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Abstract

Creatures in nature have subtle and complicated interactions with their surrounding
fluids, achieving levels of performance as yet unmatched by engineered solutions.
Model-free reinforcement learning (MFRL) holds the promise of allowing man-made

controllers to take advantage of the subtlety of fluid-body interactions solely using

data gathered on the actual system to be controlled. In this thesis, improved MFRL
algorithms, motivated by a novel Signal-to-Noise Ratio for policy gradient algorithms,
are developed, and shown to provide more efficient learning in noisy environments.
These algorithms are then demonstrated on a heaving foil, where it is shown to

learn a flapping gait on an experimental system orders of magnitude faster than the
dynamics can be simulated, suggesting broad applications both in controlling robots

with complex dynamics and in the study of controlled fluid systems.
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Chapter 1

Introduction

The interactions between birds, insects, fish and the fluids surrounding them are ex-

ceptionally subtle, complex and critical to survival. This complexity arises both from

the large number of degrees-of-freedom (DOF) and from the sophistication of the

governing dynamics. While the robotics community has addressed the problem of

high-DOF systems well, neither the motor learning community nor the controls com-

munity has a solution to the problem of complexity of dynamics. However, animals

possess an amazing ability to perform well in environments of great dynamic com-

plexity. There is evidence that these creatures learn the intricacies of their controllers

through experience, a practice in sharp contrast with the model-centric approach

used by humans. Birds do not solve Navier-Stokes when they make use of the rich-

ness of fluid dynamics, but rather learn controllers which, in the case of locomotion,

we believe to be much simpler and more compact than the systems they control.

The task of learning, however, is fraught with its own set of difficulties. In the

case of problems involving fluid-body interactions, modeling the system is a difficult

task in and of itself, and can be computationally prohibitive or limited to a small

regime in which the model is valid. A possible answer to this is to use model-free

reinforcement learning (MFRL) algorithms applied to actual experimental sys-

tems. These algorithms, however, tend to be data limited, and are thus forced to



make as much use as possible of every evaluation performed on the system they are

trying to control. As one wishes to take this data on an actual robot, these eval-

uations can be highly stochastic and extremely expensive. Finally, if one wishes to

make an argument for the biological plausibility of the learning methodology, it must

be possible to implement the algorithm on a robot during operation without artifi-

cial stops-and-starts between trials. This requirement of online learning imposes

many additional demands on the learning algorithm used, but can in turn offer many

benefits. With online learning policies can converge much faster, and if the robot is

used to accomplish some functional purpose, it need not stop performing its task to

learn, but rather can simply adapt to its (possibly changing) surroundings as it does

its job. However, it must also continue to function reasonably well even as it explores

different policies, and be capable of connecting a result with the action or actions

that caused it, a non-trivial task in complicated systems.

The goal of this work, then, is to present the methodology by which the difficulties

inherent in online MFRL were overcome in the context of a rich and sophisticated

fluid system that acts as a model of flapping flight. To this end, this thesis is divided

into seven parts, with the intent that the significance of the fluid system be shown

to exceed that of a test bed for MFRL algorithms, and that the utility of the newly

developed Improved Signal-to-Noise Ratio (ISNR) algorithms is shown to extend

to a broad class of problems of which this fluid system is simply one instance. The

purpose of each section is as follows:

* Introduction - To present the problem and anticipate some of the key points

in the sections that follow, in addition to providing a place for this handy list.

* Previous Work - To discuss the extensive literature relating to both aspects

of this work: the control and analysis of flapping flight and the improvement of

the performance of MFRL algorithms.

* Experimental Setup - To introduce the system (a simple model of forward



flapping flight) on which learning was performed, and shed some light on the

richness of this fluid system's dynamics.

* Learning Algorithms - To develop the MFRL algorithms which allowed for

learning to be performed efficiently on a noisy, nonlinear physical system, and

discuss the theoretical foundations which suggest further algorithmic improve-

ments.

* Learning on the Flapping Plate - To demonstrate the successful application

of these algorithms to the experimental flapping system, and show that these

powerful and theoretically appealing techniques work in the real world.

* Conclusion - To reflect on the significance of these results, and what they may

say about how animals learn to swim and fly.

* Derivations - To contain some of the more involved of the nitty-gritty math-

ematical details that underpin this work.
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Chapter 2

Previous Work

Both fluid dynamical studies of flapping flight and reinforcement learning possess ex-

tensive literatures while remaining dynamic fields of continuing research. The present

work, which follows several other examples of applying reinforcement learning to

physical robotic systems [35, 24, 28], exists in both fields, and thus must be placed

in context in both realms. To this end, the relevant aspects of the two fields will be

briefly reviewed, with special attention paid to stroke optimization in flapping flight

and variance reduction measures in MFRL.

2.1 Flapping Flight in Fluid Dynamics

The study of flapping flight in fluid dynamics has a long history [19, 14, 37, 13],

and continues to be a vibrant field of investigation [41]. It will not be attempted to

summarize the extensive literature here, but rather the work most relevant to this

thesis - that on simple experimental flapping models and stroke optimization - will

be briefly discussed.



2.1.1 Simple experimental flapping models

Dynamically scaled experimental flapping models have greatly contributed to the

understanding of flapping flight. The fluid dynamics of fish locomotion have been

examined closely using swimming foils and robotic fish [38, 2, 5]. The long-running

question of the means by which insects generated enough lift to fly has been greatly

assisted by experiments on dynamically scaled systems [15, 10, 31, 11, 1]. Finally,

the dynamics of flapping flight at the scale of birds has also been illuminated by very

simple experimental models, with thrust-producing mechanisms examined on simple

rigid wings [40, 39]. This last system is of particular importance to this thesis as it

was on this system that learning was implemented.

2.1.2 Stroke optimization

Existing work on optimizing strokeforms for flapping flight has focused on theory and

simulation, with much of the difficulty arising from obtaining models rich enough

to describe the dynamics in the relevant regime, and simple enough to be compu-

tationally or analytically tractable. Hall and Pigott [17] developed and optimized a

model of a flapping wing using a specialized method tied to the model itself. This

method converges quickly, but requires a mathematically tractable description of the

dynamics. Berman and Wang [9] optimized stroke kinematics for a simulated model

of a hovering insect using genetic algorithms (GA) and Powell's method. These op-

timization techniques have broad application, but are not well-suited to being run

in real-time (due to the need to cycle through possibly very different members of

a GA's population). While both of these works provide insight into the mechanics

of flapping, both depend upon efficient and trustworthy models, and neither offers

a plausible mechanism by which animals obtain a mastery of control in fluids over

the course of their lifetime, although it does offer a plausible mechanism by which

creatures could improve their control over generations.



Barrett et al. [6, 4] did perform an experimental optimization of a swimming gait

on a robot fish in a tow-tank using a GA, a process which avoids the problems intro-

duced by optimizing a modeled system. This optimization used a seven parameter

policy representation (reduced from fourteen using a model of the swimming kine-

matics), and achieved convergence in appoximatly 100 evaluations (500 minutes) [6].

However, this technique required that each policy be evaluated on a separate experi-

mental run, thus losing the improved learning performance offered by online learning.

Also, while a GA can be an effective optimization tool, it is not a biologically plausible

means for an individual animal to learn.

2.2 Reinforcement Learning

The fundamental task of reinforcement learning (RL) is to obtain a policy 7r that

minimizes a given cost function (or, equivalently, maximizes a reward function) on

a certain system over a certain period of time. The policy is generally assumed to be

determined by a parameterization 0. It is by changing this 0 that the behavior of the

policy is controlled.

Minimizing this cost function can be done for a specified finite period of time

(finite horizon problems) or for all time (infinite horizon problems). There are

two basic approaches, value function methods and policy gradient methods.

Both of these methods can suffer from poor performance as the problem's dimension

increases, and in particular value function methods struggle with large state spaces

(some of the dimensionality issues can be dealt with using function approximation,

but this introduces seprate issues regarding the approximator's stability). Because

of this, in many applications policy gradient methods are used in conjunction with

variance reduction techniques, which can greatly speed convergence. Attempts

to reduce variance and the time taken during learning resulted in a combination of

value function and policy gradient methods, creating actor-critic methods, a set



of techniques that can provide many benefits over either technique individually.

