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Abstract

The guidance, navigation and control of hypersonic vehicles are highly challenging

tasks due to the fact that the dynamics of the airframe, propulsion system and struc-

ture are integrated and highly interactive. Such a coupling makes it difficult to model

various components with a requisite degree of accuracy. This in turn makes var-

ious control tasks including altitude and velocity command tracking in the cruise

phase of the flight extremely difficult. This work proposes an adaptive controller for

a hypersonic cruise vehicle subject to: aerodynamic uncertainties, center-of-gravity

movements, actuator saturation, failures, and time-delays. The adaptive control ar-

chitecture is based on a linearized model of the underlying rigid body dynamics and

explicitly accommodates for all uncertainties. Within the control structure is a base-

line Proportional Integral Filter commonly used in optimal control designs. The

control design is validated using a highfidelity HSV model that incorporates various

effects including coupling between structural modes and aerodynamics, and thrust

pitch coupling. Analysis of the Adaptive Robust Controller for Hypersonic Vehicles

(ARCH) is carried out using a control verification methodology. This methodology

illustrates the resilience of the controller to the uncertainties mentioned above for a

set of closed-loop requirements that prevent excessive structural loading, poor track-

ing performance, and engine stalls. This analysis enables the quantification of the

improvements that result from using and adaptive controller for a typical maneuver

in the V-h space under cruise conditions.
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Title: Senior Research Scientist
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Chapter 1

Introduction

"Not since the Right Brothers solved the basic problems of sustained,

controlled flight has there been such an assault upon our atmosphere as

during the first years of the space age. Man extended and speeded up

his travels within the vast ocean of air surrounding the Earth until he

achieved flight outside its confines. This remarkable accomplishment was

the culmination of a long history of effort to harness the force of that

air so that he could explore the three-dimensional ocean of atmosphere

in which he lives. That history had shown him that before he could ex-

plore his ethereal ocean, he must first explore the more restrictive world

of aerodynamic forces." [46]

Wendell H. Stillwell

In attempts to slice through the air at higher and higher speeds, ever more elegant

and abstract aircraft designs have been conjured by NASA engineers and scientist.

The X-43 is one such aircraft, Figure 1-3. This aircraft is a flying butter knife.

One can imagine controlling it is not an easy task. Rear control surfaces, strong

engine-airframe coupling and flexibility effects each compound the control problem,

and the problem is exacerbated at hypersonic speeds. In this work an adaptive control

algorithm is presented that has superior performance and robustness characteristics



when compared to a nominal classic controller.

1.1 History of X-Planes

The National Advisory Committee for Aeronautics (NACA) started the United States

X-Plane Program in 1945 with the XS-1, later designated X-1, Figure 1-1. A contract

was given to Bell Aircraft Inc., and oversight on the program was managed by the

United States Air Force. The goal of the project was to break the sound barrier with

a manned aircraft. On October 14th 1947 that was accomplished. [48, 37] Projects like

this have continued ever since. Out of the X-Plane program the first aircrafts to fly

at altitudes exceeding 100,000, 200,000 and 300,000 ft, along with the first aircrafts

to fly at Mach 3, 4, 5, and 6 have been built and tested.1

Figure 1-1: Bell X-1

One of the most notable projects to come out of the program is the X-15 aircraft,

Figure 1-2. The program began in 1954 and 199 test flights were performed. The

X-15 was designed with several research goals in mind. The major goal was to

understand the effects of high speed atmosphere reentry. In the process the X-15

broke altitude and speed records with flights higher than 300,000 ft and at speeds in

lhttp://history.nasa. gov/xl/appendixal .html Table A-1



excess of Mach 6.[30] The results of this project directly impacted the short 7 years

before Alan Shepard was the first American in space.

Figure 1-2: X-15

Two important characteristics of the X-15 program were the exploration of the

hypersonic regime and the implementation of an adaptive algorithm in aircraft stabi-

lization. "The Hypersonic Envelope, starts at a Mach number like 5 and extends to a

Mach number or velocity as high as the imagination and technology will allow." [38]

This quote by Richard Neumann illustrates the somewhat vague nature of the term

"hypersonic". The hypersonic flight regime is particulary important for the X-43

as that is the defining characteristic that allows for the efficient combustion of the

scramjet engine. This will be discussed in more detail in a subsequent section.

The adaptive control algorithm implemented in the X-15 project was designed by

Minneapolis Honeywell Corp. It was referred to as a "Self-Adaptive" control system.

The Self-Adaptive control system had a variable feedback gain on euler rates in order

to maintain attitude stability in flight. The variable feedback gains were adjusted so

as to minimize the error between the actual attitude of the aircraft and some ideal

reference attitude. The adaptive controller decreased the tuning time necessary to

gain schedule a classic controller over the entire flight envelope.[46, 18]

The adaptive algorithm from Honeywell was truly ahead of its time in implemen-

tation. However, it lacked the mathematical tools necessary to prove stability in

a rigorous manner and relied on "rule of thumb" ideologies instead. This ended in

tragedy however. On November 15, 1967 test flight 191 of 199 crashed above Delamar



Dry Lake.[30] Unbeknownst to the pilot there was an electrical malfunction and the

aircraft began to deviate from the desired trajectory and a gross side-slip angle was

building. Once off by 150 the pilot corrected for the mistake, then the aircraft drifted

again, after several seconds of pilot corrections the aircraft interred a Mach 5 spin

at an altitude of 230,000 ft.[30, 47] As the aircraft fell into more dense air it broke

apart killing the pilot, Mike Adams. This crash put a holt on all adaptive control

implementation for several decades, and not until recently has the idea been revisited.

Now with more rigorous stability proofs.

In an attempt to pave the way for reusable and more affordable vehicles the
X-43 program was initiated in order to conduct experiments in hypersonic vehicle

system identification and inflight scramjet combustion. The first flight was in 2001,
Figure 1-3.[36, 51] Airbreathing hypersonic engines are being considered because of

the reduced weight of such systems when compared to rocket powered hypersonic

vehicles. Rockets require that the oxidizer along with the fuel be carried up with

the aircraft. Where as in a scramjet engine, the oxidizer is not needed. This can
potentially increase the payload capabilities of scramjet powered vehicles.

Figure 1-3: X-43 artistic rendering

1.2 Modelling of Hypersonic Vehicles

The X-43 could not launch from the ground and the scramjet engine was not operable
unless at hypersonic speeds. The typical mission profile would be as follows. The X-



43 begins attached to the end of a Pegasus Rocket and both structures together would

be carried under the wing of a B-52B, see Figure 1-4. The B-52B would carry the

Pegasus booster system up to an altitude of 40,000 ft where the Pegasus booster

would be dropped. The booster would then propel the X-43 to an altitude of 95,000

ft at some hypersonic speed where the X-43 would then be pushed off the end of the

Pegasus Rocket. Then, depending on the mission objectives, the X-43 would carry

out various tasks. This mission profile is illustrated in Figure 1-5. The dynamics

of the X-43 after the Pegasus push-off are what this work pertains to. This flight

condition will be referred to as the cruise condition for the X-43.

Figure 1-4: X-43 on Pegasus under B-52B [6]

Several attempts have been made to characterize the longitudinal dynamics of a

hypersonic vehicle. One notable comprehensive analytical aeropropilsive-aeroelastic

Hypersonic Vehicle (HSV) model is that proposed by Chavez and Schmidt in [10].

In that work a 2-D vehicle geometry was assumed; and with Newtonian theory, a

1-D isentropic scramjet model, and a lumped mass elastic model the HSV dynamics

were formulated. Newtonian theory, however, is better suited for blunt bodies and

becomes less accurate for slender bodies. Noting this fact, Bolender and Doman



X-43A Mission Pr

Figure 1-5: X-43 flight envelope [5]

in [7] propose an HSV model that builds upon the work by Chavez. Instead of

Newtonian Impact theory, Oblique Shock theory is proposed for the compression of

high speed air. Bolender and Doman's work incorporates the elastic effects with

a double cantilever beem model, and the rigid-elastic dynamics are then obtained

through a Lagrangian formulation. Doman and Bolender have recently built upon

their work in [7] and included unsteady, thermal, and viscous effects as well as an

updated elastic model. [9]. CFD-based characterizations have also been proposed such

as that in [11].

1.3 Control Design

The Guidance, Navigation and Control of hypersonic vehicles are highly challenging

tasks due to the fact that the dynamics of the airframe, propulsion and structure are

highly integrated and highly interactive. Such a coupling makes it very difficult to

model various components with a requisite degree of accuracy. This in turn makes



various control tasks including altitude and velocity command tracking in the cruise

phase of the flight extremely difficult.

