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Abstract

Advances in automation are making it possible for a single operator to control multiple unmanned
vehicles (UVs). This capability is desirable in order to reduce the operational costs of human-UV systems
(HUVS), extend human capabilities, and improve system effectiveness. However, the high complexity
of these systems introduces many significant challenges to system designers. To help understand and
overcome these challenges, high-fidelity computational models of the HUVS must be developed. These
models should have two capabilities. First, they must be able to describe the behavior of the various
entities in the team, including both the human operator and the UVs in the team. Second, these models
must have the ability to predict how changes in the HUVS and its mission will alter the performance
characteristics of the system. In this report, we describe our work toward developing such a model. Via
user studies, we show that our model has the ability to describe the behavior of a HUVS consisting of a
single human operator and multiple independent UVs with homogeneous capabilities. We also evaluate
the model’s ability to predict how changes in the team size, the human-UV interface, the UV’s autonomy
levels, and operator strategies affect the system’s performance.

1 Introduction

For the foreseeable future, unmanned vehicle (UV) technologies will require the assistance of human operators
to perform important and challenging tasks. Current UV platforms require multiple operators to control a
single UV. However, this need for significant manpower is expensive and often ineffective. As a result, it is
desirable to invert this ratio so that a few operators can effectively control many UVs in order to (a) reduce
costs, (b) extend human capabilities, and (c) improve human-UV system (HUVS) effectiveness. To achieve
this goal, additional research must address many issues related to the human operator, the UVs, and the
interactions between them.

For HUVSs consisting of a single operator and multiple UVs to be effective, many questions must be
answered, including: How many UVs should there be in the team? What human-UV interaction methodolo-
gies are appropriate for the given HUVS and mission? What autonomy levels should the UVs in the team
employ, and when should changes in these autonomy levels be made? What aspects of a system should be
modified to increase the system’s overall effectiveness? The ability to answer these questions will facilitate
the development of technologies that can effectively support UV operators in dynamic real-world situations.

High-fidelity computational models of HUVSs are needed to help answer these questions. To be successful,
these models should satisfy two capabilities. First, they should adequately describe the behavior of the
complete system. Second, these models should have the ability to accurately predict the behavior and
performance of the system in conditions that have not previously been observed.

A model with both descriptive and predictive abilities has many important applications. For example,
such a model can improve the design and implementation processes of HUVSs. As in any systems engineering
process, test and evaluation plays a critical role in fielding new technologies. In systems with significant
human-automation interaction, testing with representative users is expensive and time consuming. Thus,
the development of a high-fidelity model of a HUVS with both descriptive and predictive capabilities will
streamline the test and evaluation cycle since it can both help diagnose the cause of previous system failures
and inefficiencies, and indicate how potential design modifications will affect the behavior and performance
of the system.

A model with both descriptive and predictive abilities can also, among other things, be used to determine
successful combinations of UVs within the team (team composition). The composition of futuristic human-
UV teams is likely to dynamically change both in number and type due to changing resource availability
and mission assignment. High-fidelity models can be used to ensure that variations in team composition will
not cause system performance to drop below acceptable levels. Furthermore, these models can potentially
be used to suggest which autonomy levels UVs should employ given the team composition.

This report describes the development and evaluation of a new modeling methodology. This research
was executed in three separate three phases. In the first phase, we decomposed HUVSs consisting of a single
operator and multiple UVs in order to identify a relevant set of metrics classes. These metric classes form
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the theoretical basis upon which our modeling methodology is built. In the second phase, we developed
the modeling technology itself. In this work, we showed that models built using our modeling methodology
have the ability to describe the behavior of the system and predict how changes in the human-UV interface
and in the UVs’ autonomy levels alter the system’s effectiveness. Finally, in the third phase, we used the
modeling methodology to investigate how variations in operator attention allocation strategies affect system
effectiveness.

2 Phase 1 – Metric Classes for Human-UV Systems

An understanding of which system processes govern the success of a HUVS is essential to the development
of a model capable of answer the questions listed in the introduction. Such an understanding requires the
designer to identify a set of metrics that, when combined, can evaluate each of the essential aspects of the
system. These mission and system specific metrics are drawn from a set of mission and system generic metric
classes. Loosely, a metric class consists of the metrics that measure a particular aspect of a system. Our
initial work on metric classes for HUVSs is published in the papers included in Appendices A and B of this
report [3, 4]. We briefly summarize this research in this section and refer the reader to the appendices for an
in-depth study of the subject.

To ensure that a set of metrics can sufficiently model a HUVS, it should have at least three properties:

1. A set of metrics should identify the limits of both the human operator and the UVs in the team.

2. A set of metrics should contain the key performance parameters of the system.

3. A set of metrics should have predictive power.

Toward this end, we identified a potential set of three metric classes for HUVSs consisting of a single human
operator and multiple UVs. These classes were (1) interaction efficiency, a set of metrics that measures
the effects of human-UV interactions on UV behavior, (2) neglect efficiency, a set of metrics that assesses
how a UV’s behavior changes in the absence of interactions with the operator, and (3) attention allocation
efficiency, a set of metrics measuring how well the operator allocates her attention among the UVs in the
team.

After identifying this set of metric classes, we evaluated various sets of metrics drawn from these metric
classes with respect to the three properties just mentioned. To do this, we conducted a user study using
RESCU (Research Environment for Supervisory Control of Unmanned-Vehicles), a test-bed in which a user
controls a team of simulated UVs in a search and rescue mission. Using observational data from the study,
we evaluated various sets of metrics with respect to the three desirable properties. We showed that selecting
metrics from only two of the three metric classes does not result in a model that satisfies the three properties,
particularly that of predictive power. However, we showed that selecting a set of stochastic metrics from each
of the metric classes can provide a model with reasonably good predictive power. Specifically, we showed
that a set of stochastic metrics can, when combined, give reasonably good predictions of how the system’s
effectiveness changes as UVs are are added or removed from the team.

This research inspired follow-on work that further expands and develops the concepts and uses of metric
classes for HUVSs. This research is published in Pina et al. [11] and Cummings et al. [6].

3 Phase 2 – A Computational Model for Human-UV Systems

Drawing from the set of metric classes identified in Phase 1, we developed a computational modeling method-
ology for HUVSs consisting of a single human and multiple independent UVs. In this modeling methodology,
four stochastic structures, drawn from the set of metric classes identified in the previous phase, are estimated
via observational data. These models describe the behavior of the individual entities in the team, and, when
combined together, form a complete description of the system that can be used to predict how changes in
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the system will alter its overall effectiveness. We briefly summarize this work in this section, and refer the
reader to Appendix C [2] for a more detailed description of the research.

We model a HUVS using four stochastic structures. The first two stochastic structures model the behavior
of the individual UVs in the team. These metric structures, drawn from the interaction and neglect efficiency
metric classes, are stochastic processes that describe how a UV’s state changes in the presence and absence
of interactions with the human operator. The second two stochastic structures, drawn from the attention
allocation efficiency metric class, model how the human operator allocates her attention among the various
UVs in the team.

In our approach, each of the stochastic structures is formed from data obtained from observing the HUVS
in a particular condition. Using a discrete event simulation, these models can then be used to describe the
behavior of the team in the observed condition. Such a description is useful for identifying the strengths and
weaknesses of the HUVS, and for identifying how the system could be modified to improve its performance.
Second, the discrete event simulation can be used to predict system efficiency in other unobserved conditions,
such as when the human-UV interface changes or when UV autonomy is altered.

To validate the descriptive and predictive ability of our modeling methodology, we conducted a second user
study using RESCU. Sixty-four subjects participated in the study. Via data collected in a single condition
of the study, we constructed a model of the HUVS. We showed that this model accurately describes the
behavior of the system. Furthermore, we showed that this model makes reasonably good predictions of the
system’s effectiveness in other conditions. Specifically, the model effectively predicts how changes in the
human-UV interface and the UVs’ autonomy levels affect the system’s overall effectiveness. These results
represent a significant step toward developing high-fidelity models of HUVSs necessary to the development
of flexible and robust HUVSs.

