this table, including

ced-4(n1162) and ceh-30(n4289A), is shown in Supplementary Material (Table S4).

C. All animals were homozygous for n1s133, him-5(e1467), and unc-76(e911).

Transgenic animals rescued for unc-76 were scored for CEM survival. Constructs are

described in the Supplemental Data. "ceh-30 genomic locus" is pBSK-ceh-30.
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Table 3. The cell-death-protective function of ceh-30 is specific to the CEM neurons.

A. ceh-30 mutations do not modify programmed cell death in the anterior pharynx.
Extra cells in the anterior pharynx

Genotype wild-type ced-3(n2427) ced-4(n3158)
wild-type 0 + 0 1.2 ± 0.2 4.2 ± 0.2
ceh-30(n3714gf) 0 ± 0 1.3 ± 0.2 4.3 ± 0.3
ceh-30(n4111 n37141f) 0 ± 0 1.1 + 0.2 4.1 ± 0.2
ceh-30(n4289A) 0 ± 0 1.2 ± 0.2 4.0 ± 0.4

B. ceh-30 mutations do not modify programmed cell death in the Pn.aap lineage.
Extra lin-11::gfp-expressing cells in the ventral nerve cord

Genotype wild-type ced-3(n2427) ced-4(n3158)
wild-type 0 + 0 2.4 + 1.1 4.5 ± 0.6
ceh-30(n3714gf) 0 + 0 2.5 ± 1.1 4.7 ± 0.6
ceh-30(n4289A) 0 + 0 2.7 ± 0.9 4.6 + 0.6

C. Persistent cell corpses in a ced-1 background and cell number in the ventral nerve
cord are inconsistent with nonspecific effects of ceh-30 on cell death.

Cell corpses in L1 heads Neurons in the ventral nerve cord
Genotype in a ced-1(e1735) background hermaphrodite male
wild-type 26.1 + 1.7 56.2 ± 1.1 56.4 + 1.0
ceh-30(n3714gf) 24.7 ± 2.7 55.7 ± 0.8 56.4 ± 1.3
ceh-30(n4289A) 26.0 ± 2.0 55.9 + 0.9 57.4 ± 1.7

A. The number of cells in the anterior pharynx was determined as described in Materials

and Methods. 20 animals of each genotype were counted. Error is standard deviation.

Genotypes were as listed.

B. The number of Pn.aap cells was determined using a modified nls106 lin-11::gfp

reporter for the VC neuron cell fate as described in Materials and Methods. 50 animals

of each genotype were counted. Error is standard deviation. All animals were

homozygous for nls106. Genotypes were otherwise as listed.

C. The numbers of persistent cell corpses in the heads of L1 larvae and of neuronal

nuclei in the ventral nerve cords of males and hermaphrodites were determined as

described in Materials and Methods. 10 animals of each genotype were counted. Error
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is standard deviation. Genotypes are as listed, except that ventral nerve cord neuronal

nuclei were counted in animals homozygous for him-5(e 1467).

211



Table 4. ceh-30 and sexual identity regulate CEM survival downstream of or in parallel
to egl-1 and ced-9.

Genotype in the presence of
nls133; ced-9(n2812); ced-3(n2427) Sex

wild-type Herm.
ceh-30(n3714gf) Herm.
ceh-30(n4289A) Herm.
egl-1(n1084 n3082) Herm.
egl-1(n1084 n3082); ceh-30(n3714gf) Herm.
egl-1(n1084 n3082); ceh-30(n4289A) Herm.
wild-type Male
ceh-30(n3714gf) Male
ceh-30(n4289A) Male
egl-1(n1084 n3082) Male
egl- (n1084 n3082); ceh-30(n3714gf) Male
egl-1(n1084 n3082); ceh-30(n4289A) Male

All animals except those containing egl-l(n108A

None
80
0

84
83

0
85

0
0

22
1
0

28

n3082)

CEM survival (%)
DORV DANDV

20 0
63 37
16 0
17 0
73 27
15 0

23 77
10 90
75 3
14 85
7 93

71 1

were homozygous for

him-5(e 1467). Animals containing egl-l(n1084 n3082) were homozygous for

him-8(e 1489). Genotypes were otherwise as listed. Note that the apparent lessening of

the ceh-30(n4289A) phenotype in these animals is a result of the presence of the defect

in cell killing caused by the weak mutation ced-3(n2427). Herm., hermaphrodite.
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89
63
74

103
77

100
71
70
63

101
71
92
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Table S1. The ceh-30 alleles n3713 and n3714 act by gain-of-function to cause CEM
survival.

Genotype
wild-type
yDpl4
mnDp57
ceh-30(n3713)/+
ceh-30(n3714)/+
yDp141+; ceh-30(n3713)l+
yDp141+; ceh-30(n3714)l+
mnDp571+; ceh-30(n3713)l+
mnDp571+; ceh-30(n3714)l+
ceh-30(n3713)
ceh-30(n3714)
yDp141+; ceh-30(n3713)
yDp141+; ceh-30(n3714)
mnDp57/+; ceh-30(n3713)
mnDp571+; ceh-30(n3714)
yDpl4; ceh-30(n3713)
yDpl4; ceh-30(n3714)
mnDp57; ceh-30(n3713)
mnDp57; ceh-30(n3714)

In this and other tables, CEM

described in Materials and ME

dissecting microscope, the lef

ceh-30 locus
+/+

+/+/+/+

gf / +
gf I/ +

gf / + /+
gf I/ + / +
gf / + / +
gf I/ + / +

gf / gf
gf / gf

gf I gf / +
gf / gf I/ +
gf I gf I/ +
gf / gf I/ +gf/gf/+/+

gf I gf I + / +
gf I gf I/ + / +
gf I gf I/ + / +
gf / gf I + / +

survival was sc

CEM
None
100
100

98
27
28
30
30
23
23

0
0
2
3
3
0
2
2
0
0

survival in hermaphrodites
D OR V D AND V

0 0
0 0
2 0

70 3
68 3
63 7
65 5
73 4
70 7
48 52
48 52
57 42
53 44
50 46
40 60
55 43
57 42
53 47
59 41

(%)
n=

6060
60
60
60
60
60

91
60

100
100

60
68
68
60
60
60
60
61

ored using a pkd-2::gfp reporter as

ethods. When CEM survival was scored using the

t and right ventral CEMs could not readily be distinguished

from each other and the left and right dorsal CEMs could not readily be distinguished

from each other; CEM survival was therefore assessed for ventral CEMs and for dorsal

CEMs, and the resulting numbers were found to be reproducible and sensitive to

changes in the degree of CEM death or survival defect. In this and in other tables, D OR

V denotes animals in which dorsal or ventral CEMs, but not both, were observed; D

AND V denotes animals in which both dorsal and ventral CEMs were observed. This

supplementary table is an expanded version of Table 1B and contains the data
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presented in that table. All animals were homozygous for nls128; otherwise, genotypes

were as listed except that when either duplication was present the strain was also

homozygous for unc-2(e55) and Ion-2(e678), and the ceh-30(n3713)l+ and

ceh-30(n3714)/+ strains were heterozygous for unc-2(e55) and Ion-2(e678). ceh-30

locus, number of wild-type (+) and mutant (gf) copies of the locus in each strain.
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Table S2. Gain of ceh-30 function promotes CEM survival downstream of or parallel to
the fem genes.

CEM survival in hermaphrodites (%)
Genotype None DORV DANDV n=

wild-type 1
ceh-30(n3713gf)
ceh-30(n3714gf)
fem-1 (e 1965)
fem-(e 1965); ceh-30(n3713gf)
fem-1(e1965); ceh-30(n3714gf)
fem-2(e2105)
fem-2(e2105); ceh-30(n3713gf)
fem-2(e2105); ceh-30(n3714gf)
fem-3(e1996) 1
fem-3(e 1996); ceh-30(n3713gf)
fem-3(e 1996); ceh-30(n3714gf)

This supplementary table is an expanded version

00
2
0

98
5
5

99
3
3

00
12
12

of Table

0
38
45

2
58
55

1
78
84
0

48
43

1C and

0
60
55
0

37
40

0
18
14
0

40
45

contains the

60
60
60
60
60
60

139
125
110

60
60
60

data

presented in that table. All animals were homozygous for nls133. Otherwise, the

genotypes of the animals analyzed were as listed. The fem-1(e1965) and fem-3(e 1996)

homozygotes scored were the progeny of crosses between femln T1 [qls51] males and

fem homozygous females; thus, half were XX and half XO females. fem-2(e2105)

homozygotes scored were the progeny of maternally-rescued fem-2(e2105)

homozygotes.
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Table S3. ceh-30(n4111 n3714) fails to complement ceh-30(n4289A) for CEM death in
males.

CEM survival in males (%)
Genotype in a tra-1(e1099) background None D OR V D AND V n=

wild-type 0 0 100 46
ceh-30(n4111 n3714)1+ 0 0 100 28
ceh-30(n4111 n3714) 70 30 0 50
ceh-30(n4289A)/+ 0 0 100 40
ceh-30(n4289A) 88 12 0 78
ceh-30(n4289A)ceh-30(n4 111 n3714) 84 16 0 50

All animals were homozygous for nls133 and tra-1(e1099) and were the progeny of

tra-1(e1099)qC1 heterozygotes. The genotypes were otherwise as follows, top to

bottom: +, +Iunc-2(e55) ceh-30(n4111 n3714) Ion-2(e678), unc-2(e55) ceh-30(n4111

n3714) Ion-2(e678), ceh-30(n4289)/dpy-6(e 4), ceh-30(n4289),

ceh-30(n4289)unc-2(e55) ceh-30(n4 11 n3714) Ion-2(e678).
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Table S4. Loss-of-function mutations in ceh-30 cause CEM death in males

CEM survival in males (%)
Genotype None DORV DANDV n=

wild-type 0 0 100 60
ceh-30(n3714gf) 0 0 100 61
ceh-30(n4111 n37141f) 44 33 23 66
ceh-30(n4289A) 83 14 3 71
tra-1(e1099) 0 0 100 46
tra-1(e1099); ceh-30(n4111 n37141f) 51 47 2 45
tra-1(e 1099); ceh-30(n4289A) 88 12 0 43
egl- (n1084 n3082) 0 0 100 62
egl-1(n1084 n3082); ceh-30(n4111 n37141f) 0 0 100 65
egl-1(n1084 n3082); ceh-30(n4289A) 0 0 100 63
ced-4(n 1162) 0 0 100 60
ced-4(n1162); ceh-30(n4111 n37141f) 0 0 100 60
ced-4(n1162); ceh-30(n4289A) 0 0 100 60
ced-3(n717) 0 0 100 60
ced-3(n717); ceh-30(n4111 n37141f) 0 0 100 60
ced-3(n717); ceh-30(n4289A) 0 0 100 60

This supplementary table is an expanded version of Table 2B and contains the data

presented in that table. All animals were homozygous for nls133, and all animals not

homozygous for tra-1(e1099) were homozygous for him-5(e1467) or in the case of

strains containing egl-1(n1084 n3082) for him-8(e1489); the genotypes of the animals

analyzed were otherwise as listed. tra-1(e 1099) homozygous animals were the

self-progeny of tra- (e1099)1qC heterozygotes.
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Table S5. The mutation n3714 causes gain-of-function specifically in ceh-30: a cis/trans
test

Genotype
wild-type
ceh-30(n3714gf)l+
ceh-30(n4111 n3714)/+
ceh-30(n3714gf)ceh-30(n4289A)

CEM survival in hermaphrodites (%)
None D ORV DANDV n=

99 1 0 104
24 64 12 100
96 4 0 115
24 70 8 102

All animals were homozygous for nls133 and heterozygous for unc-2(e55) and Ion-

2(e678). Genotypes were otherwise as indicated.
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Table S6. The conserved 22 amino-acid BARC (Bar homeodomain C-terminal) motif is
found in only Bar homeodomain proteins

Species
H. sapiens
H. sapiens
M. musculus
M. musculus
R. norvegicus
R. norvegicus
X. laevis
X. laevis
D. rerio
D. rerio
D. rerio
0. anatinus
S. purpuratus
C. intestinalis
D. melanogaster
D. melanogaster
D. ananassae
A. aegypti
C. elegans
C. elegans
C. briggsae
C. briggsae

Animal
Human
Human
Mouse
Mouse

Rat
Rat

Frog
Frog

Zebrafish
Zebrafish
Zebrafish
Platypus

Sea urchin
Sea squirt

Fly
Fly
Fly

Mosquito
Roundworm
Roundworm
Roundworm
Roundworm

Protein
BARHL1
BARHL2
Barhll
Barhl2
Barhll
Barhl2
XBH1
XBH2
Barhll
Barhl2

BarH1
BarH2
BarH1

CEH-30
CEH-31

CBG14125
CBG14126

Consensus:

Sequence
GLELLAEAGNYSAL-QRMF-

GLELLAEAGNYSAL-QRMF-

GLELLAEAGNYSAL-QRMF-

GLELLAEAGNYSAL-QRMF-

GLELLAEAGNYSAL-QRMF-

GLELLAEAGNYSAL-QRMF-
GLELLAEAGNYSAL - QRMF -

GLELLAEAGNYSAL-QRMF-

GLELLAEAGNYSAL-QRMF-

GLELLAEAGNYSAL-QRMF-

GLELLAEAGNYSAL-QRMF-
GLELLAEAGNYSAP-QRMF-
GLELLAEAGNYSASMQRLF-

PSPY
PSPY
PSPY
PSPY
PSPY
PSPY
PSPY
PSPY
PSPY
PSPY
PSPY
PSPY
APPY

GLELLAETGNYAAL-EQVL--PQTF
GLELLAEAGNFAAF-QRLYG-GSPY
GLELLAEAGNYAAF-QRLYGGATPY
GLELLAEAGNFAAF-QRLYG- GSPY
GLELLAEAGNYAAF - QRLYG- GPPY
GMDLLSEPGNLSAV-QNLIR- SSPY
GMDLLHDAGNMAAV-QQLLR- TNPY
GMDLLSEPGNLSAV-QNLIR-SSPY
GMDLLHDAGNMAAV-QQLLR- TNPY

N
LD DA A L Y

G LLx GNx Ax-QQ xx-xxP
ME EP S M F

R

Accession #
CAB92439
Q9NY43

EDL08401
AAH55789

P63156
088181

NP 001082021
AAG14451
XP 682832
AAH97030
AAU00059

XP_001507472
XP 785514
BAE06324
AAA28382
NP_523386
AAA28381
EAT39758

NP 508524
NP_508525
CAE68370
CAE68371

When a BLASTP search was performed using as its query sequence the Barhil peptide

GLELLAEAGNYSALQRMFPSPY, the only proteins identified with e-values less than 1

or with homology across the entire peptide contained Bar-subclass homeodomains

immediately N-terminal to the sequence homologous to this Barhll BARC motif. The

BARC motif is not found in the BarX family of transcription factors, which also contain

Bar-subclass homeodomains but have a different conserved motif C-terminal to their

homeodomains (Jones, F.S., C. Kioussi, D.W. Copertino, P. Kallunki, B.D. Hoist, and

G.M. Edelman. 1997. Barx2, a new homeobox gene of the Bar class, is expressed in

neural and craniofacial structures during development. Proc Natl Acad Sci U S A 94:

2632-7); this BarX-specific motif is in turn not found in proteins containing the BARC
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motif. 22 distinct Bar homeodomain proteins identified in our BLASTP search are listed

and are identified by accession numbers. An alignment of their conserved BARC motifs

is shown. A consensus sequence is shown immediately beneath the aligned peptide

sequences; in this consensus sequence, the most variable residues are marked as 'x.'

All vertebrate proteins identified in these searches, with the exception of one example

found in the platypus 0. anatinus, contained this peptide completely unchanged. To limit

redundancy, many identified vertebrate proteins containing a BARC motif are not

included in this figure; these include proteins found in the chimpanzee, rhesus monkey,

dog, horse, cattle, opossum, chicken, medakafish, and pufferfish.

220



Table S7. Rescue of ceh-30(n4289A) CEM death by the ceh-30 genomic locus and by
ceh-30::gfp

ceh-30(n4289A) with the transgene:
No transgene
ceh-30 genomic locus
ceh-30 genomic locus with stop codons
ceh-30::gfp

None
82
4

65
0

CEM survival
DORV

15
19
22
23

All animals were homozygous for nls133, him-5(e1467), unc-76(e911), and

ceh-30(n4289A). Transgenic animals rescued for unc-76 were scored for CEM survival.

Constructs are described in the Supplemental Data; "ceh-30 genomic locus,"

pBSK-ceh-30. "ceh-30 genomic locus with stop codons," pBSK-ceh-30-STOP.
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3
77
13
77

33
26
23
22
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Table S8. A gain-of-function allele of ced-9 is a poor protector of CEM neurons

CEM survival (%)
Genotype Sex None D OR V D AND V n=

wild-type
ceh-30(n4289A)
ced-9(n 1950gf)
ced-9(n1950gf);
wild-type
ceh-30(n4289A)
ced-9(n 1950gf)
ced-9(nl950gf);

ceh-30(n4289A)

ceh-30(n4289A)

Herm.
Herm.
Herm.
Herm.
Male
Male
Male
Male

100
100

8
9
0

82
0
0

0
0

75
83

0
16
0

10

0
0

17
8

100
1

100
90

60
60

160
90
60

597
355
280

All animals were homozygous for nls133 and him-5(e1467). Otherwise, the genotypes

of the animals analyzed were as listed.
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Table S9. ceh-30 does not require the C. elegans Inhibitor of Apoptosis (IAP) homologs
to protect the CEM neurons

CEM survival in hermaphrodites (%)
Genotype None D OR V D AND V n=

ceh-30(n3714gf) 2 63 35 60
bir-2(okl04A); ceh-30(n3714gf) 5 66 30 61
bir-1(n3329A) bir-2(okl04A); ceh-30(n3714gf) 3 65 32 60

All animals were homozygous for nls133. bir-1(n3329A) homozygous animals are

sterile, and the animals examined were therefore the progeny of heterozygous mothers.

Genotypes were otherwise as indicated.
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Figure legends

Figure 1

pkd-2::gfp is expressed in the CEM neurons and is a marker of CEM survival. Merged

fluorescence and visible light images. (A) Wild-type hermaphrodite. (B) Wild-type male.

(C) tra-2(n1106) partially masculinized hermaphrodite (D) ced-3(n717)

cell-death-defective hermaphrodite. (E) ceh-30(n3714gf) hermaphrodite. (F)

ceh-30(n4289A) male. All strains are homozygous for the pkd-2::gfp reporter nls133 and

him-5(e 1467). Genotypes are otherwise as indicated. Anterior is to the left, and ventral

is down.

Figure 2

The ceh-30 locus. (A) High-resolution genetic mapping of ceh-30 mutations. Scale

indicates location on LGX. Arrowheads indicate polymorphisms used to map

ceh-30(n3714gf) and ceh-30(n4111 n37141f). Coding regions for ceh-30 and nearby

genes are shown according to Wormbase (http://WS160.Wormbase.org). The

sequenced cosmid M02F4 is similar to the cosmid C13G6. The ceh-30 genomic

rescuing construct is shown as a horizontal bar labeled "BSK-ceh-30." The intervals

containing n3714gf and n41111f are indicated with dotted lines (see Materials and

Methods). (B) Genomic organization of the ceh-30 locus. Locations and natures of

ceh-30 mutations are indicated. The portion of the ceh-30 locus encoding the

homeodomain is indicated by the split dotted box. (C) Alignment of the indicated

sections of the predicted CEH-30 protein with its Drosophila homologs BarH1

(accession number AAA28382) and BarH2 (accession number M82884) and mouse
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homologs mBarhll (accession number AAH55731) and mBarhl2 (accession numer

AAH55789). On the line labeled "Conserved," Residues identical among all five proteins

are named and residues similar among all five proteins indicated with a plus symbol.

The PFAM consensus homeobox domain (accession number PH00046) is shown. A

black box surrounds the conserved residues that define the BARC motif we have

identified as specific to Bar-subclass homeodomain proteins (see Table S6). (D) The

putative TRA-1A binding sites of ceh-30 and egl-1 in C. elegans and related nematodes

are shown (http://genome.wustl.edu), with ceh-30(gf) mutations n3713, n3714, and

n3720 and the homologous egl-1(n2248gf) mutation underlined. The core of the TRA-1

consensus binding site (Zarkower and Hodgkin 1993) is indicated. (E) TRA-1A binds to

the wild-type but not to the n3714gf mutant predicted TRA-1A binding site in the second

intron of ceh-30. 1 ng of labeled probe was shifted by in vitro-translated TRA-1A (lane 2)

but not by in vitro translation products made without a tra-1 template (lane 1). This

binding was competed by excess unlabelled wild-type probe (lanes 3-5) but only poorly

by excess n3714gf mutant probe (lanes 6-8).

Figure 3

(A) A model for the regulation of CEM neuron survival by the sex determination pathway

and by ceh-30. In the wild-type hermaphrodite, TRA-1 is active and binds an intronic

regulatory site of ceh-30, preventing ceh-30 transcription and thereby preventing CEM

survival. In the wild-type male, TRA-1 is inactive; ceh-30 is therefore expressed and

protects the CEM neurons from programmed cell death. In a ceh-30 gain-of-function

hermaphrodite, TRA-1 is active but is unable to bind the mutated regulatory site, so
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ceh-30 is expressed and protects the CEMs. In a ceh-30 loss-of-function male, ceh-30

is expressed but is nonfunctional and unable to protect the CEM neurons from

programmed cell death. (B) ceh-30 acts as a genetic switch for CEM neuron survival: if

ceh-30 is active, CEMs live; if ceh-30 is inactive, CEMs die. Normally, ceh-30 is on

active males and inactive in hermaphrodites. (C) A representation of the sensitivity to

programmed cell death controlled by ceh-30. In hermaphrodites the CEM neurons

express the killer gene egl-1, which promotes their deaths. In males, the CEM neurons

have ceh-30 activity,which desensitizes these cells to programmed cell death by acting

downstream of or in parallel to egl-1 and ced-9. Such a CEH-30-protected CEM neuron

will live even when EGL-1 is expressed. (D) A model for the genetic pathway for the

regulation of CEM neuron death by the determination of sexual identity. See text for

details.

Figure S1

A rescuing ceh-30::gfp transgene is expressed in ventral CEM neurons in embryos.

ceh-30::gfp expression in a 1.5-fold stage masculinized embryo is shown. Arrowheads

indicate GFP expression in the nuclei of the CEMVR neuron and the CEPVR neuron.

Other nuclei also visibly contain fluorescence as a result of the ceh-30::gfp transgene.

(A) Fluorescence micrograph showing ceh-30::gfp expression. (B) Nomarski image

showing CEMVR and other nearby neurons. A composite image composed of three

focal planes was used to maximize visibility of nuclei anterior and posterior of the

CEMVR nucleus. (C) Merged image of panels A and B. Anterior is to the left, dorsal is
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up. For details, see the section of the Supplemental Materials and Methods titled

"Examining embryonic CEM neurons for ceh 30::gfp expression."
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Chapter IV

The green pharynx phenotype of C. elegans defines

a novel set of genes that function in transcriptional repression

Hillel T. Schwartz, Dawn M. Wendell, and H. Robert Horvitz

As an undergraduate working under my supervision, Dawn Wendell performed the
clonal genetic screen for green pharynx mutants, recovering 22 green pharynx mutants
and one additional mutant (see Appendix II). Dawn performed complementation tests
and mapping experiments concerning many of the 31 green pharynx mutants identified
in clonal screens for the green pharynx phenotype. I performed all of the other work
presented in this chapter.
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Abstract

The C. elegans synthetic multivulva (synMuv) genes are grouped in two classes, A and

B, that redundantly inhibit vulval induction. Class B synMuv genes encode homologs of

mammalian genes involved in chromatin modification and transcriptional regulation. We

report that loss of function of any of five synMuv genes - the class A synMuv gene lin-8

and the class B synMuv genes gei-4, hpl-2 HPI, lin-13, and lin-61 L3MBT- can cause

a new phenotype of transgene misexpression, resulting in GFP fluorescence in the

pharynx, the green pharynx phenotype. This phenotype reflects the loss of a

transcriptional repression activity that prevents inappropriate transcriptional activation.

The identification of the class A synMuv gene lin-8 with four class B synMuv genes

suggests that these genes can act in a combination that trangresses the previously

described synMuv gene classes and that the class A synMuv gene lin-8 acts in

transcriptional repression. From genetic screens, we identified genes that encode the

MSP domain protein PAG-6 and the LIN-8 homolog LNES-1, a weak synMuv

suppressor, as also mutating to cause the green pharynx phenotype. We propose that

the seven green pharynx proteins form a complex that prevents activation driven by

nearby sequences in order to ensure proper transcriptional regulation of endogenous

genes.
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Introduction

The tissue-specific and temporal regulation of transcription is crucial in

development and in the prevention of disease: genes must be expressed in the proper

tissues, at the proper levels, and at the proper times. Mechanisms must exist that cause

genes to be transcribed appropriately. One way that proper transcriptional regulation is

achieved is by the establishment and maintenance of repressive and open chromatin

structures (WALLACE and FELSENFELD 2007; TAKIZAWA and MESHORER 2008). Chromatin

function is critical to cell identity (FISHER 2002), and defects in chromatin are associated

with disease (FEINBERG et al. 2006; KRIVTSov and ARMSTRONG 2007; ESTELLER 2008).

Many of the synthetic multivulva (synMuv) genes of C. elegans encode

regulators of chromatin structure and transcription (reviewed by ANDERSEN and HORVITZ

2007; FAY and YOCHEM 2007). Following the finding that the multivulval (Muv)

phenotype of a mutant strain resulted from loss of function of two genes, lin-8 and lin-9

(lin, abnormal cell lineage) (HORVITZ and SULSTON 1980), two classes of synMuv genes,

class A and class B, were identified as being redundantly required to prevent ectopic

vulval development (FERGUSON and HORVITZ 1985). Animals lacking the function of a

class A gene and a class B gene, but not animals lacking the function of one or more

genes of the same class, display a strong vulval phenotype (FERGUSON and HORVITZ

1989; ANDERSEN et al. 2008). Genetic screens, RNAi screens and testing of candidate

mutants have identified four class A synMuv genes and at least 34 class B synMuv

genes (FERGUSON and HORVITZ 1985; LU and HORVITZ 1998; HSIEH et al. 1999; VON

ZELEWSKY et al. 2000; CEOL and HORVITZ 2001; COUTEAU et aL 2002; UNHAVAITHAYA et

aL 2002; THOMAS et al. 2003; CEOL and HORVITZ 2004; POULIN et al. 2005; CEOL et al.
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2006; GROTE and CONRADT 2006; ANDERSEN and HORVITZ 2007) (E. Andersen and

H.R.H., unpublished results). The class B synMuv genes include homologs of known

regulators of chromatin structure and of transcription, including the Rb homolog lin-35

(Lu and HORVITZ 1998), the heterochromatin protein 1 (HP1) homolog hpl-2 (COUTEAU

et al. 2002), and members of a DRM and a NuRD-like complex (VON ZELEWSKY et al.

2000; UNHAVAITHAYA et al. 2002; HARRISON et al. 2006). The synMuv genes have been

suggested to prevent ectopic vulval induction by transcriptional repression of the

EGF-like ligand lin-3 (Cui et al. 2006a). LIN-3 is an inductive signal required for vulval

development (HILL and STERNBERG 1992). Further investigation of the synMuv

phenotype has led to the identification of synMuv suppressors, genes that provide

functions opposed to those of the synMuv genes. Not surprisingly, the synMuv

suppressor genes also encode modifiers of chromatin structure and of transcription,

including proteins homologous to members of the COMPASS and NURF complexes

(ANDERSEN et al. 2006; Cui et al. 2006b; ANDERSEN and HORVITZ 2007).

In addition to causing a multivulva phenotype when combined with class A

synMuv mutations, many class B synMuv mutations cause other defects in the absence

of a class A synMuv mutation. Many of the phenotypes associated with subsets of the

class B synMuv genes are likely to reflect defects in transcriptional regulation. Some

class B synMuv mutants, including lin-35 Rb, show the Tam (tandem array modification)

phenotype of reduced expression from repetitive transgenes (HSIEH et al. 1999; TSENG

et al. 2007). SynMuv single mutants have also been found to be associated with

derepression of germline-specific gene expression, specifically pgl-1 in the soma

(UNHAVAITHAYA et al. 2002; WANG et al. 2005; LEHNER et al. 2006). Because repetitive
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transgenes are transcriptionally repressed in the C. elegans germline (KELLY et al.

1997), it has been proposed that the Tam and pgl-1 derepression phenotypes reflect a

common mechanism of gene repression (WANG et al. 2005). A group of genes that

includes both class B synMuv and non-synMuv genes has been shown to cause

derepression of a lag-2::gfp reporter (DUFOURCQ et al. 2002; POULIN et al. 2005).

We report the identification of a novel set of genes that function to prevent a new

phenotype of transgene derepression, the green pharynx phenotype. We propose that

transcriptional repression complexes are recruited to transgenes and act to prevent

activation driven by nearby cryptic or weak enhancer elements, and that for selected

transgenes, a single mechanism, provided by the green pharynx genes, fulfills this

function. From testing candidate regulators and through large-scale genetic screens, we

identify seven genes that can mutate to cause the green pharynx phenotype. These

genes are the class A synMuv gene lin-8, the class B synMuv genes gei-4, hpl-2 HP1,

lin-13, and lin-61 L3MBT and the previously uncharacterized genes Ines-1 and pag-6.

We propose that these seven genes function together to ensure proper regulation of

gene expression by preventing the inappropriate activation of transcription.

Results

The green pharynx phenotype is likely a defect of transcriptional derepression

In the course of genetic screens using pkd-2::gfp (gfp, green fluorescent protein)

cell-fate reporters, which normally are strongly expressed only in male-specific neurons

(BARR and STERNBERG 1999), intended to identify mutant hermaphrodites with

pkd-2::gfp-expressing CEM neurons (see Chapter II and Appendix II), we isolated 29
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mutations causing expression from integrated pkd-2 transgenes in the posterior

pharynx, a tissue than normally does not express this transgene (see Figure 1A).

Because of the inappropriate expression of these gfp reporter transgenes causes green

fluorescence in the posterior pharynx, we refer to this phenotype as the green pharynx

phenotype.

We deduced the first clues to the biological defect underlying the green pharynx

phenotype from the transgene requirements of the green pharynx phenotype. We

initially observed the green pharynx phenotype in screen isolates after mutagenesis of

strains containing three different versions of the pkd-2::gfp reporter, each integrated on

a different chromosome: nls133 I, nls128 II, and nls130 IV. We observed the

green pharynx phenotype in a green pharynx mutant containing an extrachromosomal

pkd-2::gfp reporter transgene and with pkd-2::gfp transgenes containing a lin-15(+) or

an unc-119(+) co-injection marker (see Materials and Methods). The phenotype was

thus not dependent on chromosomal integration, let alone on particular sites of

chromosomal integration, nor was it dependent on one particular co-injection marker.

Using microparticle bombardment (PRAITIS et al. 2001), we generated two integrated

pkd-2::gfp transgenes likely to be of low copy number and found that these transgenes

could also lead to the green pharynx phenotype. Finally, of several other reporter

transgenes tested (see Materials and Methods), three, the modified lin-11::gfp reporter

nls106 (REDDIEN et al. 2001), the flp-15::gfp reporter ynls45 (KIM and LI 2004), and the

lag-2::gfp reporter qls56 (SIEGFRIED and KIMBLE 2002), also had inappropriate gfp

expression in the posterior pharynx in green pharynx mutants not seen in a wild-type
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genetic background. The phenomenon of the green pharynx phenotype is therefore not

unique to strains containing a pkd-2::gfp reporter.

Following an insightful suggestion by Susan Mango (personal communication),

who had previously observed the presence of cryptic pharyngeal enhancer activity

provided by the common plasmid backbone of the vectors developed by Andrew Fire

(A. Fire, personal communication) and commonly used in the construction of gfp

reporter constructs, particularly when little or no promoter sequence had been inserted

into the multiple cloning site, we found that green pharynx mutants containing an

extrachromosomal pkd-2::gfp reporter transgene that lacked the vector backbone (see

Materials and Methods) showed expression specific to pkd-2 but did not show the

green pharynx phenotype. These results, which are summarized in Figure 1B,

suggested that the ectopic expression seen in the green pharynx phenotype was

caused by the cryptic pharyngeal enhancer present in the vector backbone and that in

green pharynx mutants carrying the pkd-2::gfp reporter there was a defect in a

mechanism that would normally prevent expression driven by this cryptic enhancer. The

pharyngeal expression from which the green pharynx phenotype acquires its name

therefore likely comes from the pharynx-specific nature of the cryptic promoter coupled

with a broader defect in transcriptional repression and not from transcriptional

derepression specific to the pharynx.

Identification of synMuv mutants causing a green pharynx phenotype

Of the initial 29 green pharynx screen isolates, one, the strain containing the

green pharynx mutation n3605, showed a multivulva phenotype similar to that seen in
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class A synMuv; class B synMuv double mutants. Many synMuv genes were known to

encode proteins homologous to regulators of gene expression and chromatin structure

(reviewed by ANDERSEN and HORVITZ 2007; FAY and YOCHEM 2007), and it was known

that animals lacking the function of any of several class B synMuv genes displayed

alterations in transgene expression (HSIEH et al. 1999; DUFOURCQ et al. 2002;

UNHAVAITHAYA et al. 2002). We tested every known synMuv gene for which mutant

alleles were available for the ability to cause the green pharynx phenotype (see

Table 1). We also performed feeding-RNAi treatment targeting the candidate class B

synMuv genes E01A2.4 NKAP and WOIG7.3 RPB11; neither treatment caused the

green pharynx phenotype (data not shown). We additionally tested alleles of selected

genes believed to function together with, in opposition to or in parallel with the synMuv

genes (see Table Sl). Loss-of-function mutations in of any of four synMuv genes of 36

tested caused the green pharynx phenotype. One of the four genes is the class A

synMuv gene lin-8, which encodes a novel protein (FERGUSON and HORVITZ 1989;

DAVISON et al. 2005). The other three are class B synMuv genes: lin-13, which encodes

a protein with 24 zinc finger motifs (MELENDEZ and GREENWALD 2000); hpl-2, which

encodes a protein with homology to mammalian heterochromatin protein 1 (COUTEAU et

al. 2002); and lin-61, which encodes an MBT (Malignant Brain Tumor) repeat-containing

protein with similarity to the chromatin remodeling factor L3MBTL1 (HARRISON et al.

2007). The green pharynx phenotype is the first phenotype reported to be caused by

both class A and class B synMuv mutations (see Discussion). The original Muv

green pharynx isolate was found to contain two separate synMuv mutations, the lin-8

allele n3605 (see Tables 2, 3) and an unidentified class B synMuv mutation on LGIII
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(C. Ceol and H.R.H., unpublished observations). No other synMuv, synMuv-related, or

chromatin factor mutation tested, nor any of the many dozens of other previously

characterized mutations used in the course of building strains containing reporter

transgenes, have been found to cause the green pharynx phenotype (Tables 1 and S1

and data not shown).

A clonal screen for mutations causing the green pharynx phenotype

From the initial screens intended to recover hermaphrodites with

pkd-2::gfp-expressing CEM neurons, we had recovered 29 green pharynx mutants.

These 29 mutations included 24 alleles of lin-8, one allele of lin-13, and four alleles of

two previously uncharacterized genes, now named Ines-1 and pag-6 (see below). We

performed additional, clonal screens in which we looked for expression of the pkd-2::gfp

reporter in the pharynges of late embryos and young larvae trapped within

egg-laying-defective mothers. These mothers also contained the heterozygous and

wild-type siblings of the phenotypic animals, permitting the recovery of mutations that

cause sterility or lethality (see Materials and Methods). From these screens, we

recovered 31 green pharynx mutants. An additional twelve green pharynx mutants were

recovered as incidental isolates in screens that made use of pkd-2::gfp transgenes but

were not intended to identify mutations causing the green pharynx phenotype: four

green pharynx isolates from a screen for suppressors of tra-2(n1106)-induced CEM

neuron survival (H.T.S. and H.R.H., unpublished results); four green pharynx isolates

from a screen for suppressors of the Unc phenotype of cnd-l(n3786) (H.T.S. and

H.R.H., unpublished results); and four green pharynx isolates from screens for
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suppressors of ceh-30(n3714gf)-induced CEM neuron survival (J. Varner, H.T.S., and

H.R.H., unpublished results). Two additional green pharynx mutations were discovered

in the course of strain constructions as previously unnoticed mutations in strains from

the Horvitz laboratory strain collection. In all, we recovered 74 independent isolates

(Table 2).

The 74 green pharynx isolates include 57 alleles of known synMuv

green pharynx genes: 44 lin-8 alleles, four lin-61 alleles, and nine lin-13 alleles,

including five lin-13 mutations causing recessive sterility. Fourteen mutations defined

the new gene Ines-1 (see below). An additional two mutations, n4319 and n3599, were

the first known mutations in the genes gei-4 and pag-6, respectively (see below). One

additional mutation, n3841 I, caused a weak and impenetrant green pharynx phenotype

and has not been assigned to a gene (see Materials and Methods). No alleles of hpl-2

were recovered.

Molecular identification of synMuv- and green pharynx-specific alleles of lin-8

The molecular lesions in nine loss-of-function mutations of lin-8 have previously

been reported (DAVISON et al. 2005). We determined the molecular lesion in every

known allele of In-8 (see Table 3). Twenty-three lin-8 alleles have been isolated on the

basis of their ability to cause a class A synMuv phenotype (A. Saffer, J. Doll, and

H.R.H., unpublished results) (FERGUSON and HORVITZ 1989; THOMAS et al. 2003). We

tested these 23 alleles for their ability to cause the green pharynx phenotype and found

that 22 caused the green pharynx phenotype. The one allele from among these 23 that

did not cause a green pharynx phenotype is the missense mutation lin-8(n2376), which
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causes the amino acid substitution E148K. lin-8(n2376) causes a class A synMuv

phenotype as strong as those caused by likely null mutations in lin-8 (DAVISON et al.

2005).

We tested the 44 lin-8 alleles recovered based on their green pharynx

phenotypes to determine whether they were synthetically Muv in combination with the

class B synMuv mutation lin-36(n766) (see Materials and Methods). lin-36(n766) was

chosen for these tests of class A synMuv activity as it is a class B synMuv mutation that

was known not to cause the Tam phenotype of altered transgene expression (HSIEH et

al. 1999) and because lin-36(n766) did not cause synthetic lethality in combination with

the green pharynx mutation pag-6(n3599) (see below). Of these 44 lin-8 alleles, 32

caused a strong Muv phenotype in combination with lin-36(n766), ten were never

observed to cause a synMuv phenotype and two caused only a weakly penetrant and

weakly expressive Muv phenotype in combination with lin-36(n766) (see Table 3). DNA

sequence determination of the lin-8 alleles revealed that, of the ten alleles that did not

cause an apparent synMuv phenotype and the two alleles that were only weakly

synMuv, nine were missense mutations, including two pairs of identical mutations; two

affected splice sites; and one was a single base-pair change 12 nucleotides before the

start of translation.

Loss of the lin-8 homolog Ines-1 causes the green pharynx phenotype and weakly

suppresses the synMuv phenotype

Fourteen green pharynx mutations were assigned to a complementation group

defined by the allele n3688. Mapping placed n3688 in a 78 kb interval that contains
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seven genes, including lin-8 and the lin-8 homologous gene B0454.9, which we named

Ines-1 (Ines, LIN-EIGHT similarity) (see Materials and Methods). Ines-1 encodes the

closest of 16 identified homologs of LIN-8 in C. elegans (DAVISON et al. 2005).

Determination of DNA sequences showed that the gene affected by these

green pharynx mutations is Ines-1. Eight of the 14 alleles are nonsense mutations, two

alter splice acceptor sites, one is a 81 base-pair deletion that removes a splice acceptor

site, and two independently isolated mutations cause an identical nucleotide change,

resulting in the predicted missense change R119C (see Table 4). The remaining

mutation, n3814, complemented lin-8(n3686A) and failed to complement Ines-1(n3688);

however, no coding mutation was found in Ines-1 in n3814 animals. A transgene

containing the single gene Ines-1 (see Figure 2A and see Materials and Methods)

rescued the green pharynx phenotype of Ines-1(n3917A) mutants. GFP-tagged versions

of this transgene (see Materials and Methods) rescued the green pharynx phenotype of

Ines-1(n3917A) mutants and caused the accumulation of green fluorescent LNES-1

fusion protein in the nuclei of most or all cells (see Figure SI).

Like LNES-1, LIN-8 is found in the nuclei of most or all cells (DAVISON et al.

2005). Like other members of this family, LNES-1 and LIN-8 share extensive homology

in their N- and C-termini, with a more divergent core region (see Figure 2B). No

biological function has been associated with this divergent core domain, but biochemical

studies indicate that it is capable of interacting with the class B synMuv protein

LIN-35 Rb in vitro (DAVISON et al. 2005). The identified missense mutations in LIN-8 and

the single missense mutation identified in LNES-1 are shown in Figure 2B. The single

missense mutation identified in Ines-1, caused by both n3604 and n3689, results in the
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change R119C; the corresponding residue is mutated in the lin-80f) alleles n3585 and

n3598, suggesting that this arginine residue is important for the functions of both lin-8

and Ines-1. This arginine residue is not conserved in other members of the C. elegans

LIN-8 family (DAVISON et al. 2005).

Because Ines-1 shares a function in the green pharynx phenotype with several

synMuv genes, and because the protein LNES-1 is so closely related to the class A

synMuv protein LIN-8, we tested whether loss of Ines-1 function might similarly cause,

or at least modify a synMuv phenotype. When the putative null allele Ines-1(n3917) or

the missense allele Ines-1(n3604) were combined in double mutants with the strong

class A synMuv mutant lin-15A(n767) or the strong class B synMuv mutant

lin-15B(n744), no synthetic Muv phenotype was observed (Table 5), even at higher

temperatures previously shown to sensitize the synMuv phenotype (FERGUSON and

HORVITZ 1989). Under temperature conditions sensitized to cause partially penetrant

synMuv phenotypes, the putative null allele Ines-1(n3917) caused a small but

reproducible reduction in the strength of the synMuv phenotypes of either of two partial

loss-of-function lin-15AB double mutants, lin-15AB(n765ts) and lin-15(n2993 n433)

(Table 5 and data not shown). The synMuv suppression caused by loss of Ines-1

function was weak compared to the suppression seen for strong synMuv suppressors,

such as loss of isw-1 function (ANDERSEN et al. 2006), but was comparable to the effects

of other established synMuv suppressors (Cui et al. 2006b).

The green pharynx mutation n4319 is an allele of the class B synMuv gene gei-4
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We mapped the green pharynx mutation n4319 to the far left end of LGIII.

Further mapping placed n4319 within the first 527 kb of LGIII, a region that showed very

little or no recombination between the wild-type strain N2 and the polymorphic Hawaiian

strain CB4856 (see Materials and Methods). n4319 causes a weakly semidominant

green pharynx phenotype. Transformation rescue experiments using cosmids

representing -363 kb of this 527 kb interval showed that a transgene containing the

cosmids W07B3 and K10F12, but not transgenes containing any of the other cosmids

tested, was capable of rescuing the green pharynx phenotype caused by n4319 (see

Materials and Methods). DNA sequence determination of candidate genes on the two

cosmids identified a late nonsense mutation in the gene gei-4 (gei, GEX interacting

molecule), causing the predicted change Q505ochre. Transgenes containing the single

gene gei-4 could rescue the green pharynx phenotype caused by gei-4(n4319) (see

Materials and Methods).

gei-4 is predicted to encode a 545 amino acid protein that contains a coiled-coil

domain (FINN et al. 2006). GEI-4 has previously been identified as a possible physical

interactor with GEX-2 (TsuBOI et al. 2002), an evolutionarily conserved protein required

for cell morphology and migration in C. elegans embryonic development (SOTO et al.

2002). GEX-2 is a homolog of the human protein Sra-1, which interacts with an

activated form of the GTPase Rac (KOBAYASHI et al. 1998). The significance of this

reported physical interaction is not clear. Using BLAST searches with GEI-4, we

identified proteins in other organisms similarly predicted to contain coiled-coil domains,

but we detected no homology with other proteins outside of the predicted coiled-coil

domain, and no other conserved domains were identifiable within GEI-4.
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gei-4 has previously been identified in a genome-wide RNAi-feeding study as a

class B synMuv gene (POULIN et al. 2005). Injection of dsRNA targeting gei-4 for RNAi

caused early embryonic lethality, and the rare viable escapers possessed a

green pharynx phenotype but did not display a synMuv phenotype (data not shown). To

further examine the effects of gei-4(RNAi), we performed zygotic RNAi. Briefly, we

injected dsRNA into RNAi-defective rde-1(ne219) hermaphrodites. The injected animals

were then mated with males wild-type for rde-1, such that RNAi would become effective

only after the onset of zygotic gene expression (HERMAN 2001). As was previously seen

for RNAi-feeding targeting gei-4, zygotic RNAi targeting gei-4 caused a strong class B

synMuv phenotype (Table 6A).

The green pharynx allele gei-4(n4319), which causes a variably penetrant and

semidominant green pharynx phenotype, did not cause a synMuv defect in combination

with either the strong class A synMuv mutation lin-15A(n767) or the strong class B

synMuv mutation lin-15B(n744) (Table 6A). gei-4(n4319) did increase both the

penetrance and the expressivity of the Muv phenotype of the synMuv double mutant

lin-15AB(n2993 n433) (Table 6B and data not shown). These results suggest that gei-4

is, as previously reported, a class B synMuv gene, and that the semidomonantly acting

mutation n4319 either causes a defect in GEI-4 function largely specific to the

green pharynx phenotype or, more likely, causes a weak dominant-negative activity

insufficient to cause a synMuv phenotype.
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pag-6(n3599) causes altered function of Y015C5B.19, which encodes a nuclear

protein with an MSP domain and a C-terminal domain homologous to C. elegans

proteins

The green pharynx mutation n3599 defined the gene pag-6 (pag, pattern of

reporter gene expression abnormal). pag-6(n3599) animals had a fully penetrant

recessive green pharynx phenotype and were severely egg-laying defective (data not

shown). We mapped pag-6(n3599) to a 103 kb interval at the far right end of LGIV (see

Figure 3A and Materials and Methods). This interval is predicted to contain 13 genes

that encode proteins and at least 165 noncoding RNAs. A 9.1 kb PCR product

containing the single gene Y105C5B. 19, but not PCR products containing Y105C5B.20

or Y105C5B.21, rescued the green pharynx phenotype of pag-6(n3599). DNA sequence

determination of n3599 mutant animals identified a missense mutation causing the

predicted amino acid change E425K in the 484 amino acid protein Y105C5B.19, now

named PAG-6.

The single green pharynx allele of pag-6, n3599, recessively caused a

green pharynx phenotype. Heterozygotes between pag-6(n3599) and the chromosomal

deficiency sDf23 resembled pag-6(n3599) homozygotes. The green pharynx phenotype

caused by pag-6(n3599) could be rescued by a transgene containing a wild-type copy

of pag-6. All of these observations are consistent with n3599 causing reduction of gene

function. However, when pag-6 was targeted for RNAi using dsRNAs targeting exon 1

or targeting exons 5 through 7 of pag-6, no resulting green pharynx phenotype was

observed. On the contrary, RNAi of pag-6 completely suppressed the green pharynx

phenotype of pag-6(n3599), and also suppressed the Egl and scrawny phenotypes
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associated with pag-6(n3599) (see below). Similarly, the green pharynx, Egl, and

scrawny phenotypes associated with pag-6(n3599) were all suppressed by a

loss-of-function mutation in pag-6, n5161. We identified n5161 as a spontaneously

arising mutation in the pag-6(n3599) background and found n5161 to be a

single-nucleotide deletion causing a predicted frameshift early in the pag-6 open

reading frame, after codon 83 (see Figure 3B and see Materials and Methods). As

would be expected based on the green pharynx phenotype seen in pag-6(n3599)sDf23

heterozygotes, the pag-6 loss-of-function allele pag-6(n3599 n51611f) failed to

complement pag-6(n3599) for the green pharynx phenotype. These results strongly

suggested that the n3599 mutation causes altered gene function that is antagonized by

the presence of wild-type pag-6 function. Reinforcing this hypothesis, a multicopy

transgene containing a version of the pag-6 rescuing fragment modified to include the

missense mutation n3599 could cause the green pharynx phenotype (data not shown).

The predicted protein PAG-6 is 484 amino acids long and contains only one

recognizable domain, an N-terminal MSP (major sperm protein) domain (Figure 3B).

The C-terminus of PAG-6, which contains the missense mutation n3599, is closely

related to three other predicted C. elegans proteins that are homologous across the

length of this C-terminal domain (see Figure 3C) and more distantly related to two other

C. elegans proteins; of these proteins with C-terminal homology, one, M199.2, is also

predicted to contain an MSP domain. RNAi targeting the first exon of pag-6 and the

pag-6 frameshift mutation n5161, which occurs early within the MSP domain, each

suppressed the green pharynx phenotype caused by pag-6(n3599), demonstrating that

pag-6 is indeed encoded by a single transcript containing both the N-terminal MSP
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domain and the conserved C-terminus mutated by n3599. There are no identifiable

non-nematode homologs of the PAG-6 C-terminus.

Nematode proteins containing MSP domains have been suggested to act in

cytoskeletal analogs of actin filaments (ROBERTS and KING 1991) or as secreted ligands

in ephrin signaling (MILLER et al. 2001; MILLER et al. 2003). The function of MSP domain

proteins as secreted ligands in ephrin signaling is evolutionarily conserved from

nematodes to mammals (TSUDA et al. 2008). The vertebrate proteins that contain MSP

domains belong to the VAP (VAMP-Associated Protein) family. In addition to their MSP

domains, members of the VAP protein family also contain coiled-coil and

transmembrane domains, which are not found in PAG-6. The VAP family is broadly

conserved in eukaryotes, from the fission yeast S. cerevisiae Scs2p to vertebrate

VAP-33, including the predicted C. elegans protein VPR-1 (NIKAWA et al. 1995; SKEHEL

et al. 1995; WEIR et al. 1998; NISHIMURA et al. 1999; PENNETTA et al. 2002; TSUDA et al.

2008). The VAP proteins have been implicated in a number of functions, including

endoplasmic reticulum organization (PERRY and RIDGWAY 2006), vesicular transport

(SKEHEL et al. 1995; FOSTER et al. 2000), and fatty acid metabolism (PERRY and

RIDGWAY 2006). Despite these non-nuclear functions of MSP proteins in nematodes and

of the VAP family proteins and consistent with the likely role of pag-6 in regulating

transcription, fluorescence from a translational pag-6::gfp fusion transgene capable of

rescuing the green pharynx phenotype caused by pag-6(n3599) was tightly localized

within the nucleus, with expression seen in most or all cells (Figure S2 and data not

shown).
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The green pharynx mutation pag-6(n3599) causes a class B synMuv phenotype

and is synthetically lethal with loss-of-function mutations in selected synMuv

genes

The pag-6 altered function mutation n3599 did not cause a synMuv phenotype in

combination with any class B synMuv mutant tested (Table 8A and data not shown). A

weak synthetic Muv phenotype was observed in double mutants between pag-6(n3599)

and the class A synMuv mutant lin-15A(n767) and in double mutants between

pag-6(n3599) and the class A synMuv mutant lin-38(n751), mostly at higher

temperatures (Table 7A and data not shown). The synthetic Muv phenotypes of

pag-6(n3599); In-15A(n767) and in lin-38(n751); pag-6(n3599) double mutants were

only partially penetrant, and the ectopic vulval protrusions of the Muv animals were

small when compared to those seen in most class A synMuv; class B synMuv double

mutants (data not shown). The pag-6 loss-of-function mutant n3599 n5161 did not

cause a synMuv phenotype in combination with the strong class A synMuv mutation

lin-15A(n767) or the strong class B synMuv mutation lin-15B(n744) (Table 7B) and did

not modify the synMuv phenotypes even of the highly sensitized synMuv double

mutants lin-15AB(n765ts) or lin-15AB(n2993 n433) (Table 7C).

While testing whether pag-6(n3599) causes a synMuv phenotype, we found that

double mutants between pag-6(n3599) and selected class B synMuv mutants displayed

a larval arrest phenotype, with rare escapers becoming sterile adults or very

occasionally producing one or two progeny that arrested during embryogenesis. This

synthetic-lethal phenotype was not seen with the pag-6 loss-of-function mutant

pag-6(n3599 n5161), and the synthetic lethality seen in lin-35(n745); pag-6(n3599)

250



animals was suppressed by RNAi of pag-6. The class B synMuv mutants with which

pag-6(n3599) is synthetically inviable include the Rb homolog lin-35 and the DP

homolog dpl-1. Both of these genes are predicted to function in transcriptional

modification regulation and remodeling. A complete list of synMuv and synMuv-related

mutations tested for synthetic lethality with pag-6(n3599) is shown in Table 8.

Viable or conditionally viable mutants in fzr-1, mcd-1, pha-1, psa-1, spr-1,

ubc-18, and xnp-1 have been described that are synthetically inviable when combined

with loss-of-function in lin-35, a Sir (sir, synthetic lethality with loss of lin-35 Rb)

phenotype (FAY et aL 2002; FAY et al. 2003; BENDER et al. 2004; Cul et al. 2004; FAY et

al. 2004; CARDOSO et al. 2005; CHESNEY et al. 2006; BENDER et al. 2007; REDDIEN et al.

2007). In each case, additional defects have been observed either in the sir mutant

animals or in the lin-35; sir double mutant animals. Unlike the result reported for ubc-18

and pha-1 mutants (FAY et al. 2003), the lethality of lin-35; pag-6(n3599) double

mutants was not associated with a defect in pharyngeal morphogenesis. Additionally,

unlike the synthetic lethality of lin-35; ubc-18 or lin-35; pha-1 double mutants (FAY et al.