2.2.1 Value function methods

Value function methods learn either a value function VW(s) which assigns a cost to

a given state s when executing the policy ir, or an action-value function Q"(s, a),

which assigns a value to taking a specific action a from state s. This value depends

on both the immediate cost (given by the cost function) and the future cost (resulting

from following the policy 7r until the end of the trial, whether it be the finite horizon or

to infinity). Each algorithm attempts to estimate this future cost, and thus obtain an

accurate picture of how favorable (or unfavorable) certain states are. Value function

methods can be very useful, as they provide a feedback policy via the value function.

Their utility is limited, however, by the difficulty of scaling them to large state spaces.

Those algorithms with guaranteed convergence do not scale well to high-dimension

state spaces due to computational costs, while those using function approximation to

scale more efficiently have no guarantees of convergence and several trivial examples

where they diverge. Four of the most significant value function methods will be briefly

discussed here: Value Iteration, SARSA, Q-Learning and TD(A).

2.2.1.1 Value iteration

Value Iteration(see [34] Section 4.4)is an extremely powerful algorithm that can be

usefully applied to low-dimensional problems that have accurate models. It begins

with an estimate of the value function (often all zeros will suffice) over a discrete

state space (continuous state spaces must be discretized), and evaluates the expected

value of every action at every state (except for certain special cases, the available

actions must also be discretized, if they are not already). This expectation is clearly

dependent on the current value function estimate of other states, and thus multi-

ple iterations must be performed for it to converge to the true value function. The

benefit to this technique is that globally optimal feedback policies may be found, as



the value function allows the best action in each state to be determined. It must be

remembered, however, this the value function is for the discretized system. While in-

terpolation (e.g., barycentric as in [27] or volumetric) allows application to continuous

state spaces, in practice value functions and the associated optimal policies can be

somewhat off from the actual optima, a result of the discretization, and interpolaters

inability to resolve cusps and discontinuities sufficiently well.

2.2.1.2 SARSA

SARSA (State-Action-Reward-State-Action, see [30] for its introduction, and [34]

Section 6.4 for a more unified view) is designed to perform on-policy learning of a

'Q function', which is a function of both state and action (note that this Q function

can be much larger than the same problem's value function, and thus take longer to

learn). It is then possible to update the policy greedily (or e-greedily) based upon this

Q function, which will in turn cause a new Q function to be learned, until ultimately

the Q function converges. It is important to note that the Q function learned will be

tied to the policy that developed it, and thus as the policy changes, the Q-function

being learned also changes. The optimality of this Q function depends upon, in the

limit, visiting all states and trying all actions an infinite number of times, and the

policy converging to the greedy policy. This can be achieved by choosing e-greedy

actions with the c approaching zero as t approaches infinity, and assuming that the

dynamics are ergodic.

2.2.1.3 Q-Learning

Q-Learning (see [34] Section 6.5 and [42]) offers the exciting ability to perform off-

policy learning. The goal of the algorithm is (like SARSA) to learn the Q function,

but as it is an off-policy method, it is capable of using information learned from one

policy to help determine the Q function of another policy. This allows the estimated

Q function to converge toward the true optimal Q function regardless of the cur-



rently executing policy. A policy can then be derived from this Q function, and as

the Q function converges the derived policy will become optimal. An issue is that

exploration requires e-greedy actions to be chosen, and thus the policy derived from

the Q function may not actually be optimal given this non-deterministic action selec-

tion (causing a situation in which SARSA may perform significantly better, as the Q

function it learns takes into account the e-greedy selection of actions). This can be

resolved by decreasing E with time, reducing exploration and exploiting more of what

has already been learned.

2.2.1.4 TD(A)

TD(A) (see [34] Chapter 7 and [33]), an algorithm again learning a value function

V(s) rather than an action-value function Q, introduces the concept of an eligibility

trace. The eligibility trace is an idea with broad application, and can be used in

the context of Q-Learning and SARSA as well. The fundamental idea is to assign

credit or blame for the current performance of the system to states or actions in the

past. In the case of TD(A) this takes the form of storing an exponentially decreasing

eligibility for each state visited in the past, with the eligibility very high for recent

states, and very low for distal states. The eligibility decreases as A' where n is the

number of steps since a state was visited. This mechanism is the causal functional

equivalent of having the cost at a state be an exponentially decreasing sum of the

costs at all future states. This algorithm can allow for much more efficient learning

of an approximate value function (approximate because of the discounting caused by

A < 1), and has been successfully applied to a number of problems (perhaps most

famously to backgammon in [36]). The idea of eligibility traces, however, extends

even further and is of even greater utility.



2.2.2 Policy gradient methods

A very different approach to the reinforcement learning problem is the use of policy

gradient methods. These methods do not attempt to learn a value function, instead

focusing on learning the policy ir directly. This methodology offers many advantages,

most significantly the opportunity to scale to much larger state spaces, as the policy

may be represented very compactly even if the state space is extremely large (e.g.,

a linear controller in an n-dimensional state space where each dimension is divided

into d bins requires n2 parameters, while the number of parameters required for

the value function grows as dn). The disadvantage is that a feedback policy is not

automatically provided through finding a value function, and the possibility of getting

stuck in highly sub-optimal local minima arises. Four policy gradient algorithms will

briefly be discussed here: Gradient Descent via Back-Propagation Through Time (i.e.,

'True Gradient Descent'), REINFORCE, GPOMDP and Weight Perturbation (WP).

It is worth noting that there are many other optimizers such as Sequential Quadratic

Programming and Conjugate Gradient, but as the Policy Gradient methods used here

are based only on pure Gradient Descent, it may be considered "ground truth" with

regards to these algorithms.

2.2.2.1 Back-prop through time

Gradient descent using back-prop through time (see [43]) is a particularly effective

means of optimizing a policy for a well-modeled system. Parameterizing the controller

7 by a vector 0, it is possible to take advantage of one's knowledge of the system's

dynamics and the cost function, and compute the true gradient of the cost function

with respect to each element of 0. 0 can then be updated based upon this gradient,

and the process repeated. Eventually this will converge to local minimum in cost

(assuming the cost function cannot be pushed indefinitely toward negative infinity).

Computing this gradient requires that the system be simulated forward, a process

which can be computationally intensive for complicated systems. Furthermore, the



gradient of 0 is tied to an initial condition, and thus the policy that is found is

optimized with respect a trajectory starting at that initial condition (a distribution

of initial conditions can also be used by computing each update using an IC drawn

from that distribution, however it may not then be relatively ill-suited to a given

specific initial conditions). This trajectory can often be stabilized using a Linear-

Time Varying feedback policy around the trajectory, but this is only a local solution.

If one wishes to cover a larger region of the state space with a feedback policy gradient

descent must be solved again for different initial conditions such that the relevant

regions of state space are all near trajectories. Despite these issues, this technique

is ideally suited to certain problems, and has been used for high-dimensional motor

control [12] and gait-synthesis in bipeds [20]. Its primary practical disadvantage is

the requirement that the system be well-modeled and capable of being simulated

efficiently.

2.2.2.2 REINFORCE

REINFORCE (see [45]) is a completely model-free policy gradient algorithm that

can be shown to have many desirable theoretical properties. It operates through the

use of a stochastic policy, in which the action taken at every step is selected from

a random distribution. Because of this randomness, it only makes sense to speak of

'expected reward', as even if the system is deterministic, the reward obtained will

likely not be. The action chosen is used as a sample to estimate the local gradient

of the cost function with respect to the policy parameters 0, and the parameters

are updated accordingly. While this update to the parameters is not guaranteed

to be in the direction of the true gradient, what makes REINFORCE algorithms

special is the ability to prove that the true gradient of expected reward is followed in

expectation. The analytical behavior is related to the forms of admissible stochastic

policies. Many popular distributions exist within this class, including Gaussians, but

certain distributions which offer improved performance are not.



2.2.2.3 GPOMDP

GPOMDP (introduced in [7] and treated further in [8]) is an algorithm designed to

trade some bias in the direction of its update for reduced variance in that update.

By using a discounted estimate of the current cost, GPOMDP is capable of greatly

reducing the variance of an update, at the cost of increasing bias. There is a parameter

(generally termed /) that regulates this trade-off, giving the user the ability to tune

it as desired. This algorithm has recieved a great deal of theoretical treatment,

but has not been applied to physical experimental systems, being validated instead

of simulations (see, for example, [16] section 8.3, where GPOMDP is applied to a

simulated puck).