Notable works in the area of HSV control design are discussed here in. In [33], an

adaptive linear-quadratic controller is deployed in the presence of structural modes

and actuator dynamics, and is shown to track altitude and velocity commands in

the presence of aerodynamic changes and actuator changes. The authors of [52]

designed an adaptive sliding mode controller that tracks step commands in height

and velocity while requiring limited state information. In [19] the authors employed

both robust and adaptive techniques on a sequential loop closing methodology. The

work in [31] focuses on elastic mode suppression through an adaptive notch filter

technique. References [35], [49] and [50] not only focus on control design but also

on robustness characteristics of the controller. Similar studies are carried out in this

thesis in Chapter 5. Other notable works in the area of control of Hypersonic vehicles

are References [34, 1, 26, 13, 12, 24, 41, 39, 23, 40, 42] and [32].

Uncertainty characterization is also important when determining the relative ro-

bustness characteristics of any given controller. Aircraft geometry and mass property

uncertainties have been studied in [39]. Aerodynamics coefficient uncertainties were

used in [40] and [33] to test the control algorithm; and inertial-elastic uncertainties

were studied in [42] and [28].

1.4 Overview

In this work, a baseline controller is first developed that has Proportional, Integral

and Filter components, commonly called a PIF controller. [44] An adaptive controller

then augments to the baseline controller. It accommodates for aerodynamic uncer-

tainties, center-of-gravity movements, actuator saturation and failures and is robust

with respect to time-delays and elastic effects. The nonlinear rigid HSV model in

[40] is used for control design and the nonlinear aeroelastic HSV model in [7] is used

for controller evaluation. Time simulations are presented to illustrate the benefits of

the adaptive algorithm. Analysis is also performed in order to study the resilience



of the controller to the uncertainties mentioned above for a set of closed-loop re-

quirements that prevent excessive structural loading, poor tracking performance and

engine stalls.[21, 22]



Chapter

Vehicle Modelling

The Hypersonic Vehicle, HSV, geometry used in this study is shown in Figure 2-1.

This geometry is representative of the NASA X-43 aircraft. There are three control

inputs for this vehicle, the elevator deflection S,, the canard deflection 6, and the

equivalence ratio for the fuel in the scramjet ¢. The canard was added in recent

studies in order to increase the available bandwidth for the controller. [8, 40] It should

be noted however that this control surface may not be physically realizable given the

harsh environment in the forward of the aircraft. For that reason the HSV model is

constructed so that the canard effects can easily be removed, so as to have a two input

system. In order to obtain the physics based model proposed in this work the pressure

Elevator

B o s o k. S c r a m j e t : f ( )
Reflected shock % Shear Layer

Cowl Door - --------- SLayer

Figure 2-1: HSV side view with control inputs[7]

distribution around the aircraft must be defined. Then, the rigid(elastic) forces are

obtained by integration of the pressure distribution over the surface(mode shapes)



i Id Sla

Forward Under-side Aft

Figure 2-2: HSV side view with dimenion labels[7]

of the HSV. Given the simple geometry of the aircraft, a majority of the pressure

distribution can be obtained by implementing Prandtl-Meyer expansion and oblique

shock theory.

2.1 Oblique Shock and Expansion Wave Theory

Oblique shock theory is applicable when supersonic flow is turned over a concave

surface, see Figure 2-3 for physical intuition. Given a prescribed turn angle 6t the

shock angle 0~ can be calculated with the following expression,

sin 6 0, + bsin4 80, + csin2 O~ + d = 0, (2.1)

where

M= - sin 2 6t

2M2 +1 ( + 1)2  - ]
c = M4 + + sin2 t (2.2)

Cos2 6 t
d=. M4



In the previous expression M1 denotes the mach number of the fluid before reaching

the shock wave and y represents the ratio of specific heats (-y = C,/C,). The shock

angle is then determined by solving for the second root of Equation (2.1) with respect

to sin 2 0s. The pressure p, temperature T, and Mach number M, can then be obtained

using the relations,

P2 7M, sin 2 08 -1

Pi 6
T2  (7M? sin 2 0 - 1) (M sin 2 s + 5)

T, 36 M sin 0,
S(0 , M sin2 82 + 5

MSi2 sin -t) =
7M sin2 8 -

where subscripts 1 and 2 denote pre and post shock values.[3]

(2.3)

(2.4)

(2.5)

Shock Line

:, 8I c

MI > M2
Pi < P2
T, < T2

Oblique Shock Theory

Constant Entropy Expansion Fan

I j

S< M2

T1 > T20 I. I----.-- I /
T1 > T'2

0

Prandtl-Meyer Expansion

Figure 2-3: Visual aids for oblique shock and Prandtl-Meyer expansion.[2]

When the opposite scenario occurs and flow is turned over a convex corner, the

flow expands. The properties of the gas are then characterized by Prandtl-Meyer

expansion,

6t = v(M 2 ) - v(M) (2.6)

where

(2.7)y+1 +1v(M)= arctan (M 2 -_ 1) arctan M2 - 1.
7-1 V -i

With the post expansion Mach number obtained, the remaining air properties can be



calculated as, 3]

P2 _ 1 + [(y - 1)/2]M / ) (2.8)
Pi 1+ [(y - 1)/2]M22
T2  1 + [(y - 1)/2]M2 (2.9)
T, 1 + [(- - 1)/2] M22

These theories can then be applied across the front, top and bottom of the aircraft

in order to obtain the pressure distribution for the upper-surface, forward, underside,

and inlet to the scramjet as well as the air properties around the canard and elevator.

2.2 Rigid Body Forces and Moments

Given the free stream Mach Number Mo, temperature T,,, and and air pressure poo,

the location of the bow shock can be determined along with the upper body properties

on the top of the air frame and the forward lower body properties, as shown in Figure

2-4. Note that the following subscript notation (.), and (.)f will be used to denote

upper-body properties and forward under-body properties respectively.

Once the pressures are determined as described above, the forces and moments

on the upper-side of the HSV are found as,

Fx,, = -pulu tan 1r,u  (2.10)

Fz,u = PUIU (2.11)

My,U = ZfF x,, - cJf F,u, (2.12)

where iu and i are the differences between the geometric center of the upper panel

(zx,zU) and the center of mass of the aircraft, :, = zx - t 2x = z - z. The forces and



moments on the forward under-side are then found using the following expressions,

Fx,f = -pfll tan T1 ,1  (2.13)

Fz,f = -Pf ll (2.14)

My,, = fFx,f - I7;Fy,f, (2.15)

with 2f and Xf having the same interpretation as above. The pressure is constant on

the surface of the HSV behind the bow shock and it is for that reason that the forces

are simply calculated using a single value for the pressure across the entire surface.

MMM

Figure 2-4: Mach Number Location Subscript Indexing

The air after passing through the bow shock on the under-side of the HSV will

impinge on the cowl door, which protrudes in front of the scramjet engine. The cowl

door is assumed to be adjustable and in this work it is assumed that the cowl door

can be adjusted perfectly so as to maintain an on lip condition with the bow shock

wave. Given this scenario, there will be a force exerted on the aircraft as the post

bow shock air is turned parallel to the entrance of the scramjet,

Fx,inlet f= Mpf(1 - cos(T1,z + ac))hi (2.16)

Fz,inlet = yM2pf sin(TI, + a)hi (2.17)

Iy,inlet = inletFx,inlet - i inletFz,inlet. (2.18)

Using geometry, one would find that the cowl door is adjusted using the following



expression,

ld = If - (If tan 71,1 + hi) cot( 6d - a), (2.19)

where 6d is the relative angle between the bow shock and the cowl door, and a is the

angle of attack of the aircraft.

The nacelle is the cowl door and the underside of the scramjet together, and

properties of the aircraft under the nacelle are denoted as (-),. The nacelle length is

given as,

In = ls + ld.

The total force and moment imparted on the nacelle of the aircraft is determined by

the following relations,

Fz,n = -pnl (2.20)

MY,n = -Fz,n,;n, (2.21)

where i~ is distance between the center of the nacelle and the center of gravity of the

aircraft, and p, is calculated using either oblique shock theory or expansion theory

depending on the angle of attack. Note that given the shock on lip condition, the

properties for the nacelle are simply determined from the free stream air. If the shock

on lip condition is not satisfied, the above relations do not hold.

Continuing to follow the path of the air, after passing through the bow shock and

then the second shock from the reflection on the cowl door, the air will enter the

scramjet engine. The scramjet is modelled as 1-D, and isentropic flow is assumed.

The expressions necessary to incorporate the propulsion system were first introduced

by Chavez and Schmidt. [10] The model for the scramjet is shown in Figure 2-5. After

the free stream air impinges on the cowl it is turned upward parallel to the entrance

of the scramjet. Oblique Shock theory can be used in order to determine the Mach

Number at the Inlet from the Mach Number under the fore-body of the HSV.