2004), the synthetic lethality of lin-35; pag-6(n3599) animals was not suppressed by

mutations in sup-36 or sup-37 (data not shown). Another class of Sir mutants,

exemplified by psa-1 and xnp-1, is typified by a polarity defect in the development of the

T lineage (BENDER et al. 2004; Cul et al. 2004), which can readily be assessed by

testing for dye-filling defects in the phasmid neurons. As seen for psa-1 and xnp-1

mutants, pag-6(n3599) animals have a defect in phasmid development: some phasmids

failed to fill with dye in pag-6(n3599) mutants (10%; n = 266), as compared with none

for the wild type (0%; n = 40). This defect was not further enhanced by loss of lin-35
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function (6% of phasmids of lin-35(n745); pag-6(n3599) animals failed to fill; n = 36).

This failure of a lin-35 mutation to enhance the weak phasmid defect caused by

pag-6(n3599) is similar to what has been reported for the lin-35 synthetic lethal mutation

xnp-1(fd2) (BENDER et al. 2004), although different from the result reported for the lin-35

synthetic lethal mutation psa-1(ku355), the phasmid defect of which is enhanced by loss

of lin-35 function (Cul et al. 2004). It therefore seems plausible that pag-6(n3599)

animals have a defect similar to that seen in animals mutant for psa-1 and particularly

similar to that seen in animals mutant for xnp-1. psa-1 and xnp-1 encode members of a

proposed C. elegans SWI/SNF transcriptional regulation complex (BENDER et al. 2004;

Cul et al. 2004; CARDOSO et al. 2005). By analogy to psa-1 and xnp-1, the defect in

pag-6(n3599) animals is likely to be one of transcriptional regulation.

Discussion

The green pharynx phenotype likely indicates a defect in transcriptional

repression

We propose that using the green pharynx phenotype we have identified animals

that lack a mechanism that functions to modify chromatin and prevent inappropriate

transcription driven by nearby enhancer sequences. This defect in repression is

independent of chromosomal integration and is not limited to a single reporter

transgene, as we identified transgenic reporters for four genes that can support the

green pharynx phenotype. Elements within the vector backbone of the plasmid

containing the gfp reporter construct are required for pharyngeal expression, and the

vector backbone has been observed to contain sequences capable of driving
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pharyngeal expression in a wild-type genetic background (Susan Mango, personal

communication). All green pharynx genes for which an expression pattern has been

reported are believed to be expressed in most or all cells (MELENDEZ and GREENWALD

2000; COUTEAU et al. 2002; DAVISON et al. 2005; COUSTHAM et al. 2006; HARRISON et al.

2007). Given the apparently ubiquitous expression of the green pharynx genes coupled

with the pharyngeal enhancer element within the gfp transgenes, it seems likely that the

green pharynx genes provide a repressive function in all cells, and the distinctive

pharyngeal reporter expression that gives the green pharynx phenotype its name is a

consequence not of a pharynx-specific defect in transcriptional repression, but of a

global defect in repression coupled with elements weakly driving pharyngeal

expression. Despite the artifactual nature of the green pharynx phenotype that we use

as a readout of gene function, the green pharynx genes we have identified are part of

the endogenous biology of C. elegans, and we believe that the green pharynx genes

function to control the expression of endogenous genes.

Identification of a set of genes that function to prevent inappropriate gene

expression

The initial set of 29 green pharynx isolates and the four isolates later recovered

in nonclonal screens provided an incomplete and highly skewed set, including only a

single allele of lin-13 and no alleles of lin-61, even though animals completely lacking

lin-61 function are viable and have a green pharynx phenotype. Of the 74 total

green pharynx isolates, 41 were isolated in clonal screens or as previously undetected

mutations in strains from the Horvitz laboratory strain collection, including 31 recovered
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in screens designed to target the green pharynx phenotype. These clonal screens

generated a set of green pharynx mutants that was far more representative of the genes

that function to prevent the green pharynx phenotype than was the set of green pharynx

mutants generated from nonclonal screens. Four of the seven green pharynx genes

were represented by loss-of-function alleles: the class A synMuv gene lin-8, the lin-8

homolog Ines-1, and the class B synMuv genes lin-13 and lin-61. The least represented

among these was lin-61, with four alleles. As multiple isolates were isolated for each of

these genes, including five lin-13 alleles causing recessive sterility, it seems likely these

screens have identified every gene for which a loss-of-function mutation will cause a

green pharynx phenotype in the F2 generation following EMS mutagenesis.

The screens did not identify every gene that can mutate to cause the

green pharynx phenotype. In particular, none of the screen isolates were alleles of

hpl-2 HPI. hpl-2 loss-of-function homozygotes produced by heterozygous mothers are

maternally rescued for the green pharynx phenotype, and therefore could not be

identified in most of the screens that were performed. The two remaining green pharynx

genes, gei-4 and pag-6, were each represented by a single allele. The green pharynx

mutation pag-6(n3599) causes altered gene function, and loss of pag-6 function does

not cause a green pharynx phenotype. The single green pharynx allele gei-4(n4319)

likely causes weak dominant-negative function: it is not completely recessive, and its

green pharynx phenotype can be reproduced by RNAi targeting gei-4. No mutations in

gei-4 have previously been reported, even from large-scale genetic screens designed to

recover mutations causing a synMuv phenotype (FERGUSON and HORVITZ 1989; THOMAS

et al. 2003) or from synMuv screens that permitted the recovery of mutations causing a
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synMuv phenotype and sterility (CEOL et al. 2006). Mutations causing loss of gei-4

function might not be recoverable in synMuv or green pharynx screens, either because

a lethal phenotype does not permit scoring of either phenotype or because gei-4 might

be subject to maternal rescue for these phenotypes. Additional large-scale genetic

screens might serve to identify additional genes that, like pag-6 and apparently gei-4,

can be identified only through rare alleles. Screens of the F3 generation from

mutagenized animals might identify genes that, like hpl-2, are maternally rescued for the

green pharynx phenotype. Given the scale of the screens already performed, it seems

likely that any remaining unidentified green pharynx genes might more readily be found

using alternative approaches, such as detection of biochemical interactions or

whole-genome RNAi screens.

Different combinations of synMuv genes act in different biological processes

Although most of the synMuv genes have initially been identified on the basis of

the ectopic vulval induction seen in animals double mutant for a class A and a class B

synMuv gene, many additional defects have been identified in synMuv single mutants.

Beyond the finding that one class A synMuv gene and 14 class B synMuv genes are

required for viability, subsets of the class B synMuv genes have been shown to function

in expression of repetitive transgenes (HSIEH et al. 1999), cell cycle regulation (BOXEM

and VAN DEN HEUVEL 2001; BOXEM and VAN DEN HEUVEL 2002), meiotic chromosome

segregation (REDDY and VILLENEUVE 2004), downregulation of RNA-mediated gene

interference (WANG et al. 2005), feminization (GROTE and CONRADT 2006), promotion of

programmed cell death in the soma (REDDIEN et al. 2007), and promotion of
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programmed cell death in the germline (SCHERTEL and CONRADT 2007), among other

functions. Although these previous findings have identified synMuv genes as acting in a

variety of biological processes independently of other synMuv genes, the set of genes

that functions to prevent the green pharynx phenotype is strikingly different in that this

set does not merely make use of a subset of the class B synMuv genes, but rather

combines a subset of the class B synMuv genes with a member of the class A synMuv

genes and even a weak synMuv suppressor. It seems likely that additional processes

will be found that, like the process controlled by the green pharynx genes, use

combinations of the synMuv genes that fundamentally differ from the combinations seen

for the synMuv genes in repression of vulval induction and in other processes studied to

date.

hpl-2 HP1 functions to prevent transgene misexpression independently of the

histone methyltransferase genes met-1 and met-2

Examination of the mutants isolated on the basis of their green pharynx

phenotypes and testing of candidate genes identified five synMuv genes that are each

required to prevent the inappropriate reporter gene expression seen in the

green pharynx phenotype. As mutation of any of the green pharynx genes causes a

similar phenotype of transgene derepression in the pharynx, it seems likely that the

green pharynx proteins all work together to contribute to a shared function of

transcriptional repression. At least two of these five green pharynx synMuv genes

encode proteins very likely to function in chromatin modification and in the regulation of

transcription: lin-61 encodes the C. elegans homolog of L3MBTL1, a human protein that
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binds methylated histones and maintains a compacted and repressive chromatin

structure (TROJER et al. 2007), and hpl-2 encodes one of two C. elegans homologs of

heterochromatin protein 1 (HP1), a protein that binds methylated histones to

epigenetically maintain heterochromatin, a compacted and repressive chromatin

structure, through meiosis and mitosis (EISSENBERG et al. 1990; EISSENBERG et al. 1992;

FISCHLE et al. 2003; HORN and PETERSON 2006; LOMBERK et al. 2006).

Animals lacking hpl-I function display a green pharynx phenotype, but animals

lacking the function of the histone methyltransferase met-1 or the histone

methyltransferase met-2 do not. met-1 encodes a homolog of S. cerevisiae Set2 and

met-2 encodes a homolog of human SETDB1. met-1 and met-2 are required for

trimethylation of C. elegans histones at lysines 9 and 36 (ANDERSEN and HORVITZ 2007).

Like animals lacking met-1 or met-2, animals lacking both met-1 and met-2 do not

display a green pharynx phenotype. Histone trimethylation recruits HP1, which

promotes methylation-dependent transcriptional repression (HEDIGER and GASSER

2006). hpl-2 has been shown to act together with and also independently of met-1 and

met-2 in the regulation of vulval cell fates (ANDERSEN and HORVITZ 2007). If HPL-2 is

recruited to DNA to maintain a repressive chromatin structure in the transcriptional

repression seen in the green pharynx phenotype, a mechanism other than binding to

histones trimethylated by MET-1 and MET-2 must be involved. One possible

mechanism for this histone-methylation-independent recruitment of HPL-2 in prevention

of the green pharynx phenotype can be inferred from reports that HPL-2 can physically

interact with the zinc finger protein LIN-13, which like HPL-2 is the product of a synMuv

green pharynx gene (COUSTHAM et al. 2006). Both LIN-13 and HPL-2 fusion proteins
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have been reported to localize to foci within nuclei (MELENDEZ and GREENWALD 2000;

COUTEAU et al. 2002); these expression patterns within nuclei overlap, and HPL-2::RFP

localization to these foci depends on lin-13 function (COUSTHAM et al. 2006). LIN-13 is a

2248 amino acid protein containing 24 zinc fingers, suggesting that it might bind DNA

(MELENDEZ and GREENWALD 2000). LIN-13 might therefore function in parallel to histone

methylation to promote HPL-2 localization and maintain a repressive chromatin

structure. Alternatively, HPL-2 might be recruited by histone methylation provided by a

different histone methyltransferase, or HPL-2 might bind DNA or nucleosome indirectly

of histone tails (ZHAO et al. 2000; ANDERSEN and HORVITZ 2007).

The class A synMuv protein LIN-8 likely functions to regulate transcription

No known class A synMuv gene has a homolog of known molecular function or

even an identifiable non-nematode homolog (CLARK et al. 1994; HUANG et al. 1994;

DAVISON et al. 2005) (E. Davison, A. Saffer, and H.R.H., personal communication). In

the prevention of ectopic vulval induction, the class A synMuv genes act in parallel to

the class B synMuv genes. Transcript levels of lin-3, which encodes an EGF-like ligand

that induces vulval development (HILL and STERNBERG 1992), are increased in class A

synMuv; class B synMuv double mutant animals (Cul et al. 2006a). This latter result

provides the best evidence to date that the class A synMuv genes act in transcriptional

regulation. We have now found that lin-8 single mutants, rather than animals doubly

mutant for lin-8 and for another gene, show a defect of transcriptional repression, the

green pharynx phenotype. lin-8 shares this defect with mutants in genes that encode

known regulators of transcription. It therefore seems likely that the normal function of
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the class A synMuv protein LIN-8 is to regulate transcription. similarly, it seems likely

that other members of the LIN-8 protein family and other members of the class A

synMuv genes also function as regulators of transcription.

Separable synMuv and green pharynx functions of LIN-8

Of 67 lin-8 alleles, there are 48 distinct mutations, including 20 different missense

mutations. None of the missense mutations alters residues of the core domain of LIN-8,

a domain that has been shown to be capable of interacting with the Rb homolog LIN-35

and is not conserved in other members of the large LIN-8 family of proteins in

C. elegans (DAVISON et al. 2005). The failure to identify either synMuv or green pharynx

alleles that alter residues within this interaction domain suggests that the interaction of

LIN-8 with LIN-35 might not be important to the prevention of the green pharynx or

synMuv phenotypes.

Of the 23 lin-8 alleles identified in screens for animals with ectopic vulval

induction, one, lin-8(n2376), did not cause a green pharynx phenotype. The E148K

change caused by lin-8(n2376) alters a residue conserved in LNES-1 and in most

members of the LIN-8 family (DAVISON et al. 2005). lin-8(n2376) has previously been

shown to cause a class A synMuv phenotype stronger than those caused by the lin-8

mutations n111 and n2741 (DAVISON et al. 2005); unlike lin-8(n2376), lin-8(n 111) and

lin-8(n2741) caused the green pharynx phenotype. LIN-8 protein levels are not strikingly

reduced in lin-8(n2376) animals (DAVISON et al. 2005). It therefore seems likely that the

mutant LIN-8 protein produced in lin-8(n2376) animals is stable and is specifically
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defective in synMuv function but retains the functionality required to prevent the

green pharynx phenotype.

Ten lin-8 mutations show specificity for the green pharynx phenotype. Two of

these alter splice sites and one mutates a nucleotide 12 bases before the beginning of

the lin-8 open reading frame. Because these splice site and promoter mutations seem

more likely to reduce the total level of lin-8 expression than to disrupt specific functions

of the LIN-8 protein, it seems probable that the green pharynx phenotype is more

sensitive to a subtle reduction in lin-8 function than is the class A synMuv phenotype.

The missense mutations that cause a green pharynx phenotype but not a synMuv

phenotype might similarly cause a partial reduction in lin-8 function insufficient to cause

a synMuv phenotype; alternatively they might specifically and strongly affect a LIN-8

function required to prevent the green pharynx phenotype but not the synMuv

phenotype. In the latter context it is notable that the only missense alleles altering the

C-terminus of LIN-8, a domain that is conserved in other members of the LIN-8 family

(DAVISON et al. 2005), are the green pharynx-specific alleles n3593 and n3591, which

cause the predicted amino acid changes R343C and E347K, respectively.

The synMuv protein LIN-8 and the homologous synMuv suppressor LNES-1 are

separately required to prevent inappropriate transcriptional activation

LIN-8 is a member of a large family of proteins thus far found only in nematodes

(DAVISON et al. 2005). Loss-of-function mutations in either lin-8 or its closest homolog

Ines-1 including likely null mutations, caused a green pharynx phenotype. That the

green pharynx phenotype is seen in animals mutant for either lin-8 or Ines-1 suggests
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that, despite the highly similar sequences of the proteins LIN-8 and LNES-1, the two

genes are not redundant for green pharynx function. If the two proteins were

interchangeable, then loss of one copy of each gene would presumably be equivalent to

the loss of both copies of one gene, or at least equivalent to the loss of both copies of

the lower expressed of the two genes. In this case, null alleles of both lin-8 and of Ines-1

should fail to complement for the green pharynx phenotype, when in fact the mutations

did complement. Further arguing against redundant functions of lin-8 and Ines-1, no

additional defects were seen when animals lacking lin-8 function were treated with RNAi

capable of causing loss of Ines-1 function or when animals lacking Ines-1 function were

treated with RNAi capable of causing loss of lin-8 function.

It could alternatively be suggested that only one of the two related genes lin-8

and Ines-1 normally functions to prevent the green pharynx phenotype but that loss of

the other, related protein causes the first protein to be titrated away from its normal

functions and into complexes and contexts that normally contain the now-missing

second protein. If so, the protein that performs this function must be LIN-8, as multicopy

transgenes overexpressing lin-8 rescued the green pharynx phenotypes of lin-8 and

Ines-1 mutants; in contrast, multicopy transgenes overexpressing Ines-1 rescued the

green pharynx phenotypes of Ines-1 mutants but not those of lin-8 mutants. It therefore

might be suggested that only lin-8 normally functions to prevent the green pharynx

phenotype and that loss of Ines-1 causes LIN-8 to be titrated away from its normal

functions and into complexes and contexts that normally contain LNES-1. Contrary to

this hypothesis, the green pharynx phenotype caused by the R119C missense mutants

Ines-1(n3604) and Ines-1(n3689) strongly suggests that LNES-1 is normally present in
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complexes that prevent the green pharynx phenotype of transgene misexpression.

Specifically, multicopy Ines-1 transgene carrying the R119C missense mutation caused

a green pharynx phenotype, an effect not seen for transgenes that overexpressed the

Ines-1 nonsense mutants Ines-1(n3592) or Ines-1(n3917A). These results suggest that

LNES-1(R119C) protein is stable and nonfunctional, and that when it is overexpressed it

can compete with wild-type LNES-1 protein and interfere with the function of complexes

that can contain LNES-1. Because the R119C missense change caused a

green pharynx phenotype in Ines-1(n3604) animals that presumably expressed

LNES-1(R119C) at normal levels, LNES-1 must normally be included in complexes

required to prevent the green pharynx phenotype. Consequently, LNES-1 has a function

in preventing the inappropriate gene expression of the green pharynx phenotype that is

independent of the function provided by LIN-8.

Identification of a nuclear MSP domain protein that can function to regulate

transcription

The green pharynx mutation n3599 defines the gene pag-6, which encodes a

protein with an N-terminal MSP domain and a C-terminal domain with homology to other

nematode proteins. In addition to the green pharynx phenotype, pag-6(n3599) causes

synthetic lethality with some class B synMuv mutants, defects in egg laying, slow growth

and a weak class B synMuv phenotype. Strikingly, all of these defects are shared, to

greater or lesser degrees, with strong loss-of-function mutations of the green pharynx

and class B synMuv gene hpl-2 HPI (COUSTHAM et al. 2006).
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The set of class B synMuv mutants synthetically lethal with pag-6(n3599) is

closely related to the set of class B synMuv mutants observed to be synthetically lethal

with loss of function of mcd-I (mcd, modifier of cell death) (REDDIEN et al. 2007). Like

pag-6(n3599) mutants, mcd-I mutants share with a subset of synMuv mutants a defect

in a phenotype other than vulval induction; in the case of mcd-1, this function is one of

promoting programmed cell death (REDDIEN et al. 2007). mcd-l(n4005) and

pag-6(n3599) are synthetically lethal with similar sets of class B synMuv mutants and

also with each other, suggesting that the synthetic-lethal phenotypes of mcd-I(n4005)

and pag-6(n3599) mutants might result from different defects. mcd-l(n4005) and

pag-6(n3599) acting differently to cause synthetic-lethal phenoypes would be consistent

with their different defects in programmed cell death and in reporter expression,

respectively. The core set of synMuv mutants synthetically lethal both with

pag-6(n3599) and with loss of mcd-I function may define a group of synMuv genes that

cooperate to provide a function redundantly required for animal development or viability,

likely a function in transcriptional regulation.

The wild-type function of pag-6 is not necessarily revealed by the phenotypic

defects caused by the altered-function mutation pag-6(n3599). RNAi targeting pag-6

and the pag-6 loss-of-function mutation n5161 do not cause defects similar to those

seen in pag-6(n3599) mutants. Even in weak synMuv double mutants that act as

sensitized genetic backgrounds, loss of pag-6 function does not alter the penetrance of

defects in vulval induction, indicating that loss of pag-6 function does not cause any

significant defect in synMuv gene function. Nonetheless, PAG-6 expression from a

rescuing pag-6::gfp transgene is nuclearly localized, consistent with a role for PAG-6 in
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the regulation of transcription. The n3599 missense mutation changes the glutamic acid

at position 425 in the conserved C-terminal domain to an arginine and results in a

sequence that is similar to the most divergent of the proteins with a domain similar to

the PAG-6 C-terminus, T27A8.5: T27A8.5 similarly has a basic residue, a lysine, at the

homologous position. It is therefore possibly that the mutant PAG-6 produced in

pag-6(n3599) mutants is altered to possess properties more similar to those of T27A8.5

than those normally seen in PAG-6.

One possible explanation for the recessive action of the n3599 altered-function

mutation is that n3599 might cause the generation of a stable but nonfunctional PAG-6

protein. The stable, nonfunctional protein is then incorporated into complexes that

normally include wild-type PAG-6. In animals homozygous for pag-6(n3599), all of the

PAG-6 protein would be nonfunctional, and the incorporation of this nonfunctional

protein could then impede the function of these complexes. If no PAG-6 protein is

present, the function normally supplied by PAG-6 can instead be provided by another

protein, possibly by a protein related to PAG-6. Injection of dsRNAs targeting all

C. elegans genes predicted to encode proteins homologous to the C-terminus of PAG-6

did not cause a green pharynx phenotype similar to that caused by pag-6(n3599) (data

not shown); however, it cannot be known whether these multiple-RNAi treatments were

effective in targeting the several PAG-6-homologous proteins.

Implications from studies of the green pharynx genes about mechanisms that

ensure fidelity of gene expression at endogenous loci
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Although expression from four different reporters can lead to the green pharynx

phenotype of transgene misexpression, at least six other reporters were tested and did

not lead to the green pharynx phenotype, even though they were generated using the

same vector backbone. Perhaps the promoter inserts in these other gfp reporters recruit

multiple systems that prevent inappropriate transcriptional activation caused by

enhancer elements in the vector backbone, so that loss of the transcriptional repression

activity provided by the green pharynx genes still leaves other repressive activities intact

and able to prevent inappropriate gene expression. In this model, in those few reporter

transgenes that lead to the green pharynx phenotype the promoter insert recruits a

single repressive system, provided by the green pharynx proteins, that prevents

inappropriate gene expression. A model for how the green pharynx proteins act to

prevent inappropriate reporter expression is shown in Figure 4.

Because the green pharynx phenotype is defined by multicopy transgenes at

which the green pharynx genes act to repress transcription, it should be possible to

define the elements required within the transgenes that support the green pharynx

phenotype for recruitment of transcriptional repression activity and also to identify

proteins and chromatin modifications present at such elements. The genes identified by

the green pharynx phenotype act together to prevent inappropriate transgene

expression, but these genes are part of the normal biology of C. elegans, and several of

the green pharynx genes have previously been shown to function in C. elegans

development and to have homologs that modify chromatin in other organisms. That

these C. elegans genes share a common function in the green pharynx assay strongly
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suggests that further investigation will reveal common targets in the C. elegans genome

at which these genes function to prevent activation by nearby weak enhancer elements.
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Materials and Methods

C. elegans genetics

C. elegans strains were derived from the wild-type strain N2 (Bristol, England)

and cultured using standard conditions (BRENNER 1974), except that the bacterial strain

HB101 was the food source. Mutations isolated in this study on the basis of their

green pharynx phenotypes are listed in Table 2. lin-8 alleles used in this study are listed

in Table 3, and references for their isolation are listed therein. Other mutations used are

listed below and are described by RIDDLE et al. (1997) unless otherwise noted. LGI:

dcp-66(gk370) (ZHAO et al. 2005), dpy-5(e61), lin-35(n745), lin-53(n833, n3368)

(ANDERSEN et al. 2006), lin-61(sy223, n3442, n3446, n3447, n3624, n3736) (HARRISON

et al. 2007), lin-65(n3441) (CEOL et al. 2006), mes-3(bn35), met-1(n3628, n4337) (CEOL

et al. 2006; ANDERSEN and HORVITZ 2007), sem-4(n1378), smo-1(ok359) (BRODAY et al.

2004), unc-13(e1091), xnp-1(fd2) (BENDER et al. 2004); LGII: dpl-l(n3316, n3380,

n3643) (CEOL and HORVITZ 2001), fzr-1(ku298) (FAY et al. 2002), lin-38(n751, tm736)

(A. Saffer and H.R.H., unpublished results), lin-56(n2728), mcd-l(n4005) (REDDIEN et al.

2007), mes-2(bnl 1), rol-6(e187), trr-l(n3630, n3712) (CEOL and HORVITZ 2004),

unc-4(e120), unc-52(e444); LGIII: dpy-l(el), dpy-17(e164), dpy-19(e1259),

epc-I(n4076) (CEOL and HORVITZ 2004), glp-l(q339), hpl-1(n4317) (ANDERSEN and

HORVITZ 2007), hpl-2(ok916, ok917, tm1489) (COUSTHAM et al. 2006), hpl-2(n4274)

(E. Andersen and H.R.H., unpublished results), isw-1(n3294) (ANDERSEN et al. 2006),

lin-9(n112, n942), lin-13(n387, n770, n2238, n2985, ok838) (THOMAS et al. 2003; WANG

et al. 2005), lin-36(n766, n3096) (THOMAS and HORVITZ 1999), lin-37(n758), lin-52(n771,

n3718) (CEOL et al. 2006), met-2(n4256) (ANDERSEN and HORVITZ 2007), ssl-1(n4077)
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(CEOL and HORVITZ 2004), ubc-9(ju484) (J. McCleery and Y. Jin, personal

communication), ubc-18(ku354) (FAY et al. 2003), unc-32(e189), unc-45(e286),

unc-119(ed3); LGIV: ark-1(n3701) (CEOL et al. 2006), dpy-4(e1166), dpy-13(e184),

dpy-20(e1282), egl-23(n601), let-60(n1046gf), lex-1(gu47) (TSENG et al. 2007),

lin-54(n2231, n3423) (HARRISON et al. 2006), Ist-3(n4590) (E. Andersen and H.R.H.,

unpublished results), mep-1(n3680, n3703) (CEOL et al. 2006), mes-6(bn66),

pag-6(n3599 n5161) (this study), sup-36(e2217), unc-24(e138), unc-26(e205),

unc-31(e169); LGV: dpy-11(e224), efl-1(n3318) (CEOL and HORVITZ 2001),

egl-1(n1084), hda-1(e1795) (DUFOURCQ et al. 2002), him-5(e1467), let-418(n3536,

s1617) (VON ZELEWSKY et al. 2000; CEOL et al. 2006), lin-40(ku285, s1593, s1669)

(CHEN and HAN 2001), mes-4(bn23, bn67), mys-1(n3681, n4075) (CEOL and HORVITZ

2004), psa-1(ku355) (Cui et al. 2004), rde-1(ne219) (TABARA et al. 1999), spr-l(ar200)

(JARRIAULT and GREENWALD 2002), sup-37(e2215), tam-1(cc567) (HSIEH et al. 1999),

unc-46(e177), unc-51(n4437) (H.T.S. and H.R.H., unpublished), unc-76(e911); LGX:

chd-3(eh4) (voN ZELEWSKY et al. 2000), gap-1(n3535) (CEOL et al. 2006), lin-15(n433,

n744, n765, n767, n2994 n433) (THOMAS et al. 2003), lin(n3542) (CEOL et al. 2006),

lin(n3707) (C. Ceol and H.R.H., unpublished results), sli-1(n3538) (CEOL et al. 2006),

tra-4(bc250, n3715, n3716, n4724, n4726) (H.T.S. and H.R.H., manuscript in

preparation, and GROTE and CONRADT 2006). The integrated pkd-2::gfp reporters

nls128 II, nls130 IV, and nls133 I were generated using the cell-fate reporter plasmid

ppkd-2::gfpl (BARR and STERNBERG 1999) and the rescuing lin-15(+) plasmid pL15EK

(CLARK et al. 1994) and are described in more detail in chapter 2. The integrated

lin-11::gfp reporter nls106 X (REDDIEN et al. 2001), the integrated flp-15::gfp reporter
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ynls45 (KIM and LI 2004), and the integrated lag-2::gfp reporter qls56 V (SIEGFRIED et al.

2004) were also used. The translocation nT1 [IV; V] with the dominant Unc marker

deg-3(n754) (TREININ and CHALFIE 1995) or the dominant gfp marker qls51 (SIEGFRIED

et al. 2004), the translocation hT2 [1; III] with the dominant gfp marker qls48 (SIEGFRIED

and KIMBLE 2002), the inversion chromosome mln1 with the recessive marker

dpy-10(e128) and the dominant gfp marker mls14 (EDGLEY and RIDDLE 2001), the

modified chromosome mnCl (HERMAN 1978) with the recessive markers dpy-10(el28)

and unc-52(e444), and the modified chromosome qC1 (AUSTIN and KIMBLE 1989) with

the recessive markers dpy-19(e1259) and glp-1(q339) were used as balancers.

sDf23 IV (GILCHRIST and MOERMAN 1992) is a chromosomal deficiency that removes the

pag-6 locus. The related free duplications yDpl (IV; V; f) (DELONG et al. 1987) and

nDp3 (IV; V; f) (YUAN and HORVITZ 1990) complement dpy-4 but do not complement

pag-6(n3599) (data not shown).

Double mutants homozygous for pag-6(n3599) and autosomal mutations were

constructed using balancer chromosomes or pairs of linked visible markers to follow the

second mutation in trans; X-linked mutations were made homozygous by crosses using

pag-6(n3599)+ males hemizygous for the mutant X chromosome. pag-6(n3599)

homozygotes were detected using the recessive green pharynx phenotype caused by

pag-6(n3599) in animals heterozygous for a pkd-2::gfp transgene. Progeny that had lost

the pkd-2::gfp transgene were then identified, and attempts was made to identify

progeny that no longer contained the markers or balancer chromosome that were used

to follow the second mutation in trans; animals no longer containing these markers or

balancer chromosomes would be homozygous for the second mutation. All double
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mutants involving pag-6(n3599) were built such that the only identified mutations

present in the finished strains were pag-6(n3599) and the mutation being tested for

synthetic viability with pag-6(n3599), with the exception of the double mutant between

lin-8(n2731) and pag-6(n3599); in this case, pag-6(n3599) was marked in cis with

dpy-4(e 1166). Animals mutant both for lin-8 or Ines-1 and for lin-36 were built using a

lin-36(n766) mutation marked in cis with unc-32(el89). Males heterozygous for lin-8 or

Ines-1 and for the balancer chromosome qC1 were used in these strain constructions to

ensure that the homozygous unc-32(el89) chromosome was also homozygous for the

linked mutation lin-36(n766). Double mutants between autosomal green pharynx

mutations and lin-15 X mutations were built by mating males heterozygous for the

green pharynx mutation with lin-15 mutant hermaphrodites, mating the resulting male

progeny to lin-15 mutant hermaphrodites, identifying progeny homozygous for the

green pharynx mutation, and then identifying progeny that had lost the heterozygous

pkd-2::gfp transgene. Alternately, double mutants between autosomal green pharynx

mutations and lin-15 X mutations were built using an extrachromosomal transgene

containing pkd-2::gfp marked with a rescuing unc-119(+) transgene, lin-15A(n767) and

lin-15B(n744) were placed in trans to lin-15AB(n765), and lin-1A(n767) or lin-15B(n744)

homozygoutes were identified by their failure to generate progeny homozygous for

lin-15AB(n765), identifiable by their strong Muv phenotype.

Isolation and mapping of alleles of green pharynx genes

Clonal screens for green pharynx mutants were performed using EMS

mutagenesis (BRENNER 1974) of sem-4(n1378); nls128 and nls133; egl-1(n1084gf)
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hermaphrodites. Both strains are defective in egg laying, and adult hermaphrodites of

either strain can contain late-stage embryos or young larvae in which the green pharynx

phenotype can be scored. Following mutagenesis, gravid F, progeny were examined to

determine whether the F2 progeny (late-stage embryos and internally hatched progeny)

they contained displayed a green pharynx phenotype. The progeny within 4,914 F1

sem-4(n1378); nls128 hermaphrodites and the progeny within 767 F,

nls133; egl-1(n1084gf) hermaphrodites were examined, for a total of 11,362

mutagenized haploid genomes. Other mutations causing a green pharynx phenotype

were identified incidentally in screens for phenotypes other than the green pharynx

phenotype or were discovered in the process of strain construction as previously

unnoticed mutations in pre-existing strains. A complete list of mutations isolated based

on their having caused a green pharynx phenotype is in Table 2.

Both nls133 and nls128 appeared to suppress recombination on at least part of

their respective chromosomes: we observed no recombination between nls133 and

dpy-5, between nls133 and lin-61 or between nls128 and dpy-10, and lin-8 has only

recombined away from nls128 spontaneously once, from among several dozen strain

constructions in which we used lin-8 mutations linked to nls128, with each strain

construction involving many animals.

We mapped the Ines-1 mutations n3688, n3689, n3917, n3919, and n3921 to

LGII at an average distance of approximately 12 map units from rol-6 using standard

methods. Polymorphism mapping using 322 green pharynx progeny of animals

heterozygous in trans for Ines-1(n3688) and chromosomal regions from the Hawaiian

strain CB4856 placed n3688 between -19,000 on B0454 (all references to B0454
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sequence refer to accession number AF025452) and -55,000 on Y25C1A (accession

number AF125459), a 76 kb interval.

We mapped gei-4(n4319) to the left end of LGIII using polymorphisms. In further

mapping, we screened a total of 786 progeny of animals heterozygous in trans for

n4319 and for chromosomal regions derived from the Hawaiian strain CB4856 to

identify animals containing chromosomes recombinant between markers at -17,600 on

H10E21 (accession number AF078783) and -13,200 on Y92C3A (accession number

AC024874). We identified animals homozygous for the recombinant chromosomes and

tested them for n4319 and for their genotypes at markers on T17A3, K10F2, T22F7,

B0353, W06E11, W02B3, C24A1, T17H7, K02F3, Y22D7AL, and Y39A3CL. These

experiments placed n4319 left of a marker at -8,700 on B0353 (accession number

U23413), within the first 527 kb of LGIII. We found this region of LGIII to be

recombinationally suppressed between N2 and CB4856: none of the 28 F2 progeny

identified as recombinant between markers on H10E21 and Y92C3A, an interval of

approximately 1,148 kbp, had recombined within the approximately 523 kb of this

interval to the left of the marker on B0353. Thirteen cosmids representing -363 kb of the

left end of LGIII were injected in four pools to test for their ability to rescue the

green pharynx phenotype caused by n4319: H10E21, W05G11, F54C4, and C29F9;

T17A3, F40G9, and W10C4; W07B3 and K10F12; and F10C5, F30H5, T22F7, and

B0353.

Of 180 Dpy progeny of nls128; dpy-4(e 166) +1+ n3599 heterozygotes, 13

generated green pharynx progeny, indicating a distance of approximately 3.6 map units.

Polymorphism mapping placed pag-6(n3599) to the right of ~49,900 on Y105C5B and to
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the left of -152,600 on Y105C5B (all references to Y105C5B refer to accession number

AL1 10479), restricting n3599 to a -103 kb interval. We determined using DNA

polymorphisms between the wild-type and the Hawaiian strain CB4856 that the related

free duplications nDp3 and yDpl, the extents of which to the right of dpy-4 were

unknown and therefore might have included the pag-6 locus, contained sequence

derived from LGIV up to -297,100 on clone Y105C5A (accession number AL1 17193)

but did not contain sequences at or to the right of -49,900 on clone Y015C5B, and thus

these genomic duplications broke to the left of the recombinationally determined left

endpoint of pag-6. DNA sequence determination revealed the pag-6(n3599) suppressor

mutation n5161 to be a single nucleotide deletion within the pag-6 open reading frame,

removing nucleotide 119998 of Y105C5B and causing a predicted frameshift after

amino acid 83.

The uncharacterized mutation n3841, which causes a weakly penetrant and

inconsistent green pharynx phenotype, was mapped to LGIC using SNPs with the

Hawaiian strain CB4856. Weak penetrance and possible semidominance made

mapping this mutation difficult. The tightest linkage we observed was to a marker on

cosmid K04F10, with only one of 22 F2 green pharynx animals homozygous for the

Hawaiian-derived haplotype at this marker. Complementation tests with this weak

mutation were inconclusive. No mutations were found in n3841 animals in the coding

sequence of lin-61, the only known green pharynx gene on LGI.

DNA and RNA manipulations and generation of transgenic animals
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DNA sequences were determined using an ABI DNA Sequencer model 377, an

ABI Genetic Analyzer 3100, and by Gene Gateway (Hayward, CA). The lin-8 allele

n3686 is a large deletion the precise extent of which could not be determined;

sequences 5' of nucleotide 38077 and 3' of nucleotide 42872 on B0454 could be

amplified from lin-8(n3686A) animals, while sequences at least from nucleotide 38657 to

nucleotide 42872 of B0454 could not. Long PCR (using Advantage cDNA; BD

Biosciences, Mountain View, CA) that amplified the sequence corresponding to

nucleotides 38024 through 43169 of B0454 from the wild-type strain did not generate a

product from lin-8(n3686A) animals, suggesting that alterations associated with n3686

prevented amplification of this locus using PCR.

The pag-6 rescuing construct pBSK-pag-6 contains DNA corresponding to

116918 through 126022 of Y1 05C5B, including 5776 bp 5' of the predicted pag-6 ATG

and 1037 bp 3' of the predicted pag-6 stop codon, amplified by PCR from proteinase

K-treated N2 and cloned using endogenous Kpnl and EcoRV sites into pBSKII+

(Stratagene). The pag-6(n3599) phenocopying plasmid pBKS-pag-6(n3599) contains

DNA amplified by PCR from a pag-6(n3599) mutant using the same primers as the

pag-6 rescuing construct and cloned similarly into pBSKII+. The pag-6::gfp rescuing

construct contains sequence corresponding to 124670 of Y105C5B through the last

codon before the stop codon, including 4424 bp 5' to the predicted pag-6 ATG, cloned

into the gfp reporter vector pPD95.79 (provided by Andrew Fire), resulting in an in-frame

fusion to gfp in place of the stop codon of the pag-6 open reading frame.

The lin-8 rescuing construct pEMD13 has been previously described (DAVISON et

al. 2005). The Ines-1 rescuing construct BKS-Ines-1 contains DNA corresponding to
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34652 through 39126 of B0454, including 4040 bp 5' of the predicted Ines-1 ATG and

1613 bp 3' of the predicted Ines-1 stop codon, amplified by PCR and cloned using a

Spel site added by a primer and an endogenous Kpnl site into pBSKII+. The same

primers were used to amplify DNA from Ines-1 mutants to generate the constructs

BKS-Ines-1(n3592), BKS-Ines-1(n3604), and BKS-Ines-1(n3917). Two Ines-1::gfp

reporters were made by amplifying the gfp coding sequence from pPD95.02 (provided

by Andrew Fire) using PCR primers that added in-frame Sphl and Pstl sites and cloning

it into modified versions of BKS-Ines-1 after the first three amino acids (to generate

Ines-1::gfpN::lnes-1) or before the last two amino acids (to generate

Ines-1::gfpC::lnes-1). Two gei-4 rescuing constructs, BKS-gei-4(Avill) and

BKS-gei-4(SnaBI), were generated by cloning subclones of the cosmid W07B3

generated using the indicated enzymes into pBSKII+ cloned with Spel or with EcoRV,

respectively.

Germline transformation was performed as described (MELLO et al. 1991) using

the co-injection markers P76-16B (BLOOM and HORVITZ 1997) or pMM016b (MADURO

and PILGRIM 1995) at 50 ng/pl. BKS-pag-6, pag-6::gfp, EMD13, BKS-Ines-1,

BKS-Ines-1(n3592), BKS-Ines-1(n3604), BKS-Ines-1(n3917), Ines-1 ::gfpN::lnes-1,

Ines-1::gfpC::lnes-1, BKS-gei-4(Avril), and BKS-gei-4(SnaBI) were each injected at 20

ng/ll. Injection of BKS-pag-6(n3599) at 20 ng/pl or 1 ng/jil did not generate viable

transgenic progeny, although inviable green pharynx F1 embryos were observed.

BKS-pag-6(n3599) injected at 0.1 ng/ tl gave stable transgenic lines with a

green pharynx phenotype. The putative low-copy pkd-2::gfp integrants nls136 V and

nls137 / were generated by microparticle bombardment using 1.0 tm gold particles
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prepared with 25 pg pMM016b and 25 lg ppkd-2::gfpl (BARR and STERNBERG 1999)

using a Helios Gene Gun System (Bio-Rad) with advice from Frank Miskevich and

adapting a published protocol (PRAITIS et al. 2001). ppkd-2::gfpl was digested with Sphl

and Spel to remove vector sequence, and the purified pkd-2::gfp fragment was injected

at 50 ng/pl with the co-injection marker P76-16B.

Transgenic lines containing integrated gfp reporters or containing

extrachromosomal arrays generated with gfp reporter plasmids in combination with the

lin-15(+) rescuing plasmid pL1 5EK used as a coinjection marker were tested for the

ability of the green pharynx and class A synMuv mutation lin-8(n 111) to cause a

green pharynx phenotype in combination with those reporters. The reporters tested and

not found to cause the green pharynx phenotype included utls13 [dat-1::gfp] (T. Ishihara

and I. Katsura, personal communication), unc-86::gfp (plasmid SA21; O. Hobert and

G. Ruvkun, personal communication), osm-10::gfp (plasmid KP#55, A. Hart, personal

communication), ceh-28::gfp (B. Harfe and A. Fire, personal communication), cat-2::gfp

(plasmid EM282, R. Lints and S. Emmons, personal communication) and

ayls9 [egl-17::gfp] (BRANDA and STERN 2000).

RNAi

RNAi was performed by injection using dsRNA synthesized using as templates

PCR products of exonic sequence amplified using primers with T7 sites appended to

their 5' ends. In vitro transcribed RNA was denatured and allowed to anneal prior to

injection. For pag-6, PCR products corresponding to 119599 through 120223 or to

117951 through 118374 of Y105C5B were used; for M199.2, PCR products
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corresponding to 8364 through 8783 or to 9004 through 9496 of M199 (accession

number Z81104); for T27A8.5, a PCR product corresponding to 19475 through 19821 of

T27A8 (Z68134); for T25D1.1, a PCR product corresponding to 16364 through 16727 of

T25D1 (U41275); for lin-8, PCR products corresponding to 40841 through 41086 or to

40273 through 40581 of B0454; for Ines-1, PCR products corresponding to 35899

through 36184 or to 35140 through 35351 of B0454; and for gei-4, PCR products

corresponding to 6845 through 7214 or to 5268 through 5638 of W07B3 were used.

Zygotic RNAI was performed as described (HERMAN 2001) by injection of unc-32(e189);

rde-1(ne219); lin-15A(n767) hermaphrodites followed by mating with lin-15A(n767)

males or injection of unc-32(e 189); lin-36(n766); rde-1(ne219) hermaphrodites followed

by mating with lin-36(n766); him-5(e 1467) males. Feeding RNAi was performed as

described using clones from the Ahringer RNAi feeding library (KAMATH et al. 2003).

Analysis of C. elegans phenotypes

The green pharynx phenotype was scored using a fluorescence-equipped

dissecting microscope (M2BIO; Kramer Scientific). The phenotype is most strongly

expressed in late embryos and L1 larvae; in most mutants, the phenotype is readily

observed in later larvae but is variable in L4 larvae and in adults, and intensity and

duration of expression depend on the mutant allele and the strength of the gfp

transgene. When possible, in testing synMuv mutants for the green pharynx phenotype,

the progeny of animals homozygous for the synMuv mutation were examined in case

the green pharynx phenotype might be subject to maternal rescue, as is the case for

hpl-2(If) mutants. The progeny of homozygous animals could not be obtained and
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examined when all mutant alleles of a synMuv gene caused sterility; when a synMuv

gene was represented both by alleles that did not cause sterility and by stronger alleles

that did cause sterility, an allele from each class was tested. The strain

nls133 lin-61(n3687); lin-8(n2376) was built and examined to confirm that the

synMuv-specific allele lin-8(n2376) was not linked to a mutation suppressing the

green pharynx phenotype.

The Multivulva phenotype was assessed using dissecting microscopy as

described (ANDERSEN and HORVITZ 2007). Egg-laying defects were determined by the

accumulation of unlaid eggs and by presence of embryos retained within gravid mothers

that had undergone morphogenesis and had reached the threefold stage of embryonic

development. Attachment of the pharynx to the anterior intestine was examined using

Nomarski microscopy as described (FAY et al. 2003). Filling of phasmid neurons with

DiO was performed as described (HERMAN and HORVITZ 1994) and scored using a

Nomarski microscope equipped with fluorescence optics (AxioSkop, Zeiss).

Synthetic lethality between pag-6(n3599) and synMuv mutants was identified as

the inability to identify fertile animals that had lost a balancer chromosome or paired

linked visible markers in trans either to the synMuv mutation or to pag-6(n3599). For

mutations followed in trans with balancers that did not cause a visible dominant

phenotype or followed in trans with a linked pair of visible markers, at least 30 eggs laid

by balancer heterozygotes were each placed on individual Petri plates to test whether

any generated viable progeny that had lost the balancer chromosome or lost both

visible markers. For double mutants with pag-6(n3599), dpl-1 mutants were balanced

with mln1 [dpy-10(e128) mls14] and lin-9(n112) and lin-37(n758) mutants were
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balanced with qC1 [dpy-19(e 1259) glp-1(q339)]. For double mutants with lin-15B(n744)

or with mcd-1(n4005), pag-6(n3599) was balanced with nT1 [deg-3(n 754)]. A

lin-54(n2231) pag-6(n3599) recombinant chromosome was built and balanced with

nT1 [deg-3(n754)]. For double mutants between lin-35(n745) and pag-6(n3599), strains

were built in which pag-6(n3599) was homozygous and lin-35(n745) was balanced with

hT2 [qls48] and strains were built in which lin-35(n745) was homozygous and

pag-6(n3599) was balanced with nT1 [deg-3(n754)] and with nT1 [qls51].
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Table 1. Loss of function of any of four synMuv genes causes the green pharynx

phenotype

Green
synMuv Gene Homology pharynx? Allele(s) or treatment tested
Class A lin-8 LIN-8 family YES See Table 3
Class A lin-15A THAP domain No n767a
Class A lin-38 Zinc fingerc No n751bc, tm736d
Class A lin-56 THAP domaine  No n2728ae
Class B ark-1 Ack No n3701
Class B dpl-1 DP No n3316d, n3380b, n3643b
Class B efl-1 E2F No n3318d
Class B epc-1 E(Pc) No n4076d

Class B gap-1 Gap No n3535
Class B hda-1 HDAC1 No e1795d

n4274at, ok916,Class B hpl-2 HPI YES ok917 , tm1489a
ok917, tml489a

Class B let-418 Mi2 No n3536b , s1617d
Class B lex-I Bromodomain No gu47
Class B lin-9 Mipl30 No n112b , n942d

n387d, n770b, n2 2 3 8 b,Class B lin-13 Zinc fingers YES n2985b, ok838b

Class B lin-15B THAP domain No n744a
Class B lin-35 Rb No n745a
Class B lin-36 THAP domain No n766a, n3096a
Class B lin-37 Mip40 No n758a
Class B lin-52 dLin-52 No n771b, n3718d
Class B lin-53 RbAp48 No n833b, n3368d
Class B lin-54 Mip120 No n2231b , n3423d

Class B lin-61 L3MBTL1 YES y223a, n3442a' n3446a'
n3447, n3624, n3736

Class B lin-65 Novel No n3441a
Class B Ist-3 CCAR1 No n4590at

Class B mep-1 Zinc fingers No n3703b, n3680d
Class B met-1 SET2 No n3628, n4337a
Class B met-2 SETDB1 No n4256a
Class B mys-1 HAT No n3681b, n4075d
Class B sli-1 Cbl No n3538
Class B smo-I Sumo No ok359d
Class B tam-1 RING finger No cc567a

bc250a, n3715, n3716,Class B tra-4 PLZF No n3715, n3716,
n4724, n4726

Class B trr-1 TRRAP No n3630d, n37120
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a Strong loss-of-function allele, likely a null allele.

b Partial loss-of-function allele or altered-function allele of gene required for viability.

C Adam Saffer and H.R.H., unpublished results.

d Strong loss-of-function allele causing recessive sterility; homozygous animals are the

progeny of heterozygous mothers, indicating that maternal rescue of the green

pharynx phenotype cannot be excluded.

e Ewa Davison and H.R.H., personal communication.

f Erik Andersen and H.R.H., personal communication.

SynMuv mutations and RNAi treatments tested for the green pharynx phenotype as

described in Materials and Methods. Genes tested are grouped by their synMuv class

and then listed in alphabetical order. tam-1(cc567) was tested in the presence of the

cis-marker unc-46(e 177). Genotypes were otherwise as indicated.
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Table 2. Mutations isolated on the basis of their green pharynx phenotypes

Isolates:
Gene Total (Clonal) Alle(s)

n3582a, n3583a, n3584a, n3585a, n3586a , n3587a , n3588a,
n3589a, n3590a , n3591a , n3593a, n3595a, n3597a, n3598a,

n3600b, n3 6 01b , n36 0 2b, n3 6 03 b, n3605b, n3606b, n3607b,
lin-8 44 (15) n3608c, n3609, n3610c, n3686d, n3761e, n3794f, n3800' ,

n3808f, n3810f , n3811' , n3812 f, n3813 f, n3815', n3816 f,

n3817', n3818f, n40329, n40339, n40359, n4 3 2 0h, n4356h,

n4411', n4656e
n3592a, n3594a, n3604b, n3688d, n3689d, n3795t, n3796t,

Ines-1 14 (10) n3803', n3814f , n3822f, n391 7, n3919, n3921j, n40389,
n3596a, n3797t, n3801tK, n3802t,k, n3804t,k, n3907,K,

lin-13 9 (8) n3 91i k , n3920d, n3989
lin-61 4 (4) n3687d, n3807t, n3809t , n3922
gei-4 1 (1) n4319n

pag-6 1 (0) n3599a
hpl-2 none _
Unknown 1 (1) n3841t,m
a Isolated as an F2 animal in a nls128 screen intended to recover hermaphrodites with

surviving CEMs.

b Isolated as an F2 animal in a nls130 screen intended to recover hermaphrodites with

surviving CEMs.

C Isolated as an F2 animal in a nls133 screen intended to recover hermaphrodites with

surviving CEMs.

d Isolated as F3 embryos trapped within egg-laying-defective F2 progeny of mutagenized

animals in a screen intended to recover nls133; tra-2(n1106) hermaphrodites without

surviving CEMs (H.T.S. and H.R.H., unpublished results).

e Isolated as a previously unnoticed background mutation in a pre-existing strain.

f Isolated as F2 embryos in a clonal sem-4(n1378); nls128 screen intended to recover

mutations causing the green pharynx phenotype in embryos and larvae.

297



g Isolated as an F2 animal in a nls128 screen intended to recover suppressors of the

Unc phenotype of cnd-1(n3786) (H.T.S. and H.R.H., unpublished results).

h Isolated by Johanna Varner in a clonal nls133 screen intended to recover

ceh-30(n3714gf) hermaphrodites without surviving CEMs (J. Varner, H.T.S., and

H.R.H., unpublished results).

Isolated by Johanna Varner in a clonal nls128 screen intended to recover

ceh-30(n3714gf) hermaphrodites without surviving CEMs (J. Varner, H.T.S., and

H.R.H., unpublished results).

Isolated as F2 embryos in a clonal nls133; egl-1(n1084) screen intended to recover

mutations causing the green pharynx phenotype in embryos and larvae.

k Mutation recessively causes sterility.

hpl-2(If) homozygous progeny of hpl-2(lf)l+ heterozygous mothers are maternally

rescued for the green pharynx phenotype, so that hpl-2 alleles would not be detected

in the F2 generation. Only nine green pharynx screen isolates were recovered as F3

progeny of mutagenized animals; none of these was an allele of hpl-2.

m n3841 causes a weakly penetrant dominant green pharynx phenotype and by

mapping and sequencing is likely not an allele of any known green pharynx gene.

