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Abstract

Over the last few decades, control theory has developed to the level where reliable
methods exist to achieve satisfactory performance on even the largest and most com-
plex of dynamical systems. The application of these control methods, though, often
require extensive modelling and design effort.

Recent techniques to alleviate the strain on modellers use various schemes which
allow a particular system to learn about itself by measuring and storing a large, arbi-
trary collection of data in compact structures such as neural networks, and then using
the data to augment a controller. Although many such techniques have demostrated
their capabilites in simulation, performance guarantees are rare. This thesis proposes
an alternate learning technique, where a controller, based on minimal initial knowl-
edge of system dynamics, acquires a prescribed data set on which a new controller,
with guaranteed performance improvements, is based.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Although great progress has been made in the last couple decades in the arena of
control system design, the most predominant approach is still the traditional one
of using simple, linear, feedback controllers. For most engineering applications, such
controllers seem the obvious choice. The theory is well understood and has been thor-
oughly investigated over the years. Their application to current engineering control
problems is therefore straightforward with well defined design procedures. In fact,
most systems of interest are nearly linear and perform quite well with traditional
controllers. The small nonlinearities present in such systems are compensated for
by robustness techniques, also well defined, which offer some degree of guaranteed
performance based on the magnitude of the nonlinearities.

In certain applications, though, the benefits of using well proven linear control
strategies are outweighed by other factors. In fighter jets, for example, one goal is to
perform extremely radical and violent maneuvers which take the jet out of the range
in which its behavior is largely linear. If such maneuvers are desired, linear control
strategies and associated robustness techniques may require huge gains on the control
inputs, if these techniques can even be applied. Also, financial concerns are becoming
an increasing factor in design. Linear controllers may be too conservative, consuming

excessive fuel and energy and thereby increasing weight and cost in an effort to remain
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robust. One widely investigated solution to these concerns is that of exact feedback
linearization. Exact feedback linearization takes nonlinearities into account directly,
and then, through a transformation of the inputs, makes the system’s input-output
model effectively linear ([10]). Once this step has been taken, linear techniques can
be applied and achieve far better performance.

New nonlinear techniques, such as feedback linearization, and traditional linear
strategies do have one significant design barrier in common. Specifically, both re-
quire extensive effort in the task of modeling system dynamics, and both can suffer
greatly in terms of performance if the modeling is poor. Therefore, many new control
strategies attempt to make performance robust to modeling error. Among these are
parameter adaptation and neural network based controllers.

The parameter adaptation strategy assumes the model Structure is known and any
error exists as error in parameters, such as vehicle mass. A controller is designed in
terms of unknown parameters, and then a scheme is defined to adjust the parameters’
value over time, usually to achieve a performance objective such as tracking error.
Extensive work has been done to apply parameter adaptation to a variety of systems,
both linear and nonlinear, where the parameters may enter the system dynamics in
either a linear or nonlinear fashion ([15]) .

Another strategy makes fewer assumptions about system structure and assumes
the system can be modeled with sufficient accuracy by a neural network ([11, 19]).
In fact, it has been shown that certain classes of neural networks, collectively called
Universal Approximators ([3, 7, 16]), are able to approximate continuous functions
on compact domains to any desired degree of accuracy. Neural network strategies are
applied when there is significant uncertainty about the system dynamics. As with
parameter adaptation strategies, a scheme is devised to evolve the network over time
in order to achieve some performance goal ([19]). These neural network strategies are
often similar to parameter adaptation strategies where large uncertainty is treated
by using a huge number of parameters. Other strategies employ neural networks in
more creative ways to achieve different goals. For example, in [21] a neural network

is trained in order to find a stable adaptation rule for system parameters.
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The ability of neural networks to compensate for large model uncertainty raises
an interesting question. Can one design a controller which is completely independent
of the model to which it is applied? If the answer to this question is yes then a great
achievement is possible. No longer would so much time and effort be directed toward
the task of modeling. The controller design process would not begin from scratch
every time a new system needs be controlled. If the effort were taken to design such
a model free controller for a helicopter, then little or no effort would be needed to
then port this controller to a radically different system such as a submarine. The cost
saved could be tremendous. Achieving this goal as stated may be a pipe dream, but
the advancing power of computers, neural networks and recent work applying them
to control systems serve as the inspiration for this thesis.

My primary goal is to devise a control strategy that requires minimal knowledge
of the plant model and that is applicable to as large a class of systems as possible.

More specifically,

Devise a control technique which, given local knowledge of the input-
output behavior of a class of discrete-time nonlinear dynamic systems,
can learn a feedback linearizing controller that satisfies bounded tracking
error for a closed set of output commands containing the region of initial

local knowledge.

Furthermore, we will demonstrate the results of this thesis on a small autonomous

helicopter.

1.2 Contribution

The approaches taken to solve the problem differ from the approach taken in this
work. Two common approaches were mentioned above. Adaptive methods are re-
strictive in that they assume knowledge of the functional form of the system. Such
an assumption does allow a treatment of uncertainty in the model, but still requires

significant modeling effort on the part of the designer. Neural network approaches
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do not make this assumption. They use neural networks as function approximators
to try and directly model unknown dynamics for use by the controller. Since neural
networks are known to be universal approximators, any uncertainty can be approxi-
mated by a sufficiently large neural network, though the number of parameters in the
network may be large.

In each of these approaches, the essential goal of achieving some tracking or other
performance objective is usually reduced to finding a stable algorithm to evolve the
controller or network parameters. Doing so can be difficult for many classes of sys-
tems. Complete stability proofs are rare, and many papers often avoid the question
of stable on-line training by suggesting that the necessary parameters be updated
off-line, without describing how to collect the data to perform such updates. The
approach suggested in this paper differs from the on-line verses off-line learning ap-
proaches in a distinct, if subtle, way. The algorithm separates the learning objective
from any performance or tracking objective by providing a separate training mission.
This obviously differs from on-line procedures which update parameters as a func-
tion of stability or tracking errors. It also differs from off-line methods by describing
exactly how data can be stably collected. In addition, a rigorous proof is provided
and gives conditions under which the training and performance objectives can be
guaranteed!

The proposed algorithm may be unique in one additional and significant way.
The structure used to store the learned controller is neither a parametric model
nor a neural network. It is simply a table of acquired data points with a method
of interpolating between and extrapolating from them. Using such a structure may
seem inefficient, since neural networks are essentially used as compact tools to store
large tables of data, eliminating redundancy in the information contained in the data
points. In fact, neural networks could be used in lieu of the structure, essentially a
spline, which is suggested. But such neural networks, as argued below, will always
require at least the same order of size and complexity of the spline, since only a well
defined set of data points is stored in the proposed structure. We are not trying to

make the most of a huge, arbitrary collection of data. Required datum are specified
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and sought after.

Nothing has been achieved for free. The results guaranteed by the proposed
algorithm do rest on the basic assumption that a good controller already exists, at
least in some small region about some operating point. = Good and small are
well defined and may not be very restrictive. As a matter of fact, if the Jacobian
of the controller is known at any one point, these conditions can be met. The basic
argument is that the boundaries of the small region can be repeatedly tested and
extended to nearly any larger region of interest. Since performance measures such as
tracking error can be stated explicitly in terms of controller errors, learning objectives

can be well defined and all the pieces of a complete proof exist.

1.3 Outline

The Thesis is organized as follows.

Chapter 1 introduced the main goal of the thesis by describing prior work on
learning based control strategies and factors motivating the associated research.

Chapter 2 provides an overview of basic concepts in dynamics and control and
relates them to the classes of discrete-time nonlinear systems to which the main results
of the paper apply.

Chapter 3 then describes a variety of traditional and more modern controllers
which compete with the algorithm described in detail in Chapter 4.

Chapter 4 provides a general description of the capabilities of the learning
strategy of this thesis, followed by an exact mathematical formulation and rigorous
proof.

Chapter 5 describes the small autonomous helicopter over which the algorithm is
successfully simulated. The dynamic model is derived, and the controller of Chapter 4
is constructed.

Chapter 6 presents the simulation results for the learning controller as well as

additional, comparative results for traditional and adaptive algorithms.
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Chapter 7 discusses these results, draws conclusions and proposes further ex-

tensions of the basic results in Chapter 4.
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Chapter 2

Discrete-Time Dynamic Systems

Before stating and proving the primary results of this thesis in exact mathematical
forms, certain basic ideas and concepts must be understood. The purpose of this
chapter and the next is to introduce these concepts. This chapter deals specifically
with system dynamics and various useful input-state and input-output system rep-
resentations. Chapter 3 then builds on these ideas by introducing the linear and

nonlinear control strategies and presenting various associated results.

2.1 Concepts in System Dynamics

This section introduces various common representations of discrete-time, time-invariant
dynamic models, namely state space models and input-output mappings. The rela-
tionships between these representations are described, and properties of the systems
relevant to the derivation of results in this thesis are presented. Let us begin by con-
sidering the well known state space representation of a general nonlinear discrete-time

time-invariant system.
z(t+1) = glz(t), u(t)]
y(&) = Rlz(t),u(®)]

(2.1)
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where , y and u are the state, output and input respectively. Time ¢ is restricted to

the non-zero integers and

z(t) € X Cc R"

yt) € Y Cc R™

u(t) € U Cc R’
The functions ¢ : X xU - Xandh : X x U = Y are the one-step state
transition function and output function. Each is assumed continuously differentiable.
The k-step ahead state transition function ®, : X x U¥ — X can be found by

repeated application of the one-step state transition function.

o(t) = Pofz

glz(t), u(?)]

glz(t+1),ut+1)] = g[@[z(t),u(®)], u(t +1)]
= ®yz(t), u(t +1),u(t)]

(t), u(t)]
D[z (t), u(t)]

gzt +k—1),u(t+k—-1)] = glat+k—1),ult+k—1)]

= Qfz(t),u(t+k—-1),ut+k—-2),...,u(t)]

A state zo is an equilibrium state if there exists an input ug such that z, = g[Zo, uo)-
It is assumed that the system has at least one equilibrium state z. We can assume,
without loss of generality, that zo = 0, yo = h|zo, o] = 0 and uy = 0 because a simple
translation in X, Y and U can move the equilibrium state, output and input to the
origin of their respective vector spaces.

Before specializing this system to the class considered by the control algorithm
presented in this paper, let’s present the concepts of reachability and observablitiy.

A state z is said to be reachable from a state z' if there exists an integer k and an
input sequence v € U* such that z = ®;[z’,v]. The above system is reachable from

' if every = € X is reachable from z’. The system is reachable if it is reachable from
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all ' € X.
A state z is unobservable over k-steps if there exists a v € U* and a state 2’ # z
such that h [®k[z,v]] = h[®k[z',v]]. The above system is observable if there exists an

integer k such that there are no unobservable states z € X.

2.2 Recursive Input-Output Maps

So far, other than the assumption that the system of Equation (2.1) has a finite
number of states, the system is presented in a fairly general fashion. Now we add
the crucial assumptions which bring us to the D-step ahead predictor form (an input-
output mapping), and allow the derivation of the results of this thesis. Insuring that
the system can be equivalently cast in a recursive input-output form is an essential
element of the algorithm presented in this paper, since the input-output map is the
maximum information about a system that one can measure.

The argument that follows is largely drawn from [12], with a few simplifications
made for clarity. One simplifying assumption is that the system is single-input,
single-output (SISO). At the end of the chapter, a discussion of the extension of the
SISO results to the multiple-input, multiple-output (MIMO) case is made. The SISO
assumption states that m =r = 1.

Let us state two theorems which prove useful in showing the existence of of a

recursive input-output map.

Theorem 2.2.1 Let X and F be finite dimensional vector spaces and let W be an
open subset of X containing the point zo. Let f : W — F be continuously differ-
entiable. If the derivative of f at z € W, Df(z), has constant rank for allz € W
then

1. There ezists open V.C W and open V* C F such that f(V) C V*. There also
exist diffeomorphismsdy, : V—>X anddy : V* > F.

2. The restriction of fIV is fI[V =d3;' o Df () o d,.
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A consequence of this theorem is that the function f|V has connected level subman-
ifolds. The level submanifold are the set of points in W that map to the same point
in F. Since all linear functions have connected level submanifolds, and f is diffeomor-
phically equivalent to a linear function in V, then f has connected level submanifolds.

This fact becomes useful for finding conditions to satisfy the next theorem.

Theorem 2.2.2 Let X, Z, F and G be finite dimensional vector spaces, and let
functions f : V > Fandg : V — G be continuously differentiable, where
V C Z xX is open. The functions f(z,z) and g(z,z) have derivatives D, f(z,z) and
D,g(z,x) respectively, for (z,z) € V. Assume

1. rank D, f(z,z) = n for all (2,z) € V,

2. for any fized z the submanifold of f consisting of all (z, ) mapping to the same

point through f is connected, and

3 forallz eV

rank

D, f(z,z)
D.g(z,z)

Let f* = (2,f(z,z) : V = Z x F have timage W. Then there ezists a function
h : W — G such that

g=hof
To simplify notation, let
u(t) |
. u(t—1)
u = )
| u(1)
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[ w(t+k—1) |
S = u(t+k—2)
u(t)
y(t)
= y(t+1)
| y(t+Ek-1)

Therefore,

h[®@o(x(2)), u(t)]
y(t+1) = h[®(u(t),z(t)), ult + 1)]

<

—~
5

N
I

yt+k—1) = h[@1(ult+k—2),...,ult),s?),ult+k —1)]

and we can write

where Gy : UF x X — Y*.
Now assume that the initial state of the system is the equilibrium state at the

origin z(1) = 0. We can now define the zero-state response function
A
z(t) = fi(u') = @;fu’, 2(0)] (2.2)

This assumption can be made without loss of generality since we assume that the

system is reachable. Therefore, given a sufficiently large ¢, z(¢) can be acquired from
z(1) = 0.

Define z = uf and z = u’.

Lemma 2.2.1 The rank of D,Gx(z, f(z)) is less than or equal to n, the number of

states of the system.
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Proof: Since the state space has dimension n, the co-domain of f; has dimension n
and

rank (D, fi(z)) <n

Using the chain rule

DyGx(2, fi(x))° Dy fi(z)

Therefore

rank (D,Gi(z, fi(z))) <n

Define Fy,(z,z) = Gi(z, fi(z)).

Lemma 2.2.2
rank (D, F4(0,0)) =n

Lemma 2.2.2 holds if the linearized system has state space of dimension n. Further-
more k and ¢ are only required to be equal to n.

Now we have all the tools to show that a recursive input-output map exists.

Theorem 2.2.3 There exists a function f such that

y(t+n) = f(o}, ult +n),uf)

in some open set about the origin.

Proof: First,

yi'bb = n,t(u?’ut)
By the Theorem 2.2.1 there exists an open W; € U™ x U* such that
e rank D, F, ;= n for every (z,z) € Wyand t > n

e F,+|W; has connected level submanifolds for any fixed 2
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The zero state response function of Equation (2.2) at time t + n gives us
y(t +n) = fran(ult +n),uf,u"")

Since Lemma 2.2.1 gives us

Dan+1,t =n
and
n,t
D:an+l,t =
ft+n

then the derivative of (Fy, ;(u?, u), fin, u},u’) with respect to = uf’ has rank n on
W,. All the requirements of Theorem 2.2.2 are satisfied, so fi1, is dependent on F;, ;.

Therefore, there exists a function f such that

y(t +n) = fy;,u(t +n),uf)

for all (u},u) € W,.
We have some freedom in defining the W;. They can merely be chosen as the

inputs restricting f to some open Y.

O

The above arguments can be followed, with various modifications and specializa-
tions, to arrive at a variety of forms. Some of these forms require the notion of delay

in a discrete-time dynamic system. The following definition requires

Assumption 2.2.1

hlz(t), u(t)] = hlz(?)]

Definition 2.2.1 The SISO system has relative degree d if

5% (h (Pg+1 (z(2),0,...,0,u(t))) =0
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fork|0<k<d, and

5% (h (a1 (2(2),0, .., 0, u(t)))) # 0

The interpretation of this definition is that y(t +d + 1) is the first output affected by
the input u(t). Now assume that g and h are analytic, implying that d is either oo
or d < n. Clearly we must assume d < n, otherwise the control problem is hopeless.