The change in Mach number as the flow is compressed in the diffuser is calculated



Reflecting
Shock Wayve .

/. Diffuser Combustor Nozzle

M hi hi hce heMf ./ M I

r=----

Cowl Door 0 0

Ad = hei/hi An = he/he

Figure 2-5: Scramjet Model[7]

as,

1 + [(-1)/2]M2 ] ( +)/(-)
1M2ci

= 1 + [( - 1)/2]M] )/

d M2?

where (.)i denotes the inlet to the scramjet, (.),i denotes the combustor inlet, and Ad

is the diffuser area ratio as shown in Figure 2-5. The air properties at the combustor

inlet are calculated using Equations (2.8) and (2.9).

The combustor is modelled as a constant area duct with heat addition. This leads

to the expression,

M [1 + [(y - 1)/2]Mce]

(7M2e + 1)2

M,1 + [(7 - 1)/2]M,] M2 2 Tt
(yM 1 + (2.23)M + 1)2 M + 1)2 Tc,

where the Mach number at the combustor exit Me is a function of the total tem-

perature change across the combustor ATt. The temperature and pressure at the

combustor exit are then defined as

Pce = Pci

1 + 7~c M

(2.24)

(2.25)

An analytical expression relating the total temperature change across the com-

(2.22)



bustor to the equivalence ratio q follows,

T c 1 +i Hfrcf.stO/(cpTtc )= . (2.26)
Ttei 1 + fsTO5

ATtc = Ttce - T (2.27)

where r; is the efficiency of the scramjet (0.9), fst is the stoichiometric air-fuel ratio

(0.0291), H, is the heat of combustion for the fuel (LH2 at 51,500 BTU/lbm) and cp

is the specific heat of the fuel at constant pressure (0.24 BTU/(lbm°R).[25, 27, 4, 7]

It is important to note that temperatures with subscript t are the total temperatures

and all other temperatures referred to in this work are the static temperatures. The

ratio of total temperature to static temperature can be obtained using the following,

Tt y- 1
= 1 + M 2. (2.28)

T 2

The procedure for obtaining the Mach number for the air at the exit of the scramjet

is similar to that of Equation (2.22),

[1 -+ [( - 1)/2]M2 (1)/1y-1) 1 + [( - 1)/2]M2e( y1)/(-)

= A2 (2.29)

Using a control volume around the scramjet and applying the law of conservation of

momentum, the total thrust from the scramjet can be obtained

T = riTa(V - V.) + (Pe - p.)he - (pi - p.)hi. (2.30)

The air upon leaving the scramjet will then expand along the aft of the aircraft

and interact with the free stream air coming from the underside of the HSV. An

analytical expression for the pressure on the aft of the scramjet as a function of the

free stream air pressure was found by Chavez and Schmidt and is displayed below,

pa = Pe (2.31)1 + Sa/la(Pe/Poo - 1)

30



where la is the length of the aft of the aircraft in the x-body direction and sa is the

length coordinate in the x-body direction. Integration of the aft body pressure along

the back side of the aircraft results into the following expressions for the aft-body

forces and moments,

Pe log(pe/poo)
Fx,a = Poola Pe og( tan(T2 + 71,u) (2.32)

Fz,a = -oola og(p/p) (2.33)
Poo (Pe/Poo) - 1

My,a - aFx,a - aFz,a (2.34)

where the pitching moment is calculated from the point of average pressure on the aft

body panel. The point of average pressure can be calculated as 1a = fa Pa(sa)dsa/la

The center of pressure coordinates are then found by solving for Xa in the following

expression Pa(Xa) = pa. Then the relative position of the center of pressure to the

center of gravity of the HSV is trivial.

Two components of the total force acting on the HSV that have not been ad-

dressed yet are the forces from the canard and elevator. Depending on the angle of

attack of the HSV and the relative positions of the canard and elevator the pressure

surrounding the control surfaces can be determined from oblique shock or Prandtl-

Meyer expansion. Once the pressures surrounding the canard are determined, the

forces acting upon it are calculated as follows,

Fx,c = - (Pc,l - Pc,u) sin S6CS (2.35)

Fz,c = - (Pc,, - Pc,u) cos 6cSc (2.36)

MY,C = cFx,c - ;cFz,c. (2.37)

The forces acting on the elevator have an identical set of equations and are shown



below for completeness,

Fx,e = - (Pe,i - Pe,u) sin 6eSe (2.38)

Fz,e = - (Pe,i - Pe,u) cos 6eSe (2.39)

My,e =Fx,e - -ez,e. (2.40)

For the coordinates of the canard and elevator refer to Appendix A. 1.

Thus far all of the forces and moments acting on the hypersonic vehicle that

control the rigid-body dynamics have been expressed and therefore the total x-body

force, z-body force and y-body moment are calculated as follows,

Fx = Fx,u + F,f + Fx,iniet + Fx,a + Fx,e + F,c (2.41)

Fz = F,u + F,f + Fz,iniet + z,n Fz,a + Fz,e + Fz,c (2.42)

My = M,, + M,,f + My,iniet + M,, + My,a + My,e + My,, + z T. (2.43)

As previously mentioned, this work also includes the elastic effects an the HSV dy-

namics. These effects are outlined in the following section.

2.3 Elastic Forces and Moments

The elastic effects are obtained by modelling the HSV as two fixed free beams. One

beam free at the forward of the HSV and fixed at the center of gravity, and a second

beam fixed at the center of gravity and free toward the aft. A visual representation

of the above beam model is shown in Figure 2-6. It is important to note that the

Figure 2-6: Elastic HSV beam model with coordinates.



coordinate system for the elastic model has up as positive, where in the rigid-body

model down is positive.

2.3.1 Natural Modes of Vibration for a Fixed-Free Beam

Given the above flexible beam model for the HSV, and assuming that small deflections

occur so that Hooke's Law can be used, the vertical deflection y is well defined as

a function of space and time. It is governed by the following partial-differential

equation,
4 y(,t) 2 y(,t)

EI 4  + = 0  (2.44)814 at2

where ri is the constant mass density and EI is the constant Young's modulus area

moment of inertia. For values of these parameters refer to Tables A.1 and A.2. It is

assumed that the solution to (2.44) can be separated in space and time so that,

y(x, t) = (x) f (t). (2.45)

Given this, (2.44) can be separated as follows,

EId4lo ( ) - w2ri(x) = 0 (2.46)
dx

4

df(t)
dt 4 ) + 2f(t) = 0. (2.47)dt 4

For notational convenience the following substitution is made 34 = w2 fh/EI. Equa-

tion (2.46) is now of the form,

EId4(x) 340(x) = 0. (2.48)

dx4

The solution to the ordinary-differential equation in (2.48) is referred to as the mode

shape and has a solution of the following form,

O(x) = A sin Ox + B cos px + C sinh Ox + D cosh 3x. (2.49)



The equations given thus far are for a generic free-fixed beam. The following discus-

sion will pertain to the component of the elastic model forward of the HSV's center

of gravity, and a later discussion will pertain to the aft section of the beam model.

The modal analysis for the forward components will be denoted with a subscript

f. In order to solve for the unknown constants in (2.49) the following boundary

conditions are given. Two geometric boundary conditions arise,

Of() = 0 (2.50)

'() = 0 (2.51)

The geometric boundary conditions arise from the fact that the beam model is fixed

at the center of gravity of the HSV. Also, a pair of natural boundary conditions arise

at the free end of the beam,

k"(0) =0 (2.52)

"'(0)= 0. (2.53)

The natural boundary conditions arise from the fact that the bending moment and

shear force are both zero at the free end. Substitution of the four boundary conditions

for the forward beam into the mode shape function described in (2.49), result into

the following relation,

cos/3fj cosh 3fx = -1. (2.54)

There are infinitely many solutions for 3f in (2.54). The infinitely many solutions

relate to the fact that a non finite number of modes determine the flexible nature of

a beam. For this study only the smallest value of 3f was used and thus, only one

bending mode will be incorporated for the forward beam. Note, that the same is done

for the aft beam as well. Substitution of the solution f into (2.49) results into the



following expression for the forward beam mode shape,

qf =Af [(sin Of 2 - sinh ofpt) (sin of x + sinh Pfx)

+ (coS f2 + cosh Pf) (cos/3fx + cosh f x)],
(2.55)

where Af is a scaling factor that is chosen so as to mass normalize the mode shape

and is determined by the following orthogonal solution,

J0
rnf)f(x) f(x)dx = 1. (2.56)

A similar approach was taken for the aft cantilever beam. With its unique set of

four boundary conditions, the following relation results

cos(,a(1 - 2)) cosh(3a(1 - 2)) = -1,

so that the aft beam has a mode shape of the following form,

qa =Aa[(sin/3a(1 - 2) - sinh 3a(1 - 2))(sin Oa(x - 2) - sinh /3(x - 2))

+ (COS /a(l - 2) + cosh Oa(1 - 2))(cos Oa(X - 2) - cosh)a(x - 2))].

