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Abstract

Over the last few decades, control theory has developed to the level where reliable

methods exist to achieve satisfactory performance on even the largest and most com-

plex of dynamical systems. The application of these control methods, though, often

require extensive modelling and design effort.
Recent techniques to alleviate the strain on modellers use various schemes which

allow a particular system to learn about itself by measuring and storing a large, arbi-

trary collection of data in compact structures such as neural networks, and then using

the data to augment a controller. Although many such techniques have demostrated

their capabilites in simulation, performance guarantees are rare. This thesis proposes

an alternate learning technique, where a controller, based on minimal initial knowl-

edge of system dynamics, acquires a prescribed data set on which a new controller,
with guaranteed performance improvements, is based.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Although great progress has been made in the last couple decades in the arena of

control system design, the most predominant approach is still the traditional one

of using simple, linear, feedback controllers. For most engineering applications, such

controllers seem the obvious choice. The theory is well understood and has been thor-

oughly investigated over the years. Their application to current engineering control

problems is therefore straightforward with well defined design procedures. In fact,

most systems of interest are nearly linear and perform quite well with traditional

controllers. The small nonlinearities present in such systems are compensated for

by robustness techniques, also well defined, which offer some degree of guaranteed

performance based on the magnitude of the nonlinearities.

In certain applications, though, the benefits of using well proven linear control

strategies are outweighed by other factors. In fighter jets, for example, one goal is to

perform extremely radical and violent maneuvers which take the jet out of the range

in which its behavior is largely linear. If such maneuvers are desired, linear control

strategies and associated robustness techniques may require huge gains on the control

inputs, if these techniques can even be applied. Also, financial concerns are becoming

an increasing factor in design. Linear controllers may be too conservative, consuming

excessive fuel and energy and thereby increasing weight and cost in an effort to remain



robust. One widely investigated solution to these concerns is that of exact feedback

linearization. Exact feedback linearization takes nonlinearities into account directly,

and then, through a transformation of the inputs, makes the system's input-output

model effectively linear ([10]). Once this step has been taken, linear techniques can

be applied and achieve far better performance.

New nonlinear techniques, such as feedback linearization, and traditional linear

strategies do have one significant design barrier in common. Specifically, both re-

quire extensive effort in the task of modeling system dynamics, and both can suffer

greatly in terms of performance if the modeling is poor. Therefore, many new control

strategies attempt to make performance robust to modeling error. Among these are

parameter adaptation and neural network based controllers.

The parameter adaptation strategy assumes the model structure is known and any

error exists as error in parameters, such as vehicle mass. A controller is designed in

terms of unknown parameters, and then a scheme is defined to adjust the parameters'

value over time, usually to achieve a performance objective such as tracking error.

Extensive work has been done to apply parameter adaptation to a variety of systems,

both linear and nonlinear, where the parameters may enter the system dynamics in

either a linear or nonlinear fashion ([15]).

Another strategy makes fewer assumptions about system structure and assumes

the system can be modeled with sufficient accuracy by a neural network ([11, 19]).

In fact, it has been shown that certain classes of neural networks, collectively called

Universal Approximators ([3, 7, 16]), are able to approximate continuous functions

on compact domains to any desired degree of accuracy. Neural network strategies are

applied when there is significant uncertainty about the system dynamics. As with

parameter adaptation strategies, a scheme is devised to evolve the network over time

in order to achieve some performance goal ([19]). These neural network strategies are

often similar to parameter adaptation strategies where large uncertainty is treated

by using a huge number of parameters. Other strategies employ neural networks in

more creative ways to achieve different goals. For example, in [21] a neural network

is trained in order to find a stable adaptation rule for system parameters.



The ability of neural networks to compensate for large model uncertainty raises

an interesting question. Can one design a controller which is completely independent

of the model to which it is applied? If the answer to this question is yes then a great

achievement is possible. No longer would so much time and effort be directed toward

the task of modeling. The controller design process would not begin from scratch

every time a new system needs be controlled. If the effort were taken to design such

a model free controller for a helicopter, then little or no effort would be needed to

then port this controller to a radically different system such as a submarine. The cost

saved could be tremendous. Achieving this goal as stated may be a pipe dream, but

the advancing power of computers, neural networks and recent work applying them

to control systems serve as the inspiration for this thesis.

My primary goal is to devise a control strategy that requires minimal knowledge

of the plant model and that is applicable to as large a class of systems as possible.

More specifically,

Devise a control technique which, given local knowledge of the input-

output behavior of a class of discrete-time nonlinear dynamic systems,

can learn a feedback linearizing controller that satisfies bounded tracking

error for a closed set of output commands containing the region of initial

local knowledge.

Furthermore, we will demonstrate the results of this thesis on a small autonomous

helicopter.

1.2 Contribution

The approaches taken to solve the problem differ from the approach taken in this

work. Two common approaches were mentioned above. Adaptive methods are re-

strictive in that they assume knowledge of the functional form of the system. Such

an assumption does allow a treatment of uncertainty in the model, but still requires

significant modeling effort on the part of the designer. Neural network approaches



do not make this assumption. They use neural networks as function approximators

to try and directly model unknown dynamics for use by the controller. Since neural

networks are known to be universal approximators, any uncertainty can be approxi-

mated by a sufficiently large neural network, though the number of parameters in the

network may be large.

In each of these approaches, the essential goal of achieving some tracking or other

performance objective is usually reduced to finding a stable algorithm to evolve the

controller or network parameters. Doing so can be difficult for many classes of sys-

tems. Complete stability proofs are rare, and many papers often avoid the question

of stable on-line training by suggesting that the necessary parameters be updated

off-line, without describing how to collect the data to perform such updates. The

approach suggested in this paper differs from the on-line verses off-line learning ap-

proaches in a distinct, if subtle, way. The algorithm separates the learning objective

from any performance or tracking objective by providing a separate training mission.

This obviously differs from on-line procedures which update parameters as a func-

tion of stability or tracking errors. It also differs from off-line methods by describing

exactly how data can be stably collected. In addition, a rigorous proof is provided

and gives conditions under which the training and performance objectives can be

guaranteed!

The proposed algorithm may be unique in one additional and significant way.

The structure used to store the learned controller is neither a parametric model

nor a neural network. It is simply a table of acquired data points with a method

of interpolating between and extrapolating from them. Using such a structure may

seem inefficient, since neural networks are essentially used as compact tools to store

large tables of data, eliminating redundancy in the information contained in the data

points. In fact, neural networks could be used in lieu of the structure, essentially a

spline, which is suggested. But such neural networks, as argued below, will always

require at least the same order of size and complexity of the spline, since only a well

defined set of data points is stored in the proposed structure. We are not trying to

make the most of a huge, arbitrary collection of data. Required datum are specified



and sought after.

Nothing has been achieved for free. The results guaranteed by the proposed

algorithm do rest on the basic assumption that a good controller already exists, at

least in some small region about some operating point. Good and small are

well defined and may not be very restrictive. As a matter of fact, if the Jacobian

of the controller is known at any one point, these conditions can be met. The basic

argument is that the boundaries of the small region can be repeatedly tested and

extended to nearly any larger region of interest. Since performance measures such as

tracking error can be stated explicitly in terms of controller errors, learning objectives

can be well defined and all the pieces of a complete proof exist.

1.3 Outline

The Thesis is organized as follows.

Chapter 1 introduced the main goal of the thesis by describing prior work on

learning based control strategies and factors motivating the associated research.

Chapter 2 provides an overview of basic concepts in dynamics and control and

relates them to the classes of discrete-time nonlinear systems to which the main results

of the paper apply.

Chapter 3 then describes a variety of traditional and more modern controllers

which compete with the algorithm described in detail in Chapter 4.

Chapter 4 provides a general description of the capabilities of the learning

strategy of this thesis, followed by an exact mathematical formulation and rigorous

proof.

Chapter 5 describes the small autonomous helicopter over which the algorithm is

successfully simulated. The dynamic model is derived, and the controller of Chapter 4

is constructed.

Chapter 6 presents the simulation results for the learning controller as well as

additional, comparative results for traditional and adaptive algorithms.



Chapter 7 discusses these results, draws conclusions and proposes further ex-

tensions of the basic results in Chapter 4.



Chapter 2

Discrete-Time Dynamic Systems

Before stating and proving the primary results of this thesis in exact mathematical

forms, certain basic ideas and concepts must be understood. The purpose of this

chapter and the next is to introduce these concepts. This chapter deals specifically

with system dynamics and various useful input-state and input-output system rep-

resentations. Chapter 3 then builds on these ideas by introducing the linear and

nonlinear control strategies and presenting various associated results.

2.1 Concepts in System Dynamics

This section introduces various common representations of discrete-time, time-invariant

dynamic models, namely state space models and input-output mappings. The rela-

tionships between these representations are described, and properties of the systems

relevant to the derivation of results in this thesis are presented. Let us begin by con-

sidering the well known state space representation of a general nonlinear discrete-time

time-invariant system.

x(t + 1) = g[x(t), u(t)] (2.1)

y(t) = h[x(t),u(t)]



where x, y and u are the state, output and input respectively. Time t is restricted to

the non-zero integers and

x(t) E X C Rn

y(t) E Y C Rm

u(t) E U C R r

The functions g : Xx U -+ X and h : Xx U -+ Y are the one-step state

transition function and output function. Each is assumed continuously differentiable.

The k-step ahead state transition function k : X x Uk -+ X can be found by

repeated application of the one-step state transition function.

x(t) = ~o[x(t),u(t)]

g[ (tW,(t)] = d,[(t), (t)W

g[x(t + 1), u(t + 1)] = g [41[x(t), u(t)], u(t + 1)]

= 2[x(t), u(t + 1), u(t)]

g[x(t + k-1),u(t + k-1)] = g[x(t + k-1),u(t + k-1)]

= ak[(t), u(t + k - 1), u(t + k - 2),..., u(t)]

A state xo is an equilibrium state if there exists an input uo such that xo = g[xo, uo].
It is assumed that the system has at least one equilibrium state xo. We can assume,

without loss of generality, that xo = 0, yo = h[xo, uo] = 0 and uo = 0 because a simple

translation in X, Y and U can move the equilibrium state, output and input to the

origin of their respective vector spaces.

Before specializing this system to the class considered by the control algorithm

presented in this paper, let's present the concepts of reachability and observablitiy.

A state x is said to be reachable from a state x' if there exists an integer k and an

input sequence v E Uk such that x = (k[X', v]. The above system is reachable from

x' if every x E X is reachable from x'. The system is reachable if it is reachable from



all x' E X.

A state x is unobservable over k-steps if there exists a v E Uk and a state x' : x

such that h [)k [, v]] = h [)k[x', v]]. The above system is observable if there exists an

integer k such that there are no unobservable states x E X.

2.2 Recursive Input-Output Maps

So far, other than the assumption that the system of Equation (2.1) has a finite

number of states, the system is presented in a fairly general fashion. Now we add

the crucial assumptions which bring us to the D-step ahead predictor form (an input-

output mapping), and allow the derivation of the results of this thesis. Insuring that

the system can be equivalently cast in a recursive input-output form is an essential

element of the algorithm presented in this paper, since the input-output map is the

maximum information about a system that one can measure.

The argument that follows is largely drawn from [12], with a few simplifications

made for clarity. One simplifying assumption is that the system is single-input,

single-output (SISO). At the end of the chapter, a discussion of the extension of the

SISO results to the multiple-input, multiple-output (MIMO) case is made. The SISO

assumption states that m = r = 1.

Let us state two theorems which prove useful in showing the existence of of a

recursive input-output map.

Theorem 2.2.1 Let X and F be finite dimensional vector spaces and let W be an

open subset of X containing the point x0o. Let f : W -+ F be continuously differ-

entiable. If the derivative of f at x E W, Df(x), has constant rank for all x E W

then

1. There exists open V C W and open V* C F such that f(V) C V*. There also

exist diffeomorphisms dl : V --+ X and d2 : V* -+ F.

2. The restriction of flV is f V = d2 1 o Df(xo) o d1 .



A consequence of this theorem is that the function f V has connected level subman-

ifolds. The level submanifold are the set of points in W that map to the same point

in F. Since all linear functions have connected level submanifolds, and f is diffeomor-

phically equivalent to a linear function in V, then f has connected level submanifolds.

This fact becomes useful for finding conditions to satisfy the next theorem.

Theorem 2.2.2 Let X, Z, F and G be finite dimensional vector spaces, and let

functions f : V -+ F and g : V -+ G be continuously differentiable, where

V C Z x X is open. The functions f(z, x) and g(z, x) have derivatives Df(z, x) and

Dxg(z, x) respectively, for (z, x) E V. Assume

1. rank Dxf(z, x) = n for all (z,x) E V,

2. for any fixed z the submanifold of f consisting of all (z, x) mapping to the same

point through f is connected, and

3. for all x E V

rank [ Dxf(z,x)
Dxg(z,x)

Let f* = (z, f(z, x) : V -+ Z x F have image W. Then there exists a function

h : W -+ G such that

g=hof

To simplify notation, let

u(t)

t u(t- 1)

u(1)



u(t + k- 1)

k u(t + k - 2)

u(t)

y (t)

k y(t + 1)
Yt

y(t + k - 1)

Therefore,

y(t) = h[4o(x(t)), u(t)]

y(t + 1) = h[ 1(u(t),x(t)),u(t + 1)]

y(t + k - 1) = h[4k-1(u(t + k- 2),...,u(t),x(t)), u(t + k-1)]

and we can write

Yt = Gk(UkZ(t))

where Gk " U k  X - Yk.

Now assume that the initial state of the system is the equilibrium state at the

origin x(1) = 0. We can now define the zero-state response function

x(t) = ft(ut ) D t[ut, x(0)] (2.2)

This assumption can be made without loss of generality since we assume that the

system is reachable. Therefore, given a sufficiently large t, x(t) can be acquired from

x (1) = 0.

Define z = ut and x = u.

Lemma 2.2.1 The rank of DGk(z, f(x)) is less than or equal to n, the number of

states of the system.



Proof: Since the state space has dimension n, the co-domain of ft has dimension n

and

rank (D.ft(x)) < n

Using the chain rule

Therefore

rank (DGk(z, ft(x))) < n

Define Fk,t(z, x) = Gk(z, ft(x)).

Lemma 2.2.2

rank (DxFk,t(O, 0)) = n

Lemma 2.2.2 holds if the linearized system has state space of dimension n. Further-

more k and t are only required to be equal to n.

Now we have all the tools to show that a recursive input-output map exists.

Theorem 2.2.3 There exists a function f such that

y(t + n) = f (y", u(t + n), u)

in some open set about the origin.

Proof: First,

S= Fn,t(ut, u t )

By the Theorem 2.2.1 there exists an open Wt E Un x U t such that

* rank DxF,,t = n for every (z, x) E Wt and t > n

* Fn,tiWt has connected level submanifolds for any fixed z

DxGk(Z, ft(x))°Dft (x)



The zero state response function of Equation (2.2) at time t + n gives us

y(t + n) = ft+n(u(t + n), , u t-1)

Since Lemma 2.2.1 gives us

DxF+,t = n

and

DxF,+,t = n,t

then the derivative of (Fnt(u', ut), ft+n, Up, ut) with respect to x = un has rank n on

Wt. All the requirements of Theorem 2.2.2 are satisfied, so ft+n is dependent on F,,t.

Therefore, there exists a function f such that

y(t + n) = f (y", U(t + n), un)

for all (ut, ut ) E Wt.

We have some freedom in defining the Wt. They can merely be chosen as the

inputs restricting f to some open Y.

El

The above arguments can be followed, with various modifications and specializa-

tions, to arrive at a variety of forms. Some of these forms require the notion of delay

in a discrete-time dynamic system. The following definition requires

Assumption 2.2.1

h[x(t), u(t)] = h[x(t)]

Definition 2.2.1 The SISO system has relative degree d if

a (h ( 1 k+l (x(t), 0, ... 0, u(t)))) = 0au



for k 0 < k < d, and

(h (4 d+1 (x(t), 0, ... , 0, u(t)))) 5 0eu

The interpretation of this definition is that y(t + d + 1) is the first output affected by

the input u(t). Now assume that g and h are analytic, implying that d is either 00o

or d < n. Clearly we must assume d < n, otherwise the control problem is hopeless.