4 Phase 3 – Operator Selection Strategies in Human-UV Systems

In Phase 2, we analyzed the model’s ability to predict the effects of changes in the human-UV interface
and the UVs’ autonomy levels. These particular system alterations primarily affected aspects of the system
corresponding to the interaction and neglect efficiency metric classes. In the third and final phase of this
research project, we focus on aspects of the system related to the third metric class, that of attention
allocation efficiency. Unlike the previous two phases, we describe the main portion of this research in its
entirety in the body of this paper since this research is yet to be submitted for publication.

In complex systems such as those in which a human supervises multiple UVs, the human operator must
oversee a large number of tasks simultaneously. While the UVs often perform these tasks autonomously for
long periods of time, they eventually require human intervention and assistance. In time-critical operations,
human-UV interactions must be timely to avoid catastrophic failures and to ensure that the system continues
to operate efficiently. Thus, human attention must be carefully and effectively allocated among the UVs in
the team.

In the user studies described in the previous phases of this research, determining which UV to service
at any given time was left to the judgment of the human operator. While a simple visual alarming system
was provided to alert the operator of the UVs’ needs, the operator was not told which UV to service, nor
was a prioritization scheme provided. Rather, operators were left to create their own priorities, which they
developed, and often verbalized, over the course of several practice missions. Different participants developed
different prioritization schemes.

That the participants developed different selection strategies raises an interesting set of questions. Given
the status of a HUVS and the capabilities of the UVs in the system, which UV should the human attend to?
Are the selection strategies learned and employed by operators effective, or should other selection strategies
be used? If so, how should the system be designed to improve selection strategies?

Computational models of HUVSs are a critical component in answering these questions. A computational
tool capable of predicting the effects of operator selection strategies has a number of useful applications. First,
such a tool can help identify when and how operators’ selection strategies should be altered to substantially
improve the system’s effectiveness. For example, the tool can be used to identify an effective selection
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strategy. This selection strategy can then be compared to the selection strategy currently being followed by
the system to determine which decisions, if any, lead to reduced system effectiveness. System designers can
then use this information to determine where to focus system improvements.

Second, the computational tool can be used in decision aids for operator attention allocation. Once the
tool identifies an effective selection strategy, this selection strategy can be used to help determine which UV
should be serviced at any give time. If done effectively, this could potentially reduce operator workload while
increasing system effectiveness, though many human factors concerns must be addressed, including trust [8],
automation bias [5], and situation awareness [7].

Analysis of attention allocation strategies in complex systems has been addressed at an abstract level by
Sheridan and Tulga [13] and Neth et al. [10]. However, a generalized computational method for determining
the effects of operator selection strategies in HUVSs remains an open question. In this phase, we analyze
the ability of the modeling methodology described in Phase 2 to answer these questions. As in the previous
two phases, we validate the the predictions made by the model via user studies performed in RESCU
(Appendix B), a test-bed in which users control multiple simulated UVs in a search and rescue mission. For
simplicity, we focus primarily on the base instantiation of RESCU (referred to as noDS in Appendix C),
with a team size of eight UVs.

Specifically, in Section 4.1, we analyze operators’ observed selection strategies in a previous user study.
In Section 4.2, we use the model to estimate what operators should have done to “maximize” system ef-
fectiveness. To determine the correctness of these predictions and to determine how these predictions can
be used to help users more effectively allocate their attention among the UVs in the team, we conducted
another user study using RESCU. This user study is described in Section 4.3. We report and discuss the
results of this study in Section 4.4. In Section 4.5, we summarize and discuss our conclusions, and outline
areas of future work.

4.1 Observed Operator Selection Strategies

In all conditions of RESCU studied in the previous two phases, UV selection was the responsibility of the
human operator. A visual alerting system was provided which indicated to the user when a UV needed to be
assigned a new task, when a UV needed assistance picking up an object, and when the scenario was about
to end. In this subsection, we study the users’ selection strategies under these conditions.

In RESCU, system effectiveness is measured with respect to number of objects collected and number of
UVs lost, which occurs when UVs are left in the maze when time expires. System effectiveness as observed
in the noDS condition of the Phase 2 user study is shown in Figure 1. The figure shows that the average
number of objects collected in the study peaked at about six UVs. Furthermore, the figure shows that the
number of UVs lost also increased with team size. Given the objective function

Score = numObjectsCollected− UV sLost (1)

which users were asked to maximize, these results indicate that system effectiveness was highest when the
team size was between four and six UVs. Adding additional UVs to the team after six UVs did not increase
system effectiveness, and, in fact, appears to decrease it. These results show that the operators were, on
average, unable to effectively manage more than six UVs.

We note that, at least in RESCU, a decrease in system effectiveness with increasing numbers of UVs
need not occur. If the human operator simply chooses not to use excess numbers of UVs, we would expect
system effectiveness to plateau after six UVs. However, while some users did follow this strategy, many did
not. Thus, the decrease in system effectiveness with large UV teams can be traced, at least in part, to the
operators’ selection strategies.

Further, consider Figure 2, which shows the average number of interactions per minute for team sizes of
six and eight UVs. In the figure, interactions are categorized into three groups: goal assignment, payload
operations, and replanning/re-routing. Goal assignment refers to interactions in which the human operator
sent UVs into the maze. Payload operations refer to interactions in which the user serviced a UV that was
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Figure 1: Average number of objects collected (a) and UVs lost (b) in the noDS condition.
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Figure 2: Average number of interactions of each type per minute for (left) six- and (right) eight-UV teams.

ready to pick up an object. Replanning/re-routing refers to all other interactions, which are interactions in
which the operator modified the UV’s intended path or changed its task.

The strategy profiles, shown in the form of interaction counts per minute in Figure 2, are fairly similar
for both in six- and eight-UV teams. However, there are two revealing differences. First, in eight-UV teams,
the average user did indeed send more than six UVs into the maze in the first minute. While this is not
surprising since there were eight-UVs to send into the maze rather than just six, this result illustrates that
the average user was often unable to identify that he could not, on average, effectively control eight UVs.

The second main difference between the strategy profiles shown in Figure 2 occurs in the last minute,
where there is a sharp increase in number of interactions involving re-routing and re-planning in the eight-UV
condition. In this condition, operators tended to over-estimate the number of tasks they could complete in
a given amount of time, as they often sent too many UVs into the maze toward the end of a mission. In the
eighth minute, they often realized their mistake, and tried to correct it by removing the UVs from the maze.
This resulted in the large increase in interactions involving re-routing and replanning in the eighth minute.
However, this reactive behavior often came too late, resulting in lost UVs.

In short, while users often used effective selection strategies, they also made time-critical errors that
reduced the system’s effectiveness. The visual alerting system provided in the noDS condition was insufficient.
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This highlights the need to develop decision aids to help operators better allocate their attention among the
UVs in the team. In remainder of this phase, we study how the model can potentially be used in this process.

4.2 Computing an Optimal Selection Strategy

The model constructed in Phase 2 and described in Appendix C can be used to predict how an arbitrary
operator selection strategy will affect the system’s effectiveness. This capability can be used to estimate
an optimal selection strategy with respect to some objective function, which, in the case of RESCU, is the
function specified in (1). In this section, we describe this computational methodology. We then discuss the
optimal selection strategy computed by the model, and compare it to the average selection strategy employed
by human operators in RESCU. In the next subsection, we describe how this selection strategy can be used
to create decision support tools designed to improve attention allocation efficiency.

4.2.1 Computing the Effects of Operator Selection Strategies

As in Phase 2, let S be the set of all joint states and let T be the set of mission times. Also, let S × T → Σ
be the set of possible system states. As before, let SS(σ) be the selection policy used in system state σ ∈ Σ,
which is a probability distribution describing how likely the operator is to service each UV given σ. Then,
formally, a selection strategy is a specification of SS(σ) for all σ ∈ Σ. Let Ω denote the set of all possible
selection strategies.