Therefore, we can specialize Equation 2.2.3 under this conditions

y(t+n) = Fy},uf)

The control algorithm feedback linearization, presented in the next section, attempts
to define a u(t + d) in terms of the remaining arguments of f. These arguments
contain outputs y(t + d + 1) to y(¢t + n — 1). The difficulty becomes obvious, since
our input can certainly not be determined as a function of future outputs. We must
therefore write the future outputs as a function of current and past outputs. It is not

difficult to do so. Simply let

yt+d+1) = f(¥igrion Utrdr1-n)

yt+d+2) = f(Wiigre—n u(ti+d+2—n)

|

-1 d d
f (ytn+d+2—m Uit d+2-n> f (y?+d+1—n: Ut+d+1—n))

>

* n d+1
fat2 (yt+d+1—m Utidti—n

I

Y (t + ") Ia (y?+d+l—n’ u?+d+1—n)

Since the system is autonomous, we can translate it in time without loss of generality,

and write it in the D-step Ahead Predictor form.
yt+d+1) = fry@),...,y(t —n+1),u(),...,u(t —n+1))

Now, let us consider a further specialization. In particular, let us have the maxi-
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mum finite delay.

y(t +n) = fyf, u(®))

or

y(t + ’I’L) = f;; (y?—n-i-l’ u?—n+1)

= fry(@),...,yt = n+1),u),...,ult —n+1))

This case is important because the u(t — 1) through u(¢ — n + 1) can be written
exclusively in terms of y(t + n — 1) through y(t — n + 1). The existence of such a
transformation is crucial to the proofs presented in Chapter 4. Suppose that any
y(t) € Y can be reached at any t. Therefore the u are restricted to U, the set of u(t)
which take any [y(¢),...,y(t —n+1)] € Y" to any y(t +n) € Y. Since we assumed
that %5 # 0, the implicit function theorem guarantees that there exists a function

U : Y"! — U satisfying

u(t) = Uy(t +n), ..., y(t)

Therefore we have a transformation T

y(®) y(?)
y(t—-n+1) _ y(t—n+1)
u(t — 1) Ult+n—-1),...,y(t-1))
L u(t-n+1) | U(y(t+1),...,yt—n+1)) |

= Tylt+n-1,...,y(t-n+1))
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Furthermore T is a diffeomorphism since the transformation 7! exists satisfying.

[ y(t+n—1) ] [ fyt+n—2),...,y(t—1),ult-1)) |
y(t+1) _ fly@®),...,y(t—n+1),ut—n+1))
y(t) y(t)
| y(t—n+1) | I ylt—n+1) ]

= T(ylt+n-1,...,yt—n+1))

2.3 Summary

We have taken a system written in a well known and understood state space form
and show that it can be recast in the input-output form known as the D-step ahead
predictor form. Working with this new form has several advantages. Most impor-
tantly, it is important to understand that the input-output model represents all the
knowledge we can perceive given exclusively measurements of the input and output.
In addition, we will see that using the D-step ahead predictor form in particular al-
lows us to write an exact input-output feedback linearizing controller exclusively as
a function of past inputs and outputs. This result is the primary contribution of the

following chapter.
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Chapter 3

Control Strategies

Now the concepts of the previous chapter can be built upon to devise methods of
controlling a particular system. This chapter begins by introducing some simple
concepts regarding linear control systems, and then moves on to describe in more
detail the input-output feedback linearizing strategy as it applies to the state-space

system and the equivalent D-step ahead predictor form.

3.1 Control of Linear Systems

Much of the current control theory makes the assumption that the system under

consideration is linear, or nearly linear, with respect to the state variables and inputs.

g9lz(t),u(t),t] = A(t)z(t) + B(t)u(t)
hz(t),u(),f] = Ct)z(t) + D)u(t)

Very few systems are actually linear, but many may be well approximated by some
linear system. Due to the depth of research focusing on linear systems, many tools
exist to design u(t) such that the system’s states and outputs behave in some desired
fashion. The most basic design goals are stability and tracking. Before continuing,
let us make the assumption that the system is time-invariant, as we have done with

the system of Chapter 2. This assumption is a reasonable one, since otherwise the
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identification problem, the primary goal of the results of this thesis, would not be

possible. Therefore,
Alty=A, B(t)=B, C(t)=C, ,D(t)=D

Since the transient behavior of the above linear system is invariant with respect
to a translation of axes in the state and input, we can assume that the stability
problem is that of stabilizing the origin. The most common of approaches to solving
the stability problem is to allow u(t) to be a linear combination of the states of the
system.

u(t) = kTz(t)

If such a strategy were not sufficient, designers have the option of augmenting z(t)
with additional states whose dynamics also depend linearly on states and inputs. If

we let the augmented state vector be z(t) then the new system can be written.

2(t+1) = A,z(t) + B,(t)u(t)
z(t+1) = C,z(t) + D,(t)u(t)

and u(t) = kT2(t). Eliminating u(t) from the above expression

2(t+1) = (A, + B,kT)z(t)
2(t+1) = (C,+ D,kT)z(¢)

It is well known that the stability of the above system can be written in terms of the

eigenvalues of the state coefficient matrix
eig(A, + B,kT) < 1

This condition guarantees

y(t+1) <y(®)
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and

y(t+1) =0, as t >

And the system is stable.

If the goal is acquire the origin in finite time, we can reintroduce the notion
of reachability. In term of the linear system, the reachability problem takes on a
particularly simple form. Let’s progress by first constructing the k step response

function of the above system

z(t + k)

f

Afz(t)+| A*'B | A2 | ... | B

= AFz(t) + Ryug

Therefore, if there exists a k such that Ry has rank n, then all z(¢ + k) would be in
the range of Ry. Since without loss of generality, z(t) can be set to zero, any z(t + k)
can be reached from any z(t). It is obvious that reachability of the origin implies
reachability of any state.

Observability also plays an important role, and as with reachability, the condition
takes a particularly simple form for the case of linear systems. We require observ-
ability since the above feedback control strategies required access to all the states.
Observability is the condition under which the states can be constructed from the
outputs. Begin by collecting the k step output response functions into a vector form.

Suppose u(t) and y(t) are known. Then,

- - - - - -

y(2) c D 0 0 ... 0
y(t+1) CA CB D 0 ... 0

yit+k-1) | | car? | CA*2B CA*B CA*“B ... D
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Since the last term above is known, we can write the above equation in the following

form.

C

CA
Y= : z(t) = Orz(t)

C Ak

If rank Oy is n, the number of states, for some k, then each z(¢) maps to a different
y and z(t) can be recovered from y. It is also clear that observability of any state
implies observability of all the states.

With respect to the small autonomous helicopter of this section, the linear control
design depending essentially on the concepts so far presented in this section, is based
on a linear approximation of the vehicle about the hover condition (zero velocity,
angular rates and attitude). Reasonable linear approximations can be constructed
as first order Taylors series expansions of the system. Since such approximations
apply with arbitrarily small error in arbitrarily small open sets about the point of
linearization, the resulting controller’s performance can only be guaranteed locally.
Robustness techniques do exist, but they are often very conservative in nature, and
required extensive modeling of errors. There do exist control strategies which take the
nonlinear structure of the system directly into account and provide global stability
and tracking guarantees. One of these is that of feedback linearization, discussed in

the following section.

3.2 Feedback Linearization and Dynamic Inver-
sion

Since non-linear systems are so difficult to analyze, and linear systems have been
thoroughly studied and are relatively simple to analyze and control, an obvious control
strategy to employ on non-linear systems is the strategy of feedback linearization ([2],
[9], [11], [13], [21]) . In essence, a transformation of the control inputs is found which

makes the transformed system linear. Then, traditional control strategies can be

32



employed. A specialization of this strategy is dynamic inversion, where the dynamics
are completely inverted and the output at time ¢ + At is simply the transformed
input at time ¢.Desired response characteristics are then achieved through appropriate
definition of the input. These algorithms are obviously very powerful. Their strengths,
though, are tempered by some significant weaknesses, all of which shall be discussed
in this section.

The conditions under which feedback linearization and Dynamic inversion can be
employed are now described. The derivations of these controllers shall be presented
for both a state space model, and for a D-step ahead predictor model. This step is
taken for the sake of completeness.

Let us begin by input output linearizing a non-linear discrete time state space

SISO model.

z(t+1) = glz(t),u(t)]
y(t) = hlz(t)]

z(t) = @(z(t))
¢1(z)
O (z)

where ¢;(z) = ®;(z) the i step ahead state transition function for i € [1,d]. If the
delay d is finite it is always possible to find ¢;(z) for ¢ € [d + 1,n] such that D,®(0)
has rank n in some open set M about z = 0. Furthermore, the ¢;(z) for i € [d+1, 7]
can be chosen such that ¢;(f(z,u)) = (¢ o f)(z) and ®(z) is a diffeomorphism on

M. In the new coordinates, the system can be written

Zl(t+1) = Zz(t)

2t+1) = z(t)
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zq(t+1) = [ho f(27"(2(k)), u(k))

2gr1t+1) = ¢441(27(2))
zZ(t+1) = ¢ (27'(2))
y(t) = «(t)

Since %:ﬁl # 0 by assumption, the implicit function theorem guarantees the

existence of a function g such that

a(z,9(x,v)) = v(t)

in some open convex set. Therefore, we can define our input u(t) as g(z,v) and the

input output map of the above system becomes
y(t+d) =v(t)

The function g is the input output linearizing transformation of the control input u.
The argument can be similarly applied to the recursive input output maps derived

in Chapter 2. Consider the d-step ahead predictor form

y(t+d) = fr(y(@),...,yt —n+1),ut),...,ut —n+1))

Since 6—‘3% # 0 in some open convex neighborhood of the origin ,as shown in Chapter 2,

then the implicit function theorem guarantees that there exists a function U such that
u®) =U(y(t+d),y@®),...,yt—n+1),ut —1),...,u(t —n+1))

and the input output model has been linearized.
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3.3 Dynamic Inversion and Zero Dynamics

Although the Dynamic inversion algorithm seems promising, since it can take a large
class of systems and define their input output behavior as desired, there are some
issues that must be dealt with. In particular, the feedback linearizing transformation
of the control may render some states of the system unobservable. Thus we need
some way to guarantee the behavior of these states is stable in some sense.

Let us return to the feedback linearized state space system. Define

C = [Zl,...,Zd]T

n = [z2a41,--., 2]

Let the system start at the origin z = 0 and let the control v(t) = 0 for all ¢t. The zero
dynamics of the system are thus defined as the dynamics of the n under the above
initial condition and control.
$a+1(271(0,n(t))
n(t+1) = q(n(t)) £ '
$n(@71(0,n(2))

We would like the above system to be asymptotically stable. If it is, the system is
referred to as being minimum phase.

If we are only given an input output model such as the d-step ahead predictor
form, we must first find a state space description in order to define the zeros dynamics
of the input output feedback linearized system. Such a description is easy to find. In

particular, let

[I>

z(t) [yt +d—1),y{t+d—2),...,yt—n+1),ut-1),...,u(t —n+1)]

35



>
(]

A state space realization of the d step ahead predictor form is thus

fiw@),...,yt —n+1),ut),...,u(t —n+1))
Uly(t+4d),y@),...,y¢—n+1),ult=1),...,u(t —n+1))

z(t+1) = Az(t)+B

and the unobservable states are the u(t). If we partition the state vector into observ-

able ¢ and unobservable 7 states, as above, the zero dynamics thus become

n(t+1)=A[ + B

n(t) U(0,n(t)) ]

and we call the system minimum phase if the above dynamics are asymptotically

stable.

Solutions to deal with unstable zero dynamics usually involve the addition of
outer control loops which shape the type of control inputs Ygesires s a function of

the unobservable states. These states are obviously measured in the outer control
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loop. An example of this strategy is implemented on the helicopter in Chapter 6.
It is clear that if pitch rate is treated as an output, its dynamics must be chosen
carefully if the pitch is not to go unbounded. An outer feedback loop defines the

desired pitch rate to achieve a given desired horizontal velocity.

3.4 MIMO Feedback Linearization

So far, the discussion of feedback linearization has treated only the SISO case. We

need to extend the above notions to the MIMO systems. See reference [13].

z(t+1) = f(z(t) u())
yi(t) = hi(z(?))
where i € [1,...,m], z € R", u € R™, y; € R and f and h are analytic. Delay for
the MIMO case is defined similar to the SISO case.

(3.1)

Definition 3.4.1 The output y; of the MIMO system has relative degree d; if

‘a‘%(hi(fbkﬂ(a:(t), 0,...,0,u(t))) =0

forkelo,...,d—1]] and j € [1,...,m], and there ezists j € {1,...,m} such that
0
'a——(hi(cl)di+1(x(t)7 0,...,0, u(t)))) # 0
uj
for all z € R™ and u € R™.

Definition 3.4.2 The input output decoupling matriz is

0

A(e0) = {2 (00,0, 0,u())
s i

If the origin is reachable, and A(z,u) has rank m then there exists a transforma-

tion of the input such that the system is input-output decoupled ( [13]). The new
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transformed system takes the form

nt+1) = wu(t)
Cj(t + 1) = F(ﬂ(t), C(t)a ’U(t))
Y = N

forie {1,...,m},je{m+1,...,n}, and

T Cmt1

Thus the system has been feedback linearized.

3.5 Summary

Now we have both the system and control background required to move on to an
exact mathematical formulation and proof of the algorithm proposed by this thesis.
This algorithm, which can be discussed in more specific terms, takes the system of
Chapter 2 and shows how and under what conditions we can identify the feedback

linearizing controller of this chapter and use it to control the system.
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Chapter 4

Proposed Learning Strategy

4.1 Problem Description

This section introduces the learning control algorithm of this thesis. The presentation
is in now way complete or precise. An exact mathematical formulation is presented in
the next section. What follows is intended to provide an intuitive feel of the proposed
algorithm.

The primary objective is to find a controller which guarantees bounded tracking
error for a given system in a given controllable region of the state space. The algorithm
described in the next two sections can accomplish this goal given a minimal amount
of prior information about the desired controller. In particular, if a sufficiently good
approximation to the ideal (zero tracking error) controller is known in some small
region of the state space, the proposed controller can can extend the initial small
region to the desired region, while at the same time decreasing error to any arbitrarily
small value. Furthermore, the algorithm can be applied to a large class of non-linear,
feedback linearizable systems which can be written in the D-step ahead predictor
form described in detail in Section 2.2

The basic idea for the algorithm is as follows. If we have good knowledge of the
controller in some small region of the desired state space, then we can fly our system
within that space. By flying near the boundaries, sample data can be collected and

then extrapolated outside the boundaries of the small initial region. Using the new
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extrapolated data, the boundaries can be pushed further and further until the data

spans the entire desired region of the state space.

4.2 Exact Problem Statement

An exact mathematical formulation of the above strategy follows. This formulation
consists of a description of the system under consideration followed by a precise claim
of the control strategy’s capabilities. The problem statement does not specify the
controller, but claims the existence of the controller. The control strategy is then
constructed by means of the proof in the next section.

The class of systems considered is all systems which can be written in the D-step
ahead predictor form with delay equal to the order of the system.

Let y; and u; be the output and input of the system, respectively. For now,
only consider the case where y; and u; are real scalars. The proof can be extended
to the case of vector valued input and outputs under certain minimal restrictions.
These restrictions include that the input and output have equal numbers of scalar

components. For simplicity, only consider the scalar case. The system is

l

f('u't? wt)

[yt+n—17 ety yt—n+1]

Yt4n (4.1)

>

Wy

where n > 1. The function f : Y?~! x U — R is a continuous function with
continuous first and second derivatives. The sets Y C R and U C R are open, and
y; and u; are the input and output of the system at time ¢ respectively. Now make

the following assumption.

Assumption 4.2.1

3]
5'1{;(Ut,0) -‘;é 0, Vut eU

As a consequence of the above assumption and the Inverse Function Theorem [17, p.

345], there exist closed intervals D, C Y and D, C U, and a function U : Q;‘;" - R
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such that
FU (v, we), wy) = v (4.2)
for all
vy € Dy
w, € Df,""l,
where v; is an exogenous input. Furthermore, this function is continuous with con-

tinuous derivatives, and

ou

a—vt(’Uta wy) #0 (4-3)

This result states, in words, that there exists an exact, input-output feedback lin-
earizing transformation U of the control u;. To see this, let u; = U(v;, w;), where v,

is the new control variable. Therefore

Yt4n = f(U(Ut,wt), wt) = ;.

The equation y;4, = v is clearly linear. The implications for control are clear. If the
functions U and f, and all past outputs and inputs were known precisely, any desired

output Yges,,, could be achieved exactly by letting the input be

U(ydesH_n ’ wt)

where w; is known since past outputs ,{y;—n+1,.-.,¥t}, can be measured and the
future outputs ,{ys41,...,Yt+n-1}, can be calculated since
Y1 = f(u’t+1-n7 Yty yt+1-—(2n—1))
Yt4n-1 = f(ut—1,yt+n—2,---,yt—zn—z)-

In reality, though, this condition would never exist. Any controller would have to
make do with approximations of f and U on restricted domains. We now make the

assumption that such approximations exist.
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Assumption 4.2.2 There ezist known functions Uy and fo and closed intervals

A~

D,, ¢ D, and
D.,o C D,
such that
on(yt+n,wt)—U(yt+n,wt)| < dup
|f0(utawt)—f(utawt)| < by
for all

~

Yi+n € Dygo
Aon—1
wy € Dy%

~

Us € Du,O'

These approximations may be poor, and the intervals ljy,o and lju,o may be small.
The goal of this thesis is to present a scheme to generate successively better approx-

imations
f07f11"'7fN’ and
Uy, Ug,...,Un

on successively larger intervals

ﬁy,o C by’l Cc---C ﬁy’N and
D,oC Dy, C--- CDyy.