Therefore, we can specialize Equation 2.2.3 under this conditions

y(t + n) = f(y", U)

The control algorithm feedback linearization, presented in the next section, attempts

to define a u(t + d) in terms of the remaining arguments of f. These arguments

contain outputs y(t + d + 1) to y(t + n - 1). The difficulty becomes obvious, since

our input can certainly not be determined as a function of future outputs. We must

therefore write the future outputs as a function of current and past outputs. It is not

difficult to do so. Simply let

y(t + d + 1) = f (y+dln d

y(t + d + 2) = f (Y+d+2-n d
t+d+2-n Ut+d+2_n )

n-1 d n d
Sf (Y+d+2-n Ut+d+2-n (Yt+d+l-n, Ut+d+1-n))

Ut d+_ ,1
fd+2 (Yt+d+l-n t+d+1-n

y(t + n) = f,*(yntd+ln, t+d+l-n)

Since the system is autonomous, we can translate it in time without loss of generality,

and write it in the D-step Ahead Predictor form.

y(t + d+ 1) = f(y(t),..., y(t - n + 1),u(t),..., u(t - n + 1))

Now, let us consider a further specialization. In particular, let us have the maxi-



mum finite delay.

y(t + n) = f (yt, u(t))

or

y(t + n) = f*(yen,- , u~-_ )

= f(W(y(t),..., y(t - n + 1), u(t),..., u(t - n+ 1))

This case is important because the u(t - 1) through u(t - n + 1) can be written

exclusively in terms of y(t + n - 1) through y(t - n + 1). The existence of such a

transformation is crucial to the proofs presented in Chapter 4. Suppose that any

y(t) E Y can be reached at any t. Therefore the u are restricted to U, the set of u(t)

which take any [y(t),...,y(t - n + 1)] E yn to any y(t + n) E Y. Since we assumed

that 2 # 0, the implicit function theorem guarantees that there exists a function

U : y,+ 1 -4 U satisfying

u(t) = U(y(t + n),..., y(t))

Therefore we have a transformation T

y(t) y(t)

y(t- n + 1) y(t- n +1)

u(t - 1) U(y(t + n - 1),...,y(t - 1))

u(t- n+ 1) U(y(t + 1),..., y(t - n+ 1))

= T(y(t+n- i,...,y(t- n + 1))



Furthermore T is a diffeomorphism since the transformation T - 1 exists satisfying.

y(t + n - 1) f(y(t + n - 2),..., y(t - 1), u(t - 1))

y(t + 1) f (y(t),.., y(t - n + 1), u(t - n + 1))

y(t) y(t)

y(t-n+1) y(t- n +1)

= T(y(t+ n- 1,...,y(t- n+ 1))

2.3 Summary

We have taken a system written in a well known and understood state space form

and show that it can be recast in the input-output form known as the D-step ahead

predictor form. Working with this new form has several advantages. Most impor-

tantly, it is important to understand that the input-output model represents all the

knowledge we can perceive given exclusively measurements of the input and output.

In addition, we will see that using the D-step ahead predictor form in particular al-

lows us to write an exact input-output feedback linearizing controller exclusively as

a function of past inputs and outputs. This result is the primary contribution of the

following chapter.



Chapter 3

Control Strategies

Now the concepts of the previous chapter can be built upon to devise methods of

controlling a particular system. This chapter begins by introducing some simple

concepts regarding linear control systems, and then moves on to describe in more

detail the input-output feedback linearizing strategy as it applies to the state-space

system and the equivalent D-step ahead predictor form.

3.1 Control of Linear Systems

Much of the current control theory makes the assumption that the system under

consideration is linear, or nearly linear, with respect to the state variables and inputs.

g [x(t),(t), t] = A(t)x(t) + B(t)u(t)

h[x(t), u(t), t] = C(t)x(t) + D(t)u(t)

Very few systems are actually linear, but many may be well approximated by some

linear system. Due to the depth of research focusing on linear systems, many tools

exist to design u(t) such that the system's states and outputs behave in some desired

fashion. The most basic design goals are stability and tracking. Before continuing,

let us make the assumption that the system is time-invariant, as we have done with

the system of Chapter 2. This assumption is a reasonable one, since otherwise the



identification problem, the primary goal of the results of this thesis, would not be

possible. Therefore,

A(t) = A, B(t) = B, C(t) = C, , D(t) = D

Since the transient behavior of the above linear system is invariant with respect

to a translation of axes in the state and input, we can assume that the stability

problem is that of stabilizing the origin. The most common of approaches to solving

the stability problem is to allow u(t) to be a linear combination of the states of the

system.

u(t) = kTx(t)

If such a strategy were not sufficient, designers have the option of augmenting x(t)

with additional states whose dynamics also depend linearly on states and inputs. If

we let the augmented state vector be z(t) then the new system can be written.

z(t + 1) = Azz(t) + Bz(t)u(t)

z(t + 1) = Czz(t) + Dz(t)u(t)

and u(t) = kTz(t). Eliminating u(t) from the above expression

z(t + 1) = (Az + BzkT)z(t)

z(t + 1) = (C, + Dk T)z(t)

It is well known that the stability of the above system can be written in terms of the

eigenvalues of the state coefficient matrix

eig(Az + BzkT) < 1

This condition guarantees

y(t + 1) < y(t)



and

y(t + 1) -+ O, as t -+ 

And the system is stable.

If the goal is acquire the origin in finite time, we can reintroduce the notion

of reachability. In term of the linear system, the reachability problem takes on a

particularly simple form. Let's progress by first constructing the k step response

function of the above system

u(t)

x(t +k) = Akx(t)+ Ak-1B A-2I ... B

u(t + k - 1)

Akx(t) +Rkuk

Therefore, if there exists a k such that Rk has rank n, then all x(t + k) would be in

the range of Rk. Since without loss of generality, x(t) can be set to zero, any x(t + k)

can be reached from any x(t). It is obvious that reachability of the origin implies

reachability of any state.

Observability also plays an important role, and as with reachability, the condition

takes a particularly simple form for the case of linear systems. We require observ-

ability since the above feedback control strategies required access to all the states.

Observability is the condition under which the states can be constructed from the

outputs. Begin by collecting the k step output response functions into a vector form.

Suppose u(t) and y(t) are known. Then,

y(t) C D 0 0 ... 0

y(t + 1) CA CB D 0 ... 0

y(t + k - 1) CAk- 1 CAk-2B CAk-3B CAk-4B ... D



Since the last term above is known, we can write the above equation in the following

form.

C

CA
y = (t) = Ok(t)

CAk-1

If rank Ok is n, the number of states, for some k, then each x(t) maps to a different

y and x(t) can be recovered from y. It is also clear that observability of any state

implies observability of all the states.

With respect to the small autonomous helicopter of this section, the linear control

design depending essentially on the concepts so far presented in this section, is based

on a linear approximation of the vehicle about the hover condition (zero velocity,

angular rates and attitude). Reasonable linear approximations can be constructed

as first order Taylors series expansions of the system. Since such approximations

apply with arbitrarily small error in arbitrarily small open sets about the point of

linearization, the resulting controller's performance can only be guaranteed locally.

Robustness techniques do exist, but they are often very conservative in nature, and

required extensive modeling of errors. There do exist control strategies which take the

nonlinear structure of the system directly into account and provide global stability

and tracking guarantees. One of these is that of feedback linearization, discussed in

the following section.

3.2 Feedback Linearization and Dynamic Inver-

sion

Since non-linear systems are so difficult to analyze, and linear systems have been

thoroughly studied and are relatively simple to analyze and control, an obvious control

strategy to employ on non-linear systems is the strategy of feedback linearization ([2],

[9], [11], [13], [21]) . In essence, a transformation of the control inputs is found which

makes the transformed system linear. Then, traditional control strategies can be



employed. A specialization of this strategy is dynamic inversion, where the dynamics

are completely inverted and the output at time t + At is simply the transformed

input at time t.Desired response characteristics are then achieved through appropriate

definition of the input. These algorithms are obviously very powerful. Their strengths,

though, are tempered by some significant weaknesses, all of which shall be discussed

in this section.

The conditions under which feedback linearization and Dynamic inversion can be

employed are now described. The derivations of these controllers shall be presented

for both a state space model, and for a D-step ahead predictor model. This step is

taken for the sake of completeness.

Let us begin by input output linearizing a non-linear discrete time state space

SISO model.

(t + 1) = g[x(t),u(t)]

y(t) = h[z(t)]

Define a transformation of variables

z(t) = (X(t))

where i (x) = (Ii (x) the i step ahead state transition function for i E [1, d]. If the

delay d is finite it is always possible to find ¢i(x) for i E [d + 1, n] such that DAx(O)

has rank n in some open set M about x = 0. Furthermore, the ¢i(x) for i E [d + 1, n]

can be chosen such that qi(f(x, u)) = (0i o f)(x) and I?(x) is a diffeomorphism on

M. In the new coordinates, the system can be written

zi(t + 1) = z2(t)

z2 (t+ ) = z3(t)



= [h o fd] (D-l(z(k)), u(k))

= d 1(I- (Z))

= n ( - (z))

= zl(t)

Since odG(Xu) _ 0 by assumption,

existence of a function g such that

the implicit function theorem guarantees the

¢dd(, g(x, v)) = v(t)

in some open convex set. Therefore, we can define our input u(t) as g(x, v) and the

input output map of the above system becomes

y(t + d) = v(t)

The function g is the input output linearizing transformation of the control input u.

The argument can be similarly applied to the recursive input output maps derived

in Chapter 2. Consider the d-step ahead predictor form

y(t + d) = f,*(y(t),..., y(t - n + 1), u(t),..., u(t - n + 1))

Since : 0 in some open convex neighborhood of the origin ,as shown in Chapter 2,

then the implicit function theorem guarantees that there exists a function U such that

u(t) = U(y(t + d), y(t), .. ., y(t - n + 1), u(t - 1),..., u(t - n 1))

and the input output model has been linearized.

Zd(t

Zd+1 (t

+1)

+1)

zx(t + 1)

y(t)



3.3 Dynamic Inversion and Zero Dynamics

Although the Dynamic inversion algorithm seems promising, since it can take a large

class of systems and define their input output behavior as desired, there are some

issues that must be dealt with. In particular, the feedback linearizing transformation

of the control may render some states of the system unobservable. Thus we need

some way to guarantee the behavior of these states is stable in some sense.

Let us return to the feedback linearized state space system. Define

S= [z ,..., zd T

7 = [zd+1, * ,Zn]

Let the system start at the origin z = 0 and let the control v(t) = 0 for all t. The zero

dynamics of the system are thus defined as the dynamics of the r7 under the above

initial condition and control.

Od+1( - (0 , 7(t))

1 (t +1) = q(1(t))

We would like the above system to be asymptotically stable. If it is, the system is

referred to as being minimum phase.

If we are only given an input output model such as the d-step ahead predictor

form, we must first find a state space description in order to define the zeros dynamics

of the input output feedback linearized system. Such a description is easy to find. In

particular, let

z(t) = [y(t + d - 1), y(t + d - 2),..., y(t - n + 1), u(t - 1),..., u(t - n + 1)]



0

O(n+d-1)x(n-1)

0

O(n-l)x(n+d-1)

A state space realization of the d step ahead predictor form is thus

x(t+1) = Ax(t)+B [ f, (y(t),..., y(t - n + 1), u(t),..., u(t - n + 1))

U(y(t + d), y(t),..., y (t - n + 1), u(t- 1),...,u(t - n + 1))

and the unobservable states are the u(t). If we partition the state vector into observ-

able ( and unobservable q7 states, as above, the zero dynamics thus become

(t + 1) = A (t)+ B U(, 77(t))

and we call the system minimum phase if the above dynamics are asymptotically

stable.

Solutions to deal with unstable zero dynamics usually involve the addition of

outer control loops which shape the type of control inputs Ydesired as a function of

the unobservable states. These states are obviously measured in the outer control

A =



loop. An example of this strategy is implemented on the helicopter in Chapter 6.

It is clear that if pitch rate is treated as an output, its dynamics must be chosen

carefully if the pitch is not to go unbounded. An outer feedback loop defines the

desired pitch rate to achieve a given desired horizontal velocity.

3.4 MIMO Feedback Linearization

So far, the discussion of feedback linearization has treated only the SISO case. We

need to extend the above notions to the MIMO systems. See reference [13].

x(t + 1) = f(x(t), u(t)) ()

yi(t) = hi(x(t))

where i E [1,..., m], x E R", u E Rm , yi E R and f and h are analytic. Delay for

the MIMO case is defined similar to the SISO case.

Definition 3.4.1 The output yi of the MIMO system has relative degree di if

- (hi( k+l(x(t), 0,..., 0, u(t)))) = 0
auj

for k e [0,...,d - 1]] and j E [1,..., m], and there exists j {1,...,m} such that

0  (hi( di+1((t), , . ., 0, u(t)))) Z 0au

for all x E R' and u C R m .

Definition 3.4.2 The input output decoupling matrix is

A(x, u) = (hi('d +1(x(t), 0,. .. , 0, u(t)))) i

If the origin is reachable, and A(x, u) has rank m then there exists a transforma-

tion of the input such that the system is input-output decoupled ( [13]). The new



transformed system takes the form

7i(t + 1) = vi(t)

(j(t + 1) = F(r(t), (t),v(t))

Yi = 77i

for i E {1,...,m}, j E m + 1,...,n}, and

771 m+1

Thus the system has been feedback linearized.

3.5 Summary

Now we have both the system and control background required to move on to an

exact mathematical formulation and proof of the algorithm proposed by this thesis.

This algorithm, which can be discussed in more specific terms, takes the system of

Chapter 2 and shows how and under what conditions we can identify the feedback

linearizing controller of this chapter and use it to control the system.



Chapter 4

Proposed Learning Strategy

4.1 Problem Description

This section introduces the learning control algorithm of this thesis. The presentation

is in now way complete or precise. An exact mathematical formulation is presented in

the next section. What follows is intended to provide an intuitive feel of the proposed

algorithm.

The primary objective is to find a controller which guarantees bounded tracking

error for a given system in a given controllable region of the state space. The algorithm

described in the next two sections can accomplish this goal given a minimal amount

of prior information about the desired controller. In particular, if a sufficiently good

approximation to the ideal (zero tracking error) controller is known in some small

region of the state space, the proposed controller can can extend the initial small

region to the desired region, while at the same time decreasing error to any arbitrarily

small value. Furthermore, the algorithm can be applied to a large class of non-linear,

feedback linearizable systems which can be written in the D-step ahead predictor

form described in detail in Section 2.2

The basic idea for the algorithm is as follows. If we have good knowledge of the

controller in some small region of the desired state space, then we can fly our system

within that space. By flying near the boundaries, sample data can be collected and

then extrapolated outside the boundaries of the small initial region. Using the new



extrapolated data, the boundaries can be pushed further and further until the data

spans the entire desired region of the state space.

4.2 Exact Problem Statement

An exact mathematical formulation of the above strategy follows. This formulation

consists of a description of the system under consideration followed by a precise claim

of the control strategy's capabilities. The problem statement does not specify the

controller, but claims the existence of the controller. The control strategy is then

constructed by means of the proof in the next section.

The class of systems considered is all systems which can be written in the D-step

ahead predictor form with delay equal to the order of the system.

Let yt and ut be the output and input of the system, respectively. For now,

only consider the case where yt and ut are real scalars. The proof can be extended

to the case of vector valued input and outputs under certain minimal restrictions.

These restrictions include that the input and output have equal numbers of scalar

components. For simplicity, only consider the scalar case. The system is

Yt+n f(ut,wt) (4.1)

Wt [Yt+n-1, ... , Yt-n+1]

where n > 1. The function f : y2n-1 U --+ R is a continuous function with

continuous first and second derivatives. The sets Y C R and U C R are open, and

Yt and ut are the input and output of the system at time t respectively. Now make

the following assumption.

Assumption 4.2.1

af(ut, 0) # 0, Vut E U
Out

As a consequence of the above assumption and the Inverse Function Theorem [17, p.