Mutations isolated on the basis of their causing the green pharynx phenotype of

transgene misexpression. The origins of each mutation are indicated. For each gene,

the total number of isolates and the number of isolates isolated clonally, using methods

that would permit the recovery of mutations causing both a green pharynx phenotype

and inviability, are indicated.
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Table 3. lin-8 alleles and their synMuv and green pharynx properties

Sequence green
Allele(s) Position wild-type mutant Mutation synMuv? harynx?
n3761 39127 CCA CTA P16L No Yes
n111a  39139 CTG CCG L20P Yes Yes
n38150 39168 CCG TCG P30S No Yes
n4415c 39280 GTG GGG V67G Yes Yes

n3812 , n2741a 39282 GTG ATG V68M Yes Yes
n3794b, n3810b  39307 CCG CTG P76L No Yes

n3582b 39355 CCG CTG P92L Yes Yes
n4033b  39363 GCA ACA A95T Yes Yes

n3800b, n4320 40257 TCG TTG S110L No Yes
n4032t  40302 CGG CAG R125Q Yes Yes

n3585b, n3598b  40308 CGC CAC R127H Yes Yes
n4371 40313 GCA ACA A129T Yes Yes
n4443c  40364 CGC TGC R146C Yes Yes
n3646d 40365 CGC CAC R146H Yes Yes
n2376a 40370 GAG AAG E148K Yes No
n3808b  40380 GGC GTC G151V Weak Yes
n2378a 40388 CGC TGC R1 54C Yes Yes

2403a, n2724a
n3607, n3816 40418 GAG AAG E164K Yes Yes

n3593b  42238 CGT TGT R343C No Yes
n359Ib  42250 GAG AAG E347K No Yes

38077-n3686 38077- Large deletione Yes Yes
41978

e

n4416 c  39279 AAAGTG AAATG -1 frameshiftt  Yes Yes
n2738a, n3597b 39316 TGG TAG W79amber Yes Yes
n3583b, n3817,
n3 8 1 8b, n4373c, 39317 TGG TGA W79opal Yes Yes

n4422c
n2731a 40265 CAA TAA Q113ochre Yes Yes
n4417C  40273 TAC TAA Y 115ochre Yes Yes
n3608 40295 AGA TGA R123opal Yes Yes

n4372c, n4414 40343 CAA TAA Q139ochre Yes Yes
n3605, n3811 b  40368 TGG TAG W147amber Yes Yes
n3606, n4411 40369 TGG TGA W147opal Yes Yes
n3603, n4656 40397 CGA TGA R157opal Yes Yes

n3595'  40416 TGG TAG W163amber Yes Yes
n3587b 40417 TGG TGA W163opal Yes Yes
n4356 40469 AGA TGA R181opal Yes Yes
n3581d 40492 AAAGGT AAAGT -1 frameshiftg  Yes Yes

n3610, n3813b 40594 TGG TGA W222opal Yes Yes
n3600 40851 CAA TAA Q231ochre Yes Yes
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Q235ochre

n4035b

n3609
n3584b

n4423c
n2739a

n3586, n3588b
n3590~

n3589b, n4376
n3602
n3601

40924 -
40970
40995
41025
41048
41070
42229
39069
39403
40616
40843

CAG
CAG
CAG
AGA
CAA

tgcagaatc
TAgtgag
GAgtgag
ttcagAC

TAG
TAG
TAG
TGA
TAA

tgcaaaatc
TAatgag
GAgtgaa
ttcaaAC

47 bp deletionh

Q279amber
Q289amber
Q297amber
R304opal

Q340ochre
noncoding'

Exon 1 donor
Exon 2 donor

Exon 3 acceptor

Yes

Yes
Yes
Yes
Yes
Yes
No
Yes
No

Weak

Yes

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

a Mutation isolated on the basis of a synMuv phenotype. This mutation has previously

been described by Davison et al. (2005).

b Mutation isolated in a nls128 background and remains linked to nls128.

C Mutation isolated on the basis of a synMuv phenotype by Adam Saffer and H.R.H.

(unpublished results).

d Mutation isolated on the basis of a synMuv phenotype by John Doll and H.R.H.

(unpublished results).

e The extent of the n3686 deletion is not clear; the nucleotides listed describe the

minimum missing sequence, and the deletion could be -1500 bp larger. At least the

first three exons of lin-8 are missing, and the fourth exon may also be missing; for

more information, see Materials and Methods.

f n4416 is predicted to cause a frameshift after amino acid 66.

g n3581 is predicted to cause a frameshift after amino acid 191.

h The 47 bp deletion n4035 also has 9 nucleotides inserted at the site of deletion and is

predicted to cause a frameshift after amino acid 258.

The noncoding mutation n3590 alters a residue 12 nucleotides before the open

reading frame begins.
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A complete list of identified lin-8 mutations. Missinse mutations are listed first, followed

by nonsense mutations and then by noncoding and splice site mutations. Within these

categories, mutations are listed in an order determined by their positions within lin-8. All

alleles listed were isolated as green pharynx isolates and are listed in Table 2 or were

isolated in genetic screens for Multivulva animals as indicated with superscripts.

Position refers to nucleotides in the sequence of cosmid B0454 (Accession number

AF025452). Sequences from wild-type and mutant animals are shown, with the affected

nucleotide underlined. For missense, stop, and frameshift mutations, the wild-type and

mutant sequences of the relevant codon or codons are shown. For noncoding and

splice site mutations, wild-type and mutant sequences are shown with noncoding

nucleotides in lowercase and coding nucleotides in uppercase. SynMuv and green

pharynx phenotypes were tested as described in Materials and Methods. Alleles

described as weakly synMuv caused a low-expressivity Muv phenotype in a minority of

animals when combined with the class B synMuv mutation lin-36(n766). All other

mutations either caused a strongly expressive synMuv phenotype in all animals when

combined with lin-36(n766) or were not observed to cause a synMuv phenotype.
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Table 4. Ines-1

Sequence
Allele(s Position wild-type mutant Mutation

n3604,n3689 36151 CGC TGC R119C
n3917 35385 - 35465 81 bp deletiona
n3796b  36424 CAG TAG Q47amber
n3592b 36350 TGG TGA W71 opal
n3795b 36089 TGG TGA W139opal
n3919 36042 TGG TAG W155amber
n3594b 36041 TGG TGA W155opal
n3822b 36016 CAA TAA Q164ochre
n4038Dc 35912 TGG TGA W198opal
n3803b 35020 CAG TAG Q309amber
n3921 35388 tttcagCC tttcaaCC Exon 3 acceptor
n3688 35087 ttgcagAA ttgcaaAA Exon 4 acceptor

a The deletion n3917 removes the splice acceptor and first 3 nucleotides of exon 3.

There is a second mutation, at 35308, causing the change P230S (CCC to TCC).

b Isolated in a nls128 background and remains linked to the nls128 transgene.

C The nonsense mutation n4038 is linked to a second mutation, at 35409, causing the

change R52W (CGG to TGG).

Position refers to nucleotides in the sequence of cosmid B0454. Sequences from

wild-type and mutant animals are shown, with the affected nucleotide underlined. For

missense and stop mutations, the wild-type and mutant sequences of the relevant

codon are shown. For noncoding and splice site mutations, wild-type and mutant

sequences are shown with noncoding nucleotides in lowercase and coding nucleotides

in uppercase. One isolate, n3814, was allelic with Ines-1 by complementation but did

not contain any identifiable mutation in the Ines-1 coding sequence or in its immediate

proximity.
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Table 5. synMuv properties of the green pharynx gene Ines-1

A. Loss of Ines-1 function does not cause a synMuv
Genotype % Muv
wild-type
lin-15A(n767)
Ines-1(n3604);
Ines-1(n3917);
lin-15B(n 744)
Ines-1(n3604);
Ines-1(n3917);

lin-15A(n767)
lin-15A(n 767)

lin-15B(n 744)
lin-15B(n 744)

phenotype.
at 200C (n)
0 100
0 100
0 100
0 100
0 105
0 103
0 100

B. Loss of Ines-1 function might weakly suppress the synMuv
strains.
Genotype % Muv at 17.50C
wild-type 0 (100)
lin-15AB(n765) 81 (100)
Ines-1(n3917); lin-15AB(n765) 28 (101)
lin-15AB(n2993 n433) 3 (100)
Ines-1(n3917); lin-15AB(n2993 n433) 0 (100)

phenotype in sensitized

(n) % Muv at 200C (n)
0 (100)

100 (100)
100 (100)
28 (100)
4 (104)

Genotypes were as indicated. Muv (Multivulva phenotype) was scored as described in

Materials and Methods.
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Table 6. synMuv properties of the green pharynx gene gei-4

A. gei-4(zygotic RNAi), but not gei-4(n4319), causes a class B synMuv phenotype.
Genotype % Muv at 201C (n) % Muv at 250C (n)
wild-type 0 (100) 0 (100)
lin-15A(n767) 0 (151) 0 (100)
gei-4(n4319); lin-15A(n767) 1 (150) 0 (100)
gei-4(zygotic RNAi); lin-15A(n767) 98 (52) 88 (50)
lin-15B(n744) 0 (105) 0 (68)
gei-4(n4319); lin-15B(n744) 0 (100) 0 (100)
lin-36(n 766) 0 (100) 0 (100)
gei-4(zygotic RNAi); lin-36(n766) 0 (21) 0 (30)

B. gei-4(n4319) may weakly enhance the synMuv phenotype of a sensitized strain.
Genotype % Muv at 17.51C (n) % Muv at 200C (n)
wild-type 0 (100) 0 (100)
lin-15AB(n2993 n433) 0 (100) 62 (100)
gei-4(n4319); lin-15AB(n2993 n433) 0 (100) 98 (100)

Zygotic RNAi targeting gei-4 was performed as described in Materials and Methods.

Animals treated with zygotic RNAi were heterozygous for rde-1(ne219) and for

dpy-11(e224). lin-36(n766) zygotic RNAi animals were also heterozygous for

him-5(e1467). All other genotypes were as indicated. Muv (Multivulva phenotype) was

scored as described in Materials and Methods.
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Table 7. synMuv properties of the green pharynx gene pag-6

A. Altered pag-6 function causes a weak class B synMuv phenotype.
Genotype % Muv at 200C (n) % Muv at 22.5°C (n)
wild-type 0 (100) 0 (100)
pag-6(n3599) 0 (100) 0 (100)
lin-8(n2731) 0 (100) 0 (100)
lin-8(n2731); pag-6(n3599) 12 (100) 26 (100)
lin-15A(n767) 0 (100) 0 (100)
pag-6(n3599); lin-15A(n767) 8 (315) 25 (100)
lin-38(n751) 0 (100) 0 (100)
lin-38(n751); pag-6(n3599) 14 (100) 30 (100)
lin-56(n2728) 0 (100) 1 (100)
lin-56(n2728); pag-6(n3599) 4 (100) 13 (100)
lin-36(n766) 0 (100) 0 (100)
pag-6(n3599); lin-36(n766) 0 (100) 0 (100)

B. Loss of pag-6 function does not cause a synMuv phenotype.
Genotype % Muv at 200C (n) % Muv at 22.5°C (n)
wild-type 0 (100) 0 (100)
pag-6(n3599 n51611f) 0 (100) 0 (100)
lin-15A(n767) 0 (100) 0 (100)
pag-6(n3599 n51611f); lin-15A(n767) 0 (100) 0 (100)
lin-15B(n744) 0 (100) 0 (100)
pag-6(n3599 n51611f); lin-15AB(n744) 0 (100) 0 (100)

C. Loss of pag-6 function does not modify the synMuv phenotype in sensitized strains.
Genotype % Muv, 17.50C (n) % Muv, 201C (n)
wild-type
lin-15AB(n765)
pag-6(n3599 n51611f); lin-15AB(n765)
lin-15AB(n2993 n433)
pag-6(n3599 n51611f); lin-15AB(n2993 n433)

0 (100)
66 (111)
67 (103)

0 (102)
0 (108)

0 (100)
(50)
(50)
(91)
(102)

100
100
69
65

All genotypes were as indicated. Muv was scored as described in Materials and

Methods.
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Table 8. Synthetic lethality with pag-6(n3599)

synMuv Green n3599 Synthetic
class Gene Homoloqy pharynx? lethality? Allele(s) tested

A lin-8 LIN-8 family YES No n2731a
A lin-15A THAP domain No No n767a
A lin-38 Zinc finger No No n751bc
A lin-56 THAP domain No No n2728a
B dpl-1 DP No YES n2994b, n3380b, n3643b
B hpl-2 HP1 YES No tm1489a
B let-418 Mi2 No No n3536b
B lin-9 Mipl30 No YES n112D

B lin-13 Zinc fingers YES No n770b

B lin-15B THAP domain No YES n744a
B lin-35 Rb No YES n745a
B lin-36 THAP domain No No n766a
B lin-37 Mip40 No YES n758a
B lin-52 dLin-52 No No n771b
B lin-54 Mip120 No YES n2231b
B lin-61 L3MBTL1 YES No n3809a
B mys-1 HAT No No n3681b

N/A let-60 Ras No No n1046d
N/A isw-1 Iswlp No No n3294b
N/A gei-4 Coiled coil YES No n4319b
N/A Ines-1 LIN-8 family YES No n3917a
N/A mcd-1 Zinc finger No YES n4005c

N/A fzr-1 Cdhl/Hctl/FZR No No ku298a
N/A psa-1 SW13 No No ku355b
N/A spr-1 CoREST No No ar200b

N/A ubc-18 UBCH7 No No ku354b
N/A xnp-1 SNF2 No No fd2b

a Strong loss-of-function allele, likely a null allele.
b Partial loss-of-function allele or altered-function allele of gene required for viability.
C Mutation causing altered gene function; Adam Saffer and H.R.H., personal

communication.
d Gain-of-function or altered-function mutation.

A list of synMuv and selected other mutations tested for synthetic lethality with

pag-6(n3599). In the case of genes required for fertility, partial loss-of-function

mutations that did not cause sterility were used. Non-synMuv mutants that were tested

for synthetic lethality with pag-6(n3599) are listed as "N/A" for "not applicable" in the
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synMuv class column; these mutants include let-60(n1046gf), which causes a Muv

phenotype; isw-1(n3294), which suppresses the synMuv phenotype; the green pharynx

mutant Ines-1(n3917A); gei-4(n4319), a viable allele of the green pharynx and class B

synMuv gene gei-4 that causes the green pharynx phenotype but not a synMuv

phenotype; and alleles of mcd-1, fzr-1, psa-1, spr-1, ubc-18, and xnp-1, genes required

redundantly with lin-35 Rb for viability. lin-8(n2731) was tested in animals homozygous

for dpy-4(e1166); genotypes were otherwise as indicated.
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Table SI. Testing genes that interact with the synMuv genes for the green pharynx

phenotype

Gene Homology Green pharynx? Allele(s) or treatment tested
lin(n3542) unknown No n3542
lin(n3707) unknown No n3707
uba-2 Uba2 No RNAia
ubc-9 Ubc9p No ju484b
ssl-1 p400 No n4077c
ruvb-1 RuvB-like 1 No RNAia
ruvb-2 RuvB-like 2 No RNAia
dcp-66 p66 No gk370
chd-3 Mi2 No eh4d
pcaf-1 PCAF No RNAia
ada-2 Ada2b No RNAia
lin-40 MTA1 No ku285b, s1593c, s1669c
hpl-2 HP1 No n4317d
let-60 Ras No n1046e
isw-1 Iswl p No n3294b
mes-2 E(z) No bn11d
mes-3 Novel No bn35d
mes-4 MMSET No bn23d, bn67d
mes-6 Esc No bn66b
mcd-I Zinc finger No n4005t

fzr- I1 Cdhl/Hctl/FZR No ku298d
psa-1 SWI3 No ku355b
spr-1 CoREST No ar200b
ubc-18 UBCH7 No ku354b
xnp- SNF2 No fd2b

a RNAi was performed by feeding as described in Materials and Methods.

b Partial loss-of-function allele or altered-function allele of gene required for viability.

c Strong loss-of-function allele causing recessive sterility; homozygous animals are the

progeny of heterozygous mothers, indicating that maternal rescue of the green

pharynx phenotype cannot be excluded.

d Strong loss-of-function allele, likely a null allele.

e Mutation causing increased or altered gene function.
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f Mutation causing altered gene function; Adam Saffer and H.R.H., unpublished results.

A list of synMuv mutations, selected other mutations, and RNAi treatments tested for

the green pharynx phenotype as described in Materials and Methods. Genes tested

include lin(n3542) and lin(n3707), which are linked to lin-15A(n767) and either cause

Muv phenotypes or cause synthetic Muv phenotypes in a lin-15A(n767) background;

uba-2 and ubc-9, genes for which RNAi has been reported to cause a Muv phenotype in

both a class A and a class B synMuv background; ssl-1, ruvb-1, ruvb-2, pcaf-1, and

ada-2, genes that, on the basis of homology and in some cases similar ectopic

expression phenotypes, have been proposed to act with the synMuv genes previously

known as class C; dcp-66, which has been proposed on the basis of homology and

similar ectopic expression phenotypes to act with selected class B synMuv genes; two

genes, chd-3 and lin-40 (lin-40 is also known as egr-1), for which RNAi treatments, but

not available alleles, have been reported to cause a synMuv phenotype; hpl-1, which is

homologous to and synthetically Muv with the class B synMuv gene hpl-2;

let-60(n1046gf), which causes a Muv phenotype; mcd-1, a gene that acts with selected

synMuv genes in promoting programmed cell death; isw-1 and mes-2, -3, -4, and -6,

genes that encode chromatin factors required for the synMuv phenotype; and fzr-1,

psa-1, spr-1, ubc-18, and xnp-1, genes required redundantly with lin-35 Rb for viability.

ubc-9(ju484) animals were homozygous for the cis marker dpy-13(e 184). Genotypes

were otherwise as indicated.
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Figure legends

Figure 1

Model for how misexpression of a gfp transgene generates the green pharynx

phenotype. (A) Expression of the pkd-2::gfp reporter nls133 in a wild-type L4 larval

hermaphrodite and in a green pharynx mutant, a lin-8(n2731) L4 larval hermaphrodite.

Images are composites of fluorescence and visible light images. The only strong

expression seen in hermaphrodites is that in the posterior bulb of the pharynx of

green pharynx mutants. (B) A model for the transgene misexpression causing the

green pharynx phenotype. gfp reporter transgenes containing vector sequences can

cause pharyngeal GFP expression in a wild-type background, shown diagrammatically

in the male at right. In a wild-type genetic background, pharyngeal expression can be

prevented by the inclusion of genomic sequences capable of driving specific gene

expression; as an example, the expression of pkd-2::gfp in male-specific sensory

neurons is shown diagrammatically. Green pharynx proteins are recruited by these

genomic sequences and act to prevent inappropriate reporter expression driven by

sequences in the plasmid vector. In green pharynx mutant animals, the specific

expression driven by the included genomic sequences is retained and in addition

reporter expression is observed in the pharynx. When vector sequences are removed,

pharyngeal expression is lost even in green pharynx mutant animals.

Figure 2

The homologous genes lin-8 and Ines-1 both function to prevent inappropriate gene

expression. (A) Genomic organization of the locus containing both lin-8 and Ines-1. The
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lin-8 and Ines-1 genomic rescuing constructs are shown as horizontal bars respectively

labeled "EMD13" and "BSK-Ines-l." (B) Alignment of the full-length sequences of LIN-8

and LNES-1. Identical residues are surrounded with black boxes, and similar residues

are surrounded with gray boxes. Missense mutations that cause both a green pharynx

phenotype and a synMuv phenotype are indicated with black arrowheads. Missense

mutations that cause a green pharynx phenotype but do not cause a synMuv phenotype

are indicated with green arrowheads. The lin-8 mutation n2376, which causes a synMuv

phenotype but does not cause a green pharynx phenotype, is indicated with a blue

arrowheads.

Figure 3

A missense mutation in PAG-6 causes the green pharynx phenotype. (A) Genomic

organization of the pag-6 locus. The positions of phenotypic markers and DNA

polymorphisms used in mapping pag-6 are shown. The genomic duplication yDpl,

which does not complement pag-6, ends between polymorphisms at approximately 297

kb on Y105C5A and 50 kb on Y105C5B. The interval into which pag-6(n3599) was

mapped, between 50 kb and 126 kb on Y105C5B, is shown in greater detail, including

the positions and extents of predicted protein-coding genes. The pag-6 genomic

rescuing construct is shown as a horizontal bar labeled "BSK-pag-6." (B) Diagrammatic

representation of PAG-6. The extents of the MSP domain and of the C-terminal domain

conserved in three other C. elegans proteins are shown. The positions of the

green pharynx missense mutation n3599 and of the pag-6 loss-of-function frameshift

mutation n5161 are indicated. (C) The C-terminal domain of PAG-6 (accession number
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CAB54365) is aligned with the homologous domains within the predicted C. elegans

proteins M199.2 (CAB70252), T25D1.1 (AAA82466), and T27A8.5 (CAA92224). A fifth

family member, F43D2.2, does not contain homology across the entire domain and is

not included. Residues identical among at least three of the four proteins are

surrounded with black boxes, and residues similar among at least three of the four

proteins are surrounded with gray boxes. The position of the pag-6 green pharynx

missense mutation n3599 is indicated.

Figure 4

A model for the function of the green pharynx genes in preventing inappropriate gene

expression. According to this model, in the green pharynx phenotype as seen using a

gfp transgene, the green pharynx proteins are recruited to promoter sequences. The

green pharynx proteins act to repress pharyngeal transcription driven by a nearby

cryptic enhancer element. We propose that the green pharynx proteins act similarly at

endogenous genomic loci to prevent weak or fortuitous enhancer elements near genes

from altering their patterns of expression.

Figure SI

A rescuing Ines-1::gfp transgene gives expression in most or all nuclei. (A)

Fluorescence micrograph showing expression of a rescuing Ines-1::gfpC::/nes-1

transgene in the head of an L4 larva. (B) Nomarski micrograph corresponding to the

fluorescence micrograph in panel A. (C) Composite image created by merging panels A

and B. Note that GFP is localized to the nuclei of many cells, and that these
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Ines-l::gfp-expressing cells can be identified by their positions and their Nomarski

morphology as being of multiple different cell types. Anterior is left, ventral is down.

Figure S2

A rescuing pag-6::gfp transgene gives expression in most or all nuclei. (A) Fluorescence

micrograph showing expression of a rescuing pag-6::gfp transgene in the head of an L4

larva. (B) Nomarski micrograph corresponding to the fluorescence micrograph in panel

A. (C) Composite image created by merging panels A and B. Note that GFP is tightly

localized within the nuclei of many cells, possibly to the nucleolus. The extremely tight

localization might reflect normal localization or might be an artifact of overexpression.

Note also that these pag-6::gfp-expressing cells can be identified by their positions and

their Nomarski morphology as being of multiple different cell types. Anterior is left,

ventral is down.
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Chapter V

The mitotic exit factor cdc-14 is required to prevent

the divisions of specific cells in C. elegans

Johanna Varner', Hillel T. Schwartz', and H. Robert Horvitz

These authors contributed equally to this work

I developed and performed the genetic screens in which I isolated n3444 and performed
the initial characterization and mapping of n3444. As an undergraduate working under
my supervision, Johanna Varner refined the mapping of n3444, performed cosmid
rescue experiments and identified the cdc-14 mutation in n3444 animals. Johanna
observed the developing postdeirid lineages of cdc-14(hel41A) animals and examined
the postdeirids of mutant animals using Nomarski microscopy. I tested expression of
additional cell-fate reporters in wild-type and in cdc-14(hel41A) mutant animals.
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Abstract

The S. cerevisiae phosphatase Cdc14p and its human homolog Cdcl4A are

essential, share substrate specificity and function in mitosis and cytokinesis. By

contrast, C. elegans mutants completely lacking cdc-14 are viable and superficially

wild-type. The requirement for cdc-14 is limited to specific cells in C. elegans: as many

as 40% of the two presumptive PDE neurons inappropriately divided in animals lacking

cdc-14 function, while lineally related cells were completely unaffected. In animals

lacking cdc-14 function, some specific cells were frequently subject to ectopic cell

divisions while other specific cells were never affected. We propose that mechanisms

controlling the specification of cell fates determine the relative importance of

mechanisms regulating the cell cycle machinery in C. elegans.
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Introduction

Entry into and exit from the cell cycle are tightly regulated processes in

development (Fay 2005), and misregulation of the cell cycle is a major feature of cancer

(Malumbres and Barbacid 2007). The nematode Caenorhabditis elegans offers an

excellent organism for the study of the genetics of the cell cycle in a developing

metazoan. The pattern of somatic cell division and cell fate that occurs during

C. elegans development is essentially invariant and completely known (Sulston and

Horvitz 1977; Kimble and Hirsh 1979; Sulston et al. 1983). Many genes have been

identified that perturb the normal pattern of cell division and cell fate (Horvitz and

Sulston 1980; Ferguson and Horvitz 1985; Sternberg 1990; Sarin et al. 2007). One such

gene is the cell cycle gene cdc-14, a member of the Cdcl4 family (Saito et al. 2004).

In Saccharomyces cerevisiae CDC14 is required for exit from mitosis in

S. cerevisiae (reviewed by Stegmeier and Amon 2004; D'Amours and Amon 2007).

Overexpression and RNA interference (RNAi) studies indicate that one of two homologs

of Cdcl4p in humans, hCdcl4A, plays an essential role in mitosis and cytokinesis

(Kaiser et al. 2002; Mailand et al. 2002). The second human homolog, the nucleolar

protein hCdcl4b, is not required for mitosis (Berduogo et al. 2008). Cdc14 proteins are

highly conserved across evolution. Both human homologs are able to rescue the cell

cycle defects of S. cerevisiae cdcl4 mutants and the cytokinesis defects of

Schizosaccharomyces pombe lacking the CDC14 homolog FLPI (Li et al. 1997;

Vazquez-Novelle et al. 2005); also, yeast Cdcl4p and its human homologs share

substrate specificities (Visintin et al. 1998; Trautmann et al. 2001; Kaiser et al. 2002).
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Similarly to S. cerevisiae CDC14, C. elegans cdc-14 promotes exit from mitosis

(Saito et al. 2004). Saito and colleagues found that cdc-14 functions to promote

cell-cycle arrest in multiple tissues but that cdc-14 is not required for viability. They also

reported that although cdc-14 is broadly expressed and functions in multiple tissues,

some tissues do not show ectopic divisions or cell reduplication in animals lacking

cdc-14 function: extra divisions in the mesoblast muscle-precursor lineage were very

rare, and extra distal tip cells were never observed (Saito et al. 2004). Thus, the cells of

different tissue types were affected differently by loss of cdc-14 function.

We similarly find that loss of cdc-14 affects selected cell types. However, our

observations extend beyond the previous observation that cells belonging to different

types of tissues are differingly sensitive to loss of cdc-14 function. We find that when

individual neurons are examined in animals lacking cdc-14 function, only a small subset

of specific neurons are subject to extra cell divisions. In particular, the PDE neuron is

strongly affected, while cells closely related to the PDE by lineage and cells with fates

very similar to those of the PDE neurons are completely unaffected. We propose that

mechanisms that determine specific cell fates within a developing cell lineage determine

whether specific cells require the CDC-14 phosphatase to limit their cell divisions.

Results and Discussion

cdc-14 functions in the postdeirid lineage of C. elegans

The postdeirid is a sensory structure generated from the V5.pa blast cell during

the second larval stage of C. elegans development. The V5.pa blast cell undergoes

three rounds of division to generate five cells: the two glia-like cells PDEso and PDEsh,
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the dopaminergic PDE neuron, the PVD neuron, and a cell that undergoes programmed

cell death (see Figure 1) (Sulston et al. 1975; Sulston and Horvitz 1977). When

programmed cell death is blocked by loss-of-function mutations in the cell-killing

caspase gene ced-3 (ced, cell death abnormal), 50% (n=135) of "undead" PVD sisters

contain dopamine as their lineal "aunts" the PDE neurons normally do (Ellis and Horvitz

1986). Cells developmentally programmed to contain dopamine can be identified using

a transgenic reporter for the tyrosine hydroxylase gene cat-2; the tyrosine hydroxylase

CAT-2 is required in dopamine synthesis to convert L-DOPA to dopamine (Lints and

Emmons 1999). Genetic screens using the cat-2::gfp dopaminergic cell-fate reporter

(see Appendix II) identified a mutation, n3444, that caused the generation of extra

cat-2::gfp-expressing cells in the postdeirid. This mutation quantitatively resembled

cell-death-defective mutants for the number of cat-2::gfp expressing cells in the

postdeirid: 43% of n3444 mutant postdeirids contained an extra cat-2::gfp expressing

cell similar in appearance, process morphology, and location to the PDE neuron

(n = 37). n3444 recessively caused the presence of extra cat-2::gfp-expressing cells

and complemented ced-3(n717), ced-4(n1162), and egl-1(n1084 n3082) mutants

defective in programmed cell death for the number of cat-2::gfp-expressing cells in the

postdeirid, indicating that n3444 was not an allele of a known cell-death gene. We

mapped n3444 to LGII, away from the positions of any genes required for programmed

cell death and from any genes known to prevent the generation of extra dopaminergic

neurons.

The PDE dopaminergic neurons of the postdeirid are one of four bilaterally

symmetric pairs of dopaminergic neurons in C. elegans; the others are the CEPV,
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CEPD, and ADE neurons (Sulston et al. 1975). The ADE neurons are part of an anterior

lateral sensory structure ultrastructurally similar to the postdeirid (Sulston et al. 1975;

Ward et al. 1975; White et al. 1986) and subject to similar developmental control by

genes specifying cell lineage, including the transcription factor genes lin-32 and unc-86,

which are required to generate and to control the numbers of both ADE and PDE

neurons, respectively (Finney and Ruvkun 1990; Zhao and Emmons 1995). In mutants

defective in programmed cell death, the undead lineal sisters of the CEPV neurons, like

the undead lineal nieces of the PDE neurons, can contain dopamine (Ellis and Horvitz

1986). Unlike these cell-lineage and cell-death mutants, n3444 was not observed to

affect the number of cat-2::gfp-expressing dopaminergic neurons other than the PDEs

(n = 80).

We used visible markers and DNA polymorphisms to map n3444 to a 118 kb

interval on LGII. We performed transformation rescue experiments (Mello and Fire

1995) with cosmids corresponding to this interval. We found that transgenes containing

either of two overlapping cosmids, C12A7 and C17G10, complemented the cat-2::gfp

expression phenotype of n3444 and restored the normal number of

cat-2::gfp-expressing cells to the postdeirids of n3444 mutants. We examined the

overlapping region between the two cosmids and determined the DNA sequences of

genes in the region. In this way we identified n3444 as a mutation in cdc-14, predicted

to change codon 349 from a tryptophan to an opal stop codon.

Although the S. cerevisiae and human homologs of CDC-14 are essential,

animals homozygous for cdc-14(n3444), for the deletion cdc-14(hel41A) (Saito et al.

2004), or for the Q446ochre nonsense mutation cdc-14(he118) (Saito et al. 2004) are
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viable and do not show gross phenotypic abnormalities. cdc-14(hel41A) caused a

cat-2::gfp expression phenotype identical to that caused by cdc-14(n3444) and failed to

complement cdc-14(n3444) for cat-2::gfp expression in the postdeirid (data not shown).

RNAi targeting cdc-14 similarly phenocopied n3444: in rrf-3(pk1426) animals

hypersensitive to RNAi (Simmer et al. 2002), 32% of postdeirids contained two

cat-2::gfp-expressing cells (n=72).

Loss of cdc-14 function specifically causes an extra division of the PDE neuron

To determine the defect that gives rise to the presence of two

cat-2::gfp-expressing cells in the postdeirids of animals lacking cdc-14 function, we

observed the developing lineages of cdc-14(hel41A) animals. Starting at various points

within the generation of the postdeirid, 39 developing postdeirid lineages were

examined until cell divisions had ceased. Animals were allowed to develop to adulthood,

and the postdeirids were examined for cat-2::gfp expression (see Figure 2 and Materials

and Methods). Of the 39 lineages observed, 26 were wild-type in their cell division

pattern and for cat-2::gfp expression in the PDE. In the other 13 lineages the

presumptive PDE neuron inappropriately divided once, and both daughter cells

expressed the cat-2::gfp dopaminergic cell fate reporter. No other defects in the

developing postdeirid lineage were observed. We used Nomarski and fluorescence

optics to examine the postdeirids of L4 larvae: cdc-14(n3444); cat-2::gfp or

cdc-14(hel41A); cat-2::gfp animals either contained four nuclei with neuronal

morphology, of which one expressed the cat-2::gfp cell fate reporter (62% and 57%,

respectively), or contained five nuclei with neuronal morphology, of which two
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expressed the cat-2::gfp cell fate reporter (38% and 43%, respectively; n = 16 and

n = 23, respectively). No abnormalities were observed in direct observation of six

developing postdeirid lineages of animals with wild-type cdc-14 function or from

examining the postdeirids of animals with wild-type cdc-14 function using Nomarski and

fluorescence optics (n=36). We conclude that in animals lacking cdc-14 function, the

presumptive PDE neuron frequently undergoes an extra round of cell division to

generate two cells similar to the PDE neurons and that other cells of the postdeirid are

not significantly affected by loss of cdc-14 function.

We also examined animals lacking both cdc-14 function and ced-3 function. Our

observations were consistent with a combination of the extra PDE division observed in

cdc-14 mutants and the dopamine expression by the "undead" PVD sisters observed in

cell-death-defective animals. Specifically, of 154 postdeirids examined, 43 (28%)

contained one cat-2::gfp-expressing cell, 84 (55%) contained two cat-2::gfp-expressing

cells and 27 (18%) contained three cat-2::gfp-expressing cells. These percentages are

consistent with our previous observations: we found that -40% of PDEs divided in

cdc-14(hel41A) animals to generate two cat-2::gfp-expressing cells and approximately

50% of PVD sisters expressed cat-2::gfp in ced-3(n717) animals. We did not observe

animals with four cat-2::gfp-expressing cells in the postdeirid, which we propose

suggests that cdc-14 function is not required to prevent the inappropriate divisions of

the dopaminergic undead PVD sister cells of animals defective in programmed cell

death. cdc-14 is therefore required to prevent ectopic division of the PDE neuron and

acts to promote exit from mitosis in this cell. cdc-14 is not required in the other four cells

of the postdeirid lineage, including the "undead" PVD sister, which displays a cell fate
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similar to that of the PDE neuron, and cdc-14 is not required to prevent ectopic division

of the anterior ADE neurons, which are structurally and lineally related to the PDE

neurons. cdc-14 function is therefore required in a sharply defined subset of cells and

not required in other cells that are closely related by cell lineage or that are specified by

similar cell-lineage controls and display similar reporter expression and possess similar

process morphology.

cdc-14 is required to prevent cell division for a subset of cell types

The presumptive PDE neuron, but not the other four cell types generated within

the postdeirid lineage, divided in cdc-14 mutants. We thus examined other cells to

determine whether they might inappropriately divide in cdc-14 mutants. We combined

cdc-14(hel41A) with a collection of gfp cell-fate reporters each of which is expressed in

a small number of identified neurons (see Table 1). We tested nine reporters, expressed

in 15 specific neurons. We detected extra expressing cells using the lin-11::gfp,

nmr-1::gfp, and tbh-l::gfp reporters. These extra expressing cells suggest that cdc-14 is

required to prevent the division of three specific neurons - the VC neurons, the RIC

neurons, and one or more from the AVA, AVD, and AVE neurons. In each of these

cases, 10 to 20% of cdc-14(hel41A) animals contained extra expressing cells (Table 1).

No extra expressing cells were detected for the other nine neuron classes scorable

using these reporters (Table 1).

Prospects for the identification of determinants by which a requirement for

cdc-14 mitotic exit function is limited to specific cells
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The genetic screen for alterations in cat-2::gfp expression in the postdeirid

lineage in which we identified the cdc-14 mutation n3444 was not saturated: no alleles

of the cell-death genes ced-4 or egl-1 were isolated and only single alleles of cdc-14,

lin-22 and lin-32 were isolated (see Appendix II). Further genetic screens using the

cat-2::gfp reporter might therefore lead to the identification of genes that like cdc-14 are

required to prevent the presumptive PDE neuron from dividing, possibly including genes

that promote cdc-14 function in the PDE neuron or genes that act in parallel to cdc-14

and explain the failure of nearly 60% of presumptive PDE neurons to divide in animals

completely lacking cdc-14 function. Genes of the latter class might also be identified by

enhancer screens seeking mutations that increase the percentage of presumptive PDE

neurons that divide in animals lacking cdc-14 function. Screens seeking defects in other

cells of the postdeirid in animals lacking cdc-14 or screens seeking to identify genes

redundantly required with cdc-14 for viability could lead to the identification of

mechanisms that normally restrict the requirement of cdc-14 to the PDE neurons.

Because of the essential role of its yeast homolog in promoting exit from the cell

cycle in yeast and its apparent function in cytokinesis and control of ploidy, human

Cdcl4A has been proposed to act as a tumor suppressor (Mailand et al. 2002).

hCdcl4A is frequently found to be present at abnormally low levels in cancer cell lines,

especially those mutated for the tumor suppressor p53 (Paulsen et al. 2006).

Determination of cell identity within a developing C. elegans lineage decides at

single-cell resolution whether cdc-14 function is required to exit from the cell cycle and

achieve a wild-type pattern of cell division. These differences in whether cdc-14 function

is required exist not only between different tissue types (Saito et al. 2004) but also
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between cells closely related by lineage and cells possessing extremely similar cell

fates, suggesting that it may be possible to change whether cells require cdc-14

function to exit from the cell cycle without greatly disrupting other aspects of their

functions. Identification of genes that determine whether cdc-14 function is required in

specific cells in C. elegans could lead to the identification of homologous genes that

similarly determine whether human cells require hCdcl4A function to control their cell

cycles, and could lead to therapeutic approaches to restore normal cell-cycle control to

cancerous cells that have lost hCdcl4A function.
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Materials and Methods

C. elegans genetics

C. elegans strains were derived from the wild-type strain N2 (Bristol, England)

and cultured using standard conditions (Brenner 1974) except that the bacterial strain

HB101 was used as a food source. Mutations isolated in this study on the basis of their

cat-2::gfp expression phenotypes are listed in Table S1. Other mutations used are listed

below. Mutations for which no citation is given have been described previously (Riddle

et al. 1997). LGI: dpy-5(e61); LGII: bli-2(e768), bwls2 [flp-1::gfp] (Wightman et al. 2005),

cdc-14(hel41A) (Saito et al. 2004), dpy-10(e128), lin-31(n301), rol-6(e187),

rrf-3(pk1426) (Simmer et al. 2002), unc-4(e120), vab-1(e2027); LGIII ced-4(n1162),

gms12 [srb-6::gfp] (Frank et al. 2003), nls107 [tbh-l::gfp] (Alkema et al. 2005),

unc-32(e189), unc-86(n846); LGIV ced-3(n717), jeln2 [mec-3::IacZ] (Way et al. 1991),

lin-22(n372), unc-5(e53); LGV: akls7 [nmr-1::gfp] (Brockie et al. 2001), dpy-11(e224),

egl-1(n 1084 n3082) (Conradt and Horvitz 1998), unc-76(e911), utls13 [dat-1::gfp] (T.

Ishihara and I. Katsura, personal communication); LGX: bcls24 [tph-1::gfp] (Thellmann

et al. 2003), dpy-6(e14), gmls18 [ceh-23::gfp] (Withee et al. 2004), lin-15AB(n765),

Ion-2(e678), mls6 [daf-7::gfp] (Ren et al. 1996), nls106 [lin-1 1::gfp] (Reddien 2002),

oxlsl2 [unc-47::gfp] (Mclntire et al. 1997), unc-9(e101). The cat-2::gfp reporters

nls1 16 X and nls1 17 X are described below.

Mapping cdc-14(n3444)

We mapped n3444 to LGII, between vab-1 and dpy-10 and very close to bli-2.

We mapped n3444 using polymorphisms essentially as described (Wicks et al. 2001).
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We crossed lin-31(n301) n3444 dpy-10(e128); nls117 hermaphrodites with nls 117

males containing a region of LGII derived from the polymorphic Hawaiian strain

CB4856. 272 Lin-non-Dpy recombinants included 15 that had recombined in an interval

between 18226 on cosmid EEED8 and 19093 on cosmid K05F1 that we identified as

containing n3444. We identified additional polymorphisms within this interval on the

cosmids ZK177 (nucleotide 20884 of accession number U21321), C17G10 (11731 of

U28739), F59E12 (22824 of AF003386) and F10C1 (18148 of U49831). We mapped

n3444 to the 118 kb interval between the polymorphisms on ZK177 and F59E12.

Transgenesis and generation of integrated cat-2::gfp reporters

Germline transformation was performed as described (Mello et al. 1991). The

cat-2::gfp reporter plasmid EM282 was injected at 50 ng/ll with 50 ng/pl of the lin-15

rescuing plasmid pL15EK (Clark et al. 1994) as a co-injection marker. A line giving

strong expression in the postdeirid with limited formation of GFP aggregates was

selected for the isolation of genomic integrants, according to an established protocol

(Shaham and Horvitz 1996). From approximately 600 F1 clones established following

gamma irradiation, three integrated cat-2::gfp reporters were established, all mapping to

LGX: nls116, nls117, nls118. nls117 and nls118 were likely identical: strains containing

either transgene appeared similar, and neither nls 117 nor nls118 was observed to

recombine with Ion-2(e678). nls116 mapped between dpy-6 and unc-9 on LGX.

Cosmids C0305, C17C3, C12A7, C17G10, and C41A6 were injected at ~25 ng/tl each

for rescue of cdc-14(n3444) using 50 ng/ l P76-16B (Bloom and Horvitz 1997) as a

co-injection marker.
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RNAi

dsRNA targeting cdc-14 was made by amplifying sequences corresponding to

exon 4 and sequences corresponding to exon 13 of cdc-14 (9508 to 10065 and 5459 to

5948 of cosmid C17G10, respectively; numbers refer to nucleotides of accession

number U28739) using oligonucleotides with T7 transcription sites appended 5' of their

homologous sequences. PCR products were purified, RNA was transcribed, purified,

denatured and annealed. RNAi was performed by injection according to established

protocols (Fire et al. 1998) using nls1 16 animals or RNAi-hypersensitive

rrf-3(pk1426); nls 116 animals.

Examination of mutant phenotypes

We used Nomarski microscopy and performed cell lineage analysis according to

standard methods (Sulston and Horvitz 1977). We observed of reporter gene

expression using a compound microscope (AxioSkop, Zeiss) equipped with Nomarski

optics. To avoid possible confusion with the two neurons and one cell death derived

from the asymmetric QL lineage generated in the vicinity of the left postdeirid, we

examined only postdeirids on the right side of the animal by Nomarksi microscopy.

Following lineage analysis, animals were recovered from the slide and placed on a 6 cm

Petri plate containing NGM agar seeded with HB101 bacteria. We allowed the

recovered animals to develop for an additional day, then placed the animals on slides to

score for expression of the cat-2::gfp reporter; fluorescence from the reporter is not

seen until hours have elapsed after the cell division is completed. We successfully
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observed the developing right postdeirid lineages of 39 cdc-14(hel41A); nls117

animals, recovered them, and scored them for cat-2::gfp expression. Additional animals

were lost during in this process; in these animals, no cell divisions inconsistent with

those shown in Figure 2 were observed.
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Table 1. Loss of cdc-14 causes the presence of extra members only of a small number

of neuron classes.

Extra expressing cells (%)
Reporter Neurons examined 0 1 2 n References

ceh-23::gfp 2 CANs 100 0 0 38 1
daf-7::gfp 2 ASIs 100 0 0 45 2
flp-::gfp 2 AVKs 100 0 0 43 3
lin-11::gfp 4 scorable VCsa 80 17 2 41 4
nmr-1::gfp 2 AVAs, 2 AVDs, 2 AVEs 66 29 5 41

2 PVCs 100 0 0 41
srb-6::gfp 2 PHAs, 2 PHBs 100 0 0 46 6
tbh-l::gfp RICs 88 12 0 41 7
tph-1::gfp NSMs 100 0 0 41 8,9

unc-47::gfp 6 DDs, 13 VDs, DVB 100 0 0 25 10
a Vulval fluorescence from the lin-11::gfp reporter transgene nls106 obscures the

positions of two of the four VC neurons.
b The extra cells in cdc-14(hel41A); akls7 animals are in the head, close to the

positions of the AVA, AVD, and AVE neurons. No extra cells were observed near the
positions of the PVC neurons.

cdc-14(hel41A) animals homozygous for the indicated transgene were scored for the

presence of additional cells expressing the cell-fate reporter. The percentage of animals

with zero, one, or two extra cells expressing the indicated cell-fate reporter is shown. A

similar number of cdc-14(+) animals homozygous for each transgene were scored for

each reporter as a control; no extra cells were seen in cdc-14(+) animals. Reporters are

described in the following references: 1 (Withee et al. 2004); 2 (Ren et al. 1996);

3 (Wightman et al. 2005); 4 (Reddien et al. 2001); 5 (Brockie et al. 2001); 6 (Frank et al.

2003); 7 (Alkema et al. 2005); 8,9 (Sze et al. 2000; Thellmann et al. 2003); 10 (Mclntire

et al. 1997)
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Figure legends

Figure 1

Expression of the dopaminergic cell fate reporter cat-2::gfp. The dopaminergic cell fate

reporter cat-2::gfp is expressed in the PDE neurons of wild-type animals (a), in the PDE

neurons and the undead PVD sisters of animals defective in programmed cell death (b),

and in the two products of the inappropriate PDE cell division seen in animals lacking

cdc-14 function (c). Cell lineage diagrams show the cell divisions by which the V5.pa

blast cell divides to generate the postdeirid, a lateral sensory structure. The X indicates

the programmed cell death of the sister of the PVD neuron. The ovoid ring shapes in the

center of each image are the nuclear-excluded fluorescence generated by the cat-2::gfp

reporter. Weaker fluorescence is autofluorescence from lipid particles in the intestine.

Micrographs are merged images from fluorescence and Nomarski microscopy. Ventral

is down, anterior is left.

Figure 2

Cell lineages observed in cdc-14(hel41A) animals homozygous for the cat-2::gfp

dopaminergic cell-fate reporter nls 117. 26 of 39 animals showed a wild-type pattern of

cell divisions. In 13 of 39 animals the dopaminergic PDE neuron inappropriately divided

to generate two cat-2::gfp-expressing dopaminergic neurons. Observation of different

developing lineages began at different stages of postdeirid development. For the 26

wild-type patterns, observation of 7/26 began after the V5.pa cell divided and before the

V5.paa and V5.pap cells divided, and observation of 19/26 began after the V5.paa and

V5.pap cells divided and before the V5.paap cell divided. For the 13 patterns in which
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the PDE divided, observation of 1/13 began before the V5.pa cell divided, observation

of 8/13 began after the V5.pa cell divided and before the V5.paa and V5.pap cells

divided, observation of 3/13 began after the V5.paa and V5.pap cells divided and before

the V5.paaa and V5.paap cells divided, and observation of 1/13 began after the V5.paa

cells divided and before the V5.paaa cell divided. No other cell lineage defects were

observed.
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I isolated one sel-10(gf) mutation in a screen for hermaphrodites with surviving CEM
neurons (see Chapter 2) and isolated the sel-10 deletion n4273. I performed epistasis
and gene dosage experiments to show that the masculinizing sel-10 gain-of-function
mutation n3717 causes altered gene function and acts within the sex-determination
pathway and mapped sel-10(n3717) to a 130 kb interval. Sibylle Jager and Barbara
Conradt performed similar epistasis and gene dosage esperiments using the sel-10
gain-of-function mutation n1077, isolated the sel-10 loss-of-function mutation bc189 and
the sel-10 deletion bc243, and used my mapping of n3717 to clone sel-10. Barbara
Conradt, Sibylle Jager, and I did strain constructions and assessed genetic interactions
between sel-10 mutations and mutations affecting sex-determination and Notch
signaling. All of the biochemistry and mammalian cell-culture experiments were
performed by Sibylle Jager.
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Summary

The Caenorhabditis elegans F-box protein SEL-10 and its human homolog have

been proposed to regulate LIN-12 Notch signaling by targeting for ubiquitin-mediated

proteasomal degradation LIN-12 Notch proteins and SEL-12 PS1 presenilins, the latter

of which have been implicated in Alzheimer's Disease. We found that sel-lO is the same

gene as egl-41, which previously had been defined by gain-of-function mutations that

semidominantly cause masculinization of the hermaphrodite soma. Our results

demonstrate that mutations causing loss-of-function of sel-10 also have masculinizing

activity, indicating that sel-10 functions to promote female development. Genetically,

sel-10 acts upstream of the genes fem-1, fem-2, and fem-3 and downstream of her-1

and probably of tra-2. When expressed in mammalian cells, SEL-10 protein

co-immunoprecipitates with FEM-1, FEM-2, and FEM-3, which are required for

masculinization, and FEM-1 and FEM-3 are targeted by SEL-10 for proteasomal

degradation. We propose that SEL-10-mediated proteolysis of FEM-1 and FEM-3 is

required for normal hermaphrodite development.
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Introduction

C. elegans develops either as a self-fertilizing XX hermaphrodite or as an XO

male (1). The X-to-autosome (X:A) ratio provides the primary sex-determining signal

and specifies the activity of her-1 (her, hermaphrodization). Downstream of her-1, five

genes - tra-2, tra-3 (tra, transformer), fem-1, fem-2, and fem-3 (fem, feminization) -

control the activity of tra-1, the terminal, global regulator of somatic sexual fate. In XX

animals, the her-1 gene, which encodes a secreted protein, is not expressed (2). The

lack of her-1 expression in XX animals permits the activation of the transmembrane

protein TRA-2, which blocks the functions of FEM-1 (a novel protein (3)), FEM-2 (a type

2C protein phosphatase (4, 5)), and FEM-3 (an ankyrin-repeat protein (6)), possibly by

directly interacting with FEM-3 (7). This block leads to the activation of the Zn-finger

DNA-binding protein TRA-1 (8). Active TRA-1 represses the transcription of genes

required for male development, resulting in the formation of an animal with a female

soma, a hermaphrodite (9, 10). In XO animals, the HER-1 protein is present and inhibits

TRA-2 (11, 12). The FEM proteins are thus relieved from negative regulation by TRA-2,

resulting in the FEM-dependent inhibition of TRA-1 and subsequent male development.

The gene egl-41 (egl, egg-!aying defective) was defined by three

semidominantly-acting mutations, n1069, n1074 and n1077, identified in a screen for

egg-laying defective (Egl) hermaphrodites (13). Additional egl-41 alleles were identified

in screens for mutations that suppress a semidominantly-acting tra-2 mutation (e2055;

(14)), that cause the male-specific CEMs (cephalic companion neurons) to survive in

hermaphrodites (n3717; H.T.S. and H.R.H., unpublished results), or that cause

abnormalities in the sex-specific pattern of cell deaths in the ventral cord (n3854, n4041,

n4046; B. Galvin and H.R.H., unpublished results). egl-41 hermaphrodites are weakly
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masculinized: for example, in egl-41 hermaphrodites the hermaphrodite-specific

neurons (HSNs) die (the HSNs normally die by programmed cell death in males and

survive in hermaphrodites, in which they are required for egg laying) and the CEM

neurons, which normally die in hermaphrodites, survive (13). All previously

characterized egl-41 alleles cause a semidominant phenotype. Semidominant

phenotypes often are consequences of gain-of-function (gf) mutations that cause

altered gene function. For this reason, previous studies could not establish whether

egl-41 normally acts in the sex-determination pathway. In this report, we describe the

molecular characterization of the egl-41 gene and the phenotype caused by the loss of

egl-41 function. Our results indicate that egl-41 is the same gene as the previously

characterized gene sel-10 (sel, suppressor/enhancer of lin-12) and that sel-10 normally

functions in sex determination.
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Materials and Methods

General methods and strains. C. elegans strains were maintained at 200C unless

otherwise noted. The strain N2 (Bristol) was the standard wild-type strain. For single

nucleotide polymorphism (SNP) mapping, the wild-type strain CB4856 (Hawaiian) was

also used. Alleles, deficiencies, and duplications used in this study are listed below and

are described by Riddle et al. (15), except where noted otherwise: LGI: him-l(e879),

n/s133 (pkd-2::gfp, (16); H.T.S. and H.R.H, unpublished). LGII: tra-2(e1875, e2019,

e2021, e2531, n1106). LGIII: fem-2(b245, e2105), lin-12(n302, n676 n930). LGIV:

fem-1(hcl7, e1965), fem-3(e2006, e1996), him-8(e1489), ced-3(n717). LGV:

dpy-11(e224), her-1(e1561, n695, hvl y101), unc-42(e270), Ion-3(e2175), rol-4(sc8),

sel-10(ar41, n1069, n1074, n1077, e2055), sel-10(bc189 n1077, bc243, n4273) (this

study), sel-10(n3717) (H.T.S. and H.R.H., unpublished results), sel-10(n3854, n4041,

n4046) (B. Galvin and H.R.H. unpublished results), him-5(e1490), unc-76(e911),

dpy-21(e428). LGX: sel-12(arl31), sdc-1(n485). nDf42 is a deficiency spanning the

sel-10 locus (17). ctDp8(V;f) is a free duplication spanning the sel-lO locus (18).

Mapping of egl-41/sel-10. sel-lO gf alleles had previously been mapped between sqt-3

and him-5 on LGV (13). The location of n3717gf was refined using SNP mapping and

the following SNPs: pkP5069, pkP5070, pkP5086, pkP5088, F55B12 9,811, and

R10D12 16,645 (19). To obtain recombinants for LGV between N2 and CB4856, the

strains nls133; rol-4(sc8) sel-10(n3717) unc-76(e911) or rol-4(sc8) sel-10(n1077gf)

unc-76(e91 1) were crossed with CB4856. Recombinants were analyzed for the

presence of n3717gf or n1077gf by scoring for the presence of CEMs and for an EgI
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phenotype as described below, and SNPs were genotyped by performing PCR and

subsequent restriction digests (19).

Isolation of sel-10 deletion mutants. Genomic DNA pools from mutagenized animals

were screened for deletions as described (20). Deletion mutant animals were identified

by nested PCR, isolated from frozen stocks, and outcrossed at least three times.

Microscopic analyses of mutant and transgenic animals. The Egl phenotype of

sel-lO gf animals and the presence of HSNs were analyzed as described (21). To score

for the presence of CEMs, we anesthetized L4 larvae with 50 mM sodium azide and

examined all four CEM positions using Nomarski microscopy (22). In SNP mapping and

in epistasis analysis with sel-10(n3717gf), we scored the presence of CEMs using the

pkd-2::gfp reporter nls133. Hermaphrodite fertility was tested by picking individual L4

hermaphrodites and analyzing 72 hr later whether progeny had been generated. Brood

sizes were determined by picking individual L4 hermaphrodites, transferring them to

fresh plates daily for four days and counting all progeny generated. We scored as males

both animals that appeared fully male-like (most of which were presumably

pseudo-males, defined as XX animals that were essentially completely masculinized)

and intersexes with severely masculinized tails, as determined using a dissecting

microscope (23).