The aft beam is also mass normalized, and Aa is solved for in the following,

J a $a(X) a(x)dx = 1.

(2.57)

(2.58)

(2.59)

Using the above approach, the following values were obtained for the forward and

aft beams,

Af = 0.0283 ft

Aa = -0.0256 ft

Of = 0.0341 ft- '

Oa = 0.0417 ft-'



A visual representation of the combined forward and aft mode shapes as described in

(2.55) and (2.58) is shown in Figure 2-7.

0.2
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0.1
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distance from nose of HSV [ft]

Figure 2-7: Forward and aft mode shape.

2.3.2 Forced Modal Response

The forced response associated with (2.44) is of the form,

EI 4y(x,t)
O4 + 2y( ,t)

Ot 2 p(x, t) + P(x, t)6(x - Xj),

where p denotes pressure and P is a point load. The above equation has solutions for

00

y(x, t) = Zlk( )7k (t).
k=1

(2.61)

where the infinite summation over k illustrates the fact that there are infinitely many

modes for a fixed-free beam. Do not confuse that with the subscripts f and a. The

discussion thus far has not distinguished between forward and aft, and is of a generic

flavor. The r terms will later be regarded as the flexible state variables, and are

y as,

(2.60)



governed by the following second order equation

ilk + Wkl7k = Nk(t) (2.62)

where Nk is the modal force defined as,

1

Nk (t) = k (x)p(x, t)dx + k(j)Pj(t). (2.63)
j=1

Once again, the flexible model used in this work only pertains to the first bending

modes for each beam. Application of (2.63) to the forward and aft beams results in

the following force relations

Nf (t) = - j f(x)p(x, t)dx + (-Of (xc)F,c(t)) (2.64)

Na(t) = - J a(x)p(x, t)dx + (-Oa(xe)Fz,e(t)). (2.65)

Notice the minus signs in the above expression. The flexible beam model coordinate

system denotes up as positive, where as the coordinate system for the rigid-body

dynamics assumes down to be positive.

2.4 Equations of Motion

Two distinct aircraft models will be introduced in this study. One aircraft model will

incorporate the flexible effects and will be used for controller evaluation, and as so

will be referred to as the Evaluation Model (EM). The second model will only include

the rigid-body effects and will be used for control design, and will be referred to

as the Design Model (DM). The construction and implementation of these models is

discussed below.



2.4.1 Evaluation Model

Using Lagrange's Equations, the equations of motion of the flexible hypersonic vehicle

can be derived as follows,[7]

Fx = mU + mQW + mg sin 0 + Q(Aarla + Af7f) + 2Q(Aia + A f7f)

F z = mW - mQU - mgcos +0 + Aaa + Af' i -2 Q 2 (ai7a + Af 7ff)

(I = ( + 7+ + 7 (U + QW)(Aa7a + Af Tnf) + 2Q(7/a + '7i7f - a - Of rf

Nf = i + (W- QU)Af - Q +f +2( +wfr;f + (w2 -Q2

Na = i - (W - QU)Aa - ,)a + 2(waia + ( - Q2)qa,

(2.66)

where

Af j snfof(x)dx

Xa 7i aa(X)dX

=f X - t)qf of (x)dx

The left hand side of the equation contains the rigid and elastic forces and the pitching

moment. These forces in turn depend on the attitude of the aircraft as well as the

three control inputs. On the right hand sides of the equations are the constants,

elastic coefficients and the state variables of the aircraft in the body axes. The state

variables in the body axes are: pitch angle 0, pitch rate Q, body axis horizontal speed

U, and body axis vertical speed W, along with the four generalized elastic variables

r77f, 7 f, ra and la. Subscripts f and a correspond to the forward and aft of the

aircraft respectively. The forces and moments on the left hand side are determined

using rigid-body forces in (2.41)-(2.43) and the elastic force relations in (2.64) and

(2.65). It is advantageous as well to know the height, h, of the aircraft. Therefore,



the following kinematic relation,

h = U sinO - W cos (2.67)

is introduced.

The implementation of Equation (2.66) is cumbersome and slow on any computer.

Some of the solutions for obtaining the pressure distribution and subsequent forces

on the hypersonic vehicle require solving nonlinear equations. A more implementable

aircraft model is obtained through the transformation of the above system to the

stability axis and then the subsequent curve fitting of the forces and moments to that

of an algebraic relation. This increases the ease of implantation of the aircraft model,

and greatly reduces computation time. Equation (2.66) can be transformed to the

stability axis with the following coordinate transformation equations,

a = W/U

V2 = U2 + W 2

(2.68)
V = (UU( + WW)/V

& = (UW - WU)/V

where a is the angle of attack and V is the velocity of the HSV. The relationship

between the stability axes variables and body axes variables is illustrated in Figure2-8.

xU * .... L

z, W

Figure 2-8: Axes of the HSV



The transformation to the stability axes was performed and extra coupling be-
tween elastic variables and state derivatives was neglected in order to obtain the
following relations, [40]

V = (T cos a - D)/m - g sin 7

( = -(Tsin + L)/mV + q + gcosy/V)

S(y + f f + )aija)/Iyy

S= V sin 7 (2.69)

0 =q

kfijf -2 ~fwf f - wrlf + Nf - fM/Iy - f a7f/Iyy

kaija - 2 aWa]a O2a + Na - 2aMy/Iyy - V)f)aa/Iyy

where y = 0- a, kf = 1+ f /Iyy and ka = 1 + a/Iyy. In order to obtain the Thrust
T, Lift L, Drag D and Moment My the following expressions are used:

1
L = -pV 2 SCL

2
1

D = _PV 2 SCD
2

T = C0

1 (2.70)
M = zTT + -pV 2 SCCM2

Nf CN

Na =CN



with the above coefficients C(.) defined as follows:

CL = CLc + CCe + C 6c + C C

Cm = 2 + Cr + C" + Ce 6 CM o

CD = C 2 2 + C2 ! 2 C6 e + C D c + D+ D+ (271(2.71)
CT = (0P1 + /32)a3 + (/3 + 04)a + ( 5 + 6 + (07 + 08)

O Nf = 2+ Ca + 6, + c
fCN f Cf CNY Cf

CNa = CX22 + Cc' a + CN~o e +a

where S is the projected area of the HSV in the x-y plane, e is the average width of

the aircraft and p is the density of the air. The curve fitting of the aircraft model in

Equation (2.69) was performed by the authors in [40] and [20]. The coefficient values

used for implantation can be found in Table A.2.

It is clear from Equation (2.69) that there is significant coupling between the pitch

rate and the elastic states of the model. The complexity in turn poses a significant

challenge for developing a control design.

2.4.2 Design Model

Only the rigid-body states of the aircraft will be accessible for aircraft design and

it is not clear what role the unsteady or elastic effects will have on the aircraft. For

this reason the controller will be designed with no knowledge of such nonlinearities

or complexities, and will simply be robust with respect to the unknown states. Thus

the Design Model will have the following governing equations,

V = (Tcos a- D)/m - gsin-y

& = (-Tsin a - L)/mV + q + g cosylV)

4= My/Iy (2.72)

z = V sin y

= q.



The Design Model is obtained by simply removing the elastic effects from the aircraft

model in (2.69). It should be noted that Equation (2.72) is the set of governing equa-

tions for the decoupled longitudinal dynamics of any rigid aircraft.[45]1 The Thrust

T, Lift L, Drag D and Moment My have the same relations as the Evaluation Model

and are defined by Equations (2.70) and (2.71).

2.4.3 Actuator Dynamics

Actuator dynamics will also be incorporated into the design and evaluation models.

These can be described as follows:

= -2(4W - WOO + We 5 cmd

e = -2(6ws5 - W2e + W56e,cmd

c = --2(5w c - W6 c + W6 6c,cmd

with (0 = 1, O = 1, wo = 10 and we = 20.

1In Stengel's 2004 Aircraft Dynamics the equations of motion are found on page 240

(2.73)



Chapter 3

Controller Design

The control structure proposed has a combination of feedforward input, nominal

feedback, and adaptive feedback terms. The HSV model is linearized around a desired

trim point. Using the linear model an LQ regulator is then designed. Uncertainties

along with actuator saturation are then introduced and an adaptive control structure

is then explored that adjusts to the model uncertainties and maintains stability even

with the actuator saturation.