345], there exist closed intervals D, C Y and Du C U, and a function U : Q2n -+ R



such that

f(U(t, wt), W) = Vt (4.2)

for all

vt E DY

wt E D 2n - 1

where vt is an exogenous input. Furthermore, this function is continuous with con-

tinuous derivatives, and
OU

(vt, Wt) # 0 (4.3)
Ovt

This result states, in words, that there exists an exact, input-output feedback lin-

earizing transformation U of the control ut. To see this, let ut = U(vt, Wt), where vt

is the new control variable. Therefore

Yt+n = f(U(vt, Wt), Wt) = vt

The equation Yt+n = vt is clearly linear. The implications for control are clear. If the

functions U and f, and all past outputs and inputs were known precisely, any desired

output Ydest+,, could be achieved exactly by letting the input be

U(Ydest+n, Wt)

where wt is known since past outputs ,{Yt-n+1, ... , t}, can be measured and the

future outputs ,{Yt+i, ... , Yt+n-1}, can be calculated since

t+1 = f(ut+-n, Yt,... , Yt+l-(2n-1))

Yt+n-1 = f(ut-1 Yt+n-2, ... , t-2n-2).

In reality, though, this condition would never exist. Any controller would have to

make do with approximations of f and U on restricted domains. We now make the

assumption that such approximations exist.



Assumption 4.2.2 There exist known functions Uo and fo and closed intervals

Dy,o C Dy and

Du,o C D,

such that

UO(yt+n,Wt) - U(yt+n,wt) JuO

-fo(ut, t) - f(ut,wt) Sfo

for all

Yt+n E Dy,o

wt E uO

Ut E DIu,O-

These approximations may be poor, and the intervals Dy, and Du,o may be small.

The goal of this thesis is to present a scheme to generate successively better approx-

imations

fO, fl, . . . , fN, and

U, U1, . . . , UN

on successively larger intervals

Dy,o C Dy, C ... C Dy,N and

Du,o C D,, C ... C D,N.

This goal is stated in Theorem 4.2.1 as the primary result of this thesis.

Theorem 4.2.1 There exist numbers, 6b, 6, and C, depending only on properties of

the functions f and U, such that if

6u,o < 6u

6 fO 
6 f

max(y E Do) - min(y E Do) > C6u,

then there exists a sequence of inputs ut and corresponding outputs Yt from which

we can construct functions UNY(yt+n , Wt) : ), -+ R and fN(Ut, wt) 2n-1 X
n Dr y - nX~uw)" ,



Du,N(Wt) -+ satisfying

for any
6 u,N E (0, 6,o],

6f,N e (0,6f,o]

and for all

Yt+n E Dy,N

wt E D2n-1

ut E Df),N(wt)

where D)Y,N E Dy is closed and contains D)y, and

D,N(Wt) = {Ut = U(yt+n, Wt) It+n E Dy,N}.

In itself, the statement that we can achieve successively better approximations of

the functions U and f seem to imply very little. Appearances aside, the consequences

are significant. As we will see in Section 4.3.2, a controller can be contstructed

from these approximations, and both the tracking error and the set of commandable

outputs y depend directly on the approximation errors of the U and f. Essentially,

the smaller the approximation errors, the smaller the tracking errors, and the larger

the Dy,N the larger the set of commandable outputs.

4.3 Proof

The proof of Theorem 4.2.1 presented in Section 4.2 can be separated into a few main

elements. These elements are divided among the remaining sections of this chapter.

Although they may be complete and self contained, their individual influences on the

big picture, and their use in proving Theorem 4.2.1 may not be immediately apparent.



The following outline is included specifically to provide clarification on these issues.

Keep the outline in mind as you progress through the remainder of this chapter.

Section 4.3.1 shows how an approximation to a function can be constructed from

samples of the function. The theorems contained in the section give bounds on the

error between the function and its approximation. These theorems are of a general

nature and do not make reference to the system of Equation 4.1.

Section 4.3.2 describes a control algorithm which can be constructed from the

approximations fk and Uk, and shows that the better the approximations, the better

the tracking error of the control algorithm.

Section 4.3.3 describes how samples of f and U are acquired using the control

algorithm of Section 4.3.2. This sampling is central to the proof, since if these samples

can be used to generate better approximations of f and U, then it may be possible

to repeatedly sample and generate improved approximations As will be shown, this

is indeed the case. Section 4.3.4 shows that the acquired samples can be applied to

the results of Section 4.3.1 in order to generate improved approximations of f and U

, and the final section brings together the results of the previous sections to complete

the proof of Theorem 4.2.1.

4.3.1 Error Theorems

The following theorems show how to take samples of some function f and construct

an approximation f which satisfies certain error properties. The first two theorems,

Theorem 4.3.1 and Theorem 4.3.2, treat functions whose domain is a set of scalars.

Theorem 4.3.3 and its corollaries extends these theorems to functions with vector do-

mains by reducing the vector problem to the scalar problem treated in Theorems 4.3.1

and 4.3.2.

Theorem 4.3.1 Let f : D -+ R where D - [a, b]. We are given samples of f at

two different points x1 , x 2 in D:

Y1 = f(x1), y2 = f(x 2 ).



Without loss of generality, we can assume xl < x2. Define the function f : D -+ R

Y2 - Y1f () = y, + (X - ).
X 2 - X 1

Suppose f is continuous with continuous first derivative, and d_ I L. Then

f () () (b - a) 2 , VxED.

(4.4)

(4.5)

Proof: Applying Taylor's Theorem (with remainder) [17, p.185] to f(x) and

about xl for some arbitrary x E D yields

df
f(x) = f (Xi)+ d (x)( (dx:

- xl) + I df 2f

for some (1 on the interval between x1 and x. Since f ((x) =- _ ,
dxX2-Xl

(4.6)

we can rewrite

Equation (4.4) as

f(x) = f(xi)
df

+ -()(X - X).dx

Subtracting Equation (4.7) from Equation (4.6) yields

f (x) - (x) = f(xi) + (Xi)(X_ - X,) + 1)( )2

-f(X1) - d(()(X - X1)

__ \~' dx 2 d ,xl2 X -- Xl
2

Since D = [a, b] it follows that

IZ' - x"I < b - a, for any x', x" E D.

Therefore Equation (4.8) becomes

If(x) - f (x)< (X)-
df
dx Ix - x1 + -L(b2

To bound the first term on the right hand side of Equation (4.10) we proceed as

follows. As a consequence of the Mean-Value Theorem [18, p.

(4.7)

(4.8)

(4.9)

-a)2. (4.10)

89], there exists an



x3 E [x1,x 2] such that

df
d(X3)
dx

df
= (x)dx> (4.11)

By applying Taylor's Theorem to f(x) about x3 and xl respectively, and substituting

Equation (4.11) into the result, we obtain

- f (x3) + (X)(X1 - X3) + (2)(X1 - X3) 2

= f(x) + (Xl)(X3 - Xl) + 2 2 ((3)(X3 - X1)2

for some (2, 3 E [X1 , x3]. From Equations (4.12) we can derive the following:

= 11 (d2f(\
-=I (G) + )(X3 - 1

2 ((212 (3 3 -X1

< L(b-a)

Plugging Equation (4.13) into Equation (4.10) and applying Equation (4.9) yields the

desired inequality (4.5).

O

Theorem 4.3.2 Let f : D - R where D = [a, b]. We are given approximations of

f at two points xl, x 2 satisfying

JY1 - f(X1)1 1, - f((x2))1 E,, X2 - 1 2, 2 C > 0.

Define the function f : D --+ R as

f (x) = y + - ( - x 1).
Z2 1- l

Suppose f is continuous with continuous first derivatives, and I < L. Then

b- a 3L
f (x) - f(x) < 2-a max(el, c2) + (b - a)2,

c 2
Vx e D.

f(xi)
f(x3)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

d (xl) - 4'(x)



Proof: Define an intermediate function g : D - R as

g() = f (x)) + f () (x - xi).
X 2 - X 1

(4.17)

First find the error between f and g by subtracting Equation (4.17) from Equa-

tion (4.15).

f(x)-,(')l = ly+ -1 (X) -_ Z) _ f _ (2)-f ( 1)

(4.18)

o l( - E i(x)Y2 9 t E2i 21

Applying bounds (4.14) and Equation (4.9) to Equation (4.18) yields

f()-g(x) (4.19)_ (b- a) + (b- a)c C
< 2b- a max(1, E2)c

From Theorem 4.3.1,

jg(x) - f(x)l
3L

< -(b - a)2 Vx e D.
2

Combine Equations (4.20) and (4.19) to obtain inequality (4.16).

Theorem 4.3.3 Let g SDN -+ R, where DN C RN. Suppose we are given

approximations, {Po,... ,PN} of g at N + 1 points {zo, ... , ZN} such that

Ii - g(zi)l e<,i = 01,...,N.

Define the matrix Z as

... ZN

... 1

(4.20)

(4.21)



and assume that Z is invertible. Define the set Zm for m = 0, 1,..., N as

(4.22)Zm = {zO,..., zm}.

Define the function : RN -+ R as

X(z)= ([Po ... pN]z -1) 1

Suppose g is continuous with continuous first derivatives. Suppose, furthermore, that

the second derivative of g along any straight line in DN has a bounded absolute value

such that

d (xz' + (1 - )z")
5 L1 Jz' - z"2 , V z', z/ E DN and x E R. (4.23)

Define the set Co(Zm) as the convex hull 1 of Zm. Suppose

g(z) - (z)I < E2, V z G Co(Zm-1). (4.24)

g(z) - 9(z)I 1 2max(fl,E2)
3L 1  2+- max z - Zmll2,

2
V z E Co(Zm), V z E Co(Zm-,).

(4.25)

Proof: Let z E Co(Zm). From Corollary A.0.1 in Appendix A, z can be expressed

z = xz' + (1 - z)zm

for some z' E Co(Zm-1) and x E [0, 1]. The functions f(x) and f (x) can be defined

f(x)

f(x)
g(xz' + (1 - x)zm)

g(xz' + (1 - x)zm).

'Definitions and properties of convex hulls are presented in Appendix A

Then



Therefore Equation (4.25) can be established if it can be shown that

f (x)- (x) 2 max(e, 62)+ 3-- max liz' - Zm II2, Vx E [0, 1].

Since §(zi) = [Po... PN]Z - for each i = 0,..., N we have that

[g(Zo) .. (ZN)] = [Po * PN]Z - 1Z = [p . "PN]. (4.26)

Therefore f (0) = 9(zm) = Pm. Setting xl = 0, 2 = 1, yl = f(0) and y2 = f(1), and

noting that f(xl) = g(zm), yl = f(0) = Pm, f(x 2) = g(z') and y2 = 9(z'), we have

that

lyi - f(xi)l
ly2 - f(x2)1

61 from Equation (4.21),

S6E2 from Equation (4.24).

Since, in addition,

d2 f < L max jjz - Zm12 ,
dX2 2

V x E [0, 1], from Equation (4.23),

f satisfies the assumptions of Theorem 4.3.2. Therefore, Equation (4.16) becomes

If(x) - /(x) < 2 max(cE, E2)
3L 1  2+ -- max li - ZMl12, Vx E [0, 1].

which proves Equation (4.25).

Corollary 4.3.1 If the assumptions of Theorem 4.3.3 hold for El = 0 and m = 1,

then

g(z) - (z)l < (2m - 1) L d2,

and for all m in {1, 2,... , N}, where

V z E CO(Zm),

d = max liz' - z"112 ,

(4.27)

Zi

1

(4.28)V z',zI E Co(Zm).



Proof: The proof is by induction. First, assuming Equation (4.27) holds for

m = k, for some k {1, 2,. . . N- 1}, and choosing E2 = (2k 1) 3 L d 2 it follows that' ' "" " '2

Ig(z) - 9(z)J 5 E2, V z E Co(Zk),

and from Equation (4.28), that

max Jz - zk112 = d Vz E Co(Zk),

where Zk is defined in Equation 4.22. Therefore, from Theorem 4.3.3 we have that

) 3 L1 d2) + 3L 11g(z) - P(z)I < 2max(El, ( 2 k _ 1) d2) 2,
2 2

V z E Co(Zk+l). (4.29)

Since E, = 0 by assumption, Equation (4.29) can be reduced to

Ig(z) - (z) I < (2k+1 - 1) 3d2,2
V z E Co(Zk+l).

Equation (4.30) shows that an inequality of the form of Equation (4.27) holds for

the case m = k + 1. To complete the induction proof , it suffices to show that

Equation (4.27) holds for m = 1.

From Equation 4.26 and the assumption that el = 0, it follows that

lg(zi) - g(zi)I = 0, for i = 0, 1. (4.31)

From the definition of Co(Zo), Equation 4.31 also implies that

Ig(z) - (z)I = 0, Vz e Co(Zo),

and hence C2 = 0, where E2 is defined as in Theorem 4.3.3.

rem 4.3.3 that

3L d2 = (21 - 1) 3-d2,
2 2

It follows from Theo-

V zE CO(Zi).

(4.30)

(4.32)Ig(z) - (z) I <



Equation (4.32) is exactly Equation (4.27) for m = 1 and the proof is complete.

Definition 4.3.1 The ball of radius r and center z, E RN is

B(ze, r) = {z jllz - zCll2 < r, z E RN}

Corollary 4.3.2 If the assumptions of Corollary 4.3.1 hold and

B(z,, di) C Co(ZN) C G C DN C RN, (4.33)

for some compact and convex set G, and some d, and zc then

3 Lld 3 L12
Ig(z) - (z)I < (2N - 1)3L d2 + V z EG (4.34)

4d, 2 u

where d is given in Equation 4.28 and

du = max lz' - z"112  Z, z it E G. (4.35)

Proof: Choose some arbitrary point z E G. The straight line passing through

points z and ze, and extending to the boundary of G, intersects the boundary of

B(zc, dt) at exactly two points zbl and zb2, with I1zb1 - zb2112 = 2d1. We can write this

line as a function of a scalar x.

z(x) = Zb + (Zb2 - Zbl)X (4.36)

Since G is convex, and z(0) = zbl and z(1) = zb2, z(x) E G implies x E [a, b] for some

a < 0 and b > 1. Define

f(x) g(zbl + (Zb2 - Zbl)X)

1(x) (Zbl + (Zb2 - Zbl)X), V x e [a, b].



Since z was chosen arbitrarily, Equation (4.34) can be obtained by showing

1) d2 + 3 L 24d, 2 d V x E [a, b].

Setting xl = 0, 2 = , y f(0), y2 = f(1) and noting that from Assumption 4.33

and Definition 4.36 that

z(xl) = Z(0) = Zbl E Co(ZN) and

z(x 2 ) = z(1) = Zb2 E Co(ZN),

it follows from Corollary 4.3.1 that

(2N - 1)3 Ld 2 and

< (2 - 13L)d2
)' 2 "

IY1 - f(x)

IY2 -X2) I

Therefore the E1 and E2 from Theorem 4.3.2 are

(2N - 1) 3L d2
2

Since, in addition, Assumption 4.23 yields

d 2f L 1 z11bl - Zb2 ,

it follows from Theorem 4.3.2 that

f (x) - f(x) 5(b-a)(2N - 1) d2 + 2IZbl2 2 - b2 2 (b-a)2, Vx E [a, b]. (4.37)

Since 2 dl = 11bl - zb2112 and IIz(a) - z(b) 112  d, we have that

d1(b - a)
2d"

If(x) - j() 15 (2 -



and therefore Equation (4.37) becomes

f (x) - (x) < (2 1) 4 d2 + d
4d, 2 "

V x E [a, b].

Equation (4.34) follows.



4.3.2 Tracking

Theorem 4.2.1 tells us that, under certain conditions, we can find approximations iN

and UN of f and U which are 'better' than the original approximations f0 and U0.

The proof of this theorem, to be presented in the final section of this chapter, will be

made using an induction argument. Therefore, the assumptions and theorems of this

and other sections are concerned with properties of intermediate approximations fi
and Ui for i E {0,..., N}.

This section deals primarily with the tracking error associated with the Sys-

tem (4.1) using Ui and fi for control. We begin by making an assumption of the

approximation error of U and fi.

Assumption 4.3.1 There exist known functions Ui and f~, and closed interval Dy,i

satisfying

Dy,i C_ Iy,N (4.38)

such that

(i(Ydest+n,, Wt) - U(ydest+n, t) I  u,i (4.39)

i(ut, wt) - f(ut, wt) < 6f,i (4.40)

for all Ydest+n E D,i, t E Dui(wt), and Wt E D2- 1, where Dy,N is as in Theo-

rem 4.2.1 and

Du,i(wt) = {ut = U(yt+n, wt) Yt+n E Dy,i} (4.41)

The notion of a sample of a function is now defined.