This goal is stated in Theorem 4.2.1 as the primary result of this thesis.

Theorem 4.2.1 There exist numbers, d;, 6, and C, depending only on properties of
the functions f and U, such that if

6u,0
00 < 95
max(y € Dy) —min(y € Dy) > Céy,

IN
&

then there ezxists a sequence of inputs us and corresponding outputs y: from which

. 2 CTA2 £ . TN2n-1
we can construct functions Uy (Yiin, wy) : D% — R and n(ug,we) @ Dy X
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D, v (w;) — satisfying

IU(yt+nawt)_UN(yt+nawt)I < dun
lf(ut»wt) fN(Ut,wt)| < N
for any
dunv € (0,0yu0],
Ssv € (0,050]
and for all

A

Yt+n € Dy,N
Wy € ﬁi?ﬁl
Ut € Du,N(wt)

where Dy v € Dy is closed and contains Dy o and

~

Du,N(wt) = {Ut = U(Yttn, We)|Y4n € ﬁy,N}-

a

In itself, the statement that we can achieve successively better approximations of
the functions U and f seem to imply very little. Appearances aside, the consequences
are significant. As we will see in Section 4.3.2, a controller can be contstructed
from these approximations, and both the tracking error and the set of commandable
outputs y depend directly on the approximation errors of the U and f . Essentially,
the smaller the approximation errors, the smaller the tracking errors, and the larger

the D, v the larger the set of commandable outputs.

4.3 Proof

The proof of Theorem 4.2.1 presented in Section 4.2 can be separated into a few main
elements. These elements are divided among the remaining sections of this chapter.
Although they may be complete and self contained, their individual influences on the

big picture, and their use in proving Theorem 4.2.1 may not be immediately apparent.
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The following outline is included specifically to provide clarification on these issues.
Keep the outline in mind as you progress through the remainder of this chapter.

Section 4.3.1 shows how an approximation to a function can be constructed from
samples of the function. The theorems contained in the section give bounds on the
error between the function and its approximation. These theorems are of a general
nature and do not make reference to the system of Equation 4.1.

Section 4.3.2 describes a control algorithm which can be constructed from the
approximations fk and Uy, and shows that the better the approximations, the better
the tracking error of the control algorithm.

Section 4.3.3 describes how samples of f and U are acquired using the control
algorithm of Section 4.3.2. This sampling is central to the proof, since if these samples
can be used to generate better approximations of f and U, then it may be possible
to repeatedly sample and generate improved approximations As will be shown, this
is indeed the case. Section 4.3.4 shows that the acquired samples can be applied to
the results of Section 4.3.1 in order to generate improved approximations of f and U
, and the final section brings together the results of the previous sections to complete

the proof of Theorem 4.2.1.

4.3.1 Error Theorems

The following theorems show how to take samples of some function f and construct
an approximation f which satisfies certain error properties. The first two theorems,
Theorem 4.3.1 and Theorem 4.3.2, treat functions whose domain is a set of scalars.
Theorem 4.3.3 and its corollaries extends these theorems to functions with vector do-

mains by reducing the vector problem to the scalar problem treated in Theorems 4.3.1

and 4.3.2.

Theorem 4.3.1 Let f : D — R where D 2 (a,b]. We are given samples of f at

two different points x,, Ty in D:
y1 = f(z1), y2 = f(z2).
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Without loss of generality, we can assume 1 < Zo. Define the function f : D -+ R

as
f@) =+ 2" (g ). (4.4)
To — 21
Suppose f is continuous with continuous first derivative, and Ig—ié < L. Then
o 3L 2
/(@) ~ f@)| < 5 b~ a), VzeD. (45)

Proof:  Applying Taylor’s Theorem (with remainder) [17, p.185] to f(x) and

about z; for some arbitrary z € D yields

@) = £(a) + Lan @20+ 1L (€)@ - 22 (46)

for some (; on the interval between z; and z. Since %(z) = 8L we can rewrite

Equation (4.4) as )
fl@) = i) + L@@ -2, (@7)

Subtracting Equation (4.7) from Equation (4.6) yields

@)~ @] = [f@)+EE)E - n)+3EH0)E - o)
~f(@) - L(2)(z - z1)| (4.8)

< |L(@) - L@)| Iz - o1 + L) |2 — 2
Since D = [a, b] it follows that

|z’ — 2"| < b—a, for any z', 2" € D. (4.9)
Therefore Equation (4.8) becomes

df

0 - fo)| < @) - @] e - ml+ 0= 0F @10

To bound the first term on the right hand side of Equation (4.10) we proceed as

follows. As a consequence of the Mean-Value Theorem [18, p. 89], there exists an
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T3 € [z1, 2] such that
df Y (zg) = df

dzx dz z) (4.11)

By applying Taylor’s Theorem to f(z) about z3 and z; respectively, and substituting
Equation (4.11) into the result, we obtain

f@) = flzs) + L(2) (@1 - 23) + 14 (G) (@1 — 25)?

(4.12)
flxzs) = flz)+ %(551)(333 —-z1)+ %*‘Q(C Nz3 — 1)?
for some (,, (3 € [z1,23]. From Equations (4.12) we can derive the following:
|4 (21) — |=§Q¢@+M(nm—m|
< (| S|+ | % G)) 25— =l (4.13)
< Lib-a)

Plugging Equation (4.13) into Equation (4.10) and applying Equation (4.9) yields the
desired inequality (4.5).

O

Theorem 4.3.2 Let f : D — R where D = [a b]. We are given approzimations of

f at two points x1, x5 satisfying

ly1 — f(z1)] L €1, |y2 — f(z2)| < €2, 22— 21 2 ¢> 0. (4.14)

Define the function f : D = R as

Yo — U
==

z —I). (4.15)
To — I

f(x)=y1+

Suppose f is continuous with continuous first derivatives, and Zﬁ

If(:v) - f(:c)l < 2?—::E max(ey, €2) + §2£(b —a)?, VzeD. (4.16)
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Proof: Define an intermediate function g : D — R as

f(z2) = Flo)

9(@) = fle) + = — — (@ —=). (4.17)

First find the error between f and g by subtracting Equation (4.17) from Equa-
tion (4.15).

If(l”) - 9($)| = "91 + amer L (g —31) = f(z1) - ﬁ%ﬁ%&ﬂl(x - $1)|
= | = fl@) 22 + (v — fo2) 22 (4.18)
<y = Fla)| | 225+ lye — fe2)l | 225
Applying bounds (4.14) and Equation (4.9) to Equation (4.18) yields
f(z) —g(z)] < 2(b—a)+2(b—a
f(@) - 9(x)| < 20-0a)+2(b~-0a) w1
< 222 max(e, €)
From Theorem 4.3.1,
lg(z) — f(z)] £ T(b —a)’ Vz € D. (4.20)
Combine Equations (4.20) and (4.19) to obtain inequality (4.16).
O

Theorem 4.3.3 Let ¢ : Dy — R, where Dy C RY. Suppose we are given
approzimations, {p,...,pn} of g at N + 1 points {20,...,zn} such that

‘pi—g(zi)l .<.._61) i=0111~--5N- (4.21)
20 ... RN
1 ... 1
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and assume that Z is invertible. Define the set Z,, for m =0,1,...,N as

Z, ={z0,...,2m} (4.22)

Define the function § : R¥ - R as

Suppose g is continuous with continuous first derivatives. Suppose, furthermore, that
the second derivative of g along any straight line in Dy has a bounded absolute value
such that

|2

%Z;Z“(le +(1—-2)2")| <L} =2"|", V2',2" € Dy and z € R. (4.23)

Define the set Co(Zy,) as the convez hull ' of Z,,. Suppose
l9(z) — §(2)| < €2, V2 € Co(Zpm1). (4.24)
Then

10(2) = §(2)| < 2max(61,62)+%1- max||z = znl2, ¥z € Co(Zn), V2 € Co(Zm_y).
(4.25)

Proof: Let z € Co(Z,,). From Corollary A.0.1 in Appendix A, z can be expressed
as

z=zz' + (1 —z)zm

for some 2z’ € Co(Zm_;) and z € [0,1]. The functions f(z) and f(z) can be defined

as
f(z)
f(z)

g(zz' + (1 — z)zm)
glzz' + (1 — 2)z).

> >

!Definitions and properties of convex hulls are presented in Appendix A
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Therefore Equation (4.25) can be established if it can be shown that

lf(x) - f(:x:)‘ < 2max(€, €) + é;imaxllz’ —zml, Yz €[0,1].

2

1

Since §(z;) = [po- - -pn]Z 71

} for each i =0,..., N we have that

[§(20) -+ - §(zw)] = [po- - -pN|Z7'Z =[po- - - pN]- (4.26)

Therefore f(0) = §(zm) = Pm- Setting z; =0, 73 =1, y1 = f(0) and y, = f(l), and
noting that f(z1) = g(zm), 11 = f(0) = Pm, f(z2) = g(2') and y» = §(2'), we have

that
ly1 — f(z1)] < € from Equation (4.21),

lys — f(z2)| < € from Equation (4.24).

Since, in addition,

2
g:c—é < Lymax ||z — zm|3, ¥z € [0,1], from Equation (4.23),

f satisfies the assumptions of Theorem 4.3.2. Therefore, Equation (4.16) becomes

- L
£(2) - F(@)] < 2max(en, &) + 2ot max |z = 22, Vo€ [0,1)

which proves Equation (4.25).

O

Corollary 4.3.1 If the assumptions of Theorem 4.8.3 hold for ¢, = 0 and m =1,
then

3L
lg(z) — 9(2)| < (2™ — 1)——2—1d2, Vz € Co(Zm), (4.27)
and for all m in {1,2,...,N}, where
d=maz|Z - 2"||,, V22" € Co(Zn). (4.28)

49



Proof:  The proof is by induction. First, assuming Equation (4.27) holds for
m = k, for some k € {1,2,..., N —1}, and choosing ¢, = (2F — 1)%%12 it follows that

l9(2) — 3(2)| < €2, V2 € Co(Zy),
and from Equation (4.28), that
max ||z — 2|, = d Vz € Co(Zy),

where Z; is defined in Equation 4.22. Therefore, from Theorem 4.3.3 we have that

l9(z) — §(2)| < 2max(ey, (2F - 1)§—é/—l—d2) + i%ld{ V z € Co(Zg1). (4.29)

Since €; = 0 by assumption, Equation (4.29) can be reduced to

3L,

lg(2) — §(2)] < (2F+! - 1)—2—d2, V z € Co(Zg41)- (4.30)

Equation (4.30) shows that an inequality of the form of Equation (4.27) holds for
the case m = k + 1. To complete the induction proof , it suffices to show that
Equation (4.27) holds for m = 1.

From Equation 4.26 and the assumption that ¢; = 0, it follows that

lg(z:) — g(z:)| =0, for ¢ =0, 1. (4.31)
From the definition of Co(Z), Equation 4.31 also implies that
l9(2) — 3(2)| = 0, Vz € Co(Zo),

and hence e, = 0, where ¢, is defined as in Theorem 4.3.3. It follows from Theo-

rem 4.3.3 that

3L,

l9(2) — g(2)| < 3—§ld2 = (2! - 1)7d2, Y z € Co(Z,). (4.32)
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Equation (4.32) is exactly Equation (4.27) for m = 1 and the proof is complete.

a
Definition 4.3.1 The ball of radius r and center z, € R is
B(ze,r) ={z|l|z — 2|l £ 1y 2 € RN}
Corollary 4.3.2 If the assumptions of Corollary 4.3.1 hold and
B(z.,d;) C Co(Zy) C G C Dy CRY, (4.33)
for some compact and conver set G, and some d; and 2, then
92) —3(2) < @F - D2P 4 22, vaeq (434)
where d is given in Equation 4.28 and
d, = max|z' - 2"|,, V72, 2" € G. (4.35)

Proof: Choose some arbitrary point z € G. The straight line passing through
points z and z., and extending to the boundary of G, intersects the boundary of
B(z.,d;) at exactly two points 2y and zpp, with ||z — 2s2||, = 2d;. We can write this

line as a function of a scalar z.
2(z) = 25 + (22 — 201)T (4.36)

Since G is convex, and z(0) = 23; and z(1) = z, 2(z) € G implies z € [a, b] for some

a <0 and b > 1. Define

f(z)
f(z)

g(zbl + (Zb2 - Zbl).’l?)
(201 + (262 — 201)z), VI € [a,b].

> >
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Since z was chosen arbitrarily, Equation (4.34) can be obtained by showing

fo) < )3hds e 3l

|f(z) - f )2 5

a2, ¥z € [a,b].

Setting 71 =0, o = 1, y1 = f(0), y» = f(1) and noting that from Assumption 4.33
and Definition 4.36 that

2(0) = 2y € Co(Zy) and
Z(CL‘Q) = 2(1) =2p € CO(ZN),

N
—
8

-
~—
1

it follows from Corollary 4.3.1 that

’yl - f(xl)' (2¥ —1)3 2 and

< 2
}yg - f(.’l)z)’ S (2N - 1)%"‘(12

Therefore the €; and e, from Theorem 4.3.2 are

3L,

d2
2

@ -1)—=

Since, in addition, Assumption 4.23 yields

d*f

7oz| < Dnllzn — Zal3

it follows from Theorem 4.3.2 that

3L, 3L1

|f(z) - f(x),g(b—a)(zN—l) @+ || — 2|2 (b—a)?, Vz € [a,b]. (4.37)

Since 24 = |21 — 25|, and ||2(a) — 2(b)||, < d, we have that
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and therefore Equation (4.37) becomes
. L
£(e) - fl@)| < @ - )22 4 222, V€ o8],
!

Equation (4.34) follows.
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4.3.2 Tracking

Theorem 4.2.1 tells us that, under certain conditions, we can find approximations f N
and Uy of f and U which are ’better’ than the original approximations f, and U.
The proof of this theorem, to be presented in the final section of this chapter, will be
made using an induction argument. Therefore, the assumptions and theorems of this
and other sections are concerned with properties of intermediate approximations fz
and U; for i € {0,...,N}.

This section deals primarily with the tracking error associated with the Sys-
tem (4.1) using U; and f; for control. We begin by making an assumption of the

approximation error of U; and f;.

Assumption 4.3.1 There exist known functions U; and fi, and closed interval ij,i

satisfying
D,; CD,n (4.38)

such that
Ui (ydesH.fn wt) - U(ﬂdest+,., wt)‘ g 511.,1: (439)
fz’(ut, we) — f(ue, wt)l < Oy (4.40)

for all Yges,,. € ﬁy,i, U € ﬁu,i(wt), and w; € f)zn-‘l, where ]A)y,N s as in Theo-

Y,
rem 4.2.1 and

ﬁu,i(wt) = {4y = U(Yt4n, Wt)|Yt1n € ljy,i} (4.41)
The notion of a sample of a function is now defined.

Definition 4.3.2 A sample of a function g : A — B is an input-output pair (a,b)

of g, where a € A is a sample input and b = g(a) € B is a sample output.

We now proceed to derive an expression for the tracking error of System (4.1)
controlled by U;. Such an expression is pivotal to the completion of the proof since it

describes our ability to acquire prescribed samples of U and f. Theorem 4.3.5 which

54



states the desired expression, relies upon certain properties of the System (4.1). These

properties are presented in the required form as a theorem.

Theorem 4.3.4 Given System (4.1) and Assumption 4.2.1, the following inequalities
kold for some Ny, Ny, Ny and Ny, ,and allu, € lju,N(wt), wg € f)f,f};,’l andy; € ﬁy,N,
ie{t—-n+1,...,t+n}.

(ut,wt) < N

|a;j (yt+n, w)| < Ny (4.42)
aut(ut, wy)| < Npy
But AL (ug,wy)| > Ny

Also, assume N, > 1. If 4.42 is satisfied with N, < 1 then we can always choose
N, =1. The set ljy,N 15 as in Theorem 4.2.1 and

f)u,N(wt) = {ug| f (us, we) € lADy,N}

Proof: From [1, p. 122], the continuity of f and U and their first partial deriva-
tives on closed sets is sufficient to imply that N,, Ny and Ny, exist. The constant
Ny exists since Assumption 4.2.1 implies that 6% exists and is bounded away from

zero on a compact set.
O

The following Lemma is useful in the proofs of the remaining theorems of this

section.