2.2.2.4 Weight perturbation

Weight Perturbation is in many ways similar to REINFORCE, but allows for a broader

class of sampling distributions at the price of certain aspects of analytical tractability

(i.e., the actual mechanics of the updates are identical, but REINFORCE assumes a

certain class of sampling stratagies, while WP is not restricted by this assumption).

However, WP is a very useful practical algorithm, and it is in fact WP which was

used as the basis for the algorithmic developments presented later in this thesis. Like

REINFORCE, WP uses a stochastic policy to obtain samples of the local gradient

and update its policy parameters 0 accordingly. WP is not guaranteed to follow the

true gradient of the expected cost, but it can be shown that for a small sampling

magnitude' allows WP to follow the true point gradient of the cost function. What

WP gains is the freedom to use a broader class of distributions, and by analyzing

its behavior through linearization (via a first-order Taylor expansion) a number of

practically useful theoretical results may be obtained.

1The required "smallness" is that the magnitude of a sample is small with respect to the higher-
order terms of the cost function's local Taylor expansion. In other words, the sampling should occur
over a region in which the cost function is approximatly linear



2.2.3 Variance reduction in policy gradient

The primary contributions of this thesis to the RL literature is the development

of an signal-to-noise ratio (SNR) for policy gradient, and the development of novel

algorithms using this SNR to obtain improved performance. While maximizing the

SNR is not equivalent to minimizing variance, this idea of SNR maximization fits

within the literature of variance reduction methods. To this end, the state of variance

reduction techniques will be reviewed more closely.

2.2.3.1 State-independent baselines

The simplest means of reducing variance in policy gradient RL is the use of a state-

independent baseline (also called a constant baseline). Such a baseline is an integral

aspect of REINFORCE [45], and has been proposed by a number of others(e.g., [26,

22]). The appropriate selection of this baseline has been the subject of study, with

the most popular form - the current expected value of the reward - being argued to

be suboptimal, with other forms proposed (see [16]). In practice, often times a simple

decaying exponential sum of previous evaluations of the cost function is used, and

significantly improves performance.

2.2.3.2 Actor-Critic methods

Due to their improved performance and broad application, actor-critic methods have

long been the subject of intense interest (see, for example, [25, 23, 3]). Combining

the two threads of reinforcement learning, actor-critic methods both learn the policy

directly (the actor) and develop an estimated value function (the critic) which is

used to reduce variance and improve convergence time. The form and behavior of the

critic is a subject of ongoing research with wide variation between the structure of the

various proposed algorithms (e.g., while [23] has a structure relatively similar to that

of the policy gradient methods used in this thesis, [25] has quite a different form).

Selection of appropriate value functions [16], importance sampling techniques [44],



and means of feature selection [29] are also all the focus of current attention.
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Chapter 3

Experimental Setup

For the work performed in this thesis, motor learning was executed in real-time on

an experimental system developed for the purpose of studying flapping flight by the

Applied Math Lab (AML) of the Courant Institute of Mathematical Sciences at New

York University (see Figure 3-1). As the objective of our control was to execute

the forward flapping flight more efficiently via changes in the heaving motion of the

wing, modifications were necessary to allow the vertical motion of the wing to be

controlled more finely (previously it moved only in sinusoidal motion). In the original

setup, a horizontal heaving wing was driven through a vertical kinematic profile and

allowed to spin freely about its vertical axis. This system acts as a simple model

for forward flapping flight, possessing a Reynold's number of approximately 16,0001

during these experiments, placing it in the same regime as a large dragon fly flying

forward. The original experimental system built by the AML was designed to study

the hydrodynamics of this system and as such did not have the required flexibility

for our experiments.

This chapter will discuss the details of the original system designed to perform fluid

experiments, followed by the improvements to the experimental setup (particularly

1This Reynolds number is determined using the forward spinning motion of the wing, as opposed
to the heaving Reynolds number related to the vertical driven motion of the wing
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Figure 3-1: Schematic of experimental flapping system. Figure from [39].

with regards to sensing) that allowed for control to be implemented. Finally, it

will discuss the structure of the controller, the control policy, and the quantitative

formulation of the control objective which the learning was tasked to solve.

3.1 Original Experimental System

In this section, the original experimental system as built by the AML will be discussed.

The wing was attached to the end of a 1/4" steel shaft and submerged in a water-filled

tank. The shaft was held by shaft collars running against ball bearings, allowing the

wing to rotate with very little friction. The angular position of the wing about the

vertical axis was measured by a rotational encoder (US-Digital EM-1-1250) attached

to the shaft. The vertical motion of the wing was produced by a DC electric motor

(48V, 19A custom ElectroCraft motor (P/N 1843622004) with stall torque of 200

oz-in and no load speed of 3000RPM) passing through a reducing gearbox with a



ratio of 22:1 (Servo System Co. P/N 25EP022-1063). The output of the gearbox

drove a scotch yoke, which transformed the rotational motion of the motor into the

vertical linear motion of the wing. As the original experiments used only sinusoidal

driving profiles, the motor could simply be driven at a constant speed and a constant

frequency sinusoidal motion would be produced by the scotch yoke. The motor control

was performed by a servo amplifier (Advanced Motion Controls BE12A6), which

possesses the functionality of performing direct speed control via an optical encoder

(Servo System Co., SSC DA15-1000-SVLD) attached to the back of the motor.

Two of the wings used in learning (the rubber-edged and the pitching) were also

developed for these experiments. The rubber wing had a 1.5" rigid metal section,

with a 1.5" rubber trailing edge attached. The pitching wing used two rigid 3"

plastic sections allowed to rotate about their leading edges. These plastic sections

were coupled through three miter gears, forcing the pitch angles of the two sections

to be the same. A restoring force was applied to the pitching wings via a torsional

spring, with the rest length of the spring set such that the plastic plates would be

approximately horizontal when submerged.

3.2 Improvements to Sensing

The application of reinforcement learning to the system required additional sensors to

be integrated into the system. As the ability to execute non-sinusoidal waveforms was

required, it was decided the the vertical position of the wing would be measured by

a linear encoder (Renishaw RGH41T). This allowed for a general class of waveforms

to be executed, as rather than executing full rotations of the scotch yoke the pin

of the yoke was moved back and forth about the horizontal. Using a simple linear

proportional feedback controller the vertical wing position was commanded to match

the reference trajectory (this is described in greater detail in §3.4). This allowed

for the reference trajectory to be learned, which is a more compact and natural



Figure 3-2: Original experimental flapping system.

representation of the flapping behavior than learning torques with feedback terms

directly.

It was also desired that the energy input into the system be sensed. As the losses

in the motor and gearbox could be very high, and the carriage to which the wing

was mounted was relatively massive (thus large energy expenditures were required to

accelerate it independent of fluid forces), it was decided that measuring the electrical

energy input to the system would not be representative of the work done on the

fluid. To solve this problem, a tension-compression load cell (Honeywell Sensotec

Model 41 501b P/N 060-0571-04) was placed just before the wing itself, with only

the forces resulting from interaction with the fluid and acceleration of the wing itself

being measured. This load cell signal was passed through a hollow shaft to a slip

ring (Airflyte CAY-1666) placed immediately above the rotational encoder, allowing

the signal from the rotating load cell to be passed to the fixed laboratory frame. As

the load cell signal was relatively weak, it was passed through an inline amplifier



(Honeywell Sensotec Inline Amp P/N 060-6827-02) driven with a 20V potential.

Both of the encoders and the load-cell were then passed through a Sensoray 526

I/O board into a PC-104 computer running the XPC toolbox for Matlab's Simulink.

The data was logged at 1kHz where it was used for the computation of energy input,

rotational speed and control. This PC-104 was then linked via an ethernet connection

to a Microsoft Windows PC running Matlab. This PC controlled the learning aspects

of the trial, collated the data collected by the sensors and presented them to the user

to ensure the proper operation of the system.

3.3 Improvements to Rigid Wing

The introduction of the slip ring (discussed in the previous section) unfortunately

resulted in increased friction on the spinning system, as the slip ring's contacts pro-

duced much more friction than the ball bearings. In the case of the rubber-edged and

pitching wings, the forces produced by the wing were large enough that this did not

produce a significant effect. However, the rigid wing used for previous experiments

did not always produce enough thrust to begin moving in the presence of friction, and

thus a larger rigid wing was made. This larger wing experienced significantly greater

fluid forces, and thus was able to operate well despite the added friction of the slip

ring. The fact that the forces resulting from interaction with the fluid dominated

bearing friction can be seen in Figure 3-3.