Definition 4.3.2 A sample of a function g : A -+ B is an input-output pair (a, b)

of g, where a E A is a sample input and b = g(a) E B is a sample output.

We now proceed to derive an expression for the tracking error of System (4.1)

controlled by Ui. Such an expression is pivotal to the completion of the proof since it

describes our ability to acquire prescribed samples of U and f. Theorem 4.3.5 which



states the desired expression, relies upon certain properties of the System (4.1). These

properties are presented in the required form as a theorem.

Theorem 4.3.4 Given System (4.1) and Assumption 4.2.1, the following inequalities

hold for some Nf, Nu, Nfl and Nf, ,and all ut E Du,N(wt), wt E n1 andy E Dy,N,

i E {t - n+ 1,...,t+n}.

"U Yt+n Nu (4.42)

Also, assume N, 2 1. If 4.42 is satisfied with N, < 1 then we can always choose

N,= 1. The set Df),N is as in Theorem 4.2.1 and

D,N(wt) = {u tlf(ut, wt) E Dy,N}

Proof: From [1, p. 122], the continuity of f and U and their first partial deriva-

tives on closed sets is sufficient to imply that N,, Nf and Nf, exist. The constant

Nfl exists since Assumption 4.2.1 implies that -oL exists and is bounded away fromOut

zero on a compact set.

n

The following Lemma is useful in the proofs of the remaining theorems of this

section.

Lemma 4.3.1 If the function g(x, z) : R n - R is continuous with continuous first

partial derivatives, where

X = (Xi,...,Xm) E Rm



and z E R' - m , then

g(x,z) = g(', z)

+ ag fT 2 I T ** m 1 1+o ( X2,, Xm, z)(xj - X) +

+ (X;,..., - 1 , , kM+1,. , Z)(Xk -Z k ) +...

+o (a', ... , 1, im, z)(Xm -(')

where 77k E [xk, X] for k = 1,..., m 2 and

x'= (', . . , m) E R m

Proof: An application of Taylor's Theorem to

g(x, - ., 4z -1, k .. ., iXm, z)

(4.43)

(4.44)

about the point

(ZX,.. .,4 Xk+1 ... Xm Z)

yields

.. Xm Z) g(x ',.. .,,Xkz 71,..Z ,Xm,Z)

+oXkk ,1, 7k, Xk+l,

where k E [Xk, k]. Define

Yk = (xl, ,, k+1. m, Z)

S= (X ,. . ., ,kk+1,...,XmZ)

Therefore Equation (4.45) becomes

g(yk-1) = k(yk) (4.47)+ og(k)(k - 4)19Xk

2In this proof it is assumed that x' > Xk. A similar proof can be given if Xk > Xk with the
modification 11k E [k, Xk].

g(xi,... X/ ,

.,XZ, Z)(Xk - )

(4.45)

(4.46)



for each k = 0, ... , m. Equation (4.47) is a recursive relationship which yields

g(Yo) = g(yl) + A(1)(xi - xz)

= (y) + -(2)(X - X) + 1(X1 - Xi)

= 9(Ym) + -- (m) ( m - Z'm) + ---+ (Z 1 - '1)

Substituting Equations (4.46) proves Equation (4.43).

Definition 4.3.3 Given an interval S, define the set S'(5) as

S'(5) = {yl[y - 6, y + 6] C S}.

Theorem 4.3.5 Assume that the System (4.1) satisfies Assumptions 4.2.1 and 4.3.1.

Define

where ft+j is an estimate of Yt+-j3

t+j = Ai(ut+j-n, t+j-1, . .. , 9t+l, Yt, . ., Yt+j-2n+l) j E *..n- 1.

(4.48)

6tracking Nfu3 u,i + Nf ((N

let

Ut = Ui (Ydest+n, t+n-, ... t+1) Yt 7 , Yt-n+l)

+ 1)n-1 1) 6 f,i

VYdest+n E D'Y,i(Stracking)

where Nf, N, and Nf, are the constants satisfying the inequalities (4.42). Then

IYt+n - Ydest+n < 6tracking- (4.51)

3It is necessary for any controller to use estimates of yt+j for any j > 0 since the controller must
be causal.

Set

and

(4.49)

(4.50)

,y, - yt+j - 9Yt+j, j E (1,...,n - 1}



Yt+n E DOyi V Ydest+n E D',i(6tracking). (4.52)

Proof: Define Udest as the input which takes us to Ydest+n,

(4.53)

We note that Equations (4.1) and (4.53) and an application of Taylor's Theorem to

f about Udest for some Ut yields.

Yt+n - Ydest+ I
of

= (IP, Yt+n-1, ... , Yt-n+i)
aut

where p is on the interval between ut and Udest. Using Equations (4.50) and (4.39)

I Ut - Udest I I U(Ydest+n, ~+n-1, , t+l, Yt ... , Yt-n+l)

-U(ydest+n,, Yt+n-1, ... , Yt-n+l)

SIU(Ydest+, t+n-17 ... , t+1, Yt .. . , Yt-n+1)

- U(ydest+n, Yt+n-1, ... , y t-n+l)I + 6 ,i

(4.55)

since

(J(x) - U(z) I U (x) - U(x) + IU(z) - U(x)I

for any real x and z. By using Lemma 4.3.1 with

x = ( t+, ... i ,t+n-1),x' = (Yt+1, ... , Yt+n-1) andz = (Ydest+n,, Yt, ... Yt-n+),

Equation (4.55) can be written as

IUt -- dest I ' 9U_ (Ydest+n, 77n-1, t+n-2,..., t+1, Yt, .. , Yt-n+1) (t+n-1 - Yt+n-1)

+. '_U (Ydest+n . Yt+2 771, yt, ... Yt-n+l)(t+l - Yt+l)l + u,i
ayt+n- 1 "

where k E [Yt+k, Yt+k],

(4.56)

k = 1,..., n - 1 4. Noting Equation (4.48) and applying the

4In this proof it is assumed that ^t+k > Yt+k. A similar proof can be given if Yt+k > Yt+k with

and

Udest = U(ydes+n, Yt+n-1, ... , Yt-n+l)

|Ut - Udest I (4.54)



bound in (4.42) to Equation (4.56) yields

lut - Udest I Nu(6y,i + - - - + y,n-1) + 5 u,i (4.57)

Now we find upper bounds for the terms 6 ,i for j E {1,..., n - 1} as follows. Using

Equations (4.48) and (4.40)

6y ,j = f(ut+j-n, t+j-1, ... , Yt+j-2n+l)

- (Ut+j-n 7t+j- 1., 7 &+1, Yt7 ... * t+j-2n+l)

S f (ut+j-n, Yt+j-1, .- , Yt+j-2n+1

-f (ut+j-n, 9t+j-1, . . , Yt+l, Yt, . , Yt+j-2n+l)I + 6 f,i

(4.58)

since

If(X) - fA(z) < if(X) - f(z) + f (z)- f(z)
for any real x and z. As before, by using Lemma 4.3.1 with

S.,t+j-1), ' = (Yt+l, ... , Yt+j-1) andz = (ut+j-, t., t+j-2n+l),

there exists (k E [yt+k, Yt + k] for k = 1,..., j - 1, such that Equation (4.58) becomes

6y,j I 0]" (Ut+j-n, (j-1, t+j-2, ... Y t+l, Yt, .. . Yt+j-2n+1)(Yt+j-1 - Yt+j-1)

+ (u~t+-, Yt+j-, ... ,, t+2, , yt, ... , yt-t+j-2n+l )(t+1 - t+

+ 6f,i

(4.59)

Noting Equation (4.48), and applying the bounds of (4.42) to Equation (4.59) yields

6 y,j N (y, 1 + - - - + y,j-1) + Qs,i (4.60)

the modification 77k E [ t+k, Yt+k].

x = (Yt+, -



Since Equation (4.60) holds for all j = 1,..., n - 1, it follows that

Jy,j 5 (Nf + 1)Sy,j_ (4.61)

Noting that 6 ,1 I 6f,i, Equation (4.61) reduces to

(4.62)

The proof is now completed by combining Equations (4.42), (4.54) and (4.57) as

follows.

IYt+n - Ydest+.4 , N,, (J, + N(y, + + Sy,n-1))

Using Equation (4.62), it follows that

n-1

lYt+n - Ydest+nI < Nfu6 u,i + NN, ((Nf + )k-1 fi
k=1Using the identity

Using the identity

E n - 1(N + 1) k - l

k=l

1

(Nf + 1)n-1 1N

it holds that

Yt+n - Ydest+ Nfu6,i +Nf ((Nf + 1)n- 1)6fi
In Nf

which proves Equation (4.51). Since we assumed Ydest+, E D,,i( 6tracking) and since

Equation (4.51) holds, we have from Definition 4.3.3 that Equation (4.52) holds.

Before moving on to the next section, two more results are introduced. Although

they are not directly related to tracking, the methods are similar to Theorem 4.3.5

so the presentation is made in this section.

yj < (Nf + 1)J-16,i, j E {0,..., n - 1}



Theorem 4.3.6 Let

and assume

Yl+n = f (u', Y'+n-1'..., i4-+) E Dy,N

Yt+n = f(ut, yYt+n-1',.. , -n+l) E Dy,

S " y <d, jE -n+,..,n -l]

D- Yt+ - Yt+ - DU

then

-1)d < u' - u" I Du

- N I
+ N (2n- 1)d

NfI

where Nf, Nfl and Nfu are defined by Equations (4.42).

Proof: An application of Lemma 4.3.1 to f with

= (uYt-n+, ... , -) x' = (ut , Yt-n+l, -, Yt+n-1) and z = ()

yields

= I(77 Y+n- 1, ... , -n+1)(u' - u')

+±Yn (u", Ctn-1, Y+n-2 7 . -n+1)(Y +n-1 +n- 1

(4.65)

+ull a ( If ifl
+at-n(u, yt n-1,..., y,-n+2, C-n+i)(Y,-n+ - Yt-n+l)

where 77 is on the interval between u' and u" and (j is on the interval between y

and yj for each j E {-n+1,...,n- 1}.

(4.64) to Equation (4.66) yields

Applying Equations (4.42), (4.63) and

DI Nf, Iu - u"I + Nf(2n - 1)d

Du > Nf,lu' - u" - Nf(2n - 1)d

(4.63)

D
Nf

(4.64)

y±n - Yt+n

(4.66)

(4.67)

(4.68)

Nf (2n
Nf



Solving for ju' - u"' in each of Equation (4.67) and (4.68) produces Equation (4.65).

Theorem 4.3.7 Let

Yt+n

Yt+n

= f (u, y+n-1,.. ,'-n+) E y,N

= f(ut, Yt"_,..., yt_~+) E Dy,y

(4.69)

where j = -n + 1, n and, then

(4.70)
n

j=-n+l

where N, is defined by Equations (4.42).

Proof: An application of Lemma 4.3.1 to U with

x = (Yt-n+l , . , +n), x' = (Yt-n+l , Y+n) and z = (

yields

+ -, YU - " -, +l)(Yt+ - Yt+n)

+ (-n2 -n+ -n -n+

where (j is on the interval between yt+' and y"j for each j E {-n + 1,...,n}.

Applying Equations (4.42) and (4.69) to Equation (4.71) yields Equation (4.70)

(4.71)

I +j - + drlyt j - t+j dj



4.3.3 Sampling

The purpose of this section is to describe exactly how samples of U and f are collected,

and demonstrate that the acquired samples satisfy certain properties which will prove

useful in the application of the theorems of Section 4.3.1 to the samples.

First a bit of notation is introduced. Let tk be such that ytk is an output y at some

time t+A, where A denotes a translation in time. Since A's can be arbitrary and need

not be sequential, Yt, Yt2 , ... , Ytk need not denote consequtive values of y. Since at time

tk, the functions f and U of the system in Equation (4.1) satisfy Assumption 4.2.1,

we have

Ytk+n = f(utk,Ytk+n-1,... ,Ytk-n+l)

Utk = U(ytk+n,... ,Ytk-n+l)

Now we collect the inputs to f and u into vectors and denote them as ztk and xtk

respectively. That is,

Ytk+n

Xtk

Ytk -n+1

Utk

Ytk+n-1
Ztk =

Ytk-n+l

Since we assume that all outputs y and inputs u can be measured, the act of sampling

is simply the act of measuring and storing values of xtk, Ztk, Utk and Ytk+n, where,

using Definition 4.3.2, the pair

(xtk Utk) (4.72)

is a sample of U and the pair

(Ztk , Ytk+n) (4.73)

is a sample of f.



Sampling Procedure: Let a set of desired input samples to U be given.

Xdes = {Xdesto,... , des}2

where each desired input sample Xdest. can be written

Ydestk+n

Xdest
k

Ydestk-n + 1

At each time tk+m-n for k = 0,..., 2n and m = n, ... , -n+1 let Utk+m-n

be the control input of Equation (4.50) with Ydest+n = Ydetk+m. We can

then measure values of xtk, Ztk, Utk and ytk+n for each k = 1,...,2n. As-

sume that this measurement can be taken with perfect accuracy. It is also

important to note that under the conditions outlined in Theorem 4.3.5,
that the tracking error satisfies

lYtk+m - Ydestk+m 6 tracking

for k = 0,..., 2n, and m = -n + 1,... , n. The term Stracking is described

explicitly in Equation (4.49).

Now, for any given Xdest( 2 n+l)j~, we specify Xdest(2n+1)j+k for k = 1,...,2n as

Xdest(2n+l)j+k  Xdest(2n+) j + e2n (4.74)

where

6 = 6 tracking max(10n2 , 40n3 NN Y + Nf(2n - 1) + 2) (4.75)

for Nf, Nu and Nfu are defined in Equation (4.42) and

e = [0 -. 010 ... 0] (4.76)



is a vector of length 2n with all zero entries except in the kth position. Define the set

of 2n + 1 desired samples of Equation (4.74) as

Xdesj = {Xdest(n+)j .. , dest(2n+1)j+2n (4.77)

Note that the factor 2n + 1 is added so that the intersection of the sets Xdesj and

Xdesj+, is empty. Therefore we can define numerous sets indexed by integers j which

have no implied dependence on each other.

Now a critical theorem is presented. This theorem states that the acquired samples

satisfy properties which will be useful in proving the statement of Theorem 4.2.1.

Theorem 4.3.8 Let Xdeso5 be defined as in Equation (4.77). Acquire the correspond-

ing samples

(xtk, utk), (Ztk , Ytk+n)

according to the scheme outlined above in Sampling Procedure . Assume that each

Ydestkm for k = 0,..., 2n, m = n, ... , -n + 1 is in the set D',i(6tracking) as defined by

Equation (4.38) and Definition 4.3.3. Then the acquired samples satisfy the following

properties.

A: The matrix

X' X to Xt2n (4.78)

is invertible.

B: The set Co(Xto, ... , x t,) is such that

B(xcr.) C Co(Xto,..,e) (4.79)

for

r n(n + 1 tracking (4.80)
2n + 1

5We let the subscript j be zero without loss of generality. The subscript j will prove useful in

the next section to distinguish between numerous Xdes.-



C: The matrix

Z/ = Zko

S1

is invertible.

D: The set Co(zto, ... , zt2 ) is such that

r n (n + 1)
z >.2n+ I tracking

E: Let

Gx = X = Xdesto +

91

92n

i= 1, ... , 2n

(4.84)

Then

and satisfies

Gx C_ Co(to, .. ., 7t2 )

I1x' - X"j112 < V2(26 + 46 tracking)

for x', x" E Gx.

Uto

Ydestk+n- 1

Ydest k -n+ l

91

92n

where

g, E [-4nNu(6 + 36tracking), 4nNu(6 + 36tracking)]

gi E [-(6 + 2tracking), 6 + 26tracking] i = 2, .. ,

Zt 2n

* - 1 (4.81)

for

(4.82)

(4.83)

where gi E [-6 - 26 tracking, 6 + 26tracking]

(4.85)

F: Let

(4.86)

(4.87)

B(zr rz) 9 Co(xt,,) S. I Zt2n)

Gz- z=



Then

(4.88)Gz c Co(zto,..., z2)

and

liz' - z"11 < 8nN / s n(6 + 36tracking)

for z', z" E Gz. Furthermore,

Xt

implies

Yt+n

Yt-n+1

U(x)

Yt+n-1

Yt-n+1

(4.89)

E Gx

E Gz (4.90)

Proof: 6 We begin by first establishing a few useful inequalities.