We desire to estimate how an arbitrary selection strategy affects system effectiveness given the other
behavioral characteristics of the system. Formally, as in Phase 2, let ST (σ) be a probability distribution
that describes operator switching time, and let II(σ) and NI(σ) describe the behavior of an individual
UV in the presence and absence of human interactions, respectively. Then, let J(ω|ST , II,NI) denote the
expected system effectiveness for using the selection strategy ω ∈ Ω given ST , II, and NI. For brevity, we
denote J(ω|ST , II,NI) as J(ω).

The model described in Phase 2 provides a technique for computing Ĵ(ω), an estimate of J(ω), for each
ω ∈ Ω. Let ST (σ), II(σ), and NI(σ) be constructed as in Section III of Appendix C, and let ω define SS(σ)
for all σ ∈ Σ. Then, J(ω) can be calculated using the discrete event simulation outlined in Algorithm 1 of
Appendix C.

4.2.2 Computing an Optimal Operator Selection Strategy

We wish to identify an operator selection strategy ω∗ ∈ Ω such that Ĵ(ω∗) ≥ Ĵ(ω) − ε, for all ω ∈ Ω and
some small ε ≥ 0. We call ω∗ an optimal selection strategy if Ĵ(ω) ≈ J(ω) for all ω ∈ Ω. Since we have no
guarantees about the form of the function Ĵ(·) and since there are an infinite number of operator selection
strategies, computing ω∗ directly is difficult. However, we can estimate ω∗ with respect to a reasonable
subset of operator selection strategies, which we denote Ω̂.

The subset of selection strategies we consider for RESCU is derived using three simplifications. In the
first simplification, we reduce the time dimension of system state by discretizing mission time T . In practice,
a human operator can constantly alter his selection policy over time, meaning that selection policies can
change an infinite number of times over the course of a scenario. To avoid this, we allow a user’s selection
policy to change only at discrete points in time, which effectively divides mission time into a finite set of
time periods. In RESCU, we divide mission time into eight discrete time periods, one corresponding to each
minute of the eight-minute mission. We chose this coarse discretization for computational purposes. A finer
discretization would provide a richer set of selection strategies, but would create a larger state space.

In the second simplification, we reduce the number of possible probability distributions that SS(σ)
can take on. While, theoretically, SS(σ) can take on an infinite number of forms, we consider only those
probability distributions that place all weight on a particular UV state. These probability distributions can
be expressed with a preference ordering over UV states. A preference ordering specifies the order that the
operator prefers to (and does) service the UVs in the team.
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Minute Preference Ordering
1st s1 > s2 > s3

2nd s2 > s1 > s3

3rd s2 > s1 > s3

4th s2 > s3 > s1

5th s2 > s3 > s1

6th s3 > s2 > s1

7th s3 > s2 > s1

8th s3 > s2 > s1

Table 1: Example of a simplified selection strategy, expressed as a series of eight preferences orderings.
X > Y denotes that state X is preferred to state Y .

These first two simplifications reduce a selection strategy to a sequence of preference orderings over UV
states, one preference ordering (second simplification) for each discrete time period (first simplification).
Thus, in RESCU, a sequence of eight preference orderings over UV states specifies a selection strategy. As
an example, consider Table 1, which shows a simplified selection strategy for a three UV-state system. In
the first minute, this strategies specifies that the operator will service UVs in state s1 first. If no UV is in
state s1, then she services a UV in state s2, etc. In the second minute of the mission, the operator changes
strategies so that she first services UVs in state s2. Once there are no UVs in state s2, she services UVs in
state s1, and so on.

While these simplifications reduce the set of selection strategies to a finite set, the size of this set is still,
if we use the set of 21 UV states used in Phase 2 (Figure 3 in Appendix C), on the order of 10152 in RESCU.
Thus, the third simplification is to reduce the number of UV states, which we achieve by grouping the 21 UV
states into five categories: (1) assignment states (A), states in which the UV is outside of or nearly outside
of the maze, (2) payload states (P), which are states in which the UV is ready or nearly ready to pick up
on object, (3) sitting states (S), which are states in which the UV is idle in the maze, but not on an object,
(4) replanning/re-routing states (R), which includes states in which the UV is navigating the maze, but is
either not taking the likely shortest path to the goal or could benefit from being reassigned to a different
task, and (5) good states (G), states in which the UV is effectively and efficiently moving toward its goal
destination.

If we assume that UVs in states corresponding to group G always have the lowest priority, then there
are 24 possible preference orderings over UV state groupings. This means that these simplifications reduce
the number of possible selection strategies to 248. While this is still a large set of selection strategies, it
is sufficiently small that we can effectively search it using an optimization algorithm. We used a genetic
algorithm to find a near optimal selection strategy with respect to the reduced set of selection strategies Ω̂.

We hasten to note that a selection strategy chosen using this technique will only be as good as the
assumptions upon which the model is built. We emphasize two of these assumptions. First, we assume that
Ω̂ adequately represents Ω. If Ω̂ does not contain an optimal selection strategy with respect to Ω, the model
certainly will not identify an optimal selection strategy. However, the model can still identify a successful
selection strategy from Ω̂ that could offer a substantial improvement over the selection strategy employed
by users in the study. For this reason, we refer to the selection strategy computed by the genetic algorithm
as the recommended rather than the optimal selection strategy throughout the rest of this report.

A second assumption made by our modeling methodology is that Ĵ(ω) ≈ J(ω) for all ω ∈ Ω. This
assumption implies that the structures II, NI, and ST accurately model the components of the system
they represent. However, it is possible that altering a user’s selection strategy will cause changes in human-
UV interactions, which would lead to changes in interaction impact II and, possibly, the other structures.
These issues must be carefully taken into account as we analyze the ability of the model to predict the effects
of selection strategies on system behavior.
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Minute Preference Ordering
1st R > A > S > P > G
2nd S > A > P > R > G
3rd P > S > R > A > G
4th A > S > P > R > G
5th S > P > A > R > G
6th R > S > P > A > G
7th S > R > P > A > G
8th S > P > R > A > G

Table 2: Recommended selection strategy for eight-UV teams, expressed as a set of eight preference orderings.
X > Y denotes that state X is preferred to state Y .
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Figure 3: (a) Average number of interactions observed in the noDS condition of the user study. (b) Predicted
number of interactions per minute if the recommended selection strategy is followed.

4.2.3 Recommended Selection Strategy

After constructing a model of II, NI, and SS using data from the noDS condition, we used the methodology
in presented in Section 4.2.2 to compute the recommended selection strategy given in Table 2. The model’s
predicted selection strategy profile for following this recommended selection strategy is displayed in Figure 3b
along with the profile observed in the noDS condition of the user study, which is shown in Figure 3a. While
the predicted strategy profile for following the recommended strategy is not smooth due to the simplifications
described previously, it does provide several interesting insights.

First, the recommended selection strategy gives low priority to sending additional UVs into the maze in
the final three minutes of a RESCU mission. This recommendation agrees with our discussion in Section 4.1,
in which we noted that users sent too many UVs into the maze in the sixth and seventh minutes, which
required users to spend extra time replanning and re-routing in the last minute of the mission. The model
predicts that the recommended selection strategy avoids this problem by placing low priority on sending
UVs into the maze in the last few minutes of a mission.

Second, the model recommends that users should give less priority to replanning and re-routing in minutes
two through five than users actually did in the noDS condition. Rather, the recommended selection strategy
suggests that users should spend time performing tasks that the UVs cannot do themselves, such as goal
assignment and payload operations. However, by the sixth minute, the model recommends that the human
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operator should give high priority to replanning and re-routing so as to ensure that all UVs can pick up an
object and carry it out of the maze before time expires.

A third interesting observation about the recommended selection strategy is that it suggests that operators
give high priority to re-routing and replanning in the first minute. This is contrary to what users actually
did in the noDS condition, as users typically dedicated the first minute to sending UVs into the maze. It is
not entirely clear why placing such high priority on replanning and re-routing in the first minute would be
effective.