Lemma 4.3.1 If the function g(z,2) : R® = R is continuous with continuous first

partial derivatives, where

z=(z1,...,Zm) € R™
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and z € R™™ ™, then

9(z,2) = g(a',2)

'*‘%;(711,332, oy Ty 2) (T — ) + - -

: (4.43)
3 (T s Thmty Ty Tkt 1y -+ 5 T, 2) (T — Th) + -
+a—i€—n-(x’1, oy T 13 My 2) (T, — Z0.)
where ny, € [xg, x| fork=1,...,m ? and
o= (z,...,7,) € R™
Proof: An application of Taylor’s Theorem to
G(TLs ey Ty Thy e v vy Ty 2) (4.44)
about the point
(€15 s Thy Thals - - -, Trmy 2)
yields
9(TY e Ty, Thy e Ty 2) = g(TN, e T Thgy e Ty 2)
+3—‘19;g(3:’1, ey T 13 Ty Tkt 1y - - - » Ty 2) (T — T})
(4.45)
where 7, € [zk, z}]. Define
Uk = (2%, ..., %, Thaty - -+ s Tmy 2) (4.46)
C’C = (xlh s >$;c—1’ My Tht1y -+ 9Ty Z)
Therefore Equation (4.45) becomes
dg :
9(ye-1) = g(wk) + ga(Ck)(xk — T}) (4.47)

2In this proof it is assumed that T > zx. A similar proof can be given if zx > z}, with the
modification n € [z}, zk].
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for each k =0, ..., m. Equation (4.47) is a recursive relationship which yields

9(%o) g9(y1) + 2L (¢1) (21 — 2)

= g(v2) + 2 () (w2 — 75) + 5 (21 — 74)

9(ym) + 22 () (@m = Tp) + -+ + g (1 = 77)

Substituting Equations (4.46) proves Equation (4.43).

Definition 4.3.3 Given an interval S, define the set S'(6) as
$'(0) = {ylly - 6,y + 6] C S}.

Theorem 4.3.5 Assume that the System (4.1) satisfies Assumptions 4.2.1 and 4.3.1.
Define
A . .
Oy = lYeas — Beesl, GE€{L,...,n =1} (4.48)

where §4; is an estimate of Y43
Yt = fi(ut+j—myt+j—1, o Y, Yty - -’yt+j—2n+1)1 J€ {1, cey— 1}

Set
NfuNu
Ny

5tracking ‘é- Nfuéu,i + ((N_f + l)n_l - 1)5f,i (449)

and let

A

Uy = Ui (ydesH.,n gt+n—1’ ey gt-&-l: Y. - )yt—n+1)7 vydest+n € f);,,i((stracking) (450)

where N¢, N, and Ny, are the constants satisfying the inequalities (4.42). Then

Yt+n — ydesH.n S 5tracking- (451)

31t is necessary for any controller to use estimates of y;+; for any j > 0 since the controller must
be causal.
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and
Yt+n € by,i v Ydessyn € ]j;,i((stracking)- (452)

Proof: Define uge, as the input which takes us to Ydesyn-

Udes; = U(ydesH.n, Yt+n—-1;--- 7yt—n+1) (453)

We note that Equations (4.1) and (4.53) and an application of Taylor’s Theorem to
f about ug,, for some u; yields.

0
2 e )| 1 = (4.54)
Ut

lyt+n — Ydestyn

where 4 is on the interval between u; and uge,,. Using Equations (4.50) and (4.39)

Iut - udestl = Iﬁi(lydest.;.n, 'gt+n—17 ceey gt-f—la Ygoo oy yt—n+1)
"U(ydest.,.n, Yt+n—1y-- -, yt—-n+1)| (455)
< |U(Ydeseyns Jtants -« s Gty Yt « - - » Ytmnt1)
_U(ydest+na Yt4n—15---, yt—n+1)| + 5u,i
since
Ui(e) - U(2)| < |Ui) - U(a)| + [U(2) - U ()]
for any real z and 2. By using Lemma 4.3.1 with
T = ('gt+17 ey gt—{-n—l): Z" = (yt+17 ey yt+n—1) andz = (yd63g+n7 Yty ooy yt—n+1)a

Equation (4.55) can be written as

[ut — Uges,| < |5%(ydest+nann—l: Yttn—2, -+, Ut41,Yts - - o Yt—nt1) (Pe4n—1 — Ytpn—1)

+ﬁ_—l(ydest+n, e Y2 My Yty - -+ Ytont1) (P41 — Ye1)| + Oui
(4.56)

where nx € [Ysqk, Je4k), kK =1,...,n— 1% Noting Equation (4.48) and applying the

4In this proof it is assumed that Jt+k > Ye+k- A similar proof can be given if yix > rqr with
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bound in (4.42) to Equation (4.56) yields
l“t - UdeSgl < Nu(‘sy,l +-et+ ‘sy,n—l) + ‘Su,i (4-57)

Now we find upper bounds for the terms d,; for j € {1,...,n — 1} as follows. Using
Equations (4.48) and (4.40)

5y,j = |f (Ut+j-m Yetj=1r-- -5 yt+j—2n+1)

_fi(ut-{-j—’m 'gH‘]’—l’ v 5gt+ly Yty- -y yt+j_2n+1)| (458)

< | f (Utjmny Yoty - - Yerjm2nt1

'—f(ut+j~n’ Qt-{—j—l) ceey QH-I’ Uty oy yt+j—2n+1)l + 6f,i

since

|f(@) = fi(2)] < 1f(2) - F(2)] + |£(2) - fi(2)|

for any real x and 2. As before, by using Lemma 4.3.1 with
r= (!)¢+1, ceey ﬁt+j—1),$' = (yt+1, ces ,yt+j-1) andz = (ut+j—myta e 7yt+j-—2n+1))
there exists (i € [ys+k, Y¢ + k] for k=1,...,j —1, such that Equation (4.58) becomes

af A « A
5y,j < |3yt+j_1(ut+j—ij—1;yt+j—2y-°-yt+1ayt,---ayt+j—2n+l)(yt+j—1_yt+j—1)

9 .
Bers 1 (Uetjmns Yttty - -« » Y420 Gty Yt - - s Yerj—2041) (o1 — Ye1)]

(4.59)
Noting Equation (4.48), and applying the bounds of (4.42) to Equation (4.59) yields

6y9j g Nf(5y71 + e + 6y,j-1) + 6f97' (4'60)

the modification nx € [Je-+k, Yt+k)-
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Since Equation (4.60) holds for all j =1,...,n — 1, it follows that
0y < (Np+1)8y51 (4.61)
Noting that d,; < é;;, Equation (4.61) reduces to
by < (Np+1Y716:,, j€{0,...,n—1} (4.62)

The proof is now completed by combining Equations (4.42), (4.54) and (4.57) as

follows.

‘yt-f-'n. - ydesH.n S Nf,u (6u,z + Nu(éy.l +--- 4+ 6y,n—l))

Using Equation (4.62), it follows that

lyt-f-n — Ydesiin

n—1
S Nfu5u,z + NfuNu <Z (Nf + l)k—l) 6f,i

k=1

Using the identity

1
Yon— 1Ny +1)F ! = N
k=1n (Nr+1 Ny +1mt -1

it holds that

NfuNu
Ny

|yt+n — Ydesttn < Nfuéu,i + ((Nf + 1)n_l - 1)5f,i

which proves Equation (4.51). Since we assumed Yges,,, € ﬁ;,i(dtmck,-ng) and since

Equation (4.51) holds, we have from Definition 4.3.3 that Equation (4.52) holds.

a

Before moving on to the next section, two more results are introduced. Although
they are not directly related to tracking, the methods are similar to Theorem 4.3.5

so the presentation is made in this section.
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Theorem 4.3.6 Let

y;,-{—n = f(uéi y;-{—n—l’ L y;_n.*.l) € ]jy,N
Z/;’.*.n = f(ué,’ yé’-!-n—b Tt 1y2’—n+1) € ]A)y,N
and assume
’y£+j - yzl-}-j <d, je€ {—n +1,...,n- 1}. (4.63)
If
Dy < Y = Yan| < Da (4.64)
then
D, Ny D, N;
- m—-1)d<|ul —u| < =+ L (@2n-1)d 4.65
Nre Nfu( )d < Juy —ug| < N Nﬂ( ) (4.65)

where Ny, Ny and Ny, are defined by Equations (4.42).

Proof: An application of Lemma 4.3.1 to f with

T = (u;, y;~n+17 SR y;+n—1)’ x' = (uﬁ', yél—n+1’ o 7y;,+n-1) and z = ()

yields
8
y£+n - yél+n = |5§£(7]’ y£+n—1’ M) yé—n+l)(u2 - ui’)
a
+5§§:§:(“¥, Ca=1s Yesn—2s - - - Yemnt1) Ytan=1 — Yern—1) (4.66)
+ [N

af
+6yt_n+1 (U;’, yé’-f-n-l’ T yg—n+2’ C—n+1)(y;—n+1 - yi'tl—n+1)|

where 7 is on the interval between u; and u;' and (; is on the interval between y;, ;
and yy,, for each j € {~n+1,...,n — 1}. Applying Equations (4.42), (4.63) and
(4.64) to Equation (4.66) yields

D < Nfu lué - uQ’I + Nf(2n - 1)d (467)
Du Z Nﬂ [u; - 'U,;'I - Nf(2n - l)d (468)
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Solving for |u; — u{| in each of Equation (4.67) and (4.68) produces Equation (4.65).

O
Theorem 4.3.7 Let
yi-{»n = f(u;7y£+n—-1, ce ?yt{‘—n+1) € Dy
yé’-{—n = f(lu’é’7 yg-*-n—lﬁ LRI} y{:l_n_‘,_l) E ],jy’N
If
Yers — Utag| < dj (4.69)
where j = —n +1,n and , then
n
lug —uf| <Ny > d; (4.70)
j=-n+1
where N, is defined by Equations (4.42).
Proof: An application of Lemma 4.3.1 to U with
2= Ynt1r-+ - Yt4n)r T = (Yona1s- > Ytyn) a0d 2 = ()
yields
ut —ufl = |go (s Yban—ts- > Yhong1) Whin — Yien)
R (4.71)
+ayt3_[i+1 (ywlt({-m AR yé’—n+2’ C—n+1)(y;—n+1 - yzl—n-l-l)l
where (; is on the interval between y;,. and yf,,; for each j € {-n +1,...,n}.
Applying Equations (4.42) and (4.69) to Equation (4.71) yields Equation (4.70)
]
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4.3.3 Sampling

The purpose of this section is to describe exactly how samples of U and f are collected,
and demonstrate that the acquired samples satisfy certain properties which will prove
useful in the application of the theorems of Section 4.3.1 to the samples.

First a bit of notation is introduced. Let ¢ be such that ¥, is an output y at some
time t+A, where A denotes a translation in time. Since A’s can be arbitrary and need
not be sequential, y, ¥s,, - - - , Yz, need not denote consequtive values of y. Since at time
tx, the functions f and U of the system in Equation (4.1) satisfy Assumption 4.2.1,

we have

Utp+n — f(utk’ ytk+‘n—17 vty ytk -—n+1)
U, = U(ytk+na cey ytk—n+1)
Now we collect the inputs to f and u into vectors and denote them as 2;, and z;,

respectively. That is,

ytk-f-n
Ty =
i Ytr—n+1 |
utk
Ytp+n-1
2y, =
| Ytp—n+1 |

Since we assume that all outputs y and inputs u can be measured, the act of sampling
is simply the act of measuring and storing values of z:,, 2, us, and yg, 1n, Where,
using Definition 4.3.2, the pair

(z¢,, ut,) (4.72)

is a sample of U and the pair

(Ztk ’ ytk+n) (473)

is a sample of f.
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Sampling Procedure: ~ Let a set of desired input samples to U be given.

Xdes = {xdesto, ceey xdeuzﬂ}

where each desired input sample Tdes,; Can be written

ydestk+n
xdestk =
ydestk-n+l
At each timet,+m—nfork =0,...,2nandm=n, ... y—n+1let uy ym_p

be the control input of Equation (4.50) with Ydesrsn = Ydesy1m- VVE CAN
then measure values of z;,, 24, Uy, and g, 1, foreach k =1,...,2n. As-
sume that this measurement can be taken with perfect accuracy. It is also
important to note that under the conditions outlined in Theorem 4.3.5,

that the tracking error satisfies

‘ytk+m - ydestk.;.m < 6tracking

fork=0,...,2n,and m = —n+1,...,n. The term Otracking 1S described

explicitly in Equation (4.49).

Now, for any given Tdese(y 4y, WE specify Tdest y 411544 fork=1,...,2n as
mdes‘(2n+l)j+k = xdest(2n+l)j + 662” (4'74)
where
8 = Otracking Max(10n?, 40n* N, Ny, + Ny(2n — 1) + 2) (4.75)

for Ny, N, and Ny, are defined in Equation (4.42) and

et =1[0---010---0] (4.76)
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is a vector of length 2n with all zero entries except in the k;, position. Define the set

of 2n + 1 desired samples of Equation (4.74) as

XdCSj = {xdeS¢(2n+l)]. Yooy xdest(2n+1)j+2n} (477)

Note that the factor 2n + 1 is added so that the intersection of the sets Xges; and
Xes; ., is empty. Therefore we can define numerous sets indexed by integers j which
have no implied dependence on each other.

Now a critical theorem is presented. This theorem states that the acquired samples

satisfy properties which will be useful in proving the statement of Theorem 4.2.1.

Theorem 4.3.8 Let Xges,° be defined as in Equation (4.77). Acquire the correspond-
ing samples

(@, ute)s  (2p Ytitn)
according to the scheme outlined above in Sampling Procedure . Assume that each
Ydess,4m JOrk=0,....2n, m=m,...,—n+1 is in the set f);’i(étmcking) as defined by
Equation (4.38) and Definition 4.3.3. Then the acquired samples satisfy the following

properties.

A: The matriz

X' = o (4.78)

18 tnvertible.

B: The set Co(zy,," -, Tt,,) is such that
B(ze,72) C Co(Ztys - - - Tty,) (4.79)

for

Ty 2

- 2n+1

yrn+1) (4.80)

tracking

5We let the subscript j be zero without loss of generality. The subscript j will prove useful in
the next section to distinguish between numerous Xges; -
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C: The matriz

1s invertible.

D: The set Co(zy, -

Z’: Zko e ztzn
1 - 1

) 2t,, ) 18 such that

B(ze,72) € Colzt, - . -, 213,)

for
S yn(n + 1)6
T Z om+1 tracking
E: Let

g1
G,=4qz= Ldest, +

gon
Then

and satisfies

for 2’ 1" € G;.

F: Let

where

g1 € [—4nN,(8 + 3btracking), 4nNu (6 + 30tracking))
gi € [_ (5 + 26tracking), 6 -+ 26t'racking] 7= 2, ey 2n

Gz C_: Co(xtoﬁ e 7xt2n)

”.’El - $”“2 S \/57—7'_(26 + 45tracking)

, -
Ut,
9
Ydest, +n-1 .
G, = T z= kxm +
gon
\ L ydestk—n+l J

66

(4.81)

(4.82)

(4.83)

where g € {_5 - 26traclcingy 6 + 25tmcking] 1= 1a v

(4.84)

(4.85)

(4.86)

(4.87)
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Then
G, C Co(zyy,-- -, 2t5,) (4.88)

and
”ZI - 2,'"”2 S 8nNu\/%(6 + 35tracking) (489)

for 2/, 2" € G,. Furthermore,

Yt+n
.’L't = e Gz
Yt—n+1
implies
U(z)
o= | " e, (4.90)
| Yt-n+1

Proof: ® We begin by first establishing a few useful inequalities.

o Since Yaes,, 1m € ﬁ’y,i(étmckmg) by assumption, we can apply Equation (4.51) of

Theorem (4.3.5) to yield

‘ytk+m - ydes%.;.m S 6track‘ing (491)

6Throughout this proof we make reference to Ny, Ny and Ny, of Equation (4.42).
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fork=0,...,2n,and m = —n +1,...,n. Therefore

Ytp+m — ytp+m’ = 'ytk+m ~ Yty+m
+yde5gp+m - ydestp+m

+ydestk+m - ydestk.i.m |

IN

ydestk+m - ydeSgp+m (492)
+ ‘ytk-i—m - ydestk+m
+

ydestp+m ~ Ytp+m

< Iydestk+m - ydestp+m + 25tracking

fork:1,...,2n,m:—n+1,...,n,p=1,...,2n, and p # k. Similarly,

ytk+m - ytp-f-ml Z lydestk+m - ydestp+m, - 25tracking (493)
Together, Equation (4.92) and (4.93) yield
Ytp+m — ytp-i-m = ydestk+m - ydestp+m + Y (494)

where |y| < 204racking for k =1,...,2n, m = -n+1,...,nandp=1,...,2n.