* Since Ydestk+m E D,i( 6tracking) by assumption, we can apply Equation (4.51) of

Theorem (4.3.5) to yield

Ytk+m - Ydestk+m 6 tracking

6 Throughout this proof we make reference to N,, Nf and Nf, of Equation (4.42).

(4.91)



for k = 0,..., 2n, and m = -n + 1,..., n. Therefore

]Ytk+m - Ytp+m I SIYtk+m - Ytp+m

+Ydestp+m - Ydestp+m

+Ydestk+m - Ydestk+m I

Y-destk+m - Ydestp+m

+ Ytk+m - Ydestk+mI

+ IYdestp+m - Ytp+mJ

_ lYdestk+m - Ydestp+m + 2 6tracking

for k = 1,...,2n, m = -n + ,...,n, p = 1,...,2n, and p 0 k. Similarly,

- 2 6 tracking

Together, Equation (4.92) and (4.93) yield

Ytk+m - Ytp+m = Ydestk+m - Ydestp+m + rY

where 171 < 26tracking for k = 1,...,2n, m = -n + 1,..., n and p = 1,
Therefore we can use Equation (4.94) to write

Xtk - Xtp -= dest - Xdestp + r

where 7|y 2 6tracking for each y an entry in the vector F.

(4.92)

Ytkhm - Ytp m Ydestk+m - Ydestp+m (4.93)

(4.94)

...,2n.

(4.95)



* Let

Yt+m - Ytl+m,

Yt+m - Yto+m,

Ut = Uto

d = 26 tracking from Equations (4.92) and (4.74),

D1 = 6 - 2 6 tracking from Equations (4.93) and (4.74),

DU = 6 + 26 tracking from Equations (4.92) and (4.74)

for m = -n + 1,..., n. Therefore an application of Theorem 4.3.6 yields the

following inequality.

jutl - UtoI _ 1 (6 - (2 + Nf(2n - 1))Stracking).
SNf U

(4.96)

* Let

Yt+m = Ytk+m,

Yt+m - Ytp+m,

t Ut k,

Ut - Utp,

dk =6 + 26tracking from Equations (4.92) and (4.74),

for m= -n+ 1,...,n- 1, k = -n+ 1,..., n - 1 and p = 0,...,2n. Therefore

an application of Theorem 4.3.7 yields the following inequality.

utk - Ut, I 2nNu(6 + 26 tracking) (4.97)

Since Equation (4.75) gives us that 6 > 26 tracking, Equation (4.97) becomes

utk - ut <4nNu6 (4.98)

Proof of A:) Define the (2n x 2n + 1) matrix

X =[ to - Xto t 2 , -Xto ]



Using Equation (4.95), X can be written as

7 F
- Zdesto - Xdest

= 6[ 0[2n x 1]

JA + F

0o '" Xdest2n - Xdesto ] +

I[2n x 2n] ]+ F

where I[.] is the identity matrix, 0[.] is a matrix of zeros and 171 5 26tracking for 7 an
entry of the matrix F.

Define the (2n x 2n) matrix

Xm [ Xto - Xtm . .. Xtm-1 - Xtm Xtm+1 - Xtm
SXt

2 n - Xtm

Using Equation (4.95) Xm can be written

Xm desto - destm dest e -1 - Xdestm ' dest +1 - Zdestm

O[m- 1 x 1] I[m-lxm-1] 0[m-1Xn-m]
= -1 -1 + m

O[n - m m -1] I[n-mxn-m]

6Am + rm

. "dest2n - xdestm ] + rm

where 7 j < 26 tracking for 'y an entry of Fm. If we let Am be the (m + 1)th row of A,
the matrix defined in Equation (4.99), then we can write the matrix Am as

Am = Ao- Am ." Am-1 - Am, Am+1 - Am

Therefore, we can let

E= A

Om = Am

Ok = 0, k=0,2,...,2n

01 = 1

N = 2n

and apply Equation (B.0.6) of Theorem B.0.6 to yield

1
IIAmv112 > 11V112702n

70

A

..- A2n-Am]

(4.99)



for any v E R2". Since II6AmVUII 2 = 6 IIA..v2

116Am 2vll 2 2 IIV112

Since 17mi 2 6tracking for each 7m and entry of rm, we can let

O = 6Am

T = Fm

0 = 6 from Equation (4.100)

= 2 6 tracking

N = 2n

and apply Equation (B.2) of Theorem B.0.5 to get

IIXmVI112 = II(Am + rm) 112 n - 4tracking) U V12

for any v E R 2n . Equation (4.75) gives us that 6 > l0n2 tracking Therefore

IIXmVII 2 = IIJ(Am + rm)v112 > - 4n6tracking) IV1v 2  n tracking IUv112 > 0

(4.101)

Since Equation (4.101) states IIXmVII2 > 0, Lemma B.0.1 gives us that Xm is invert-

ible. By Theorem B.0.4, X0 invertible implies X' of Equation (4.78) invertible. So

we have shown A:.

Proof of B:) Now we let

Am = Xm

am = Xtm

Om = 6 tracking

n = 2n

for m = 0,..., 2n. Therefore an application of Theorem A.0.3 yields that the mini-

(4.100)



mum width dx of Co(xto,..., xt2, ) satisfies

1
dx n6tracking

Therefore, by Theorem A.0.2, Co(xto,... ,zxt2) contains a ball of radius rx satisfying

r - 2n+1 6 tracking

n(n+1)
- 2n+1 tracking

Equation (4.80) is proven.

Proof of C:) Define the (2n x 2n + 1) matrix

Z= [zto - zto .. Zt2n - to ]

Using Equations (4.94), Z can be written as

Uto - Uto

Ydesto+n-1 - Ydesto+n-I

Ydesto-n+ 1 - Ydesto-n+1

ut Ut-ut
0

0[2n- 1 X 2]

61 A+F

• " ' Ut 2 n - Uto

... Ydest 2n+n-i - Ydesto+n-1

... Ydest
2n-n+l - Ydesto-n+l

Ut 2 n -Ut 0

I[2n6- 1 x 2n- 1]
[2n -1 x 2n1- 1]

+ r

(4.102)

+ r

where 171 < 2 6 tracking for 7 an entry of F.

Define the (2n x 2n) matrix

Zm [ Zto - Ztm . .. Zt2
n - ZtmS. ztm- _ - ztm, Ztm+l - ztm



Using Equation (4.94) Zm can be written

Zm =

ut
0

Ydest
0 +n-1

IYdest 0 -n+l

utm

Ydesto+n1-l

Ydest0-n+
l

ut 0 -ut
m6

= 0[m - 2 x 1]
-1

= 6Am + rm

Utrn_ 1

Ydestm_l+n-1

Ydestm_
1 -n+1

"tm... Utm 1
.. Ydest0+n-l

+ rm

" " Ydest
O -n+

l 1
Utm-

1

0[n - m x m - 1]

utm+l .. ut 2 n
Ydestm+ 1 +n-1 ... Ydest

2 n+n-1

Ydestm+
1 -n+l "' Ydest2n-n+l 

-Utm Utm+ 1 -Utm
6

I[m- 2 X m - 2]

Ut2n -utm

0[m-2 n-m] +Frn
-1

I[n - m x n - m]

where 17y < 26 tracking for y an entry of Pm. If we let Am be the (m + 1)th row of A,

the matrix defined in Equation (4.102), then we can write the matrix Am as

Am = [ 0 -Am ..-. Am- - Am, Am+ 1 - Am

Therefore, we can let

S= A

em = Am
N = t 2n

N =2n

and apply Equation (B.0.6) of Theorem B.0.6 to yield

By apln E9 Ut0 -ut v

B2n maXk=2,...,2n Equatio6 ( a (4.98)6 wh

By applying Equation (4.96) and (4.98) we have

IIAmv1ll 2
1 (6 - (2 + Nf(2n- 1))6tracking)u 2nm IIl4nN

2n max(6, 4nN,6) 2

... A2n Am ]



Since N, 2 1, we have that 2nN, > 1. Therefore

(6 - (2 + Nf(2n - 1))6tracking)8I.Nz > Ilvll
for ny R . Since 2 N Nf66Amvl 11

for any v E R2 n. Since j6Amv112 = 6 IIAmvI12

1I6Amvil 2
(6 - (2 + Nf(2n - 1)

8n 2NUNfs
) 6tracking)

V 112

Since 17mlI 26 tracking for each 7m and entry of rm, we can let

E = 6Am

= (6-( 2 +Nf(
2 n-1))6tracking)

8n2 NNj from Equation (4.103)

V) = 2 6 tracking

N = 2n

and apply Equation (B.2) of Theorem B.0.5 to get

IIZmVI12 = 116(Am + m)V112 ((6 - (2 + Nf(2n - 1))&tracking)

8n 2NuNfu
- 4n6tracking) IvI2

(4.104)

for any v E R 2 n . Equation (4.75) gives us that 6 > (40NNfun3 + Nf(2n - 1) +

2) 6 tracking Substituting in Equation (4.104) yields

1IZmVl =>2 n6 tracking > 0

Since IIZmVl 2 > 0, Lemma B.0.1 gives us that Zm is invertible. But by Theorem B.0.4,

Zo invertible implies Z' of Equation (4.81) is invertible. So we have shown C:.

Proof of D:) Now we let

Am = Zm

am = z[jlm

Oem  = n 6 tracking

n = 2n

(4.103)



for m = 0,..., 2n. Therefore an application of Theorem A.0.3 yields that the mini-

mum width dz of Co(zto,. ., t2 ) satisfies

dz> n tracking

Therefore, by Theorem A.0.2, Co(zto, ... , zt2, ) contains a ball of radius rz satisfying

rz z 2n+1 itracking

- n+1 tracking

So Equation (4.83) is shown.

Proof of E:) We first show that Gx of Equation (4.84) is convex. Let x', x" E G,.

Then, by the definition of G, the vectors x', x" can be written

= Xdest ° +

X = Xdesto +

where g, gf' E [--26tracking, 6 + 26 tracking] for each i = 1,. .. , 2n. By Definition A.0.1,

G(x[j]d,,eso)iS convex if each x = Ax' + (1 - A)x" is in Gx for A E [0, 1].

x = Az' + (1 - A)z"

SXdesto +

9g1

g2n91
92n

+ (1- A)

g

9 2n

Xdesto +

I



where gi = Agi + (1 - A)g/' for i = 1,... ,2n. Since A E [0, 1], we have that each gi lies

in the interval between g' and g'. Therefore, gi E [-(6 + 26 tracking), 6 + 2 6tracking]. If

follows from Equation (4.84) that x E Gx . Therefore, the set G_ is convex. Now we

show that Gx contains each of Xto, ... xt2n. Since

Xtk

Ytk +n

Ytk-n+l

from Equation (4.73) and

Ytk+m - Ydestk+m lYdestk+m - Ydestk+m + Ytk+m - Ydestk+m

6 + itracking

from Equation (4.91), we have that

Ytk+m - Ydest 0 +m + g (4.106)

for m= -n + 1,...,n, where

g E [-(6 + tracking) ), + 6 tracking] C [-(6 + 26 tracking), (6 + 2 6 tracking)]

Therefore, by Equation (4.84), Xtk E Gx for k = 0,..., 2n. Since, in addition, Gx is

convex, Definition A.0.2 gives us that

Co(xto, ... , ,t 2.) C GX

Let x', zx E G, with

X -

y~+n

Yt-n+1

Yt+n

Yt-n+1

(4.105)



By Equation (4.84)

Y+m - Ym I  2(6 + 2tracking) (4.107)

for m = -n + 1,..., n. Therefore

I1' - X"11 = M=-n+(Y '+m - Yt+m)

< 2n(2(6 + 26 tracking)) 2

= /'2 (6 + 2 6 tracking)

and Equation (4.86) is shown.

Proof of F:) The methods to prove the results of F: are similar to those used above

in order to show the results of E:. Consequently, the argument for the convexity of

G, is omitted.

From Equation (4.98)

IUtk - Utol < 4nNu5

Therefore

utk = Uto + g (4.108)

where g E [-4nN6, 4nNu] 9 [-4nNu(6 + 36tracking), 4nNu(6 + 36 tracking]. From

Equation (4.106), (4.108) and (4.87) we have that Gz contains each of Zto,... ,zt2

Since, in addition, Gz(xdesto ) is convex, Definition A.0.2 gives us that

Co(zto,..., zt2, ) C Gz

Let z', z" E Gz, with

I I f
Ut tI

zI  Yt+n-1 z, Yt+n-1

L L

t-n+ 1 IYt-n+l



By Equation (4.87),

Iu' - u:lI < 8nN(6 + 36 tracking)

Using Equations (4.107) and (4.109) and N, > 1 we have

jiz' - z"| 2 t - )2 ± +"m-n+1 +(Ym +m2

V2n(8nNu(6 + 3 6 tracking)) 2

= xv 8nN(6 + 3 6tracking)

and Equation (4.89) is shown.

Let

Yt+n-1

Xt-n+i
Yt-n+l

E Gx(x[j]deso)

By Equation (4.84)

Yt+m - Ydesto+m I 6 + 2 6 tracking

for m = -n + 1,

Let

Yt+m = Yt+m,

Yt+ m= Ydesto+m ,

u' = U(X),

uI = U(Xdesto)

dk = 6 + 2 6 tracking

for m = -n + 1,..., n - 1.

following inequality.

from Equation (4.110)

Therefore an application of Theorem 4.3.7 yields the

U(x) - U(Xdesto) 2nN(6 + 2 6 tracking)

(4.109)

... , n.

(4.110)

(4.111)



Let

Yt+m - Yto+m,

Yt+m -= Ydesto+m,

U = U(xto),

S= U(Zdesto),

dk = 3 tracking from Equation (4.91)

for m = -n + 1,..., n - 1. Therefore an application of Theorem 4.3.7 yields the

following inequality.

U(st) - U(Xdest,) 2 nNu6 tracking (4.112)

From Equations (4.111) and (4.112)

]U(x) - U(Xdesto) 2nN,(65 + 3 6 tracking)

Therefore

U(x) = U(xto) + g = uto + g (4.113)

where g E [-2nNu(6 + 3 6tracking, 2nNu(6 + 35tracking]. From Equations (4.87), (4.110)

and (4.113) we have Equation (4.90).

O

Theorem 4.3.9 The set

X = Xdesto + where gi E [-, ] i = 1,..., 2n (4.114)

91

92n

contains Xdesto, ... , Xdest2n ).

Proof: From Equation (4.74) we have that

Ydestk+m = Ydesto+m + (4.115)



for k= m+n, m= -n + 1,...,n and

Ydestk+m - Ydesto+m (4.116)

for k $ m + n. Therefore we can generalize Equations (4.115) and (4.116) to

Ydestk+n

Xdest
k

Ydestk -n+1

Ydest 0+n

Ydestk-n+1

+

91

92n

Xdesto +

91

92n

where g l,..., Ig2nl 5 6 Therefore, it is clear from Equation 4.114 that Xdestk E D'.

11



4.3.4 Approximation Theorems

In the previous section, we specified a set of desired samples Xdesj in Equation (4.77)

and then showed, through Theorem 4.3.8 that certain useful properties of the associ-

ated acquired samples were satisfied.

Now we would like to specify many such sets, and use the acquired samples to

generate a new, better controller.

First note that as a consequence of the continuity of f and U, and the continuity

of their first and second derivatives, we have that there exist LX and Lz such that

2f (Az + (1 - A)z') z
O9A 2 -- 2 (4.117)

for all z, z' E D 2 - 1 x D, and-y

02U(Ax + (1 - A)x') x
A2 2 (4.118)

for all x, x' E D,.