Introducing this larger rigid wing required that a larger tank be used (a Chem-

Tainer cylindrical tank 36" in diameter and 24" high was chosen). A new rectangular

rigid wing, with dimensions of 72cm x 5cm x 1/8", was made from type 2 titanium

(chosen for its high stiffness, low density and high corrosion resistance). This was

fastened to the 1/4" rotating shaft by a stainless steel mount. It was desired that this

wing be effectively rigid in its interaction with the fluid, thus the expected deflection

of the tip was calculated, with one half of the wing being treated as a cantilevered
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Figure 3-3: Comparison of fluid and bearing friction for large rigid wing. The foil

(not undergoing a heaving motion) was spun by hand in both air and water, with
the angular velocity measured as a function of time. Five curves for both cases were
truncated to beginning at the same speed then averaged and filtered with a zero-phase
low-pass filter to generate these plots. The quick deceleration of the wing in water
as compared to air indicates that fluid viscous losses are much greater than bearing
losses. At the speeds achieved at the convergence of the learning, the frictional forces
in water were over six times that seen in air.
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beam. A uniform load from fluid drag was assumed, and the line pressure calculated

as follows, with p the line load on the beam, v the vertical velocity of the wing (de-

termined by using the maximum velocity seen in learning), A the area of the beam,

1 the length of the beam and p the density of the fluid.:

1
p = 1 pv 2 A = 9.87 N/m (3.1)

The force due to gravity in the presence of buoyancy was then calculated. The

density of titanium is approximately 4500 kg/m 3 , thus the gravitational force when

submerged is 1.96 N, or 5.44 N/m. The sum of these forces (15.31 N/m) was used

as the distributed load on a rectangular beam, with the tip displacement computed

using cantilevered beam theory. The deflection was computed as follows, with Wmax

the deflection at the tip, p the distributed load found above, E the Young's Modulus

of titanium (116 GPa), and I the moment of inertia of the rectangular cross section

of the beam:
pL4

Wmax = pL - .519 mm (3.2)
8EI

Based upon this calculation it was clear the titanium beam would be effectively rigid

in its interactions with the fluid, as the fluid structures have characteristic dimensions

on the centimeter scale.

3.4 Simulink Controls

The PC-104 computer which was used to log sensing data also executed the controller

for the flapping plate. The controller's task was the accurate tracking of a given

kinematic strokeform, accomplished by executing torque control, with the commanded

torque determined by a linear feedback law. This controller consisted of several major

components, outlined below:

* Centering Controller - Executed at the beginning of every learning run, this



controller turns the motor through a full rotation, obtaining the full span of

encoder measurements and ensuring that the yoke is appropriately centered.

* Policy Look-Up Tables - Two look-up tables store consecutive policies to be

executed. These tables serve as reference signals to the controller. Two tables

are used to allow time for a new policy to be generated and loaded into one

table over ethernet from the PC while the policy stored in the other table is

executed.

* Linear Feedback Law - The motor used to drive the yoke was extremely pow-

erful, and thus a simple linear feedback law was sufficient to produce good track-

ing of the policy. PD (proportional-differential) policies were also attempted,

but tracking was not much improved and noisy measurements of velocity re-

sulted in chattering at higher gains.

* Reward Calculator - As the data required to compute reward values was not

easily available to the PC orchestrating the learning aspects of the trial, the

reward was computed during the execution of the policy, then set to a readable

"pin" in the Simulink code (in actuality an addressable signal). This allowed the

learning PC to simply take the final value of the reward, rather than the data

required for computation of this value. The determination of an appropriate

reward function is a difficult task, and a discussion of the reward function used

in this work, and the reasoning behind it, is given in §3.6.

* Director - This component was distributed over several Simulink blocks, and

was tasked with ensuring that reward calculations, policy executions and tim-

ings were synchronized.
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Figure 3-4: The simulink block structure used to encode the controller.

3.5 Policy Representation

The parameterization of the policy is a critical aspect in the performance of learning.

Finding a representation with a small number of parameters, each well correlated

with reward, can greatly improve convergence rates. Furthermore, certain parame-

terizations can be found with fewer local minima and smoother gradients than others,

although determining these properties a priori is often impractical. Ultimately sev-

eral parameterizations were tried, with all taking the form of encoding the z height

of the wing as a function of time t over one period T, with the ends of the waveform

constrained to be periodic (i.e., the beginning and end have identical values and first

derivatives).

Parameterizing the policy in the seemingly natural fashion of a finite Fourier series

was ruled out due to the difficulty in representing many intuitively useful waveforms

(e.g., square waves) with a reasonable number of parameters. A parameterization

&ero_r tm



using the sum of base waveforms (i.e., a smoothed square wave, a sine wave and a

smoothed triangle wave) was used and shown to learn well, but was deemed a too

restrictive class which predetermined many features of the waveform. Learning the

base period T and the amplitude A of the waveform was also tried, and shown to

perform well without significant difficulty. However, it was discovered that periods

as long as possible and amplitudes as small as possible were selected (this result was

useful in determining how the system's dynamics related to the reward function, and

is discussed in detail in §5.2).

"3
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Figure 3-5: A schematic of the parameterization of policies used in this work. Note the

symmetry of the up and down strokes, and the fact that five independent parameters

are used to encode the shape of the waveform.

The parameterization ultimately chosen took the following form: the vertical heav-

ing motion of the wing was represented by a 13-point periodic cubic spline with fixed

amplitude and frequency, giving height z as a function of time t. There were five

independent parameters, as the half-strokes up and down were constrained to be

symmetric about the t axis (i.e., the first, seventh and last point were fixed at zero,



while points 2 and 8, 3 and 9 etc. were set to equal and opposite values which were

determined by the control parameters). This parameterization represented an inter-

esting class of waveforms, had reasonably strong correlation between each parameter

and reward, and was seen to converge reasonably quickly and robustly.

3.6 Reward Function

To precisely formulate the control task of achieving efficient forward flight, a reward

function had to be chosen. Deciding upon an appropriate reward function is one of the

most critical stages of formulating a reinforcement learning problem. The function

must appropriately encapsulate the goals of the system, while being computable from

the available data. Furthermore, functions that vary smoothly as the policy changes,

have uniform magnitudes of gradient and-perhaps most importantly-differentiate

between policies, can greatly improve the performance of learning. Choosing a func-

tion which satisfies these requirements can be difficult, particularly as there is often

little guidance beyond these qualitative goals and intuition.

The function ultimately chosen was the inverse cost-of-transport over one period

T, given as:

Smg fTx i(t)dt
cmt fI Fz(t)i(t) d(33)

where Fz is the vertical force, m is the mass of the body and g is gravitational

acceleration. Maximizing this quantity is equivalent to minimizing the energy cost of

traveling a given distance, which is a good metric for the desired task of maximizing

energy efficiency. Its integral form performs smoothing on the collected data, which

is a desirable property, and intuitively is should differentiate meaningfully between

different policies.

There are several reasons for selecting this form as the reward function for a

system; primarily the fact that this form is the standard means of measuring transport

cost for walking and running creatures, and that the non-dimensionilization comes in



as a simple scalar, and thus does not change as the policy changes. While alternatives

such as using a mass ratio instead of the mass were debated, changes such as these

would affect the magnitude of the cost, but not the optima and learning behavior,

as these are invariant to a scaling. Therefore, implementing this change would not

effect the found optimal policy. Dividing by expected energy to travel through the

fluid would depend upon the speed of travel, and thus would have a more complicated

form.

While a cost with a speed-dependent non-dimensionilizing term could be used, and

new behavior and optima may be found, rewarding very fast flapping gaits strongly

(as this would tend to do) was undesireable simply because the experimental setup

struggled mechanically with the violent motions found when attempting to maximize

speed. The cost function selected often produced relatively gentle motions, and as

such put less strain on the setup.



Chapter 4

Learning Algorithm

Due to the relatively high cost of evaluating a policy on an experimental system, it is

critical to obtain as much information as possible from each sample. To maximize the

amount of improvement obtained through each sample, we developed a signal-to-noise

ratio (SNR) for policy gradient algorithms. In this chapter we show that a high SNR

is predictive of good long-term learning performance, and show that optimizing this

SNR can lead to substantial improvements to the performance of our algorithms. The

application of this SNR to Weight Perturbation (a simple, easy to implement and bi-

ologically plausible policy gradient algorithm, see §2.2.2.4) was investigated in depth,

and attempts to maximize the SNR for this case suggested several improvements.