3.1 Linear Model

The underlying design model, described by the DM in (2.72) and the actuator dy-

namics in (2.73) can be expressed compactly as a nonlinear model

X = f(X, U), (3.1)

where X is the state vector and U contains the exogenous inputs ¢cmd and Je,cmd.

In order to facilitate the control design, we linearize these equations to obtain the

following:

2, = Apx + Bpu + E(t), (3.2)



where E is the linearization error, which is assumed to be small,

Saf(X, U)

x = - o,
XP = X - X01

B Of(X, U)
B, p-X=Xo OU x=xo

U=Uo U=Uo

and u = U - Uo.

The linear state xp contains the perturbation states, [AV Ac Aq Ah AO Aq AO Ase A6e] T

and u is the command input perturbation vector, [A4cmd A 6 e,cmd] T

Integral error states will be augmented to the linear model of the HSV for com-

mand following purposes. The reference command , r, will be given in h - V space

and is constructed as

r = [AVref Ahre]'T (3.4)

Denoting an output y = [AV Ah]T an integral error state e1 can be expressed as

e = f(y - r)d7 = f(Hxp - r)dr, (3.5)

where H is a selection matrix. In addition to error augmentation, the actuator inputs

will be explicitly incorporated into the linear model as states, and a new input v is

defined as

V = '. (3.6)

By augmenting both the command following error in (3.5) and actuator inputs in

(3.6) to the linear system in (3.2) the overall system to be controlled becomes,

, A, O B p O 0

e = H 0 0 e + 0 v + -Ir,
[ 000u I

A x B Bcmd

which can be compactly expressed as,

Jz = Ax + Bv + Bmdr.

(3.3)

(3.7)

(3.8)



3.2 Baseline Controller

The baseline controller is designed so that the output y will follow a given reference

signal r in the h-V space. At steady state it is clear that the error term ej will have

reached some constant value, so that e1 is now zero. With that, the plant state xP

will have reached some ideal x* with some ideal input u*, so that,

0 A pA, x[]=[ ] [] (3.9)

With the following construction,

G = A Bp

S 0 12 (3.10)
Gil G12

G21 G22

and with some algebra we find that,

X* = G12r (3.11)
U* = G 2 2 r.

We now define,

ip = Xp - p (3.12)
(3.12)

ft = U - U*

and collecting terms compactly,

= e' T IT (3.13)



The linear system of (3.8) can now been cast into that of an LQ regulator of the

following form,1

X = A + Bv. (3.14)

A linear quadratic cost function is then chosen as

J = (TQ + vTRv)d -T, (3.15)

where Q and R are suitably chosen positive definite matrices.2 The nominal feedback

gain is then selected as,

K = argmin{J(v, j, Q, R) Iv = Ki}. (3.16)
K

Through the expansion of ; the feedforward control gain can be extracted and leads

to a baseline control design of the following form:

v =KT3

=[Ki K 2 K 3] [ eT e T  T T
P (3.17)

=(-KIG12 - K 3 G22 )r + Klxp + K 2e + K au

=Kffr + KTX

Noting that the components of x include: state vector xp, the integral error er,

and control input u, it follows that the baseline controller has Proportional, Integral,

and Filter components. Leading to a PIF-LQ regulator as first introduced in [43] with

more details given in [44] and [45]. The PIF control structure is shown in Figures 3-1

and 3-2.

1The construction of - is covered in great detail in Reference [44] page 523 and PIF control
structure on pages 528-531.

2For more details pertaining to the values chosen for Q and R refer to Appendix C.
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Figure 3-1: PIF control structure

[33, 43, 44, 45]

Figure 3-2: Nominal control structure

3.3 Uncertainties and Actuator Saturation

We now introduce two classes of uncertainties, parametric and unmodeled. The for-

mer case is represented as

Ap,uncertain = Ap(A)

Bp,uncertain = BpA

where A is a vector that accounts for various aerodynamic uncertainties that may

occur causing the underlying aerodynamic forces and moments to be perturbed. The



specific construction of A is shown,

A = [Am AL AM ACC] T

where:

* Am: Multiplicative uncertainty in the inertial properties, m = Ammo, and Iy =

AmIyy,o where

* AL: Multiplicative uncertainty in lift, C = ALC ,o.

* AM: Multiplicative uncertainty in pitching moment, Cc = A CM,o.

* ACG: Longitudinal distance between the neutral point and the center of gravity

divided by the length 1 will be denoted as ACG. While a negative value of

ACG denotes that the CG has been moved backwards, positive values denote a

forward CG movement.

Capital lambda, A, is a 2x2 diagonal matrix that represents uncertainties in the

actuator that may occur due to damages or failures, leading to loss of effectiveness.

Unmodeled uncertainties include the flexible effects, which are neglected in the

design model, as well as time-delays, such as computational lags. If the unmod-

eled uncertainties and linearization errors are neglected, the underlying plant can be

expressed as

1i = Ap(A)xp + BpAu. (3.18)

In addition to the above uncertainties, our studies also include magnitude saturation

in the actuators. This is accounted for with the inclusion of a rectangular saturation

function R,(u) where the i-th component is defined as, [29]

Ui if Umini ui K Umaxi,

si Umaxi if Ui > Umaxi, (3.19)

Umini if Ui < Umini



for i = 1, 2.

A visual representation of the uncertainties and saturation effects is shown in Figure

3-3.

Am
Saturation Actuator Time

Failure\ Delay
Uncertainty UncertaintUncertainty

Figure 3-3: Uncertainty modelling

3.4 Adaptive Controller

In order to compensate for the modeling uncertainties, an adaptive controller is now

added to the baseline controller described in Section 3.2. We note that the adaptive

controller is designed so as to directly accommodate for the parametric uncertainties

while remaining robust with respect to the unmodeled uncertainties. The structure

of the adaptive controller is chosen as

baseline

v = Kffr + K X + (t)Tx (3.20)

nominal adaptive

The adaptive component of the controller is denoted, 0, as can be seen in (3.20) and

has the same dimension as the nominal feedback gain K. The adaptive component

augments naturally with the nominal controller and a visual interpretation of this

can be seen in Figure 3-4.

Combining the uncertain plant model in (3.18) with the integral state ej in (3.5),

the input-state in (3.6), the the saturation function in (3.19), and the overall baseline



Figure 3-4: Nominal with adaptive augmentation and uncertainty

and adaptive control input from (3.20), the closed loop equations are given by,

[1 Ap(A) O BA xe = H 0 0 e
I L K1 + 01(t) K2 + 2 (t) K3+ 3(t)

X A(A,A)+B(KT+O(t)T) x (3.21)

+ -I KIffr - 0 AuA,

Bcmd B1

where uA = u - R,(u), and in compact form reduces to,

= (A(A, A) + B(K + O(t)T))x + BcmdKffr - BlAuA. (3.22)

A reference model is chosen as

Xm = Amxm - Bmr. (3.23)

where Am and Bm are such that Am is a Hurwitz matrix, Bm = BcmdKff and AAm =

A(A, A) + B(KT + 9 *T) - Am is arbitrarily small. We note that due to the addition

of the integral action, it may not be possible to choose AAm to be zero for general



parametric uncertainties. Defining the state error e as,

e = x - Xm, (3.24)

we choose adaptive laws for adjusting the adaptive parameter in 3.20 as

= -Foxe PBsign(A) - aoO
U(3.25)

A = -xAdiag(uA)BlPe, - au

where ATP + PA T = -Q and Q = QT > 0. Also eu = e - ea where the auxiliary

error ea is defined as,

ea = Amea - Bldiag(A)uA. (3.26)

The auxiliary error represents the error that occurs do to saturation, and by sub-

tracting it from e we obtain a new error e,, which is the uncertainty do to parametric

uncertainty and unmodelled dynamics alone. In the above adaptive laws the P's are

design parameters that control the rate of adaptation, and the other design param-

eter a introduces damping into the laws. The choice of F was driven by an optimal

selection function defined in [17] with more details contained in Appendix C.

UJ Reference Xm

Figure 3-5: Error Modelling
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Chapter 4

Simulation Studies

In order to assess the robustness of the adaptive control scheme, several simulation

studies were performed. In the simulation studies the adaptive controller is compared

to the nominal controller under an uncertain plant flight condition. All of the simu-

lation begin with the HSV Evaluation Model in level flight at an altitude of 85,000

ft and travelling at Mach 8. The trim values for the HSV at this flight condition are

given in Table 4.1.

Table 4.1: Trim values for two input HSV model.