Second, due to repeated references to Assumption 4.3.1, it is repeated here for

convenience

Assumption 4.3.1 There exist known functions Ui and fi, and closed interval

D,),i satisfying

(4.119)

such that

Ui(Ydest+n, Wt) - U(Ydest+n, Wt)

If(u t , Wt ) - f(utw t)

u,i

U6,i

(4.120)

(4.121)

for all yd E ,, Ut E ,(w), and Wt E )-1, where Dy,N is as in Theo-

rem 4.2.1 and

j,i(Wt) = {t = U(yt+n, wt)lt+n e D ,,4}

Dy,j C Dy,N

(4.122)



Theorem 4.3.10 Let System (4.1) and Assumption 4.2.1 be given.

tion 4.3.1 hold for i = k and

6 u,k <

6f,k <

max
y,y'eDf,k

Let Assump-

(4.123)

(4.124)

(4.125)

where

Cu = (22n- 1) (3Ln(2n+)V2n+ 1) (

n (n + 1)

= 6f,k

6 u,k

=Nf + ((Nf + 1)"- 1 - 1)Nf

(4.126)

n) (a

a = max(10n 2, 40n 3NuNfu + Nf(2n - 1) + 2)

+ 3)3 + 48n3LzN u(a + 3~.127)

(4.128)

(4.129)

(4.130)

and the terms N,, Nf, and Nf are those satisfying Equation (4.42). Then there exist

desired samples (Equation (4.77))

Xdesj j=0,...,J

(Xtm, 7 t) of U

(Ztm, Ytm+n) of f

(4.131)

(4.132)

(4.133)

for m = 0, ... , (2n + 1)J + 2n that can be obtained using the Sampling Procedure in

Section 4.3.3 and from which fk+1 and (Uk+l can be constructed such that Assump-

of the form

ly -Y'I > (a + 2)Adu,k

+ 2)3 + 6nL,(a + 2) 2



tion 4.3.1 is satisfied for i = k + 1 with

6 u,k+l

6 f,k+l

Dy,k+l

6 tracking,k

6 u,k

2
Jf,k

= {I lY - l < 6tracking,k,

Proof:

We separate the proof into four distinct steps.

1: Choose Xdes and show that

Xdest(2n+)j+m D,k (tracking,k). (4.139)

for j = 0, ... , J and m = -n + 1,..., n. This result lets us apply the results of

Theorem 4.3.8 to each Xdesj.

2: Show that

(4.140)U G 2nU Gx- C Dyk+1

3: From the acquired samples we can generate a function Uk+1 satisfying

Uk+1(x) - U(x) I< Ju,k+1l (4.141)

for all x e l^,k+1 (see Assumption (4.3.1)).

4: From the acquired samples we can generate a function fk+l satisfying

k+l(z) - f (z) <

yI e Dy,k}

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

6= Au,k

(4.142)



for

for = [: 'Dy~t k+1

Proof:

Proof of 1:) Since Equation (4.125) holds, Dy,k(6 tracking,k) (see Definition 4.3.3)

satisfies

max ly - y'I > (a + 2 )A6u,k - 2 6 tracking,k (4.143)
Y,y'EDyk (tracking,k)

From Equation (4.137) it follows that Equation (4.143) can be written as

max ly - y'l - 6 (4.144)
y,y'ED,k (

6
tracking,k)

where 6 = aASu,k This implies that the set D'y,k tr2kig,k) 2n is a 2n-cube whose sides

have a minimum length 6. From Equation (4.114) it is clear that 7 Do is a 2n - cube

with side length at most 6. Since Do is translated an amount Xdesto, where Xdesto is

arbitrary, we can chose Xdesto such that Do C D'y,k ( track ing ,k ) [17]. Furthermore, we

can find

dest(2n+l)
j

for j = 0,..., J such that the union of the Dj is exactly equal to D'yk trackig,2n

for a finite J, that is

U Dj = D)y,k (tracking,k2n (4.145)
j=O,...,J

That is, we have chosen

Xdesj = 0,..., J (4.146)

such that Equation (4.145) holds. It also follows that Equation (4.139) holds.

Proof of 2:) Let xz e Y,k+1. From Equation (4.136) it follows that there exists an

7In the statement and proof of Theorem 4.3.8 we assumed j = 0 for simplicity. For general j, let
the G,, Gz and D of Equations (4.84), (4.87) and (4.114) associated with Xdes3 , be G., Gz, and
Dj respectively.



x' E D)2k such that

Xm = zXm + 7m

where zi denotes the ith element of a vector z, and Ym E [-6tracking,k, 6tracking,k]. We

note from Definition 4.3.3 that xz can be expressed as

Xm = m t+ m ym uE [- trackingk , 6tracking,k

and x", Dy,k (tracking,k). Therefore

Xm = Xm + "fY (4.147)

for a 7y" [-2 6 tracking,k, 26 tracking,k]. Since xz E D',,k(6 tracking,k) for each m =

1,..., 2n,

x" E Dly,k(trackingk)2n  (4.148)

Therefore, from Equation (4.145), x" E Dj for some j. From the definition of Dj

(Equation (4.114)), we have that

gi+

X" = Xdest (n+)j (4.149)

g2n

for some g',..., g n E [-6, 6]. Combining Equations (4.147), (4.148) and (4.149)

71 91 91

X = Xdest (2+)j + dest (2n+l)j

"it 9' 92n

for some g, . . . , g2n E [-6 - 2 6 tracking,k, 6 + 26tracking,k]. Therefore, from the definition

of Gx, in Equation (4.84), it follows that x E G,; Therefore Equation (4.140) holds.



Proof of 3:) For each j = 0,..., J , let

Z2n = Xt(2 n+l)j. . Xt(2n+l)j+2n

Po, ... P2n = Ut(2 n+l)j . t(2n+l)j+2
n

g=U

g =

G = Gx

N = 2n

Now we would like to apply the results of Corollary 4.3.2 with the definitions above.

In order to do so we must show

t(2n+l)j X(2n+l)j+2n is invertible (4.150)
1 1

and find

(i) du such that Equation (4.35) is satisfied for G = Gxj

(ii) d such that Equation (4.28) is satisfied for m = 2n.

(iii) q such that Equation (4.21) is satisfied for zi = xt(2n+)j+i'

(iv) L 1 such that Equation (4.23) is satisfied.

(v) d, such that Equation (4.33) is satisfied for N = 2n and G = Gxj

Equation (4.150) follows directly from Equation (4.78).

(i) Since we let G = Gxj a choice of

du = 2-n(26 + 4 6trackingk)

and Equation (4.86) imply Equation (4.35)

(ii) Equation (4.85) in Theorem (4.3.8) implies that

Gx c Co(xt(2n+l)j,... Xt( 2n+1 )j+2n)

86



and Equation (4.86) holds. Therefore, Equation (4.28) is satisfied by letting

d = v/-(2 + 46 trackingk)

(iii) Since our measurements are perfect (see Sampling Procedure), e1 = 0 , which

satisfies Equation (4.21).

(iv) Equation (4.118) implies that for L 1 = L. Equation (4.23) holds.

(v) Equation (4.79) implies that Equation (4.33) holds for

d = (n + 1)

2n + 1

Therefore, the results of Corollary (4.3.2) hold. Using the notations in from Equa-

tions (4.126) and (4.129)

Ip (x) - U(x)I CU, 2 6,k (4.151)

for each x E G,j We now choose Uk+l as follows:

Uk+1(X) = minj(X) where x e Gex (4.152)

Since Equation (4.140) holds, UTk+1(x) is defined for all x E D",k+1.

tions (4.123) and (4.134), Equation (4.151) can be rewritten as

Ulk+l(X) - U(x) 5 Su,k+l

Using Equa-

for all x E ,k+2ny, kSl*



Proof of 4:) For each j = 0,..., J , let

Z2 n  Zt(2n+1)j I . I Zt(2n+l)j+2n

Poi ... P2n = Yt(2n+l)j+n, Yt(2n+l)j+2n+ n

g= f

g =g

G = G,
N = 2n

Now we would like to apply the results of Corollary 4.3.2 with the definitions above.

In order to do so we must show

Zt(2 +)j " Zt( 2n+l)j+2, is invertible (4.153)
1 ..o 1

and find

(i) d. such that Equation (4.35) is satisfied for G = Gzj.

(ii) d such that Equation (4.28) is satisfied for m = 2n.

(iii) E such that Equation (4.21) is satisfied for zi = zt(2n+l)j+i

(iv) L 1 such that Equation (4.23) is satisfied.

(v) di such that Equation (4.33) is satisfied for N = 2n and G = Gz3 .

Equation (4.153) follows directly from Equation (4.81).

(i) Since we let G = Gzi a choice of

d, = 8nNuv'A(6 + 3 6trackingk)

and Equation (4.89) imply Equation (4.35).

(ii) Equation (4.88) in Theorem 4.3.8 implies that

G C(Zt(2n+)j Zt(2n+88)j+2n)

88



and Equation (4.89) holds. Therefore, Equation (4.28) is satisfied by letting

d = 8nNuV2n(6 + 36 trackingk)

(iii) Since our measurements are perfect (see Sampling Procedure), Eq = 0 , which

satisfies Equation (4.21).

(iv) Equation (4.117) implies that for L 1 = L, Equation (4.23) holds.

(v) Equation (4.82) implies that Equation (4.33) holds for

d n(n + 1)

2n + 1

Therefore, the results of Corollary 4.3.2 hold. Using the notations in Equa-

tions (4.127), (4.128) and (4.129)

j (z)- f (z)i < 2 f6,k

for each z E Gzj. We now choose fk+l as follows:

fk+I(Z) = gminj(Z), where z E Gz,)(z)

Using Equations (4.124) and (4.135), Equation (4.154) can be rewritten as

Ik+l(z) - U(z) < 6 f,k+

for all z E Uj=o,...,j Gzj. Let

Ut

Wt

E D,k~l(Wt) x 2n-1

(4.154)

(4.155)

(4.156)



Therefore, by Equation (4.122), z can be written

U(yt+n, wt)Z =

where wt E f2, and yt+n E Dy,k+1. Therefore,

w t+n 2x = [ e)k+y,k+l

From Equation (4.140) x E Gx, for some j. Thus Equation (4.90) holds and z E Gzj

Thus Equation (4.156) holds for all

Z-- [ : ,k+l(Wt) X "y,k+l

and Part 4: is shown.

Ol



4.3.5 Proof of Problem Statement

We now have all the tools to complete the proof of Theorem 4.2.1.

Proof:

Let

= 2CuA 2

f = 2 (4.157)
2Cf A

2

C = (a + 2)A

where

Cu = (22n _ 3Ln(2n+fl)2)~) (a + 2) + 6nLx(a + 2)2

Cf = (2 2n 256n (2n+l) ( + 3)3 + 48n 3LzN(a +3)2

-
6u,k N 1

A = Nfu + Nf((Nf + 1)-' -1)y

a = max(10n 2, 40n 3N,Nfu + Nf(2n - 1) + 2)

and N,, Nf, and Nf are those satisfying Equation (4.42). In order to apply Theo-

rem 4.3.10, we need to show that

6u,k < 5u

6f,k < 5f (4.158)

max y,y'Ef I - > CjU

where for any k, the quantities 6u,k, 6 f,k and Dy,k satisfy

l6k (yt+n i t) - U(Yt+n, it) 15 Ju,k

fk (ut, Wt) - f Ut Wt) 6 f,k

for

SE y,k D,k(Wt)

u,k(Wt) = {uju = U(Yt+n, Wt), Yt+n E D^,kj



In the statement of Theorem 4.2.1 Equations (4.158) is assumed to be satisfied for

k = 0.

Assume that Equations (4.158) hold for k = j. Then, after acquiring the samples

of Equation (4.146) and constructing the new approximations Uj+l1 and fj+j of Equa-

tions (4.152) and (4.155), we have from Theorem 4.3.10 ( Equations (4.134), (4.135)

and (4.136)) that

u,j+1

f,j+1

Dy,j+l

Since Equations (4.158) hold for k = j,

k = j + 1 as well. Hence we have

6 u,j+1

6f,j+1

y - y'l

Equations (4.160) implies that Theorem 4.3.10 can

j+1.

Hence we have that the conditions of Theorem

are valid for k = 0. Since the latter is assumed

Theorem 4.2.1, we have that for all k > 0,

2

- (4.159)
2

C Dy,j

Equations (4.159) imply that they hold for

6

6f

CjU

(4.160)

be applied once again, with k =

4.3.10 hold for all k > 0 if they

to be true in the statement of

6 u,k+1

6 f,k+1

Dy,k+1l

Jtracking,k

2

Y= {y - YI < 6tracking,k,

= a6 ,k + bdf,k

(4.161)
y E Dy,k

where a and b are given by the right hand side of Equation (4.49).

We make use of Equations (4.161) in two distinct phases. In the first phase we use

these results to extend the boundaries of )y,k to D,,N, the target set. In the second

phase, we repeatedly apply the inequalities to reduce the errors S,O and Sf,o to 6 u,N



and 6 f,N respectively, as described in Theorem 4.2.1

Phase 1: Since 6,,k+1 and 6 f,k+1 are upper bounds satisfying the inequalities of

Equations (4.120) and (4.121) with k + 1, we can always redefine these terms as more

conservative values as long as the conditions of Equations (4.158) are satisfied with

k replaced by k + 1. In particular, let

Ju,k+l = 6 u,k

6f,k+1 = 6 f,k

Therefore it is clear from Equation 4.49 that 6 trackingk+l = trackingk and if we then

apply Theorem 4.3.10 p times with initial errors of 6u,o and 6f,o, we get

6u,p = 5u,o

6 f,p = 6f,o (4.162)

6 trackingp = 3 trackingo

If we begin with set DI,o, after p applications of Equation (4.161) we arrive at

D,p = {yI Iy - y'l pStracking,O, y E Dy,o}

Since each iteration extends the boundary of DI,o by a constant discrete number, we

can iterate the application of Theorem 4.3.10 until Dy,, contains Dy,N.

Phase 2: Referring to Equation (4.161), we note that Dy,k+l )Dy,k. Therefore,

just as we chose conservative 6 u,k+l and 6f,k+l in order to extend the boundaries of

Dy,k as we iterate the results of Theorem 4.3.10, we can chose Dy,k+l = Dy,k as a more

conservative choice in order to reduce the error with each iteration of the theorem,

as long as Equations (4.158) are satisfied with k replaced by k + 1. Similarly, since

D5,, D Dy,N, we redefine Dy,, = D,,N. Therefore, Equation (4.161) becomes

D ~- D., T
6u,k+1 2

6f,k+1 = (4.163)

Dy,k+1 = Y I - Y'l 6tracking,k, y' E Dy,k



with the initial conditions

6, = ,0

6f,p = 6f,

DY,~ = Dy,N

After m iterations of Equation (4.161), we get

6 u,p+m 2m

f,p+m 2m

DY,p+m = Dy,N

we can always chose m large enough such that

6 u,p+m

6 f,p+m

Dy,p+m

6u,N

6 f,N

Dy,N

(4.164)

Let N = p + m. Since by p + m iterations of sampling, generating f and 0, and

applying the results of Theorem 4.3.10, Equations (4.164) hold, we have proven The-

orem 4.2.1.
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Chapter 5

Implementation

5.1 Helicopter Dynamics

Helicopter dynamics include the helicopter body dynamics as well as main rotor and

flybar dynamics. The main inputs to a standard helicopter configuration include

throttle, collective, roll cyclic, pitch cyclic and rudder. Collective, roll cyclic and

pitch cyclic refer to the pitch of the main rotor blades. Rudder refers to the thrust of

the tail rotor. Refer to Figure 5-1 for the specific geometries. In order to simplify the

dynamics, the helicopter model will be generated not in terms of these inputs, but in

terms of the actions these inputs have on the helicopter. Thus actuator dynamics are

ignored. These actions are the main rotor thrust magnitude and direction, and the

tail rotor thrust. A further simplification includes the assumption that the helicopter

is limited to motion in a vertical plane. Thus only the longitudinal dynamics are

modeled.

The dynamics are derived in a continuous time state space form, and then a first

order approximation of these dynamics is taken to provide the discrete time model

used in simulation. A discrete time model is employed, and is the focus of the results

presented in Chapter 4 because any learning controller is necessarily implemented on

a digital computer. In addition, sampling must occur at a finite rate. In fact the

period length of sampling, as specified by the sensors, is chosen as the time step for

the discrete model. Thus the dynamics of the computer and the sensors are directly
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Figure 5-1: Helicopter Model

accounted for in the model.

The continuous time, longitudinal model, is presented in its entirety below.