This chapter will concern itself with the development of the SNR, its application

to improving reinforcement learning algorithms, and a demonstration that it has a

meaningful improvement on learning performance, in particular on the heaving plate

system with which we are concerned.

4.1 The Weight Perturbation Update

Consider minimizing a scalar function J(t~) with respect to the parameters w' (note

that it is possible that J(7B) is a long-term cost and results from running a system



with the parameters W' until conclusion). The weight perturbation algorithm [18]

performs this minimization with the update:

AW = -r(J(Y + ) - J(0)) 5, (4.1)

where the components of the "perturbation", F, are drawn independently from a

mean-zero distribution, and r is a positive scalar controlling the magnitude of the

update (the "learning rate"). Performing a first-order Taylor expansion of J(5 + z)

yields:

A = -rj J(W) + z,2 - J(W T) 5'= - -z. (4.2)

In expectation, this update becomes the gradient times a (diagonal) covariance ma-

trix, and reduces to

E[Ai] = - Og2 (4.3)

an unbiased estimate of the gradient, scaled by the learning rate rI, and a2(the variance

of the perturbation)1 . However, this unbiasedness comes with a very high variance,

as the direction of an update is uniformly distributed. It is only the fact that updates

near the direction of the true gradient have a larger magnitude than do those nearly

perpendicular to the gradient that allows for the true gradient to be achieved in

expectation. Note also that all samples parallel to the gradient are equally useful,

whether they be in the same or opposite direction, as the sign does not affect the

resulting update.

The WP algorithm is one of the simplest examples of a policy gradient reinforce-

ment learning algorithm, and has been a popular method for treating model-free

learning problems. It has been shown to be a powerful learning technique with broad

applications, and its simplicity makes it amenable to analytical treatment. In the

special case when ' is drawn from a Gaussian distribution, weight perturbation can

'It is important to note that this linearization is not required to show unbiasedness. However,
by linearizing a number of other avenues of analysis are offered.



be interpreted as a REINFORCE update[45]. Furthermore, update behavior of this

form has been proposed as a biologically plausible mechanism by which neurons learn

(see [32]). While biological plausibility is not necessarily important in engineering

tasks, demonstrating the power and scalability of this simple learning model provides

evidence in support of the hypothesis that biological systems behave along the same

lines.

4.2 SNR for Policy Gradient Algorithms

The SNR is the expected power of the signal (update in the direction of the true

gradient) divided by the expected power of the noise (update perpendicular to the

true gradient). Taking care to ensure that the magnitude of the true gradient does

not effect the SNR, we have:

SNR = (4.4)

with

AW1 = AT 'W ) A a =a -L, (4.5)

and using J(Zo) = J for convenience.

Intuitively, this expression measures how large a proportion of the update is "use-

ful". If the update is purely in the direction of the gradient the SNR would be infinite,

while if the update moved perpendicular to the true gradient, it would be zero. As

such, all else being equal, a higher SNR should generally perform as well or better

than a lower SNR, and result in less violent swings in cost and policy for the same

improvement in performance.



4.2.1 Weight perturbation with Gaussian distributions

Evaluating the SNR for the WP update in Equation 4.1 with a deterministic J(T')

and ' drawn from a Gaussian distribution yields a surprisingly simple result. If one

first considers the numerator:

E [ I 4 (J J J wJ Z

JW 12 i,j,k,p

z JWk Jw,zkz p

Zk =

where we have named this term Q for convenience as it occurs several times in the

expansion of the SNR. We now expand the denominator as follows:

E [AFTA ] T= (a 1 + a -) +, aw, -, ]
- E [,TAV] - 2Q + Q (4.7)

Substituting Equation (4.1) into Equation (4.7) and simplifying results in:

E [IAziVl = -E[Jw. JwW ZiZj Z] -

Jw tjk

(4.8)

We now assume that each component zi is drawn from a Gaussian distribution with

variance 0.2 . Taking the expected value, it may be further simplified to:

Jwi 4 +34jW 2 jW32Q= 3a 4

30 .4

- 4

JW 1

z Jw,2jw, 2 = 3a4,

(4.9)

E [5AJiVA-L = Jw2 + :J2)
--Q = 0 4 (2 + N)- 3 0a = a 4 (N- 1),

(4.10)

WI

(4.6)

E [ T -
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where N is the number of parameters. Canceling a results in:

SNR = (4.11)

Thus, for small noises (where the linearization assumption holds) and constant a the

SNR and the number of parameters have a simple inverse relationship. This is a

particularly concise model for performance scaling in PG algorithms.

4.2.2 Relationship of the SNR to learning performance

To evaluate the degree to which the SNR is correlated with actual learning perfor-

mance, we ran a number of experiments on a simple quadratic bowl cost function,

which may be written as:

J() = W'TAW-, (4.12)

where the optimal is always at the point 0. The SNR suggests a simple inverse

relationship between the number of parameters and the learning performance. To

evaluate this claim we performed three tests: 1) true gradient descent on the identity

cost function (A set to the identity matrix) as a benchmark, 2) WP on the identity

cost function and 3) WP on 150 randomly generated cost functions (each component

drawn from a Gaussian distribution), all of the form given in Equation (4.12), and

for values of N between 2 and 10. For each trial w5 was initially set to be 1. As can

be seen in Figure 4-1a, both the SNR and the reduction in cost after running WP for

100 iterations decrease monotonically as the number of parameters N increases. The

fact that this occurs in the case of randomly generated cost functions demonstrates

that this effect is not related to the simple form of the identity cost function, but is

in fact related to the number of dimensions.
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Figure 4-1: Two comparisons of SNR and learning performance: (A) Relationship as

dimension N is increased (Section 4.2.2). The curves result from averaging 15,000

runs each, each run lasting 100 iterations. In the case of randomly generated cost

functions, 150 different A matrices were tested. True gradient descent was run on

the identity cost function. The SNR for each case was computed in accordance with

Equation (4.11). (B) Relationship as Gaussian is reshaped by changing variances for

case of 2D anisotropic (gradient in one direction 5 times larger than in the other)

cost function (Section 4.3.1.1). The constraint a2 + O2 = 0.1 is imposed, while oa is

varied between 0 and .1. For each value of al 15,000 updates were run and averaged

to produce the curve plotted. As is clear from the plot, variances which increase the

SNR also improve the performance of the update.

4.2.3 SNR with parameter-independent additive noise

In many real world systems, the evaluation of the cost J(w') is not deterministic, a

property which can significantly affect learning performance. In this section we inves-

tigate how additive 'noise' in the function evaluation affects the analytical expression

for the SNR. We demonstrate that for very high noise WP begins to behave like a

random walk, and we find in the SNR the motivation for an improvement in the WP

algorithm that will be examined in Section 4.3.2.

Consider modifying the update seen in Equation (4.1) to allow for a parameter-

independent additive noise term v and a more general baseline b(w'), and again per-



form the Taylor expansion. Writing the update with these terms gives:

A = - ()+ z - b() + = -9 J zz + 5(.) (4.13)

where we have combined the terms J(w'), b(w') and v into a single random variable

S(a). The new variable (w') has two important properties: its mean can be controlled

through the value of b(w'), and its distribution is independent of parameters W', thus

(w') is independent of all the z,.

We now essentially repeat the calculation seen in Section 4.2.1, with the small

modification of including the noise term. When we again assume independent zz, each

drawn from identical Gaussian distributions with standard deviation o, we obtain the

expression:
SNR + 3 (J(5f) - b()) 2  (4.14)
(N - 1)(0 + 1)' U2 11 2

where va is the standard deviation of the noise v and we have termed the error

component 0. This expression depends upon the fact that the noise v is mean-zero

and independent of the parameters, although as stated earlier, the assumption that

v is mean-zero is not limiting. It is clear that in the limit of small 0 the expression

reduces to that seen in Equation (4.11), while in the limit of very large 0 it becomes

the expression for the SNR of a random walk (see Section 4.2.4). This expression

makes it clear that minimizing 0 is desirable, a result that suggests two things: (1)

the optimal baseline (from the perspective of the SNR) is the value function (i.e.

b*(W') = J(')) and (2) higher values of a are desirable, as they reduce q by increasing

the size of its denominator. However, there is clearly a limit on the size of a due to

higher order terms in the Taylor expansion; very large a will result in samples which

do not represent the local gradient. Thus, in the case of noisy measurements, there is

some optimal sampling distance that is as large as possible without resulting in poor

sampling of the local gradient. This is explored in Section 4.3.2.1.