The model predicts that the differences in the recommended selection strategy and the average selection
strategy employed by the users in the noDS condition would translate into substantial differences in system
effectiveness. Figure 4 shows the predicted effects of the recommended strategy with respect to number of
objects collected, UVs lost, and system score. The model predicts that, while the recommended selection
strategy would have a relatively small impact on number of objects collected, it would significantly decrease
the number of UVs lost, especially for larger team sizes. For comparative purposes, we compare these
predicted effects with those of the AVS and MBE enhancements discussed in Phase 2 in Appendix D.

In short, the recommended selection strategy and the subsequent prediction of its impact on system
effectiveness give significant insight into the operators’ observed attention allocation in the noDS condition.
While users implemented reasonably good selection strategies with respect to collecting objects, they did not
use good selection strategies for preventing loss of UVs. Thus, the model shows that future design changes
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Figure 4: Predicted system effectiveness for following the recommended selection strategy (labeled SS-Rec)
compared with observed system effectiveness in the user study (labeled noDS (Observed)) for (a) objects
collected, (b) UVs lost, and (c) system score.
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with respect to attention allocation efficiency should aid users in moving UVs out of the maze, rather than
helping them to collect more objects. These results show that a predictive model such as the one we have
presented can be used to show a cost-benefit analysis approach of where system designers should be spending
resources during system improvement.

While the model predicts that system effectiveness would significantly increase if operators followed the
recommended selection strategy, two questions remain. First, are the predictions accurate? Second, how
can knowledge of the recommended selection strategies be used to improve attention allocation efficiency?
In the next subsection, we describe a user study that is designed to answer these two questions.

4.3 User Study

In the user study, which was performed in the RESCU test-bed, we compared three interface modes, which
differed from each other in how the system selected UVs for the operator to service. In this subsection, we
describe the different interface modes and outline the experimental procedure used in the study.

4.3.1 Decision Support for Operator Selection Strategies

Each of the three different interface modes was implemented in the noDS condition of RESCU, described in
Appendix C. In each interface mode, the human was responsible for determining when human-UV interactions
began and ended. However, the interface modes differed from each other in the UV selection process, which
is the process the HUVS follows to select a UV for the user to service once the user decides to service another
UV.

The UV selection process in each interface mode was communicated through the control panel of the in-
terface. In past versions of RESCU, the control panel displayed the visual alarming system. It also displayed
a button corresponding to each UV in the team, which the participants clicked to select a UV to service. In
the new user study, this selection process was altered so that it was different in each interface mode. The
control panel for each interface mode is shown in Figure 5. We discuss each in turn.

Manual Mode. The selection process for the Manual Mode was identical to the noDS mode in the previous
study. In this mode, users selected the next UV to service by clicking on the button corresponding to that

(a) Manual (b) Guided (c) Auto

Figure 5: Control panels for each interface mode. The UVs recommended by the recommendation system
are highlighted in orange.
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UV. The Manual Mode was included in the study for control purposes.

Guided Mode. As in the Manual Mode, the Guided Mode was implemented so that the user selected
the UV she desired to service by clicking on the button corresponding to that UV. However, in this mode,
the system highlighted the UVs that the recommended selection strategy indicated the user should service.
(Figure 5b). Thus, in this mode, the user could decide whether or not she desired to follow the recommended
strategy. If the user felt that a recommendation was in error, the user could simply ignore the recommenda-
tion, or he could temporarily “turn it off” by unchecking the check box next to a UV. Once the button was
unchecked, the UV was no longer highlighted, and subsequent recommendations were then displayed in the
control panel. Thus, the Guided Mode allowed the human operator and the computer to collaborate with
each other using a management-by-consent selection methodology.

Auto Mode. The Auto Mode restricted the set of UVs the operator was allowed to service to the UVs
suggested by the recommended selection strategy. Thus, rather than directly select a UV to service, the user
simply clicked a button labeled “Next” at the bottom of the control panel (Figure 5c). Once this button was
clicked, the computer automatically selected a UV for the operator to service based on the recommended
selection strategy. In the event that the user did not want to service a selected UV, he was allowed, as in the
Guided Mode, to temporarily “turn-off” a recommendation by unchecking the check box next to the UV.
The Auto Mode was included in the study specifically to validate the predictions made by the model since
users typically followed the recommended selection strategy in this mode.

4.3.2 Experimental Setup

The user study was a single factor within-subjects study. The independent variable was the interface mode,
which had three levels: Manual, Guided, and Auto. Each user controlled a team of eight simulated UVs
using each interface mode. The order that the users saw each mode was randomized and counter-balanced
to offset ordering effects.

All previous user studies in the RESCU test-bed used UV team size as a within-subjects variable. How-
ever, in this study, the within-subjects variable was the interface mode. This required that the experimental
procedure be altered somewhat from previous studies. Despite this difference, we attempted to make the
experimental procedure used in this study as close as possible to that of previous studies. The following
procedure was followed for each subject:

1. The subject was trained on all aspects of RESCU, including the interface, UV behaviors, etc. This
was done using a PowerPoint presentation. The subject was allowed to ask questions as she desired.

2. The subject was trained separately on the UV control interface and the city search task.
3. The subject performed a full practice mission.
4. The subject was introduced to one of the three interface modes with a brief PowerPoint presentation.
5. The subject performed a complete practice mission using the new interface.
6. The subject performed a complete test mission using the new interface.
7. The subject answered several subjective questions about their experience.
8. The subject repeated steps 4-7 for the other two interface modes.

Twelve students and postdoctoral associates from the MIT community participated in the experiment.
Six of the subjects were females and six were males. The subjects were between the ages of 19 and 32, with
a mean age of 23.2 years.

4.4 Results

In this subsection, we present the results of the user study. In so doing, we attempt to answer three questions.
First, did the model accurately predict the effects of the recommended selection strategy? Second, how did
the different interface modes affect the operators’ selection strategies. Third, what were the human operators’
subjective responses to each of the interface modes? We answer each of these questions in turn.
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Figure 6: Predicted system effectiveness compared to observed system effectiveness in the Auto Mode. Pre-
dicted is the model’s initial prediction of system effectiveness. Predicted (Adjusted) is the model’s prediction
of system effectiveness when presented with a correct model of II.

4.4.1 Predictive Accuracy

To evaluate the model’s ability to predict how changes in operator selection strategies affect system effec-
tiveness, we compare the model’s predictions1 of system effectiveness with the system effectiveness observed
in the Auto Mode. These results are shown in Figure 6, where the model’s predictions are labeled Predicted.
The figure shows that the model significantly over-predicted the number of objects the system collected (Fig-
ure 6a). Additionally, while the predicted number of UVs lost was just within the 95% confidence interval,
the predicted value is still more than double the observed number of UVs lost in the user study (Figure 6b).

The inaccuracy of the predictions can be traced, in part, to an incorrect model of interaction impact II.
The model used data from the noDS condition of the previous study to estimate II. However, in the Auto
Mode, users typically took about 1.6 seconds longer per interaction than they did in the noDS condition.
The longer interaction times in the Auto Mode appear to have been caused by the UV selection process
used in this mode. Since users did not decide which UV they serviced, this sometimes caused them to spend
more time gaining awareness of the selected UV’s situation, which, as predicted by Billings [1], led to longer
interaction times than in the noDS condition. Thus, the assumption of a correct estimate of II as stipulated
in Section 4.2.2 was violated, thus compromising the model’s predictive ability.

If we change the model’s estimate of II to reflect the observed interaction times in the Auto Mode, we get
the predictions labeled Predicted (Adjusted) in Figure 6. These predictions for both objects collected and UVs
lost fall well within the 95% confidence intervals, which indicates that if the model’s estimates of interaction
impact II, neglect impact NI, and switching times ST are accurate, the model can adequately predict the
effects of operator selection strategies on system effectiveness, as stated in the assumptions in Section 4.2.2.
However, when these estimates are incorrect, the model’s predictions are likely to be inaccurate.