Molecular analysis. pBC262 contains a 6.9 kb Xbal fragment of cosmid F55B12 (from

7986 to 14853; all references to F55B12 sequence refer to Genbank accession number
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Z79757) ligated into Bluescript KS+. The sequences of mutant alleles of sel-lO were

determined from PCR-amplified genomic DNA. The plasmids pQNClacZ,

pQNCsel-10 Omyc and pQNCsel-1OHA (17, 24) were used for transient transfections.

fem-1, fem-2, and fem-3 cDNAs were amplified from plasmids AS#1000, AS#1245 and

AS#1197 (6) to introduce a Flag-tag or Myc-tag. The tra-2 fragment encoding TRA-2C

(25), was amplified from the plasmid pPK148. The PCR products were cloned into the

expression vector pCDNA3 (Invitrogen). For construction of a plasmid driving the

expression of hsel-10 shRNA, we used appropriate oligonucleotides that were annealed

and ligated into the vector pSHAG-1 (26).

Transgenic animals. Germline transformation was performed as described (27).

Cosmid DNA (5-8.5 gg/ml each) was injected into sel-10(n1077gf) unc-76(e911)

animals with the unc-76 rescuing construct p76-16B (50 pg/ml) (28).

Transfections, immunoprecipitations and western analysis. For

co-immunoprecipitation experiments, U20S cells were grown to 50% confluency in

Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% Fetal Bovine

serum (FBS) and transfected using FuGENE 6 (Roche). We added a LacZ-containing

plasmid (pQNClacz) to keep the total amount of DNA constant. 24 hr after transfection,

cells were lysed in Flag lysis buffer (50 mM Tris-HCI, pH 7.8; 137 mM NaCI; 10 mM

NaF; 1 mM EDTA; 10% Glycerin, 1% Triton X-100; 0.2% Sarkosyl) and 1x complete

Protease Inhibitor Cocktail (Roche). Cell lysates were incubated with anti-FlagM2 affinity

gel (Sigma) or anti-Myc agarose (Santa Cruz) for 2 hr at 40C. The beads were washed

3x with Flag-lysis-buffer and boiled in sample buffer. Precipitated proteins were
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analyzed using anti-FlagM2 antibodies (Sigma) and polyclonal anti-Myc antibodies

(Santa Cruz). For detection of protein steady-state levels, the expression plasmids were

transfected into BOSC cells. A plasmid pSHAG-Ffl expressing Firefly Luciferase

shRNA (26) was used as a negative control (control shRNA). Cell cultures were treated

8 hr with the proteasome inhibitor Lactacystin (5 pM; Sigma). The FEM proteins were

detected with anti-FlagM2 antibodies.
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Results

The egl-41 mutation n1077 causes altered egl-41 activity that is antagonized by

wild-type egl-41 activity

egl-41(n1077) semidominantly causes a cold-sensitive Egl phenotype (Table

S1A and (13)). egl-41 is not haplo-insufficient for feminization, as nDf42/+

hermaphrodites (nDf42 is a deficiency that deletes the egl-41 locus; (14)) were not Egl

(Table S1B). The semidominant egl-41 phenotype is likely not caused by an increase in

wild-type eg/-41 activity: hermaphrodites carrying the duplication ctDp8, which spans

the egl-41 locus (+/+; ctDp8) (18), were non-Egl (Table S1B), and 54% of n1077/+

hermaphrodites but only 24% of n1077/+/+ hermaphrodites (n1077/+; ctDp8) were Egl

(Table S1B), which also indicates that the semidominant activity of egl-41(n1077) can

be antagonized by wild-type activity. However, n1077 homozygotes had a more

penetrant Egl phenotype than n10771nDf42 heterozygotes (100% and 26% penetrant

for EgI, respectively; Tables S1A and S2A), which indicates that n1077 does not simply

antagonize wild-type egl-41 activity and must cause altered gene function. We therefore

refer to the eight semidominantly-acting egl-41 alleles as gain-of-function (gf) mutations.

All eight independently isolated egl-41(gf) mutants carry an identical mutation in

the sel-10 open-reading frame

We mapped egl-41(n3717gf) to a 130 kb interval on linkage group V and found

that the Egl phenotype of and masculinization caused by egl-41(n1077gf) could be

suppressed by a 6.9 kb fragment of cosmid F55B12 (bp 7986-14853) (Fig. S1A). This

fragment contains the previously characterized gene sel-10O and the 5' region of

F55B12.4, a gene encoding a poly (A) polymerase-like protein (Fig. S1B).
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sel-10, which encodes a 587 amino acid F-box protein, was previously defined by

the loss-of-function (If) mutations ar28 and ar41 (17, 29). sel-10 is a negative regulator

of lin-12 (lin, lineage abnormal), which encodes a Notch-like receptor. The SEL-10

protein can interact with the intracellular domain of the LIN-12 protein in mammalian

cells (17), and mammalian SEL-10 interacts with the intracellular domain of mammalian

Notch, NIc, targeting it for ubiquitin-mediated degradation (24, 30, 31). SEL-10 also

appears to be a negative regulator of the presenilin SEL-12, and mammalian SEL-10

targets the presenilin PS1, which has been implicated in Alzheimer's disease, for

degradation (32-34). SEL-10 contains eight WD40 repeats, which are located in the

C-terminal half of the protein (17, 35). ar41 and ar28 are nonsense mutations that

truncate SEL-10 in WD40 repeats II and VII, respectively (17). We found that all eight

egl-41(gf) mutants have an identical mutation leading to a glycine-to-glutamic acid

substitution at position 567 in WD repeat VIII (Fig. S1C).

egl-41 and sel-lO are the same gene

To identify dominant suppressors of the Egl phenotype of n1077gf animals, we

mutagenized homozygous n1077gf hermaphrodites and screened the F1 self-progeny

for rare, non-Egl hermaphrodites. From 20,000 mutagenized haploid genomes

screened, we recovered one mutation, bc189, that semidominantly suppressed the Egl

phenotype and the masculinization caused by egl-41(nI077gf) (Table S2A, B). bc189 is

tightly linked to egl-41 (data not shown) and is a loss-of-function allele of sel-10: (1) like

sel-10(ar41), bc189 is a modifier of lin-12 and a suppressor of sel-12(arl31) (Table S3);

(2) bc189 failed to complement sel-10(ar41) for suppression of sel-12(arl31) (Table

S3C); and (3) bc189 animals have a missense mutation in sel-10, leading to an aspartic
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acid-to-asparagine substitution at position 482 in WD40 repeat VI (Fig. S1C). We used

a cis-trans test to determine if sel-10(bc189) is in the same gene as egl-41(n1077gf).

Specifically, we used bc189 as a sel-10(if) mutation in cis to egl-41(n1077gf) (genotype

bc189 n10771+) and compared bc189 n10771+ animals to animals carrying the sel-10(lf)

mutation ar4l in trans to egl-41(n1077gf) (genotype n10771ar41) (Table S2C). sel-10(lf)

in cis to n1077gf but not in trans to n1077gf suppressed the Egl phenotype of n1077,

indicating that the mutations affect the same gene. Henceforth, we refer to egl-41 as

sel-10.

sel-10(n1077gf) shares selected characteristics with sel-10(lf) mutations

sel-10(n0lO77gf) behaved similarly to the sel-10(lf) mutations ar4l and bc189

n1077 in elevating lin-12 function: it suppressed the two-AC (AC, anchor cell) defect

caused by the weak lin-12 If allele lin-12(n676 n930) (29) and enhanced the Muv (Muv,

multivulva) phenotype caused by the weak lin-12 gf allele lin-12(n302) (17) (Table S3A,

B). By contrast, unlike sel-10(lf), sel-10(n0lO77gf) did not suppress the Se/-12-Egl

phenotype caused by sel-12(arl31) (29, 32, 36) (Table S3C). These findings suggest

that the sel-10(gf) mutation affects a sel-1O function that is involved in the regulation of

LIN-12 but not of SEL-12.

The sel-lO null phenotype is a weak masculinization of hermaphrodites

We isolated two deletion mutations in the sel-lO gene, bc243 and n4273, which

delete 851 bp (10103-10953 of F55B12) and 956 bp (10323-11278 of F55B12) and are

predicted to truncate SEL-10 after amino acids 85 and 106, respectively (Fig. S1B, C).

The resulting proteins should lack the F-box and all eight WD40 repeats. bc243 and
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n4273 most likely are null alleles of sel-lO. Like sel-10(ar41) and sel-10(bc189 n1077)

animals, bc243 and n4273 hermaphrodites appear grossly wild-type. We found that

bc243 and n4273 suppressed lin-12(n676 n930) and sel-12(arl31) and enhanced

lin-12(n302gf) to a degree similar to that seen with sel-10(ar4l) (Table S3 and data not

shown). Thus, as previously proposed, ar41 represents a null allele (17).

sel-10(n1077gf) enhances the Tra phenotype caused by weak If mutations of

tra-2 (13). We therefore tested whether null alleles of sel-10 could modify the Tra

phenotypes caused by a gf mutation of her-1 or by weak If mutations of sdc-1 (sdc, sex

determination and dosage compensation; sdc-1 negatively regulates her-1) or tra-2. By

several criteria, we found that sel-10(If) enhanced their Tra phenotypes (Table 1A, B,

C). In addition, hermaphrodites homozygous for any of the three sel-lO null mutations

exhibited defects indicative of weak masculinization, including the absence of HSNs and

the presence of CEMs (Table 1B, C), albeit to a far lesser degree than seen for

sel-10(n1077gf) animals (Table S2B). Thus, the sel-10O null phenotype with respect to

sex determination is a weak masculinization of hermaphrodites. We conclude that

sel-10 acts to promote hermaphrodite development.

sel-lO acts upstream of fem-1, fem-2, and fem-3 and downstream of her-1 and

possibly tra-2

To place sel-lO function within the sex determination pathway, we examined the

interactions of sel-10 null mutations with If mutations in her-1, fem-1, fem-2, and fem-3.

To ensure detection of the weak masculinizing effects of se/-10(lf), we used

temperature-sensitive, partial loss-of-function mutations of her-1, fem-1, fem-2 and

fem-3 under sensitized conditions that cause a partial feminization of XO animals.
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sel-10(f) could masculinize XO animals feminized by her-1(e1561) but not XO animals

feminized by fem-I(hc17), fem-2(b245), or fem-3(e2006) (Table 2A, B). These results

suggest that sel-10 functions downstream of or in parallel to her-1 and upstream of or in

parallel to fem-1, fem-2, and fem-3. Furthermore, sel-10(lf) partially suppressed the Fem

phenotypes caused by the dominantly-acting "enhanced gain-of-function" mutation

e2531 (11) and the "mixed character" mutations e2019 and e2021 (37) of tra-2 (Table

2C, D). These findings suggest that sel-10 acts downstream of or in parallel to tra-2.

Results similar to those obtained with sel-10(lf) were obtained for the stronger

masculinizing effect of the sel-10(gf) mutation: it has been reported previously that the

EgI phenotype of sel-10(e2055gf) hermaphrodites is suppressed by a null mutation in

fem-1 (14), and we found that CEM survival caused by sel-10(n3717gf) was suppressed

by null mutations in any of the three fem genes but was not suppressed by a null

mutation in her-1 (data not shown).

SEL-10 interacts physically with the FEM proteins

F-box proteins, which were first described as exchangeable subunits of the SCF

(Skpl, Cullin, F-box) E3 ubiquitin-protein ligase complex, interact with the Skpl subunit

of the complex via their F-box domains (38, 39). Many F-box proteins contain

protein-protein interaction domains, such as leucine-rich domains or WD40 repeats that

recruit protein substrates for ubiquitination (38, 39).

Our epistasis studies suggest that the fem genes are negatively regulated by

sel-10. We therefore tested whether the FEM proteins interact with SEL-10 by

performing co-immunoprecipitation experiments using U20S human osteosarcoma cells

transiently transfected to express Flag-tagged FEM-1, FEM-2 or FEM-3 (FlagFEM-1, -2,
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or -3); Myc-tagged SEL-10 (SEL-10OMyc); or both a Flag-tagged FEM protein and

SEL-10Myc (Fig. 1). We immunoprecipitated the Flag-tagged proteins and detected

SEL-10 OMyc only in the precipitates from lysates expressing both SEL-10OMyc and any

Flag-tagged FEM protein. Similarly, the immunoprecipitation of SEL-10OMyc resulted in

the detection of Flag-tagged FEM proteins only in the precipitates of cell lysates

expressing both SEL-10OMyc and any Flag-tagged FEM protein (Fig. 1). Flag-tagged

TRA-2C did not precipitate SEL-10OMyc (Fig. 1). Thus, when expressed in mammalian

cells, SEL-10 can physically interact with each of the three C. elegans FEM proteins

either directly or through other proteins.

The levels of FEM-1 and FEM-3 are regulated by SEL-10 and the proteasome

The ability of SEL-10 to interact with the FEM proteins suggested that SEL-10

might target the FEM proteins for proteasomal destruction. The co-expression of

MycSEL-10 and FlagFEM-1 in BOSC human embryonic kidney cells did not result in

decreased FEM-1 protein levels (data not shown). However, FEM-1 protein levels were

increased in the presence of Lactacystin, a proteasome inhibitor (Fig. 2). We postulated

that transfected FEM-1 might be targeted by the human SEL-10 homolog hSEL-10

(FBW7), which is 46% identical to C. elegans SEL-10. To reduce the amount of

endogenous hSEL-10, we generated specific shRNA (shRNA, short hairpin RNA) (26)

against the hsel-10 gene. We transiently transfected BOSC cells to express FlagFEM-1

and either control Firefly Luciferase shRNA or hsel-10 shRNA. When compared to

control cells, the steady-state level of FEM-1 was increased in the hsel-10 shRNA cells

to a level similar to the level of FEM-1 found in cells treated with Lactacystin (Fig. 2). In

analogous experiments, Lactacystin and hsel-10 shRNA increased the protein level of
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FEM-3 but did not affect the protein level of FEM-2 (Fig. 2). Together, these results

indicate that the steady-state levels of transfected FEM-1 and FEM-3 in BOSC cells are

dependent on the presence of hSEL-10 and a functional proteasome.
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Discussion

Our genetic analysis indicates that egl-41 mutations cause masculinization as a

result of altered function of sel-10 and further demonstrates that sel-10 wild-type

function is required for normal hermaphrodite development. That null mutations of

sel-lO cause a weak phenotype might be explained by the fact that the genome of

C. elegans is predicted to encode at least 326 F-box proteins (40). Hence, sel-10 might

be functionally redundant with other, similar proteins. Alternately, the sex determination

processes in which sel-10 is involved, for example the degradation of FEM-1 and

FEM-3, might be redundant, i.e. pathways other than a proteasome-dependent pathway

might negatively regulate the activities of the fem genes.

The sel-10(gf) mutation results in the alteration of a conserved residue in WD40

repeat VIII. We propose that rather than decreasing binding to substrate or the SCF

complex, this mutation might result in the formation of stable but non-functional

SCFS EL-1 0(gf) complexes. By causing the formation of such complexes, SEL-10(gf)

protein could prevent wild-type SEL-10 protein as well as additional functionally

redundant F-box proteins from entering SCF complexes and from mediating the

ubiquitination and degradation of their substrates. This model could explain why

different processes are affected to differing degrees by the sel-10(gf) mutation and the

sel-10(lf) mutations. SEL-10 might be the sole or principal F-box protein responsible for

regulating lin-12 activity, which is affected similarly by sel-10 gf and If mutations. By

contrast, in sex determination, F-box proteins in addition to SEL-10 might mediate the

degradation of FEM-1 and FEM-3. In sel-10(lf) animals, these redundant F-box proteins

could largely substitute for SEL-10 function in FEM-1 and FEM-3 degradation, resulting

in a weak defect in sex determination; in sel-10(gf) animals, non-functional SCFS EL-1 0(gf)
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complexes would prevent redundant F-box proteins from substituting for SEL-10

function, leading to a stronger defect.

That sel-12(lf) is not suppressed by the sel-10(gf) mutation indicates that

SCFSEL-10( gf) complexes might still be functional with respect to sel-12 function. The

interaction between SEL-10 and SEL-12 might therefore differ from other

SEL-10-substrate interactions, a difference that may be evolutionarily conserved in the

interaction of the homologous proteins hSEL-10 and PS1 in Alzheimer's Disease

(32-34).

Genetically, sel-10 wild-type function likely acts downstream of or in parallel to

tra-2 as a negative regulator of fem-1, fem-2, and fem-3 (Fig. 3A). When expressed in

mammalian cells, SEL-10 interacted with FEM-1, FEM-2, and FEM-3, and hSEL-10

mediated the degradation of FEM-1 and FEM-3 by the proteasome. We propose that

sel-10 promotes female development by down-regulating fem-1 and fem-3 activities,

which are required for male development. It has been proposed that fem-1 and fem-3

are regulated post-transcriptionally (3, 41-43). In the germline of XX animals fem-3

activity is downregulated at the level of translation (44). Mutations that disrupt this

regulation masculinize the XX germline but do not detectably affect the sexual fate of

the XX soma (45). Thus, a different or an additional mechanism must be invoked in the

soma. Our data suggest that in the soma fem-1 and fem-3 activities are regulated at

least in part at the level of protein stability, through a SEL-10-mediated process.

The direct or indirect target of the FEM proteins is the transcription factor TRA-1.

One mechanism that controls TRA-1 activity seems to be the regulation of TRA-1

localization: TRA-1 is preferentially exported from the nucleus in males or masculinized
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XX animals, a process that requires a functional fem-1 gene (46). It has therefore been

proposed that the FEM proteins might act to promote the export of TRA-1 from the

nucleus (47). Mammalian SEL-10 has been shown to localize to and function in the

nucleus (30, 31). It is possible that in XX animals SEL-10 binds to nuclearly localized

FEM-1 and FEM-3 proteins and mediates their degradation, thereby preventing FEM

protein-mediated export of TRA-1 and allowing TRA-1 to remain inside the nucleus and

to promote female development. A model in which SEL-10 mediates the degradation

specifically of nuclearly localized FEM-1 and FEM-3 could also explain the finding that

the overall level of FEM-1 protein appears to be similar in XX and XO animals (41). In

XO animals, by contrast, SEL-10 would be prevented from binding FEM-1 and FEM-3

protein, resulting in the FEM-dependent export of TRA-1 out of the nucleus and

subsequent male development (Fig. 3B).

A prerequisite for substrate recognition by the SCF complex seems to be

substrate phosphorylation (39). SCFSEL-10-mediated degradation of FEM-1 and FEM-3

might therefore dependent on their phosphorylation. The type 2C protein phosphatase

FEM-2 acts at the same step of the sex-determination pathway and its phosphatase

activity is required for male development (4, 5). FEM-2 can interact with FEM-3 (5) and

also with FEM-1 (48). We therefore suggest that in XX animals, FEM-1 and FEM-3 are

phosphorylated by a so far unidentified protein kinase and that this phosphorylation is

promoted by TRA-2 in XX animals and antagonized by FEM-2 in XO animals (Fig. 3B).
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Table 1. sel-10 If mutations have masculinizing activity

A. sel-10 If mutations enhance the ability of various tra mutations to masculinize
hermaphrodites

% Tra animals (n)
Genotype +/+ sel-10(ar41) sel-10(bc243) sel-lO(n4273)

+/+ 0 (many) 0 (many) 0 (many) 0 (many)
sdc-1(n485) 10 (223) 52 (105) 76 (82) 73 (70)

her-1(n695gf) 28 (113) 89 (155) ND ND
tra-2(n1106) 8 (266) 32 (117) 25 (101) 29 (120)
tra-2(e1875) 1 (257) 3 (152) 3 (96) 8 (101)

B. sel-10 If mutations enhance the ability of various tra mutations to cause the HSNs to
undergo programmed cell death

% HSNs missing in hermaphrodites (n)
Genotype +/+ sel- 10(ar4 1) sel-10(bc243) sel-10(n4273)

+/+ 0 (many) 2 (60) 7 (60) 9 (60)
sdc-1(n485) 34 (110) 76 (50) 78 (60) 77 (60)

her-1(n695gf) 90 (50) 92 (50) ND ND
tra-2(n 1106) 85 (110) 86 (50) 87 (60) 83 (60)
tra-2(e 1875) 32 (220) 81 (110) 60 (60) 60 (60)

C. sel-10 If mutations enhance the ability of various tra mutations to cause CEMs
survival

% CEMs present in hermaphrodites (n)
Genotype +/+ sel- 10(ar4 1) sel-10(bc243) sel-10(n4273)

+/+ 0 (many) 2 (168) 4 (160) 7 (152)
sdc-1(n485) 21 (376) 46 (80) 35 (80) 39 (80)

her-1(n695gf) 80 (80) 85 (80) ND ND
tra-2(n1106) 84 (160) 91 (80) 84 (80) 83 (80)
tra-2(e1875) 44 (156) 65 (80) 69 (80) 68 (80)

A. The Tra phenotype was scored as described in Materials and Methods. ND, not

determined. The complete genotypes of the animals analyzed were as listed save that

all strains containing her-1(e695) were homozygous for dpy-11(e224) and all strains

containing sel-10(ar41) were homozygous for Ion-3(e2175).

B., C. The presence of HSNs and CEMs was scored as described in Materials and

Methods. The genotypes of the animals were as in A.
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Table 2. Genetic interactions between sel-lO If mutations and feminizing mutations

A. sel-10(ar41) partially suppresses the feminization of XO animals caused by
her-1(e15611f)

150C
% males (n)

24.50C
him-8(e1489) 30 (209) 34 (273)
him-8(e1489); her-1(el561) 36 (270) 12 (217)
him-8(e1489); sel-10(ar41) 38 (252) 32 (93)
him-8(e1489); her-1(e1561) sel-10(ar41) 34 (291) 30 (205)
him-8(e1489); sel-10(bc243) 40 (181) 42 (186)
him-8(e1489); her-1(e1561) sel-10(bc243) 41 (207) 30 (186)
him-8(e1489); sel-10(n4273) 37 (194) 35 (221)
him-8(e1489); her-1(el561) sel-10(n4273) 36 (114) 24 (256)

B. sel-10(ar41) fails to suppress the feminization of XO animals caused by If mutations
in fem-1, fem-2, and fem-3

% CEMs in XO (n)
Genotype +/+ sel- I O(ar41)
+/+ a 91 (80) 91 (100)
fem-1(hc17) a 51 (100) 53 (112)
fem-2(b245) a 73 (100) 75 (220)
+/+ b 91 (80) 89 (156)
fem-3(e2006)b 55 (176) 55 (92)

C. sel-10(ar41) partially suppresses the
tra-2(e2531eg)/+
Genotype
sel-10(ar41)
tra-2(e2531eg)/+
tra-2(e2531eg)/+; sel-10(ar41)

D. sel-10(ar41) partially suppresses the
tra-2(mx) mutations

Genotype % fertil

feminization of XO animals caused by

% CEMs present in XO (n)
91 (100)
15 (120)
40 (172)

germline feminization in XX animals caused by

Average #e animals (n) of proqen
of progeny range (n)

sel- 10(ar4 1) 100 (58) 277 243-328 (6)
tra-2(e2019mx) 10 (102) 70 18-104 (6)
tra-2(e2019mx); sel-10(ar41) 22 (102) 127 20-180 (6)
tra-2(e202lmx) 13 (101) 60 7-108 (7)
tra-2(e2021mx); sel-10(ar41) 46 (101) 129 34-210 (6)

A. "Males" were identified based on the criteria described in Materials and Methods. The

complete genotypes of the animals analyzed were as listed, save for the second

through fourth strains as listed from top to bottom, which were: him-8(e1489);

her-1(e1561) unc-76(e91 1), him-8(e 1489); lon-3(e2175) sel-10(ar41),

him-8(e 489); her-1(el561) Ion-3(e2175) sel-10(ar41) unc-76(e911).
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B. The presence of CEMs in XO animals was scored as described in Materials and

Methods. The complete genotypes of the animals analyzed were as listed save that all

strains contain him-1(e879) and all strains containing sel-10(ar41) are homozygous for

Ion-3(e2175). a Animals were cultured at 250C until reaching the second larval stage and

then shifted to 160C. b Animals were cultured at 200C.

C. The presence of CEMs in XO animals was scored as described in Materials and

Methods. eg, enhanced gain-of-function. The complete genotypes of the animals

analyzed were, from top to bottom, as follows: him-1(e879); Ion-3(e2175) sel-10(ar41),

tra-2(e2531)1+, tra-2(e2531)1+; Ion-3(e2175) sel-10(ar41).

D. The number of fertile animals and the number of progeny were analyzed as

described in Materials and Methods. mx, mixed character. The complete genotypes of

the animals analyzed were as listed save that all strains containing sel-10(ar41) were

homozygous for Ion-3(e2175).

372



Table SI. n1077 is a cold-sensitive, semidominant maternal-effect mutation that causes
altered egl-41 activity, which is antagonized by wild-type activity

A. n1077 is cold-sensitive and semidominant and shows a maternal effect

% Egl (n)
Genotype Maternal genotype 150C 200C 250C
+/+ +/+ 0 (many) 0 (many) 0 (many)
n1077 n1077 100 (93) 100 (152) 34 (161)
n10771+ n1077 53 (96) 54 (114) 7 (41)
n1077/+ +/+ 14 (177) 8 (211) 3 (113)

B. n1077 causes altered egl-41 activity, which is antagonized by wild-type activity

Genotype % EgI (n)
+/+ 0 (many)
+lnDf42 1 (72)
+/+; ctDp8 0 (70)
n1077 97 (73)
n1077; ctDp8 96 (128)
n10771+ 54 (144)
n10771+; ctDp8 24 (50)

A. The Egl phenotype was scored as described in Materials and methods. The

complete genotypes of the animals analyzed were, from top to bottom, as follows: N2

(wild-type), n1077, n1077 unc-76(e91 1)/+, n1077/unc-76(e911).

B. The Egl phenotype was scored as described in Materials and methods. nDf42 is a

deficiency that deletes the egl-41 locus and ctDp8 is a duplication that spans the

egl-41 locus. The complete genotypes of the animals analyzed were, from top to

bottom, as follows: N2 (wild-type), +InT1 [n754]; n T1 [n754]/nDf42, unc-42(e270)

him-5(e1490) dpy-21(e428); ctDp8, unc-42(e270) n1077/n1077, unc-42(e270) n1077;

ctDp8, unc-42(e270) n1077/+, unc-42(e270) n1077/unc-42(e270) him-5(e1490)

dpy-21(e438); ctDp8. The translocation nT1[n754] was used as a balancer for the

egl-41 locus.
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Table S2. bc189 is a temperature-sensitive semidominant suppressor of n1077gf

A. bc189 suppresses the Egl phenotype caused by n1077gf in a temperature-sensitive,
semidominant manner

% Egl (n)
Genotype 150C 200C 250C
+/+ 0 (many) 0 (many) 0 (many)
n1077 100 (152) 100 (152) 34 (161)
n1077/+ 14 (177) 8 (211) 3 (113)
+/nDf42 0 (73) 1 (72) 0 (62)
n1077/nDf42 43 (74) 26 (86) 14 (114)
bc189 n1077 2 (127) 1 (92) 5 (190)
bc189 n1077/+ 1 (172) 0 (228) 0 (94)
bc189 n1077/n1077 90 (57) 83 (127) 17 (59)

B. bc189 n1077 hermaphrodites have HSNs and lack CEMs

Genotype % Egl (n) % HSNs missing (n) % CEMs present (n)
+/+ 0 (many) 0 (many) 0 (many)
n1077 100 (152) 92 (50) 96 (80)
bc189 n1077 1 (92) 5 (48) 3 (102)

C. bc189 and n1077 affect the same gene: cis-trans test

Genotype Maternal genotype % Egl (n)
n1077/+ +/+ 12 (139)
bc189 n1077/+ +/+ 0 (54)
sel-10(ar41) sel-10(ar41) 0 (153)
sel-10(ar41)/n1077 sel-10(ar41) 70 (168)

A. The Egl phenotype was scored as described in Materials and methods. The complete
genotypes of the animals analyzed were, from top to bottom, as follows: N2 (wild-type),
n1077, n1077/unc-76(e911), nT1 [n754]/nDf42, n1077/nDf42, bc189 n1077,
bc189 n10771 unc-76, n1077 unc-76(e911)1bc189 n1077.

B. bc189 suppresses n1077 for the inappropriate lack of HSNs and the inappropriate
presence of CEMs in hermaphrodites. The Egl phenotype and the presence of HSNs
and CEMs were scored as described in Materials and methods. The complete
genotypes of the animals analyzed are listed under Genotype.

C. The Egl phenotype was scored as described in Materials and methods. The
complete genotypes of the animals analyzed were, from top to bottom, as follows:
n1077/Ion-3(e2175), bc189 n1077/Ion-3(e2175), Ion-3(e2175) sel-10(ar41),
Ion-3(e2175) sel- 10(ar41)/n 1077.
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Table S3. Interactions of sel-10 mutations with lin-12 and sel-12 mutations

A. sel-10(bc189 n1077) and sel-10(n1077) suppress the two-AC defect (AC, anchor
cell) caused by lin-12(n676 n930)

% animals with 2 ACs (n)
Genotype 150C 200C 250C
+/+ 0 (many) 0 (many) 0 (many)
lin-12(n676 n930) 0 (40) 21 (42) 50 (44)
lin-12(n676 n930); sel-10(ar4l) 0 (25) 8 (90) 10 (40)
lin-12(n676 n930); sel-10(bc189 n1077) 0 (40) 0 (40) 4 (48)
lin-12(n676 n930); sel-10(n1077) 0 (36) 0 (40) 23 (40)
lin-12(n676 n930); sel-10(bc243) 0 (26) 0 (27) 3 (30)
lin-12(n676 n930); sel-10(n4273) 0 (30) 0 (30) 7 (30)

B. sel-10(bc189 n1077) and sel-10(n1077) cause a synthetic multivulva phenotype in
lin-12(n302gf) animals

Genotype % multivulval animals (n)
+/+ 0 (many)
lin-12(n302gf) 0 (107)
lin-12(n302gf); sel-10(ar41) 68 (59)
lin-12(n302gf); sel-10(bc189 n1077) 87 (79)
lin-12(n302gf); sel-10(n1077) 55 (150)

C. sel-10(bc189 n1077) but not sel-10(n1077) suppresses the Sel-12-Egl phenotype
caused by sel-12(arl31)

Genotype % Sel-12-Egl (n)
+/+ 0 (many)
sel-12(arl31) 97 (145)
sel-10(ar41) 2 (146)
sel-10(bc189 n1077) 1 (92)
sel-10(ar41); sel-12(arl31) 2 (211)
sel- 10(ar41)/+; sel-12(arl31) 97 (70)
sel-10(bc189 n1077); sel-12(arl31) 13 (233)
sel-10(bc189 n1077)/+; sel-12(arl31) 90 (39)
sel-10(ar41)/sel-10(bc189 n1077); sel-12(arl31) 11 (80)
ced-3(n717); sel-10(n1077) 27 (106)
ced-3(n717); sel-12(arl31) 84 (100)
ced-3(n717); sel-10(n1077); sel-12(arl3l) 80 (122)
sel-10(bc243); sel-12(arl3I) 7 (160)
sel-10(n4273); sel-12(arl31) 6 (170)

A. The two anchor cell phenotype (the generation of two anchor cells rather than a

single anchor cell) was analyzed as described (1, 2). The complete genotypes of the

animals analyzed were, from top to bottom, as follows: N2 (wild-type),

unc-32(e189) lin-12(n676 n930), unc-32(e189) lin-12(n676 n930); Ion-3(e2175)

sel-10(ar41), unc-32(e189) lin-12(n676 n930); sel-10(bc189 n1077), unc-32(e189)
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lin-12(n676 n930); sel-10(n1077), unc-32(e189) lin-12(n676 n930); sel-10(bc243),

unc-32(e189) lin-12(n676 n930); sel-10(n4273).

B. The multivulva phenotype was analyzed as described (1, 2). The complete

genotypes of the animals analyzed were, from top to bottom, as follows: N2 (wild-type),

lin-12(n302), lin-12(n302); lon-3(e2175) sel-10(ar41), lin-12(n302); sel-10(bc189

n1077), lin-12(n302); sel-10(n1077).

C. The sel-12(arl31) Egl phenotype, which results from multiple defects during the

development of the egg-laying system rather than from the inappropriate deaths of the

HSNs, and which we refer to as "Sel-12-Egl phenotype," was analyzed 48 hr after the

animals had been picked as L4 larvae. The Sel-12-Egl phenotype of sel-10(n1077gf);

sel-12(arl31) animals was analyzed in the presence of the ced-3(lf) mutation n717 (ced,

cell death abnormal), which blocks programmed cell death (3) and which suppresses

the Egl phenotype of sel-10(n1077gf) hermaphrodites (4). The complete genotypes of

the animals analyzed were, from top to bottom, as follows: N2 (wild-type), sel-12(arl31),

Ion-3(e2175) sel-10(ar41), sel-10(bc189 n1077), Ion-3(e2175) sel-10(ar41);

sel-12(arl31), Ion-3(e2175) sel-10(ar41)/+; sel-12(arl31), sel-10(bc189 n1077);

sel-12(ar131), lon-3(e2175)/sel- 10(bc189 n1077); sel-12(arl31), lon-3(e2175)

sel- 10(ar41)/sel- 10(bc189 n1077); sel- 12(arl31), ced-3(n 717); sel- 10(n1077),

ced-3(n717); Ion-3(e2175); sel-12(arl31), ced-3(n717); sel-10(n1077); sel-12(arl31),

sel-10(bc243); sel-12(arl31), sel-10(n4273); sel-12(arl31).

1. Greenwald, I. S., Sternberg, P. W. & Horvitz, H. R. (1983) Cell 34, 435-44.

2. Sundaram, M. & Greenwald, I. (1993) Genetics 135, 765-83.

3. Ellis, H. M. & Horvitz, H. R. (1986) Cell 44, 817-29.

4. Desai, C. & Horvitz, H. R. (1989) Genetics 121, 703-21.
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Figure legends

Figure 1

The FEM proteins interact with SEL-10 in mammalian cells. Extracts from

mammalian U20S cells expressing SEL-1OMyc; FlagFEM-1, -2, or -3; FlagTRA-2C; or

both SEL-10OMyc and the indicated Flag-tagged protein were immunoprecipitated by

anti-FlagM2 or anti-Myc antibodies. The precipitated proteins were analyzed for the

presence of SEL-1 OMyc with anti-Myc antibodies and of the Flag-tagged proteins with

anti-FlagM2 antibodies.

Figure 2

FEM-1 and FEM-3 may be targeted by hSEL-10 for degradation by the

proteasome. To analyze protein steady-state levels, we treated BOSC cells expressing

FlagFEM-1, FlagFEM-2 or FlagFEM-3, respectively, with Lactacystin to inhibit the

proteasome or with hsel-10 shRNA to partially inactivate hsel-10 (shRNA, short hairpin

RNA). The untreated and Lactacystin-treated cells were co-transfected with a plasmid

expressing control shRNA (Firefly Luciferase). Whole-cell lysates were analyzed using

anti-FlagM2 antibodies. Representative data from three independent experiments are

shown.

Figure 3

Genetic and molecular pathways of somatic sex determination in C. elegans. A. A

simplified genetic pathway for sex determination in the C. elegans soma is shown.

sel-lO is a new gene in this pathway and acts as a negative regulator of the fem genes.
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B. A model for the molecular interactions among SEL-10, the FEM proteins, TRA-1 and

TRA-2. SEL-10 negatively regulates FEM-1 and FEM-3 by promoting the degradation of

their phosphorylated forms. A negative arrow from TRA-2 to FEM-3 reflects the

possibility that TRA-2 directly binds and inhibits FEM-3 (7). See text for details.

Figure S1

Mapping and cloning of egl-41. (A) Genetic and physical map. Genes and single-

nucleotide polymorphisms (SNPs) (F55B12 9,811 and R10D12 16,645) used for

mapping the semidominantly-acting egl-41(gf) mutation n3717 are indicated. Numbers

below the genetic map represent the fraction of the 120 recombination events identified

between rol-4 and unc-76 that occurred between the loci indicated. The cosmids to

which sel-10 was mapped by using SNP mapping and that were tested for the

suppression of the Egl phenotype of sel-10(n077gf) are indicated. An asterisk indicates

the cosmid F55B12, which suppressed the Egl phenotype of sel-10(n1077gf). pBC262

contains a 6.9-kb Xbal fragment of F55B12 that suppressed the Egl phenotype of sel-

10(n1077gf). Transgenic animals carrying the indicated constructs as

extrachromosomal arrays were generated, and suppression was scored as described in

Materials and Methods. The number of lines rescued and the total number of lines

obtained are indicated in parentheses. (B) Structure of the 6.9-kb fragment of F55B12

contained in pBC262 and the extents of the sel-10 deletion alleles bc243 and n4273.

The fragment contained in pBC262 spans sel-10 (F55B12.3) and also includes the 5'

region of F55B12.4. bc243 and n4273 delete genomic regions corresponding to base

pairs 10,103-10,953 and base pairs 10,323-11,278 of cosmid F55B12, respectively. (C)

egl-41/sel-10 (gf) mutations and bc189 are missense mutations in the sel-10 ORF. The

amino acids changed as a result of the mutations n1069, n1074, n1077, e2055, n3717,
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n3854, n4041, n4046, and bc189 are shown in bold, and the allele numbers are shown

above the protein sequence. The positions of the nonsense mutations ar41 and ar28

and the positions at which the deletion mutations bc243 and n4273 are predicted to

truncate the SEL-10 protein, are indicated by asterisks and shrills, respectively, above

the sequence. The F-box domain and the WD40 repeats are indicated with overhead

lines and labeled.
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Future Directions
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Introduction

In this appendix, I suggest some of the future directions a researcher might take

to extend the findings I have described in the preceding chapters.

Identifying transcriptional targets of the cell-type-specific anti-apoptotic

homeodomain transcription factor CEH-30

As described in Chapter III, I identified the Bar homeodomain transcription factor

gene ceh-30 as controlling the sexually dimorphic survival of the CEM sensory neurons:

in wild-type hermaphrodites, ceh-30 expression is directly repressed by TRA-1, a Gli

transcription factor required for hermaphrodite sexual identity. ceh-30 can promote the

survival of the CEM neurons in animals completely lacking ced-9 Bcl-2 function,

indicating that ceh-30 promotes cell survival by a mechanism that differs from

well-understood mechanisms in C. elegans and in other organisms. Transgenes that

express the mouse homolog Barhl1 can restore CEM survival to ceh-30 mutant males,

and mice lacking Barhl1 function become progressively deaf as sensory hair cells of the

inner ear disappear. It therefore seems likely that that the Bar homeodomain protein

CEH-30 has an evolutionarily conserved function to protect against programmed cell

death and acts by a novel and unknown mechanism. Identification of transcriptional

targets of CEH-30 could reveal the nature of this mechanism.

One way to identify genes whose expression is controlled by ceh-30 would be to

do microarray studies comparing gene expression in ceh-30 mutants to expression in

wild-type animals. This could be done by collecting RNA samples from ceh-30

gain-of-function mutant hermaphrodites for comparison to samples from wild-type
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hermaphrodites, or by comparing RNA samples from ceh-30 loss-of-function mutant

males or masculinized hermaphrodites to samples from wild-type males or from

otherwise wild-type masculinized hermaphrodites. In this way it might be possible to

identify genes whose expression is promoted by ceh-30 function and genes whose

expression is inhibited by ceh-30 function.

A second approach is the direct biochemical identification of candidate CEH-30

targets. This could be done by chromatin immunoprecipitation experiments by raising an

antibody against CEH-30 or by using an epitope-tagged version of CEH-30, such as the

ceh-30::gfp::ceh-30 transgene already shown to rescue the CEM survival defect of

ceh-30 mutant males. Samples immunoprecipitated with CEH-30::GFP could be

compared to samples immunoprecipitated from animals lacking the transgene or

animals expressing GFP unlinked to CEH-30, and DNA sequences enriched in samples

immunoprecipitated with CEH-30::GFP could be identified using microarray analysis.

Regions of the C. elegans genome capable of interacting with CEH-30 could also be

identified using a one-hybrid approach in yeast or by using SELEX to identify genomic

fragments capable of binding CEH-30.

Whatever approaches are used to identify a candidate target of transcriptional

regulation by CEH-30, it will be important to determine whether it has any detectable

functional importance in the control of cell survival. A gene whose expression is

controlled by CEH-30, either directly or indirectly, could be a positive or a negative

regulator of cell survival, or it might do neither. Whether a candidate target of CEH-30 is

involved in regulation of cell survival by CEH-30 can be assessed using deletion
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mutants of these candidate targets when such are available, and otherwise by using

dsRNA to target the genes for RNAi.

Homologs of CEH-30 act as transcriptional repressors; if CEH-30 is also a

transcriptional repressor, then it seems likely that CEH-30 promotes CEM survival by

direct transcriptional repression of genes that normally promote CEM death. Reduced

function of such a target should therefore promote CEM survival in hermaphrodites. To

increase the sensitivity of such an assay, it could be performed in animals partially

defective in cell killing, such as the weak mutant ced-3(n2427), or in hermaphrodites

that show weak CEM survival as a result of partial masculinization, such as animals

heterozygous for tra-1(e1099) or animals homozygous for tra-2(e1875). If reduced

function of a candidate causes CEM survival in hermaphrodites, it should be determined

whether it protects the CEM neurons by weakly masculinizing the hermaprodite, or

whether this effect, like the protective function of ceh-30, acts downstream of

determination of sexual identity. This can be done by testing for CEM survival in animals

lacking ceh-30 function, which should suppress the protective effects of partial

masculinization, by looking for signs of partial masculinization, or by testing for

enhancement of the weakly masculinized phenotype of a mutant such as tra-2(el875)

or sel-10(n1077).

If a gene directly or indirectly regulated by CEH-30 target normally promotes

CEM neuron survival, reduction of gene function should cause decreased CEM survival

in males or in masculinized hermaphrodites. To increase the sensitivity of this assay it

may be helpful to use weakly masculinized hermaphrodites such as animals

heterozygous for a strong loss-of-function mutation in tra-1 or animals homozygous for
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the weak tra-2 loss-of-function mutation e1875. Alternatively, males homozygous for

unc-37(e262) could be used: unc-37(e262) causes a weak defect in CEM survival that

can be strongly enhanced by loss of ceh-30 function, such that loss of a pro-survival

gene that acts downstream of ceh-30 may similarly enhance the unc-37(e262) CEM

neuron survival defect. Any mutation or RNAi that causes the disappearance of CEM

neurons should be tested in animals completely lacking the function of the cell-killing

caspase gene ced-3, to determine whether the CEM neurons are thereby restored. If

the CEM neurons are restored by blocking programmed cell death, the gene normally

promotes CEM survival. In this case, assays should be done in animals lacking tra-1

function to ensure that the gene does not promote CEM survival by promoting somatic

masculinization. If the CEM neurons are not restored by blocking programmed cell

death, then either the gene has a function in promoting CEM neuron identity other than

the regulation of CEM survival, or the gene acts downstream of or in parallel to ced-3.

As there are no epistasis tests that can determine whether ceh-30 might act

downstream of or in parallel to ced-4 or ced-3, it remains possible that a target of

CEH-30 might control CEM survival in animals completely lacking ced-3 function. For

more consideration of this possibility and of approaches that could be taken to examine

it, see Appendix II, part D.

Further studies of the specification of CEM neuron survival

Although a large number of the isolates recovered in screens for mutant

hermaphrodites defective in CEM neuron have been characterized, many screen

isolates remain to be identified and important factors that control the CEM survival
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decision remain unknown. Indeed, animals completely lacking ceh-30 and the

homologous gene ceh-31 and mutant for unc-37 still show sexual dimorphism for CEM

neuron survival, indicating that at least one regulator of CEM survival remains to be

identified.

The first and most obvious opportunity for further investigation of CEM neuron

survival is the remaining isolates that complement mutants defective in programmed cell

death, are not grossly defective in sex determination, and have not been assigned to

any known gene. There are seventeen such mutants, listed in Table 3 of Chapter 2. Six

of the seventeen have normal B cell morphology as L1 larvae, indicating that these six

are particularly unlikely to cause CEM survival by causing sexual transformation. One

mutation in particular, n3788, causes a relatively strong defect in CEM survival

compared to the other remaining isolates and may cause a very weak defect in all

programmed cell deaths.

Additional screens could be performed to recover mutant hermaphrodites

defective in CEM neuron death. The screens could be made more efficient than the

previous screens by using animals that lack ceh-30 function, which should eliminate the

large class of mutants in which CEM survival is caused by partial masculinization, and a

second reporter could be included for the rapid identification of mutants likely to be

defective in all programmed cell deaths. The identification of cnd-1 and vab-3 as genes

in which loss-of-function mutations promote CEM death should also make it possible to

rapidly eliminate a number of screen isolates from consideration through

complementation tests. These genetic screens could also lead to the identification of

genes that function downstream of ceh-30 in the control of CEM survival. Screens have
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also been performed to identify mutants defective in CEM survival and have recovered

a large number of isolates few of which have been characterized; the results of these

screens and the prospects for their future expansion are presented in Appendix I1.

The finding that vab-3 functions in parallel to cnd-1 in the establishment of head

morphology and act similarly in CEM survival has led me to propose that these two

genes cooperate to promote similar effects in tissue differentiation. Further work to

establish the transcriptional targets of each transcription factor, and especially to identify

transcriptional targets shared between CND-1 and VAB-3, could further elucidate the

functions of these genes in tissue differentiation and potentially in the control of cell

survival. Approaches could be taken as described above for CEH-30; in particular, given

two separate transcription factors, it may be possible to determine binding site

specificities of each transcription factor in vitro and thereby to predict genes likely to

respond to both genes. Candidate targets could be tested by causing loss-of-function

and looking for effects on CEM survival and on head morphology. It may also be

possible to screen for mutations or for RNAi treatments that, like weak alleles of vab-3,

cause a strong synthetic Vab phenotype in combination with the loss of cnd-1 function.

Molecular characterization of the green pharynx phenotype

I defined the green pharynx phenotype of transgene misexpression and

extensively characterized the genetics of the green pharynx phenotype. This genetic

characterization included screens likely to be saturated for loss-of-function mutations in

the F2 generation. Nonetheless, some obvious opportunities for further genetic

characterization remain: two of the green pharynx genes are defined by single alleles,
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one causing altered gene function and one unlikely to cause loss of gene function,

suggesting that further screens might define additional genes through the identification

of similar rare alleles; the green pharynx gene hpl-2 shows maternal rescue for the

green pharynx phenotype, explaining why no alleles of hpl-2 were recovered in screens

limited almost entirely to the F2 generation; and no screens have been performed to

identify suppressors of the green pharynx phenotype.

One important question remains for the green pharynx phenotype: although it

appears that the green pharynx genes act to restrict the expression of selected

transgenes, it has been proposed but not established that these genes similarly act to

restrict the expression of a set of endogenous genes. It should be feasible to use

microarray expression profiling to identify sets of genes derepressed in each of the

green pharynx mutants as compared to the wild type, and to identify targets shared

among these sets. As an additional control, the lin-8 mutant n2376 can be used; this

mutant is strongly synMuv but does not cause a green pharynx phenotype. Once

shared targets are identified and validated by semiquantitative RT-PCR, they will be

potential molecular and biochemical tools to establish the mechanisms that the

green pharynx genes use to achieve transcriptional repression.

It should be possible to identify the sequences that recruit the repressive function

of the green pharynx proteins and to characterize the protein complexes involved in

transcriptional repression of targets of the green pharynx proteins. Because the

transgenes that are misexpressed in green pharynx mutants were generated from

constructs of known sequence, modification of existing reporter transgenes that support

the green pharynx phenotype should make it possible to identify sequences necessary
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and sufficient for transcriptional repression by the green pharynx proteins. These

sequences can then be used to purify and identify proteins that bind to sites that recruit

the repressive activity of the green pharynx proteins, possibly including one or more of

the green pharynx proteins. Similarly, the green pharynx proteins can be used in

biochemical purifications and immunoprecipitation experiments to identify other

interacting proteins and protein complexes.

Because it is known that the green pharynx proteins include homologs of

chromatin modifiers and that they cause transcriptional repression of selected

transgenes, the chromatin structure at these transgenes can be examined in order to

understand the mechanisms that the green pharynx proteins use to establish and to

maintain transcriptional repression. Chromatin immunoprecipitation experiments can be

performed with antibodies against specific chromatin modifications, followed by PCR

quantitation from the immunoprecipitate of transgenes known to be derepressed in

green pharynx mutants. Comparisons can be made between samples from otherwise

wild-type transgenic strains and from transgenic strains mutant for one or more

green pharynx gene. Chromatin modifications enriched in strains with normal

green pharynx function might then be modifications promoted or maintained by the

green pharynx proteins.

Further studies of cell-cycle regulation by the phosphatase gene cdc-14

Johanna Varner and I found that the mitotic exit factor cdc-14 is required to

prevent inappropriate cell division in a highly cell-specific fashion: roughly 40% of PDE

neurons undergo an inappropriate cell division in cdc-14 mutants, but lineally related
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cells and the homologous ADE neuron are not affected by loss of cdc-14. Further

investigation could reveal genes that function to promote cdc-14 function, genes that

function in parallel with cdc-14, and genes that function to antagonize the function

promoted by cdc-14.

As discussed in Chapter V, the genetic screen from which we recovered the

cdc-14 mutation n3444 was not saturated. An expanded version of this screen might

result in the identification of mutants that cause division of the presumptive PDE neuron

similar to that caused by loss of cdc-14 function, defining genes that like cdc-14 function

to prevent the inappropriate division of the presumptive PDE neuron. Such mutants

might define genes that function together with cdc-14, or might define genes that

function in parallel with cdc-14. Approximately 60% of presumptive PDE neurons are

not affected by loss of cdc-14, suggesting that the existence of a mechanism that acts in

parallel to cdc-14.

It may also be possible to identify genes that function in parallel to cdc-14 by

screening cdc-14 animals for enhancement of the cdc-14 PDE division defect. Screens

to identify genes redundantly required with cdc-14 for viability could also be performed,

either by using mutagenesis to established mutant strains and testing them using RNAi

directed against cdc-14 or by treating cdc-14 mutant animals with clones from an RNAi

feeding library. Any of these screens intended to identify genes functioning in parallel

with cdc-14 have the potential to explain why the requirement for cdc-14 function is

restricted to a small number of specific neurons. Screens for suppressors of the PDE

division defect of cdc-14 mutants could similarly lead to the identification of genes that

confer the high sensitivity of the presumptive PDE neuron to the loss of cdc-14 function.
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Appendix II

Genetic screens for mutants defective in the specification of cell death

and for mutants defective in transcriptional repression

Hillel Schwartz, Johanna Varner, and Dawn Wendell

As an undergraduate working under my supervision, Johanna Varner isolated 63 of the

81 mutations listed in Table 4 and performed the phenotypic characterization and

epistasis tests of these isolates presented in Tables 5, 6, and 7.

As an undergraduate working

35 mutations listed in Table 8

experiments with many of the

under my supervision, Dawn Wendell isolated 23 of the

and performed complementation tests and mapping

mutations listed in Table 8.
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Summary

In this appendix I present the complete results from genetic screens that I and

two undergraduate students, Johanna Varner and Dawn Wendell, performed seeking to

identify mutants with cell-specific defects in the regulation of programmed cell death and

mutants showing the green pharynx phenotype of transcriptional derepression. The

work described in the chapters that define the main body of this thesis began with the

characterization of selected mutants isolated from the screens described in this

appendix.

We performed five sets of genetic screens. Some results of particular interest are

highlighted:

A. Screens for lineage alterations in the postdeirid sensory structure.

1. Extended periods of developmental arrest cause lineage alterations in

the postdeirid detectable using the cat-2::gfp dopaminergic cell fate

reporter.

2. The allelic mutations n3847 and n3848 alter the morphology of the PDE

neurons, causing an increase in nuclear size and bloating of the cell

body.

3. The cell lineage mutation n3849 causes the presence of a variable

number of cat-2::gfp-expressing cells in the postdeirid.

B. Screens for mutant hermaphrodites in which the male-specific CEM sensory

neurons failed to die.

1. The cell lineage mutation n4743 causes a Pvl phenotype and possibly

causes specific masculinization of the V5 lineage.

396



2. The mutation n4753 causes the generation of an autofluorescent

structure in the hermaphrodite vulva, possibly similar to the spicules of

wild-type males.

C. Screens for suppressors of the CEM survival caused by masculinization.

D. Screens for suppressors of the CEM survival caused by increased function of

the cell-specific anti-apoptotic transcription factor CEH-30.

1. Cell-death-defective mutants lacking dig-I function frequently lack

pkd-2::gfp-expressing CEMs. This may indicate that positional cues

promote the CEM neuron identity.

E. Screens for mutations causing the green pharynx phenotype of transcriptional

derepression.

1. Four mutations cause lethality early in development and cause the

pkd-2::gfp cell-fate reporter to be expressed in neurons that do not

normally express the reporter.
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A. Screens for lineage alterations in the postdeirid

The postdeirid is a sensory structure generated from the V5.pa blast cell during

the second larval stage of C. elegans development (SULSTON and HORVITZ 1977; WHITE

et al. 1986). The descendents of the V5.pa cell are five cells: the two glia-like cells

PDEso and PDEsh, the dopaminergic PDE neuron, the PVD neuron, and the sister of

the PVD neuron, which undergoes programmed cell death (see Figure 1) (Sulston et al.

1975; Sulston and Horvitz 1977). The transgenic cell fate reporter mec-3::lacZ

expresses in the PVD neuron (WAY and CHALFIE 1989), but was not expressed in the

"undead" PVD sisters of ced-4(n1162) (ced, cell death abnormal) animals defective in

programmed cell death (data not shown). When the deaths of the PVD sisters were

blocked by mutations that prevent programmed cell death, approximately 50% of

"undead" PVD sisters contained dopamine like their lineal "aunts," the PDE neurons (68

of 135 postdeirids in ced-3 mutant animals contained two dopaminergic cells) (Ellis and

Horvitz 1986). The dopaminergic cell fate can be detected using markers such as

expression of cat-2, which encodes a tyrosine hydroxylase required for production of

dopamine (LINTS and EMMONS 1999). Examination of cell-death-defective (Ced)

ced-3(n717) animals containing a cat-2::gfp dopaminergic cell fate reporter gave results

similar to previous work staining for the presence of dopamine: 60.9% of postdeirids in

ced-3(n717) animals grown at 250C and 30.2% of postdeirids in ced-3(n717) animals

grown at 200C contained two cat-2::gfp-expressing cells (n = 512 and n = 665,

respectively).