4.2.4 SNR of a random walk

Due to the fact that the update is squared in the SNR, only its degree of parallelity to

the true gradient is relevant, not its direction. In the case of WP on a deterministic

function, this is not a concern as the update is always within 900 of the gradient,

and thus the parallel component is always in the correct direction. For a system with

noise, however, components of the update parallel to the gradient can in fact be in

the incorrect direction, contributing to the SNR even though they do not actually

result in learning. This effect only becomes significant when the noise is particularly

large, and reaches its extreme in the case of a true random walk (a strong bias in the

"wrong" direction is in fact a good update with an incorrect sign). If one considers

moving by a vector drawn from a multivariate Gaussian distribution without any

correlation to the cost function, the SNR is particularly easy to compute, taking the

form:

ff11j 4 i 4 1
SNR=

j z i w ) T (  )

12 1

N2 -( (4.15)
Na2 22 + a2  N- 1

As was discussed in Section 4.2.3, this value of the SNR is the limiting case of very

high measurement noise, a situation which will in fact produce a random walk.

4.3 Applications of SNR

This analysis of SNR for the WP algorithm suggests two distinct improvements that

can be made to the algorithm. We explore them both in this section.



4.3.1 Reshaping the Gaussian distribution

Consider a generalized weight-perturbation algorithm, in which we allow each compo-

nent z, to be drawn independently from separate mean-zero distributions. Returning

to the derivation in Section 4.2.1, we no longer assume each zi is drawn from an iden-

tical distribution, but rather associate each with its own a, (the vector of the 0i will

be referred to as 0"). Removing this assumption results in the following expression of

the SNR (see Appendix A.1 for a complete derivation):

J--1

SNR(J, JW) = i - 1 . (4.16)
3ZJ -i 2 J 3 -2

i,j

An important property of this SNR is that it depends only upon the direction of Jw

and the relative magnitude of the ci (as opposed to parameters such as the learning

rate rl and the absolute magnitudes l|| and |J ).

4.3.1.1 Effect of reshaping on performance

While the absolute magnitudes of the variance and true gradient do not affect the

SNR given in Equation (4.16), the relative magnitudes of the different a, and their

relationship to the true gradient can affect it. To study this property, we investigate

a cost function with a significant degree of anisotropy. Using a cost function of the

form given in Equation (4.12) and N = 2, we choose an A matrix whose first diagonal

component is five times that of the second. We then investigate a series of possible

variances a2 and a2 constrained such that their sum is a constant (a2 + o7 = C).

We observe the performance of the first update (as opposed to running a full trial

to completion), as the correct reshaped distribution is dependent upon the current



gradient, and thus can change significantly over the course of a trial2 . As is clear in

Figure 4-1b, as the SNR is increased through the choice of variances the performance

of this update is improved. The variation of the SNR is much more significant than

the change in performance, however this is not surprising as the SNR is infinite if

the update is exactly along the correct direction, while the improvement from this

update will eventually saturate.

4.3.1.2 Demonstration in simulation

The improved performance of the previous section suggests the possibility of a modi-

fication to the WP algorithm in which an estimate of the true gradient is used before

each update to select new variances which are more likely to learn effectively. Chang-

ing the shape of the distribution does add a bias to the update direction, but the

resulting biased update is in fact descending the natural gradient of the cost func-

tion. To make use of this opportunity, some knowledge of the likely gradient direction

is required. This knowledge can be provided via a momentum estimate (an average

of previous updates) or through an inaccurate model that is able to capture some

facets of the geometry of the cost function. With this estimated gradient the ex-

pression given in Equation (4.16) can be optimized over the a, numerically using a

method such as Sequential Quadratic Programming (SQP). Care must be taken to

avoid converging to very narrow distributions (e.g. placing some small minimum noise

on all parameters regardless of the optimization), but ultimately this reshaping of the

Gaussian can provide real performance benefits.

To demonstrate the improvement in convergence time this reshaping can achieve,

weight perturbation was used to develop a barycentric feedback policy for the cart-

2 Over the course of running a trial the true gradient's direction can, in general, take on many
values, and thus the appropriate reshaped distribution and the improvement this distribution offers
to SNR can change dramatically. While a new reshaped distribution can be found before every
update (see §4.3.1.2 for an exploration of this idea), to simplify this examination a single update
was used.
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Figure 4-2: (a) The cart-pole system. The task is to apply a horizontal force f to

the cart such that the pole swings to the vertical position. (b) The average of 200

curves showing reduction in cost versus trial number for both a symmetric Gaussian

distribution and a distribution reshaped using the SNR. The blue shaded region marks

the area within one standard deviation for a symmetric Gaussian distribution, the

red region marks one standard deviation for the reshaped distribution and the purple

is within one standard deviation of both. The reshaping began on the eighth trial to

give time for the momentum-based gradient estimate to stabilize.

pole swingup task, where the cost was defined as a weighted sum of the actuation

used and the squared distance from the upright position. A gradient estimate was

obtained through averaging previous updates, and SQP was used to optimize the SNR

prior to each trial. As the SQP solution can become expensive as the dimensionality

gets large, means of reducing the dimensionality of the problem solved via SQP are

important. Because the SNR is dominated by the most significant directions (i.e.,

those with the largest value of expected gradient), the SQP problem can simply be

solved on the largest twenty or so dimensions without the result being significantly

different, resulting in much faster evalutations. Figure 4-2 demonstrates the superior

performance of the reshaped distribution over a symmetric Gaussian using the same

total variance (i.e. the traces of the covariance matrices for both distributions were

the same).

t -- I



4.3.1.3 WP with Gaussian distributions follow the natural gradient

The natural gradient for a policy that samples with a mean-zero Gaussian of covari-

ance E may be written (see [21]):

J F-F ~ [0 logr(- ) 0 log 7(W ) (4.17)
JW = F- J , F = E (3) ol i o

where F is the Fisher Information matrix, 7 is the sampling distribution, and =

w3 + Z. Using the Gaussian form of the sampling, F may be evaluated easily, and

becomes as -1, thus:

JW = E Jw. (4.18)

This is true for all mean-zero multivariate Gaussian distributions, thus the biased

update, while no longer following the local point gradient, does follow the natural

gradient. It is important to note that the natural gradient is a function of the shape

of the sampling distribution, and it is because of this that all sampling distributions

of this form can follow the natural gradient.

4.3.2 Non-Gaussian distributions

The analysis in Section 4.2.3 suggests that for optimizing a function with noisy mea-

surements there is an optimal sampling distance which depends upon the local noise

and gradient as well as the strength of higher-order terms in that region. For a simple

two-dimensional cost function of the form given in Equation (4.12), Figure 4-3 shows

how the SNR varies depending upon the radius of the shell distribution (i.e. the

magnitude of the sampling). For various levels of additive mean-zero noise the SNR

was computed for a distribution uniform in angle and fixed in its distance from the

mean (this distance is the "sampling magnitude"). The fact that there is a unique

maximum for each case suggests the possibility of sampling only at that maximal

magnitude, rather than over all magnitudes as is done with a Gaussian, and thus im-
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Figure 4-3: SNR as a function of update magnitude for a 2D quadratic cost function.

Mean-zero measurement noise is included with variances ranging from 0 to .65. As the

noise is increased, the sampling magnitude producing the maximum SNR is larger and

the SNR achieved is lower. It is interesting to note that the highest SNR achieved is

for the smallest sampling magnitude with no noise, where it approaches the theoretical

value for the 2D case of 3. Also note that for small sampling magnitudes and larger

noises the SNR approaches the random walk value of 1.

proving SNR and performance. While determining the exact magnitude of maximum

SNR may be impractical, choosing a distribution with uniformly distributed direction

and a constant magnitude close to this optimal value, performance can be improved.

4.3.2.1 Experimental demonstration

The concept of the shell distribution is ideally suited to the experimental system

outlined in §3. This flapping system is noisy, evaluations are expensive and the com-

plexity of its dynamics makes model-free techniques of prime importance. Therefore,

we decided to evaluate the performance of this modified distribution on the flapping

system itself.