State Variable

V
a
q
h
0
TIf

rif
77a

't a

Trim Value

7850
0.0268

0
85000
0.0268
0.939

0
0.775

0

A similar approach to that shown in Equation (3.3) was performed on the Evalu-

ation Model. Using the state Jacobian and the input Jacobian matrices a pole-zero

plot of the transfer matrix from the control inputs 4 and 6e to V and y was generated

and is shown in Figure 4-1, with a zoom of the origin shown in Figure 4-2.

Units

ft/s
rad
rad/s
ft
rad
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Figure 4-1: Pole Zero Map for q6,e to Vy.

From the figures it is readily noticed that the HSV has an uncharacteristic short

period mode, and is therefore open loop unstable. In most aircraft the short period

mode is stable. The HSV lacks this stability because of the slender body and rear

controls. The Right Half Plane (RHP) zero arises from the interaction between the

elevator deflection, 3e, and the heading y. In order for the aircraft to increase the

euler angle the aircraft must first nose down, so as to gain speed, and then nose up. If

this counter intuitive procedure is not carried out and the aircraft is simply brought

nose up, then the speed of the aircraft will decrease and the aircraft will begin to

loose altitude. Zooming in on the origin of the P-Z map the slow Phugoid mode is

found along with a slightly unstable altitude mode.

Eight different sets of simulations are carried out in the this chapter. Four different

sets of uncertain plant dynamics will be controlled with both a nominal, non-adaptive,

controller and then once with an adaptive controller. The uncertain sets are numbered

1-4 with the non adaptive simulations prefixed with "N" and the adaptive simulation

results prefixed with "A". So for example, the first uncertain parameter set simulation

with a non-adaptive controller is denoted "NI".

The following four uncertain parameter sets are used, (uncertain parameters given
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Figure 4-2: Pole Zero Map zoom in at the origin.

in Table 4.2):

1. No uncertainty, nominal plant.

2. Decreased lift and moment coefficients along with the center of gravity moved

forward in the HSV. This scenario introduces a more stable aircraft, however

decreases the maneuverability of the HSV and will display the control algorithms

robustness with respect to saturation.

3. Same as (2) with a significant time delay.

4. Center of gravity moved backwards, leads to more unstable open-loop dynamics

as well as increase in the uncertain pitching moment coefficient.

For the simulation studies a filtered step command in altitude of 10,000 ft and a

filtered step command of 1,000 ft/s were given. The filter used to generate the smooth

commands is that of order two with a damping ratio of 1 and a natural frequency of

0.06 rad. The filtered commands are displayed in Figure 4-3.

The first set of simulations are introduced in order to compare how the adaptive

controller compares to the nominal controller when there is no uncertainty. The



Table 4.2: Simulation Study Uncertainty Selection.

Label 7 AL AM ACG

N1 0.00 1.0 1.0 0.00
Al 0.00 1.0 1.0 0.00
N2 0.00 0.8 0.8 0.03
A2 0.00 0.8 0.8 0.03
N3 0.06 0.8 0.8 0.03
A3 0.06 0.8 0.8 0.03
N4 0.00 0.4 1.8 -0.16
A4 0.00 0.4 1.8 -0.16

100
t (sec)

100
t (sec)

150

150

Figure 4-3: Reference command in h-V space.

command following errors for the N1 and Al simulations are shown in Figure 4-4 and

the control input signals are displayed in Figure 4-5. The first thing to notice from

the simulation results for no uncertainty is that the adaptive and nominal results

are indistinguishable with the naked eye. This is desirable as at nominal conditions

the adaptive controller should not contribute to the control scheme. It can also be

verified that the adaptive controller is not contributing to the overall control scheme

by inspecting the adaptive parameter time history shown in Figure B-10. Another

characteristic of the simulation study that is readily noticeable is the highly oscillatory

response. The low frequency lightly damped oscillations are a consequence of the

elastic poles as seen in the P-Z map, Figure 4-1. Recall that the control scheme

9.5

9

8.5

0

0C.)

9000

8500

8000

200

200

r
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Figure 4-4: Command following errors for N1 and Al simulation studies.

employed, whether nominal or adaptive, neglects the elastic states and this work

relies on the fact that the control structure employed is simply robust with respect

to elastic effects. Simulation results for the HSV model with rigid-body dynamics,

only, does not display such severe oscillatory behavior.

The second uncertainty scenario introduces uncertainty in the aero coefficients

as well as uncertainty in the center of gravity location. As previously mentioned,

1.5
--- Nominal

-- 1 Adaptive
E 0.5

0
0 50 100 150 200

t (sec)

0.6

0% 0.2

0

0 50 100 150 200
t (sec)

Figure 4-5: Control input for N1 and Al simulation studies.



this scenario was introduced with the purpose of initiating saturation in the control

inputs. The command following error time plots and control inputs for the N2 and

A2 studies are shown in Figures 4-5 and 4-6 respectively.

100

0

-100

0
:,

0

20

0

-20
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150
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Figure 4-6: Command following errors for N2 and A2 simulation studies.
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0
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Figure 4-7: Control input for N2 and A2 simulation studies.

The adaptive controller and nominal controller generate similar initial transients.

However, as time progresses the adaptive control results limit cycle for shorter and

shorter periods of time, while the nominal controller limit cycles until the angle of

I - Nominal

S ,I - - - Adaptive-



attack departs severely and the simulation is stopped. The adaptive parameters, as

seen in Figure B-20, adjust in a stable fashion even during saturation because of the

use of the augmented error dynamics e, as shown in Figure (3-5). If the generic

reference model error e were used instead of e, the adaptive controller would not

perform as well during saturation.

The uncertain scenarios of A2 was then modified for uncertain scenario 3. The time

delay r was increased from 0 in increments of 0.01s until the adaptive control structure

failed. The adaptive algorithm was stable from 0.00s to 0.05s of time delay, until

ultimately the adaptive controller failed with a time delay of 0.06s. The command

following error and control inputs for N3 and A3 are shown in Figures 4-8 and 4-

9. The adaptive controller illustrates better tracking and less saturation than the

nominal controller during the first 40 seconds of the simulation. However, the time

delay is too large and leads to an unbounded response from the nonlinear controller.

60 milliseconds of uncertain time delay is rather significant however. Time delays

within the control hardware of large transport vehicles can be on the order of 40-80

milliseconds. For hypersonic vehicle this value is expected to be much lower.

The last uncertainty scheme introduces and obscure scenario. The uncertain pa-

rameters are rather large, in fact, larger than they are in scenario 2. Yet the adaptive

200
7 7 I'i- Nominal

S- -- Adaptiveo: 0

-200
0 50 100 150 200

t (sec)

2 50

0o

" -50
0 50 100 150 200

t (sec)

Figure 4-8: Command following errors for N3 and A3 simulation studies.
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Figure 4-9: Control input for N3 and A3 simulation studies.

controller and nominal controller results are indistinguishable. The command follow-

ing error and control inputs for N3 and A3 are shown in Figures 4-10 and 4-11.
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Figure 4-10: Command following errors for N4 and A4 simulation studies.

The reference model error was not large enough to instigate changes in the adaptive

parameter, see Figure B-40. This illustrates the fact that the uncertain parameter

space does not map intuitively to the failure domains for the adaptive or non adaptive

algorithms. Therefore, it is difficult to assess the overall performance of the adaptive

"~\ ---------
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Figure 4-11: Control input for N4 and A4 simulation studies.

algorithm. This leads to Chapter 5, where a more rigorous approach for controller

validation is performed.
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Chapter 5

Control Verification, A different

Approach

In order to have a better assessment of the improvement in performance with the

adaptive controller, we use tools that have been developed in [16] and [15] . In order

to make the exposition self contained, the tools developed in [16] and [15] are briefly

explained below.

5.1 Mathematical Framework

The parameters which specify the closed-loop system are grouped into two categories:

uncertain parameters which are denoted by the vector p, and the control design

parameters which are denoted by the vector d. While the plant model depends on

p, the controller depends on d. The Nominal Parameter value, denoted as p, is a

deterministic estimate of the true value of p. Stability and performance requirements

for the closed-loop system will be prescribed by the set of inequality constraints

g(p, d) < 0. For a fixed d, the larger the region in p-space where g < 0 the more robust

the controller. The Failure Domain corresponding to the controller with parameter d



is given byl

. (d) = {p : gj (p, d) > 0}, (5.1)

dim(g)

F(d)= U F (d). (5.2)
j=1

While Equation (5.1) describes the failure domain corresponding to the jth require-

ment, Equation (5.2) describes the failure domain for all requirements. The Non-

Failure Domain is the complement set of the failure domain and will be denoted2 as

Y'. The names "failure domain" and "non-failure domain" are used because in the

failure domain at least one constraint is violated while, in the non-failure domain, all

constraints are satisfied.