Two chromosomally integrated versions of the cat-2::gfp reporter were

generated, the transgenes nls116 and nls117 (see Chapter V). Time-course
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experiments examining cat-2::gfp reporter expression in the PDE neuron and the

"undead" PVD sister cell were performed with ced-3(n717); nls116 animals (see

Figure 2). These animals were allowed to hatch in the absence of food, causing them to

enter a state of developmental arrest. Following the introduction of the animals to food,

animals were periodically examined for expression of cat-2::gfp in the PDE neuron,

expression of cat-2::gfp in the "undead" PVD sister and for the ability to focus through

the animal and visualize cat-2::gfp expression in both of its postdeirids. These

experiments identified a period from 34 hours to 46 hours after release from larval arrest

during which maximal cat-2::gfp expression in the "undead" PVD sister is seen and it

remains feasible to visualize both postdeirids within an animal. Screens were performed

under these conditions to identify mutant animals with altered cat-2::gfp expression in

the postdeirid. nls 116 or nls 117 hermaphrodites were mutagenized with EMS according

to standard methods (Brenner 1974). Mutagenized Po animals were placed on 6 cm

Petri plates containing NGM agar seeded with bacteria, three to four animals per plate.

Animals were tracked to identify the pool of mutagenized Pos from which candidates

originated. Plates were bleached to recover F2 eggs, and the F2 larvae were allowed to

hatch in the absence of food and enter developmental arrest. Approximately 100 F2

animals were screened from each pool of Po animals were placed on a glass slide and

examined for cat-2::gfp expression in the postdeirid using a compound microscope.

Candidates were recovered and their progeny were examined for propagation of the

cat-2::gfp expression phenotype.

Initially very few progeny of candidate mutants displayed a phenotype of altered

cat-2::gfp expression in the postdeirid. This high incidence of false-positives presented
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difficulties in screening. The frequency of fertile false-positives was subsequently found

to be directly proportional to the length of time the animals had spent in developmental

arrest. For each day that animals had spent in developmental arrest prior to their being

introduced to food and allowed to develop, a greater proportion developed into adults

that possessed two cat-2::gfp-expressing cells in the postdeirid; after several days

spend in developmental arrest, as many as 5% of animals developed into adults with

extra cat-2::gfp-expressing cells in or near the postdeirid. These extra

pkd-2::gfp-expressing cells could conceivably have resulted from a defect in the death

of the PVD sister, extra division of the PDE neuron, or a cell-fate transformation or

lineage alteration. The source of the extra cat-2::gfp-expressing cells in animals that

spent long times in developmental arrest has not been determined.

Modifying the screening protocol so that animals spent no more than 18 hours in

a state of developmental arrest increased the proportion of fertile candidates that

re-tested, and established phenotypic mutant lines increased from approximately 2% to

50%. 24,358 nls116 F2 animals and 8,712 nls17 F2 animals were screened, for a total

of approximately 16,000 homozygous mutagenized haploid genomes. An additional

2,241 F3 nls116 animals were screened. In total, approximately 18,000 mutagenized

haploid genomes were screened for recessive effects on cat-2::gfp expression in the

postdeirid lineage, and approximately 1,100 mutagenized haploid genomes were

screened for recessive maternal-effect alteration of cat-2::gfp expression in the

postdeirid lineage. A complete list of the 20 mutations isolated in screens for altered

cat-2::gfp expression in the postdeirid is presented in Table 1.
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Mutant strains were tested for complementation with mutations known to cause

similar phenotypes. In this way, mutations that failed to complement ced-3(n717),

lin-22(n372), lin-32(e1926), and unc-86(n846) were identified (lin, abnormal cell lineage;

unc, uncoordinated locomotion). Five screen isolates showed significant reduction in the

level of cat-2::gfp expression. To establish that these were mutants defective in

expression of the reporter transgene rather than mutants containing altered, weaker

versions of the cat-2::gfp transgene, these strains were crossed with the wild type, and I

demonstrated that outcrossed strains could be recovered in which strong expression of

the cat-2::gfp cell-fate reporter had been restored. Two screen isolates, n3847 and

n3848, displayed similar phenotypes of bloated PDE cell body morphology and

enlarged PDE nuclei. n3847 and n3848 failed to complement and mapped to LGX. Both

n3847 and n3848 could not be separated from ns1 17 X and therefore were not

mapped. One screen isolate, n3849, caused the presence of a variable number of from

zero to three cat-2::gfp-expressing cells in the postdeirid. Previously identified lineage

mutations that affect the postdeirid either cause an absence of cat-2::gfp-expressing

cells (e.g. lin-32) or cause an increase in the number of cat-2::gfp-expressing cells (e.g.

unc-86), but no previously identified mutation causes both a reduction and an increase

in the number of cat-2::gfp-expressing cells. The screen isolate n3444 was determined

to be an allele of the cell-cycle gene cdc-14. The characterization of cdc-14 function in

the postdeirid and in other cells is presented in Chapter V.

B. pkd-2::gfp screens for hermaphrodites with surviving CEM neurons
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The CEM neurons are generated in both males and hermaphrodites. The CEMs

of hermaphrodites undergo programmed cell death during embryogenesis; the CEM

neurons of males survive and function in the detection of mating partners (SULSTON et

al. 1983; CHASNOV et al. 2007). The cell-fate reporter pkd-2::gfp is expressed in the

CEM neurons of males and in selected neurons of the male tail that are not generated

in hermaphrodites (BARR and STERNBERG 1999). The pkd-2::gfp reporter is also

expressed in the surviving CEMs of partially masculinized hermaphrodites and in the

"undead" CEMs of hermaphrodites defective in programmed cell death (SCHWARTZ and

HORVITZ 2007). pkd-2::gfp can therefore be used to identify hermaphrodites in which the

CEM neurons have failed to die. We generated chromosomally integrated versions of

the pkd-2::gfp cell fate reporter for this purpose (see Chapter II).

Screens were performed using the pkd-2::gfp transgenes nls128 II, nls130 IV,

and nls133 I to identify hermaphrodites defective in the deaths of the CEM neurons.

These screens are described in detail in Chapter II. From these screens, 189

independent mutations were identified that caused pkd-2::gfp expression in the

hermaphrodite. Of the 189, 144 caused CEM survival in hermaphrodites, and the

characterization of these mutants is described in Chapter II. Of the 189, 29 caused the

green pharynx phenotype of transgene misexpression, and the characterization of these

mutants is described in Chapter IV. The remaining 16 screen isolates not described in

Chapter II or in Chapter IV caused pkd-2::gfp expression in hermaphrodites

distinguishable from CEM survival and from the green pharynx phenotype, and one

additional isolate displayed an autofluorescence phenotype independent of the
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pkd-2::gfp reporter. A complete list of mutations isolated in screens for mutant

hermaphrodites with pkd-2::gfp expression is presented in Table 2.

The 16 screen isolates with fluorescence phenotypes distinguishable from CEM

survival and from the green pharynx phenotype were as follows: seven alleles of lin-22,

the uncharacterized lineage mutant n4743, six alleles of cfi-1, two isolates with greatly

increased levels of intestinal expression from the pkd-2::gfp transgene, and the vulval

autofluorescence mutant n4753. Loss of lin-22 function causes the six pairs of bilaterally

symmetric V blast cells to adopt a fate similar to that normally seen for the V5 cell

(FIXSEN 1985). In the male, the V5 gives rise to two ray neurons of the male tail

(SULSTON and HORVITZ 1977), including one that expresses pkd-2::gfp (BARR and

STERNBERG 1999). The extra V5-like neuroblasts of lin-22 mutant males generated extra

lateral neurons that expressed the pkd-2::gfp cell-fate reporter. Weak sexual

transformation of the Pn.a lineages was previously observed in lin-22 mutant

hermaphrodites (FIXSEN 1985). We found that the V5-like cells of lin-22 mutant

hermaphrodites can similarly show male-specific development at low expressivity, such

that approximately one of every two lin-22 mutant hermaphrodites has a

pkd-2::gfp-expressing ray neuron in its body (data not shown). The uncharacterized

lineage mutation n4743 causes a completely penetrant Pvl (Protruding Vulva)

phenotype. The Pvl phenotype caused by n4743 was associated with an additional

pseudovulval blip posterior to the protruding vulva, which was not seen in the Pvl

phenotype sometimes seen in masculinized hermaphrodites. At low penetrance, n4743

animals have a pkd-2::gfp-expressing cell whose position and morphology are

consistent with weak sexual transformation of the V5 lineage, causing the generation of
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a ray neuron. n4743 did not cause apparent CEM neuron survival or apparent

masculinization of the tail. Loss of cfi-1 function has been reported to cause the URA

sensory neurons to express aspects of the CEM fate, including pkd-2::gfp expression

(SHAHAM and BARGMANN 2002). The six isolates identified as alleles of cfi-1 had

pkd-2::gfp-expressing neurons with positions typical for cfi-1 mutants rather than for

hermaphrodites with surviving CEMs, and these six isolates failed to complement the

canonical allele cfi-1(ky651). The two intestinal reporter expression mutants n3651 and

n3652 were characterized by greatly increased levels of intestinal expression of the

pkd-2::gfp reporter transgene. Although pkd-2::gfp is strongly expressed only in

male-specific neurons, pkd-2::gfp reporters also cause weak gfp expression in

unidentified head neurons with cell bodies in both the male and the hermaphrodite and

cause weak gfp expression in the posterior intestine. Intestinal expression from

pkd-2::gfp is initially weak but increases after one day of adulthood. n3651 and n3652

mutants show pkd-2::gfp reporter expression in the same cells as seen in a wild-type

genetic background, but with greatly increased levels of reporter expression in the

intestines of larvae and younger adults. The vulval autofluorescence seen in n4753

mutants under UV illumination is not dependent on the pkd-2::gfp reporter transgene

and is comparable in appearance to the autofluorescence seen in the spicules of

wild-type males. The males' spicules, like the vulvas of hermaphrodites, are a

copulatory structure. At least one similarity can be seen between the cells that form the

hermaphrodite vulva and the cells that form the male spicules: primary vulval cells and

the socket cells required for spicule formation each specifically express the cell-fate

reporter egl-17::gfp (BURDINE et al. 1998; JIANG and STERNBERG 1999).
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C. Screens for mutants defective in tra-2(n1106)-induced CEM survival

To complement my screens for mutants in which the sexually dimorphic CEM

sensory neurons inappropriately survived in hermaphrodites, I screened seeking to

identify mutants in which the CEM neurons inappropriately died despite their having

adopted a masculine sexual identity. I performed this screen in partially masculinized

self-fertile tra-2(n1106) hermaphrodites (tra, sexual transformer). tra-2(n 1106) causes

partial loss of function of tra-2 (DESAI and HORVITZ 1989), a gene required to prevent

masculinization (HODGKIN and BRENNER 1977). tra-2(n1106) homozygotes were

self-fertile hermaphrodites with fully penetrant CEM survival (data not shown). Using

masculinized hermaphrodites simplifies the screening process; screening for mutant

males requires either that the screening process be done clonally, enabling the recovery

of mutations from the siblings of the affected males, or that the mutant males be

capable of mating, allowing recovery of the mutation from the resulting heterozygous

cross-progeny.

tra-2(n 1106) hermaphrodites were mutagenized with EMS according to standard

methods (BRENNER 1974). Mutagenized Po animals were placed on each of 32 10 cm

Petri plates containing NGM agar seeded with HB101 bacteria as a food source, 32

animals per plate. The plates were bleached to recover F2 eggs; the F2 larvae were then

allowed to hatch in the absence of food and enter developmental arrest. Three aliquots

of 300-400 animals from each 10 cm Petri plate were placed on seeded 6 cm Petri

plates and grown at 22.50C for four days before screening. Animals lacking

pkd-2::gfp-expressing CEM neurons or with other recognizeable alterations in pkd-2::gfp
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expression were picked singly to seeded Petri plates, and their progeny were tested for

propagation of the mutant phenotype. All isolates were labeled so as to identify the

group of mutagenized Pos from which they originated.

I recovered 43 mutant strains were recovered: 30 lacked pkd-2::gfp-expressing

CEM neurons in tra-2(n1106) hermaphrodites, 8 exhibited unusually weak pkd-2::gfp

expression in the CEMs of tra-2(n1106) hermaphrodites, 4 had the green pharynx

phenotype, and one mutation, n3644, that caused a lin-22-like phenotype and failed to

complement lin-22(n372). Characterization of the green pharynx mutations is described

in Chapter IV. A complete list of mutants isolated in the screen for suppressors of

tra-2(n1106)-induced CEM presence in hermaphrodites is presented in Table 3.

I tested some of the mutations that most strongly suppressed the presence of

pkd-2::gfp-expressing CEM neurons in tra-2(n1106) hermaphrodites to determine

whether they also caused the absence of pkd-2::gfp-expressing CEM neurons in males.

This test was done by mating nls133 males with the suppressed strains and then in the

next generation mating the resulting F1 males with the original suppressed strain; if the

suppressor mutation were autosomal, half of the males from the second cross would be

homozygous for the suppressor mutation. Of the 22 mutations that were tested in this

fashion, three mutations (n4446, n4449, and n4458) also caused the absence of CEM

neurons in males (see Table 3). One mutation, n4448, did not cause CEM absence in

males, but the CEM neurons of n4448 males had extremely variable nuclear positions.

This nuclear location defect was similar to defects previously seen in dig-1 mutants.

dig-1 encodes a giant secreted protein of 13,100 amino acids that contains Ig,

Fibronectin Type Ill, Sushi/Complement Control Protein (CCP), and EGF domains and
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functions non-cell-autonomously to maintain nuclear architecture: in dig-1 mutants, cell

bodies and processes are initially placed correctly and become displaced over time

(THOMAS et al. 1990; BENARD et al. 2006; BURKET et al. 2006). n4448 failed to

complement the canonical dig-1 mutation n1321. Six mutations that suppressed the

presence of pkd-2::gfp-expressing CEMs in tra-2(n 1106) hermaphrodites were mapped

against cluster linked markers on five of the six autosomes: unc-4(e 120) II,

Ion-1(e 185) //1, unc-5(e53) IV, dpy-11(e224) V, and Ion-2(e678) X. n4455 and n4457

showed strong linkage to unc-4 //. n4446, n4447 and n4480 showed strong linkage to

lon-1 ///. n4465 showed weak linkage to dpy-11 V and no linkage to the other four

markers.

D. Screens for suppressors of ceh-30(n3714gf)-induced CEM survival

The CEM-specific survival factor ceh-30 can protect the CEM neurons from

programmed cell death independently of the function of the only C. elegans member of

the multidomain Bcl-2 family, ced-9 (see Chapter III). Nearly every other known

cell-specific regulator of apoptotic cell death in C. elegans functions through

transcriptional regulation of egl-1, a negative regulator of CED-9 function, and

mechanisms known to regulate apoptosis independently of the Bcl-2 superfamily in

other organisms have no known correlate in the regulation of C. elegans apoptosis (for

more information, see Chapter I). The cell-protective function of ceh-30 is evolutionarily

conserved in its mouse homolog Barhl1, suggesting that identification of genes acting

downstream of ceh-30 to control cell survival could inform our understanding of how cell

survival is controlled in mammals. We therefore performed screens seeking seeking
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mutations that suppress the CEM survival in hermaphrodites caused by

ceh-30(n3714gf). These screen were intended to identify genes that function

downstream of ceh-30 in the control of CEM survival and to provide insight into how

ceh-30 functions in parallel to ced-9 to control CEM survival.

Two screens were performed with ceh-30(n3714gf) doubly cis-marked, as

unc-2(e55) ceh-30(n3714gf) Ion-2(e678), primarily seeking loss-of-function alleles of

ceh-30. These screens are described in Chapter IIl. In addition to the ceh-30

loss-of-function mutation n4111, which is described in Chapter III, an additional 17

mutations were isolated that suppress the presence of pkd-2::gfp-expressing CEM

neurons in ceh-30(n3714gf) animals. None of these 17 mutations were tightly linked to

ceh-30, and they were therefore not candidates to be loss-of-function mutations in

ceh-30.

Three additional genetic screens were performed to identify suppressors of

ceh-30(n3714gf)-mediated CEM survival in hermaphrodites. In each, animals were

mutagenized with EMS according to standard methods (Brenner 1974). Mutagenized Po

animals were placed on 6 cm Petri plates containing NGM agar seeded with bacteria,

three to four animals per plate. Animals were tracked to identify the pool of mutagenized

Pos from which candidates originated. In an F2 clonal screen, F2 progeny of

mutagenized nls133; ceh-30(n3714gf) hermaphrodites were placed singly on 6 cm Petri

plates containing NGM agar seeded with bacteria, and their adult progeny were

examined to identify plates on which few or no hermaphrodites had surviving CEM

neurons. 866 F2 animals generated viable progeny, for a total of 433 homozygous

mutagenized haploid genomes screened. 27 mutant strains were recovered from this F2
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clonal screen. In two F1 clonal screens, 832 fertile F1 progeny of mutagenized

nls128; ceh-30(n3714gf) hermaphrodites and 851 fertile F1 progeny of mutagenized

nls133; ceh-30(n3714gf) hermaphrodites were placed singly on 6 cm Petri plates

containing NGM agar seeded with bacteria, and their progeny were examined for

reduced penetrance of the ceh-30(n3714gf) CEM survival phenotype. If an F1 animal

was heterozygous for a strong ceh-30(n3714gf) suppressor, one quarter of its progeny

would be homozygous for the suppressor and would therefore lack surviving CEM

neurons, a significant and detectable increase over the proportion of ceh-30(n3714gf)

animals normally lacking surviving CEM neurons. We recovered 41 mutant strains from

these F, clonal screens, which totaled 3366 mutagenized haploid genomes. A complete

list of all mutations recovered in screens for suppression of ceh-30(n3714gf)-induced

CEM survival is presented in Table 4.

Twelve mutations were recovered that caused phenotypes other than

suppression of the presence of pkd-2::gfp-expressing CEMs: three mutations (n4326,

n4327 and n4351) caused weak pkd-2::gfp expression in the CEMs, one mutation

(n4132) blocked expression of pkd-2::gfp in male-specific neurons, two mutations

(n4336 and n4338) that caused partial or complete masculinization, one mutation

(n4379) caused a pkd-2::gfp expression pattern similar to that seen in hermaphrodites

lacking lin-22 function; and four green pharynx mutants (n4319, n4320, n4356 and

n4411). The green pharynx mutant n4319 is the only known allele of the class B

synMuv green pharynx gene gei-4. Characterization of the green pharynx mutations is

described in Chapter IV. Further investigation identified n4132 as an unusual
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function-specific allele of the RFX transcription factor gene daf-19. Characterization of

daf-19(n4132) is described in Appendix V.

Many of the mutations that suppressed the presence of pkd-2::gfp-expressing

CEMs in ceh-30(n3714gf) hermaphrodites were scored to determine the strengths of

their ceh-30 suppression phenotypes (see Tables 5 and 6). As was done with some

mutations that suppressed the presence of pkd-2::gfp-expressing CEM neurons in

tra-2(n1106) hermaphrodites, some of the stronger ceh-30(n3714gf) suppresssors were

tested to determine whether they also caused the absence of pkd-2::gfp-expressing

CEM neurons in males (see Table 7A). As seen for suppressors of tra-2(n1106), a

distinct minority of ceh-30(n3714gf) suppressors - three of 20 that were tested,

including the ceh-30 loss-of-function mutation n4111 - caused the absence of CEM

neurons in males. Examination of n4499 males and complementation testing identified

n4499 as an allele of dig-1.

The missing pkd-2::gfp-expressing CEMs of suppressed ceh-30(n3714gf)

hermaphrodites might be missing for three reasons: 1) the cells were never generated,

2) the cells were generated but have a fate defect that precludes expression of the

pkd-2::gfp reporter, or 3) the cells were generated and could express the pkd-2::gfp

reporter, but the cells failed to survive. Any mutants in this third category could define

genes required for CEM survival. To identify potential mutants in this third category,

strong ceh-30(n3714gf) suppressors were tested to determine whether

pkd-2::gfp-expressing CEM neurons were seen when programmed cell death was

blocked with the strong mutations ced-3(n717) or ced-4(n1 162). To obviate the need for

mapping the suppressor mutations, suppressors were mated with
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pkd-2::gfp; unc-30(e 191) dpy-4(e 1166); ceh-30(n3714gf) hermaphrodites or

pkd-2::gfp; unc-93(e 1500) dpy-1 7(e 164); ceh-30(n3714gf) hermaphrodites and

suppressed Dpy Unc strains were generated.

pkd-2::gfp; ced-3(n717); him-5(e1467); ceh-30(n3714gf) or

pkd-2::gfp; ced-4(n1162); him-5(e1467); ceh-30(n3714gf) males were mated with the

suppressed Dpy Unc strains: unc-30 dpy-4 can be used to balance ced-3(n717) and

unc-93 dpy-17 can be used to balance ced-4(n 1162). Progeny homozygous for the

suppressor mutations were identified while the cell-death mutations were maintined in

trans to the dpy and unc markers, after which ced mutant homozygotes were identified

on the basis of their having lost the dpy and unc markers. Results from testing 17

ceh-30(n3714gf) suppressors for the ability of cell-death defects to restore

pkd-2::gfp-expressing CEMs are presented in Table 7B. Only the CEM neurons of the

ceh-30 loss-of-function mutant n4111 were restored by mutations blocking programmed

cell death. It is therefore likely that the CEM neurons of the other 16 mutants tested

were not generated or failed to express the pkd-2::gfp reporter.

The ceh-30(n3714gf) suppressors whose CEM neurons were not restored by a

defect in programmed cell death include the dig-1 mutation n4499. The absence of

pkd-2::gfp-expressing CEM neurons in masculinized tra-2(n1106) hermaphrodites, in

ceh-30(n3714gf) hermaphrodites, and in ced-3(n717) cell-death-defective

hermaphrodites may indicate that dig-1 promotes the CEM identity. CEM neurons are

often displaced in dig-1 mutant males, but the remaining CEM neurons of dig-1 mutant

hermaphrodites defective in cell death usually have normal positions (data not shown).

It may be that the CEM neurons receive signals from the cells that are normally
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adjacent to them that promote the CEM identity. Displaced CEM neurons do not receive

these signals; in cell-death-defective hermaphrodites, these displaced CEM neurons do

not maintain their identity, including pkd-2::gfp expression. The displaced CEM neurons

of males remain detectable using the pkd-2::gfp cell-fate reporter, suggesting that sex

determination acts in parallel to these positional signals to promote CEM identity.

ceh-30 can control CEM survival downstream of or in parallel to ced-9, and there

are no epistasis tests that can determine whether ceh-30 might act downstream of or in

parallel to ced-4 or ced-3. The possibility cannot therefore be excluded that ceh-30 acts

downstream of ced-4 and ced-3 to promote CEM survival. In this case, mutations might

suppress the ceh-30(n3714gf)-induced survival of the CEM neurons by promoting their

deaths downstream of ced-4 and ced-3, and the deaths of the CEMs caused by these

ceh-30(n3714gf) suppressors might then not be suppressed by loss of ced-4 or ced-3

function. It might be possible to address this remaining question by direct observation of

developing cell-death-defective embryos containing these ceh-30(n3714gf)

suppressors, to determine whether the CEM neurons in these mutants die

independently of ced-4 and ced-3 function.

E. Clonal screens for the green pharynx phenotype

The green pharynx phenotype, which is described in detail in Chapter IV, is a

defect of transcriptional repression. The green pharynx phenotype can be seen in

animals containing selected gfp reporters, including pkd-2::gfp reporters.

Loss-of-function mutations in any of four synthetic multivulva (synMuv) genes, the

class A synMuv gene lin-8 and the class B synMuv genes hpl-2, lin-13, and lin-61, can

412



cause the green pharynx phenotype. The green pharynx phenotype was initially

observed in a set of 29 independent mutations isolated in screens intended to recover

mutant hermaphrodites in which the CEM neurons had failed to undergo programmed

cell death (see Table 2).

The initial set of 29 green pharynx isolates provided an incomplete set of

green pharynx mutations, including only a single allele of lin-13 and no alleles of lin-61,

even though animals completely lacking lin-61 function are viable and have a

green pharynx phenotype. There are at least two explanations for the incompleteness of

the set of green pharynx mutants isolated in nonclonal screens: (1) the screens were

performed using synchronized populations of F2 adults, rather than the late embryos or

early larvae in which the green pharynx phenotype is most easily observed, especially

in lin-61 mutants; and (2) the nature of the screens required that mutations recessively

causing the green pharynx phenotype not also recessively cause sterility or lethality.

One green pharynx gene, the class B synMuv gene lin-13, is required for viability, and

strong loss-of-function mutations in lin-13 recessively cause sterility.

To obtain a more complete set of green pharynx mutations, we performed clonal

screens optimized for the detection of the green pharynx phenotype. These screens

permitted the recovery of mutations causing lethality or sterility from among the

heterozygous siblings of the affected homozygous animals. These screens are

described in detail in Chapter IV. In addition to 31 mutations that caused the

green pharynx phenotype and that are described in Chapter IV, an additional four

mutations were isolated that caused embryonic or early larval lethality associated with

intense expression of the pkd-2::gfp reporter in head neurons. A complete list of
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mutations isolated in clonal screens for the green pharynx phenotype is presented in

Table 8.

The neurons strongly expressing the pkd-2::gfp reporter in the four recessive

lethal isolates appeared by morphology to be sensory neurons, with cell bodies within

the head of the animal and sensory processes extending to the tip of the nose. No

similar neuronal expression is seen from the pkd-2::gfp reporter in the wild type; the

only neurons that strongly express the pkd-2::gfp reporter in the wild type are found only

in males, and expression is seen only beginning late in the fourth (L4) larval stage. One

of these four mutations, n3851, was characterized by lethality later in larval

development than the other three, with n3851 homozygotes frequently making it to the

L3 larval stage. I mapped n3851 to LGV, between the visible phenotypic markers

dpy-11 and unc-76.
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Table 1. Screen isolates with altered expression of the cat-2::gfp dopaminergic cell fate

reporter in the postdeirid.

Class Gene(s) Isolates Alleles
Cell death ced-3 3 n3369a, n3433a, n3434a

Cell lineage cdc-14 1 n3444 b

Cell lineage lin-22 1 n3427b
Cell lineage lin-32 1 n3850a

Cell lineage unc-86 2 n3414a, n3 44 5 b
n3 8 49bc , n3911ad,d n 3 9 12 be, n39 13 b,e

Cell lineage Unknown 5 n3 9 14 be

PDE morphology Unknown 2 n3847 Xb,', n3848 Xb ,'

Reduced cat-2::gfp Unknown 5 n3428a, n3429a,g, n3430a, n3 4 3 1b,g
expression n3432bg

a Isolated in a MT10336 nls116 X strain background
b Isolated in a MT10337 nls117 X strain background
C n3849 mutants variably had from zero to three cat-2::gfp-expressing cells in the postdeirid. No

strong effect on the dopaminergic ADE neurons was observed.
d n3911 mutants had no cat-2::gfp-expressing cells in 51% of postdeirid regions (n=68). When

PDEs were present, they were often abnormally placed and their axons often did not project
directly to the ventral cord, unlike those of wild-type PDE neurons. No strong effect on the
dopaminergic ADE neurons was observed.

e n3912, n3913, and n3914 mutants had no cat-2::gfp-expressing cells in 5-15% of postdeirids
(n>70). No strong effect on the dopaminergic ADE neurons was observed.

f n3847 and n3848 mutants showed a bloated PDE morphology, with large nuclei and large,
irregular cell bodies. The two mutations map to LGX, fail to complement and could not be
separated from ns117 X.

g n3428, n3429, n3430, n3431, and n3432 mutants showed greatly reduced levels of cat-2::gfp
expression. For each of these mutants, strong expression could be restored by outcrossing to
the wild type.
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Table 2. Mutations isolated in screens for mutant hermaphrodites expressing the

male-specific reporter pkd-2::gfp.

Class Gene(s) Isolates Alleles
n3452a, n3453a n3454a, n3458c, n3534a, n3546b, n3547,
n3 54 8b, n3 54 9

b , n3 5 70b, n3571b, n3 574
b, n3575C, n3576 ,

Cell death ced-3 32 n3577c, n3578c, n3579a, n3580a, n3612 b, n3614 c, n3615c,
n3616 c, n3618a, n3619a, n3695c, n3820a, n3821c, n4 0 79b,

n4699c, n4706c, n4707C, n4727c
n3455a, n3456a, n3457a, n3459 , n3460, n3532, n3533a,

Cell death ced-4 16 n3 5 50b, n3551c, n3572b, n35 73 b, n3 6 13b, n3617, n3620a,

n3621b, n4080a

Cell death ced-9 4 n4081a, n4698 c, n4700b, n4713b
CEM fate cnd-1 3 n3786a, n3787a, n4744b
CEM fate vab-3 2 n3721a, n3723a

CEM-specific ceh-30 3 n3713c, n3714, n3720P
survival

Sex determination sel-10 1 n3717
Sex determination tra-4 4 n3715c, n3716C, n4724b, n4726b

n3819a, n4084a, n4085 IIa, n4657, n4658D, n4659D, n4660b,
n4661b, n4662b, n4663b, n4 6 64b, n4 66 5b, n4 6 6 7b, n4668b,
n4669b, n4680a, n4681a, n4682a, n4683a, n4684a, n4686a,

n4687a, n4688a, n4689b, n4690b, n4 691 b, n4692, n4693,
Sex determination Unknown 62 n4694c, n4695c, n4701a, n4702 If, n4703b, n4704a, n4708c,

n4709 , n4710C, n4714, n4715 c, n4717a, n4718 a, n4719c,
n4720, n4721c, n4722a, n4723c, n4728c, n4730a, n4731c,
n4732, n4733a, n4 73 4b, n4735C, n4736 , n4737a, n4738a,

n4739b, n4742 , n4745c, n4746a, n4755b, n4758a

n3788b, n3793 f, n4082a, n4083D, n4679 V, n4685c, n4697b,
Undetermined Unknown 17 n4711, n4712 b, n4740a, n4 74 1

b, n4 748b, n4749a, n4750c,

CEM survival n4752a, n4756b, n4757a

n3582a, n3583a, n3584a, n3585a, n3586a, n3587a, n3588a,

n3589a, n3590a, n3591a, n3593a, n3595a, n3597a, n3598a,
Green pharynx lin-8 24 n3600b, n3601b, n36 02

b, n3 6 03
b, n3 60 5

b, n3606b, n3607b,
n3608, n3609c, n3610C

Green pharynx Ines-1 3 n3592a, n3594a, n3604b

Green pharynx lin-13 1 n3596a

Green pharynx pag-6 1 n3599a

Cell lineage lin-22 7 n3526a, n3527a, n3528b, n3529b, n3530b, n3531c, n3552b
Cell lineage Unknown 1 n4743"

Cell fate cfi-1 6 n4696c, n4705c, n4716b, n4725C, n4 72 9b, n4751c
Intestinal

Unknown 2 n3651", n3652a
kd-2::gfp
Vulval Unknown 1 n4753

autofluorescence
a Isolated in a MT10729 nls128 II background.
b Isolated in a MT1 0739 nls130 IV background.
C Isolated in a MT10742 nls133 I background.
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Members of the cell death, CEM fate, CEM-specific survival, sex determination, and

undetermined CEM survival classes are characterized by CEM survival in

hermaphrodites and are discussed in Chapter II. Members of the green pharynx class

are discussed in Chapter IV.
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Table 3. Mutations isolated in screens for suppression of tra-2(n1106)-induced CEM

presence in hermaphrodites.

Class Gene(s) Isolates Alleles
CEMs absent dig-1 1 n4448a

n4446 11b, n4447 Illa , n444 9 b, n4450a, n4451a,e , n4452a,e
n4453ae, n4455 Ifa, n4457 If",, n 4 4 5 8b~f , n4460a, n44619,

CEMs absent Unknown 29 n4462a g, n4464ah, n4465 V ,h , n4466a, n4468a, n4469a,
n4477, n4478a, n4479a, n4480 /ll, n4484a, n4485, n4486,
n448 9 a,d, n4 4 90 d, n 4 4 9 7h, n4 4 98a,d

pkd-2::gfp n4445, n4454', n4456a, n4459, n4463, n4467, n4476,
weak in CEMs n4487c,
Green pharynx lin-8 1 n3686
Green pharynx Ines-1 2 n3688, n3689
Green pharynx lin-61 1 n3687

Cell lineage lin-22 1 n3644
a pkd-2::gfp-expressing CEM neurons are not missing in mutant males.
b pkd-2::gfp-expressing CEM neurons missing in mutant males.
C CEM neurons present in mutant males, but with reduced pkd-2::gfp expression.
d Mutation dominantly or semidominantly causes absence of pkd-2::gfp-expressing CEMs in

nls133; tra-2(n1106) animals, and is linked to a recessive-inviable phenotype.
e,f,g,h,i Mutations that share one of these superscripts were isolated from among the progeny of

the same pool of mutagenized Po animals and cause similar phenotypes and might therefore
be repeated isolates of the same mutation.

Green pharynx isolates were recovered as F3 green pharynx embryos trapped within

the egg-laying-defective F2 animals and are discussed in Chapter IV.
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Table 4. Mutations isolated in screens for suppression of ceh-30(n3714gf)-induced

CEM survival in hermaphrodites.

Class Gene(s) Isolates Alleles
CEM death ceh-30 1 n4111 a

CEM absence dig- 1 1 n4499b
n4116 c, n4118c, n4119c, n4120C , n4121c, n4122c, n4127c,
n4128c, n4129c, n4133a, n4134c, n4135, n4136, n4137c,
n4138a, n4139c, n4321d, n4322d, n4323d, n4 32 4d , n 4 3 2 5 d,
n 4 339d, n4 3 4 0d, n434 1d, n4 34 3d, n 4 3 4 4 d, n 4 34 5d, n4 34 6d,

CEM absence Unknown 68 n4 3 4 7d, n4 3 4 8d, n 4 34 9d, n4353e, n4354e, n4 383d, n4384e,
n4385e, n4386e, n4387e, n4388e, n4389e, n4391e, n4 392b,
n 4 3 9 3 b, n4394

b, n 4 3 9 5 b, n4 39 6b
, n4406b

, n4 4 0 7b, n4 4 08b,

n44 10b, n4424b, n4500
b, n4 5 0 6d, n4507e, n4509e, n4510e,

n4511b, n4512e, n 4 5 13b, n4516e, n4521d, n4551e, n4552e,
n4553e, n4554e, n4555e, n4556e, n4561e

pkd-2::gfp Unknown 3 n4326d,n4327d n4351e
weak in CEMs Unknown

pkd-2::gfp daf-19 1 n4132a
expression

Sex
Sex Unknown 2 n4336e', n4338 e

determination
Cell lineage lin-22 1 n4379e

Green pharynx lin-8 3 n4320d, n4356e, n4 4 11b

Green pharynx gei-4 1 n4319d
a Mutation recovered in F, clonal screen for absence of CEM survival in the progeny of

nls133; unc-2(e55) ceh-30(n3714gf) Ion-2(e678)/+ animals.
b Mutation recovered in F1 clonal screen for reduced penetrance of CEM survival in a

nls128; ceh-30(n3714gf) background.
C Mutation recovered in F, clonal screen for reduced penetrance of CEM survival in a

nls133; unc-2(e55) ceh-30(n3714gf) Ion-2(e678) background.
d Mutation recovered in F2 clonal screen for reduced penetrance of CEM survival in a

nls133; ceh-30(n3714gf) background.
e Mutation recovered in F, clonal screen for reduced penetrance of CEM survival in a

nls133; ceh-30(n3714gf) background.
f n4336 recessively causes nearly complete masculinization. n4338 causes an intersex

phenotype, including Egl, Pvl, and pkd-2::gfp-expressing male tail structures

Members of the green pharynx class are discussed in chapter IV.
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Table 5. Scoring CEM presence in strongly suppressed ceh-30(n3714gf) strains.

with suppressor: None D OR V D AND V n
No suppressor 5 68 25 102
ceh-30(n4111 If) 97 3 0 113

n4383 100 0 0 30
n4384 100 0 0 30
n4385 100 0 0 30
n4386 100 0 0 30
n4387 97 3 0 30
n4388 87 13 0 30
n4389 87 10 3 30
n4391 100 0 0 30
n4392 83 17 0 30
n4393 100 0 0 30
n4394 80 10 10 30
n4396 100 0 0 30
n4406 79 21 0 14
n4407 97 3 0 30
n4410 100 0 0 20

dig-1(n4499) 87 13 0 30
n4500 77 23 0 30
n4506 85 15 0 13
n4507 100 0 0 30

The presence of CEM neurons was scored using a pkd-2::gfp reporter. When CEM

presence was scored using the dissecting microscope, the left and right ventral CEMs

could not readily be distinguished from each other, and the left and right dorsal CEMs

could not readily be distinguished from each other; CEM presence was therefore

assessed for ventral CEMs and for dorsal CEMs. The resulting numbers were found to

be reproducible and sensitive to changes in the degree of CEM death or survival. In this

and in other tables, D OR V denotes animals in which dorsal or ventral CEMs, but not

both, were observed and indicates animals displaying only weak CEM presence; D AND

V denotes animals in which both dorsal and ventral CEMs were observed and indicates

animals showing strong CEM presence. All strains were homozygous for

ceh-30(n3714gf), for the ceh-30(n3714gf) suppressor indicated and for the pkd-2::gfp
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reporter transgene used in their isolation (for a list, see Table 4). The strain containing

n4111 was outcrossed to remove cis markers and was homozygous for him-5(e1467).

The other strains were not outcrossed. Suppressed strains for which more than 25% of

hermaphrodites in a sample possessed surviving pkd-2::gfp-expressing CEMs were

declared to show only weak or intermediate suppression of the CEM presence in

hermaphrodites caused by ceh-30(n3714gf) and are listed in Table 6.
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Table 6. Scoring CEM presence in weakly and intermediately suppressed

ceh-30(n3714gf) strains.

ceh-30(n3714gf) with suppressor:
No suppressor

n4553
n4343
n4556
n4321
n4324
n4340
n4552
n4555
n4396
n4341
n4347
n4348
n4353
n4354
n4408
n4323
n4325
n4344
n4345
n4346
n4349
n4509
n4512
n4521
n4516
n4121
n4339
n4511
n4510
n4120
n4554
n4551
n4424
n4513

CEM
None

presence
D OR

5
15
16
16
17
17
17
17
18
20
21
21
23
23
24
24
25
25
27
27
27
30
33
33
33
36
48
50
50
56
57
68
69
70
72

68
70
45
65
67
47
66
68
32
53
50
62
50
47
67
59

0
56
45
67
27
47
57
52
40
60

hermaphrodites
D AND V

48
50
43
40
43
29
19
30
24

25
15
39
19
17
37
17
14
50
27
29
17
27
20
10
18
75
19
27

7
47
23
10
15
27

3

CEM presence was scored as described in the legend to Table 5. All strains were

homozygous for ceh-30(n3714gf), for the indicated suppressor mutation and the
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n

102
130

31
74
30
30
29

104
22
30
28
29
30
30
21
17
30
16
22
30
30
30
30
21
30
30



pkd-2::gfp reporter transgene used in their isolation (for a list, see Table 4). Strains were

not outcrossed. Suppressed strains for which fewer than 25% of hermaphrodites in a

sample possessed surviving pkd-2::gfp-expressing CEMs were arbitrarily declared to

show strong suppression of the CEM presence in hermaphrodites caused by

ceh-30(n3714gf) and are listed in Table 5.
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Table 7. Scoring ceh-30(n3714gf) suppressors in males and in cell-death-defective

hermaphrodites.

A. Testing ceh-30(n3714gf) suppressors for effects on males
Phenotype ceh-30(n3714gf) suppressors:
Males missing CEMs ceh-30(n41111f), n4384, n4507

n4116, n4127, n4136, n4383, n4385, n4386, n4387,
Males not missing CEMs n4388, n4389, n4391, n4393, n4394, n4396,

dig-1(n4499), n4500, n4510, n4521

B. Testing ceh-30(n3714gf) suppressors for effects on males
Phenotype ceh-30(n3714gf) suppressors:
CEMs restored by ced-3(n717)
or by ced-4(n1162)

n4116, n4120, n4121, n4383, n4384, n4385, n4386,CEMs not restored by ced-3(n71 7)CEMs not restored by ced-3(n717) n4387, n4388, n4389, n4391, n4393, n4394, n4396,or by ced-4(n1162) dig-1(n4499), n4500

A. ceh-30(n3714gf) suppressors were tested for their ability to cause the absence of

pkd-2::gfp-expressing CEMs in males.

B. ceh-30(n3714gf) suppressors were tested to determine whether the CEMs of

suppressed animals were restored by blocking programmed cell death with a

loss-of-function mutation in ced-3 or ced-4. The only tested ceh-30(n3714gf) suppressor

for which CEMs were restored by loss of ced-3 or ced-4 function was the ceh-30

loss-of-function mutation n4111.
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Table 8. Mutations isolated in clonal screens for the green pharynx phenotype.

Class Gene(s) Isolates Alleles
n3794a, n3800a, n3808a, n3810 a, n3811 a, n3812 a, n3813 a,

Green pharynx Iin-8 11 n3815 a, n3816 a, n3817 a, n3818a
n3795a, n3796a, n3803a, n3814 a, n3822a, n3917 b, n391 9bGreen pharynx Ines-1 8 n3921b

n37978 , n3801a,c, n3802a,c, n3804ac, n3907b,c, n3918b,c
Green pharynx lin-13 8 n3920b, n39 89b

Green pharynx lin-61 3 n3807a, n3809a, n3922
Green pharynx Unknown 1 n3841a

NeuronalNeuronal Unknown 4 n3805ac, n3830 ac, n3851 V\aC, n3974a' c
expression
Isolated as F2 embryos in a clonal sem-4(n1378); nls128 screen intended to recover
mutations causing the green pharynx phenotype in embryos and larvae.

b Isolated as F2 embryos in a clonal nls133; egl-1(n1084) screen intended to recover mutations
causing the green pharynx phenotype in embryos and larvae.

C Mutation causes sterility or lethality and cannot be maintained as a homozygote.

Members of the green pharynx class are discussed in chapter IV.
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Figure legends

Figure 1

The dopaminergic cell fate reporter cat-2::gfp is expressed in the PDE neurons of

wild-type animals and in the "undead" PVD sisters of animals defective in programmed

cell death. Micrographs of each are shown, with accompanying lineage diagrams that

show the cell divisions that generate the postdeirid, a lateral sensory structure. Green

fluorescence in the micrographs is from the cat-2::gfp reporter; yellow fluorescence is

from lipid particles in the intestine. A representation of the whole animal is shown,

indicating the dopaminergic neurons on each side of the animal. The region shown in

the photomicrographs is surrounded with a dotted rectangle.

Figure 2

Time course for optimizing the use of the cat-2::gfp reporter nls1 16 in screening for

mutants with surviving PVD sisters. Developmentally arrested ced-3(n717); nIs1 16 were

placed on NGM agar plates seeded with HB101 bacteria and grown at 250C. At various

time points, animals were scored using a Zeiss Axioskop compound microscope

equipped with fluorescence optics for the presence of cat-2::gfp expression in the PDE,

for the presence of cat-2::gfp expression in the "undead" PVD sister cell and for whether

reporter expression could be scored in the postdeirids on both sides of the animal.

Older animals are thicker than younger animals and adults contain eggs; both this

increased thickness and the eggs can interfere with the ability to focus through the

animals and detect cat-2::gfp reporter expression. A period from 34 to 46 hours,
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indicated with a gray box, maximizes reporter expression in the "undead" PVD sister

and the ability to score both sides of the animal.
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Appendix III

A protocol describing pharynx counts and a review of other assays of apoptotic

cell death in the nematode worm C. elegans

Hillel T. Schwartz

Published as Schwartz (2007) Nature Protocols 2: 705-714
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Abstract

Studies of the nematode worm C. elegans have provided important insights into

the genetics of programmed cell death, and revealed molecular mechanisms conserved

from nematodes to humans. The organism continues to offer opportunities to investigate

the processes of apoptosis under very well-defined conditions and at single-cell

resolution in living animals. I present here a survey of the common methods used to

study the process of programmed cell death in C. elegans. Detailed instructions are

provided for one standard method -- the counting of extra cells of the anterior pharynx --

a quantitative technique that can be used to detect even very subtle alterations in the

progression of apoptotic cell death.

Introduction

Programmed cell death (PCD), or apoptosis, is a process by which cells die in a

controlled fashion and is important in animal development'. The misregulation of PCD

can contribute to disease; inappropriate cell death is observed in neurodegenerative

disorders2, while the failure of cells to undergo apoptosis in response to self-antigens or

to cell proliferation is seen in autoimmunity and in cancer3,4. Genetic pathways exist that

effect or prevent cellular suicide. The first genes shown to be required for cells to

undergo PCD, ced-3 and ced-4 (ced, cell death abnormal), were discovered in the

nematode worm C. elegans5- . Subsequent work in a variety of organisms has

established significant knowledge regarding how cell deaths are regulated, how cells die

by apoptosis, and how the dying cells are engulfed and degraded. All of these

processes show a high degree of conservation from nematodes to mammals 8 9. The
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core pathway for the execution of apoptotic cell death'0 17, shown in Figure 1, is

especially well conserved.

With its small size, optical transparency, rapid generation time, and defined

invariant cell lineage - exactly 1090 somatic cells are generated in the hermaphrodite, of

which 131 die 18 19 - the nematode C. elegans continues to offer an excellent system in

which to study the process of programmed cell death. To supplement previously

available resources20,21, I attempt to provide here a comprehensive overview of the

methods currently available for the study of PCD in C. elegans. In particular, I provide a

discussion of and a detailed protocol for one important method for assessing the

execution of apoptotic cell death -- the counting of extra cells in the anterior pharynx.

Transgenic reporters of cell survival

Several transcriptional reporters have been characterized and shown to be

expressed in a small number of cells, including cells that are present only when their

normal death fate has been prevented. These reporters can be used to efficiently detect

the survival of these cells and have been extensively used to study the genetic

programs that control the programmed deaths of specific cells 22 23. The use of

transgenic cell-fate reporters makes it feasible to assess the survival of specific cells

when the stage of embryonic development or the condition of the animal makes it

extremely difficult to identify these cells using other standard methods, such as

recognizing these cells by their morphology or their position24. Transgenic reporters of

cell survival have proved very popular, especially because little or no practice is needed

prior to using them.
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When using cell-fate reporters to assess PCD, it is important to determine if a

mutation that has altered the number of cells expressing the cell-fate reporter might

cause a cell-fate transformation or cell-lineage abnormality, rather than a defect in cell

death. Always ensure that the extra reporter-expressing cell is in an appropriate position

and has appropriate morphology for that undead cell. Additionally test whether adding

mutations that block essentially all PCD cause the presence of unexpected

supernumerary expressing cells; such a result would indicate that the extra expressing

cell whose presence is caused by the initial mutation is different from the cell that can

express the reporter if its death is prevented, indicating an alteration in cell fate or cell

lineage. It is important to use multiple cell-fate reporters or to adopt other PCD assays

in parallel, particularly if assessing a general defect in cell death.

Although other reporters have been useful in studies of the developmental

control of specific cell deaths, one reporter, a lin-1 1::gfp transgene modified to limit its

expression largely to the Pn.aap neurons 25, is particularly useful in assessing PCD

execution. In the wild-type animal, 12 Pn.aap cells are generated; of these, six survive

and six undergo PCD. Because lin-11::gfp expression can reliably be scored in up to

five undead Pn.aap cells in each animal, this reporter can provide a single-animal

quantitative assay of cell death. This permits the user to establish strains with a partial

defect in cell death and screen for the presence of individual animals in which the

cell-death-defective phenotype has been modified. When using lin-11::gfp, particularly

in sensitized backgrounds weakly defective in PCD, some care must be taken, as it has

been observed that presumably identical strains can show significantly different levels of

Pn.aap neuron survival, possibly as a result of different environmental conditions or the
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accumulation of spontaneous mutations (B. D. Galvin and H. R. Horvitz, personal

communication). It is therefore recommended that strains under analysis be regularly

re-thawed from frozen stocks and that multiply mutant strains be constructed

immediately prior to analysis. lin-11::gfp transgenes are sometimes susceptible to

alterations in their expression levels, and care should be taken to use only strongly

expressing lines; it may be desirable to use only strains homozygous for the lin-11::gfp

transgene. Because the Pn.aap lineage shows sexual dimorphism, mutations or

treatments that cause Pn.aap survival should be tested to confirm that their effect is not

a consequence of alterations in sex determination. This can be achieved by using

additional assays of PCD, or by using a null mutation in the fem genes, the most

downstream genes in the sex determination pathway required for masculinization26

A list of transgenes known to be expressed in specific cells when their

programmed deaths are prevented is given in Table 1. Each of these reporters offers a

resource for the study of the mechanisms controlling specific PCD. Although these

reporters can be used to assess general defects in PCD in a quantitative fashion when

populations are examined, only lin-11::gfp offers a single-animal quantitative assay.

Additional transgene-based assays of programmed cell death

The transgenic cell-fate reporter egl-l::gfp provides a marker for cells that adopt

an apoptotic cell fate in C. elegans 7 . This reporter can be used to examine whether

specific cells show transcriptional upregulation of the upstream activator of cell death,

egl-1, a gene required for all somatic cell deaths16 . egl-l::gfp is usually used in animals

defective in PCD, such as ced-3 mutants, so that, irrespective of whether they activate
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the death program, cells will survive to be examined for upregulation of the egl-l::gfp

reporter. This approach has been taken in several studies of the transcriptional control

of specific programmed cell deaths7,22 2 3 ,27

When cell-killing genes such as egl-1, ced-4, or ced-3 are transgenically

overexpressed in cells that normally survive, they can cause these cells to die in a

process that has morphological and genetic characteristics similar to those seen in

endogenous PCD in C. elegans15' 16. Similar assays can be used to test constructs for

their ability to cause apoptotic cell death when overexpressed in C. elegans28 and can

also be used to test the effects of mutations of treatments on the susceptibility of cells to

the activation of PCD; for example, such an has detected the protective function of the

Bcl-2 homolog CED-9 in cells not normally induced to undergo PCD13'15. Similar

over-expression systems have been used in models of non-apoptotic cell death, for

example in studies examining the effects on cells of overexpressing a toxic

polyglutamine repeat and seeking to identify genes that might mediate such effects2 9 30 .

Another transgene-based assay that can be used to examine apoptotic cell death

is the detection of cell corpses using translational ced-l::gfp fusions. CED-1 encodes a

protein spanning the membranes of engulfing cells that aggregates in the presence of

cell corpses31.When translational ced-l::gfp fusions are appropriately expressed, cell

corpses can be visualized using a dissecting microscope equipped with fluorescence

optics as a ring of fluorescence surrounding the cell corpse (for an example see Figure

2). Such a reporter expressed in the somatic gonad has proven of particular use in the

quantitation of apoptosis in the germline, particularly when the removal of dying cells is

blocked by a loss-of-function mutation in the engulfment gene ced-6, which does not
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interfere with CED-1::GFP clustering32. Fluorescently-tagged versions of other proteins

that act in the engulfment and degradation of apoptotic cells, including actin, the

C. elegans dynamin DYN-1, and the endosomal protein HGRS-1, have also been found

to accumulate around cell corpses33 ,34 .

Lethality and visible phenotypes as assays of cell death

Alterations in genes regulating cell survival can visibly affect animals' survival,

appearance, or behavior. Suppression of the phenotypic consequences of inappropriate

cell death has been used to isolate and to characterize mutants defective in cell killing

since the first studies of genes required for C. elegans PCD 5 . By such approaches it has

been possible to recover extremely weak alleles of known cell-death genes and

loss-of-function mutations in genes, such as ced-8, that contribute to the efficient

process of cell killing but are not normally required for cells to die35-37 . Selected

alterations in cell death that can cause visible phenotypic effects are described in

Table 2.

Histological assays of programmed cell death

All of the assays discussed thus far are microscopy assays performed on

untreated living animals. In addition, a broad range of histological assays exist that can

provide insight into the process of PCD in C. elegans. Of these, one of the first used38

and one of the most powerful is electron microscopy. Electron microscopy is of

particular importance in the characterization of mutations causing the persistence of cell

corpses, as it provides the only definitive assay for determining whether cell corpse
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persistence is due to defects in engulfment of dying cells, in degradation of the engulfed

dead cell, or some combination of the two343 9-41

DNA dyes can be used to detect the condensed morphology of the DNA of

apoptotic cells and the undigested DNA of incompletely degraded dead cells. In addition

to DAP142 or Feulgen43 stains, which require fixation of the sample for their use, the vital

dye Syto 11 can be used to visualize the DNA of apoptotic and normal cells in living

animals44 .A different vital dye, Syto 12, has been reported to preferentially label the

DNA of apoptotic germ cells in C. elegans, even after they have ceased to be readily

identifiable using Nomarski microscopy45. The vital dye acridine orange has also been

found to be useful in labeling apoptotic germ cells45.

Beyond assessing the persistence of the DNA of apoptotic cells, histological

assays provide useful tools in studying the process of engulfment and degradation of

apoptotic cells. In C. elegans as in other organisms, the process of apoptosis is

characterized by the generation of reactive DNA 3' hydroxyl ends, which can be

detected by the use of TUNEL (terminal transferase dUTP nick end labeling)44,46.