Beginning with a smoothed square wave, weight-perturbation was run for 20 up-

dates using shell distributions and Gaussians. Rather than performing online learning

as is discussed in §5, longer trials were used, with approximatly 30 flaps averaged to

obtain the reward for a single trial, and approximatly 15 seconds given for the system

to reach steady state before reward calculation began. This prevented interferance

I I 1 111 1 1111
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Figure 4-4: (a) Schematic of the flapping setup on which non-Gaussian noise distri-

butions were tested. The plate may rotate freely about its vertical axis, while the

vertical motion is prescribed by the learnt policy. This vertical motion is coupled
with the rotation of the plate through hydrodynamic effects, with the task being to

maximize the ratio of rotational displacement to energy input. (b) 5 averaged runs

on the flapping plate system using Gaussian or Shell distributions for sampling. The

error bars represent one standard deviation in the performance of different runs at
that trial.

between consecutively run policies and produced more accurate reward estimates at

the cost of increased run time (full runs taking about an hour). This was done to

make the flapping system's behavior closer to the idealized noisy system presented in

§4.2.3.

Both forms of distributions were run 5 times and averaged to produce the curves

seen in Figure 4-4. The sampling magnitude of the shell distribution was set to be

the expected value of the length of a sample from the Gaussian distribution, while all

other parameters were set as equal. As is clear from the figure, the shell distribution

outperformed Gaussians in a very practical task on a very complicated system, and

indeed the results presented in §5 were obtained using this modification, as it was

seen to improve convergence robustly and effectively.

II



Chapter 5

Learning on the Flapping Plate

The ultimate goal of the work presented in this thesis was the the control of a rich

fluid system through reinforcement learning techniques. This goal both stimulated

the algorithmic developments of §4 and resulted in an improved understanding of

the fluid dynamical system presented in §3. In this section, the success of one of

these new techniques at performing online learning on this complicated system will

be presented, and the insights into the dynamical properties of this controlled system

that the learning provided will be discussed.

5.1 Learning in 15 Minutes

The fact that the reinforcement learning techniques presented here successfully learned

the strokeform for a system of such complexity in only 15 minutes is the most signif-

icant success presented this thesis. In this section the learning performance on this

problem will be shown in §5.1.1, and the issue which seemed the greatest barrier to

learning online at such a fast rate inter-trial correlation of cost-will be examined

in §5.1.2.



5.1.1 Convergence of learning

On each type of wing (rigid, rubber-edged and pitching), learning was performed

starting from several different initial waveforms. The rigid and rubber-edged wings

were both run with a base period of T = is, while the pitching wing used a period of

T = 2s. Learning was completed and the solution well-stabilized after 1000 flapping

cycles in all cases (Fig. 5-1), with convergence seen in under fifteen minutes T = is.

Both the rigid wing and the wing with the rubber trailing edge converged to a solution

very similar to a triangle wave (see Figure 5-2), albeit with different achieved values of

reward (the rubber-edged wing outperforming the rigid). When we tried learning on a

wing with very different dynamical properties (one free to pitch about its leading edge)

we found a different optimal waveform, demonstrating that the learning algorithm

was capable of converging to appropriate optima for different dynamical systems

possessing different optimal controllers. For all trials, the parameters of the learning

algorithm were identical.

x 100
14 <, 

...
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4-

Flapping Cycle

Figure 5-1: Five averaged learning curves for rigid plate starting from sine and square

waves. Dots mark +/- one standard deviation from mean.
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Figure 5-2: A series of waveforms (initial, intermediate and final) seen during learning

on the rigid plate.

The success of learning when applied to these three different wing forms, with dif-

ferent rewards, initial conditions and ultimately solutions demonstrates the flexibility

of the technique, and its ability to learn effectively and efficiently without modifica-

tion when presented with a variety of systems (i.e., rigid, rubber-edged and pitching

wings) each exhibiting different behaviors.

5.1.2 Inter-trial correlation

The speed of convergence achived by learning was dependent upon the ability to run

the algorithms online with very little averaging. Ultimately, one flapping cycle was

used as the length of a trial, which allowed updates to be performed every second (or

every two seconds for the pitching wing). A significant worry regarding the efficacy

of this method was the possibility that it took several flaps for an even subtly altered

policy to converge to its true value. Eligibility traces (see §2.2.1.4) offer a possible

solution to this problem, but only if the interaction between constantly changing



policies does not make the measurements meaningless (e.g., the transient fluid effects

always perform significantly worse than similar steady state behavior, and not in a

manner that represents the steady state behavior of that same policy). Investigating

this behavior by alternating between two policies (the difference between policies

is representative of the change seen between learning trials), it became clear that

convergence to steady state behavior was very fast, but there was a 'one-flap transient'

(see Figure 5-3). However, this transient did not disrupt learning, as the direction

of reward change was correct even though the value had yet to converge. Because

of this, gradient descent was still successful, and online learning was successfully

implemented.
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Figure 5-3: Reward versus trial number, averaged over 150 cycles. The policy is

changed half-way through, and again at the end (after which it wraps around). It

is clear that it takes two flaps to converge to the correct cost for a policy after a

change, but the direction of change is correct, even if the magnitude is not. This

allows gradient descent operate effectively without eligability traces or longer trial

lengths.
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5.2 Revealed Dynamical Properties
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Figure 5-4: Linear growth of forward speed with flapping frequency. The axes of this
curve have been non-dimensionalized as shown, and the data was taken for a sine
wave. Figure from [40].

The optimal waveform found for the rigid and rubber-edged wings is consistent

with results from experiments using sinusoidal strokeforms. If one considers the re-

ward function used in this work (see 3.6), the basis of this behavior's optimality

becomes more clear. As drag force is approximately quadratic with speed in this

regime, the denominator behaves approximately as:

I Fz((t)Qdt - pCd(V2)T (5.1)

where Cd is the coefficient of drag and (V 2) is the mean squared heaving speed.

However, forward rotational speed was found to grow linearly with flapping frequency



(see [40] and Figure 5-4), thus the numerator can be written approximatly as:

myT (t)dt , Cf(V)T, (5.2)

where Cf is a constant relating vertical speed to forward speed, and (V) is the mean

vertical speed. Therefore, higher speeds result in quadratic growth of the denominator

of the reward function and linear growth of the numerator. This can be seen as reward

having the approximate form:

cmt - C (5.3)

with C a constant. This results in lower speeds being more efficient, causing lower fre-

quencies and amplitudes to be preferred. If period and amplitude are fixed, however,

the average speed is fixed (assuming no new extrema of the strokeform are produced

during learning, a valid assumption in practice). A triangle wave, then, is the means

of achieving this average speed with the minimum average squared speed. The fact

that the learned optimal waveform suggested this line of reasoning demonstrates its

utility in studying controlled fluid systems, where learned successful behaviors can

present new insights into how the system behaves.



Chapter 6

Conclusion

This thesis has presented the steps taken to produce efficient, online learning on a

complicated fluid system. The techniques used here were shown to be extremely

effective, with convergence being achieved on the flapping plate in approximately

fifteen minutes. The algorithms developed here have additional applications to many

other systems, and by succeeding on a problem possessing great dynamic complexity,

a reasonably large dimensionality and noisy evaluations, they have been shown to be

robust and useful. The fact that they learn quickly on a physical experimental system

demonstrates that they can be applied to practical problems, and indeed outperform

many state-of-the-art algorithms.

Beyond the algorithmic improvements developed in this thesis, the fact that a

simple and biologically plausible learning rule was able to learn is the complicated fluid

environment presented here provides further evidence for the biological plausibility of

the learning rule discussed in §4.1. Any learning rule which hopes to offer a convincing

biological mechanism for neuronal learning must scale well to complicated dynamical

systems and reasonable dimensionalities. Clearly, the representation used was critical

to the success of the learning, with the form of the policy encoding prior knowledge

of the system. However, this does not dent the argument for biological plausibility,

as biological systems are often partially hard-wired to perform certain tasks, and



perhaps to make the learning of them quicker and easier.

Finally, there are a number of future directions suggested by this work, with

further improvements to reinforcement learning algorithms and further applications

to fluid systems both promising potential next steps. However, what may be the

most interesting direction is the application of these techniques to the feedback con-

trol of fluid systems. Current feedback control of high-performance systems in fluid

environments, such as fighter aircraft and helicopters, is dependent upon numerous

linear control laws painstakingly developed to cover the state space, with the con-

troller changing depending upon the state of the system. Learning techniques offer

the possibility of producing more general controllers, and perhaps much more quickly.