Our model’s reliance on observed data (from the noDS condition) to estimate II means that it cannot
adequately predict the effects of different operator selection strategies when the selection process alters
human-UV interactions. This is because, prior to implementing a change in the system, we do not have data
to model how II will vary due to that particular change. In order to improve the model’s accuracy, we
would need to somehow estimate how the existing interaction data would be altered by the changes in the
system.

1Due to a system upgrade on the computer used in the study, the mouse scroll wheel was less sensitive in previous user
studies than it was in the current user study. This significantly increased the speed at which users were able to locate cities on
the map (to pick up objects). In order to still be able to evaluate the predictive ability of the model, these new search times
were incorporated into the model. The upgrade did not appear to impact any other aspect of the study.
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Figure 7: Observed system score in the user study.

In short, since alterations in the selection process can alter interaction efficiency, our current modeling
methodology is not sufficiently robust to predict the effects of changes in operator selection strategies to a high
degree of fidelity. However, since the model does give reasonably good predictions given correct estimates
of interaction efficiency, the model has potential as a high-fidelity predictive tool if we can anticipate the
effects of operator selection strategies on interaction efficiency. This is a topic of future work.

4.4.2 Effects of Decision Support on Operator Selection Strategies

The second question addressed by the user study concerns how the UV selection processes used in the Auto
and Guided Modes altered the users’ selection strategies. To understand users’ reactions to the recommen-
dations, we first discuss the optimality of the recommended selection strategy. While the recommended
selection strategy was theoretically optimal with respect to a simplified set of selection strategies and the
data observed in the noDS condition of the previous study, it was not optimal with respect to the upgraded
system used in the current user study. In fact, users had higher scores in the Manual and Guided Modes,
in which users often deviated from the recommended strategy, than in the Auto Mode, in which the rec-
ommended selection strategy was typically followed (Figure 7). While this difference was not statistically
significant (F (2, 33) = 0.50, p = 0.609), it does show that the recommended selection strategy was no better
in this user study than the selection strategies the users employed in the Manual Mode.

The average selection strategy profiles observed in each mode and the predicted strategy profile for
following the recommended selection strategy are displayed in Figure 8. As expected, the selection strategy
used in the Auto Mode most closely mirrors the model-predicted strategy profile. Additionally, the average
selection strategy in the Manual Mode was similar to the selection strategy observed in the noDS condition
of the previous study (Figure 3a).

Given the differences between the recommended selection strategy and the observed selection strategies
in the Manual Mode, it is interesting to observe selection strategies in the Guided Mode, where users were
free to follow or ignore the recommended selections. While users did follow many of the recommendations,
they did not always do so. To see this, consider Figure 9a, which shows the percentage of time that users
followed the model’s recommended selections. In the Manual Mode, users’ adhered to the recommended
strategy about 50% of the time, which is just higher than random behavior (30% adherence). Meanwhile,
as expected users, almost always followed the recommended strategies in the Auto Mode. The percentage
of adherence to the recommended selections in the Guided Mode is about 60%. Thus, the user’s selections
in the Guided Mode more similar to those observed in the Manual Mode than in the Auto Mode.

The effects of highlighting the recommended UVs in the control panel (as was done in the Guided
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Figure 9: (a) Percentage of the time users’ UV selections were in conformance with the recommended
selection strategy averaged over all minutes of the study. The green horizontal line marks the percentage
of adherence for purely random UV selections. (b) Percent conformity to the optimal select strategy per
minute of the study.

Mode) is further displayed in Figure 9b, which plots the users’ average adherence rates per minute of a
RESCU mission. Beginning in the fourth minute until the end of the mission, the users’ conformance to the
recommended strategies in the Guided Mode mirrored that of the Manual Mode, except that the Guided
Mode was shifted upward between 10-20 percentage points. This shows that users tended to follow their
own strategies, though they were somewhat biased by the recommendations.

Post-experiment comments by the participants give further insight into how the users viewed the recom-
mendations in the Guided Mode. One participant said that he completely ignored the recommendations in
the Guided Mode because they were “confusing.” Several other users commented that, while they did not
always follow the recommendations in the Guided Mode, the recommendations sometimes drew their atten-
tion to a UV that required servicing that they otherwise might have missed. Another participant determined
that he did not need to follow the recommendations because the penalty for not doing so was not severe.

These comments illustrate that many of the users correctly deduced that the recommended selection
strategy was sub-optimal. This is further validated by an analysis of how often users chose to “turn off”
recommendations in the Guided and Auto Modes. Recall that the Guided and Auto Modes allowed users
to check a box to turn off recommendations for a given UV. Once this was done, a subsequent set of recom-
mendations was provided. In the Guided Mode, none of the users turned off any recommendations. Since
users often did not follow the recommendations, this suggests that, in this mode, users preferred to ignore
the recommendations when they did not agree with them, rather than receive subsequent recommendations.
However, in the Auto Mode, when ignoring the recommendations was impossible without explicitly turning
them off, three of the 12 users (or 25%) chose to turn off various recommendations throughout the course
of a mission (Figure 10), thus expressing that they did not believe the recommended selections to be desir-
able. Post-experiment discussions with the participants indicate that more of the users would have used this
feature in the Auto Mode if they had remembered how to used it.

4.4.3 User Perceptions

While observed system effectiveness is a crucial metric of any decision support system, one cannot discount
the role of user perception. While a system might produce good results, it will not likely become successful
unless it gains user acceptance. Thus, we complete the results section with a discussion of the participants’
attitudes toward the various recommendation systems.

After completing the user study, participants were asked to rank the different modes according to their
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Figure 10: Number of times each subjected “turned off” recommendations in the the Auto Mode.

preferences. Eight of the 12 participants in the study preferred the Guided Mode the most. They liked
that the Guided Mode allowed them to service whichever UV they desired. Additionally, several users said
that the recommendations alerted them of UVs that needed to be serviced that they otherwise might have
missed.

In comparison, eight of the 12 users liked the Auto Mode the least. Many of the users expressed frustration
that they were not allowed to select a UV that was not suggested by the recommendation system. On the
other hand, several operators appreciated that the Auto Mode relieved some of their workload. This intuition
is validated statistically. After each mission in the study, each participant was asked to rank his mental
workload during the mission on the scale one to five. An ordered logit model, specifically proportional odds
[14], shows a statistical difference in subjective workload measured in this way (χ2(2) = 6.98, p = 0.0305).
The odds of having higher subjective workload was higher for the Auto Mode compared to the Guided Mode
(χ2(1) = 9.84, p = 0.002) and the Manual Mode (χ2(1) = 5.46, p = 0.020). Thus, while the Auto Mode did
frustrate many of the users, it also, as expected, lowered their perceived workload.

4.5 Conclusions and Future Work

The third phase of the project resulted in a number of key insights, which we now summarize and discuss.
First, we summarize our findings with regard to our model’s ability to predict the effects of operator selection
strategies in HUVSs. Second, we discuss our results concerning the role of computational models in decision
aids for attention allocation in multi-task environments.

4.5.1 Predicting the Effects of Operator Selection Strategies

In this phase of research, we have developed and evaluated a method for predicting the effects of operator
selection strategies on system effectiveness in HUVSs. Our approach has a number of strengths and weak-
nesses, each of which highlights an area of future work. First, our modeling methodology can be used to
show a cost-benefit approach of where system designers should be spend intervention resources. For exam-
ple, the predictions made by our model showed that, in RESCU, users’ selection strategies were effective
in achieving the first mission goal, that of collecting as many objects as possible throughout the mission.
However, users’ selection strategies were not as effective with respect to the second mission goal, that of
ensuring that UVs were out of the maze prior to time expiring. Thus, the predictive model indicates that
resources should be invested in developing technologies that will help users focus more effectively on this
second mission objective, rather than on the first.