Let a reference set where the parameter p lies be given by the hyper-rectangle,

R(P, n) = {p : - n < p < p + n} . (5.3)

where n > 0 is the vector of half-lengths. One of the tasks of interest is to assign a

measure of robustness to a controller based on measuring how much the reference set

can be deformed before intersecting the failure domain.

In what follows we assume that g(p, d) < 0. We define a Critical Parameter Value,

CPV, as the point where the deforming set touches the failure domain. The CPV

corresponding to the deformation of R(p, n) for the jth requirement is given by

= argmin { p - pll : gj(p, d) > 0, Ap 2 b}, (5.4)

where Ijx I = supi{xi /ni} is the n-scaled infinity norm. The last constraint is

used to exclude regions of the parameter space where plants are infeasible and/or

uncertainty levels are unrealistic. The overall CPV is

= k, (5.5)

'Throughout this paper, super-indices are used to denote a particular vector or set while numerical
sub-indices refer to vector components, e.g., pi is the ith component of the vector p.

2 The complement set operator will be denoted as the super-index c.



where

k = argmin {(lp - Pl}. (5.6)
1<jdim(g)

Hence, once the CPV for each individual constraint function is solved for, the overall

C"PV is the closest of these CPVs to the nominal parameter point according to the

n-scaled infinity norm.

The size of the deformed set is proportional to Rectangular PSM, which is defined

as

p = &llnl, (5.7)

where & = - P|, referred to as the critical similitude ratio, is non-dimensional,

but depends on both the shape and the size of the reference set.[14] The PSM has

the same units as the uncertain parameters, and depends on the shape, but not the

size, of the reference set. If the PSM is zero, the controller's robustness is practically

nil since there are infinitely small perturbations of p leading to the violation of at

least one of the requirements. If the PSM is positive, the requirements are satisfied

for parameter points in the vicinity of the the nominal parameter point. The larger

the PSM, the larger the hyper-rectangular vicinity.

5.2 Hypersonic Vehicle Uncertainty

The following uncertain parameters will be considered in subsequent analysis

1. Multiplicative uncertainty in the inertial properties: Am C (0, 2].

2. Multiplicative uncertainty in lift: AL C (0, 2].

3. Multiplicative uncertainty in pitching moment: AM E (0, 2].

4. Time delay 7 in both plant inputs, where T7 (0, 0.04].

5. Longitudinal distance between the neutral point and the center of gravity AcG C

[-0.1, 0.1].



The reference set Q for p = [Am, AL, AM, T, ACG] to be used is a hyper-rectangle with

aspect vector n = [1, 1, 1, 0.04, 0.1] and nominal parameter point 1 = [1, 1, 1, 0, 0].

Note that n determines the relative levels of uncertainty among parameters, e.g.,

there is 0.04/0.1 more uncertainty in the CG location than in the time delay.

A set of closed-loop requirements is introduced subsequently. Lets define the

vector of signals

h(p, d, t) =[V(p, d, t) - 10g, ja(p, d, t)l - 0.2, (5.8)

el,1 (p, d, t) 12 - q ei,1(p , dbase, tf) 112, (5.9)

Iel,2 (P d, dt) 2 - q eI,2(p, dbase, tf)112], (5.10)

where e1,1 is the velocity error, el,2 is the altitude error, q is a real number larger than

one, dbase refers to the baseline controller, and tf is a sufficiently large integration

time. This vector enables the formulation of the following set of requirements:

1. Structural: the load factor must not exceed 10, i.e., gi = maxt{hi}.

2. Stability and engine stall: the angle of attack must stay in the ±0.2 rad range,

i.e., g2 = maxt{h 2}.

3. Tracking performance in velocity: the tracking error must not exceed a pre-

scribed upper bound, i.e., g3 = h3 (t = tf).

4. Tracking performance in altitude: the tracking error must not exceed a pre-

scribed upper bound, i.e., g4 = h4(t = tf).

In the studies that follow we will evaluate the robustness characteristics of both

controllers for several subsets of [Am, AL, AM, 7, ACG]. Parametric studies indicate

that the trim-ability condition max {umax - Uo, Uo - Umin}, where f(Xo, Uo, p) = 0 for

the saturation limits Umax and umin, is satisfied for all the values of p in the range of

interest.



5.3 Baseline Controller Analysis

Table 5.1 provides the CPVs corresponding to each individual uncertain parameter for

the baseline controller. The critical requirement corresponding to Am, AL, AM, T, and

AG, are 94, 92, g1 , 91, and g4 respectively. Note that ACG is the critical parameter and

g4 its most critical requirement. The PSM and the CPV corresponding to p = [7, ACG]

are equal to p = 0.02564 and P = [0.0095, -0.02381]. As with the 1-dimensional case,

the critical requirement is gl. In the case where p = [Am, AL, AM, 7, ACG], the PSM,

the CPV and the critical requirement are p = 0.150, p = [1.086, 0.913, 0.962, 8.4 x

10-11, -0.0086] and g4.

Table 5.1: 1-dimensional CPVs for dbase.
-1 -2 -3 -4

p p p p

p = [Am] 1.1847 1.1847 1.1845 1.1843
p = [AL] 0.5187 0.5184 0.6540 0.7036

p = [AM] 0.3670 0.3670 0.3897 0.4015
p = [] 0.0310 0 0.0362 0.0362

p = [ACG] -0.0246 -0.0246 -0.0242 -0.0240

5.4 Adaptive Controller Analysis

Table 5.2 shows the 1-dimensional CPVs associated with the adaptive controller.

The critical requirements corresponding to Am, AL, AM, T, and ACG, are now 91, 94,

94, 91, and g4. This set of critical requirements differs from that of the baseline.

As before, the critical parameter is ACG and its most critical requirement g4. The

PSM and the CPV corresponding to p = [7, ACG] are equal to p = 0.02845 and

p = [0.0090, -0.0264]. As with the 1-dimensional case, the critical requirement is

94. In the case where p = [Am, AL, AM, T, ACG], the PSM, the CPV and the critical

requirement are p = 0.145, P = [1.083, 0.916, 0.963, 8.1 x 10-11, -0.009] and g4.



Table 5.2: 1-dimensional CPVs for dadaptive.

P P2 p3 p4
p = [Am] 0.7674 1.2347 0.7643 0.7610
p = [AL] 0.4606 0.4606 0.6005 0.6866
p = [AM] 0.2271 0.2271 0.2865 0.3629

p = [7] 0.0300 0.0316 0.0312 0.0312

p = [ACG] -0.0293 -0.0293 -0.0286 -0.0267

5.5 Comparative Analysis

The improvements in robustness resulting from augmenting the baseline controller

are shown in Table 5.3. The data in Tables 5.1 and 5.2 fully determine Table 5.3.

The adaptive controller attains better margins in the Am, AL, AM, and Ac0 directions.

While the Am direction leads to the largest improvement, 7 produces the only drop.

This situation illustrates the tight dependence that exists between any robust control

assessment method and the uncertainty model assumed. Note that the critical pa-

rameters and the critical requirements corresponding to dbase coincide with those of

dadaptive. Overall the augmented control architecture attains sizable improvements in

all but one of the cases. Since multi-dimensional cases are more realistic, the adoption

of the adaptive controller is well justified.

Table 5.3: Relative PSM improvement.

Padaptive _ 1 100%
Pbaseline

p = [Am] 26.2%

p = [AL] 5.7%

p = [A] 6.5%
p = [7] -3.2%

p = [Acc] 11.2%
p = [T, AcG] 7.7%

p = [Am, AL, AM, T, ACG] 8.2%

The parameter space p = [T, l] for the adaptive controller is shown in Figure 5-1.

The non-failure domain, which contains the nominal parameter point, is colored in



green while the failure domain is in red. The boundaries of individual failure domains,

are also shown. A dotted white line denotes gl = 0, a solid black line g2 = 0, a short-

dashed yellow line g3 = 0, and a long-dashed blue line g4 = 0. Note that FC(dbase)

is delimited by the boundaries of F1 and T4 only. A comparison between FC(dbase)

(not shown) and .FT(dadaptive) indicates improved robustness to CG uncertainty, and

smaller robustness to time delay. Note the high sensitivity of the time delay margin

to the CG location. In both controllers, such a margin increases as the CG moves

forward from the its nominal position. Large movements however, reverse this trend.

Both controllers exhibit a sudden drop in time-delay margin close to ACG = -0.025.

Such a drop is caused by the violation of the tracking performance requirement.

0.