Fxb*i - qw
m

Fzb
wv = m -qum

Me

qQ

The terms Fzb, Fzb, and Me are functions of the states and inputs. The F terms

are body axis forces and the M term is the pitching moment. Table 5.1 lists the

states, the controls and their meanings.

The force and moment terms are written

N.-
I



u forward velocity in the body frame
w vertical velocity in the body frame
q angular pitch rate
0 pitch
a main rotor flapping angle
T thrust

Table 5.1: Longitudinal States and Controls

vehicle mass
Moment of inertia about y-axis
atmospheric density
Fuselage drag coefficient along x axis
Fuselage drag coefficient along z axis
Horizontal tail drag coefficient along z axis
x position of main rotor from center of mass
z position of main rotor from center of mass
Aerodynamic center of fuselage along x axis
Aerodynamic center of fuselage along z axis
Aerodynamic center of horizontal tail along x axis
Aerodynamic center of horizontal tail along z axis

0.70 slugs
0.20 slugs-ft 2

0.002377 slugs/ft2

-0.3 ft 2

-1.3 ft 2

-0.12 ft 2

0 ft
-0.688 ft
0.17 ft
0 ft
-2.0 ft
-0.12 ft

Table 5.2: Parameter Definitions and Values

Fxb

Fzb

= -Ta + XU, Iuj u - mg sin 0

-T + P(Zw,f,, + Zww,ht) IWI w + mg cos 0

Me = -Txmr + Tazmr + [(Z,,U,Sz, + Zww,htXht) IWI W - X,,,US, Jul uZfus]

Table 5.1 lists all the parameters and typical values for a small model helicopter.

The discrete time model can not be derived from the continuous model provided

above. Since the sampling rate for the sensors on the actual helicopter is approxi-

mately 50 Hz, the time step At is chosen as .02 seconds. The time derivatives are

m

I
p
Xuuf us

Zww,fht

Zmr

Xf us
Zfus

Xht

Zht



approximated by first order differences. For example

( (t + At) - x(t)(t) -------
At

Making this approximation for the dynamics above, and solving for the states at time

t + At in terms of the states at time t yields.

u(t + At) = At (Fb(t) - q(t)w(t)) + u(t)

w(t + At) = At (Fzmt - q(t)u(t)) + w(t) (5.1)
q(t + At) = At (M(t)) + q(t)

0(t + At) = Atq(t) + 0(t)

where

Fxb(t) = -T(t)a(t) + u,,,s u(t)l u(t) - mg sin 0(t)

Fzb(t) = -T(t) + - (Zw,fls + Zww,ht) Iw(t)I w(t) + mg cos 0(t)

MO(t) = -T(t)Xmr + T(t)a(t)zmr + -[(Zw, usxfus + Zww,htXht) Iw(t)l w(t)

-X,f~S I u(t)l U(t)Zf US]

5.1.1 Zero Dynamics and Feedback Linearization

The strategies employed are all applications of feedback linearization, each making

different assumptions about the extent of a priori knowledge of the model, and

some employing current learning and adaptive strategies. Feedback linearization,

though, can not be directly applied , since the zero dynamics of the system under the

linearizing input are unstable. To see this, let us find the zero dynamics of the above

system with outputs (u, w). Recall that the zero dynamics refers to the behavior of

the unobservable states when the feedback linearizing controller holds the outputs at

an equilibrium point. Let us take this equilibrium point to be the origin. Solving for



the inputs (T, a) we get

T = mgcos(0)

a = - tan(0)

The zero dynamics are thus

q(t + At) = -mrmg cos 0 - Zmrmg sin0

0(t + At) = Atq(t) + O(t)

The origin of the above system is clearly not asymptotically stable, since trajectories

extend off into infinity. In fact, any pair of states treated as outputs would yield

unstable zero dynamics.

To solve the problem of unstable zero dynamics, we chose as outputs (w, q), the

states which are most directly influenced by the inputs, and we wrap a stabilizing

loop around the feedback linearized system which limits the (Wdesired qdesired) com-

mands to those commands which maintain bounded signals and allows us to track

the helicopter's earth frame velocities,

Ue(t) = u(t) cos0(t) + w(t) sin (t)

We(t) = w(t) cos0(t) - u(t) sin (t)

This outer loop is designed using linear methodologies, but is robust enough to be

valid for a large set of commanded (Ue, we). In fact, it is robust for velocities in

excess of 100. Such velocities are quite fast for the small model helicopter under

consideration. Now, lets go through the procedure of solving the control problem

in the manner described. The first step is to find the feedback linearizing controller

which takes any state to any desired (w, q) in one time step. This function is not



difficult to find, and the function exists in any set not containing T = 0.

T(t) = (w(t) - w(t)des) + m(g cos0(t) - q(t)u(t))

+2(z W,f, + Zww,ht) Iw(t)l w(t)
a(t) = T L (q(t)d.es - q(t)) + mr

T(t)zmAt Zmr

±T()zrX ,zfuSZfUs IuM(t)I u(t)

() (ZWw,fus xfus + Zww,htXht) Iw(t)I W(t)

Applying these solutions to the system, and letting our new inputs be (Wdes,qdes)
yields the new system

w(t + 1) = w(t)des

q(t+ 1) = q(t)des

u(t + At) = At (F - q(t)w(t) + u(t)

O(t+l) = Atq(t)O(t)

We proceed now by designing the outer loop which defines Wde, and qdes in terms

of the desired earth frame velocities. To do so, let us first linearize the transformed

system about the hover condition. The helicopter is in hover when it is at zero pitch

attitude and has no velocity or angular velocity. Therefore, hover is the origin of the

state space. Carrying out the linearization yields.

ue(t + 1) Ue(t)

we(t + 1) A We(t) + Wdees

q(t + 1) q(t) qdes

O(t + 1) O(t)

100



where

1 0 1- -Atg

00 0 0
A=

00 0 0

0 0 At 0

0 -I-
mzmr

1 0
B

0 1

0 0

The feedback law

W (t) des = K(u (t), w(t), q(t), 0(t), w(t)e,des, u(t)e,des )

q(t)des

where the newest control inputs are w(t)e,des and u(t)e,des, was then selected as linear

function stabilizing the linear system and providing qualitatively attractive transient

responses. After some design effort, the function K for the particular parameter

values given in Table 5.1 was chosen as

(t) 0.1we(t) + 0.9w(t)e,des
K(t) =

0.1q(t) + 2 ( 2 )

This completes the derivation of the feedback linearizing controller and its stabilizing

outer loop controller. The outer loop K will remain unchanged for each of the control

strategies except the new learning strategy proposed in this thesis.

5.1.2 Simplified Model

These new learning strategy of this thesis requires that the zero dynamics of the feed-

back linearized system be asymptotically stable. This is clearly not the case for the

complete system shown above. Therefore, a more tractable control problem, based on
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a simplified model, This model assumes that the T(t) transformation which linearizes

the w(t) dynamics is known, and any remaining design effort and uncertainty lies

exclusively in the q(t) dynamics. If we let A(t) - T(t)a(t), then the new system can

be written

w(t + 1) = w(t) + v(t) (5.2)

q(t + 1) = q(t) + (-.688 * A(t) + 2.59 x 10- wI w)

This system has two inputs (v (t), A(t)) and two outputs (w(t), q(t)), and therefore

has no zero dynamics. In addition, it is clear that the system is already input-output

decoupled.

5.2 Control Applications

In addition to the new learning strategy of this thesis, results are presented for a

few competing algorithms. These include the perfect feedback linearizing controller

already developed in Section 5.1.1, as well as a feedback linearizing controller based

on a linear approximation of the helicopter, an adaptive control strategy and a neural

network based strategy.

5.2.1 Feedback Linearizing Controller Based on a Linear

Model

As a second example, assume that the engineer designing the controller possesses sig-

nificantly less knowledge about the helicopter dynamics. Assume that his/her knowl-

edge is limited to the linearization of 5.1 about hover. Carrying out this linearization
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yields

u(t + 1) u(t)

w(t + 1) = A (t) + B T(t)

q(t + 1) q(t) a(t)

O(t + 1) O(t)

u(t + 1)

w(t) 1 w(t + 1)

q(t) q(t + 1)

O(t + 1)

where

1 0 0 -Atg

0 1 0 0
A

00 1 0

0 0 At 1

0 -Atg

At 0
B m

_ Atxmr Atgmzmr

IV IY

0 0

0

E tg

0

0
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The input-output model can then be written.

w(t + 1)

q(t + 1)
=CA

u(t)

w(t)

q(t)

O(t)

+ CB T(t)

a(t)
+ CE

If the matrix CB has an inverse, which it certainly does for the case we are considering,

then the feedback linearizing transformation of the input is easy to find.

=(CB)-1

An identical formulation can be found for the simplified

this case, the resulting transformation is

system of Equation 5.2. In

v(t + 1) =(CB) 1  w(t + 1)

A(t + 1) q(t + 1)

where

0

"'0.6887-Y
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T(t + 1)

a(t + 1)

w(t + 1)

q(t + 1)
- CA

u(t)

w(t)

q(t)
0(t)

- CE

A

B

E=

- CA w(t) CE
q(t)



5.2.2 Adaptive Strategy

As one might correctly assume, the performance of the feedback linearization con-

troller based on the approximate linear model suffers because of the limited prior

knowledge on which it is based. A designer can only expect good performance local

to hover. One might not be able to obtain or stabilize about large velocities. A

solution to this problem can be found in the Adaptive control literature. The de-

signer wants a controller which holds the aircraft at some large forward velocity. He

still assumes that the system is linear, but does not know what the linear model is.

He would like to identify the model (the linearization about the prescribed forward

velocity). To proceed, the designer treats the elements of the A, B and E tensors

as parameters. Initial values are chosen, and the controller which is well defined by

these parameters is used to fly the vehicle toward the prescribed velocities. Since the

initial parameter values are are not correct, there will be measurable discrepancies

between the expected and actual trajectories of the helicopter. The basic idea be-

hind adaptive control is to use these discrepancies to update the parameters. As a

slight modification to this approach, the controller is differently parameterized. Such

a parameterization is chosen because it takes on the form used for the neural network

strategy described in the next section. This new form fixes the nominal controller,

and adds the difference between the perfect controller and the initial nominal one.

For the sake of generality, we let x(t) be the state at time t, and u(t) be the input.

U(t) = (CnomBnom)-'(y(t + 1)des - CnomAnomX(t) - Enom)Oz(t)

where e is the matrix of parameters, and

y(t + 1)des

z(t) x (t)

1
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Initially, the value of 9 may not be known, so a guess of its value must be made. If

we let this guess be E, then the controller is

U(t) = (CnomBnom)-l(y(t + 1)des - CnomAnomX(t) - Enom)E(t)z(t)

Note that 8(t) is written as a function of time since it will be adapted as time

progresses. The parameters 6(t) are updated from measurements of U(t) and z(t).

If a linearly independent set of measurements is collected, a least squared rule can be

applied. A different approach is taken in this paper. First, an error metric is defined.

e = (U(t) - [U(t))T (U(t) - U(t))

Now we find the gradient of this error with respect to the parameters.

= -2(U(t)- ^(t))zT

Finally, the parameters are made to evolve in the direction of the negative of the

above gradient.

S= + p(U(t) - U(t))zT

where p is the adaptation rate . The logic behind this choice is clear. The negative

of the gradient describes the direction in 0 which reduces e. If p is taken small, then

error reduction can be guaranteed.

5.2.3 Neural Network Strategy

The neural network strategy proposed here is essentially the same as that proposed

above. In fact, the parameterized controller can be written in nearly the same form.

U(t) = (CnomBnom)- (y(t + 1)des - CnomAnomX(t) - Enom)O(t)P(z(t))
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The matrix O remains a matrix of parameters, and the definition of z(t) has not

changed. The difference is that z(t) now acts through the vector function 3 of basis

functions.

3(z(t)) =

1N(Z(t))

These basis functions, and their coefficients O are the structure referred to as the

neural network. As mentioned in Chapter 1, a variety of choices of basis functions

serve as Universal approximators. This implies that there exists a / and a 6 such

that the difference between the perfect feedback linearizing controller U(z(t)) and the

approximate neural network based controller U(z(t)) is bounded over some compact

set.

IIU(z(t)) - u(z(t)) < j

for all z(t) e Z, Z compact and any 6 > 0 and some O. The update rule is derived

exactly as above for the adaptive controller. The parameters receive an additive term

in the direction of the negative gradient of error with respect to the parameters.

e = (U(t) - U (t)) T (U(t) - U(t))

Now we find the gradient of this error with respect to the parameters.

= -2(U(t) -
ae

Finally, the parameters are made to evolve in the direction of the negative of the

above gradient.

0 = e + p(U(t) - U(t))#(z) T

where p is the adaptation rate . Since the update rule may become unstable if

training is continued even when the local controller error is smaller than the networks

approximating capability, the parameters are not updated for small errors.
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5.2.4 New Learning Strategy

Finally we reach the point where the primary results of this thesis are used to define

a controller. As in the previous two sections, the algorithm here will be applied to

the simplified system of Equation (5.2). In order to simplify the implementation of

the learning algorithm in simulation, a simple change of variables is made. Let the

new states be w and r = q x 103.

w(t + 1) = w(t) + v(t)

r(t + 1) = r(t) + (-688 A(t) + 2.59 x 10-2IwIw)

In order to implement the algorithm of Chapter 4 we must find the constants N,,

N,, Nf, L and L, satisfying Equations (4.42), (4.117) and (4.118). These are listed

below

688At
Nf - Iy

Nu IY
688At

Nf = 1

Lx = 386

LZ = 2.59 x 10- 3

Note that since the delay of the system equals 1, we do not need an f in order to

generate the control of Equation (4.50). Therefore we only need to design an initial

Uo. An obvious choice is the linear design of Section 5.2.1. To make the problem more

challenging, let us also add some error to this U. Simulations are made for various

additive errors e.
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v(t + 1)

A(t + 1)

=(CB)I w(t + 1)des - w(t) o l
r(t + 1)des r(t) e

A=

B=

w(t + 1)des

r(t + 1)des

w(t)

r (t)

10
0 1

0

"t688
IlV

Note that the assumption of perfect knowledge of the w(t) dynamics is made, reducing

the problem to learning the correct q(t) dynamics. Now particular 6 ,,o must be found

for all

aX

w(t + 1)des

r(t + 1)des

w(t)

r (t)

E fD 4Y'O

where we let Dy,o = [a, b] as our region of initial knowledge. This 6u,o can be found

as a function of the error vector e and the parameters a and b.

Ju,o = 4 x 10-5(b - a)2 + lelj(b - a)

The only step remaining is to find values for a, b and 6o for which the algorithm can
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be applied. In particular, Theorem 4.2.1 states that we must satisfy

b-a > C ,o(54)

ulO 6

Calculating the C and J6 of Equations (4.157) for the above system of Equation (5.3)

with At = .02 we get

C = 136
(5.5)

6, = .008

Any a, b and e such that Equations (5.4) are satisfied with C and b5 of Equation (5.5)

are sufficient.

Now all that remains is to define the error bounds we would like to achieve, and the

set over which we would like these bounds to hold. This choice is made to guarantee

that the controller is valid for commanded earth frame velocities on the order of one

hundred feet per second. Let the conditions after N iterations of the algorithm be

Dy,N = [-100, 100]

6 u,N = 6u

We therefore are not asking to improve error, just expand the region over which our

controller is valid and guarantee that the new errors do not increase.

All the above definitions an conditions are sufficient to define the learning con-

troller presented in Chapter 4.
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Chapter 6

Results

There are several topics which must be addressed in order to gain a complete picture

about the relative merits of each of the controllers presented in Chapter 5. The

most important of these are the performance of the controller, the required design

effort, and the computational and memory requirements needed to implement each

controller. Table 6 provides a quick summary of these issues, and the following

sections discuss them in greater depth.