Second, under the assumption that we have a correct estimate of the other aspects of the system, including
interaction impact II, neglect impact NI, and operator switching time SS, our results indicate that the
model gives reasonably good predictions of the effects of operator selection strategies on system effectiveness.
While this is a good start, it appears that the assumption is overly strong. In many instances, the act of
altering operator selection strategies will induce changes in human-UV interactions, as demonstrated in our
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user study in the Auto Mode. Thus, while our modeling methodology provides a framework for developing
predictive models capable of predicting the effects of changes in operator selection strategies, it is not
sufficiently robust to predict the effects of operator selection strategies to a high-degree of fidelity. To be
sufficiently robust, the model must anticipate how changes in one aspect of the system will affect other
aspects of the system. This is an area of future work.

Third, while we attempted to use the model to identify an “optimal” selection strategy, the selection
strategy was not optimal with respect to the system used in the current user study. This was due to small,
unsuspected changes in the system that we, as system designers, did not anticipate, but that had substantial
impact on the effectiveness of the system. While it is possible that more robust models can be developed
that can mitigate the effects of these unanticipated changes, the real-world is sufficiently complex that these
models will eventually fail. In such situations, it is essential that the system be designed so that users can
adequately compensate for such failures.

4.5.2 Using Predictive Models to Improve Operator Selection Strategies

Once a predictive model has identified a selection strategy that would improve system effectiveness, it is not
clear how it should be implemented into a system. In our user study, we used the recommended selection
strategy computed by the model to alter the UV selection process. In the Guided Mode, the recommendations
were highlighted on the display, and users were free to follow them or not follow them as they desired. In
the Auto Mode, users simply indicated that they wanted to service a new UV. The recommended selection
strategy was then used by the system to select a new UV for the operator to service.

While the user study showed no statistically significant difference in system effectiveness between the
Auto and Guided Modes, users typically liked the Guided Mode, but they did not like the Auto Mode. This
result mirrors the findings of Mitchell et al. [9] and Ruff et al. [12], in which management-by-consent was
the preferred method of human-UV collaboration in supervisory control of multiple UVs. In the Auto Mode,
users were often frustrated that they could not service the UV of their choice, as the system sometimes
selected a UV they did not want to service. On the other hand, in the Guided Mode, while at least some
of the users realized that the suggestions made by the model were sub-optimal, many of the users felt that
they were still able to make good use of them. This is significant since, as we mentioned previously, highly
robust predictive models are still likely to have moments of failure in complex HUVSs. In such situations,
it is essential that operators can determine when to follow and when to not follow the recommendations.
Thus, rather than focus on identifying optimal selection strategies, a more desirable approach might be to
identify selection strategies that are good enough while promoting behavior in which users judiciously choose
whether to follow or not follow system recommendations, thus avoiding the negative effects of automation
bias [5] and mis-trust [8].
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ABSTRACT
Efforts are underway to make it possible for a single operator
to effectively control multiple robots. In these high work-
load situations, many questions arise including how many
robots should be in the team (Fan-out), what level of au-
tonomy should the robots have, and when should this level
of autonomy change (i.e., dynamic autonomy). We propose
that a set of metric classes should be identified that can ade-
quately answer these questions. Toward this end, we present
a potential set of metric classes for human-robot teams con-
sisting of a single human operator and multiple robots. To
test the usefulness and appropriateness of this set of metric
classes, we conducted a user study with simulated robots.
Using the data obtained from this study, we explore the abil-
ity of this set of metric classes to answer these questions.

Categories and Subject Descriptors
J.7 [Computers in Other Systems]: Command and Con-
trol; H.5.2 [User Interfaces and Presentation]: Evalua-
tion/methodology

General Terms
Measurement, Performance, Human Factors

Keywords
Multi-robot Teams, Fan-out, Supervisory Control

1. INTRODUCTION
Over the last few years, much research has focused on

human-robot teams (HRTs) in which a single operator con-
trols or supervises multiple robots. This is a somewhat
daunting task as current technologies (in both air, ground,
and water robotics) require multiple humans to control a
single robot. However, it is desirable to invert this ratio
in order to (a) reduce costs, (b) extend human capabilities,
and (c) improve system efficiency. To achieve this goal, ad-
ditional research must address a multitude of issues related
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to both the human operator (i.e., human factors issues), the
robots (i.e., artificial intelligence capabilities), and the in-
teractions between them.

One important research agenda is determining the effec-
tiveness of a given HRT in accomplishing a mission. To do
so, robust and descriptive metrics must be developed. The
first conference on Human-Robot Interaction (HRI 2006)
included a paper calling for the development of common
metrics for human-robot systems [24]. The authors of this
paper argued that metrics should be developed that span
the range of missions carried out by HRTs. These metrics
should relate to both humans and robots in the team as well
as the entire human-robot system (HRS). In this paper, we
focus on quantitative metrics for HRTs consisting of a single
human operator and multiple robots.

Often, a single metric is sought to evaluate an HRT’s ef-
fectiveness. However, since metrics of overall system effec-
tiveness vary widely across domains [27] and are typically
multi-modal, a common metric for overall system effective-
ness is unlikely to be found. However, a set of metric classes
spanning many aspects (and subparts) of a system is likely
to be more generalizable. Loosely, a metric class is the set of
metrics that measure the effectiveness of a certain aspect of
a system. For example, we might consider the metric class
of human performance, which includes metrics of reaction
time, decision quality, situation awareness, workload, etc.

We propose that a set of metric classes should have the
following three attributes to effectively evaluate HRTs:

1. The set of metric classes should contain metrics that
identify the limits of all agents (both human operator
and robots) in the team.

2. The set of metric classes should have predictive power.
An HRT might be called upon to perform many dif-
ferent kinds of missions in many different kinds of en-
vironments. An HRT that performs well in one en-
vironment or mission may not perform well in an-
other environment or mission. Additionally, the teams
themselves are likely to change (due to casualty, re-
source availability, mission needs, etc.). Measuring all
such circumstances is costly and, ultimately, impossi-
ble. Thus, a set of metrics for HRTs should have some
power to predict how changes in environment, mission,
and team make-up will affect the team’s effectiveness.

3. The set of metric classes should contain key perfor-
mance parameters (KPPs). KPPs are the parameters
that indicate the overall effectiveness of the system.



Finding a set of metric classes with these three attributes
is important for a number of reasons. First, a set of metrics
having these attributes can determine the capabilities of a
system performing a given mission. In the context of an
HRT consisting of a single human operator and multiple
robots, such a set of metric classes addresses the question of
whether a particular HRT is capable of completing a mission
in a satisfactory manner or whether the team’s configuration
should change. Second, a set of metrics having these three
attributes can help determine the levels of autonomy that
the robots in the team should employ. This relates to a third
reason, which is that such a set of metrics could be used to
facilitate dynamic autonomy to a higher degree of fidelity.
Fourth, such a set of metrics should identify how changes in
system design will impact the system’s overall effectiveness.
This would both reduce the cost of creating robust HRTs
while speeding up their development.

Identifying a set of metrics with these capabilities is a
tall order. Nevertheless, we describe initial attempts to do
so in this paper. We take the approach of decomposing an
HRT into subparts. Measures can be obtained for each of
these subparts. Estimates of overall team effectiveness can
then potentially be constructed from these measures, even
(ideally) when some aspects of the system, environment, or
mission change. We demonstrate the potential ability of this
set of metric classes via a user study.

The remainder of this paper proceeds as follows. In Sec-
tion 2, we outline related work. In Section 3, we decompose
a single-human multi-robot team into subparts and define
metrics for the various subparts. In Section 4, we describe
a user study designed to analyze the set of metric classes
proposed in Section 3. We present and discuss the results of
the user study in Section 5. We offer a concluding remarks
and suggest future work in Section 6.

While HRTs of the future will include heterogeneous sets
of robots, we focus in this paper only on the homogeneous
case. However, the theories developed in this paper apper-
tain to heterogeneous robot teams as well, though additional
issues will need to be considered for those teams.