Therefore we can use Equation (4.94) to write

xtk - xtp = zdestk - zdestp + I (495)

where |v| < 264rq¢king for each y an entry in the vector I.
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o Let

! —
yt+m = Yt14+m,
" —
yt+m = Yto+m,
[
Ut —_— 'U,tl )
n —
U/t -_— uto ]

d = 20iracking from Equations (4.92) and (4.74),
Dy = 0 — 2b4acking from Equations (4.93) and (4.74),
Dy, = 64 20tracking from Equations (4.92) and (4.74)

for m = —n +1,...,n. Therefore an application of Theorem 4.3.6 yields the

following inequality.

g, — gy > 1f (6 — 2+ N;(21 = 1)) acking)- (4.96)
e Let
yl’H-m = Ytp+m,
Yerm = Ytptms
up = Uy,
uy = Uy,

di = 0+ 20tracking from Equations (4.92) and (4.74),

form=-n+1,....n-1,k=-n+1,...,n—1and p=0,...,2n. Therefore
an application of Theorem 4.3.7 yields the following inequality.

[us, = e, | < 20N, (6 + 2pracking) (4.97)
Since Equation (4.75) gives us that 0 > 20;rqcking, Equation (4.97) becomes
|u,¢,c - ut?l < 4nN,d (4.98)
Proof of A:) Define the (2n x 2n + 1) matrix

X = l:xto_xto xtzn_xto]
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Using Equation (4.95), X can be written as

X = [ xdesto - xdesto tte xdestzn - xdesto ] + r
=4 [ 02n x 1] I[2n x 2n] } +T (4.99)
£ SA+T

where I[.] is the identity matrix, 0[.] is a matrix of zeros and 7] < 26tracking for v an
entry of the matrix I.

Define the (2n x 2n) matrix

Xm = [xto TTtn 7 Ttmy T Tty Tty Tt Ty, — Ty, ]

Using Equation (4.95) X,, can be written

Xm = [ zdesto = Tdesy,, “’destm_l T Tdest,, ”destm+1 T Tdesy,, zd“tzn ~ Tdesy,, ] +T'm
O[m — 1 x 1} Im-1xm=~1] 0m-1xn-m]
= 4 -1 -1 +T'm
On—m x m~1] Iln —m X n — m]
= Am+TIm

where |y| < 204q4cking for v an entry of I',,. If we let Am be the (m + 1)y row of A,

the matrix defined in Equation (4.99), then we can write the matrix A,, as

Am: )‘0“/\m )\m—l_/\ma /\m+l_/\m >\2n_/\m

Therefore, we can let

© = A
On = A,
6 = 0, £=0,2,...,2n
6 =1
N = 2n

and apply Equation (B.0.6) of Theorem B.0.6 to yield
1
Amolly > 5[l
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for any v € R?™. Since [[0Anv|l, = 8 [|Amv|l,
4]
16Amolly 2 5= [lvll, (4.100)

Since |Vm| < 264racking for each v, and entry of I',, we can let

= A,
= Ty

2 from Equation (4.100)

- 26tracking

2 & oo v O
Il

= 2n

and apply Equation (B.2) of Theorem B.0.5 to get

0
ol = 18(hm + Palolly 2 (3 = 0t ol

for any v € R?*. Equation (4.75) gives us that § > 10n?4q4cking Therefore

it = 16Chm + ol 2 (5= 408stn) 0l > g oy >0
(4.101)
Since Equation (4.101) states || X,,v[|, > 0, Lemma B.0.1 gives us that X, is invert-
ible. By Theorem B.0.4, X, invertible implies X’ of Equation (4.78) invertible. So
we have shown A:.

Proof of B:) Now we let

An = Xn

ay = t,

Oy = n(stracking
n = 2n

for m = 0,...,2n. Therefore an application of Theorem A.0.3 yields that the mini-
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mum width d; of Co(zy,,...,xs,, ) satisfies

1
d:z: 2 Endtracking
Therefore, by Theorem A.0.2, Co(zy,, . ..,:,,) contains a ball of radius r, satisfying

v2n+2
Tz 2 dw In+1 5tracking

n(n+1) 5
2n+1 Ctracking

v

Equation (4.80) is proven.
Proof of C:) Define the (2n x 2n + 1) matrix

Z=\ 2ty =2 0 2, — 2

Using Equations (4.94), Z can be written as

Uty — Uty te Uty, — Uty
7 = ydest0+n_1 - ydest0+n_1 tte yd€$t2n+n—1 - ydesto+n—1 + r
i ydesto_n+1 - ydesto_n.“ e ydes%—nﬂ - ydeé’to—n+1 ] (4'102)
lLtQ—UtQ .. utz —utn
=4 d d +T
0[2n —1 x 2] I2n—1x2n-1]
= 6A+T
where || < 264rqcking for 7y an entry of I.
Define the (2n x 2n) matrix
Zm = [ ztO - Ztm e Ztm-—-l - ztm’ ztm+1 - ztm et Zth - zt'm
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Using Equation (4.94) Z,, can be written

Zm =
Yt e Ytm—1 “tm41 e “ton
Vdesggyn—1 7 Ydesy yn—1 Vdesy . q4n-1 77 Vdesyy ynoa
0 m—1 m+1 2n
Vdesygn41 = Ydesy  _ny1 Vdesy  _ny1 77 Vdesy, _niy
0 m-—1 m+1 2n
. ... Ut
Vdesyopn—1 ~° Ydesggyn—1
- . R +Tm
Ydesyg_ni1 7 Ydesyg_n41
Uty = Uiy, YUt—1 " Yim “tm+1 —Utm Uty,, “Utm
_0_5_. 3 5 __ZZLS___
=5 Ofm — 2 x 1] Ilm-2xm-2] Ofm —2xn—-m] +Tm
-1 -1
Oln —m x m~ 1] Iln-mxn—-m]
A
=0Am +T'm

where |y] < 20iracking for v an entry of I'y,. If we let A, be the (m + 1)y row of A,

the matrix defined in Equation (4.102), then we can write the matrix A,, as

Am: AO—’\m Am—l")‘m, /\m+1_/\m )\2n_/\m

Therefore, we can let

© = A
Om = Anp
g = st
N = 2n

and apply Equation (B.0.6) of Theorem B.0.6 to yield

ugg—uey
HAnolly 2 2n max;c=2,...,2n(1,6ut°;u”‘ =5 ) ol
By applying Equation (4.96) and (4.98) we have
Aol > 2O D)
2n max(8, 4nN,6)
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Since N, > 1, we have that 2nN, > 1. Therefore

(6 = (2 + N¢(2n — 1))btracking) o]
8n2Ny Ny, 0 i

”Amvllz 2

for any v € R®™. Since ||6Anv|l, = 6 |Anv]l,

((5 - (2 + Nf(QTl - 1))6tracking)

>
”(SAmU“2 = 8n2NuNfu

[ (4.103)

Since |Ym| < 26¢racking for each vy, and entry of I'y,, we can let

6 = 5Am
v =T,
g = O=@tNOn—D)iracking) from Equation (4.103)
Y
N

812N, Ngy
- 2éitrack:ing

= 2n
and apply Equation (B.2) of Theorem B.0.5 to get

(6 - (2 + Nf(2n - 1))5tracking)
8n2NuNfu

IZnoll, = 150 + Tl > ( — dnicing ) ]
(4.104)
for any v € R?". Equation (4.75) gives us that § > (40N, Ng,n® + Ny(2n — 1) +

2)0tracking Substituting in Equation (4.104) yields
“ZmUH2 22 n(stracking >0

Since || Zmv||, > 0, Lemma B.0.1 gives us that Z,, is invertible. But by Theorem B.0.4,
Zy invertible implies Z’ of Equation (4.81) is invertible. So we have shown C:.

Proof of D:) Now we let

Am = Zn

Or = 2[jlm

Gy, = n(stracking
n = 2n
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for m = 0,...,2n. Therefore an application of Theorem A.0.3 yields that the mini-

mum width d, of Co(z,...,2,,) satisfies

n
dz .>_ E(stracking

Therefore, by Theorem A.0.2, Co(zy,, ..., 2,,) contains a ball of radius r, satisfying

van+2
2 dz n+1 5tracking

n(n+1) 5
n+1 Utracking

Tz

So Equation (4.83) is shown.
Proof of E:) We first show that G, of Equation (4.84) is convex. Let z',z" € G,.

Then, by the definition of G, the vectors z’, " can be written

9
¥ = xdesto + :
Gon
- g1 -
' = Tdesy, + |
L gé’ﬂ, .

where g}, 9! € [—0—20tracking, 0+20trqacking) for each i = 1, ..., 2n. By Definition A.0.1,
G2 (2[7]des)is convex if each z = Az’ + (1 — X)z” is in G, for A € [0,1].

z = A'+(1-A)z"

! !

0 9
= Tgesy, TA| 1 |+ (1=X)
Gon Gon
41
= Tdes,, +
Gon
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where g; = Agi+ (1 - A)g{ for i = 1,...,2n. Since A € [0, 1], we have that each g, lies
in the interval between g; and g. Therefore, g; € [—(§ + 20tracking), 0 + 204racking). I
follows from Equation (4.84) that = € G, . Therefore, the set G, is convex. Now we

show that G, contains each of zy,,...x;,,. Since

Ytr+n

?th —n+1

from Equation (4.73) and

Yte+m — ydestk+m’ < Iydestk+m - ydestk+ml + 'ytk+m - ydestk+m|

(4.105)
S 0+ 5tracking
from Equation (4.91), we have that
ytk"l"ﬂl = yd68t0+m + g (4.106)

form=-n+1,...,n, where

g € [_ (5 + (Stracking)7 5 + 5tracking] - [_(5 + 2(5tracking), (6 + 25tmcking)]

Therefore, by Equation (4.84), z;, € G, for k = 0,...,2n. Since, in addition, G, is

convex, Definition A.0.2 gives us that
Co(zgy ..., Tty ) C Ge
Let z', 2" € G4, with
Ytin Yitn

! 1/
Yt—n+1 Yt—n+1
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By Equation (4.84)

’yé-{-m - y;g-ml < 2(5 + 26tracking) (4107)
for m = —n+1,...,n. Therefore
”:E' - .’L‘"“2 = \/En =—n+1(yé+m - ygkm)z

IN

\/2n(2(5 + 20tracking))?
\/552 ((5 + 25tracking)

and Equation (4.86) is shown.

Proof of F:) The methods to prove the results of F: are similar to those used above
in order to show the results of E:. Consequently, the argument for the convexity of
G, is omitted.

From Equation (4.98)

U, — Ut| < 4nN,

Therefore

U, = Ut + g (4.108)

where g € [~4nN,6,4nNyd] C [—4nNy(0 + 3biracking), 4nNy (8 + 30iracking). From
Equation (4.106), (4.108) and (4.87) we have that G, contains each of z,,..., z,, .

Since, in addition, G,(Zges,,) is convex, Definition A.0.2 gives us that
Co(2tyy---,2t,,) € G,

Let 2/, 2" € G,, with

! "
Uy Uy
! "
yt+n—1 yt+n—1
zl — , zII —
/ 1"
| Yi-n+1 | | Yt-n+1 |
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By Equation (4.87),
|uy — uy| < 8nN, (6 + 3dtracking)

Using Equations (4.107) and (4.109) and N, > 1 we have

(4.109)

12 = 2"y, = J(ul = u)2+ T2 (W — Uem)

S \/QR(SHNU(J + 36tracking))2
= \/Z_ﬁSTLNu (5 + 35tracking)

and Equation (4.89) is shown.
Let
Yt+n-1
T = : € Go([f]deso)
Yt—n+1
By Equation (4.84)

lyt+m - ydes¢0+m| <6+ 26tracking

form=-n+1,...,n.
Let
/ —_
yt+m = Yt4m,
7 _
yt-{—m - ydest0+m,
I __
ut - U(.’E),
'
utl = U(xdesto)’

di = 0+ 204racking from Equation (4.110)

2

(4.110)

for m = —n+1,...,n — 1. Therefore an application of Theorem 4.3.7 yields the

following inequality.

IU(.’L’) - U(xdesto)‘ < 2”1\7'11((s + 25tracking)
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Let

! —
yt+m = Yto+m,
" —
yt+m - ydest0+m,
[
U = U(mto)a
"o
u, = U (-Tdesto)’

di = Otracking from Equation (4.91)

for m = —n +1,...,n — 1. Therefore an application of Theorem 4.3.7 yields the

following inequality.
IU(xto) - U(xdesm)l < 2nNybtracking (4.112)
From Equations (4.111) and (4.112)
|U(2) = U@dessy)| < 20Nu (8 + 3rracking)

Therefore
U(IE) = U(xto) + g = Uy, + g (4113)

where g € [—2nNy (8 + 30trackings 21Ny (8 + 30tracking)- From Equations (4.87), (4.110)
and (4.113) we have Equation (4.90).

O
Theorem 4.3.9 The set
[}
D=(%=Tges,, +| where g; € [-4,0] i=1,...,2n (4.114)
gon
CONLAINS Tesyys - - - ,xde%n).
Proof:  From Equation (4.74) we have that
ydestk.;.m = ydest0+m + 6 (4115)
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fork=m+n,m=-n+1,...,nand

ydestk +m = ydest0+m (4 1 16)

for k # m + n. Therefore we can generalize Equations (4.115) and (4.116) to

ydestk_H. ydesto.,.,. g1 g1
wdestk = : - : + : = xdesto +
ydestk_,,+1 ydestk_n+1 g2n g?n
where |g1],...,|g2n| < & Therefore, it is clear from Equation 4.114 that Ties,, € D'

O
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4.3.4 Approximation Theorems

In the previous section, we specified a set of desired samples Xg.s; in Equation (4.77)
and then showed, through Theorem 4.3.8 that certain useful properties of the associ-
ated acquired samples were satisfied.

Now we would like to specify many such sets, and use the acquired samples to
generate a new, better controller.

First note that as a consequence of the continuity of f and U, and the continuity

of their first and second derivatives, we have that there exist L, and L, such that

*f(Az+ (1 - N)2')

2
Y <L,|z—2|3 (4.117)
for all z,2' € D2*~! x Dy, and
Uz + (1 — N)2')
3 < Lg |z —2'|5 (4.118)

for all z,2’ € D2".

Second, due to repeated references to Assumption 4.3.1, it is repeated here for
convenience

Assumption 4.3.1  There exist known functions U; and f;, and closed interval

~

D, ; satisfying

D,; CD,n (4.119)

such that
IU‘L (ydest+n’ wt) - U("Jdes¢+n; wt)l S 6u,i (4120)
fi(ut, wy) — f(u, wt)l < Oy (4.121)

for all Yges,,, € ﬁy,i, u; € f)u,,-(wt), and wy € f)"y”,‘fl, where l':)y,N is as in Theo-
rem 4.2.1 and

ﬁu,i(wt) = {u = U(Ytsn, Wt)|Yt4n € ﬁy,i} (4.122)
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Theorem 4.3.10 Let System (4.1) and Assumption 4.2.1 be given. Let Assump-
tion 4.8.1 hold for i = k and

1
< — .
duk < 20.A7 (4.123)
,Y2
< — .
Opp < 3 A7 (4.124)
max |y—y¢| > (a+2)Adux (4.125)
¥y’ €Dy«
where
C, = () (3L=nint D)v2n (@ +2)% + 6nLy(c + 2)2 (4.126)
2¢y/n(n+1)
3 3
C; = (2w 1) [206nLNunt 1)v2n (o + 3)% + 48n3L, N3( + 3)2.127)
vn(n+1)
N = g_fi (4.128)
u,k
Ny Ny -
A = Np+ ’:N (N; + 1" = 1)y (4.129)
f
o = max(10n?,40n* N, Ny, + Ny (2n — 1) +2) (4.130)

and the terms Ny, Ny, and Ny are those satisfying Equation (4.42). Then there ezist
desired samples (Equation (4.77))

Xtes; 7=0,...,J (4.131)

of the form
(Ttpsutn) of U (4.132)
(ztma ytm+n) Of f (4133)

form =0,...,(2n+1)J + 2n that can be obtained using the Sampling Procedure in

Section 4.3.8 and from which fk+1 and ﬁk+1 can be constructed such that Assump-
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tion 4.8.1 is satisfied for i = k + 1 with

O

k
5u,k+1 = UT
Ofk
5f,k+1 = %

~

Dyr1 = {ylly - yli < Otrackingk» y € f)y,k}

dtracking,k = A(sv.t,k:

Proof:

We separate the proof into four distinct steps.

1: Choose Xgs; and show that

N/
xdest(2n+1)j+m € Dy,k((stracking,k)-

(4.139)

forj=0,...,J and m = —n+1,...,n. This result lets us apply the results of

Theorem 4.3.8 to each Xge,,-

2: Show that

3: From the acquired samples we can generate a function Ugy; satisfying
|Usa(2) = U(@)| < S

for all z € ﬁﬁﬁc +1 (see Assumption (4.3.1)).