Flight regimes currently avoided, such as high-angle-of-attack landing maneuvers (i.e.,

perching) could be exploited, and controllers could continuously adapt to the system,

offering better performance in unexpected situations. It is in this direction that the

greatest opportunities lie, and it may not be long before learning becomes the favored

method for controlling these most challanging systems.



Appendix A

Derivations

A.1 SNR for Non-Symmetric Gaussians

Consider the update rule of, where each zi is independantly normally distributed with

mean zero:

(A.1)

= o (i=o)and ai be the standard deviation of noise in the i direction.

The expected value of the update (assuming g is locally linear around W) is then given

as:

E(A) = -77 012 (Jw)21o-22 )2 (A.2)

Now consider the signal-to-noise ratio, defined below:

Let Jw(Wo)

a = -T(( + Z) - g( '))x
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The numerator is the expected power of the signal (the update in the direction of

the true gradient) while the denominator is the expected power of the noise (the

update perpendicular to the gradient). As A = q Z(J),z,z, the numerator may

be rewritten as:

2

E 2 (Jw)i(Jw)j(Jw)k(Jw)pZiZjZkZp (A.4)

As each z, is independant, this results in two non-zero cases. One where i j = = p,

and three identical cases where two pairs of z are the same (e.g. i = j and k = p but

i $ k). Thus, the numerator is equal to:

2_2 +Jw)U4, ±3 jw)J2 r a -(Jw)27 j Q (A.5)

Where we have named this term Q as it will occur several times in this expression.

The denominator then has the form:



21 (w)i(Jr)jzizJw ( i z - 2 1 )(Jw)i(Jw)jzizj )

(A.6)

Distributing results in three terms, the first of which is:

E Jw)(J)w)jzz
Li,j,k

= 2 (1TJ)24,

\ i 
i i jEw)

i j 4i

The second term is given as:

-2E [E 2 J)i(J)(Jw)k(Jw))pZiZjZkZp

The final term is then:

S 2 4E J 4

S(J(Jw)k(w))k(J)pZzZjZkp ZC w]

i,j,k,p

Substituting these back into the SNR expression gives:

1
SNR =

= Q (A.9)

(A.10)
(jW) 2 + Z(Jw)2a2 E aj2

-1

(Jw) b4, + 32 2 E(jW) 2

~ji

From this it can be useful to consider the case where all the ci are equal. Making

(A.7)

= -2Q (A.8)
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this assumption, and substituting in P4, = 3a 4 the SNR simplifies as follows:

SNR =
- (3± I N-34 J4(N

1) J

-1

3a4 E(Jw)4 +
i

3,4 2(

Simplifying this expression and canceling out the a terms gives:

SNR = -4

Jw

E(Jw' +

(N + 2)

3
N-i

-3

~(jW) (2
- (J~)~)

A.2 SNR for Parameter-Independent Cost Func-

tion Evaluation Noise

Consider the update rule of, where each z, is identically and independantly normally

distributed with mean zero:

A = -(g( + ' + 3+ - b(W)))Z (A.13)

Let fW,(o) = OV=) , o be the standard deviation of noise for each parameter
(W2O

zi, b(iw) be a baseline function of the parameters W' and ( a mean zero noise term

which is independent of w'. The expected value of the update (assuming g is locally

linear around ~5) is then given as:

E(AW) = -77 (A.14)
12 (jw)1

022 (Jw)2

(A.11)

(Jm) )

(A.12)



It will be useful to define a term 0(0) = g(w') - b(w) + (. Now consider the signal-

to-noise ratio, defined below:

SNR = T -F (A.15)

The numerator is the expected power of the signal (the update in the direction of the

true gradient) while the denominator is the expected power of the noise (the update

perpendicular to the gradient). As Au (E(Jw)z, + 2, the numerator may

be rewritten as:

E [ (J))iz J)z + )zi (Jw)kZk Z(Jw)pZp

E J 2 (z (Jw)(J)j(Jw)k(Jw)PzizZ (p 2 (J)k(Jw)pzkZp (A.16)

Looking first at the fourth-order term, as each zi is independant, this results in two

non-zero cases. One where i = j = k = p, and three identical cases where two pairs

of z are the same (e.g. i = j and k = p but i # k). The second-order term is simpler,

requiring that k = p. Using P4, = 3or4 (from the Gaussian character of the noise), the

numerator is equal to:

2 34 E(j()3 ( + 3a 4 E(j)E(j)2) 2 = o (A.17)

Where have named this term Q as it will occur several times in this expression, and



replaced E[ 2] = (g(w) - b(zi)) 2 + a2 with b. The denominator then has the form:
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z
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Distributing results in three terms, again using p4, = 3o 4 (from the Gaussian char-

acter of the noise) the first of these is:

( w, )(Jw)jzizj z + 2 z

k

=3a 4 I 2+ O4 (N
-1) +2 (

-1) +N4'u 2 (A.19)

The second term is given as:

(Z(Jw)iz+() (i zi + Z(Jw)kk

The final term is then:

E 12 Z(JW)z + ((JW)izz +

Substituting these back into the SNR results in the expression that follows:

(A.18)

-2E 2
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Simplifying this expression and canceling out the a terms gives:

SNR =

3 4(Jw) + 3

w4 2N+ 4 NJw (N + 2)± J 2
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Introducing the parameter X = (g( 2)-b(w )) 2

02 11 j, '
makes this somewhat clearer:

SNR =
(N - 1)(X + 1)

30-4 E(Jw)4 - 304 E(J ) Z Jw)2  -- 02V
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Glossary

Action-Value Function

Also called a Q-function, this function assigns a value not simply to a state s

(as the value function V(s) does) but to a state-action pair Q(s, a). Like the

value function, Q(s, a) is partially determined by the policy used. 16

Actor-Critic Methods

Reinforcement learning methods that learn a policy directly (the 'Actor'), while

maintaining an estimate of the value function to assist in the learning and reduce

variance (the 'Critic'). 15

Cost Function

A function of state, action and time that gives the cost associated with taking

a certain action from a certain state at a certain time. Minimizing the value of

this function through the optimization of a policy is the goal of reinforcement

learning algorithms. 15

Data Limited

In its use here, this refers to the property of many reinforcement learning al-

gorithms that the temporal cost of running the algorithm is dominated by the

evaluation of the cost function. 9



Eligibility Trace

A vector storing the 'eligibility' of the value function V(s) or policy 7r(s) at dif-

ferent states to be updated based upon the current incurred cost of the system.

The eligibility is generally related to how long ago the state was visited. 18

Ergodic

In its use here it roughly means that, when run for a long time, the system

'forgets' its initial state and can reach all states. 17

Finite Horizon

A class of problems in which the end time is specified, and thus the policy must

minimize the cost over some finite interval. 15

Infinite Horizon

Problems which are run to infinity. Generally, to ensure the cost is well behaved,

either the rate at which cost is accrued must approach zero resulting in finite cost

over infinite time, a discount rate must be included which reduces to importance

of costs far in the future, or the 'average cost' must be computed, which looks

at the ratio of cost to time of trial. 15

Model-Free Reinforcement Learning (MFRL)

A class of reinforcement learning that require no model of the system on which

learning is to be performed. In general, all that is required is a means of

evaluating the performance of a policy on the system. 9

Off-Policy Learning

The property that what an algorithm learns while executing one policy can be

generalized to other policies. 17



On-Policy Learning

The property that what an algorithm learns while executing one policy cannot

necessarily be generalized to other policies. 17

Online Learning

A style of learning in which the robot does not cease to operate during learning

trials, but rather adapts simultaneously with the performance of its task. 9

Policy

A function whose output is the action to be applied to a controlled system.

It can be a function of state (a 'feedback' policy), a function only of time (an

'open-loop' policy) or probabilistic (a 'stochastic' policy). 15

Policy Gradient Methods

Reinforcement learning methods that directly learn a policy, without attempting

to find or store a value function. 15

Signal-to-Noise Ratio (SNR)

A ratio between the energy in the signal (the useful information) and the noise

(the useless, distracting information). 10

Value Function

A function ascribing an expected long-term cost (or reward) to a given state.

Because it attempts to value a state based upon the subsequent evolution of

the system, different policies will produce different value functions on the same

system with the same cost function. 16

Value Function Methods

Reinforcement learning methods that attempt to assign a 'value' to each state



(and possibly to each state-action pair), and derive a policy from this function.

15

Variance Reduction Techniques

Methods in policy gradient reinforcement learning which attempt to reduce the

noise present in updates to the policy, resulting in faster learning and policy

convergence 15
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