2. RELATED LITERATURE
The work of this paper relates to many topics in the liter-

ature. We focus on supervisory control of multiple robots,
Fan-out, human-robot metrics, and dynamic autonomy.

2.1 Supervisory Control of Multiple Robots
In supervisory control [21], a human interacts with au-

tomation as the automation acts in the world (see Figure 1).
When a human supervises multiple robots, care must be
taken to ensure that the operator has the capacity to give
adequate attention to each robot or group of robots. Ad-
herence to multiple principles are required to make this pos-
sible, including offloading low-level control of the robots to
the automation [4, 20, 6, 17], ensuring that the automation
is reliable [7], and providing effective user interfaces (see
[14, 23]). Predictive metrics are necessary to evaluate these
technologies in a cost effective manner.

When a human controls multiple robots, the human must
necessarily allocate his/her attention between the various
robots or groups of robots. This is related to the concept of
time-sharing (see [27, 1]). Metrics from the attention alloca-
tion efficiency (AAE) metric class discussed in Section 3.2
can be used to assess time-sharing capabilities.

Figure 1: The two control loops of an HRT consist-
ing of a single human operator and a single robot.

2.2 Fan-out
The term Fan-out (FO) refers to the number of (homoge-

neous) robots that a single operator can effectively control
[16]. One line of research on this topic uses measures of in-
teraction times and neglect times to estimate FO [11, 16,
3]. These metrics have been modified to include the use of
wait times [14, 5] and extended (in part) to the domain of
heterogeneous robot teams [12]. We analyze how effectively
these metrics estimate true FO in Section 5.2.2.

2.3 Human-Robot Metrics
Much of the work on metrics for HRTs has focused on

the human operator. The most common of these metrics
measure situation awareness (SA) (formally defined in [9]
and adopted to HRTs in [8]) and operator workload. Var-
ious metrics for SA have been devised including SAGAT
[9]. Metrics for measuring operator workload include sub-
jective methods (see [27]), secondary task methods, and psy-
chophysiological methods (e.g., [13, 25]). However, metrics
for HRTs must go beyond the human operator. Metrics are
also needed to evaluate the effectiveness of individual robots
in the team as well as the team’s overall effectiveness [26].

The work of this paper focuses on combining metrics from
various aspects of the HRT to obtain measures of system
effectiveness. This is relates to [19], which computes a mea-
sure of overall team effectiveness using measures of the in-
dividual subtasks performed by the team.

2.4 Dynamic Autonomy
Central to the success of an HRT is the level of automa-

tion employed by the robots in the team. Sheridan and
Verplank’s [22] scale of levels of automation has been widely
accepted and adapted for use in system design (e.g., [18]).
The level of automation can be varied over time (dynamic
autonomy) to manage changing operator workload and mis-
sion needs (e.g., [17, 2]). Predictive metrics can be used to
determine when autonomy levels should be changed.

3. A SET OF METRIC CLASSES
We can identify a potentially useful set of metric classes

by decomposing an HRT consisting of a single human and
multiple robots into subparts. We first decompose a single
robot team after which we take on the multi-robot case.



3.1 The Single-Robot Case
In the single-robot case, an HRT has the two control loops

shown in Figure 1, which is adapted from [3]. These control
loops are the control loops of supervisory control [21]. In the
upper loop, the human interacts with the robot. The robot
sends information about its status and surroundings to the
human via the interface. The human synthesizes the infor-
mation and provides the robot with input via the interface.
The lower control-loop depicts the robot’s interactions with
the world. The robot combines the operator’s input with its
own sensor data to determine how to act.

The two control loops, though intimately linked, provide
a natural decomposition of an HRT of this type. Corre-
sponding to each control loop is a metric class. Metrics
that evaluate the effectiveness of human-robot interactions
(upper control loop) are in the metric class of interaction ef-
ficiency (IE). Metrics that evaluate the robot’s autonomous
capabilities (lower control loop) are in the metric class of ne-
glect efficiency (NE). Note, however, that while these two
metric classes are separate, they are in no way independent
of each other. A failure in one control loop will often cause
a failure in the other control loop.

Many metrics in the literature have membership in the
IE and NE metric classes. We focus on a small set of these
metrics in this paper.

3.1.1 Interaction Efficiency (IE)
Metrics in the IE metric class evaluate the effectiveness

of human-robot interactions. That is, they evaluate (a) how
well the human can determine the status and needs of the
robot, (b) how human inputs affect robot performance, and
(c) how much effort these interactions require. One way
to estimate IE is by the expected length of a human-robot
interaction. This metric is known as interaction time (IT ),
which (for the single-robot case) is the amount of time it
takes for the operator to (a) orient to the robot’s situation,
(b) determine the inputs (s)he should give to the robot, and
(c) express those inputs via the interface [15]. Related to
IT is the metric WTI (wait times during interactions) [14],
which is the expected amount of time during interactions
that the robot is in a degraded performance state.

Using IT and/or WTI to capture IE infers that shorter
interactions are more efficient than longer ones. Since this is
not always the case, we might also want to consider metrics
that more explicitly measure the performance benefits of an
interaction. These benefits can be determined by observing
how the robot’s performance changes during human-robot
interactions, which can be calculated from the mathematical
structure interaction impact (II). II is the random process
that describes the robot’s performance during interactions
[3]1. It is a function of (among other things) the amount of
time t since the operator began interacting with the robot.
One metric we can derived from II is the robot’s average
performance during interactions, which is given by

ĪI =
1

IT

Z IT

0

E[II(t)]dt, (1)

where E[II(t)] denotes the robot’s expected instantaneous
performance at time t (t = 0 is when the interaction began).

1For descriptive purposes, we have modified the names of
some of the terms discussed in this paper.

Figure 2: In multi-robot teams, human attention
must be distributed between the robots.

3.1.2 Neglect Efficiency (NE)
The NE metric class consists of metrics that evaluate a

robot’s ability to act when the human’s attention is turned
elsewhere. Neglect time (NT ), which is the average amount
of time a robot can be ignored before its expected perfor-
mance falls below a certain threshold [11], is a member of
this metric class. One difficulty with this metric is deter-
mining the proper performance threshold. Methods for de-
termining the threshold are given in [16, 3]. Like IT and
WTI, NT does not completely account for the robot’s per-
formance. This additional information can be obtained from
the mathematical structure neglect impact (NI), which is
the random process that describes a single robot’s perfor-
mance when it is ignored by the operator [3]. From NI, we
can calculate average robot performance during the time it
can be safely neglected using

N̄I =
1

NT

Z NT

0

E[NI(t)]dt, (2)

where E[NI(t)] denotes the robot’s expected instantaneous
performance after it has been neglected for time t.

3.2 The Multi-Robot Case
When a human interacts with multiple robots, the nature

of interactions between the operator and each robot in the
team remains relatively unchanged except for the important
exception depicted in Figure 2. The figure shows a separate
set of control loops for each robot. However, unlike the
single-robot case, the upper loops are not always closed. To
close one of the upper loops, the human must attend to the
corresponding robot and neglect the others2. Thus, the effi-
ciency with which human attention is allocated among the
robots is critical to the team’s success. Metrics that capture
this notion of efficiency have membership in the attention
allocation efficiency (AAE) metric class.

3.2.1 Attention Allocation Efficiency (AAE)
AAE can be measured in various ways including (a) the

time required to decide which robot the operator should ser-
vice after (s)he has completed an interaction with another

2We assume that a human sequentially attends to the needs
of each robot.



Figure 3: The two displays used in the experiment. Each was displayed on a separate monitor.

robot, and (b) the quality of that decision. The former met-
ric is referred to as switch times (ST s) and has sometimes
been considered part of IT [16]. We follow this lead in this
paper, though it is of itself an individual metric of AAE.