E

-0,

0 0.005 0.01 0.015 0.02 0.025 0.03

Time delay r, [s]

Figure 5-1: Failure and non-failure domains for the adaptive controller.
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Chapter 6

Conclusions

An adaptive controller was proposed for a hypersonic vehicle at cruise conditions. The

HSV was subject to aerodynamic uncertainties, center-of-gravity movements, actu-

ator saturation and failures, and time-delays. The adaptive algorithm was designed

so as to account for modelled uncertainties and remain robust with respect to time

delays and elastic effects. The control design was then evaluated using a highfidelity

HSV model that considers structural flexibility and thrust-pitch coupling. Time sim-

ulations showed the relative improvements in stability gained with the addition of the

adaptive algorithm. The level of improvement over the entire uncertainty set was not

clear, however. This lead to an elaborate analysis scheme using a stand-alone con-

trol verification methodology. The analysis indicated sizable improvements in robust

performance resulting from adding an adaptive component to the baseline controller.

With the exception of the time-delay margin, where a slight drop in robustness takes

place, the region of safe performance was enlarged in all other one-dimensional and

multi-dimensional directions of the uncertain space considered. This is particularly

remarkable since the parameters and architecture of the adaptive controller were not

tailored according to the closed-loop requirements.
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Appendix A

Tables

Table A.1: Geometry of Aircraft.

Variable Value Units Variable Value Units

1 100 ft xc 15 ft
if 47 ft ze 0 ft

lu 20 ft Xe 85 ft

la 33 ft Ze 3.5 ft
hi 3.5 ft Se 17 ft2 . ft- 1

Ae 5 ft 2 . ft- 1  55 ft
Ad 2 - 2 0 ft

A, 6.35 - m 100 slugs x ft- 1

T1, 3 deg rnf 47 slugs/ft x ft - 1

T i, 6.2 deg Mh 20 slugs/ft x ft- 1

72 14.41 deg



Aerodynamic Coefficients. [40, 20]

Variable

El

IY
ZT

Sc
Se

cL

C L

Co
C 2

CD

CD

C6

C6C

C6c

C

C M

Units

lbf.ft 2 x ft - 1

slugs .ft2/rad
ft
ft 2 X ft - 1

ft 2 x ft - 1

ft

rad- 1

rad- 1

rad- 1

Value

4.6635 x 108
8.6722 x 104
8.3600 x 100
1.7000 x 101
1.7000 x 101
3.5000 x 101

4.6773 x 100
7.6224 x 10-1
9.2176 x 10-1

-1.8714 x 10- 2

-4.5315 x 10-2
5.8224 x 100

2.7699 x 10- 4

8.1993 x 10-1
-2.2416 x 10- 16

1.1859 x 100
1.0131 x 10- 2

2.1335 x 100

6.2926 x 100
-1.2987 x 100

2.7326 x 100
1.8979 x 10-1

rad- 1

rad - 2

rad-'
rad - 1

Ca 1.4013 x 103 lb.slug-o.rad - 2  f - 1

C0 f 4.5737 x 103 lb.slug-0.-rad - 1 x ft- 1

CC 5.0000 x 102 lbslug- 5 .rad - 1 x ft

C 1.1752 x 102 lb-slug-0.5 x ft- 1

C a  -5.0227 x 103 lb.slug- 0 .-rad -2 x ft-1

C~v 2.8633 x 103 lb.slug- 0 5 .rad- 1 x ft-1

CZ 1.2465 x 103 lb-slug 0- 5.rad - 1 x ft-1

C ON" -4.4201 x 101 lb.slug- 0 x ft- 1

/11 -3.7693 x 105 lb-rad - 3 x ft- 1

32 -3.7225 x 104 lb-rad - 3 x ft- 1

/33 2.6814 x 104 lb-rad - 2 x ft- 1

/34 -1.7277 x 104 lb-rad - 2 x ft-1

/35 3.5542 x 104 lb-rad - 1 x ft-1

06 -2.4216 x 103 lb-rad - 1 x ft-1

/7 6.3785 x 103 lbxft-'
/38 -1.0090 x 102 lbxft-1

rad- 1

rad- 2

rad- 1

rad- 2

rad- 1

rad- 2

I

Table A.2: Physical Constants and



Table A.3: Trim values for two input HSV model.

State Variable Trim Value Units

V 7850 ft/s
a 0.0268 rad
q 0 rad/s
h 85000 ft
0 0.0268 rad
rf 0.939

oI 0
T/a 0.775
'ia 0

Table A.4: Eigenvalues and Modes of HSV.

Eigenvalue Mode

-0.310 ± 17.6i Forward Aero-elastic
-0.253 ± 14.3i Aft Aero-elastic
+1.73, -1.80 Short Period

-8 x 10- 4 + 0.0423i Phugoid
8.2 x 1014 Altitude
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Appendix B

Figures

Table B.1: Simulation Study Uncertainty Selection.

Label T AL AM ACG

N1 - Appendix B.1 0.00 1.0 1.0 0.00
Al - Appendix B.2 0.00 1.0 1.0 0.00
N2 - Appendix B.3 0.00 0.8 0.8 0.03
A2 - Appendix B.4 0.00 0.8 0.8 0.03
N3 - Appendix B.5 0.06 0.8 0.8 0.03
A3 - Appendix B.6 0.06 0.8 0.8 0.03
N4 - Appendix B.7 0.00 0.4 1.8 -0.16
A4 - Appendix B.8 0.00 0.4 1.8 -0.16
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Figure B-1: NI Control inputs.
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B.2 Simulation Study-Al
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B.3 Simulation Study-N2
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B.6 Simulation Study-A3

1.5 1 1

1

0.5

0 - I-- -'- -

0 20 40 60 80 100 120 140 160 180 200
t (sec)

0.5

-0.5

0 20 40 60 80 100 120 140 160 180 200
t (sec)

Figure B-26: A3 Control inputs.

t (sec)

6 8 vv llv (e

-20
0 20 40 60 80 100

t (sec)
120 140 160 180 200

Figure B-27: A3 Command following error.

U
U>

0
U



'9000

8000

7000 ' I I I
0 20 40 60 80 100 120 140 160 180 200

0.2

0

-0.2 ~ffiI I

0 20 40 60 80 100 120 140 160 180 200

0.2

-0.2
0 20 40 6(
x 10

4

101

I I I

) 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

0.05

0

-0.05 ,
0 20 40 60 80 100

t (sec)
120 140 160 180 200

Figure B-28: A3 Rigid states.

0

0

0.2

0

-0.2

.... i I

----

I I ,

1 I



6000

4000

2000

0

-2000

-4000

-6000

15

10

-10'
0

0 10 20 30 40 50
t (sec)

Figure B-29: A3 Loading Factor.

30
t (sec)

Figure B-30: A3 Adaptive parameters.

x ~ ~^U. .U~b~--~ ----- ----- ----- -~

I I



B.7 Simulation Study-N4
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B.8 Simulation Study-A4
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Appendix C

Control Design Parameters

The values used for control design are outlined in this section. For ease of notation

several MATLAB functions were used, such as: diag, eye, and zeros.

The nominal control design involves the selection of the LQR cost function weight-

ing parameters from Equation (3.15). The values used for the weighting parameters

are as follows,

R = diag([10 3 0 0 ]T) (C.1)

Q = czT Q .Cz, (C.2)

where

Cz = [eye(13,13); [0 -1 0 0 1 0 0 0 0 0 0 O 0]] (C.3)

Qz = diag([0 1 10 0 1 0 0 00 le - 1 le - 1 1 10 I]T). (C.4)

The reference model was selected as the nominal uncertain plant from Equation (3.7)

along with the nominal feedback control gain as determined from (3.16). The reference

model state jacobian is thus selected as

Am = Anominal + BnominalK T , (C.5)
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with the reference model input jacobian chosen as

Bm = BcmdKff. (C.6)

The adaptive parameter, Q was selected as,

Q = diag([10 1 0.01 1 10 1 1 10...

0.01 1. 100.1 1. 100.1 0.01 1]T).
(C.7)

The adaptive rate parameter for 0 was chosen using the following law,[[17]]

( supj=1,20,j IF. = diag i 1, 2 ... n
S-MIIX*ll JjjB P jje,

(C.8)

where 0* is the ideal gain as found in the text following (3.23), x* is the steady state

value of of the state vector x after a given reference command, and Tm is the is the

smallest time constant of the reference model. Using the above law and then scaling

back the adaptive rate term down by 5 factors of 10 the following value was used.

Fo = diag(10 - 5 . [0.000000009623494 1.056823857761001 0.575672230351999

0.000000000127155 0.961929999054892 0.044689434889676

0.026054856539231 0.038185101027099 0.160275373463354

0.000399037265467 0.000001849335504 0.007608541778292

0.01 19 14 9 5 8 5 9 73 3 0]T)

The other adaptive control design parameters are as follows:

o = zeros(13, 13)

FA = diag(1 * 10-6 * ones(2, 1))

o = zeros(13, 13)
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