TUNEL assays in C. elegans have been used to assess the functions of genes reported

to be involved in DNA degradation and nuclear remodeling 47 49 and to identify candidate

nucleases potentially involved in apoptosis5 0. The process by which apoptotic cells are

recognized and engulfed by their neighbors can, as discussed above, be examined in

part through the localization of transgenically expressed fluorescently tagged versions

of proteins that normally function in this process; the endogenous localization of at least

one of these proteins, actin, can also be examined histologically, through the use of

phalloidin 33.Another reagent, the monoclonal antibody F2-P3E3, has been found to
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specifically recognize an unidentified epitope present in organelles, likely phagosomes,

of cells that respond to the presence of neighboring apoptotic cells51.

Histological assays are of particular use in examining the function of the

mitochondria in PCD in C. elegans. Much of the work characterizing apoptosis in

mammalian systems has centered on the role of the mitochondria 52; less is known about

the role of the mitochondria in C. elegans PCD. The Apaf-1 homolog CED-4 localizes to

the mitochondria in a CED-9-dependent fashion, and activation of PCD by the BH3-only

protein EGL-1 can release CED-4 from mitochondrial localization53 . Similar

EGL-1-induced release of a fluorescently tagged version of the mitochondrial protein

WAH-1 to the nucleus and cytoplasm has been reported48. Either of these phenomena

might provide an indirect assay of the state of mitochondrial protection from

programmed cell death. More recently, the effects of PCD on mitochondrial fission and

fusion have been more directly assessed in C. elegans, using the mitochondria-specific

dye Mitotracker Red 24,54.

Assessing programmed cell death using Nomarski microscopy

Programmed cell death was first observed in C. elegans by direct observation of

the developing animal using Nomarski microscopy, and Nomarski-based assays remain

among the most useful methods for studying PCD in C. elegans. Unlike

transgene-based assays of cell survival, which often require minimal training prior to

their use, Nomarski-based assays of PCD cannot be properly used without first

practicing and accustoming one's self to the assay.
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Nomarski microscopy allows for the observation and quantitation of dying cells

and cell corpses. This is commonly done in investigating mutants defective in the

engulfment and removal of cell corpses. The counting of persistent cell corpses in such

mutants has been used as an assay of the overall level of programmed cell death"1 . Cell

corpses usually appear as flat, raised disks with uniform and high refractility41 (see

Figure 3). When counting cell corpses, care should be taken to use a defined

developmental timepoint and to count the cell corpses within a defined area. Most

commonly, persistent cell corpses are counted in the heads (defined as the area

between the anterior tip of the nose and the anterior end of the intestine) of first-stage

(L1) larval hermaphrodites; wild-type larvae have no corpses in their heads5 . To

maximize the reproducibility of this assay, it is recommended to use young L1 larvae,

either by identifying animals whose gonadal precursors and germ cells are comprised of

only four cells 3 1,39 or by using animals within 1.5 hours of their hatching55 . For reasons

that are unclear, different investigators have reported significantly different corpse

counts for the same strains31 ,33,55,56 . Although these investigators may have used L1

larvae of different ages within the first larval stage, it has been shown that some

mutants defective in the removal of dead cells, such as ced-5(n1812), do not show a

significant decrease in the number of persistent cell corpses from the first to the second

larval stages56. Thus, other differences in procedure, possibly of culture conditions or in

the identification of cell corpses, must account for the discrepancies. Numbers obtained

using this assay should therefore be considered only as relative values and should not

be compared to results another investigator has obtained.
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The developmental temporal profile of PCD can be examined by counting visibly

apoptotic cells at various stages of embryonic development. This assay is easy to

perform and has provided important insights into gene function36 ; however, the data that

it provides can be difficult to interpret, as it cannot always readily be determined

whether changes reflect alterations in the efficient progression of programmed cell

death, in the engulfment and removal of apoptotic corpses, or in the generation and fate

determination of cells programmed to die. As with counting cell corpses in the heads of

larvae, different investigators have reported significantly different numbers using this

assay, although the developmental pattern of cell death that these numbers are

intended to reflect is invariant18,19,36,47,57 . This may reflect that the identification of

embryonic stages can be somewhat arbitrary and that each of these stages of

embryonic development lasts longer than any individual dying cell is likely to persist.

Perhaps the assay that most powerfully uses the power of Nomarski microscopy

and the optical transparency of C. elegans to study PCD is the direct observation of the

process of cell death in vivo. This approach, which can be done by manual observation

of developing animals18'43 or by using an automated 4D system58, can provide a wealth

of information, including how soon after their generation cells begin to show signs of

programmed cell death, how rapidly they adopt a completely apoptotic morphology, and

how long the cell corpses persist before they are removed. If this approach is linked to a

knowledge of the cells' identities, derived from the invariant cell lineage of C. elegans,

yet further information can be obtained, particularly as to whether any observed effects

are general or show biases with regard to specific cells.
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The presence of selected cells that normally undergo programmed death can,

with only limited practice, be assessed using Nomarski microscopy. When the deaths of

the two bilaterally symmetric PVD sisters [V5(l/r).paapp] are prevented, each can

become part of a postdeirid, an isolated lateral posterior structure that normally contains

two neurons and two glial cells, whose nuclei as visualized with Nomarski microscopy

possess morphology similar to that commonly seen for neurons (small and stippled; see

Figure 4). In the vicinity of the left postdeirid, the migrating QL neuroblast gives rise to

two neurons and one cell that undergoes programmed cell death. These QL-derived

cells have variable positions that make counting more difficult; this, as well as the extra

cell death, means that results from counting the extra cells of the left and right postdeirid

regions should not be conflated. The cell bodies of the HSN (hermaphrodite-specific

neuron) neurons, which die in males and in many masculinized hermaphrodites, have a

distinctive and isolated position, lateral and posterior to the vulva, that facilitates their

observation using Nomarski microscopy (see Figure 5A - C). The CEM (cephalic male)

neurons, which die in hermaphrodites and survive in males, have an unusual

morphology by Nomarski microscopy: unlike most neuronal nuclei, which have a

speckled appearance, the nuclei of CEM neurons appear relatively clear and contain a

single large raised dot (see Figure 5D, E). In learning to recognize the CEMs using

Nomarski microscopy, it may be helpful to use a cell-fate reporter that specifically

expresses in the CEM neurons, such as pkd-2::gfp59, to identify the CEMs of males of

the fourth larval stage (L4) until the CEMs can be recognized by their distinctive

morphology without resort to fluorescence.
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The anterior pharynx (the pharynx is the feeding organ of C. elegans) is a

contained region with a highly reproducible anatomy that contains a large number of

cells that normally undergo PCD. Counting the number of extra nuclei in the anterior

pharynx provides a single-animal quantitative assay that can be used to detect subtle

defects in the execution of programmed cell death 13.This can be the most sensitive and

reproducible assay of non-cell-specific effects on the execution of programmed cell

death. In animals strongly defective in programmed cell death, there can be up to 16

extra "undead" cells in the anterior pharynx; in wild-type animals, extra cells are very

rare (averaging -one extra cell per ten animals). Because the undead cells whose

presence is being scored in pharynx counts represent at least ten distinguishable cell

fates, this assay can readily distinguish between cell-specific and general defects in

programmed cell death. By coupling the quantitative power of this assay with sensitized

genetic backgrounds weakly defective in programmed cell death, it has been possible to

detect cell-killing defects in mutants that in a wild-type genetic background do not show

any obvious defect in cell killing25,36' 60. A detailed protocol for learning to perform this

assay is provided below.
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Reagents

* S Basal Medium (see REAGENT SETUP)

* Agarose (see REAGENT SETUP)

* 20mM Sodium Azide in S Basal (see REAGENT SETUP.

* Immersion oil for microscope objective (Zeiss Immersol 518F)

Equipment

* Glass test tubes (Catalog number VWR 89000-480)

* Test tube clamp (Catalog number VWR 21770-028)

* Parafilm (Catalog number VWR 52858-032)

* Pipet bulbs (Catalog number VWR 82024-556)

* Pasteur pipets (Catalog number VWR 14673-010)

* Platinum wire (Catalog number VWR 66260-068)

* Worm pick, made with Pasteur pipet and platinum wire

* Glass microscope slides (Catalog number VWR 16004-368)

* Cover glasses, 25 mm. (Catalog number VWR 48366-089)

* Lab tape (Catalog number VWR 36425-045)

* Heat block for glass test tubes (Catalog numbers VWR 12621-104, 13259-130)

* Bunsen burner (Catalog number VWR 17911-002)

* Dissecting microscope

* Nomarski microscope

* Microwave oven
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REAGENT SETUP

S Basal Medium: 0.1 M NaCI, 0.05 M KCI, pH 6.0, 0.005 mg/ml cholesterol

Agarose: Prepare 50ml of 4% (weight/volume) agarose in S Basal by boiling in

microwave. Aliquot 1-2 ml into each glass test tube. Seal test tubes with Parafilm; can

be stored for up to two years at 40C.

20 mM Sodium Azide in S Basal: Prepare stock solution of 1M sodium azide in S

Basal; this stock can be stored for years at 40C. Dilute small amounts to 20 mM for a

working solution. Working solution can be stored at room temperature for at least six

months. CAUTION: wear gloves when handling azide, especially the stock solution.

Procedure

CRITICAL: Culture animals according to standard protocols 61.

1. Set heat block to 700C. Carefully boil one glass test tube of 4% agarose in S

Basal over a Bunsen burner, trying not to scorch glass. Place test tube in heat

block to keep the agarose molten.

2. Place three microscope slides beside each other on bench next to dissecting

microscope. Place one layer of lab tape on each of the outer two slides. For a

diagram of this and the next three steps, see Figure 6.

3. Use a Pasteur pipet to place one drop of 4% agarose on central slide and

immediately place a fourth slide face-down on the spot of agarose, perpendicular

to the three slides. Press this fourth slide down until it rests on the tape on the

two neighboring slides, raised slightly by this tape above the central slide. Try to

minimize bubbles. The resulting agarose pad will be used to mount the animals.
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4. Load 3 p1 20 mM azide solution in a pipetman; set aside, close to hand. Load

worm pick with several L3 or very early L4 animals in a glob of bacteria using

dissecting microscope (these can be identified by their size and the first signs of

vulval morphogenesis; for images of the vulva at late L3 and early L4 larvae, see

Figure 2 of Herman, Hartwieg, and Horvitz62).

5. Quickly, so animals on pick do not dry out, pull out the center slide with its

agarose pad and place on the stage of the dissecting microscope, pipet the 20

mM azide solution onto the agarose pad, and swirl the worm pick in the puddle of

liquid until animals are off the pick and the glob of bacteria has broken up. Gently

place cover glass on slide, trying to minimize bubbles. Sodium azide will

immobilize the animals; animals can be recovered from the slide later if desired

using a worm pick with a large moist glob of bacteria, and will recover if placed

on a normal NGM agar plate seeded with bacteria.

CRITICAL: When making each agarose pad, place the agarose drop onto the slide

that was pressed down to flatten the agarose pad of the previous slide, with the side

that contacted the agarose facing upward to receive the new drop of agarose

solution. This appears to help prevent the agarose pad from slipping away when its

slide is pulled out.

6. Place slide on Nomarski microscope. Examine anterior pharynx using Figures 7

and 8 as a reference. The nuclei of interest are essentially arranged in three

planes placed rotationally around the central axis of the animal. These nuclei can

be recognized by their stereotyped positions and by their smallish sizes and

stippled appearances using Nomarski optics. The nuclei of undead cells, if
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present, will usually be nearby to and morphologically similar to the nuclei of

closely related cell present in the wild type; care should be taken to ensure that

any undead cells that are in slightly different focal planes are noticed. The

relevant nuclei of the dorsal pharynx, which are present on only one side and are

arrayed almost in a line, tend to present few difficulties, but at least one of the

two ventral planes will usually be oriented so as to require some reconstruction

within the mind of the user. When beginning to count an animal's pharynx, it is

often helpful to determine the positions and orientations of the two ventral planes

by looking for the readily recognizable triangular arrangement of the NSM, 12,

and MC neuronal nuclei. Practice with animals in which one of the two ventral

planes, as defined by the arrangement of these three nuclei, happens to be

roughly parallel to the plane of focus should familiarize the user sufficiently that,

when they encounter ventral planes that are oblique to the plane of focus, they

can reconstruct these planes in their mind while focusing through the animal.

7. Count the extra cells of the anterior pharynx; this is easier than counting the total

cells and later subtracting the expected cells. At least ten animals should be

examined of each genotype, more if required to achieve statistical significance to

establish or to disprove a small effect on PCD.

CRITICAL: The pharynges of strains strongly defective in PCD can be disorganized and

therefore difficult to count. Users are encouraged to familiarize themselves with the

assay through extensive practice first with the wild-type strain N2 and then with strains

weakly defective in PCD before attempting to score strains strongly defective in

programmed cell death. Recommend strains weakly defective in programmed cell death
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include the weak ced-3 allele ced-3(n2427), which normally averages approximately 1.5

extra cells per anterior pharynx, and then the intermediate ced-3 allele ced-3(n2436),

which normally averages approximately 6 extra cells per anterior pharynx. The user

should practice until they can reliably obtain numbers consistent with those previously

reported35. In this fashion, one can learn the common positions and shapes of the

undead cells. This will provide good preparation before attempting to score animals

more strongly defective in programmed cell death.

Timing

Once the technique has been learned, it should be feasible to prepare a slide and count

the pharynges of ten animals within fifteen minutes. Learning the technique can typically

require several practice sessions, each lasting two to four hours.

Troubleshooting

Troubleshooting advice can be found in Table 3.

Anticipated results

Between zero and sixteen extra cells will be observed, depending on the strength of the

cell death defect. The pharynges of control strains should be counted in parallel, to

ascertain that the results obtained are consistent with previous results. Note should be

taken of which cells survive, to distinguish between general effects on PCD and

possible cell-specific protective effects.
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Table 1. Transgenic reporters of cell survival in C. elegans

Promoter Reporter expresses in:
Normal cells Undead cells

lin-11 25  Pn.aap neurons, vulval cells Pn.aap neurons

pkd-25 9  Male-specific neurons: CEM, HOB, Ray CEM neurons in
neurons hermaphrodites

ceh_223,63 Pharyngeal cells: NSM, M3, and 13 neurons, NSM sisters
m2 muscles, and e2 epithelial cells

tph-123,64 Serotonergic neurons: NSM, ADF, HSN, NSM sisters, potentially
male-specific CP, sometimes AIM and RIH HSN neurons in males

cat-265  Dopaminergic neurons: CEPD, CEPV, ADE, CEPV sisters, PVD sisters
PDE

tdc-166  Tyraminergic cells: RIM and RIC neurons, RIM sisters, RIC sisters
gonad sheath cells, and UV1 uterine cells

tbh-166  Octopaminergic cells: RIC neurons and RIC sisters
gonad sheath cells

ceh-28 M4 neuron M4 sister

egl-1767 M4 neuron and P6.p-derived vulval cells M4 sister

Transgene expression patterns in normal cells are from descriptions in the referenced

publications, except for ceh-28, which is from a personal communication by B. D. Harfe

and A. Fire. Expression patterns in the undead cells of animals defective in apoptotic

cell death are from descriptions in the referenced publications (lin-11, ceh-2, tph-1,

tdc-1, tbh-1) or from unpublished observations (pkd-2, cat-2, ceh-28, egl-17).
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Table 2. Visible phenotypes as assays of cell death

Gene(s) Alteration Phenotype Comments

Phenotype results from loss of the
Strong Maternal-effect lethality protective function of ced-9, and is

loss of functionl 3  Loss of male tail rays suppressible by loss of ced-3 or
ced-4 function.

Seen in maternally rescued
ced-9(If) homozygotes, in

Partial ced-9(n1653ts) animals at the

loss of function 13,68,69  permissive temperature, and in

Egg-laying defect animals completely lacking ced-9
ced-9 or Reduced brood size and weakly defective in cell killing,

Partially suppressed Uncoordinated such as ced-9(n2812) animals also
strong loss of homozygous for the weak allele

function6 °  ced-3(n2427). Phenotype depends
on the strengths of the ced-9 and
cell-killing defects.

Allele-specific interaction between
ced-9(nl653) and the splice-site

ced-4, Allele-specifict 70  Lethality mutation ced-4(n2273). Can be
suppressed by mutations causing
very weak defects in PCD37

Inappropriate expression of the
BH3-only cell-killing gene egl-1 in

egl-1 Gain of function17  Egg-laying defect the HSN neurons of
hermaphrodites. The HSN neurons
are required for egg laying.

mec-4 Channel hyperactivation in touch
or Gain of function" Insensitivity to neurons results in their cell deaths

deg-1light touch with necrotic characteristics.

Mutations cause the atypical,
lin-24 nonapoptotic cell deaths of the

or Gain of function 72  Vulvaless Pn.p hypodermal blast cells that
lin-33 give rise to the vulva.

Presumed Vulvaless pvl-5 mutations cause atypical
pvl-5 loss of function73  Loss of male tail rays ced-3-dependent cell death.

Some mutations cause inappropriate cell deaths, resulting in phenotypic alterations

visible using a dissecting microscope. For more information, see the references

indicated.
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Table 3: Troubleshooting

Step Problem Solution

6 One of the three rotationally Increased practice will help, but some animals cannot
arranged planes is difficult to readily be scored and should be disregarded as
see as a result of orientation necessary. To maximize efficiency, ensure all three planes
or obscuration by intervening are visible before beginning to count an animal's anterior
tissue pharynx.

6 Poor images using Nomarski Check that condenser is properly focused and if
microscopy necessary heat immersion oil to solubilize crystals that

may have formed. Nomarski images from anesthetized
animals progressively degrade as the animals remain on
the slide; slides should be prepared fresh and used within
fifteen minutes to, at most, half an hour.

6 Difficulty locating II1 neuron The II1 neuron nuclei have a distinctive position at the
nuclei pharyngeal lumen immediately anterior to the anterior bulb

of the pharynx, but their flattened morphology and
proximity to the lumen can make them difficult to spot.
Undead II1 sister cells are typically less flattened, farther
from the lumen, and easier to recognize.

6 Difficulty locating ventral ml The ventral ml muscle nuclei and nearby undead cells are
muscle nuclei or counting positioned more variably than are other nuclei of interest
extra cells near to ventral ml but are reliably positioned between the MC and the II1
muscle nuclei nuclei on the anterior/posterior axis. It can help to identify

the M3, NSM, MC, 12, and II1 nuclei, and then to count all
other nuclei in the area. The number of extra nuclei in this
area can then be determined by subtracting the two ml
nuclei present in the wild type.

6 Difficulty finding the undead Undead cells can be in slightly different focal planes than
sisters of the NSM neurons normally surviving cells. The nuclei of the undead NSM

sisters in particular can be in focal planes especially
different from those of other nuclei. All focal planes in the
ventral anterior bulb of the pharynx should be examined.

6 Difficulty finding the undead The nucleus of the undead M4 sister is often located in the
sister of the M4 neuron posterior bulb of the pharynx or in the isthmus between

the two bulbs of the pharynx. Only those undead M4 sister
cells whose nuclei can be seen near to the M4 or in the
isthmus need be counted.
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Figure legends

Figure 1

A conserved core pathway for the execution of programmed cell death. The C. elegans

and H. sapiens versions of this pathway are shown. In C. elegans, this pathway consists

of egl-1 (egl, egg laying defective), ced-9, ced-4, and ced-3. CED-3 is a caspase

(cysteine aspartate-specific protease). CED-3 activity is positively regulated by CED-4,

a functional homolog of the mammalian protein Apaf-1. CED-4 killing activity is

regulated by the Bcl-2 homolog CED-9, a critical negative regulator of cell death that

also contributes to the deaths of cells programmed to die. CED-9 activity in somatic

cells is controlled by transcriptional regulation of egl-1, which encodes a member of the

BH3-only family of cell-killing proteins.

Figure 2

CED-1::GFP surrounds apoptotic cell corpses. A) A composite Nomarski microscopy

image showing part of the gonad of a ced-1(e 1735); bcls39 adult hermaphrodite.

Regions of two focal planes are combined to show all relevant nuclei. bcls39 is an

integrated transgene driving ced-l::gfp expression in the somatic gonad as a tool for the

visualization of apoptotic germline cells. In these and in all other images, anterior is left

and ventral is down. Two apoptotic germline cells in the distal gonad are labeled as

"Germline corpse"; the apoptotic germ cell on the right is visibly cellularized and shows

a raised morphology differing from that seen for normal germline nuclei; a

representative germline nucleus is indicated for comparison. The apoptotic germ cell on

the left has less distinctive morphology. B) GFP from the bcls39 ced-l::gfp transgene
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forms rings around the two germline cell corpses. Apoptotic germline cells that may be

difficult to identify using Nomarski microscopy, such as the apoptotic germline cell on

the left in part A, can readily be recognized using ced-1::gfp.

Figure 3

A) A Nomarski microscopy image of the head of a young wild-type L1 stage larva. No

apoptotic cell corpses are visible. B) A Nomarski microscopy image of the head of a

young ced-1(e 1735) L1 stage larva. ced-1(e 1735) animals are defective in the

engulfment of cell corpses. Three persistent apoptotic cell corpses visible in this focal

plane are indicated with arrowheads. The raised disk morphology seen here is typical of

somatic cell corpses, but differs from that of germline cell corpses, as seen in Figure 2A.

Figure 4

A) A composite Nomarski microscopy image showing the right postdeirid of a wild-type

early L4 stage larval hermaphrodite. The four postdeirid nuclei are indicated. Regions of

two focal planes are combined to show all relevant nuclei. B) A Nomarski microscopy

image of another focal plane of the same animal as in part A showing the turn of the

posterior gonad, to provide a reference indicating where in the animal the postdeirid can

be found. C) A representation of the relevant features of parts A and B; the postdeirid

nuclei are shown with black ovals and the posterior gonad is gray. D) A composite

Nomarski microscopy image showing the right postdeirid of a ced-3(n717) early L4

stage larval hermaphrodite. Regions of two focal planes are combined to show all

relevant nuclei. This postdeirid contains a fifth nucleus, of an undead cell that has
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survived because of the ced-3(n717) defect in apoptotic cell death. The five postdeirid

nuclei are indicated. E) A Nomarski microscopy image of another focal plane of the

same animal as in part D showing the turn of the posterior gonad, to provide a reference

indicating where in the animal the postdeirid can be found. F) A representation of the

relevant features of parts D and E; the postdeirid nuclei are shown with black ovals and

the posterior gonad is gray.

Figure 5

Using Nomarski microscopy to identify cells sexually dimorphic for PCD. A) A Nomarski

microscopy image showing the nucleus of one HSN neuron of a wild-type L4 stage

larval hermaphrodite. This HSN nucleus is the only lateral neuronal nucleus in this area.

B) A Nomarski microscopy image of a different focal plane of the same animal showing

the vulva, to provide a reference indicating the position of the HSN. The HSN nuclei are

positioned lateral to and slightly posterior of the vulva. C) A representation illustrating

the relevant features of parts A and B. The HSN and vulva are labeled. D) A Nomarski

microscopy image of part of the head of a wild-type L4 stage larval male. The nucleus of

a ventral CEM neuron is labeled; some other nuclei in the same focal plane that

possess more typical neuronal morphology are indicated with arrowheads. The CEM

nucleus contains a single large raised dot and is otherwise clear, while nuclei with more

typical neuronal morphology are stippled in appearance, each containing several small

dots. E) A Nomarski microscopy image of the head of a ced-3(n717) L4 stage larval

hermaphrodite. ced-3(n717) animals are defective in apoptotic cell death. The nucleus

of a ventral CEM neuron, which would have died in a wild-type hermaphrodite, is
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labeled; some other nuclei in the same focal plane that possess more typical neuronal

morphology are indicated with arrowheads.

Figure 6

Diagrams illustrating the preparation of agarose pads for mounting C. elegans for

Nomarski microscopy. A) Three microscope slides are placed in a row, with a single

layer of lab tape on each of the two outer slides. A drop of 4% agarose in S basal is

placed on the center slide. B) A fourth microscope slide is rested on the lab tape on top

of the two outer slides and used to flatten the agarose on the center slide. C) The center

slide is slid out. D) 3pl of 20 mM azide in S basal are pipetted onto the agarose pad and

animals are picked into the azide. A cover slip is placed atop the animals.

Figure 7

A) A composite Nomarski microscopy image of the anterior pharynx of a wild-type L3

stage larval hermaphrodite; regions from thirteen focal planes are combined to

represent examples of all nuclei whose positions should be learned. Note that these

nuclei are arranged essentially in three rotational planes: one for the dorsal nuclei and

two nearly identical planes for the ventral nuclei. The dorsal nuclei and one set of

ventral nuclei can be seen. The animal is positioned with dorsal up and anterior to the

left. B) Annotated version of the image in part A. Relevant nuclei are circled and

labeled. Nuclei of cells whose sister cells normally undergo programmed cell death are

filled in dark grey; nuclei of cells whose sister cells and "aunts" both normally undergo

programmed cell death are filled in black. The MC neuron is half-filled to indicate
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asymmetry: the sister of the left MC neuron dies, but the sister of the right MC neuron

survives. When a cell fails to die, the surviving nucleus is often found near to the

position of a closely related cell that normally lives.

Figure 8

A) A composite Nomarski microscopy image of the anterior pharynx of one ced-3(n717)

L3 stage larval hermaphrodite. ced-3(n717) causes a strong defect in the execution of

programmed cell death. Regions from sixteen focal planes are combined to represent

examples of all relevant nuclei in the dorsal and left ventral rotational planes. Note that

in each mutant animal, some undead cells are not found; in this example, eight of the

ten undead cell nuclei possible in these planes are present. The possible undead cells

that are not present are the sister of the left II1 and one cell whose nucleus would be in

the left ventral anterior bulb. The animal is positioned with dorsal up and anterior to the

left. B) Annotated version of the image in part A. Relevant nuclei are circled. Nuclei of

undead cells are filled in black.
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Pathway in Caenorhabditis elegans
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Jeffrey Thomas performed the genetic screens and mapped and characterized the
screen isolates. I identified the mutation n770 as being an allele of lin-13 and mapped
and performed complementation tests with all of the lin-13 alleles using the
green pharynx phenotype caused by these mutations. Craig Ceol confirmed these
results using the synMuv phenotype caused by these mutations, determined the lin-13
sequence alterations in these mutants and molecularly identified lin-52.
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Abstract

Previous studies have shown that a synthetic multivulva phenotype results from

mutations in genes that antagonize the ras-mediated intercellular signaling system

responsible for vulval induction in Caenorhabditis elegans. Synthetic multivulva

mutations define two classes of genes, A and B, and a mutation in a gene of each class

is required to produce the multivulva phenotype. The ectopic vulval tissue in multivulva

animals is generated by vulval precursor cells that in the wild type do not generate

vulval tissue. One of the class B synthetic multivulva genes, lin-35, encodes a protein

similar to the retinoblastoma (Rb) protein. In this paper, we describe the isolation and

characterization of 50 synthetic multivulva mutations, the identification of new

components of both the class A and class B lin-35 Rb pathway, and the cloning of

lin-52, a class B gene that may have a conserved role in Rb-mediated signaling.
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Introduction

A receptor tyrosine kinase (RTK) and Ras-mediated signal transduction pathway

induces vulval cell fates during the development of the vulva of the Caenorhabditis

elegans hermaphrodite (AROIAN et al. 1990; BEITEL et al. 1990; HAN and

STERNBERG 1990). Little is known about how the activities of such pathways can be

negatively regulated. The synthetic multivulva (synMuv) genes act as negative

regulators of vulval development (HORVITZ and SULSTON 1980; SULSTON and

HORVITZ 1981; FERGUSON and HORVITZ 1985, 1989). One of the synMuv genes,

lin-35, is a member of the Rb gene family; one member of this family, Rb, acts as tumor

suppressor gene in mammals. Another synMuv gene, lin-53, shows similarity to

RbAp48, an Rb-binding protein (LU and HORVITZ 1998). Thus, the synMuv genes

provide an opportunity to analyze genetically a pathway containing an Rb-like gene, to

define additional components of this pathway, and to elucidate the mechanism by which

an Rb-like protein antagonizes a process stimulated by a Ras protein.

The hermaphrodite vulva of C. elegans is formed from the descendants of three

hypodermal blast cells, P5.p, P6.p and P7.p (SULSTON and HORVITZ 1977). These

cells are members of the vulval equivalence group, P(3-8).p, a set of six cells with the

potential to adopt either of two vulval fates (1° or 20) or a nonvulval fate (3") (SULSTON

and WHITE 1980; KIMBLE 1981; STERNBERG and HORVITZ 1986). These cell fates

are specified by cell interactions. The gonadal anchor cell induces the nearest P(3-8).p

cells to adopt vulval fates. (KIMBLE 1981; STERNBERG and HORVITZ 1986;

THOMAS et al. 1990). Another signal, apparently from the nearby hypodermal

syncytium, hyp7, acts to inhibit the adoption of vulval fates (HERMAN and

HEDGECOCK 1990). It is likely that the anchor cell signal overrides this inhibitory

signal to induce the cells nearest to the anchor cell to adopt vulval fates.
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Genetic analysis of vulval development has led to the identification and

characterization of numerous genes involved in different aspects of this process (for

reviews, see HORVITZ and STERNBERG 1991; KORNFELD 1997; STERNBERG and

HAN 1998). Reduction-of-function mutations in genes encoding signaling proteins

reduce the output of the anchor cell signaling pathway and result in a vulvaless (Vul)

phenotype in which the vulva is not formed. By contrast, some mutations result in a

multivulva (Muv) phenotype in which ectopic vulval tissue is produced. The Muv

phenotype of certain mutant strains results from the interaction of two different

mutations (HORVITZ and SULSTON 1980; SULSTON and HORVITZ 1981;

FERGUSON and HORVITZ 1985, 1989). The mutations that interact to produce such a

synthetic multivulva (synMuv) phenotype fall into two classes, A and B. Animals

carrying both a class A and a class B mutation have a Muv phenotype. Animals that

carry mutations in a single class have a wild-type vulval phenotype. FERGUSON and

HORVITZ (1989) proposed that the synMuv genes encode the components of two

functionally redundant pathways that negatively regulate vulval development.

Systematic mutagenesis of strains carrying either the class A mutation

lin-8(n111) or the class B mutation lin-9(n112) as well as the mutagenesis of another

strain carrying a previously undetected class A synMuv mutation allowed the

identification of additional class A and class B mutations (FERGUSON and HORVITZ

1989). Both class A and class B alleles, as well as class AB alleles (which are Muv as

a consequence of a single mutation), were identified for a locus named lin-15, indicating

that lin-15 is a complex locus with distinct class A and class B functions (FERGUSON

and HORVITZ 1985; 1989). Molecular analyses of lin-15 revealed that it consists of two

adjacent genes that encode two nonoverlapping transcripts to control the A and B

functions; the class AB alleles affect both genes (CLARK et aL 1994; HUANG et al.

1994). These genetic analyses resulted in the identification and characterization of

three class A genes (lin-8, lin-15A, and lin-38) and five class B genes (lin-9, lin-15B,
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lin-35, lin-36, and lin-37). Three additional class B mutations (n770, n771, n833) were

identified, but were neither further characterized nor given gene names (FERGUSON

and HORVITZ 1989).

SynMuv mutants in which the anchor cell has been ablated nonetheless still

display a Muv phenotype (FERGUSON et al. 1987). This result suggests that in the

absence of synMuv gene activity, the P(3-8).p cells do not require the anchor cell signal

to adopt vulval cell fates. However, reduction-of-function mutations in genes known to

be involved in inductive signal transduction, let-23 rtk, sem-5, let-60 ras, and lin-45 raf,

are epistatic to synMuv mutations (FERGUSON et al. 1987; BEITEL et aL 1990; HAN et

al. 1990, CLARK et al. 1992; HAN et al. 1993; HUANG et al. 1994; LU and HORVITZ

1998; THOMAS and HORVITZ 1999). Thus, the activity of the RTK signal transduction

cascade, but not the anchor cell-derived RTK ligand itself, is required for the adoption

of vulval cell fates by P(3-8).p cells in the absence of inhibitory synMuv gene activity.

Genetic mosaic analyses indicate that both lin-15AB and lin-37 act non-cell

autonomously and most likely in hyp7 (HERMAN and HEDGECOCK 1990;

HEDGECOCK and HERMAN 1995) while lin-36 likely acts cell autonomously in the

Pn.p cells (THOMAS and HORVITZ 1999). These observations led to the suggestion

that the synMuv genes encode the components of two signaling systems by which hyp7

prevents P(3-8).p cells from adopting vulval fates. When both redundant signaling

systems are disabled, P(3-8).p cells adopt vulval fates and produce a Muv phenotype.

The molecular natures of several synMuv genes have been determined. Two

class B genes, lin-15B and lin-36, and one class A gene, lin-15A, have been cloned and

shown to encode novel proteins (CLARK et al. 1994; HUANG et al. 1994; THOMAS and

HORVITZ 1999). The class B gene lin-9 encodes a protein with sequence similarity to

the Drosophila Aly protein, which regulates the meiotic cell cycle and spermatogenesis

(BEITEL et al. 2000; WHITE-COOPER et al. 2000). The class B gene lin-35 encodes a

protein with sequence similarity to the Rb protein, and the class B gene lin-53 encodes

477



a protein with sequence similarity to RbAp48, an Rb-binding protein (LU and HORVITZ

1998). The class B gene dpl-1, the discovery of which is described in this manuscript,

encodes a protein similar to DP, an Rb-regulated transcription factor that regulates the

G1-to-S phase transition of the cell cycle. The class B gene efl-1 encodes a protein

similar to E2F, a component of the DP/E2F heterodimeric transcription factor (CEOL

and HORVITZ 2001). Another gene with class B activity, tam-1, encodes a RING finger

and B-box protein involved in modulating gene expression (HSIEH et al. 1999). lin-13,

a gene which has class B and possibly also class A synMuv activity, encodes a protein

with an Rb binding motif (MEL NDEZ and GREENWALD 2000). Genetic analysis of

let-4181chd-4, which encodes a chromodomain helicase protein, indicates that it is a

class B synMuv gene (VON ZELEWSKY et al. 2000). mep-1, which encodes a

zinc-finger protein that interacts with LET-418, has class B synMuv activity

(UNHAVAITHAYA et al. 2002). RNAi experiments suggest that hda-1 and hpl-2, which

encode a protein similar to class I histone deacetylases and a protein similar to

heterochromatin protein 1, respectively, may have some synMuv activity (LU and

HORVITZ 1998; COUTEAU et al. 2002). DUFOURCQ et al. (2002) reported that

hda-1/gon-10(e 1795) does not have class B synMuv activity but other results using

stronger class A synMuv mutations suggest that hda-1/gon-10(e 1795) does have class

B synMuv activity (C. J. CEOL, E. C. ANDERSEN and H. R. HORVITZ, unpublished

results). Many of these genes are known as components of a nucleosome remodeling

and histone deacetylase (NuRD) complex, and the class B synMuv genes have been

proposed to remodel chromatin and repress transcription of genes important for vulval

cell fate specification (LU and HORVITZ 1998; VON ZELEWSKY et al. 2000). Some of

the class B synMuv genes are involved in the promotion of early larval P3.p fusion and

G1-to-S phase progression of the cell cycle (CHEN and HAN 2001; BOXEM and VAN

DEN HEUVEL 2002).
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In this paper, we identify and characterize 50 new synMuv mutations. Some of

these mutations define new class A and new class B loci. lin-52, one of the new class

B loci, encodes a protein that is similar to mammalian and Drosophila proteins of

unknown function. Because lin-52 has genetic properties similar to lin-35 Rb, LIN-52

homologs may act in an Rb pathway in mammals.

MATERIALS AND METHODS

Strains and general techniques: Caenorhabditis elegans var. Bristol strain N2

was the wild-type strain used in this study. To map lin-52, we used the strain RW7000,

which contains the polymorphism stP127 (WILLIAMS et al. 1992). Mutations were

described by HODGKIN et al. (1988) unless otherwise noted.

LGI: bli-3(e767); sup-11(n403); dpy-5(e61); lin-35(n745); unc-29(e1072);

dpy-14(e188); unc-13(e1091); lin-11(n566); unc-75(e950); unc-101(ml); unc-54(e1092)

(WATERSTON et al. 1980).

LGII: lin-8(n111); lin-31(n301); unc-85(e1414); bli-2(e768); dpy-10(e128);

rol-6(e187); let-23(n1045, mn23, mn216) (HERMAN 1978; SIGURDSON et al. 1984;

FERGUSON and HORVITZ 1985); let-240(mn209); unc-4(e120); unc-53(e569);

rol-1(e91); lin-38(n751); unc-52(e444); mnDf67 (SIGURDSON et al. 1984); mnDf85

(SIGURDSON et a. 1984); mnDf46 (SIGURDSON et al. 1984); mnC1[dpy-10(e128)

unc-52(e444)].

LGIII: dpy-l(el); unc-93(e1500); dpy-27(y57) (PLENEFISCH et al. 1989);

unc-79(e1068); dpy-17(e164); Ion-1(e185); sma-3(e491); lin-37(n758); egl-5(n945);

lin-36(n766); nDf40 (HENGARTNER et al. 1992); unc-36(e251); dpy-19(e1259);

lin-9(n112); sqv-3(n2842); unc-32(e189); unc-16(e109); unc-47(e307); unc-69(e587);

unc-25(e156); unc-49(e382); dpy-18(e364); qC1[dpy-19(e1259) glp-1 (q339)] (AUSTIN

and KIMBLE 1989; GRAHAM and KIMBLE 1993).
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LGIV: dpy-9(el2); egl-18(n162); lin-1(e1275); unc-17(e245); unc-5(e53);

dpy-20(el282); unc-22(e66); unc-30(e191); lev-1(x22); ced-3(n717); unc-26(e205);

dpy-4(e 1166).

LGV: unc-34(e566); dpy-11(e224); unc-51(e369).

LGX: Ion-2(e678); unc-3(e151); lin-15(n433, n744, n765, n767) (FERGUSON

and HORVITZ 1989).

In addition, we used strains containing the chromosomal aberration eTl(II/;V)

(ROSENBLUTH and BAILLIE 1981). Methods for the culture and genetic manipulation

of C. elegans have been described by BRENNER (1974). Genetic nomenclature was

described by HORVITZ et al. (1979). Nomenclature used for synMuv strains is as

used by FERGUSON and HORVITZ (1989).

Mutagenesis of class A and class B mutants: Screens for new synMuv strains

were conducted essentially as described by FERGUSON and HORVITZ (1989) using

EMS as a mutagen, according to BRENNER (1974). Only one Muv strain was selected

from each group of mutagenized P0 hermaphrodites for subsequent analysis to ensure

each mutation was independently derived. N2 males were crossed with the Muv

strains, and the F2 progeny were scored for the Muv phenotype. The segregation of

1/16 or fewer Muv F2 progeny indicated candidate synMuv strains. In no case did the

Muv phenotype of a strain in which the original mutation was autosomal result from a

synthetic interaction with a second mutation on the same linkage group, based upon

either of two criteria: (1) failure of the new Muv mutation to complement a known Muv

mutation, or (2) failure of the Muv phenotype to show linkage to the chromosome

containing the parental mutation. In mutagenesis experiments in which the original

mutation was a lin-15 allele, strains that segregated 1/4 or fewer Muv F2 progeny were

also retained for further analysis since new lin-15 mutations would be tightly linked to

the parental mutation. All candidate synMuv strains were backcrossed to their strain of

origin two to five times.

480



To isolate class B mutations, a lin-8(n 111) homozygous strain and a lin-15(n433)

homozygous strain were mutagenized. FERGUSON and HORVITZ (1989) previously

mutagenized lin-8(n111) and lin-15(n767) animals to isolate class B mutations. After

the mutagenesis of lin-8(n111) animals, we screened approximately 6,000 haploid

genomes and isolated 15 synMuv strains. After the mutagenesis of lin-15(n433)

animals, we screened approximately 10,000 haploid genomes and isolated 15 synMuv

strains. To isolate class A mutations, a lin-36(n766) homozygous strain and a

lin-15(n744) homozygous strain were mutagenized. FERGUSON and HORVITZ (1989)

previously mutagenized lin-9(n 112) animals to isolate class A mutations. After the

mutagenesis of lin-36(n766) animals, we screened approximately 10,000 haploid

genomes and isolated five synMuv strains. After the mutagenesis of lin-15(n744)

animals, we screened approximately 13,000 haploid genomes and isolated 14 synMuv

strains.

The lin-52 mutation n3718 was isolated following mutagenesis of a lin-15(n767)

homozygous mutant strain (C. J. CEOL, F. STEGMEIER, M. M. HARRISON and H. R.

HORVITZ, unpublished results). Other results of this screen will be described

elsewhere.

Molecular analysis of lin-15AB lesions: Genomic DNA was purified,

essentially using standard methods, from lin-15AB strains isolated after the

mutageneses of lin-15(n744) and lin-15(n433) animals (SULSTON and HODGKIN

1988). DNA was digested by EcoRI, separated by agarose gel electrophoresis, and

probed with 3 2 P-labeled lin-15 plasmid DNA (SAMBROOK et al. 1989; CLARK et al.

1994). Some samples of genomic DNA that showed a lesion were digested with EcoRI

and either Eagl, Sacl, Mscl, Bgll, M/ul or Nrul, and probed with 32 P-labeled lin-15

plasmid DNA.

Molecular analysis of lin-13 and lin-52 lesions: N2, lin-13 and lin-52 strains

were lysed and the coding regions and adjacent noncoding regions of the lin-13 and
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lin-52 genes were amplified using the polymerase chain reaction (PCR). The

sequences of the PCR products were determined using an automated ABI 373A cycle

sequencer (Applied Biosystems, Foster City, CA). The sequence of each mutation was

confirmed using an independently derived PCR product.

Nomarski observation and P(3-8).p cell lineage analysis of lin-54 animals:

P(3-8).p cells and their descendants in lin-8(nl 11); lin-54(n2231) animals were

observed using Nomarski optics at different times during vulval development as

described by SULSTON and HORVITZ (1977). The nomenclature and criteria of

STERNBERG and HORVITZ (1986, 1989) were used to describe and assign 10, 20 and

3" cell fates.

Construction of strains homozygous for newly isolated synMuv mutations:

Strains carrying a single homozygous synMuv mutation were constructed and their

genotypes confirmed essentially as described by FERGUSON and HORVITZ (1989).

In these experiments, unc-79 dpy-27 balanced lin-13(n770), unc-69 balanced

lin-52(n771), unc-29 balanced lin-53(n833), unc-22 ced-3 unc-26 balanced

lin-54(n2231), and rol-6 unc-4 balanced both dpl-1(n2994) and lin-56(n2728).

Construction of unlinked synMuv double mutants: Class A; class A or class

B; class B double mutants carrying a new mutation and a lin-15 mutation of the same

class were constructed essentially as described by FERGUSON and HORVITZ (1989).

Class B; class B double mutants carrying a new mutation and an autosomal mutation of

the same class were also constructed essentially as described by FERGUSON and

HORVITZ (1989). To ensure that mutations were not lost by recombination, several

independent lines were isolated for each strain.

In these constructions, lin-15(n767) and lin-15(n744) were used as the class A

and class B lin-15 alleles, respectively. The autosomal class B mutation used was

lin-36(n766). This allele was marked in cis by unc-32. The following markers were

linked in cis to the new mutations: unc-32 to lin-13(n770), unc-32 to lin-52(n771), dpy-5
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to lin-53(n833), dpy-20 to lin-54(n2231), rol-6 to dpl-1(n2994), and rol-6 to

lin-56(n2 728).

Construction of linked synMuv double mutants: To construct a class B class

B double mutant between lin-13(n770) and lin-36, hermaphrodites of genotype lin-13 +

+ unc-32/+ egl-5 lin-36 +; lin-15A were generated. The frequency of recombination

between lin-13 and egl-5 is greater than that between lin-36 and unc-32 and much

greater than that between egl-5 and lin-36. Muv non-Unc non-Egl recombinant progeny

were isolated; from these animals, Egl Muv progeny were selected and the lin-15A

mutation crossed out, yielding animals of putative homozygous genotype lin-13 egl-5

lin-36. This genotype was confirmed by crossing with another class A mutation and

performing complementation tests with lin-13 and with lin-36 to show that the strain

contained both class B mutations.

A class B class B double mutant between lin-36 and lin-52(n771) was

constructed in a manner similar to that for the construction of the double between lin-13

and lin-36. Hermaphrodites of genotype + lin-36 unc-36 +/sma-3 + + lin-52; lin-15A

were generated. The frequency of recombination between unc-36 and lin-52 is greater

than that between sma-3 and lin-36 and much greater than that between lin-36 and

unc-36. Muv non-Sma recombinant progeny were isolated and used to generate Unc

Muv progeny of putative genotype lin-36 unc-36 lin-52; lin-15A. lin-15A was removed to

generate animals of homozygous genotype lin-36 unc-36 lin-52. This genotype was

confirmed by crossing with another class A mutation and performing complementation

tests with lin-52 and with lin-36 to show that the strain contained both class B

mutations.

To construct a class A class A double mutant between lin-8 and lin-56(n2728),

animals of genotype lin-8 unc-85 dpy-10 + +/+ + + rol-6 lin-56; lin-15B/+ were

constructed. From these animals, Unc non-Dpy non-Muv recombinant animals that did

not segregate Muv progeny were isolated; these animals segregated Rol Unc animals
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of putative genotype lin-8 unc-85 rol-6 lin-56. This genotype was confirmed by

conducting complementation tests, in the presence of a class B mutation, with lin-8 and

lin-56 to show that the strain was homozygous for both class A mutations.

Transgenic animals: Germline transformation was performed as described by

MELLO et al. (1991) by injecting cosmid (5-10 ng/pL) or plasmid (50-80 ng/pL) DNA

into lin-52(n771); lin-15(n767) animals. pRF4, which causes a dominant Rol

phenotype, was used as a coinjection marker.

lin-52 cDNA isolation and RNA-mediated interference: We obtained a partial

lin-52 cDNA clone (kindly provided by YUJI KOHARA), yk253b12, that included 249

nucleotides of the lin-52 open reading frame and also included the 3' untranslated

region and a polyA tail. We used the 5' RACE system v2.0 (GIBCO-BRL) to determine

the 5' end of the lin-52 transcript. lin-52 5' RACE products were trans-spliced to the

SL2 leader sequence. Consistent with our observations, ZORIO et al. (1994) previously

found that an SL2 oligonucleotide could be used to PCR amplify gene sequence

corresponding to ZK632.13, the predicted gene we have identified as lin-52.

RNA-mediated interference (RNAi) was conducted as described by FIRE et al. (1998),

using double-stranded RNA corresponding to the full-length lin-52 cDNA.

RESULTS

Isolation of new synMuv strains: To identify new class A mutations, we used

EMS to mutagenize class B lin-36(n766) or class B lin-15(n744) homozygotes, which

display wild-type vulval development. The vulval morphology of synMuv strains can be

readily distinguished from that of Muv strains mutant in lin-1 or lin-31. SynMuv animals

usually have a vulva with wild-type morphology and have a few regularly spaced

pseudovulvae. By contrast, lin-1 animals frequently have abnormal and distinctively

484



protruding vulvae, and lin-31 animals are often egg-laying defective, have incomplete

vulvae and have a variable number of small pseudovulval protrusions that are

distinctive in number and morphology. A Muv phenotype that segregated as 1/16 or

less in the F2 generation after crossing with wild-type males was considered a

candidate for being synMuv, as was a strain obtained in a lin-15 background that

segregated either as 1/16 or 1/4 because new lin-15 mutations would be linked to the

parental lin-15 mutation. We obtained five synMuv strains from the mutagenesis of

lin-36(n766) animals and 14 synMuv strains from the mutagenesis of lin-15(n744)

animals. A total of 19 new class A mutations were identified (Table 1).

To identify new class B mutations, we used EMS to mutagenize animals

homozygous for the class A mutations lin-8(n 111) or lin-15(n433). Muv strains were

tested to determine if their phenotypes depended upon two unlinked loci as described

for the isolation of class A mutations. We obtained 15 synMuv strains from the

mutagenesis of lin-8(n 111) animals and 15 synMuv strains from the mutagenesis of

lin-15(n433) animals. A total of 30 new class B mutations were identified in these

screens (Table 1).

An additional class B mutation, n3718, was obtained in a screen for synMuv

mutants following the mutagenesis of lin-15(n767) animals (C. J. CEOL, F.

STEGMEIER, M. M. HARRISON and H. R. HORVITZ, unpublished results).

Linkage and complementation: SynMuv mutations already shown to segregate

as two unlinked loci were expected to display linkage to two loci: the parental locus and

the new locus (FERGUSON and HORVITZ 1989). Mutations caused by most of the

candidate synMuv strains displayed linkage to the parental locus and to another linkage

group. A few lin-15 strains, discussed below, did not display linkage to a new location

(Table 1).

Newly isolated synMuv mutations were tested for complementation with alleles of

the then known synMuv genes: lin-8, lin-9, lin-15A, lin-15B, lin-35, lin-36, lin-37, lin-38
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and lin(n770), lin(n771), and lin(n833), three previously identified but not extensively

characterized synMuv mutations (FERGUSON and HORVITZ 1989). Mutations that

complemented all known synMuv complementation groups were tested against each

other after strains carrying identical parental mutations of the opposite class were

constructed.

Mutations were assigned to the same complementation group only if

hermaphrodites of genotype a; bl/b2, where a is the background mutation required for

the synthetic interaction and bl and b2 are the two mutations being tested, were Muv

and segregated only Muv progeny. As described by FERGUSON and HORVITZ

(1989), this approach was necessary to distinguish intragenic noncomplementation

from the intergenic noncomplementation observed in some doubly heterozygous

synMuv strains. Several combinations of genotype a; bl/+; b2/+ displayed intergenic

noncomplementation; in most cases, the penetrance and expressivity of the Muv

phenotype produced by intergenic noncomplementation was lower than that produced

by homozygosity at either of the two loci that displayed intergenic noncomplementation.

Thus, animals lacking the activity of a synMuv gene of one class and having reduced

doses of two genes of the other class as well as no maternal activity from one of these

genes were occasionally Muv. This observation suggests that the synMuv genes are

dose-sensitive. lin-53(n833) (see below) was notable in that it showed very strong

intergenic noncomplementation with other class B mutations, consistent with the

observation that this mutation causes dominant-negative activity (LU and HORVITZ

1998).

A total of 38 mutations failed to complement alleles of known synMuv genes.

These mutations included eight lin-8 alleles, eight lin-15A alleles, 10 lin-15B alleles, six

lin-35 alleles, three lin-36 alleles, one lin-37 allele, and two lin-38 alleles. Another six

mutations failed to complement n770 or n833, mutations that had previously been

isolated but not extensively characterized. The mutations that defined the n770
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complementation group failed to complement lin-13 for class B activity. We named the

other gene, defined by n833, lin-53. Our new mutations included five lin-13 class B

alleles and one lin-53 allele. We obtained no new alleles of lin-9. n771, another

mutation that had been previously isolated but not extensively characterized, defined

the gene we named lin-52. We obtained one new lin-52 mutation in a separate screen.

Another four mutations defined three new complementation groups, which we named

lin-54, dpl-1, and lin-56. (The name dpl-I was assigned after studies by CEOL and

HORVITZ (2001) showed the DPL-1 protein to be similar to mammalian DP.) There

were two lin-54 alleles, one dpl-I allele, and one lin-56 allele (Table 1).

Identification of lin-15AB double mutants: The mutations of several Muv

strains isolated in a lin-15A or lin-15B background did not segregate as two loci yet

displayed a Muv phenotype similar to that of synMuv strains. These strains included

five isolated in a lin-15(n433) background and seven isolated in a lin-15(n744)

background. The Muv phenotype of these strains showed linkage only to unc-3 X,

which marked the parental lin-15 mutation, and failed to complement lin-15(n765), a

lin-15 allele defective in both class A and class B activities. Thus, the new strains are

defective in both lin-15A and lin-15B activities and they carry new lin-15 alleles.

Six of the seven lin-15 Muv mutants that have been isolated as single mutants

and analyzed - all but lin-15(n765) - have gross mutations that disrupt both lin-15

mRNAs (CLARK et al. 1994; HUANG et al. 1994). lin-15(n765) is a deletion in the class

B gene and presumably also has a point mutation in the class A gene. Several lin-15A

and lin-15B mutations have been analyzed molecularly; each specifically affects only

one of the two genes (CLARK et al. 1994).

To determine whether the Muv phenotype of each of the lin-15AB mutants

isolated in these screens is the result of the newly induced mutation alone or rather the

result of an interaction between the newly induced mutation and the parental mutation,

we used Southern hybridization to analyze the lin-15 locus in these strains. Four of the
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12 mutant strains showed polymorphisms, three of which were confined to only the A or

only the B region. Specifically, the lin-15(n2993 n433) strain has a loss of an EcoRI site

in the B region of lin-15, the lin-15(n744 n2733) strain has a small deletion of 0.3 kb in

the A region, and the lin-15(n744 n2735) strain has a larger deletion of several

kilobases in the A region.

By contrast, the lin-15(n744 n2726) strain has a deletion of about 0.9 kb in an

EcoRI-Sacl restriction fragment containing both A and B sequences. This region

includes both the start of the class A mRNA and the end of the class B mRNA. The

deletion probably eliminates the 5' end of the class A mRNA, and may eliminate some

of the 3' end of the class B mRNA. This deletion may be sufficient to cause a class B

defect, and the Muv phenotype of this strain may result entirely from the new mutation,

n2726.

Polymorphisms were not detected in the other lin-15 strains. Since the parental

mutation of these strains is either a lin-15A or a lin-15B point mutation, and EMS

produces predominantly point mutations (ANDERSON 1995), it is likely that the Muv

phenotype of most if not all of these lin-15AB strains is the result of a synthetic

interaction between lin-15 class A and class B point mutations.