4: From the acquired samples we can generate a function fk+1 satisfying

@) - £(2)] < 22
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for

u ~ ~
— 2n—1

Wy

Proof:
Proof of 1:) Since Equation (4.125) holds, f);,k(étmckmg,k) (see Definition 4.3.3)

satisfies

_ max ly = 4| > (o + 2)Abyx — 20tracking s (4.143)
y)yleD;‘k(atracking,k)

From Equation (4.137) it follows that Equation (4.143) can be written as

_ max ly—1'|>46 (4.144)

y’y’eD;,k(étracking,k)
where § = aAd, x This implies that the set f)'y‘k (8tracking k)*™ is a 2n—cube whose sides
have a minimum length ¢. From Equation (4.114) it is clear that 7 Dy is a 2n — cube
with side length at most §. Since Dy is translated an amount Tdes,,, Where Tges, 1S

arbitrary, we can chose Tdes,, Such that Dy C ﬁ’y,k(dt,acking,k) [17]. Furthermore, we

can find

xdest(2n+1)j

for j = 0,...,J such that the union of the D; is exactly equal to ﬁ’y,k(étmcking,k)%
for a finite J, that is

U Dj = ]j;/,k((stracking,k)2n (4145)
§=0,....J

That is, we have chosen

Xies; §=0,-..,J (4.146)

such that Equation (4.145) holds. It also follows that Equation (4.139) holds.
Proof of 2:) Let z € ]f)f/’}c +1- From Equation (4.136) it follows that there exists an

"In the statement and proof of Theorem 4.3.8 we assumed j = 0 for simplicity. For general 7, let
the G;, G and D of Equations (4.84), (4.87) and (4.114) associated with Xges;, be Gz, Gz; and
D; respectively.
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z' € D27 such that

!
Ty =Ty, + Tm

where z; denotes the iy, element of a vector z, and Y € [—0tracking ks Otracking,k)- We

note from Definition 4.3.3 that z], can be expressed as
Ty = T, + Y Ym € [~Otrackingy > Otracking k
and 2 € bL’k(dtracking,k)- Therefore
T = 2+ (4.147)

for a 7" € [~20irackingks 20trackingk)- Since zy, € D) i (O¢rackings) for each m =
8
1,...,2n,
JI" e ﬁly’k((stracking,k)2n (4.148)

Therefore, from Equation (4.145), 2" € D; for some j. From the definition of D;
(Equation (4.114)), we have that

n
(451
" N

x (4.149)

= Tdest 11y

J2n
for some g7, ..., gy, € [-6,8]. Combining Equations (4.147), (4.148) and (4.149)

!

0 g1 [/}

Tr= xdest(zn-}-l)j + . + = xdest(2n+1)j

" "
7211 g 2n gon

for some g1, ..., gon € [—0 — 26trackingks & + 20tracking,k]. Therefore, from the definition

of G,, in Equation (4.84), it follows that z € G, Therefore Equation (4.140) holds.
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Proof of 3:) For each j =0,...,J, let

Zy, = Ttant1)i "+ 9 Tlansryjean
Doy.--Pon = Ut (pnp1yjr -« - y Utiont1yivon
g = U
95 =g
G = G,
N = 2n

Now we would like to apply the results of Corollary 4.3.2 with the definitions above.

In order to do so we must show

Ltantr); " Lt ant1)j+2n

1 1

is invertible

and find

(i) d. such that Equation (4.35) is satisfied for G = G,
(ii) d such that Equation (4.28) is satisfied for m = 2n.
(iii) € such that Equation (4.21) is satisfied for z; = Tt g1y

(iv) L, such that Equation (4.23) is satisfied.

(v) d; such that Equation (4.33) is satisfied for N = 2n and G = Ga;.

Equation (4.150) follows directly from Equation (4.78).

(i) Since we let G = G, a choice of
d, = \/%(25 + 46trackingk)

and Equation (4.86) imply Equation (4.35)
(ii) Equation (4.85) in Theorem (4.3.8) implies that

G.; C Co(

xt(2n+l)j 3 ’mt(2n+l)j+2n)'
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and Equation (4.86) holds. Therefore, Equation (4.28) is satisfied by letting
d= \/2—7'1,(2(5 + 46trackingk)

(iii) Since our measurements are perfect (see Sampling Procedure), €; = 0, which
satisfies Equation (4.21).

(iv) Equation (4.118) implies that for L; = L, Equation (4.23) holds.

(v) Equation (4.79) implies that Equation (4.33) holds for

n(n + 1)
2n+1

| —

Therefore, the results of Corollary (4.3.2) hold. Using the notations in from Equa-
tions (4.126) and (4.129)

§;(z) — U(z)] < C A%, (4.151)
for each z € G;; We now choose 0k+1 as follows:
0k+1(z) = Jminj(z) where z € G, (4.152)

Since Equation (4.140) holds, Uyy,(x) is defined for all z € ]532& +1- Using Equa-
tions (4.123) and (4.134), Equation (4.151) can be rewritten as

lffkﬂ(«”ﬁ) - U(:z:)l < Oy k1

for all z € D2 .
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Proof of 4:) For each j =0,...,J , let

Zy, = Ptan+1)i7 " B an1)i4on
Poy---Pon = Ytniny;+ns -+ oy Yoninyjrontn
g =¥
g =g
G = G,
N = 2n

Now we would like to apply the results of Corollary 4.3.2 with the definitions above.

In order to do so we must show

Rtontr); 2t (an+1)j+2n

1 .- 1

is invertible

and find
(i) d, such that Equation (4.35) is satisfied for G = G-
(ii) d such that Equation (4.28) is satisfied for m = 2n.

(iii) € such that Equation (4.21) is satisfied for z;

= Zt(2n+1)3+i'

(iv) L, such that Equation (4.23) is satisfied.

(v) d; such that Equation (4.33) is satisfied for N = 2n and G = G,

Equation (4.153) follows directly from Equation (4.81).

(i) Since we let G = G,; a choice of

du = SnNuV 271(5 + 36tra,ck‘i'ngk)

and Equation (4.89) imply Equation (4.35).
(ii) Equation (4.88) in Theorem 4.3.8 implies that

G; € Co(

Btiant1)j " zt<2n+1)j+zn)'
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and Equation (4.89) holds. Therefore, Equation (4.28) is satisfied by letting
d = 8nN, \/57—7'(6 + 35trackingk)

(iii) Since our measurements are perfect (see Sampling Procedure), ¢; = 0 , which
satisfies Equation (4.21).

(iv) Equation (4.117) implies that for L, = L, Equation (4.23) holds.

(v) Equation (4.82) implies that Equation (4.33) holds for

n(n+1)
T 2n41

Therefore, the results of Corollary 4.3.2 hold. Using the notations in Equa-
tions (4.127), (4.128) and (4.129)

. C;A?
19;(2) — £(2)] < fy 02, (4.154)
for each z € G,;. We now choose fk+1 as follows:
fr+1(2) = Gminj(2), where z € G,,)(2) (4.155)

Using Equations (4.124) and (4.135), Equation (4.154) can be rewritten as

| fesr(2) = U(2)| < 8 (4.156)

U
2 =
Wy

“eey

€ Dy 1 (we) x DI,
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Therefore, by Equation (4.122), z can be written

Wt

U(Yen, we) }

—_ .
where w; € Dy"}c +1 and Yyqn € Dy k1. Therefore,

Yt+n
T =
From Equation (4.140) z € G, for some j. Thus Equation (4.90) holds and z € G;.
Thus Equation (4.156) holds for all

U
2 =
[

21
€ Dy,k+1

€ Dy ps1(we) x ]5271:-}-11

and Part 4: is shown.
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4.3.5 Proof of Problem Statement

We now have all the tools to complete the proof of Theorem 4.2.1.

Proof:
Let
Oy = 203/32
5 = B (4.157)
C = (a+2)A
where

— (92 _ 3LGg2n+1)\/2—n) 3 2
C. (2 1) ( Wy (@ +2)°+6nLy(a+2)

Cy = (2-1) (256"3L:/1jf(‘g‘;;1>“2_") (o +3)% +48n3L, N3 (o + 3)?

Eod

[

A = Nyt M (N + 1)1~ 1)y
o = max(10n?,40n3N,Ng, + N¢(2n — 1) +2)

and N,, Ny, and Ny are those satisfying Equation (4.42). In order to apply Theo-

rem 4.3.10, we need to show that

(5u,k

IN
.

(4.158)

IN
(=2
[y

Ok
Max, ep, ly—1y'| > Cé,

where for any k, the quantities 6, , 6;x and D, satisfy

A

’Uk(yt+nawt)"U(yt+n,wt)l > 5u,k
|fk(utawt)_f(ut’wt)l < sk

for
T € f)g’}c
z € 1523:1 X t’u,k(wt)
D,i(w) = {ulu = U(Yt4n, we), Yen € IA)y,k}
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In the statement of Theorem 4.2.1 Equations (4.158) is assumed to be satisfied for
k= 0.

Assume that Equations (4.158) hold for k£ = j. Then, after acquiring the samples
of Equation (4.146) and constructing the new approximations 0j+1 and fj+1 of Equa-
tions (4.152) and (4.155), we have from Theorem 4.3.10 ( Equations (4.134), (4.135)
and (4.136)) that

Ou.j
5u,j+1 = 5

6 R
b = 4 (4.159)
Dyjs1 C Dy

Since Equations (4.158) hold for £ = j, Equations (4.159) imply that they hold for

k =7+ 1 as well. Hence we have

A
NS

Ouj+1
(4.160)

IN
(=2
-

‘Sf,j+1

ma‘xy,y’éf)y,j-q-l ly - yll

v
Q
S

Equations (4.160) implies that Theorem 4.3.10 can be applied once again, with k =
Jj+ 1

Hence we have that the conditions of Theorem 4.3.10 hold for all £ > 0 if they
are valid for k¥ = 0. Since the latter is assumed to be true in the statement of

Theorem 4.2.1, we have that for all £ > 0,

Oy k
Oupt1 = 3°
0fk
Oppp1 = L&

(4.161)

~

Dy,k+1 = {yl Iy - y,l < 5tracking,k7 y € ljy,k}

5trackz'ng,k = a(su,k + bdf,k

where a and b are given by the right hand side of Equation (4.49).
We make use of Equations (4.161) in two distinct phases. In the first phase we use
these results to extend the boundaries of D, ; to D, v, the target set. In the second

phase, we repeatedly apply the inequalities to reduce the errors d, and é59 to d, n
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and &,y respectively, as described in Theorem 4.2.1

Phase 1:  Since 0, 41 and d5x41 are upper bounds satisfying the inequalities of
Equations (4.120) and (4.121) with k£ + 1, we can always redefine these terms as more
conservative values as long as the conditions of Equations (4.158) are satisfied with

k replaced by k + 1. In particular, let

6u,k+1 = 5u,k

Ork+1 = Ofk

Therefore it is clear from Equation 4.49 that Otracking,,, = Otracking, and if we then

apply Theorem 4.3.10 p times with initial errors of 6,9 and d¢9, we get

5u,p = 6u,0
5y = 850 (4.162)
5trackingp = 5trackingo

If we begin with set f)y,o, after p applications of Equation (4.161) we arrive at

f)y,p = {yl ly - y,| S p(stracking,Oa Yy S li\)y,O]’

Since each iteration extends the boundary of ij,o by a constant discrete number, we
can iterate the application of Theorem 4.3.10 until D, contains D, y.

Phase 2:  Referring to Equation (4.161), we note that f)y,k+1 D ﬁy,k. Therefore,
just as we chose conservative 0,41 and d¢41 in order to extend the boundaries of
f)yJc as we iterate the results of Theorem 4.3.10, we can chose ﬁy,k+1 = ﬁy,k as a more
conservative choice in order to reduce the error with each iteration of the theorem,
as long as Equations (4.158) are satisfied with k replaced by & + 1. Similarly, since

~

D,, D D, v, we redefine D,, = D, 5. Therefore, Equation (4.161) becomes

Juk

5u,k+1 - '—2’_
Sppp1 = Lk (4.163)

~

Dy,k-}-l = {yl Iy - yll < 5tracking,k; y, € f)y,k}
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with the initial conditions

5u,p = 5u,0
opp = O5p
]jy,p = IA)y,N

After m iterations of Equation (4.161), we get

4.
6u,p+m = -2111112
— Yk
5f,p+m = ‘2{'5'
Dypim = N

we can always chose m large enough such that

IN

6u,p+m 6u,N

IN

OfN

Dy,p+m = Dy,N

6f,p+m

~

(4.164)

Let N = p+m. Since by p + m iterations of sampling, generating f and U, and

applying the results of Theorem 4.3.10, Equations (4.164) hold, we have proven The-

orem 4.2.1.
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Chapter 5

Implementation

5.1 Helicopter Dynamics

Helicopter dynamics include the helicopter body dynamics as well as main rotor and
flybar dynamics. The main inputs to a standard helicopter configuration include
throttle, collective, roll cyclic, pitch cyclic and rudder. Collective, roll cyclic and
pitch cyclic refer to the pitch of the main rotor blades. Rudder refers to the thrust of
the tail rotor. Refer to Figure 5-1 for the specific geometries. In order to simplify the
dynamics, the helicopter model will be generated not in terms of these inputs, but in
terms of the actions these inputs have on the helicopter. Thus actuator dynamics are
ignored. These actions are the main rotor thrust magnitude and direction, and the
tail rotor thrust. A further simplification includes the assumption that the helicopter
is limited to motion in a vertical plane. Thus only the longitudinal dynamics are
modeled.

The dynamics are derived in a continuous time state space form, and then a first
order approximation of these dynamics is taken to provide the discrete time model
used in simulation. A discrete time model is employed, and is the focus of the results
presented in Chapter 4 because any learning controller is necessarily implemented on
a digital computer. In addition, sampling must occur at a finite rate. In fact the
period length of sampling, as specified by the sensors, is chosen as the time step for

the discrete model. Thus the dynamics of the computer and the sensors are directly
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Figure 5-1: Helicopter Model

accounted for in the model.

The continuous time, longitudinal model, is presented in its entirety below.

-_F:cb
U = — —qu
m
u’;:ﬁ—qu
m
. _ M
9 = g

The terms Fyp, F;, and My are functions of the states and inputs. The F terms
are body axis forces and the M term is the pitching moment. Table 5.1 lists the
states, the controls and their meanings.

The force and moment terms are written
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forward velocity in the body frame
vertical velocity in the body frame
angular pitch rate

pitch

main rotor flapping angle

thrust

Ne e g e

Table 5.1: Longitudinal States and Controls

m vehicle mass 0.70 slugs
I, Moment of inertia about y-axis 0.20 slugs-f1?
p atmospheric density 0.002377 slugs/ ft?
Xuu,fus | Fuselage drag coefficient along x axis -0.3 ft?
Zyw,fus | Fuselage drag coefficient along z axis -1.3 ft?
Zwwhpt | Horizontal tail drag coeflicient along z axis -0.12 ft?
Tonr x position of main rotor from center of mass 0 ft
Zmr z position of main rotor from center of mass -0.688 ft
T fus Aerodynamic center of fuselage along x axis 0.17 ft
Zfus Aerodynamic center of fuselage along z axis 0 ft
Tht Aerodynamic center of horizontal tail along x axis | -2.0 ft
Znt Aerodynamic center of horizontal tail along z axis | -0.12 ft
Table 5.2: Parameter Definitions and Values

— p :
Fpp = —-Ta+ §qu,fus |ulu — mgsin@
Fp = -T+ 'g(wa’fus + Zyw,nt) jw| w + mg cos 6
My = —Tzp +Tazm + g[(wa,fusl'fus =+ wa,htxht) Iw! w - qu,fus Iul uzfus]

Table 5.1 lists all the parameters and typical values for a small model helicopter.
The discrete time model can not be derived from the continuous model provided
above. Since the sampling rate for the sensors on the actual helicopter is approxi-

mately 50 Hz, the time step At is chosen as .02 seconds. The time derivatives are
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approximated by first order differences. For example

ot + At) — ()
At

z(t) =~

Making this approximation for the dynamics above, and solving for the states at time

t + At in terms of the states at time ¢ yields.

u(t+A8) = At(E0 - gt)w(t)) +u(t)
w(t+At) = At(529 — g(t)u(t)) +w() 6.1
gt + A1) = At(M0) 4 q)
O(t+At) = Atq(t) +6(t)
where
Fa(t) = —T(t)a(t) + gxw,fus |u(t)| u(t) — mgsin 6(t)
Fu(t) = =T@)+ ( ww,fus + Zwwht) |W(t)| w(t) + mgcosb(t)
Mg(t) = —T( )xmr + T( )a(t)zmr + 5[(wa,fus$fus + wa,htmht) lw(t” w(t)

— X, fus [u(t)] u(t)zfus]

5.1.1 Zero Dynamics and Feedback Linearization

The strategies employed are all applications of feedback linearization, each making
different assumptions about the extent of a priori knowledge of the model, and
some employing current learning and adaptive strategies. Feedback linearization,
though, can not be directly applied , since the zero dynamics of the system under the
linearizing input are unstable. To see this, let us find the zero dynamics of the above
system with outputs (u,w). Recall that the zero dynamics refers to the behavior of
the unobservable states when the feedback linearizing controller holds the outputs at

an equilibrium point. Let us take this equilibrium point to be the origin. Solving for
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the inputs (7, a) we get

T = mgcos(f)
a = —tan(f)
The zero dynamics are thus
g(t+At) = —zp,mgcosf — z,,mgsinb

0t +At) = Atq(t) +6(t)

The origin of the above system is clearly not asymptotically stable, since trajectories
extend off into infinity. In fact, any pair of states treated as outputs would yield
unstable zero dynamics.