6.1 Controller Performance

Let us first compare the performance of each of the controllers. The most important

measure we have of controller performance is tracking error. Since the feedback lin-

Tracking Performance Computational Required
Error Guarantees Effort Prior

i (rad/s) Knowledge
Perfect zero yes low high
Linear 4 x 10-2 no low low
Adaptive 10- 6  no moderate low
Neural 10-  no high low
Learning 10- 6  yes high low

Table 6.1: Relative Strengths of Various Control Strategies
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earization algorithms apply only to the inner loop controller, the performance of each

of the strategies is compared by comparing the intermediate signal Iq(t) - q(t)desiredl

We must also insure that given the complete controller, including the outer stabiliz-

ing loop, also performs satisfactorily. Therefore plots of (wearth - wearth,desired) and

(Uearth - Uearth,desired) are also presented. These errors are less significant since they

contain little information about the performance of the inner loop. They only insure

that the capabilities of the inner loop are sufficient to provide a complete stable sys-

tem. For each simulation run, plots of controller error are also presented. Since it was

shown in Theorem 4.3.5 that worst case tracking error is proportional to controller

error (and vice versa), only tracking error will be referenced. The controller error is

shown for completeness.

The simulations whose results are presented are for an extreme case where com-

manded velocities and artificially added controller errors are large. For cases of small

velocities and errors, each of the controllers perform sufficiently well and the differ-

ences are nominal at best. The particular case chosen for simulation is for

Uearth,desired = 100

Wearth,desired = 20

e = [.01 1 .01 .01]

The error term e has been described in Section 5.2.4. It is an artificially added error

term to the nominal controllers employed by all but the perfect feedback linearizing

controller.

Since all of the controllers are essentially approximations to the perfect feedback

linearizing controller, it is clear that the benchmark for any performance judgment

is the perfect feedback linearizing controller of Section 5.1.1. This is the case where

commanded q(t)des is achieved exactly by the system and controller error is zero.

The outer loop response for this case can be found in Figure 6-1. Be reminded that

any errors result from the outer loop. Simulation results for the remaining cases are
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Figure 6-1: Perfect Feedback Linearizing Controller

included in Figures 6-2, 6-3, 6-4 and 6-5.

The first, and simplest alternate controller implemented on the helicopter is the

feedback linearizing controller based on an approximate linear model of the system.

This controller clearly suffers from difficulties not experienced by any of the other

implementations. We can readily see from the plots of Figure 6-2 that tracking error

is largest for this case. This is expected since no methods are employed to correct

this error. In fact, we can easily calculate this error, as we have done in Section 5.2.4

as part of the implementation of the new strategy of Chapter 4. The error is a

consequence of nonlinearities present in the perfect controller, as well as from the

artificially introduced errors.

The adaptive controller attempts to compensate the errors by adding an additional

term to the controller which is adapted as the system is run. It is clear that the

adaptive controller can directly compensate for the artificially added errors (since

they take the same form as the adaptive terms), but not the nonlinearities. The

nonlinearities have a quadratic form which can not be represented by additive adaptive
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Figure 6-2: Linear Feedback Controller, Large Additive Errors
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part of the controller. Remember, though, that the adaptive term is time varying, and

as the system acquires a new equilibrium point, the adaptive term makes the controller

look like the local linearized controller. Thus, although there are evident differences in

the transients between this controller and the perfect controller, the system eventually

settles down to a steady state with nearly perfect tracking. It is important to note,

though, that if the difference between the perfect and the initial nominal controller

were significant, we could not guarantee that the adaptive controller would not go

unstable. To keep any instabilities from occurring, the adaptation rate is kept small.

It is also interesting to note that the initial tracking errors (at time=0) are of the

same magnitude of the errors of the linear controller, and decrease over time. The

final tracking errors (Figure 6-3) are six orders of magnitude smaller than those of

the uncompensated linear controller for the case of large additive errors (Figure 6-2).

The neural controller suffers from the adaptive controller only in the complexity

of the added adaptive term. The additive term chosen for in this implementation

is a liner combination of hat shaped wavelets. The combination of these wavelets

represent the product of linear splines. There was great difficulty in implementing

this network based controller because the input to the controller takes for arguments

(w(t + 1)des, q(t + 1)des, w(t), q(t), thus requiring a large network. In fact, to reduce

the network to a small enough number of wavelet such that the network was actually

fast enough to run on a Spark 20 workstation (by fast enough we imply that the

simulation could be run in less than a day), the resolution of the wavelets had to be

reduced significantly. It was found that the approximating power of the network was

only nominally better than that of the adaptive term in the adaptive controller. As a

result, there is little difference in the tracking and approximating performance of the

neural network controller as compared to the adaptive controller. Indeed, the final

tracking error (Figure 6-5), although five orders of magnitude smaller than that of the

uncompensated linear controller (Figure 6-2), is still larger than that of the adaptive

controller (Figure 6-3). This occurs because the basis functions of the neural network

are spatially localized. Therefore a basis' coefficient is not adapted till the basis

function has a nonzero value when evaluated at the controllers arguments. Since the
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controller takes different commands initially than later in the simulation, the initial

training has little effect on the errors later on. This spatial localization, though,

has a strength which outweighs this weakness. Once the controller has been trained

about some input, (w(t + 1)des, q(t + 1)des, w(t), q(t), the network does not become

untrained. The adaptive controller, on the other hand, contains no local information.

If adaptive parameters are trained about some particular input, they necessarily loose

information about previous inputs.

Finally, we come to the controller presented in this thesis. Although this controller

also suffers from the dimensional problems encountered by the neural controller, there

are obvious ways to overcome them. In particular, we can more easily specify over

which set we must acquire samples to perform the desired maneuver. For example,

in the most general application of the learning algorithm, we learn a controller which

can take us from any member of a particular set of states (Dy,N) to any output in the

interval Dy,N. If we do not intend to use this full capability, we can be more selective

in what we learn. Therefore, for any given state we need only learn the controller

which allows us to command to members of some subset of D)y,N. In fact, the method

employed in simulation is to learn a large number of local controllers whose domains

overlap and cover D,"N as opposed to the global controller whose domain is D,n.

We must remember, though, that commanded outputs must be limited to those over

which we have trained. This limitation is represented graphically in Figure 6-6.

Once the controller is trained, flight simulations can begin. We can see in the

simulations (Figure 6-5) that the tracking performance is significantly better than any

of the other controllers. Its tracking error is approximately six orders of magnitude

better than those of the linear controller. In addition, this small error is maintained

throughout the simulation, since training had been completed before the simulations

start. The tracking error for the adaptive and neural controllers are initially large.
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In this case, we can reach any
ouput in the boxed region from
any other output in the region

Output Space
Output Space

In this case, we have two
overlapping boxed regions.
To move from a point in
region 1 to a point in region
two we must include an
intermediate move to a
point common to the two
regions

Output Space

Figure 6-6: Limitation of New Controller
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6.2 Computational Effort

The required computational effort is where the greatest weakness occurs in the pro-

posed algorithm. With each additional input argument, the required number of sam-

ples increases by an order of magnitude. In particular, the number of required samples

grows by the relation MN2 n , where n is the order of the system and M and N are

constants depending on Dk and Sk*

As mentioned above, the neural network based algorithm also suffers from this

fault. Within this fault, each of the two algorithms have their individual strengths

and weaknesses.

Much work has been done to make neural networks compact. Individual papers

propose techniques to dynamically change the structure of the network in order to

minimize its size and complexity. In fact, the network employed in this paper uses

a hierarchical structure which increases the resolution of the network in the case of

large errors, and reduces the resolution if it is found error bounds can be satisfied

with fewer basis functions. The algorithm proposed in Chapter 4 fixes the resolution

(density of samples). No method is proposed to make local changes in the resolution to

reduce the number of samples required. This amounts to a weakness in the proposed

algorithm.

A relative strength of the proposed algorithm is mentioned in the previous section.

As mentioned it is easy to restrict the domain over which the samples are taken. If

the domain is chosen wisely, the size of the set of samples can be reduced by orders

of magnitude. In this paper, the domain was restricted to a region local to a line

in the four dimensional input space. Thereby, the order of the number of samples is

reduced by three. This represents to a strength of the algorithm.

6.3 Design Effort

The amount of required design effort is meant to be the strength of the proposed

algorithm. This effort is only nominally greater than the effort required to find a local
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linear model of the system to which the algorithm is applied. The only additional work

is the implementation of the algorithm. The entire algorithm is implemented with

the three simple and short Matlab functions presented in the appendix. The perfect

controller, of course, requires significantly more modeling effort. The network based

controller also requires additional effort. This includes the design and implementation

of the network. A basic network is not exceptionally difficult to implement. The

multi-resolution network of this paper, though, does displace several times more lines

of code than that for the algorithm of Chapter 4.
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Chapter 7

Final Comments and Further

Work

7.1 Final Comments and Further Work

It is evident from the results that on a small simple system, the learning control

algorithm of this paper provides performance comparable to other modern control

algorithms, and can guarantee that performance through a rigorous proof.

But, given the current state of computer technology, the implementation of the

proposed algorithm on a large, high dimensional system may not yet practical. In

addition, the consequences of process and sensor noise has not been addressed. It

is clear that the introduction of either source of noise will have a significant impact.

Currently, the only method of compensating for process noise is to model the source

of the noise itself. For such a solution to work, the interfering process must be time

invariant. Such an assumption is usually false. Sensor noise can be taken into account

in the arguments of Chapter 4, but may severely limit the guarantees provided in the

proof. In fact, careful examination would suggest that given large errors, the methods

of the proof would provide no guarantees at all.

Despite the above challenges, the proposed controller is a step in the right direc-

tion, and with additional work can be extended to include a larger set real world

systems. When computers become capable of implementing the above algorithm on
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large systems, and they will, this learning strategy could prove effective.
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Appendix A

Convex Hulls

Many definitions and theorems provided in this appendix are drawn from [20] and

[6]. A few are original.

Definition A.0.1 A set A E R' is convex if x, y E A implies that

Ax+ (1-A)y : <A<1} CA.

Definition A.0.2 The convex hull Co(A) of a set A in R" is the intersection of

all convex sets in R n containing A [20, p. 54]. Alternately, Co(A) is the smallest

convex set containing A [20, p. 54]. More precisely, if C is any convex set in Rn

containing A then Co(A) C C.

Theorem A.0.1 [20, p. 55]

Let a,..., am E R n. Then

Co({ai,...,am}) = {Alal+...Amam:

A1 + ... Am ,= 1

AI+'"+Am=l}
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Corollary A.0.1 Let al,..., am E R.

written in the form

a = Aa' + (1 - A)am where a' E Co({al,..., am-}), 0 < A < 1. (A.1)

Proof: From Theorem (A.0.1) each a E Co({al,..., am}) can be written

a = Alal +. + Amam

A1+ "- - + Am = 1, where AI,..., An > 0.

(A.2)

(A.3)

We consider two cases: (1) Am = 1 and (2) Am # 1.

Since Am = 1, Ai = 0 for i = 1, . . ., m - 1. Hence, a can be expressed

a = am = Aa' + (1 - A)am,

where A = 0 and a' E Co({a,... , am- 1}), which proves Equation (A.1).

Case Am, 1: Letting A = 1 - Am and

A1  Am-1
a -- a, " + -l -+am-1,A A

Equation (A.2) can be manipulated to yield

a = Aa' + (1 - A)am

To prove Equation (A.1) it remains to show that

a' E Co({al,...,am-,}).
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Case (1):

Case (2):

(A.4)

Then each a E Co({al,...,am}) can be



By Theorem A.0.1, Equation (A.4) is true if

1
Am-1 = land (A.5)

(A.6)

Equation (A.6) is true since A > 0 and each Ai > 0. Equation (A.5) follows

from Equation (A.3) by noting that Am = 1 - A.

Definition A.0.3 Let A = Co(ao,... an) c R n .

minimum distance

min Ijbi - aill2
i=O,...,n

where

bi = argminbe CO(ao,...,ai-l,a+l1,...,an) lib - ail12

Theorem A.0.2 [6, p. 112] If a closed bounded convex set A C R n has minimum

width d, then A contains a ball of radius1

r > nodd

r > d2 n even- 2(n+1)'

Theorem A.0.3 Suppose we are given n + 1 points a0o,..., a, n R n . Define the

S. . an - ai I... ai-1 - ai ai+l - ai (A.7)

where each Ai satisfies

(A.8)

for some ai and all v E R n . Then the minimum width d of Co(ao,..., an) satisfies

(A.9)

la ball in R n is defined in Definition 4.3.1
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Proof: Begin by noting Definition A.0.3.

tion A.0.3 lies in the set Co(ao,..., ai-, ai+l,...,an), using Theorem A.0.1 we can

write bi as the sum

bi = Aoao + . . " + Ai-lai-1 + Ai+lai+ -... -+ Anan (A.10)

where

0<Ai 1 land ZAi=1,
i

Letting

we[ A0 .. Aoi- 1 Aj+

we can write Equation (A.10) in matrix form as

bi = ao0 ... ai-1 ai+l

S ]T

a .. an]A (A.11)

Since Ej Ai = 1 we can also write

Ai = [ a ... ai] A (A.12)

Therefore, using Equations (A.7) , (A.11) and (A.12)

bi - ai = AiA

Therefore, noting Definition A.0.3 and Equations (A.10) and

width d is the minimum of

(A.13), the minimum

lIA A l12

over all i = 0,..., n and all A satisfying Equation (A.9). We proceed by finding

a lower bound for jIA A11 2 and thus also for d.

Equation (A.8) we have

d = min JIA XIL2 > min(ai IL ) min ai min
i,A i,A i A

Using 2  I =1 andUsing JJA112 > Vfn- Vrn J

mini=o,...,n oi

sqrtn
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Since each bi as defined in Defini-

i = 0,...,i- 1, i + 1,...,n.
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Appendix B

Matrix Algebra

Theorem B.0.4 Assume the real N x N matrix

E =[ 01i-00 ... ON-]00

has an inverse. Then the matrix

. ON

•- 1" 0

also has an inverse.

Proof: We can show I has an inverse by equivelently showing that the columns

T span RN + l. Choose some arbitrary V) E RN+l. Let the first N elements of i be

E RN and the last element be V2 E R. Since E is invertible, 01 can be written

a linear combination of the columns of E. Therefore, there exist scalars al,..., aN
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= a01- 00
0

= a, +"
1

ON

1

ON - o+

+ (02 - a1 - a *-N)
Since we have expressed 4 as a combination of the columns of T and 4' was chosen

arbitrarily, T-1 exists.

Theorem B.0.5 Let 0 and I be two N x N real matrices. Suppose

IIEXl 2 2 IIX112

for some 0 > 0 and all x E RN. Let the absolute value of any element of T be less

than or equal to 0. Then

I1( + ')1)x1 _ (0 - N2) 1X112 (B.2)

Proof: Using properties of matrix norms [4] and Equation (B.4)

II(e + ')X112 > o III 2 - 1042

> 0 Ix12 - trace(@ T) 1112

> (0 - NV) I1X112

Lemma B.0.1 Given the assumptions of Theorem B.0.5, if 0 > No then E + I is

invertible.
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Proof: Since 0 > NO, Equation (B.3) yields

() + ')x112 > 0

for any x E RN, x not the zero vector. This condition is sufficient and necessary for

the invertibility of O + T.

Theorem B.0.6 Let an N x N + 1 matrix E take the form

O0 ON

0 0

I[N x N]

Let the (ml)th column of O be O[m]. Define the N + 1 matrices

... O[m-1]-O[m] a[m+ 1]-a[m]

for any m = 0,...,N. If Oo / 01, then

IlemVI 2 100 - 01 IIV112
NO

for any v E RN where

0 = max (1, IOo - Okl i01 - ,Oki)
k=2,...,N
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Proof: The inverse of Em is easily calculated as

01 - 02 01 - 8N

... ON - 0o

0 I[m-2xm-2]

0 O[N-mxm-2]

0 O[m-2xN-m]

0 I[N - m]

for m = 2,..., N. For the cases m = 0 and m = 1 we have

0 - 02

I[N- 1 x N- 1]
0-1 - 1 1

o 01-80 0

6 1 1
1 00-01 0

01 - 02

Since the two norm of an N x N matrix is less than or equal to N times the maximum

absolute value of an element of the matrix

max (1, 0- O
k=2,...,N 0 - 1 00 -01

maxk=2,...,N(1, 18o - kL IOk - Okl)

1o - 811
(B.6)

Therefore using properties of matrix norms [4].

Ilvll2= EiO1Emv 2 1 ___ 2 11E 112

Solving for IIemvll 2 yields

IIEmv 112 IIV112

Applying Equation (B.6) yields Equation (B.4).
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