Identification of lin-13 mutations: Five newly identified putative class B

mutations and lin(n770) failed to complement lin-13(n387) in a class A mutant

background. lin-13(n387), which causes a sterile Muv phenotype at 25", had been

shown to behave as a class B synMuv at 15" (FERGUSON and HORVITZ 1989). No

class A mutations in lin-13 were isolated.

Unlike lin-15, which encodes two nonoverlapping transcripts, lin-13 encodes a

single transcript encoding a nuclear protein predicted to contain 24 C2-H2 zinc fingers,

one C4 zinc finger and an LXCXE potential Rb-binding motif (MELENDEZ and

GREENWALD 2000). Sterile Muv mutations of lin-13, n387 and n388, have been

shown to be nonsense mutations at residues S524 and R857, respectively. The mutant
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gene products are predicted to be truncated proteins with either two or five complete

zinc fingers (MELENDEZ and GREENWALD 2000). To determine the molecular

natures of the lin-13 mutations we isolated, we used PCR to amplify DNA from the

mutants and determined the sequence changes in these strains. Three mutants carry

lin-13 nonsense mutations: lin-13(n770), lin-13(n2238) and lin-13(n2985) (Table 2).

These alleles are all predicted to encode truncated proteins, albeit ones longer than

those generated by lin-13(n387) and lin-13(n388). It is notable that the lin-13(n2238)

predicted protein product of 995 amino acids is only slightly longer than the lin-13(n388)

predicted protein product of 856 amino acids and has only one additional undisrupted

zinc finger domain. Three other mutants carry lin-13 missense mutations.

lin-13(n2988) and lin-13(n2981) each encode a cysteine-to-tryptophan change in the

first cysteine of the first and fifth zinc fingers, respectively (Table 2). The first zinc finger

may play a more important role than the fifth zinc finger, since lin-13(n2988) is notably

stronger at low temperature than is lin-13(n2981) (Table 1). The remaining missense

mutation, lin-13(n2984), encodes a glycine-to-glutamic acid change in the residue

immediately preceding the first cysteine of the first zinc finger (Table 2). The bulky

negatively charged mutant residue may partially interfere with the ability of the first

cysteine to act in the coordination of zinc. Consistent with this hypothesis, the

phenotype of lin-13(n2984) is weaker than that of lin-13(n2988) at lower temperatures

(Table 1).

Phenotypes of newly isolated synMuv strains: Many of the newly isolated

synMuv strains displayed a temperature-sensitive effect on vulval development such

that the penetrance of the Muv defect increased at higher temperatures (Table 1).

Similar observations were made by FERGUSON and HORVITZ (1989). The synMuv

strains also often showed temperature-sensitive growth characteristics. Many strains

showed a reduced growth rate or, in some cases, lethality at 250 (Table 1). Similar

observations also were made by FERGUSON and HORVITZ (1989). Although there
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were some differences among strains in growth at 200, the differences were much

greater at 150 and 250. Rare synMuv animals displayed a protruding excretory pore.

Some animals ruptured as adults at the vulva or, rarely, at a pseudovulval protrusion.

Strains isolated in the screen in which lin-15(n744) was used as the parental mutation

had a fairly high percentage of rupture, often exceeding 50% of adults (data not

shown).

Animals homozygous for the lin-52(n3718) mutation were sterile. The sterility of

these animals is likely caused by a loss of lin-52 gene function, as we always observed

its cosegregation with the lin-52 synMuv phenotype. Furthermore, animals

heterozygous for lin-52(n771) in trans to nDf40, a deficiency that removes the lin-52

locus, have diminished brood sizes and display maternal-effect lethality, indicating that

a reduction of lin-52 function leads to reduced fertility.

Strains carrying lin-54 mutations differed from other synMuv strains in that a

greater proportion of these animals had a ventral protrusion that was further posterior to

the vulva than was the case for most synMuv mutants. Also, a number of these strains

had two ventral protrusions posterior to the vulva, a rare occurrence for other synMuv

strains. This phenomenon was observed with both alleles of lin-54. Among lin-8(n111);

lin-54(n2231) animals, 13% had a relatively far posterior ventral protrusion, and 11%

had two posterior ventral protrusions (n=126). Among lin-54(n2231); lin-15(n767)

animals, 26% had a ventral protrusion further posterior than ususal, and 19% had two

ventral protrusions (n=75). Among lin-54(n2990); lin-15(n433) animals, 13% had a

ventral protrusion further posterior than usual, and 10% had two ventral protrusions

(n=1 12).

To determine the origin of these unusually far posterior pseudovulvae and two

posterior pseudovulvae in lin-54 animals, we used Nomarski optics to observe the

P(3-8).p cells and their descendants in lin-8(n111); lin-54(n2231) animals. Our

observations established that, as in the wild type, in these animals there are only six
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potential vulval precursor cells: P(3-8).p divided to give 1", 20 and 3' cell fates, as in the

wild type, and other Pn.p cells, such as P9.p, which lies posterior to P8.p, were not

transformed into potential vulva precursor cells (as seen in "superMuv" mutants, which

have extra pseudovulval protrusions in a lin-15 background; CLARK 1992). Cell lineage

analysis revealed that in lin-8; lin-54 animals, the functional vulva sometimes formed

from P(4-6).p rather than from P(5-7).p (data not shown). In these cases, the P5.p

nucleus did not lie directly beneath the anchor cell nucleus; instead, the P5.p and P6.p

nuclei were located to either side of and below the anchor cell nucleus (data not

shown). This phenomenon has been observed in other synMuv strains, but is rare

(FERGUSON et al 1987, THOMAS and HORVITZ 1999). In animals in which the

functional vulva was formed from the descendants of P(4-6).p, P7.p and P8.p and their

descendants were posterior to the developing vulva. These cells adopted vulval fates

in the mutant animals and formed either two posterior pseudovulvae or one posterior

pseudovulva at a greater relative distance from the misplaced vulva than a pseudovulva

formed from only P8.p relative to a properly positioned functional vulva. In one case,

the vulva was observed to derive from the descendants of P5.p, P6.p and part of P7.p.

The descendants of P7.p were spread over a greater distance than usual; some joined

a number of P8.p descendants to form a pseudovulva, while other P8.p descendants

formed a second posterior pseudovulva. Thus, the P(3-8).p cells and the anchor cell

seem to be occasionally displaced relative to each other in lin-54 animals. In some

animals in which the anchor cell was located over P6.p, the descendants of P7.p and

P8.p were spread over a wider distance than in the wild type. These data suggest that

the posterior members of the vulval equivalence group are displaced posteriorly in a

significant number of lin-54 animals.

Analysis of synMuv genes: We mapped three new synMuv genes, lin-52, lin-54

(class B) and lin-56 (class A) and three previously described synMuv genes, lin-13,
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lin-53 and dpl-I (all class B), using multi-factor crosses and deficiencies (Table 3;

Figure 1).

dpl-I mapped to the same linkage group II deficiency interval as let-23, which

encodes a receptor tyrosine kinase involved in inductive vulval signaling (FERGUSON

and HORVITZ 1987; AROIAN et al. 1990). To determine if dpl-1(n2994) is allelic to

let-23, we performed complementation tests against let-23(mn23), let-23(mn216) and

let-23(n1045). These let-23 alleles were chosen because mn23 and mn216 represent

putative null alleles, and n1045 is a viable reduction-of-function allele that causes both

a Vul and a hyperinduced phenotype (Hin; P(3-8).p cells immediately adjacent to the

developing vulva often adopt vulval fates, producing an abnormal vulva with adjacent

Muv-like protrusions; FERGUSON and HORVITZ 1985; AROIAN and STERNBERG

1991). dpl-1(n2994) complemented let-23 for all phenotypes: synMuv, Vul, Hin, and

lethal (Let). The allele used in these tests, dpl-1(n2994), is predicted to fail to

complement a loss-of-function allele for the synMuv phenotype, since

dpl-1(n2994)/mnDf67; lin-15A animals are Muv (Table 3).

The class B synMuv gene dpl-I was represented by only one mutant allele in

these screens. To test whether the phenotype produced by this allele is weaker than

that expected from a null phenotype, this mutation was tested in trans to a deficiency

(Table 3). Animals of genotype dpl-1(n2994)/mnDf67; lin-15(n433) had a Muv

phenotype and an incidence of sterility similar to those of animals of genotype

dpl-1(n2994); lin-15(n433) when both were progeny of a mother of genotype

dpl-1(n2994)/mnDf67; lin-15(n433). However, the fertile animals of genotype

dpl-1(n2994)/mnDf67; lin-15(n433) had a much greater incidence of maternal-effect

lethality than did animals of genotype dpl-1(n2994); lin-15(n433) when both were

progeny of a mother of genotype dpl-1(n2994)/mnDf67; lin-15(n433). Animals of both

of these genotypes had a stronger Muv phenotype and were less fertile than animals of

genotype dpl-1(n2994); lin-15(n433) when descended from animals of genotype

492



dpl-1(n2994); lin-15(n433). These results suggest that dpl-l(n2994) is a weak allele of

a locus that has a stronger, possibly sterile and maternal-effect lethal, null phenotype.

CEOL and HORVITZ (2001) have subsequently isolated a putative null allele of dpl-1,

which causes sterility.

To demonstrate formally that lin-52, lin-53, lin-54, dpl-1 and lin-56 are indeed

synMuv genes, we conducted tests similar to those used by FERGUSON and HORVITZ

(1989). First, we separated an allele of each gene from its parental mutation and

showed that strains that carried only the isolated allele in homozygous condition

displayed wild-type vulval development at the level of resolution of the dissecting

microscope (Table 4). Double mutants were then constructed between alleles of the

new synMuv genes and alleles of previously defined synMuv genes. Double mutants

carrying class A and class B mutations were Muv; double mutants carrying two class A

mutations or two class B mutations were wild-type for vulval development (Table 4).

lin-13(n770) has also been shown to behave as a class B synMuv mutation by these

criteria (Table 4 and data not shown).

Maternal rescue of the synMuv phenotype depends on both class A and

class B genes: Many of the new synMuv strains displayed maternal rescue of the Muv

phenotype, such that animals of genotype a/a; b/b descended from animals of

genotype a/+; b/+ had lower penetrance and reduced expressivity compared to animals

of genotype a/a; b/b descended from animals of a/a; b/b genotype (Table 5). Similar

results have been shown for other synMuv strains (FERGUSON and HORVITZ 1989).

To determine whether this maternal rescue was conferred by only one of the two

classes, we compared the Muv phenotypes of animals of genotype a/a; b/b descended

from animals of genotypes a/+; b/+ versus a/a; b/+ versus a/+; b/b. Several different

combinations of synMuv mutations were tested. In many cases, neither class alone

produced significant maternal rescue compared to that produced by both classes

together. We concluded that maternal rescue displayed in synMuv strains is the result
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of a synergistic interaction between genes of the two classes rather than the result of

the maternal contribution of genes of just one class (Table 5).

Molecular identification of lin-52: We further characterized the class B synMuv

gene lin-52. Using standard three- and four-factor mapping techniques, we localized

lin-52 to a small genetic interval between sqv-3 and the Tcl transposon polymorphism

stP127 (Figure 2). We generated transgenic animals using DNA clones from this

interval and found that the overlapping cosmids ZK630 and C26C12 and subclones of

DNA common to both of these cosmids rescued the Muv phenotype of lin-52(n771);

lin-15(n767) mutants. Typically greater than 70 percent of transgenic animals in the first

generation of a stable transgenic line (i.e. in the transgenic F2 progeny of an injected

animal) were rescued. However, transgenic lines containing these cosmids or their

subclones displayed a progressive reduction in the penetrance of rescue in each

subsequent generation. The reason for this trend is unknown; we speculate that it may

have resulted from transgene silencing. Such generation-dependent transgene

silencing occurs in the C. elegans germline and is thought to be caused by the

preferential recruitment of silencing factors to repetitive stretches of DNA (KELLY et al.

1997).

Because two complete predicted genes, ZK632.9 and ZK632.13, were present

on the minimal rescuing fragment, we performed further experiments to define lin-52

(Figure 2). Into the minimal rescuing fragment we cloned a small double-stranded

oligonucleotide that is predicted to introduce an in-frame stop codon into the ZK632.13

gene. This altered subclone was unable to rescue the Muv phenotype of lin-52(n771);

lin-15(n767) mutants, whereas a subclone in which the oligonucleotide was removed,

thereby restoring the ZK632.13 open reading frame, rescued like the clones described

above. In addition, we found that RNA-mediated interference of ZK632.13 in a

lin-15(n767) background resulted in a highly penetrant Muv phenotype. Finally, we

determined the sequence of ZK632.13 in lin-52(n771) and lin-52(n3718) mutants.
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lin-52(n771) mutants contain a missense mutation that is predicted to substitute a

positively-charged lysine in place of a negatively-charged glutamate, and lin-52(n3718)

mutants contain a nonsense mutation that is predicted to truncate the ZK632.13 protein

after 30 amino acids (Figure 3). These results identify ZK632.13 as lin-52.

We assembled a cDNA clone of lin-52 (Figure 3A; see MATERIALS AND

METHODS). This clone contains a 5' SL2 splice leader sequence and a polyA tail,

indicating that it is full-length. An SL2 leader sequence is often trans-spliced upstream

of genes that are initially transcribed as downstream genes of an operon (ZORIO et al.

1994). The SL2 leader sequence and the proximity of lin-52 to the gene immediately

upstream of it suggest that lin-52 is transcribed as part of a polycistronic operon. The

large open reading frame of this cDNA is predicted to encode a 161 amino acid protein

that is similar to uncharacterized proteins predicted by human, mouse and Drosophila

cDNA and genomic sequences (Figure 3B; C. J. CEOL and H. R. HORVITZ,

unpublished observations). LIN-52 is most similar to these proteins in a short

carboxy-terminal domain. Over a stretch of 28 amino acids, LIN-52 is 50% identical

and 75% similar to the human predicted protein LOC91750. This region of similarity

may represent a functional domain within the LIN-52 protein.

DISCUSSION

In this paper we describe the isolation and characterization of 50 new synMuv

mutants. We define and describe two new genes, lin-54 and lin-56, describe two other

newly named genes, lin-52 and lin-53, of which one allele each had been previously

isolated, describe the initial identification and characterization of a previously described

gene, dpl-1, and identify class B synMuv alleles of lin-13. In sum, at least four class A

genes (lin-8, lin-15A, lin-38, lin-56) and at least 14 class B genes (lin-9, lin-13, lin-15B,
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lin-35 Rb, lin-36, lin-37, lin-52, lin-53, lin-54, dpl-1, tam-1, let-418, efl-1, hda-1, mep-1)

are now known (Table 6). We showed that the maternal rescue of the synMuv

phenotype is dependent on a synergistic interaction between the wild-type alleles of

both classes. We also cloned the lin-52 gene and found that it encodes a small protein

that may be evolutionarily conserved.

Null phenotypes of synMuv genes: The null phenotype of most synMuv genes

has not been rigorously established. Most likely, not all synMuv genes have the same

null phenotypes (Table 6). Several synMuv genes are likely to have a synMuv null

phenotype. The class A mutation lin-15(n767) is a likely null allele by molecular criteria:

it is a deletion in the middle of the coding sequence with a small insertion producing a

frameshift in the class A transcript (HUANG et al. 1994). lin-15(n767) mutants display a

class A synMuv phenotype and are viable and fertile. The lin-15 class B gene is also

likely to have a synMuv null phenotype. The lin-15AB mutations lin-15(n309) and

lin-15(e1763) are deletions of most of the DNA of the locus and are therefore molecular

nulls for both A and B lin-15 transcripts (CLARK et al. 1994; HUANG et al. 1994).

These mutants are Muv, viable and fertile, indicating that the lin-15 class B gene also

has a synMuv null phenotype. lin-36 is also likely to have a synMuv null phenotype:

nonsense mutations isolated in a non-complementation screen are synMuv, viable and

fertile (THOMAS and HORVITZ 1999).

Several other synMuv genes have a null phenotype that is either lethal or sterile.

lin-13 Muv mutants carry nonsense mutations and have a zygotic sterile and maternal

effect larval arrest phenotype (MELINDEZ and GREENWALD 2000). It is likely that

the null phenotype of lin-9 is sterile. A non-complementation screen for lin-9 mutants

led to the isolation of lin-9 alleles that were sterile and behaved as synMuv mutations

(FERGUSON and HORVITZ 1989). These sterile lin-9 mutations were shown to be

nonsense mutations (BEITEL et al. 2000). Similarly, we found that the lin-52(n3718)

mutation causes a sterile and synMuv phenotype and is a nonsense mutation that is
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predicted to severely truncate the LIN-52 protein. Therefore, the lin-52 null phentoype

is likely sterile. The class B mutation dpl-1(n2994) was tested in trans to a deficiency

that spanned the locus. dpl-1(n2994) mutants have a stronger Muv phenotype, are less

fertile, and have a greater incidence of maternal-effect lethality when they and their

mothers are trans-heterozygotes for a deficiency of this locus. This observation

suggests that dpl-1(n2994) is probably a reduction-of-function mutation rather than a

complete loss-of-function mutation. A null mutation of dpl-1 isolated by CEOL and

HORVITZ (2001) causes the sterile phenotype predicted by the analysis described

here.

The screens described in this paper were not designed to isolate synMuv

mutations that caused lethality or sterility (lin-52(n3718) was isolated in a separate

screen that allowed the identification of lethal or sterile mutations. However, the other

mutants isolated in this screen are not described in this manuscript, and for this reason

this screen is not considered in the following discussion.). Thus, complete

loss-of-function alleles of loci with such null phenotypes were not isolated. However,

viable and fertile reduction-of-function mutations in such loci could have been isolated.

Mutations in complementation groups with few alleles are candidates for being such

reduction-of-function mutations. Loci that are not readily mutated to a viable synMuv

phenotype may not have been identified.

From our general screens, we isolated mutations in different complementation

groups at different frequencies. Class A mutations fell into either a frequently isolated

group, lin-8 and lin-15A (eight alleles each), or an infrequently isolated group, lin-38 and

lin-56 (one or two alleles each). Class B mutations included 10 alleles of lin-15B, six of

lin-35, five of lin-13, three of lin-36, two of lin-54, one each of lin-37, lin-53, dpl-1, and

no alleles of lin-9, lin-52, tam-1, let-418, efl-1, hda-1 or mep-1. Given the number of

haploid genomes screened and the expected frequency of mutation of the average

C. elegans gene by EMS, 5x10 -4 , we expected to isolate about nine alleles of each

497



gene with a synMuv null phenotype (BRENNER 1974; GREENWALD and HORVITZ

1980), suggesting that lin-8, lin-15A, lin-15B and lin-35 are such genes. In contrast to

these results, class B alleles of lin-13, which are not null alleles, were isolated at a

relatively high frequency. lin-13, which encodes a protein of 2248 amino acids

(MELENDEZ and GREENWALD 2000), may provide a large mutagenic target.

There are several reasons why mutations may have been isolated at a lower

frequency than 5x10-4 . Some of the genes may have a sterile or lethal loss-of-function

phenotype, so that only rare reduction-of-function mutations were isolated. We

probably failed to isolate any lin-9 alleles for this reason. Mutations in such genes

should be easily obtained in screens that allow the isolation of sterile and lethal

mutants. Other genes may provide a small mutagenic target. Only one allele of lin-37

was isolated in the screens described in this paper. This gene is physically small, and

the allele we isolated is consistent by molecular criteria with its being a loss-of-function

allele (X. LU, personal communication). Mutations affecting lin-52 were likewise difficult

to isolate, probably because of the likely sterile loss-of-function phenotype and the

small physical size of lin-52. In addition, there may have been a bias in our

experiments as a consequence of the parental mutations we used in our screens. The

class A mutations lin-8(n111) and lin-15(n433) do not produce highly penetrant Muv

phenotypes in conjunction with some class B mutations, which may have resulted in a

lower frequency of isolation of alleles of certain genes.

Many Class A and class B synMuv genes probably act in distinct pathways:

Most genes isolated in the screens described here or by FERGUSON and HORVITZ

(1989) seem to be distinctly a member of either the class A or the class B pathway.

With the exception of In-15 alleles, no class A and class B mutations mapped to the

same site. However, the lin-15 locus consists of two adjacent genes, a class A gene

and a class B gene (CLARK et al. 1994; HUANG et al. 1994). These results suggest

that most synMuv genes act in only one of the two pathways.
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Genetic evidence suggests that lin-13 may act in both pathways. It was

previously shown that at 250 the lin-13(n387) mutation produces a Muv phenotype

similar to that of the synMuv double mutants but acts like a class B synMuv at 15

(FERGUSON and HORVITZ 1989; MELINDEZ and GREENWALD 2000). We have

identified a class B allele of lin-13, n770. Thus, all described mutations in lin-13 either

cause a Muv phenotype or a class B synMuv phenotype. The Muv phenotype of certain

lin-13 alleles may be caused either by the elimination of both class A and class B

activities of lin-13 or by the elimination of another activity of lin-13 that is independent of

the synMuv pathways. If lin-13 has both class A and class B activities, why might it be

difficult to isolate class A alleles of lin-13? Particular regions of lin-13 may be required

for class A and class B activities, and class B regions may provide a larger or easier

target for mutagenesis. Alternatively, some regions, possibly certain zinc fingers, are

required for only class B activity while others are required for both, but none is required

solely for class A activity. It is possible that lin-13 mutations that cause a class A

phenotype are not fertile or viable; however, no other class A mutations exhibit these

phenotypes (Table 6). It is also possible that weaker lin-13 alleles show only a class B

synMuv phenotype. Either the class B pathway may be more sensitive to disruption or

lin-13 may play a more vital role in the class B pathway; if so, it would be impossible to

get a mutation strong enough to exhibit class A activity without concomitantly exhibiting

class B activity.

Synthetic phenotypes: Synthetic phenotypes are produced by combinations of

mutations in different genes. Many synthetic lethal phenotypes have been studied in

yeast, affecting such processes as cytoskeletal organization and secretion (HUFFAKER

et al. 1987, KAISER and SCHEKMAN 1990). Often, a synthetic phenotype is indicative

of functional redundancy. There are several genes that are functionally redundant for

various developmental processes in metazoa. In Drosophila, achaete and scute are

functionally redundant for the specification of larval sense organs; however, individually
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each of these genes is required for the specification of a specific group of adult bristles

(reviewed by GHYSEN and DAMBLY-CHAUDIERE 1991). In C. elegans, lin-12 and

glp-1 are molecularly similar and functionally redundant for some aspects of

development, since double mutants exhibit defects not found in either single mutant

(LAMBIE and KIMBLE 1991). Partial functional redundancy also is seen among

C. elegans genes that function in the engulfment of cell corpses during programmed

cell death; there are two classes of genes, such that animals carrying mutations in both

classes have a more severe defect in engulfment than do animals carrying mutations in

only one class (ELLIS et al. 1991). The three C. elegans genes that encode Rac-like

proteins, ced-10, mig-2 and rac-2/3, function redundantly in axon guidance and subsets

of these genes function redundantly in certain cell migrations (LUNDQUIST et al. 2001).

Whereas many synMuv genes are individually necessary for fertility or viability, others

are not known to be individually required in any process other than vulval development.

In contrast to lone mutations in many partially functionally redundant genes that have

slight defects in a particular process, lone mutations in the synMuv genes do not have

any discernable defects in vulval development (FERGUSON and HORVITZ 1989;

THOMAS and HORVITZ 1999).

Functional redundancy at the genetic level suggests that two sets of genes

implement the same biological effect, e.g. the negative regulation of vulval induction.

The precise molecular mechanisms by which these genes act can be completely

distinct, and the two classes of synMuv genes need not act at the same point in the

pathway for vulval development. At what point(s) in the vulval pathway might the

synMuv genes act? Mutations in the LET-23 receptor tyrosine kinase produce a Vul

phenotype that is epistatic to the Muv phenotype caused by synMuv mutations,

indicating that for the synMuv phenotype to be expressed let-23 gene function is

needed. If the Muv phenotype were caused by mutation in a single gene, this gene

could act either parallel to or upstream of let-23. However, the synMuv phenotype is
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instead caused by mutations in two genes. Thus, if the effects of mutation in either of

these two genes is blocked by a let-23 mutation, the synMuv phenotype would be

suppressed. These considerations indicate that at least one of the two classes of

synMuv genes (A or B) must act parallel to or upstream of let-23, but the other class of

synMuv gene could act parallel to, upstream of or downstream of let-23. Specific

models of how the class B synMuv genes may act in parallel to the let-23 signal

transduction pathway have been discussed by LU and HORVITZ (1998) and THOMAS

and HORVITZ (1999).

Class B synMuv genes including lin-52 define an Rb-mediated pathway:

lin-35, a member of the class B synMuv pathway, encodes a protein similar to the

mammalian tumor suppressor pRb (LU and HORVITZ 1998). Other genes with class B

synMuv activity encode DP (dpl-1), E2F (efl-1), RbAp48 (lin-53), histone deacetylase

(hda-1) and HP1 family proteins (hpl-2) (LU and HORVITZ 1998; CEOL and HORVITZ

2001; COUTEAU et al. 2002). In addition to their role in vulval development, many

class B genes have been shown to regulate G1-to-S phase progression in the cell

cycle. These genes include dpl-1, efl-1, lin-9, lin-15B, lin-35 and lin-36; other class B

genes, hda-1, let-418, lin-37, lin-53 and tam-1, do not appear to be involved in cell cycle

control (BOXEM and VAN DEN HEUVEL 2001, 2002). Even among the subgroup of

class B genes that are involved in cell cycle control, lin-35 and lin-15B have been

shown to have partially nonoverlapping functions (BOXEM and VAN DEN HEUVEL

2002). These results suggest that the class B synMuv genes either act differently in

vulval development and cell cycle control or that we have not yet distinguished more

subtle differences in their roles in vulval development.

Mammalian homologs of some of these class B synMuv proteins are known to

functionally, and in some cases physically, interact with pRb. These and other parallels

indicate that the class B synMuv pathway is an analog of Rb pathways in other

organisms, particularly those pathways in which Rb is involved in chromatin remodeling.
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Consequently, additional class B synMuv genes may have homologs with analogous

functions in other organisms. One such gene is lin-52. lin-52 encodes a small protein,

portions of which are conserved in similarly small proteins predicted by the human,

mouse and Drosophila genome sequences. The further analysis of lin-52 and other

synMuv genes should help elucidate the mechanisms of action of Rb-like proteins and

their regulators and effectors. The determination of how the class B synMuv genes

negatively regulate the vulval induction process should provide insight concerning the

antagonistic actions of Rb-mediated and Ras-mediated pathways.

502



Acknowledgments

We thank BETH CASTOR for expert technical assistance. We thank EWA

DAVISON and XIAOWEI LU for sharing unpublished data. We thank current and

former members of the Horvitz laboratory, especially GREG BEITEL, KERRY

KORNFELD and SHAI SHAHAM, for helpful discussions during the course of this work.

We thank GREG BEITEL, BRENDAN GALVIN, KERRY KORNFELD and XIAOWEI LU

for critically reading this manuscript. We thank the Caenorhabditis Genetics Center

(supported by the National Institutes of Health National Center for Research

Resources) for providing some of the strains used in this work. We thank Jonathan

Hodgkin for providing the hda-1(e1795) strain. We also thank Yuji Kohara for providing

a lin-52 cDNA clone. This work was supported by National Institutes of Health grant

GM24663 to H.R.H. J.H.T. was a Predoctoral Fellow of the Howard Hughes Medical

Institute. C.J.C and H.T.S were Koch Graduate Fellows. H.R.H. is an Investigator of

the Howard Hughes Medical Institute.

503



LITERATURE CITED

ANDERSON, P., 1995 Mutagenesis, pp. 31-58 in Caenorhabditis eleqans: Modern

Biological Analysis of an Organism. Methods Cell Biol. 48, edited by H. F. EPSTEIN

and D. C. SHAKES. Academic Press, New York.

AROIAN, R. V., M. KOGA, J. E. MENDEL, Y. OSHIMA, and P. W. STERNBERG, 1990

The let-23 gene necessary for Caenorhabditis elegans vulval induction encodes a

tyrosine kinase of the EGF receptor subfamily. Nature 348: 693-699.

AROIAN, R. V., and P. W. STERNBERG, 1991 Multiple functions of let-23, a

Caenorhabditis elegans receptor tyrosine kinase gene required for vulval induction.

Genetics 128: 251-267.

AUSTIN, J., and J. KIMBLE, 1989 Transcript analysis of glp-1 and lin-12, homologous

genes required for cell interactions during development of C. elegans. Cell 58:

565-571.

BEITEL, G. J., S. G. CLARK, and H. R. HORVITZ, 1990 Caenorhabditis elegans ras

gene let-60 acts as a switch in the pathway of vulval induction. Nature 348:

503-509.

BEITEL, G. J., E. J. LAMBIE, and H. R. HORVITZ, 2000 The C. elegans gene lin-9,

which acts in an Rb-related pathway, is required for gonadal sheath cell

development and encodes a novel protein. Gene 254: 253-263.

BELFIORE, M., L. D. MATHIES, P. PUGNALE, G. MOULDER, R. BARSTEAD, J.

KIMBLE and A. PUOTI, 2002 The MEP-1 zinc-finger protein acts with MOG DEAH

box proteins to control gene expression via the fem-3 3' untranslated region in

Caenorhabditis elegans. RNA 8: 725-739.

BOXEM, M., and S. VAN DEN HEUVEL, 2001 lin-35 Rb and cki-1 Cip/Kip cooperate in

developmental regulation of G1 progression in C. elegans. Development 128:

4349-4359.

504



BOXEM, M., and S. VAN DEN HEUVEL, 2002 C. elegans class B synthetic multivulva

genes act in G1 regulation. Curr. Biol. 12: 906-911.

BRENNER, S., 1974 The genetics of Caenorhabditis elegans. Genetics 77: 71-94.

CEOL, C. J., and H. R. HORVITZ, 2001 dpl-1 DP and efl-I E2F act with lin-35 Rb to

antagonize Ras signaling in C. elegans vulval development. Mol. Cell 7: 461-473.

CHEN, Z., and M. HAN, 2001 C. elegans Rb, NuRD, and Ras regulate lin-39-mediated

cell fusion during vulval cell fate specification. Curr. Biol. 11: 1874-1879.

CLARK, S. G., 1992 Intercellular Signaling and Homeotic Genes Required during

Vulval Development in C. elegans. Ph. D. Thesis, Massachusetts Institute of

Technology.

CLARK, S. G., X. LU, and H.R. HORVITZ, 1994 The Caenorhabditis elegans locus

lin-15, a negative regulator of a tryrosine kinase signaling pathway, encodes two

different proteins. Genetics 137: 987-997.

CLARK, S. G., M. J. STERN, and H. R. HORVITZ, 1992 Caenorhabditis elegans

cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains. Nature

356: 340-344.

COUTEAU, F., F. GUERRY, F. MOLLER, and F. PALLADINO, 2002 A

heterochromatin protein 1 homologue in Caenorhabditis elegans acts in germline

and vulval development. EMBO Rep. 3: 235-241.

DUFOURCQ, P., M. VICTOR, F. GAY, D. CALVO, J. HODGKIN, and Y. SHI, 2002

Functional requirement for Histone Deacetylase 1 in Caenorhabditis elegans

gonadogenesis. Mol. Cell. Biol. 22: 3024-3034.

DESAI, C., G. GARRIGA, S. L. MCINTIRE, and H. R. HORVITZ, 1988 A genetic

pathway for the development of the Caenorhabditis elegans HSN motor neurons.

Nature 336: 638-646.

505



ELLIS, R., D. M. JACOBSON, and H. R. HORVITZ, 1991 Genes required for the

engulfment of cell corpses during programmed cell death in Caenorhabditis

elegans. Genetics 129: 79-94.

FERGUSON, E. L., and H. R. HORVITZ, 1985 Identification and genetic

characterization of 22 genes that affect the vulval cell lineages of the nematode

Caenorhabditis elegans. Genetics 110: 17-72.

FERGUSON, E. L., and H. R. HORVITZ, 1989 The Multivulva phenotype of certain

Caenorhabditis elegans mutants results from defects in two functionally redundant

pathways. Genetics 123: 109-121.

FERGUSON, E. L., P. W. STERNBERG, and H. R. HORVITZ, 1987 A genetic pathway

for the specification of the vulval cell lineages of Caenorhabditis elegans. Nature

326: 259-267.

FIRE, A., S. XU, M. K. MONTGOMERY, S. A. KOSTAS, S. E. DRIVER and C. C.

MELLO, 1998. Potent and specific genetic interference by double-stranded RNA in

Caenorhabditis elegans. Nature 391: 806-811.

GHYSEN, A., and C. DAMBLY-CHAUDIERE, 1988 From DNA to form: the

achaete-scute complex. Genes Dev. 2: 495-501.

GRAHAM, P. L., and J. KIMBLE, 1993 The mog-1 gene is required for the switch from

spermatogenesis to oogenesis in Caenorhabditis elegans. Genetics 133: 919-931.

GREENWALD, I. S., and H. R. HORVITZ, 1980 unc-93(e1500): a behavioral mutant of

Caenorhabditis elegans that defines a gene with a wild-type null phenotype.

Genetics 96: 147-164.

HAN, M., A. GOLDEN, Y. HAN, and P. W. STERNBERG, 1993 C. elegans lin-45 raf

gene participates in let-60 ras-stimulated vulval differentiation. Nature 363:

133-140.

HAN, M., and P. W. STERNBERG, 1990 let-60, a gene that specifies cell fates during

C. elegans vulval induction, encodes a ras protein. Cell 63: 921-931.

506



HEDGECOCK, E. M., and R. K. HERMAN, 1995 The ncl-I gene and genetic mosaics

of Caenorhabditis elegans. Genetics 141: 989-1006.

HENGARTNER, M. O., R. E. ELLIS and H. R. HORVITZ, 1992 Caenorhabditis elegans

gene ced-9 protects cells from programmed cell death. Nature 356: 494-9.

HERMAN, R. K., 1978 Crossover suppressors and balanced recessive lethals in

Caenorhabditis elegans. Genetics 88: 49-65.

HERMAN, R. K., and E. M. HEDGECOCK, 1990 Limitation of the size of the vulval

primordium of Caenorhabditis elegans by lin-15 expression in the surrounding

hypodermis. Nature 348: 169-171.

HILL, R. J., and P. W. STERNBERG, 1992 The gene lin-3 encodes an inductive signal

for vulval development in C. elegans. Nature 358: 470-476.

HODGKIN, J., M. EDGLEY, D. L. RIDDLE, and D. G. ALBERTSON, 1988 Appendix 4:

Genetics, pp. 491-584 in The Nematode Caenorhabditis elegans, edited by W. B.

WOOD and the Community of C. elegans Researchers. Cold Spring Harbor Press,

Cold Spring Harbor, New York.

HORVITZ, H. R., S. BRENNER, J. HODGKIN, and R. K. HERMAN, 1979 A uniform

genetic nomenclature for the nematode Caenorhabditis elegans. Mol. Gen. Genet.

175: 129-133.

HORVITZ, H. R., and P. W. STERNBERG, 1991 Multiple intercellular signalling

systems control the development of the Caenorhabditis elegans vulva. Nature 351:

535-541.

HORVITZ, H. R., and J. E. SULSTON, 1980 Isolation and genetic characterization of

cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics 96:

435-454.

HSIEH, J., J. LIU, S. A. KOSTAS, C. CHANG, C, P. W. STERNBERG, and A. FIRE,

1999 The RING finger/B-Box factor TAM-1 and a retinoblastoma-like protein

507



LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans.

Genes Dev. 13: 2958-2970.

HUANG, L. S., P. TZOU, and P. W. STERNBERG, 1994 The Caenorhabditis elegans

lin-15 locus encodes two negative regulators of vulval development. Mol. Biol. Cell

5: 395-412.

HUFFAKER, T. C., M. A. HOYT, and D. BOTSTEIN, 1987 Genetic analysis of the

yeast cytoskeleton. Ann. Rev. Genet. 21: 259-284.

KAISER, C. A., and R. SCHEKMAN, 1980 Distinct sets of SEC genes govern transport

vesicle formation and fusion early in the secretory pathway. Cell 61: 723-733.

KIMBLE, J., 1981 Alterations in cell lineage following laser ablation of cells in the

somatic gonad of Caenorhabditis elegans. Dev. Biol. 87: 286-300.

KORNFELD, K., 1997 Vulval development in Caenorhabditis elegans. Trends Genet.

13: 55-61.

KORNFELD, K., K-L. GUAN, and H. R. HORVITZ, 1995a The Caenorhabditis elegans

gene mek-2 is required for vulval induction and encodes a protein similar to the

protein kinase MEK. Genes Dev. 9: 756-768.

KORNFELD, K., D. B. HOM, and H. R. HORVITZ, 1995b The ksr-1 gene encodes a

novel protein kinase involved in Ras-mediated signaling in C. elegans. Cell 83:

903-913.

LACKNER, M. R., K. KORNFELD, L. M. MILLER, H. R. HORVITZ, and S. K. KIM, 1994

A MAP kinase homologue, mpk-1, is involved in ras-mediated induction of vulval

cell fates in Caenorhabditis elegans. Genes Dev. 8: 160-173.

LAMBIE, E., and J. KIMBLE, 1991 Two homologous regulatory genes, lin-12 and glp-1,

have overlapping functions. Development 112: 231-240.

LUNDQUIST, E. A., P. W. REDDIEN, E. HARTWIEG, H. R. HORVITZ, and C. I.

BARGMANN, 2001 Three C. elegans Rac proteins and several alternative Rac

508



regulators control axon guidance, cell migration and apoptotic cell phagocytosis.

Development 128: 4475-4488.

LU, X., 1999 Molecular analyses of the class B synthetic multivulva genes of

Caenorhabditis elegans. Ph.D. Thesis, Massachusetts Institute of Technology,

USA.

LU, X., and H. R. HORVITZ, 1998 lin-35 and lin-53, two genes that antagonize a

C. elegans Ras pathway, encode proteins similar to Rb and its binding protein

RbAp48. Cell 95: 981-991.

MELENDEZ, A., and I. GREENWALD, 2000 Caenorhabditis elegans lin-13, a member

of the LIN-35 Rb class of genes involved in vulval development, encodes a protein

with zinc fingers and an LXCXE motif. Genetics 155: 1127-1137.

MELLO, C. C., J. M. KRAMER, D. STINCHCOMB and V. AMBROS, 1991 Efficient

gene transfer in C. elegans: extrachromosomal maintenance and integration of

transforming sequences. EMBO J. 10: 3959-70.

PAGE, B. D., S. GUEDES, D. WARING, and J. R. PRIESS, 2001 The C. elegans E2F-

and DP-related proteins are required for embryonic asymmetry and negatively

regulate Ras/MAPK signaling. Mol. Cell 7: 451-460.

PLENEFISCH, J. D., L. DELONG, and B. J. MEYER, 1989 Genes that implement the

hermaphrodite mode of dosage compensation in Caenorhabditis elegans. Genetics

121: 57-76.

ROSENBLUTH, R. E., and D. L. BAILLIE, 1981 The genetic analysis of a reciprocal

translocation, eT1(lll; V), in Caenorhabditis elegans. Genetics 99: 415-28.

SAMBROOK, J., E. F. FRITSCH, and T. MANIATIS, 1989 Molecular Cloning: A

Laboratory Manual. Cold Spring Harbor Press, Cold Spring Harbor, New York.

SIGURDSON, D. C., G. J. SPANIER, and R. K. HERMAN, 1984 Caenorhabditis

elegans deficiency mapping. Genetics 108: 331-345.

509



STERNBERG, P. W., and M. HAN, 1998 Genetics of RAS signaling in C. elegans.

Trends Genet. 14: 466-472.

STERNBERG, P. W., and H. R. HORVITZ, 1986 Pattern formation during vulval

development in C. elegans. Cell 44: 761-772.

STERNBERG, P. W., and H. R. HORVITZ, 1989 The combined action of two

intercellular signalling pathways specifies three cell fates during vulval induction in

C. elegans. Cell 58: 679-693.

SULSTON, J., and J. HODGKIN, 1988 Methods, pp. 587-606 in The Nematode

Caenorhabditis elegans, edited by W. B. WOOD and the Community of C. elegans

Researchers. Cold Spring Harbor Press, Cold Spring Harbor, New York.

SULSTON, J. E., and H. R. HORVITZ, 1977 Postembryonic cell lineages of the

nematode Caenorhabditis elegans. Dev. Biol. 56: 110-156.

SULSTON, J. E., and H. R. HORVITZ, 1981 Abnormal cell lineages in mutants of the

nematode Caenorhabditis elegans. Dev. Biol. 82: 41-55.

SULSTON, J. E., and J. G. WHITE, 1980 Regulation and cell autonomy during

postembryonic development of Caenorhabditis elegans. Dev. Biol. 78: 577-597.

THOMAS, J. H., and H. R. HORVITZ, 1999 The C. elegans gene lin-36 acts cell

autonomously in the lin-35 Rb pathway. Development 126: 3449-3459.

THOMAS, J. H., M. J. STERN, and H. R. HORVITZ, 1990 Cell interactions coordinate

the development of the Caenorhabditis elegans egg-laying system. Cell 62:

1041-1052.

TRENT, C., N. TSUNG, and H. R. HORVITZ, 1983 Egg-laying defective mutants of the

nematode Caenorhabditis elegans. Genetics 104: 619-647.

UNHAVAITHAYA, Y., T. H. SHIN, N. MILIARAS, J. LEE, T. OYAMA and C. C. MELLO,

2002 MEP-1 and a Homolog of the NURD complex componenet Mi-2 act together

to maintain germline-soma distinction in C. elegans. Cell 111: 991-1002.

510



VON ZELEWSKY, T., F. PALLADINO, K. BRUNSCHWIG, H. TOBLER, A. HAJNAL,

and F. MOLLER, 2000 The C. elegans Mi-2 chromatin-remodelling proteins

function in vulval cell fate determination. Development 127: 5277-5284.

WATERSTON, R. H., J. N. THOMSON, and S. BRENNER, 1980 Mutants with altered

muscle structure in Caenorhabditis elegans. Dev. Biol. 77: 271-301.

WHITE-COOPER, H., D. LEROY, A. MACQUEEN, and M. T. FULLER, 2000

Transcription of meiotic cell cycle and terminal differentiation genes depends on a

conserved chromatin associated protein, whose nuclear localization is reulated.

Development 127: 5463-5473.

WILLIAMS, B. D., B. SCHRANK, C. HUYNH, R. SHOWNKEEN and R. H.

WATERSTON, 1992 A genetic mapping system in Caenorhabditis elegans based

on polymorphic sequence-tagged sites. Genetics 131: 609-24.

WU, Y., and M. HAN, 1994 Suppressors of activated Let-60 Ras protein defines a role

of Caenorhabditis elegans Sur-1 MAP kinase in vulval differentiation. Genes Dev.

8: 147-159.

WU, Y., M. HAN, and K-L. GUAN, 1995 MEK-2, a Caenorhabditis elegans MAP kinase

kinase, functions in Ras-mediated vulval induction and other developmental events.

Genes Dev. 9: 742-758.

ZORIO, D. A., N. N. CHENG, T. BLUMENTHAL and J. SPIETH, 1994 Operons as a

common form of chromosomal organization in C. elegans. Nature 372: 270-2.

511



TABLE 1

Origins, chromosomal linkages and phenotypes of new synthetic Multivulva strains

Penetrance of Muv phenotype Strain Growth

Genotype

lin-8(n 111) II; lin-13(n2238) III

lin-8(n 111) II; lin-15(n2230) X

lin-8(n 111) II; lin-15(n2233) X

lin-8(n 111) II; lin-15(n2241) X

lin-8(n 111) II; lin-15(n2244) X

lin-8(n 111) II; lin-15(n2245) X

lin-35(n2232) I; lin-8(n 111) 11

lin-35(n2236) I; lin-8(n 111) II

lin-35(n2239) I; lin-8(n 11I) II

lin-35(n2242) I; lin-8(n 11) II

lin-8(n 111) II; lin-36(n2235) III

lin-8(n 111) II; lin-36(n2240) II

lin-8(n 11) II; lin-36(n2243) III

lin-8(n111) II; lin-37(n2234) 11I

lin-8(n 111) II; lin-54(n2231) IV

lin-13(n2981) 11I; lin-15(n433) X

lin-13(n2984) Ill; lin-15(n433) X

lin-13(n2985) III; lin-15(n433) X

lin-13(n2988) III; lin-15(n433) X

lin-15(n2980 n433) Xa

lin-15(n2983 n433) Xa

lin-15(n2987 n433) Xa

lin-15(n2989 n433) Xa

lin-15(n2991 n433) Xa

lin-15(n2993 n433) Xa

lin-35(n2977) I; lin-15(n433) X

lin-35(n2996) I; lin-15(n433) X

lin-53(n2978) I; lin-15(n433) X

lin-54(n2990) IV; lin-15(n433) X

dpl-1(n2994) II; lin-15(n433) X
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15*

65% (n=391)

20% (n=254)

100% (n=235)

100% (n=130)

91% (n=128)

6% (n=202)

100% (n=200)

99% (n=96)

100% (n=197)

N.D.

13% (n=279)

7% (n=189)

51% (n=115)

96% (n=192)

39% (n=334)

0% (n=237)

1% (n=217)

2% (n=229)

33% (n=247)

2% (n=209)

2% (n=232)

0% (n=207)

0% (n=238)

2% (n=226)

0% (n=205)

8% (n=257)

18% (n=216)

0% (n=211)

4% (n=199)

4% (n=246)

20'

100% (n=74)

93% (n=376)

100% (n=385)

100% (n=238)

99.6% (n=280)

98% (n=306)

99.9% (n=942)

100% (n=97)

100% (n=290)

100% (n=278)

79% (n=313)

79% (n=373)

94% (n=593)

100% (n=278)

99% (n=164)

84% (n=241)

97% (n=239)

94% (n=213)

97% (n=261)

99% (n=252)

99% (n=227)

91% (n=267)

100% (n=235)

100% (n=216)

79% (n=201)

100% (n=234)

100% (n=202)

59% (n=203)

95% (n=216)

78% (n=234)

15°

Very slow

Slow

Slow

Slow

WT

WT

Inviable

Inviable

Inviable

Inviable

WT

WT

WT

WT

Very slow

WT

WT

WT

Slow

WT

WT

WT

WT

WT

WT

Slow

Slow

WT

WT

WT

20*

Slow

WT

WT

WT

WT

WT

WT

Slow

WT

Slow

WT

WT

WT

WT

WT

WT

WT

WT

Slow

WT

WT

WT

WT

WT

WT

WT

Slow

WT

WT

WT

25°

Inviable

Slow

Slow

Inviable

Slow

WT

Inviable

Inviable

Slow

Very slow

WT

WT

WT

Inviable

Slow

Inviable

Inviable

Slow

Inviable

Slow

Slow

WT

WT

WT

WT

Slow

Slow

WT

Slow

Slow



lin-52(n3718) III; lin-15(n767) X

lin-8(n2376) II; lin-36(n766) 111

lin-8(n2378) II; lin-36(n766) III

lin-8(n2403) II; lin-36(n766) III

lin-36(n766) III; lin-15(n2375) X

lin-38(n2402) II; lin-36(n766) III

lin-8(n2724) II; lin-15(n744) X

lin-8(n2731) II; lin-15(n744) X

lin-8(n2738) II; lin-15(n744) X

lin-8(n2739) II; lin-15(n744) X

lin-8(n2741) II; lin-15(n744) X

lin-15(n744 n2725) Xa

lin-15(n744 n2726) Xa

lin-15(n744 n2733) Xa

lin-15(n744 n2734) Xa

lin-15(n744 n2735) Xa

lin-15(n744 n2737) Xa

lin-15(n744 n2742) Xa

lin-38(n2727) II; lin-15(n744) X

lin-56(n2728) II; lin-15(n744) X

100% (n=41) 100% (n=82)

18%

19%

48%

0%

28%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

99%

100%

100%

100%

(n=382)

(n=456)

(n=402)

(n=544)

(n=643)

(n=211)

(n=217)

(n=128)

(n=158)

(n=157)

(n=152)

(n=141)

(n=193)

(n=124)

(n=132)

(n=199)

(n=121)

(n=201)

(n=214)

96% (n=189)

100% (n=125)

99% (n=549)

82% (n=675)

99.7% (n=667)

100% (n=126)

100% (n=167)

100% (n=140)

100% (n=97)

100% (n=155)

100% (n=177)

100% (n=145)

100% (n=140)

100% (n=159)

100% (n=176)

100% (n=121)

100% (n=173)

100% (n=165)

100% (n=163)

New synMuv mutations were mapped to linkage groups using strains carrying

the markers bli-3 I; dpy-5 I; unc-54 I; unc-85 II; bli-2 II; mnCl dpy-10 unc-52 II; unc-52

II; dpy-1 III; unc-32 11/; unc-25 III; dpy-9 IV; egl-18 IV; unc-5 IV; dpy-4 IV; unc-34 V;

dpy-11 V; unc-51 V; Ion-2 X and unc-3 X. in a manner similar to that described

previously (TRENT et al. 1983; FERGUSON and HORVITZ 1989).

The penetrance of the Muv phenotype of each synMuv strain was determined at

15" and 20' after growth at the indicated temperature for two or more generations.

Several strains displayed a temperature-dependent reduction in viability. This reduction

in viability was tested in an assay similar to that of FERGUSON and HORVITZ (1989)
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WT

WT

WT

WT

WT

Slow

Slow

Slow

Slow

WT

Slow

Slow

Slow

Slow

Slow

Slow

Slow

Slow

Slow

WT

WT

WT

WT

WT

Slow

Slow

Slow

Slow

Slow

Slow

Slow

Slow

Slow

Slow

Slow

Slow

Slow

Slow

WT

WT

WT

Slow

WT

Slow

Slow

Very slow

Slow

Slow

Very slow

Very slow

Inviable

Slow

Very slow

Inviable

Very slow

Slow

Slow



but differing in that exactly 10 eggs laid by hermaphrodites of the indicated genotype

grown at 20' were placed on each of the four assay plates (each with a 2 cm diameter

lawn of bacteria) used at each temperature. The plates were checked daily to

determine when the bacterial lawn was consumed. The data are presented according

to the following criteria; at 150, WT, 8.5-14 days; Slow, 14-24 days; Very slow, 24-28

days; Inviable, lethal or more than 28 days. At 20', WT, 5.5-9 days; Slow, 9-17 days;

Very slow, 17-28 days; Inviable, lethal or more than 28 days. At 250, WT, 5-7.5 days;

Slow, 7.5-15 days; Very slow, 15-28 days; Inviable, lethal or more than 28 days. The

last value of the range described was included in that category. The data obtained from

the wild-type (WT) strain N2 was: 15: 10 days, 20': 6 days, 250: 5 days. N. D., not

determined because the strain was lethal at the listed temperature.

a The mutations in these strains displayed linkage only to unc-3 X. Linkage of

the new mutation to unc-3 X is assumed since the mutations in these strains

segregated as single locus Muv mutations and failed to complement lin-15(n765) X.

b As the lin-52(n3718) mutation causes recessive sterility, the growth rate of

lin-52(n3718) mutants derived from lin-52(n3718) homozygous parents could not be

measured.
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TABLE 2

Sequences of lin-13 class B mutations

Allele Wild-type sequence Mutant sequence Substitution

n770 CAG TAG Q1988amber
n2238 CAA TAA Q996ochre

n2981 TGC TAC C814Y

n2984 GGA GAA G360E

n2985 CAA TAA Q1717ochre

n2988 TGT TAT C361Y

Wild-type and mutant codons are shown with the mutated nucleotide underlined.