To solve the problem of unstable zero dynamics, we chose as outputs (w, g), the
states which are most directly influenced by the inputs, and we wrap a stabilizing
loop around the feedback linearized system which limits the (Wgesired, gesirea) COM-
mands to those commands which maintain bounded signals and allows us to track

the helicopter’s earth frame velocities,

ue(t) = wul(t)cosf(t) + w(t)sinb(¢)
we(t) = w(t)cosb(t) — u(t) sinb(t)

This outer loop is designed using linear methodologies, but is robust enough to be
valid for a large set of commanded (ue,w.). In fact, it is robust for velocities in
excess of IOOfs—t. Such velocities are quite fast for the small model helicopter under
consideration. Now, lets go through the procedure of solving the control problem
in the manner described. The first step is to find the feedback linearizing controller

which takes any state to any desired (w,q) in one time step. This function is not
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difficult to find, and the function exists in any set not containing T = 0.

T@) = F(w(t)— w(t)aes) +m(gcosb(t) — g(t)u(t))
+5(Zww,fus + Zwwne) [w(t)| w(t)

a(t) = (@t —a(t) + P
+ s Xuu, fus?fus [u(t)| u(t)
~ 51t (Zww fusTfus + ZuwwpeThe) [w(t)| w(t)

Applying these solutions to the system, and letting our new inputs be (Waes, Ges)

yields the new system

wt+1) = w(t)des

Q(t+1) = Q(t)des
u(t + At) =AM(§%Q—qum)+u@

8t+1) = Atq(t)o(t)

We proceed now by designing the outer loop which defines wg,, and Qdes iD terms
of the desired earth frame velocities. To do so, let us first linearize the transformed
system about the hover condition. The helicopter is in hover when it is at zero pitch
attitude and has no velocity or angular velocity. Therefore, hover is the origin of the

state space. Carrying out the linearization yields.

r - - -

ue(t + 1) Uue(t)
we(t + 1) _ 4 we(t) B Wes ]
g(t+1) q(?) Qdes

| 6(t+1) | | 0(t) |
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where

10 ;’;‘T’—n—r— —Atg-
00 0 0

A =
00 O 0
00 At 0
- I -
0 —mzmr
1 0

B =
0 1
-0 0 -

The feedback law

05 | _ K fuft), w(t), a(0), 00), w(t)eter (e
q(t) des

where the newest control inputs are w(t)e ges and u(t)e,qes, was then selected as linear
function stabilizing the linear system and providing qualitatively attractive transient
responses. After some design effort, the function K for the particular parameter

values given in Table 5.1 was chosen as

0.1we(t) + 0.9w(t)e des

Olq(t) + é (Ue(t);;(zt)e des 9)

K(t) =

This completes the derivation of the feedback linearizing controller and its stabilizing
outer loop controller. The outer loop K will remain unchanged for each of the control

strategies except the new learning strategy proposed in this thesis.

5.1.2 Simplified Model

These new learning strategy of this thesis requires that the zero dynamics of the feed-
back linearized system be asymptotically stable. This is clearly not the case for the

complete system shown above. Therefore, a more tractable control problem, based on
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a simplified model, This model assumes that the 7'(¢) transformation which linearizes
the w(t) dynamics is known, and any remaining design effort and uncertainty lies
exclusively in the ¢(t) dynamics. If we let A(t) £ T(t)a(t), then the new system can

be written

I

w(t+1)
q(t+1)

w(t) + v(t)

s y (5.2)
g(t) + S4(— 688 % A(t) + 2.59 x 107 juw| w)

I

This system has two inputs (v(t), A(¢)) and two outputs (w(t),q(t)), and therefore
has no zero dynamics. In addition, it is clear that the system is already input-output

decoupled.

5.2 Control Applications

In addition to the new learning strategy of this thesis, results are presented for a
few competing algorithms. These include the perfect feedback linearizing controller
already developed in Section 5.1.1, as well as a feedback linearizing controller based
on a linear approximation of the helicopter, an adaptive control strategy and a neural

network based strategy.

5.2.1 Feedback Linearizing Controller Based on a Linear

Model

As a second example, assume that the engineer designing the controller possesses sig-
nificantly less knowledge about the helicopter dynamics. Assume that his/her knowl-

edge is limited to the linearization of 5.1 about hover. Carrying out this linearization
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yields

where

103

-

[ u(t+1) [ ()
t+1 t
wit+1) | lw® | g
g(t+1) q(t)
o(t+1) 6(t)
u(t+1) |
wlt) | _ | w+)
q(t) | q(t+1)
6(t+1) |
(10 0 —Atg)
010 0
A =
00 1 0
00 At 1
[ 0 —Atg |
__en_t 0
B = _At;cm: Atg;nzmr
Yy v
0 0
.
At
E= |7
0
0

T(t)
a(t)




The input-output model can then be written.

r

ut)
lw(H D1 _oal " @ 4 op| TO | 4 op
q(t+1) q(t) a(t)
| 6() |

If the matrix C'B has an inverse, which it certainly does for the case we are considering,

then the feedback linearizing transformation of the input is easy to find.

e
{T(t-}—l) _cpr | [P | | 0] g
a(t+1) q(t+1) q(t)
| 0(t) |

An identical formulation can be found for the simplified system of Equation 5.2. In

this case, the resulting transformation is

vt +1) Z(CB)_I([w(t-f—l) IAEC _CE)
At +1) qt+1) q(t)
where
1 0}
A =
(01
(1 0
B =
| 0 —%20.688}
_0}
EFE =
0
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5.2.2 Adaptive Strategy

As one might correctly assume, the performance of the feedback linearization con-
troller based on the approximate linear model suffers because of the limited prior
knowledge on which it is based. A designer can only expect good performance local
to hover. One might not be able to obtain or stabilize about large velocities. A
solution to this problem can be found in the Adaptive control literature. The de-
signer wants a controller which holds the aircraft at some large forward velocity. He
still assumes that the system is linear, but does not know what the linear model is.
He would like to identify the model (the linearization about the prescribed forward
velocity). To proceed, the designer treats the elements of the A, B and E tensors
as parameters. Initial values are chosen, and the controller which is well defined by
these parameters is used to fly the vehicle toward the prescribed velocities. Since the
initial parameter values are are not correct, there will be measurable discrepancies
between the expected and actual trajectories of the helicopter. The basic idea be-
hind adaptive control is to use these discrepancies to update the parameters. As a
slight modification to this approach, the controller is differently parameterized. Such
a parameterization is chosen because it takes on the form used for the neural network
strategy described in the next section. This new form fixes the nominal controller,
and adds the difference between the perfect controller and the initial nominal one.

For the sake of generality, we let z(¢) be the state at time ¢, and u(t) be the input.
U(t) = (CnomBnom)-l(y(t + 1)des - CnomAnomw(t) - Enom)@z(t)
where © is the matrix of parameters, and

y(t + l)des
)2 | 2
1

105



Initially, the value of © may not be known, so a guess of its value must be made. If

we let this guess be ©, then the controller is
f](t) = (CnomBnom)_l(y(t + l)des - CnomAnomx(t) - Enom)é(t)z(t)

Note that ©(t) is written as a function of time since it will be adapted as time
progresses. The parameters ©(t) are updated from measurements of U(t) and z(t).
If a linearly independent set of measurements is collected, a least squared rule can be

applied. A different approach is taken in this paper. First, an error metric is defined.
e=(U®E)-U@)"UE) -U@)

Now we find the gradient of this error with respect to the parameters.

de 3 TN
2 = 2 () - 06)

Finally, the parameters are made to evolve in the direction of the negative of the
above gradient.

6 =0+ pU®) - U)2"T

where p is the adaptation rate . The logic behind this choice is clear. The negative
of the gradient describes the direction in © which reduces e. If p is taken small, then

error reduction can be guaranteed.

5.2.3 Neural Network Strategy

The neural network strategy proposed here is essentially the same as that proposed

above. In fact, the parameterized controller can be written in nearly the same form.

U(t) = (CromBrom) ™ (¥(t + 1)des — CromAnomZ(t) — Enom)O(t)B(2(t))
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The matrix © remains a matrix of parameters, and the definition of z(t) has not
changed. The difference is that z(t) now acts through the vector function g of basis

functions.

Bi(=(1))

B(a(t)) = :

Bn(2(1))
These basis functions, and their coefficients © are the structure referred to as the
neural network. As mentioned in Chapter 1, a variety of choices of basis functions
serve as Universal approximators. This implies that there exists a # and a © such
that the difference between the perfect feedback linearizing controller U(z(t)) and the
approximate neural network based controller U(z(¢)) is bounded over some compact

set.

[U() - O], < 6

for all z(t) € Z, Z compact and any ¢ > 0 and some ©. The update rule is derived
exactly as above for the adaptive controller. The parameters receive an additive term

in the direction of the negative gradient of error with respect to the parameters.
e=(UE)-U@W) UE-0)

Now we find the gradient of this error with respect to the parameters.

Oe ~

— = =2(U(t) - U®)B()"
5 Ut) - U(1)8(2)
Finally, the parameters are made to evolve in the direction of the negative of the
above gradient.

©=0+pU(t) - UM)B(R)"

where p is the adaptation rate . Since the update rule may become unstable if
training is continued even when the local controller error is smaller than the networks

approximating capability, the parameters are not updated for small errors.
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5.2.4 New Learning Strategy

Finally we reach the point where the primary results of this thesis are used to define
a controller. As in the previous two sections, the algorithm here will be applied to
the simplified system of Equation (5.2). In order to simplify the implementation of
the learning algorithm in simulation, a simple change of variables is made. Let the

new states be w and r = ¢ x 103.

wit+1) = wt)+ov(t)

(5.3)
rt+1) = r(t)+ ?—:(—688 * A(t) + 2.59 x 1072 |w| w)

In order to implement the algorithm of Chapter 4 we must find the constants N Fu

Ny, N¢, L, and L, satisfying Equations (4.42), (4.117) and (4.118). These are listed

below
Nju = 688At
I,
Iy
Nu = 688 At
Ny =1
L, = 386

L, = 259x10°3

Note that since the delay of the system equals 1, we do not need an f in order to
generate the control of Equation (4.50). Therefore we only need to design an initial
Up. An obvious choice is the linear design of Section 5.2.1. To make the problem more

challenging, let us also add some error to this /. Simulations are made for various

additive errors e.
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0, — v(t+1)
Alt+1)
[ w(t + 1)aes |
_ opy (| B Dar | [ 0 )+ 0 ]| r(t+1)es
T(t + 1) ges 7(t) e w(t)
r(t)
where
1 0}
A =
01

o
|
<R
o
%
Qo

Note that the assumption of perfect knowledge of the w(t) dynamics is made, reducing

the problem to learning the correct ¢(t) dynamics. Now particular , ¢ must be found

for all i i
w(t + ]-)des
7(t+ 1)ges .
z 2 ( )a € D4y,0
w(t)
r(t)

where we let D, o = [a,b] as our region of initial knowledge. This 8,0 can be found

as a function of the error vector e and the parameters a and b.
bup =4 X 107°(b — a)* + |e|oo (b — a)

The only step remaining is to find values for a, b and §y for which the algorithm can
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be applied. In particular, Theorem 4.2.1 states that we must satisfy

b—a 2 C(Su,o
6u,0 < (Su

(5.4)

Calculating the C and 4§, of Equations (4.157) for the above system of Equation (5.3)
with At = .02 we get
C = 136

(5.5)
5, = .008

Any a, b and e such that Equations (5.4) are satisfied with C and 4, of Equation (5.5)
are sufficient.

Now all that remains is to define the error bounds we would like to achieve, and the
set over which we would like these bounds to hold. This choice is made to guarantee
that the controller is valid for commanded earth frame velocities on the order of one

hundred feet per second. Let the conditions after N iterations of the algorithm be

A

D,n = [~100,100]
5u,N = 6u

We therefore are not asking to improve error, just expand the region over which our
controller is valid and guarantee that the new errors do not increase.
All the above definitions an conditions are sufficient to define the learning con-

troller presented in Chapter 4.
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Chapter 6

Results

There are several topics which must be addressed in order to gain a complete picture
about the relative merits of each of the controllers presented in Chapter 5. The
most important of these are the performance of the controller, the required design
effort, and the computational and memory requirements needed to implement each
controller. Table 6 provides a quick summary of these issues, and the following

sections discuss them in greater depth.

6.1 Controller Performance

Let us first compare the performance of each of the controllers. The most important

measure we have of controller performance is tracking error. Since the feedback lin-

Tracking | Performance | Computational | Required

Error Guarantees Effort Prior
i (rad/s) Knowledge
Perfect Z€ero yes low high
Linear 4 x 1072 no low low
Adaptive | 107° no moderate low
Neural 107 no high low
Learning | 107° yes high low

Table 6.1: Relative Strengths of Various Control Strategies

111



earization algorithms apply only to the inner loop controller, the performance of each
of the strategies is compared by comparing the intermediate signal |g(t) — g(t)gesiredl-
We must also insure that given the complete controller, including the outer stabiliz-
ing loop, also performs satisfactorily. Therefore plots of (Weerth — Wearth desired) and
(Uearth — Uearth desired) are also presented. These errors are less significant since they
contain little information about the performance of the inner loop. They only insure
that the capabilities of the inner loop are sufficient to provide a complete stable sys-
tem. For each simulation run, plots of controller error are also presented. Since it was
shown in Theorem 4.3.5 that worst case tracking error is proportional to controller
error (and vice versa), only tracking error will be referenced. The controller error is
shown for completeness.

The simulations whose results are presented are for an extreme case where com-
manded velocities and artificially added controller errors are large. For cases of small
velocities and errors, each of the controllers perform sufficiently well and the differ-

ences are nominal at best. The particular case chosen for simulation is for

Uearth,desired — 100

Wearth,desired — 20

e = [01.01.01.01]

The error term e has been described in Section 5.2.4. It is an artificially added error
term to the nominal controllers employed by all but the perfect feedback linearizing
controller.

Since all of the controllers are essentially approximations to the perfect feedback
linearizing controller, it is clear that the benchmark for any performance judgment
is the perfect feedback linearizing controller of Section 5.1.1. This is the case where
commanded ¢(t)ges is achieved exactly by the system and controller error is zero.
The outer loop response for this case can be found in Figure 6-1. Be reminded that

any errors result from the outer loop. Simulation results for the remaining cases are

112



Ve, -Ve .,

)
~20}
g or
:§ -60
> -80}F-
-100 :
_120 1 i 1 1 I 1 1
1] 2 4 8 10 12 14 16 18 20
Time (seconds)

Figure 6-1: Perfect Feedback Linearizing Controller

included in Figures 6-2, 6-3, 6-4 and 6-5.

The first, and simplest alternate controller implemented on the helicopter is the
feedback linearizing controller based on an approximate linear model of the system.
This controller clearly suffers from difficulties not experienced by any of the other
implementations. We can readily see from the plots of Figure 6-2 that tracking error
is largest for this case. This is expected since no methods are employed to correct
this error. In fact, we can easily calculate this error, as we have done in Section 5.2.4
as part of the implementation of the new strategy of Chapter 4. The error is a
consequence of nonlinearities present in the perfect controller, as well as from the
artificially introduced errors.

The adaptive controller attempts to compensate the errors by adding an additional
term to the controller which is adapted as the system is run. It is clear that the
adaptive controller can directly compensate for the artificially added errors (since
they take the same form as the adaptive terms), but not the nonlinearities. The

nonlinearities have a quadratic form which can not be represented by additive adaptive
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Figure 6-3: Adaptive Controller, Large Additive Errors
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Figure 6-4: Neural Controller, Large Additive Errors
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Figure 6-5: New Controller, Large Additive Errors
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part of the controller. Remember, though, that the adaptive term is time varying, and
as the system acquires a new equilibrium point, the adaptive term makes the controller
look like the local linearized controller. Thus, although there are evident differences in
the transients between this controller and the perfect controller, the system eventually
settles down to a steady state with nearly perfect tracking. It is important to note,
though, that if the difference between the perfect and the initial nominal controller
were significant, we could not guarantee that the adaptive controller would not go
unstable. To keep any instabilities from occurring, the adaptation rate is kept small.
It is also interesting to note that the initial tracking errors (at time=0) are of the
same magnitude of the errors of the linear controller, and decrease over time. The
final tracking errors (Figure 6-3) are six orders of magnitude smaller than those of
the uncompensated linear controller for the case of large additive errors (Figure 6-2).

The neural controller suffers from the adaptive controller only in the complexity
of the added adaptive term. The additive term chosen for in this implementation
is a liner combination of hat shaped wavelets. The combination of these wavelets
represent the product of linear splines. There was great difficulty in implementing
this network based controller because the input to the controller takes for arguments
(w(t + 1)ges, q(t + 1)ges, w(t), g(t), thus requiring a large network. In fact, to reduce
the network to a small enough number of wavelet such that the network was actually
fast enough to run on a Spark 20 workstation (by fast enough we imply that the
simulation could be run in less than a day), the resolution of the wavelets had to be
reduced significantly. It was found that the approximating power of the network was
only nominally better than that of the adaptive term in the adaptive controller. As a
result, there is little difference in the tracking and approximating performance of the
neural network controller as compared to the adaptive controller. Indeed, the final
tracking error (Figure 6-5), although five orders of magnitude smaller than that of the
uncompensated linear controller (Figure 6-2), is still larger than that of the adaptive
controller (Figure 6-3). This occurs because the basis functions of the neural network
are spatially localized. Therefore a basis’ coefficient is not adapted till the basis

function has a nonzero value when evaluated at the controllers arguments. Since the
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controller takes different commands initially than later in the simulation, the initial
training has little effect on the errors later on. This spatial localization, though,
has a strength which outweighs this weakness. Once the controller has been trained
about some input, (wW(t + 1)ges, ¢(t + 1)des, w(t), q(t), the network does not become
untrained. The adaptive controller, on the other hand, contains no local information.
If adaptive parameters are trained about some particular input, they necessarily loose
information about previous inputs.

Finally, we come to the controller presented in this thesis. Although this controller
also suffers from the dimensional problems encountered by the neural controller, there
are obvious ways to overcome them. In particular, we can more easily specify over
which set we must acquire samples to perform the desired maneuver. For example,
in the most general application of the learning algorithm, we learn a controller which
can take us from any member of a particular set of states (f)Z"N) to any output in the
interval ﬁy, ~- If we do not intend to use this full capability, we can be more selective
in what we learn. Therefore, for any given state we need only learn the controller
which allows us to command to members of some subset of ﬁy,N. In fact, the method
employed in simulation is to learn a large number of local controllers whose domains
overlap and cover ﬁS?N as opposed to the global controller whose domain is f)f/j‘N.
We must remember, though, that commanded outputs must be limited to those over
which we have trained. This limitation is represented graphically in Figure 6-6.

Once the controller is trained, flight simulations can begin. We can see in the
simulations (Figure 6-5) that the tracking performance is significantly better than any
of the other controllers. Its tracking error is approximately six orders of magnitude
better than those of the linear controller. In addition, this small error is maintained
throughout the simulation, since training had been completed before the simulations

start. The tracking error for the adaptive and neural controllers are initially large.
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In this case, we can reach any
ouput in the boxed region from
any other output in the region

y(t)

y(t+1)

Output Space

In this case, we have two
overlapping boxed regions.
To move from a point in
region 1 to a point in region
two we must include an
intermediate move to a
point common to the two
regions

y(t)

y(t+1)

y(t+2)

Qutput Space

Figure 6-6: Limitation of New Controller
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6.2 Computational Effort

The required computational effort is where the greatest weakness occurs in the pro-
posed algorithm. With each additional input argument, the required number of sam-
ples increases by an order of magnitude. In particular, the number of required samples
grows by the relation MN?"  where n is the order of the system and M and N are
constants depending on Dy and &.

As mentioned above, the neural network based algorithm also suffers from this
fault. Within this fault, each of the two algorithms have their individual strengths
and weaknesses.

Much work has been done to make neural networks compact. Individual papers
propose techniques to dynamically change the structure of the network in order to
minimize its size and complexity. In fact, the network employed in this paper uses
a hierarchical structure which increases the resolution of the network in the case of
large errors, and reduces the resolution if it is found error bounds can be satisfied
with fewer basis functions. The algorithm proposed in Chapter 4 fixes the resolution
(density of samples). No method is proposed to make local changes in the resolution to
reduce the number of samples required. This amounts to a weakness in the proposed
algorithm.

A relative strength of the proposed algorithm is mentioned in the previous section.
As mentioned it is easy to restrict the domain over which the samples are taken. If
the domain is chosen wisely, the size of the set of samples can be reduced by orders
of magnitude. In this paper, the domain was restricted to a region local to a line
in the four dimensional input space. Thereby, the order of the number of samples is

reduced by three. This represents to a strength of the algorithm.

6.3 Design Effort

The amount of required design effort is meant to be the strength of the proposed

algorithm. This effort is only nominally greater than the effort required to find a local

119



linear model of the system to which the algorithm is applied. The only additional work
is the implementation of the algorithm. The entire algorithm is implemented with
the three simple and short Matlab functions presented in the appendix. The perfect
controller, of course, requires significantly more modeling effort. The network based
controller also requires additional effort. This includes the design and implementation
of the network. A basic network is not exceptionally difficult to implement. The
multi-resolution network of this paper, though, does displace several times more lines

of code than that for the algorithm of Chapter 4.
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Chapter 7

Final Comments and Further

Work

7.1 Final Comments and Further Work

It is evident from the results that on a small simple system, the learning control
algorithm of this paper provides performance comparable to other modern control
algorithms, and can guarantee that performance through a rigorous proof.

But, given the current state of computer technology, the implementation of the
proposed algorithm on a large, high dimensional system may not yet practical. In
addition, the consequences of process and sensor noise has not been addressed. It
is clear that the introduction of either source of noise will have a significant impact.
Currently, the only method of compensating for process noise is to model the source
of the noise itself. For such a solution to work, the interfering process must be time
invariant. Such an assumption is usually false. Sensor noise can be taken into account
in the arguments of Chapter 4, but may severely limit the guarantees provided in the
proof. In fact, careful examination would suggest that given large errors, the methods
of the proof would provide no guarantees at all.

Despite the above challenges, the proposed controller is a step in the right direc-
tion, and with additional work can be extended to include a larger set real world

systems. When computers become capable of implementing the above algorithm on
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large systems, and they will, this learning strategy could prove effective.
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Appendix A

Convex Hulls

Many definitions and theorems provided in this appendix are drawn from [20] and

[6]. A few are original.

Definition A.0.1 A set A € R" is convez if x,y € A implies that
{Dz+(1-Ay: 0<A<1}CA.

Definition A.0.2 The convez hull Co(A) of a set A in R™ is the intersection of
all convez sets in R containing A [20, p. 54]. Alternately, Co(A) is the smallest
conver set containing A [20, p. 54]. More precisely, if C is any conver set in R"

containing A then Co(A) C C.

Theorem A.0.1 [20, p. 55]
Let ay,...,am € R". Then

Co({ay,...,am}) = {Ma1+...Anam:
Al)"')/\mZOa
M+ +An =1}
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Corollary A.0.1 Let ai,...,am € R Then each a € Co({ay,...,an}) can be

written in the form
a=Xd + (1 - Nay,, whered € Co({ay,...,am-1}), 0<A<1L (A.1)
Proof:  From Theorem (A.0.1) each a € Co({ay,...,an}) can be written
a=MNa;+ -+ Anlm (A.2)
for
AL+ +An =1, where Af,..., A, 2 0. (A.3)

We consider two cases: (1) A, =1 and (2) A, # 1.

Case (1): Since A, =1, \; =0fori=1,...,m — 1. Hence, a can be expressed

as

a=amn=2x+(1-Nap,
where A = 0 and o’ € Co({ay,...,am_1}), which proves Equation (A.1).
Case (2): Case A\, #1: LettingA=1- ), and

a’—-él-a + -I-/\m_1
o A

Am—1,
Equation (A.2) can be manipulated to yield

a=Xid +(1-MNan
To prove Equation (A.1) it remains to show that

a' € Co({ay,...,am-1})- (A4)
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By Theorem A.0.1, Equation (A.4) is true if

Am—
%-l—-‘--i- ml — 1and (A.5)
)‘1 /\m-—l
.. > .
)\ ? ? A — O (A' 6)

Equation (A.6) is true since A > 0 and each ); > 0. Equation (A.5) follows
from Equation (A.3) by noting that A, =1 — A

O

Definition A.0.3 Let A = Co(ay,...a,) C R™. The minimum width of A is the
minimum distance
(i b — aill
where
bi = TgMINY e Cotao,... 61,0541 10man) 16— aill,

Theorem A.0.2 [6, p. 112] If a closed bounded conver set A C R™ has minimum

width d, then A contains a ball of radius®

d
r 2> o/’ n odd
dy/n+2
r 2 a(nil)’ T EVEN

Theorem A.0.3 Suppose we are given n + 1 points ao,...,a, in R*. Define the

matrices

Ai=|la—a -+ a1—a; Gy1—0 ‘- an_ai} (A7)

where each A; satisfies

1 Aivll, 2 e lvll, (A.8)
for some o; and all v € R™. Then the minimum width d of Co(ao, .- ., a,) satisfies
d Z miN;—op,...,.n & (Ag)

Jn

13 ball in R" is defined in Definition 4.3.1
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Proof:  Begin by noting Definition A.0.3. Since each b; as defined in Defini-
tion A.0.3 lies in the set Co(ay,...,ai-1,8it1,-..,0y), using Theorem A.0.1 we can

write b; as the sum

bi = Ao + + -+ Ai—1Gi—1 + Aip1Giq1 + - -+ Apay (A.lO)
where
0<A<land ) N=1 i=0,...,i-1i+1,...,n

Letting
T
A:[)\O v i Aipr e )\n]

we can write Equation (A.10) in matrix form as
bi":[a() cee @il Gigy e an]/\ (A.11)
Since }°; A\; = 1 we can also write
Ai=[a,~ ai]/\ (A.12)
Therefore, using Equations (A.7), (A.11) and (A.12)
b; —a; = A; A (A.13)

Therefore, noting Definition A.0.3 and Equations (A.10) and (A.13), the minimum
width d is the minimum of

“Ai/\uz

over all i = 0,...,n and all ) satisfying Equation (A.9). We proceed by finding

a lower bound for [|4;)l, and thus also for d. Using |[All, > Z=[IAll, = 7z and

Equation (A.8) we have

min;—g,...n 0

d = min | 4|, > minas [A]l;) > min o mjn A, 2 Tt
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Appendix B

Matrix Algebra

Theorem B.0.4 Assume the real N x N matriz
@=[91-—90 ---9N—‘90] (Bl)

has an inverse. Then the matrizc
o 0 --- Oy
1 .- 1

Proof: We can show ¥ has an inverse by equivelently showing that the columns

also has an inverse.

of ¥ span R¥*!, Choose some arbitrary ¢ € R¥*!. Let the first N elements of 1 be
11 € RY and the last element be 1, € R. Since © is invertible, ¢, can be written

as a linear combination of the columns of ®. Therefore, there exist scalars aq,...,ayx
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such that

_0-
0, — 6 On — 0o
= a +an (2
0 0 0
-1-
0 0 0
= a 11 +"‘+aN|: iv}.!_(q/b_al_..._alv)[fjl

Since we have expressed 1 as a combination of the columns of ¥ and 1) was chosen

arbitrarily, U1 exists.

Theorem B.0.5 Let © and ¥ be two N x N real matrices. Suppose

1©zl, > 01|z,

for some 8 > 0 and all z € R". Let the absolute value of any element of ¥ be less

than or equal to 1. Then

1(© + ¥)z|l, > (6 — N) ||zl (B.2)

Proof: Using properties of matrix norms [4] and Equation (B.4)

1(© + ¥)z|],

v

|©sll, - 1 ¥all,
0lall, — trace(¥TV)¥ [|z], (B3)
> (8- NY)zl,

v

O

Lemma B.0.1 Given the assumptions of Theorem B.0.5, if 6 > N then © + ¥ is

invertible.
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Proof: Since § > N1, Equation (B.3) yields
1(© + ¥)zfl, > 0

for any £ € R, z not the zero vector. This condition is sufficient and necessary for

the invertibility of © + W.

O
Theorem B.0.6 Let an N x N + 1 matriz © take the form
[ 6, - On
0 O
6=
I[N x N]
L. 0 O -
Let the (my ) column of © be 8lm]. Define the N + 1 matrices
On = 6[0] = Ofm] -~ 0m—1]~6fm] am+1]-afm] - olN]-afm]
foranym =0,...,N. If 6y # 6y, then
6o — 6
[©uoll, 2 PPy, (B.4)
for any v € RN where
9 = kigili{N(l’ |00 - le y l91 - 0k|) (B5)
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Proof: The inverse of ©,, is easily calculated as

1 6, — 6,
-1 6, — 6o
1
o, = 0 Im-2xm-2] 0 0
- [m—2xm-—2] . [m
| 0 ON-mxm-2] 0
form=2,...,N. For the cases m = 0 and m = 1 we have
1 -1 6o — 0
ot = 0o — 02
=0 |0 IIN-1x N —1]
1 [1 6,0
or! = 1— 02
b= 01| 0 IIN-1xN~1]

Since the two norm of an NV X N matrix is less than or equal to NV times the maximum

absolute value of an element of the matrix

6o — Ok

0, — Ok

|07, < N s, 1

00-—91

)

6o — 61

0, — Oy
On — 6
~2Xx N —-m]
I[N — m)]
On — 6y |
6, — Oy |

maxg=2,.n~(1,{0 — Ok|, |61 — Okl)

)<N

Therefore using properties of matrix norms [4].

|00 — 61]

lell, = @7 @], < €3], IEmell,

Solving for |Gy, yields

[Omoll, >

vl
16zl

Applying Equation (B.6) yields Equation (B.4).

131




Bibliography

[1] Fred Brauer and John A. Nohel. The Qualitative Theory of Ordinary Differential
Equations. Dover Publications, Inc., New York, 1969.

[2] Fu-Chuang Chen and Hassan K. Khalil. Adaptive control of a class of nonlinear
discrete-time systems using neural networks. IEEE Transactions on Automatic

Control, 40(5):791-801, May 1995.

[3] G. Cybenco. Approximation by superposition fo a sigmoidal function. Mathe-
matics of Control, Signals and Systems, 2:303-314, 1989.

[4] M. Dahleh and G. Verghese. 6.241: Dynamic systems. Technical report, Mas-
sachusetts Institute of Technology, Department of Electrical Engineering and

Computer Science, 1997. Course notes for 6.241.
[5] I. Daubechies. Ten Lectures on Wavelets. SIAM, Philadelphia, PA, 1992.
[6] H. G. Eggleston. Convezity. Cambridge University Press, New York, 1958.

[7] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. Neural Networks, 2:359-366, 1989.

(8] H.Shim, T. John Koo, F. Hoffmann, and S. Sastrya. A comprehensive study on
control design of autonomous helicopter. Technical report, University of Califor-
nia at Berkeley, Robotics and Intelligent Machines Laboratory, Berkeley, Cali-
fornia, 1998.

132



[9]

[10]

[11]

[12]

[13]

[15]

[16]

[17]

18]

Liang Jin and Madan M. Gupta. Fast neural learning and control of discrete-
time nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics,

95(3):478-488, March 1995.

Hassan K. Khalil. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ,
second edition, 1996.

Lesse Leitner, Anthony Calise, and J. V. R. Prassad. Analysis of adaptive
neural networks. Journal of Guidance, Control, and Dynamics, 20(5):972-979,
September-October 1997.

I. J. Leonttaritis and S. A. Billings. Input-output parametric models for nonlinear
systems Part I: deterministic nonlinear systems. International Journal of Control,

41(2):303-328, 1985.

S. Monaco and D. Normand-Cyrot. Minimum-phase nonlinear discrete-time sys-
tems and feedback stabilization. Proceedings of the 26th Conference on Decision

and Control, December 1987.

James F. Montgomery and George A. Bekey. Learning helicopter control through
"teaching by showing”. Technical report, University of Southern California, In-
stitute for Robotics and Intelligent Systems, Department of Computer Science,

Los Angeles, California, 1998.

K.S. Narendra and A.M. Annaswamy. Stable Adaptive Systems. Prentice-Hall,
Englewood Cliffs, N.J., 1989.

J. Park and I.W. Sandberg. Universal approximation using radial-basis function

networks. Neural Computation, 3:246-257, 1991.

Murray H. Protter and Jr. Charles B. Morrey. A First Course in Real Analysis.
Springer-Verlag, New York, second edition, 1991.

H. L. Royden. Real Analysis. The Macmillan Company, New York, 1963.

133



[19] R. M. Sanner and J.-J.E. Slotine. Gaussian networks for direct adaptive control.

IEEE Transactions on Neural Networks, 3(6):823-863, 1992.
[20] Roger Webster. Convezity. Oxford University Press, Oxford, 1994.

[21] Ssu-Hsin Yu and Anuradha M. Annaswamy. Adaptive control of nonlinear dy-
namic systems using #-adaptive neural networks. Automatica, 33(11):1975-1995,

1997.