All mutations were GC-to-AT transitions as expected for EMS-induced mutations

(ANDERSON 1995). Amino acid substitutions are shown as wild-type residue identity,

residue number, and predicted mutant residue.
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TABLE 3

Three- and four-factor crosses

Genotype of selected
Phenotype of recombinants (with

selected respect to unselected
Gene Genotype of heterozygote recombinants markers)

lin-13

lin-13 unc-32+ +/+ + unc-49 dpy-18; lin-15(n767)

+ + lin-13/unc-93 dpy-27 +; lin-15(n767)

+ + lin-13/unc-93 dpy-17 +; lin-15(n767)

+ lin-13 +/dpy-17 + unc-32; lin-15(n767)

+ + unc-32 lin-52/lon-1 sma-3 + +; lin-15(n767)

+ + lin-52/sma-3 unc-32; lin-15(n767)

+ lin-52 +/dpy-19 + unc-69; lin-15(n767)

+ lin-52 +/unc-16 + unc-49; lin-15(n767)

+ lin-52 +/ unc-16 + unc-47; lin-15(n767)

lin-52 + unc-69 / + stP127 +; lin-15(n767)

sma-3 + lin-52 +/ + sqv-3 + unc-69; lin-15(n767)

dpy-5 lin-53 + +/+ lin-11 unc-75; lin-15(n767)

+ lin-53 +/unc-29 + lin-11; lin-15(n767)

Unc-32

Dpy

Unc-49

Unc

Unc

Dpy

Dpy

Unc

Lon

Sma

Muv

Sma

Unc

Dpy

Unc

Unc-16

Unc-49

Unc-47

Muv

Sma

Muv

Unc

Dpy

Muv

Vul

Unc

Unc

Vul

0/2 unc-49 dpy-18/+ +

7/7 lin-13 unc-32/+ +

0/1 lin-13 unc-32/+ +

30/30 lin-13/+

8/8 lin-13/+

0/3 lin-13/+

1/8 lin-13/+

5/10 lin-13/+

1/1 lin-52 unc-32/ + +

0/4 lin-52/+

7/7 Ion-1/+

3/3 lin-52/+

0/13 lin-52/+

17/31 lin-52/+

2/11 lin-52/+

0/2 lin-52/+

13/16 lin-52/+

7/9 lin-52 / +

3/12 stP127/ +

9/9 sqv-3 / +

1/27 sqv-3 / +

14/16 lin-52/+

7/7 lin-11 unc-75/+ +

0/12 lin-11 unc-75/+ +

0/10 dpy-5 lin-53/+ +

8/8 dpy-5 lin-53/+ +

1/3 lin-53/+

11/19 lin-53/+
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lin-8; + + lin-54/unc-22 unc-30 +

lin-8; + lin-54 +/unc-30 + dpy-4

lin-54 + +/+ lev-1 unc-26; lin-15(n433)

+ dpl-I +/dpy-10O + unc-53; lin-15(n433)

+ dpl-1 +/rol-6 + unc-4; lin-15(n433)

dpl-1 + +/+ let-240 unc-4; lin-15(n433)

+ + lin-56/unc-85 dpy-10 +; lin-15(n744)

+ lin-56 +/dpy-10 + unc-53; lin-15(n744)

+ + lin-56/rol-6 unc-4 +; lin-15(n744)

Unc-22

Unc-30

Unc

Dpy

Lev

Dpy

Unc

Rol

Unc

Unc

Unc

Dpy

Dpy

Unc

Rol

Unc

19/19 lin-54/+

0/15 lin-54/+

2/11 lin-54/+

21/22 lin-54/+

0/25 lin-54/+

6/9 dpl-1/+

6/11 dpl-1/+

6/14 dpl-1/+

9/14 dpl-1/+

25/25 dpl-1/+

4/4 lin-56/+

0/6 lin-56/+

5/10 lin-56/+

6/11 lin-56/+

16/16 lin-56/+

0/9 lin-56/+

Deficiency heterozygotes

Gene Genotype of heterozygote Phenotype of heterozygote

dpl-1

dpy-10 dpl- 1(n2994) +/+ mnDf46 unc-4; lin-15(n433) wild-type

dpy-10 dpl-I (n2994) +/+ mnDf85 unc-4; lin-15(n433) wild-type

dpy-10 dpl- (n2994) +/+ mnDf67 unc-4; lin-15(n433) Muv

lin-52

unc-36 lin-52 +/+ nDf40 dpy-18; lin-15(n767) Muv

Three and four-factor crosses were performed as described previously (BRENNER
1974; FERGUSON and HORVITZ 1989). Deficiency heterozygotes were constructed,

and the vulval phenotype was scored. The presence of the deficiency was confirmed in
each animal based upon the segregation of 1/4 dead eggs or larvae.
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TABLE 4

Phenotypes of single and double mutants

Double mutant with Class A Double mutant with Class B

New Mutation Single mutant lin-8(n111) lin-15(n 767) lin-36(n 766) lin-15(n744)

Class A

lin-56(n2728) WT WT WT Muv Muv

Class B

lin-13(n770) WT Muv Muv WT WT

lin-52(n771) WT Muv Muv WT WT

lin-53(n833) WT Muv Muv WT WT

lin-54(n2231) WT Muv Muv WT WT

dpl-l(n2994) WT Muv Muv WT WT

Mutations in new genes were separated from the original mutation present in the

synMuv strain as described in MATERIALS AND METHODS. Double mutants carrying

mutations in these new genes and mutations in previously known class A or class B

genes were constructed as described in MATERIALS AND METHODS. WT, animals

had wild-type vulval morphology as observed using a dissecting microscope, i.e. 0%

Muv (n > 500). Muv, animals had a Muv phenotype of greater than 50% penetrance (n

> 100). lin-13, lin-52 and lin-54 animals displayed a weaker Muv phenotype in double

mutants with lin-8(n111) than with lin-15(n767). dpl-1 animals displayed a weaker Muv

phenotype in a lin-15(n433) background than in a lin-15(n767) background.
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TABLE 5

Maternal rescue of synMuv phenotype

Penetrance of the Muv phenotype in animals of a/a; b/b genotype

descended from animals of maternal genotype

Class A Class B a/+; b/+ a/+; b/b a/a; b/+ a/a; b/b b

mutation mutation

lin-8(n111) lin-9(n112) 72% (n=57)a 83% (n=141)a 100% (n=183) 100% (n=165)

lin-8(n111) lin-35(n745) 45% (n=65) a  N. D. 97% (n=149) 100% (n=209)

lin-8(n 111) lin-36(n766) 14% (n=93)a 23% (n=216)a 84% (n=300) 98% (n=207)

lin-8(n111) lin-37(n758) 31% (n=69)a 98% (n=133)a 85% (n=188) 100% (n=161)

lin-15(n433) lin-54(n2231) 9% (n=89) a  N. D. 21% (n=211) 99% (n=164)

lin-15(n767) lin-13(n770) 58% (n=64)a 97% (n=238)a  90% (n=220) 95% (n=230)

lin-15(n767) lin-52(n771) 83% (n=98)a 103% (n=225)a 90% (n=294) 100% (n=211)

lin-15(n767) lin-53(n833) 103% (n=76)a N. D. 100% (n=64) 100% (n=116)

lin-15(n433) dpl-1(n2994) 11% (n=95)a 75% (n=125) a  50% (n=298) 78% (n=234)

lin-38(n751) lin-9(n112) 81% (n=65)a 100% (n=146) 99% (n=189) a 100% (n=165)

lin-56(n2728) lin-15(n744) 93% (n=92)a 99% (n=200) N. D. 100% (n=163)

The contribution of class A and class B genes to the maternal rescue of the

synMuv phenotype of doubly homozygous animals descended from either singly or

doubly heterozygous mothers was determined by counting the number of Muv animals

of phenotype R, where R is the phenotype produced by the cis marker r. Doubly

heterozygous mothers were obtained by mating N2 males with marked doubly

homozygous hermaphrodites. Singly heterozygous mothers were obtained by mating

males homozygous for one of the synMuv mutations with marked doubly homozygous

hermaphrodites. A strain homozygous for lin-35 was obtained by the general procedure

used for the isolation of strains homozygous for single synMuv mutations. dpy-14 was

used to balance lin-35. The lin-8; lin-9 strain was marked with Ion-1. The lin-35; lin-8

strain was marked with unc-13. The lin-8; lin-36 strain was marked with unc-32. The

lin-8; lin-37 strain was marked with Ion-I. The lin-38; lin-9 strain was marked with

unc-52. The lin-13; lin-15(n767) strain was marked with unc-93 or unc-32. The lin-52;
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lin-15(n767) strain was marked with sma-3. The lin-53; lin-15(n767) strain was marked

with dpy-5 or lin-11. The lin-54; lin-15(n433) strain was marked with dpy-20. The dpl-1;

lin-15(n433) strain was marked with rol-6. The lin-56; lin-15(n744) strain was marked

with rol-6.

aThese data were obtained by estimating the penetrance and by assuming that

the number of doubly homozygous animals were 1/4 of the R progeny.

bThese data are from Table 1 of FERGUSON and HORVITZ (1989).
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TABLE 6

SynMuv genes and alleles

Gene No. of Mutant alleles Probable null phenotype (evidence)
alleles

Class A

n11i, n2376, n2378, n2403,
lin-8 9 n2724, n2731, n2738, n2739,

n2741

n433, n749, n767, n2375, n2725,
lin-15A 13 n2726, n2733, n2734, n2735,

n2737, n2742, sy211, sy212

lin-38 4 n751, n761, n2402, n2727

lin-56 1 n2728

lin-9 3 n112, n942, n943

lin-13

lin-15B

lin-35

lin-36

lin-37

lin-52

lin-53

lin-54

dpl-I

n770, n2238, n2981, n2984,
8 n2985, n2988, (n387 and

possibly n388 at 15°C d)

n374, n743, n744, n2230, n2233,

14 n2241, n2244, n2245, n2980,
n2983, n2987, n2989, n2991,
n2993

n373, n745, n2232, n2236,
n2239, n2242, n2977, n2996

n747, n750, n766, n772, n2235,
13 n2240, n2243, n3090, n3093,

n3094, n3095, n3096, n3097

2 n758, n2234

2 n771, n3718

3 n833, n2978, n33681

2 n2231, n2990

4 n2994, n3316, n3643, zu355

cc566, cc567, cc587, sy272 and
tam-1n 18 14 others

let-418 3 ar113, ar114, s1617

SynMuva (no. alleles)

SynMuv (molecular data b, no. alleles)

Unknown

Unknown

SynMuv, sterile (molecular datac
non-complementation screend)

SynMuv, sterile, maternal-effect lethala
(molecular datae)

SynMuv (molecular data b , no. alleles)

SynMuv (molecular dataf, no. alleles)

SynMuv (molecular datag,

non-complementation screeng)

SynMuv (molecular datah)

SynMuv, sterile (molecular data')

SynMuv, sterile, protruding vulva
(molecular data, n833 and n2978 are
dominant negativek)

Unknown

SynMuv, sterile, maternal-effect lethal
(phenotype enhanced by Df, molecular
data', zu355 isolated in maternal-effect
lethal screenm)

synMuv

(molecular datao, no. alleles0,
phenotype not enhanced by Dfo)

SynMuv, sterile, maternal-effect lethal,
everted vulva (molecular dataP,

phenotype not enhanced by Df")
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SynMuv, sterile, maternal-effect
efl-1 3 n3318, n3639, sel lethalq(molecular data', sel isolated in

maternal-effect lethal screenm)

SynMuv, protruding vulva, gonad
hda-1 1 e1795r development abnormal and sterile

(molecular datas)

SynMuv t u, sterilet' v, protruding vulvatv,
mep-1 1 q660 larval lethalv (molecular datatv)

Mutant alleles not described in the text are described by HORVITZ and

SULSTON (1980), FERGUSON and HORVITZ (1985, 1989), DESAI et al. (1988),

HUANG et al. (1994), THOMAS and HORVITZ (1999), HSIEH et al. (1999), VON

ZELEWSKY et al. (2000), CEOL and HORVITZ (2001), PAGE et al. (2001). Probable

null phenotype is given at 20°; see Table 1. Under evidence, no. alleles indicates that a

high number of mutations were isolated in the screens described in the text, consistent

with the hypothesis that some of these alleles are null alleles.

aSee FERGUSON and HORVITZ (1985) for possibly contradictory deficiency

data.
bCLARK et al. (1994), HUANG et al. (1994).

CBEITEL et al. (2000).

dFERGUSON and HORVITZ (1989).

eMELE'NDEZ and GREENWALD (2000).

fLU and HORVITZ (1998).

9THOMAS and HORVITZ (1999).

hLU (1999).

'Text.

jX. LU and H. R. H. (personal communication).

kText and LU and HORVITZ (1998).

'CEOL and HORVITZ (2001).

mPAGE et al. (2001).
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nThis gene does not act as a class B synMuv in double mutants with lin-8, but

does with lin-15A and lin-38 (HSIEH et al. 1999). Such an interaction had not been

previously observed for the synMuv genes, but lin-8(n 111) synMuv double mutants

have occasionally been observed to be weaker than corresponding synMuv double

mutants carrying other class A mutations. (THOMAS and HORVITZ 1999).

OHSIEH et al. (1999).

PVON ZELEWSKY et al. (2000).

qPAGE et al. (2001), C. J. CEOL and H. R. HORVITZ (unpublished results).

rhda-1 is also known as gon-10 (DUFOURCQ et al. 2002). The hda-1(e1795)

mutation alone causes a weakly penetrant Muv phenotype (DUFOURCQ et al. 2002),

but in combination with the class A mutation lin-15(n767) this phenotype is fully

penetrant and displays stronger expressivity (C. J. CEOL, E. C. ANDERSEN and H. R.

HORVITZ, unpublished results).

SDUFOURCQ et al. (2002).

t(C. J. CEOL, F. STEGMEIER, M. M. HARRISON and H. R. HORVITZ,

unpublished results).

UUNHAVAITHAYA et al. (2002).

VBELFIORE et al. (2002).
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Figure legends

Figure 1. Partial genetic map of C. elegans showing the locations of newly identified or

newly characterized synMuv genes and the markers that were used to position these

genes on the map. New synMuv genes are shown above the line representing the

linkage group; marker genes are shown below the line. Deficiencies are drawn below

the line and indicate which genes are deleted.

Figure 2. Molecular cloning of lin-52. The top panel shows the genetic map location of

lin-52 on linkage group Ill. The dashed portion of nDf40 indicates that the left endpoint

of this deficiency is not precisely known but maps between emb-30 and sqv-3. The

middle and bottom panels show the rescuing cosmids ZK630 and C26C12 and

subclones assayed for lin-52 rescue. The restriction sites used to generate subclones

are indicated. "+", a majority of transgenic lines were rescued in the first generation of

establishing the line. When rescue was observed, typically greater than 70% of

transgenic animals in a line were rescued in this generation. Arrows indicate the

direction of transcription. Coding sequences of predicted genes are shaded. An

oligonucleotide encoding an in-frame stop codon was inserted into (arrowhead) and

subsequently removed from (arrowhead with "X") the ZK632.13 predicted gene.

Figure 3. lin-52 gene structure and predicted protein sequence

(A) lin-52 gene structure as derived from cDNA and genomic sequences. Exons

(closed boxes), 5' and 3' untranslated regions (open boxes), predicted translational start

and stop codons, SL2 splice leader sequence and polyA tail are indicated. Arrows

indicate the locations of the n771 and n3718 mutations.

(B) Alignment of the predicted LIN-52, human LOC91750 and Drosophila CG15929

proteins. Solid boxes indicate identities and shaded boxes indicate similarities.

Arrowheads indicate the positions of lin-52 mutations.
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Abstract

Sexual behaviors are evoked by a wide variety of sensory cues and generated by

specialized sensory neurons that sense mate-derived signals. Male sexual behaviors in

C. elegans are driven by long- and short-range chemical and contact-based signals

from a potential mate. 21 "B-type" male-specific neurons control several aspects of

sexual sensory behaviors. CEM neurons modulate chemotaxis to sex-pheromones,

RnB ray neurons are required for response to contact with the hermaphrodite, and the

HOB hook neuron is essential for vulva location. These B-type neurons share similar

ciliary ultrastructure and express a unique repertoire of sensory molecules, herein

referred to as the autosomal dominant polycystic kidney disease (ADPKD) gene battery.

RFX transcription factors are master regulators of ciliogenesis in nematodes,

Drosophila, zebrafish, and mammals. The molecular mechanisms that program B-type

ciliated sensory neurons for sexually dimorphic functions or any specialized ciliated cell

type are not well understood. Here we identify a mutation in the daf-19 RFX

transcription factor that destroys ADPKD gene battery expression and male mating

functions of B-type neurons without affecting expression of ciliogenic genes or cilia

formation. The daf-19(n4132) allele specifically disrupts daf-19m (for function in mating

behavior), an isoform expressed solely in B-type neurons and regulated by distinct

promoter and enhancer elements. Hence a single gene acts as a master regulator of

both cilia development and adult male sexual behaviors.
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Introduction

Sexual behaviors are genetically programmed. Human courtship, mate

selection, and reproductive behaviors are presumably under polygenic controls. By

contrast, animal models demonstrate that a single gene mutation may have profound

consequences on sexual behaviors (reviewed by (1)). In mice, the transient receptor

potential channel TRPC2 is required in males for sex discrimination and aggression and

in females for maternal aggression and lactation behavior (2, 3). In Drosophila, the

fruitless transcription factor controls sexually dimorphic behaviors via unidentified

downstream target genes. In the nematode Caenorhabditis elegans, the TRP

polycystin receptor-channel unit LOV-1 and PKD-2 directs three male sexual behaviors:

chemotaxis to females of a closely related species, response to contact with a potential

mate, and vulva location (4-6).

C. elegans male mating behavior involves a sequential set of sensory inputs and

motor outputs. Long and short-range cues from the adult hermaphrodite attract the

adult male, a behavior that requires ciliated sensory neurons (4, 7, 8). Once in close

proximity to a mate, the male uses distinct sets of sensory neurons in the tail to

respond, locate the vulva, insert his copulatory spicules, and transfer sperm into the

uterus (9). This complex copulatory ritual is wired into a simple nervous system,

comprised of 294 core and 89 male-specific neurons, thus providing a simple animal

model to study the cellular, genetic, and molecular basis of sexual behaviors.

More than half of male-specific nervous system is comprised of ciliated neurons

(10). Ciliogenic mutants are defective in multiple sensory behaviors, including male

mating behaviors (5, 7, 8, 11, 12). A subset of 21 male-specific ciliated neurons may be
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defined by their unique ultrastructural anatomy, functional properties, and gene

expression profiles. Four CEM cephalic, one HOB hook, and 16 ray neurons (RnB

where n= rays 1 through 9, but not ray 6) possess B-type cilia that are exposed to the

environment and lie adjacent to A-type cilia embedded in the cuticle (10, 13, 14). The

CEMs, HOB, and RnB neurons are implicated in chemotaxis to mates, response, and

vulva location, respectively (4, 5, 8, 9). These male-specific neurons express the

autosomal dominant polycystic kidney disease (ADPKD) gene homologs lov-1 and

pkd-2, the kinesin-like protein gene klp-6, and four co-expressed with polycystin (cwp)

genes, herein called the "ADPKD gene battery" (5, 6, 15, 16). Only ray R6B does not

possess an exposed cilium or express the ADPKD gene battery. Consistent with

sensory function in RnB and HOB neurons, lov-1, pkd-2, and klp-6 mutant males are

response (Rsp) and location of vulva (Lov) defective.

Six IL2 core neurons possess B-type sensory cilia and express klp-6, yet are

among the few C. elegans neurons with no assigned function (11). We collectively refer

to IL2, CEM, HOB, and RnB (except 6) sensory cells as "B-type neurons." Although

B-type neurons have several features in common, they are also individually specified

via distinct lineage-driven mechanisms and also express unique repertoires of

neurotransmitters and neuropeptides (17-23). This raises the question of how the

shared traits of the B-type neurons are patterned and how the ADPKD gene battery is

regulated to generate sexual behaviors.

Previous studies showed that a null allele of daf-19 disrupted pkd-2 expression

(17). daf-19 encodes an evolutionarily conserved regulatory factor X (RFX)

transcription factor that regulates X-box promoter element containing genes, which are
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essential for ciliogenesis in core and sex-specific neurons (25-27). Accordingly, daf-19

null mutants fail to express many ciliogenic genes, lack all cilia, and are defective in

many sensory behaviors (11, 24-27). Here, we identify a cis-regulatory mutation in the

daf-19 locus that produces Rsp, Lov, and ADPKD gene battery expression defects

without affecting ciliogenesis. daf-19(n4132) disrupts daf-19m, a daf-19 isoform

required for male mating and that specifically acts in B-type ciliated neurons. These

studies reveal how the complex genomic architecture of an RFX transcription factor

enables a single gene to program cilia development in the core and sex-specific

nervous system and post-developmental sensory functions of the adult male nervous

system.
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Results

The n4132 mutation disrupts expression of the ADPKD genes and male sexual

behaviors

To study the mechanisms by which sexually dimorphic behaviors are genetically

programmed, we characterized the mutant n4132, which was isolated based on the loss

of Ppkd-2::GFP expression in male-specific CEM head neurons. We find that n4132 is

also required for expression of the ADPKD gene battery in head and tail neurons.

n4132 mutant males do not express lov-1, pkd-2, or klp-6 GFP reporters in the

male-specific CEMs, HOB and RnBs (Fig. 1D, E, H, I, Table 1). n4132 also disrupts

KLP-6::GFP expression in the core IL2 neurons of males and hermaphrodites at all

developmental stages (Table 1). Four cwp (co-expressed with polycystin) genes share

an identical expression pattern with lov-1 and pkd-2 (15). A full length CWP-1::GFP

translational fusion is also expressed in IL2 neurons (Table 1). n4132 completely

abolishes CWP-1::GFP expression (Table 1). n4132 disrupts expression of the

neuropeptide nlp-8 GFP reporter in HOB while leaving expression in non-B-type

neurons intact (Table 1). The TRPV channel osm-9 is expressed in B-type neurons as

well as other ciliated neuron types including the amphids and phasmids (43, 44). In

n4132 animals, osm-9 expression is disrupted only in B-type neurons (Fig. 1L, M, Table

1).

To determine if n4132 broadly affects gene expression in ciliated sensory

neurons, we examined a battery of GFP reporters. n4132 does not affect ciliogenic

gene expression of osm-5, osm-6, bbs-1, bbs-2, bbs-5, and daf-10 in B-type neurons
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and other sensory neurons (Fig. 1R, S, Table 1). The odorant receptor odr-10 and

guanylate cyclase (gcy-5 and gcy-32) genes are not affected by the n4132 mutation

(data not shown). We conclude that the n4132 mutation specifically disrupts expression

of sensory signaling genes in B type neurons (pkd-2, lov-1, klp-6, cwp-1, nlp-8 and

osm-9) without affecting genes required for ciliogenesis or acting in other sensory

neurons.

Like pkd-2, lov-1, and klp-6 mutants, n4132 males exhibit Rsp and Lov defects

(Fig. 2A). The response efficiency of n4132 males is not significantly different from the

lov-1; pkd-2 double mutant (approximately 35% of mutant males respond to contact with

a hermaphrodite compared to 95% of wild-type males, Fig. 2A). However, n4132 males

exhibit significantly more severe Lov defects than lov-1; pkd-2 mutants (Fig. 2A). n4132

mutant animals are able to sire cross progeny in 24 hour mating efficiency assays;

however, their mating efficiency is lower than lov-1; pkd-2 double mutant males (Fig.

2B). We conclude that n4132 affects polycystin-dependent and polycystin-independent

pathways required for C. elegans male mating.

n4132 is a hypomorphic allele of daf-19

We mapped n4132 to a small region near the daf-19 locus on chromosome II (Fig.

3A). Rescue of the PKD-2::GFP expression, Rsp, and Lov defects was obtained by

transforming n4132 animals with cosmid F33H1 or ORF F33H1.1, which contains the

RFX transcription factor gene daf-19 (Fig. 3A). To identify the molecular lesion in

daf-19, we sequenced n4132 genomic DNA including 3 kb upstream and 1 kb

downstream non-coding regions. The n4132 allele is a 504 bp deletion within the fifth
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intron of the daf-19 genomic clone (Fig. 3A). In contrast, the daf-19(m86) null reference

allele introduces a stop codon in exon 7 before all functionally conserved domains,

including the DNA binding domain (DBD) and DNA dimerization (DIM) domain (Fig. 3A)

(27).

daf-19(m86) null animals resemble n4132 mutants in that pkd-2::gfp expression in

B-type neurons and nlp-8::gfp expression in HOB are abolished ((17); data not shown).

However, n4132 is distinct from other daf-19 alleles (m86, sa190, sa232), which do not

express ciliogenic genes like osm-6 and do not form cilia. The daf-19 alleles m86,

sa190 and sa232 also result in constitutive formation of dauer larvae (Daf-c) (27). By

contrast, n4132 mutants are not Daf-c (data not shown). n4132 amphid and phasmid

cilia are also intact, as judged by lipophilic fluorescent dye uptake (200/200 animals

normal in dye-filling assays) and visualization of an OSM-6::GFP reporter in amphid,

phasmid, and male-specific sensory cilia (Fig. 1 compare panels P, Q with R, S).

daf-19(m86) but not n4132 abolishes the expression of ciliogenic genes that contain

X-box promoter elements, including osm-6, osm-5, and bbs-2 (Table 1, (27, 28)).

To genetically confirm that n4132 is an allele of daf-19, we performed

complementation tests between n4132 and the daf-19 Daf-c alleles sa190, sa232, and

m86 (Table 2 and data not shown). The daf-19 alleles m86, sal90, and sa232 failed to

complement n4132 PKD-2::GFP expression defects (Table 2). Conversely, n4132

complements the Daf-c phenotypes of m86, sa190, and sa232 (Table 2). We conclude

that the n4132 mutation disrupts a particular aspect of daf-19 function by affecting gene

expression specifically in ADPKD sensory neurons, but not acting globally in all ciliated

cell types.
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n4132 specifically disrupts the daf-19m isoform

The predicted daf-19 gene encodes two isoforms, DAF-19A and DAF-19B, with

alternative splicing resulting in an additional exon in daf-19b (Fig. 3A). We identified a

third cDNA isoform by RT-PCR using mRNA from mixed-stage him-5 animals (Fig. 3C)

(accession no. EU812221). We refer to this new isoform as daf-19m for its apparent

function in regulating mating behavior and ADPKD gene expression. daf-19m starts with

a novel exon containing a 166 bp 5' UTR and 11 amino acid (aa) coding region not

present in other isoforms, followed by exon 6 and the rest of the DNA sequence shared

between all daf-19 isoforms (Fig. 3C). All three daf-19 isoforms contain the same DNA

binding and DNA dimerization domains. daf-19m encodes a predicted 622 aa protein

(Fig. 3C). In the daf-19(n4132) background, the daf-19m but not daf-19a or daf-19b

cDNA is absent (Fig. 3C). We conclude that daf-19(n4132) specifically disrupts

daf-19m, a specific isoform of daf-19 required for ADPKD gene battery expression and

male mating behaviors.

To determine how the n4132 molecular lesion affects daf-19m, we defined a

minimal sized fragment capable of phenotypic rescue. PCR2, a PCR amplicon that

lacks the predicted promoter and exons 1 to 2 of daf-19a/b, fully rescues the n4132

PKD-2::GFP expression defects in the head (CEMs) and tail (HOB and RnB) as well as

Rsp and Lov defects (Fig. 3B). A shorter fragment (PCR3) lacking all coding and

non-coding regions of daf-19a/b to intron 5, rescues PKD-2::GFP expression in tail but

not head neurons. Interestingly, PCR3 rescues n4132 Lov but not Rsp defects,

suggesting that expression of the ADPKD gene battery in both the head CEM and tail
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RnB neurons is necessary for response behavior. Introducing the n4132 molecular

lesion into PCR3 to generate PCR4 does not rescue any n4132 defects, indicating that

those deleted elements are required to activate PKD-2::GFP expression. RFX type

transcription factors can activate gene expression without a DNA dimerization (DIM)

domain (27, 29). A daf-19b genomic clone lacking its DIM domain rescues ciliogenesis

in daf-19(m86) null animals (27). Likewise, we find that a daf-19m genomic clone

without a DIM domain rescues PKD-2::GFP expression in daf-19(n4132) animals (data

not shown), indicating that DIM domain plays a regulatory but not activating function,

and that this phenomenon conserved among daf-19 isoforms.

daf-19m is expressed in ADPKD neurons via distinct promoter and enhancer

elements

Why does the 13 kb daf-19 PCR2 fragment rescue PKD-2::GFP expression in both

head and tail neurons, while the 11 kb daf-19 PCR3 fragment rescues only in tail

neurons? One possibility is that PCR2 and PCR3 both contain a regulatory element

that drives daf-19m expression in the HOB and RnB tail neurons, but only PCR3

possesses an enhancer for CEM head neuron expression. We therefore examined

daf-19m expression patterns by fusing various intronic regions of the daf-19 genomic

locus to a GFP reporter (Fig. 4). We fused the putative daf-19m promoter, a 1 kb intron

5 fragment, to GFP to construct Pdaf-19m::GFP1 (Fig. 4B). Pdaf-19m::GFP1 is

specifically expressed in the male tail HOB and RnB neurons but not male-specific CEM

head neurons nor in any other ciliated neurons. This result is consistent with PCR3

rescue of PKD-2::GFP expression in tail but not head neurons.
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To identify the CEM enhancer of daf-19m, we fused 2 kb of the 5' region of PCR2

to Pdaf-19m::GFP1 and observed GFP expression in the male-specific CEM head

neurons and HOB and RnB tail neurons as well as the IL2 head neurons in wild-type

and n4132 animals (data not shown). These results are consistent with a role for

daf-19m in the regulation of klp-6 and cwp-1 expression in the IL2s, and also indicate

that daf-19m does not regulate its own expression. We conclude that this 2 kb fragment

of PCR2 contains the daf-19m CEM/IL2 enhancer element.

Bioinformatics is an effective method to study gene regulation. The genomes of

three Caenorhabditis species (elegans, briggsae, and remanei) contain daf-19, lov-1,

pkd-2 and klp-6. Interspecific comparisons of non-coding regions enable identification

of cis-acting regulatory elements that control gene expression and that are evolutionarily

constrained. By comparing the 2 kb CEM/IL2 enhancer region of the daf-19 genomic

sequence of C. elegans, C. briggsae and C. remanei, we identified a 22 bp conserved

sequence (Fig. 4A). Adding this 22 bp element to Pdaf-19m::GFP1 (generating

Pdaf-19m::GFP3) drives GFP expression in the male-specific CEM, HOB and RnB and

core IL2 ciliated neurons (Fig. 4 C, D, G). We conclude that this 22 bp sequence acts

as the daf-19m CEM/IL2 enhancer element. daf-19(n4132) animals have a mutation in

the HOB/RnB promoter region but retain the CEM/IL2 enhancer; however, n4132

animals do not express the ADPKD genes in both head and tail neurons. This data

indicates that the CEM/IL2 enhancer depends upon the HOB/RnB promoter.

To identify the essential HOB/RnB promoter element, the 504 bp n4132 molecular

lesion was introduced to Pdaf-19m::GFP1, generating Pdaf-19 m::GFP2. This lesion

abolished HOB and RnB expression (Pdaf-19m::GFP2 in Fig. 4B). To define the
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HOB/RnB enhancer, we compared this 504 bp region between C. elegans, C. briggsae

and C. remanei and identified a 13 bp conserved element (Fig. 4A) that is essential for

HOB and RnB expression of daf-19m (Pdaf-19m::GFP4 in Fig. 4B). The CEM/IL2

enhancer is also dependent on this 13 bp promoter element (Pdaf-19m::GFP5 in Fig.

4E, F, H). In summary, we identified two elements that confer precise spatial regulation

to daf-19.

Discussion

In this study, we identify the daf-19m isoform that directs mating functions of the

B-type neurons by spatial patterning of the ADPKD gene battery and show that the

sexual behaviors of response and vulva location require this spatial organization.

Expression of the daf-19m isoform is spatially regulated within B-type neurons by two

hierarchal cis regulatory elements. One promoter activates daf-19m expression in RnB

and HOB neurons after ray and hook sensilla development. A distal enhancer causes

the tail promoter to drive daf-19m expression in IL2 and CEM head neurons. By

coordinating the expression of the ADPKD gene battery in the head and tail, daf-19m

acts to pattern multiple behaviors required for sexual reproduction.

Cilia are highly specialized for functions in signal transduction, development, or

motility (30). On the other hand, all cilia and flagella are built by the evolutionarily

conserved intraflagellar transport (IFT) machinery, which was first identified in the alga

Chlamydomonas (31). RFX transcription factors perform an evolutionarily conserved

role in ciliogenesis (27, 32-36). Interestingly, the Chlamydomonas genome does not

encode a DAF-19 RFX transcription factor. By contrast, ciliogenesis in multicellular
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animals such as C. elegans, Drosophila, zebrafish, and mammals depends on RFX

transcription factors, hinting at a role in ciliary specialization. This provides the first

evidence that a specific RFX isoform, daf-19m, governs sensory perception

("sensorigenesis") but not ciliogenesis. C. elegans diversifies gene function by second

promoters that generate spatial-temporal specific isoforms (37). DAF-1 9M shares the

conserved DBD and DIM domains with known DAF-19 isoforms, suggesting that homo-

or hetero-dimer formation may transcriptionally activate different sets of genes

according to cell-type specific functional requirements. Promoters of the ADPKD gene

battery do not contain X-boxes but do share a short motif (J.W. and M.M.B., in

preparation). Hence, it is unlikely that a canonical RFX transcription factor directly

activates the ADPKD gene battery. The identity of daf-19m direct targets and ADPKD

gene battery direct regulators will reveal how ciliated sensory neurons are molecularly

programmed to generate the behavioral complexity needed for sexual reproduction in

C. elegans.
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Materials and Methods

Strains, plasmids and PCR products. Growth and culture of C. elegans strains were

carried out as described (38). All strains were grown at 20'C unless otherwise stated.

Strains used for this study are listed in Supplemental Table ST1. daf-19 genomic DNA

fragments were generated by PCR and described in supplemental table ST2. cwp-1

and osm-9 reporters were made by PCR-SOE (Splice by overlap extension)(39), as

described in Supplemental Table ST2.

Determining gene expression pattern. All expression analysis was carried out using

transgenic GFP reporters. daf-19(n4132)(11); pha-I(e2123ts)(lll); him-5(e1490), myls4

[PKD-2::GFP+ccGFP] worms were transformed by injection of daf-19 DNA from PCR or

plasmids. n4132 rescue was scored by visualizing the integrated myls4 PKD-2::GFP

transgene.

Behavioral assays. Response and Location of vulva efficiency assays were carried

out according to (9). Mating efficiency assays were carried out as described by (40).

Mapping of n4132. Three-factor mapping placed n4132 on chromosome II to the right

of unc-4. Deficiency strains were used to map n4132 to the 1.99-2.35 region. mnDf83

and mnDf29 failed to complement n4132, while mnDf7l, mnDf25, mnDf28, mnDfl2,

mnDf22 and mnDf27complemented n4132. PCR amplified genomic DNA was used in

n4132 rescue experiments. n4132 genomic DNA including 2 kb upstream and 1 kb
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down stream of daf-19 gene was sequenced. A deletion flanking

"CACAAGCCACAAGCTA ...... GCCACCGCCGAGCCA" in the fifth intron of daf-19b was

identified in n4132.

daf-19m cDNA isolation and functional confirmation. The cDNA corresponding to

daf-19m was generated from oligo dT primed first-strand cDNA by using SuperScript III

First-Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, CA), followed by

amplification with 5' primer JWatg6 5' cctgtcgacatgagaagagtgtacgaaacg 3' and 3' primer

JWc4 5' cttaccggtgacctgcaggatgatgacg a 3'. The resulting cDNA was subcloned into the

Sail and Agel sites in pPD95.75. The 2.4 kb unc-119 promoter (41) flanked by Pstl sites

was inserted into this construct. daf-19m cDNA function was confirmed by transforming

the resulting construct to n4132 mutant for rescuing PKD-2::GFP expression (data not

shown).

The 5' primer used to amplify daf-19m was determined by using primers started

at all possible start codon in the shortest rescuing daf-19 genomic fragments, paired

with 3' primer JWc4, to amply genomic DNA of daf-19 and testing function by

expressing with unc-119 promoter. The six primers were used: JWatgl, 5'

aatgtcgacatgcgcaccactgagcgttc 3'; JWatg2 5'ccggtcgacatggcaagtagcaatgaatttatc 3';

JWatg3, 5' ccagtcgacatgaatagtcgctgg gtgct 3'; JWatg4, 5'

cccgtcgacatgtacaggttcgttagagga 3'; JWatg5, 5' caagtcgacatggctttttttg gcgttttgc 3' and

JWatg6, 5' cctgtcgacatgagaagagtgtacgaaacg 3'

Bioinformatics. Family Relationship II (42) was used to identify conserved DNA
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sequences among Caenorhabditis species.

Microscopy and Image Analysis. Live worms were mounted on 2% agarose pads

with 10 mM levamisol as described previously (12). Fluorescence images were

obtained with an Axioplan 2 (Carl Zeiss Microlmaging [Oberkochen, Germany])

microscope equipped with a digital CCD camera (Photometrics Cascade 512B; Roper

Scientific), captured with Metamorph software (Universal Imaging [West Chester, PA]),

and then deconvolved with AutoDeblur 1.4.1 (Media Cybernetics, Inc.). Photoshop

(Adobe) was used for image rotation, cropping, brightness/contrast.
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Table 1. Comparison of reporter expression patterns in B-type neurons of

wild-type and daf-19(n4132) animals.

Reporter Expression pattern Genotype (% worm with reporter expression )

Hermaphrodite

LOV-1::GFP

PKD-2::GFP

KLP-6::GFP IL2

CWP-1::GFP

Pnlp-8::GFP

Posm-9::GFP

Posm-5::GFP

OSM-6::GFP

IL2

Amphid&phasmid

Male WT daf-19(n4132)

CEM

HOB

RnB

CEM

HOB

RnB

IL2

CEM

HOB

RnB

IL2

CEM

HOB

RnB

HOB

IL2

CEM

HOB

RnB

Amphid

All ciliated sensory neurons

All ciliated sensory neurons

n4132 disrupts expression of genes required for ciliated B-type neuron sensory function

but not cilia development. In male-specific B-type neurons, n4132 disrupts expression

of the ADPKD gene battery, which includes lov-1, pkd-2, klp-6, and cwp-1. In n4132

males, osm-9 expression is abolished in CEMs and reduced in HOB and RnB tail
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100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

96
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98

96

96

100

100

0

0

0

0

0

0

24

0

0

0

2

0

0

0

0

0

0

0

99

0

0

47

40

98

100

100

& phasmid

IL2
Amphid&phasmid



neurons. In the IL2 core B-type neurons, n4132 also affects klp-6, cwp-1, and osm-9

expression. n4132 abolishes nip-8 expression in HOB but not in other core neurons.

n4132 does not affect the expression of osm-9 in amphids or phasmids, the sensory

genes odr-10, gcy-5, and gcy-32, or the expression of ciliogenesis genes osm-6,

osm-5. n4132 animals are also not defective in expression of the ciliary structural

genes daf-10, bbs-1, or bbs-2 (not shown). Numbers refer to the percentage of neurons

expressing the reporter. For each genotype, at least 20 animals (or 80 CEM, 120 IL2,

20 HOB, and 320 RnB neurons) were scored.
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Table 2. Complementation tests between n4132 and other daf-19 alleles.

PKD-2::GFP
genotype expression Daf-C

n4132/n4132 - non Daf-C

m86/m86 - Daf-C

n4132/m86 - non Daf-C

n4132/sa 190 - non Daf-C

n4132/sa232 - non Daf-C

daf-19(n4132) does not express PKD-2::GFP and does not form dauers constitutively

(non Daf-C), while daf-19 alleles m86, sa190, sa232 alleles do not express PKD-2::GFP

and are Daf-C. n4132 complements the Daf-C but not PKD-2::GFP expression defect,

indicating that the n4132 mutation is hypomorphic allele of daf-19.
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Supplemental Table 1. List of transgenic and mutant strains used in this study.

Strain Description Ref

MT13057n/s133 I; daf-19(n4132) II; him-5(e1467ts) V This study

PT1727 daf-19(n4132) II; him-5(e1490) V This study

PT1725 daf-19(n4132) II; pha-1(e2123ts) III; him-5(e1490) V This study

PT1726 daf-19(n4132) II; pha-1(e2123ts) 11I; myls4[PKD-2::GFP + ccGFP] This study
him-5(e1490) V

PT1770 daf-19(n4132) II; pha-1(e2123ts) 11I; him-5(e1490) V; syEx30l[Iov-1::GFP1 + This study
pBX1] This study

PT1 771 daf-19(n4132) II; pha-1(e2123) III; him-5(e1490) V; myEx256[Posm-5::gfp + This study
pBX1]

PT1 772 daf-19(n4132) II; pha-1(e2123) III; him-5(e1490) V; myEx4[DAF-10::GFP + This study
pBX1] This study

PT1773 daf-19(n4132) I; him-5(e1490) V, nxExl[Pbbs-l::GFP + dpy-5(+)] This study

PT1774 daf-19(n4132) II; him-5(e1490) V; nxEx2[Pbbs-2::GFP + dpy-5(+)] This study

PT1734 daf-19(n4132) II; him-5(e1490), mnlsl7[OSM-6::gfp + unc-36(+)] V This study

PT1731 daf-19(m86) II; him-5(e1490) V This study

PT1777 daf-19 (n4132) II;him-5(e1490) V; rtEx277 [Pnlp-8::GFP + lin-15(+)] This study

PT1 778 daf-19 (n4132) 11; chls1200[ceh-26::GFP + dpy-20(+)] Ill; him-5(e1490)V; This study
Is[ceh-26::GFP]

PT1 750 daf-19(n4132) II; pha-l(e2123ts) III; myls4 him-5(e1490) V; myEx633[PCRI + This study
PT1750 BX1]This study

pBXI]

PT1 780 daf-19(n4132) II; pha-1(e2123ts)III; myls4 him-5(e490), mys4V; myEx635[PCR3 +This study
pBX]

PT1 781 daf-19(n4132) II; pha-1(e2123ts) ///lll; mys4 him-5(e40), 490) V; myEx636[PCR4 + This study

pBX']

PT1 783 pha-(e2(e2123ts)123) ; ; myls4 him-5(ee490) V; myEx637[Pdaf-19m::GFPI + pBX1] This study

PT1784 pha-l(e2123) ;him-5(e 490) V; myEx638[Pdaf-19m::GFP2 +pBXI] This study

PT1785 pha-1(e2123) III; him-5(e1490) V; myEx639[Pdaf-19m::GFP3 + pBX] This study

PT1786 pha-1(e2123) 11I; him-5(e1490) V; myEx640[Pdaf-19m::GFP4 + pBX1] This study

PT1787 pha-1(e2123) 11I; him-5(e1490) V; myEx641[Pdaf-19m::GFP5 + pBX1] This study

PT1764 him-5(e212490) V; him-5(e myEx642[Posm-9::GFP +ccGFP] This study

PT1766 daf-19(n4132) ; him-5(e140)490) V myEx642[Posm-9::GFP + ccGFP] This study

PT1768 daf-19(m86)n4132) II; him-5(e1490) V; myEx642[Posm-9::GFP + ccGFP] This study

PT1 788 daf-19(n4132)11; him-5(e1490) V; lin-15(n765) X; adExl262[gcy-5::GFP + This study
lin-15(+)]

PT1 789 daf-19(n4132) II; him-5(e1490) V; lin-15(n765) X; adExl295[gcy-32::GFP + This study
lin-15(+)]
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General
PT658

PS622

PS3149

CB444

PT2

PT26

MX1

MX2

DR103

CB4077

SP354

Sp429

SP540

SP542

MB5

JT190

JT6824

DR431

PS3380

TB1225

DA1262

DA1295

strains
lov-1(sy582) II; pkd-2(sy606) IV; him-5(e1490) V

dpy-17(e 164) III; him-5(e 1490) V

pha-1(e2123ts) III; him-5(e1490) V; syEx30l[lov-l::GFP1 + pBX1]

unc-52(e444) II

pha-1(e2123ts) III; him-5(e 1490) V; myEx256(Posm-5::gfp)

pha-1(e2123ts) III; him-5(e1490) V; myEx4[pBX1 + DAF-10::GFP]

dpy-5(e907) I; nxExl [Pbbs-1::GFP + dpy-5(+)]

dpy-5(e907) I; nxEx2[Pbbs-2::GFP + dpy-5(+)]

dpy-10(e128) unc-4(e120) II

eDf21 /mnCl [dpy-10(el28) unc-52(e444)] II

unc-4(e120) mnDf7l /mnC1 [dpy-10(el28) unc-52(e444)] II

mnDf25 /mnCl [dpy-10(e128) unc-52(e444)] II

mnDf27 / mnCl [dpy-10(e 128) unc-52(e444)] II

mnDf29 /mnC1 [dpy-10(e128) unc-52(e444)] II

him-5(e1490) V; lin-15(n765ts) X; rtEx277[Pnlp-8::GFP + lin-15(+)]

daf-19(sal90ts) II

daf-19(sa232ts) II

daf-19(m86) /mnC1 [dpy-10(el28) unc-52(e444)] II

him-5(e 1490), mnlsl 7[OSM-6::gfp+unc-36(+)] V

chlsl200[ceh-26::GFP + dpy-20(+)]I11; him-5(e1490) V

lin-15(n765) X; adExl262[gcy-5::GFP + lin-15(+)]

lin-15(n765) X; adEx1295[gcy-32::GFP + lin-15(+)]
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Barr 1999

Brenner 1974

Barr 1999

Brenner 1974

Qin 2001

Qin 2001

Michel Leroux

Michel Leroux

Varkey 1993

Shen 1988

Sigurdson 1984

Sigurdson 1984

Sigurdson 1984

Sigurdson 1984

Yu 2003

Swoboda 2000

Swoboda 2000

Swoboda 2000

Collet 1998

Yu 2003

Yu 1997

Yu 1997



Supplemental Table 2. Primers, templates, vectors used for PCR fragments and
plasmids in this study.

5'-catgacgacaaagcggatca-3'

5'-ctctaagaaattcagtaaag
gagaagaacttttcac-3'

5'-aaagtcgaggcttgctccc-3'
Posm-9::GFP

5'-ccgcccatatcttggctcta
tgcctgcaggtcgactct-3'

PCR1 5'-gattccgacgttggctttcg-3'

PCR2 5'-gcgtttcgtagaacaactac-3'

PCR3 5'-cacctgacaccgttttgagc-3'

PCR4 5'-cacctgacaccgttttgagc-3'

Pdaf-19m::GFP1 5'-gaatgcatgcggttcacaa
ctaacctggatag-3'

Pdaf-19m::GFP2 5'-gaatgcatgcggttcacaa
ctaacctggatag-3'

5'-cagaattcttaatttttttataat
tgcagccatcacaagccaca-3'

5'-gaatgcatgcggttcacaact
aacctggatag-3'

Pdaf-19m::GFP4
5'-cttgttgaaactatgggcgcgct
cgggactcatcaccg-3'

Pda f-19m: :GFP5 5'-cagaattcttaatttttttataattg
cagccatcacaagccaca-3'

3' primer

5'-ttctcctttactgaatttctta
gaggcgagaaggc-3'

template

him-5 genomic DNA

5'-caaacccaaaccttcttccg-3' pPD95.75

5'-gagtcgacctgcaggcatagag B0229
ccaagatatgggcgg-3'

5'-gccatcgccaattggagtat-3' pPD95.75

5'-caagatggaacgggagac-3'

5'-caagatggaacgggagac-3'

5'-caagatggaacgggagac-3'

5'-caagatggaacgggagac-3'

5'-gaagtcgacaagccac
ctgctctcgggtt-3'

5'-gaagtcgacaagccac
ctgctctcgggtt-3'

5'-caaacccaaaccttcttccg-3'

5'-cggtgatgagtcccgagcgcgc
ccatagtttcaacaag-3'

F33H1 cosmid

F33H1 cosmid

F33H1 cosmid

n4132 genomic DNA

F33H1 cloned to
pPD95.75

n4132 DNA cloned
to pPD95.75

Pdaf-19m::GFP1

Pdaf-19m::GFP1

5'-caaacccaaaccttcttccg-3' Pdaf-19m::GFP1

5'-caaacccaaaccttcttccg-3' Pdaf-19m::GFP4

To make the PCR-SOE reporter, primer 1 and 2 were paired with template 1, primer 3

and 4 were paired with template 2; in the second round, primer 1 and 4 were paired with

template made by mixing same molar concentration of products of the two first round

PCR.
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Figure Legends

Figure 1. daf-19(n4132) disrupts B-type neuronal expression of lov-1, pkd-2 and

osm-9 but not osm-6. (A) Cartoon shows the cell body positions of the B-type

male-specific (CEM, HOB, and RnB), core B-type (IL2), and core amphid neurons in an

adult male. (B-C, F-G) In wild type, LOV-1::GFP and PKD-2::GFP are expressed in

four CEM, one HOB and 16 RnB (n=1-9 but not 6) neurons. (D-E, H-1) In n4132 males,

LOV-1::GFP and PKD-2::GFP expression is completely abolished. In the male tail,

autofluorescence is observed in the sclerotized hook and spicule structures. (G-K)

osm-9 is expressed more broadly in sensory neurons, including B-type neurons,

amphids, and phasmids (43, 44). (L-M) In daf-19(n4132) males, osm-9 is not

expressed in IL2 and CEM neurons and expressed in approximately 50% of HOB and

RnB neurons (see also Table 1). (L-M) daf-19(n4132) does not affect osm-9 expression

in amphids or phasmids. (N-O) In daf-19(m86) null males, osm-9 expression is

completely abolished. (P-Q, R-S) In wild-type and n4132 males, the osm-6 ciliogenic

gene is expressed in all ciliated neurons, including the A- and B-type, amphid, and

phasmid neurons. Ciliary transition zones and ciliary axonemes are visible in wild-type

and daf-19(n4132) males (arrows). In daf-19(m86) males, lov-1, pkd-2 and osm-6

expression is completely abolished in all sensory neurons (17, 27).

Figure 2. daf-19(n4132) males are response, Lov (location of vulva), and mating

efficiency defective. (A) Response and location of vulva efficiency was scored for

each genotype. n4132 males exhibit behavioral efficiency defects compared to wild

type (p<0.001 for both Response efficiency and Location of vulva efficiency assay).
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n4132 and lov-1;pkd-2 have comparable response efficiencies. n4132 males have a

more severe Lov defect than lov-1; pkd-2 double mutants. (B) n4132 males are able to

sire progeny, but mating efficiency is significantly lower than lov-1; pkd-2 double mutant

(p<0.001). Error bars indicate s.e.m. An asterisk marks wherever the data are

significantly different between n4132 and lov-1; pkd-2 (*P <0.01). ns = not significantly

different. Statistical analyses were performed by nonparametric Mann-Whitney tests

with two-tailed P-value.

Figure 3. n4132 is a hypomorphic allele of daf-19 that specifically disrupts

daf-19m, an isoform of the RFX transcription factor required for male mating

behaviors. (A) Genetic map and genomic structure of the locus mutated in n4132.

n4132 maps to chromosome II and is a molecular deletion in the daf-19 gene

(F33H1.1). The published and predicted daf-19 genomic structure includes two isoform

that differ in the inclusion of a 4th exon in daf-19b (shown here). The daf-19(m86) null

allele introduces a stop codon immediately upstream of the DBD (DNA binding domain)

and DIM (dimerization) domain. The daf-19(n4132) hypomorphic allele is a deletion in

the 5th intron of the daf-19b predicted structure. Light blue boxes are exons, light gray

regions are UTRs (untranslated regions). (B) Transgenic rescue data of PKD-2::GFP

expression and male mating behavior (RE = response efficiency; LE = location

efficiency). daf-19 genomic fragments, with exons numbered according to daf-19b,

were scored for the ability to rescue n4132 PKD-2::GFP expression defects in

male-specific B-type neurons and behavioral defects (restoration of RE and ME). Both

PCR1 and PCR2 fully rescue PKD-2::GFP expression. PCR2 is lacking the promoter

and two exons of daf-19a/b. PCR2 also rescues n4132 Response and Lov defects
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(normal RE and LE). The shorter PCR3 fragment rescues PKD-2::GFP expression in

tail (HOB and RnB) but not head (CEM) neurons (normal LE, abnormal RE). PCR3

rescues n4132 Lov but not response defects (not shown). PCR4, made by introducing

the n4132 molecular lesion to PCR3, fails to rescue n4132 (abnormal RE and LE). (C)

Diagram of daf-19m genomic and cDNA structure compared to the daf-19b isoform.

daf-19m uses an alternative promoter (in the 5th predicted intron) and a distal upstream

enhancer (in the 2 nd predicted intron) but shares the DBD and DIM domain with

daf-19a/b. RT-PCR shows daf-19m cDNA in wild type but not n4132. In contrast,

daf-19a/b cDNA is present in both wild type and n4132.

Figure 4. daf-19m is exclusively expressed in B-type neurons. (A) Discrete

cis-regulatory elements regulate daf-19m expression in B-type head (CEM/IL2) and tail

(HOB/RnB) neurons. The CEM/IL2 distal enhancer and HOB/RnB promoter elements

are conserved among Caenorhabditis species C. briggsae, C. elegans and C. remanei.

(B) Diagram of daf-19m promoter::GFP reporters and their relationship to daf-19b and

the n4132 deletion. Pdaf-19::GFP1, which contains 1 kb of intron 5 of daf-19b,

expresses in B-type tail neurons only. Adding a 22bp upstream enhancer to generate

Pdaf-19::GFP3 drives daf-19m expression in B-type neurons in both the head and tail

(Fig. 4C, D, G). Pdaf-19m::GFP1 expression is completely abolished by introducing the

n4132 molecular lesion (Pdaf-19m::GFP2) or by deleting the 13bp HOB/RnB promoter

element (Pdaf-19m::GFP4); Pdaf-19::GFP3 expression is also abolished by deletion of

the 13bp HOB/RnB element (Pdaf-19::GFP5, Fig. 4E, F, H). (C, D) In males, daf-19m is

expressed in core IL2 neurons and B-type male-specific CEM neurons in the head (C)
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and HOB and RnB neurons in the tail (D). (E, F) daf-19m expression is completely

abolished by deleting the 13 bp HOB/RnB promoter element. (G, H) In

hermaphrodites, daf-19m is expressed in core IL2 neurons and abolished by deleting

the HOB/RnB promoter element.
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Chromosome II 1.99-2.35

A i

F27E5 R05H5
F33H1

gpd-4 daf-19a/b(F33H1.1) F33H1.6

n4132 m86(R>STOP)

B pkd-2 expression Behavior

Head Tail RE LE

PCRI n n A I + + +

PCR2 + + + +

kb PCR3 - + +
1kb

PCR4 --- - -
n4132

daf-19m da
lb fr--

C

CEM/IL2 enhancer E
t1 rr ii I

Figure 3

1f-9a/b

564



CEM/IL2 enhancer(*) HOB/RnB enhancer(**)

C.briggsae TTCTAAATTTTCTAAAATT C.briggsae ACCTGTAACCATG

C.elegans TTCTTAATTTTTTTAtAATT C. elegans ACCTGTAACCATG

C. remanei TTCAAAATTTTTATATAATT C. remanei ACCTGTAACCATG

ED

3'

Lbp
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Pdaf-19m::GFP3 + +

Pdaf-19m::GFP4 --- -

Pdaf-19m::GFP5 - --------
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