Ideally, a metric evaluating the quality of servicing selec-
tions made by the HRT would compare the team’s actual
decisions with what would have been the “optimal” deci-
sions. However, such a measure is often difficult to obtain
given the complexity of the situations encountered by HRTs.
One alternative metric is to compute the number of wait
times (i.e., time in which a robot is in a degraded perfor-
mance state) caused by lack of operator SA (called WTSA)
[14]. In general, teams with higher WTSA have lower AAE.
However, WTSA can also be difficult to measure since they
must be distinguished from a third kind of wait time, called
wait times in the queue (WTQ) [14]. WTQ occur when the
human operator knows that a robot is in a degraded perfor-
mance state, but does not attend to that robot because (s)he
must attend to other robots or tasks. The metric WTQ is
not exclusively from IE, NE, or AAE, though it is affected
by all three system attributes.

Figure 2 also shows a connecting link between robots in
the team. This link captures the notion that robots can
communicate with each other. The quality of information
passed over these links will in turn affect measures of IE,
NE, and AAE. This could possibly define a fourth metric
class, though we do not consider it in this paper.

4. USER STUDY
To evaluate how effectively sets of metrics drawn from IE,

NE, and AAE identify the limits of the agents in the team,
predict system characteristics, and provide KPPs, we con-
ducted a user study. In this section, we describe the software
test-bed used in the study, the experimental procedure, and
the demographics of the participants.

4.1 Software Test-bed
We describe three aspects of the software test-bed: mis-

sion, interface, and robot behaviors.

4.1.1 Mission
Across many mission types, an HRT operator assists in

performing a set of common tasks including mission plan-
ning and re-planning, robot path planning and re-planning,
robot monitoring, sensor analysis and scanning, and target

designation. These generic tasks apply to HRTs with many
different kinds of robots, including unmanned air vehicles
(UAVs), unmanned ground vehicles (UGVs), and unmanned
underwater vehicles (UUVs). We give two time-critical ex-
amples: one with UAVs and the other with UGVs.

A human-UAV team might be assigned various intelli-
gence gathering tasks over a city during the night. The
team’s mission is to perform as many intelligence gathering
tasks before daylight as possible. The operator must assist in
assigning the various UAVs to the various intelligence gath-
ering tasks. Once the UAVs are assigned tasks, the UAV
operator must assist the UAVs in arriving at the (possibly
unknown) locations where these tasks are to be performed.
This requires the operator to assist in path planning and the
monitoring of UAV progress. As more information becomes
available about the various tasks, the intelligence gather-
ing tasks must be reassigned and routes re-planned. Once
a UAV arrives at the location where the intelligence must
be gathered, the operator must scan the UAV’s imagery to
identify objects of interest.

A human-UGV team might be tasked with a search and
rescue mission in a damaged building. The mission goal
would be to remove important objects (such as people) from
the building in a timely manner (e.g., before the building
collapses). To do this, the operator must assign the UGVs
to various places in the building and assist them in getting to
these locations. As new information about the building and
the objects in it become available, the operator must often
reassign the UGVs to other tasks. Once a UGV arrives
at the location of an object, it would need the operator’s
assistance to positively identify and secure the object. This
could require the operator to view and analyze imagery from
the UGVs video feed. After securing the object, the UGV
would then need to exit the building to deliver the object.

We sought to capture each of these generic tasks in our
software test-bed, which is shown in Figure 3. In our study,
the HRT (which consisted of the participant and multiple
simulated robots) was assigned the task of removing objects
from an initially unknown maze. The goal was to remove as
many objects from the area as possible during an 8-minute
session while ensuring that all robots were out of the maze
when time expired. An object was removed from the build-
ing using a three-step process. First, a robot moved to the
location of the object (target designation, mission planning,
path planning, and robot monitoring). Second, the robot



“picked up” the object (sensor analysis and scanning). As
this action might require the operator to perform a visual
task (assist in identifying the object in video data), we sim-
ulated this task by asking the user to identify a city on a
map of United States using Google Earth-style software (the
graphical user interface is shown in the right of Figure 3).
This locate-a-city task was a primary task and not a sec-
ondary task. Third, the robot carried the object out of the
maze via one of two exits (one at the top of the maze and
the other at the bottom of the maze).

The objects were randomly spread through the maze. The
HRT could only see the positions of six of the objects ini-
tially. In each minute of the session, the locations of two
additional objects were shown. Thus, the total number of
objects to collect during a session was 22. Each participant
was asked to maximize the following objective function:

Score = ObjectsCollected−RobotsLost, (3)

where ObjectsCollected was the number of objects removed
from the area during the session and RobotsLost was the
number of robots remaining in the area when time expired.

4.1.2 Interface
The human-robot interface used in the study was the two-

screen display shown in Figure 3. On the left screen, the
maze was displayed along with the positions of the robots
and (known) objects in the maze. As the maze was initially
unknown to the HRT, only the explored portions of the maze
were displayed. The right screen was used to locate cities in
the United States.

The user could control only one robot at a time. The user
designated which robot (s)he wanted to control by click-
ing a button on the interface corresponding to the desired
robot (labeled UV1, UV2, etc.). Once the user selected the
robot, (s)he could control the robot by specifying goal des-
tinations and making path modifications. Goal designation
was achieved by dragging the goal icon corresponding to the
robot in question to the desired location. Once the robot re-
ceived a goal command it generated and displayed the path
it intended to follow. The user could modify this path using
the mouse.

To assist the operator in determining which of the robots
needed attention, each robot’s status was shown next to
its button. This status report indicated if the robot had
completed its assigned task, found an object, or needed to
exit the maze. If no status report was given, the system
determined that the robot was progressing adequately on
its assigned task.

4.1.3 Robot Behavior
The robot combined a goal seeking (shortest path) behav-

ior with an exploration behavior to find its way toward its
user-specified goal. This behavior, though generally effec-
tive, was sometimes frustrating to the users as it often led
to seemingly undesirable actions (though, as we mentioned,
the user could modify the robot’s path if desired).

4.2 Experimental Procedure
After being trained on all aspects of the system and com-

pleting a comprehensive practice session, each user partici-
pated in six 8-minute sessions. Teams with two, four, six,
and eight robots were tested. In each of the first four ses-
sions, a different number of robots were allocated to the

Figure 4: The mean values of number of objects
collected, number of robots lost, and overall score.

team. In the last two sessions, the conditions (i.e., robot
team size) from the first two sessions were repeated. Thus,
18 samples were taken for each robot team size3. The condi-
tions of the study were counter-balanced. The participants
were paid $10 per hour with the highest scorer also receiving
a $100 gift certificate.

4.3 Demographics
Twelve people (one professor, ten students, and one other

non-academic person) participated in the study; eight were
from the United States, two were Canadian, one was His-
panic, and one was Egyptian. Three of these participants
were female and nine were male. The mean age was 27.5
years old with a standard deviation of 8.6 years.

5. RESULTS
Data collected from the user study allows us to evaluate

sets of metrics (drawn from IE, NE, and AAE) with re-
spect to their ability to identify the limits of the agents in
the team, predict system characteristics, and provide KPPs.
Before presenting this analysis, we report observations of
system effectiveness for each robot team size.

5.1 Observed Team Effectiveness
The dependent variables we consider for HRT effectiveness

for this user study are those related to Equation 3: the
number of objects collected by the HRT over the course of
a scenario and the number of robots lost during a scenario.
The mean observations for these dependent variables across
the number of vehicles is shown in Figure 4.

Figure 4 shows that a 2-robot HRT collected on aver-
age just less than eight objects per 8-minute session. The
sample mean steadily increases as team size increases up
until 6-robots, at which point it appears to plateau. A
repeated measures ANOVA revealed marginal significance
across robots, α = 0.05, F = (15, 3) = 2.737, p = 0.06.
Pairwise comparisons show that 2-robot teams collect sig-
nificantly less objects than do 4-, 6-, and 8-robot teams
(p ≤ 0.001), and 4-robot teams collect significantly less ob-
jects than 6- and 8-robot teams (p = 0.057 and p = 0.035,

3Only 17 samples are available from the 6-robot condition
due to technical difficulties.



2 4 6 8
IT 18.19 16.86 15.82 15.74
NT 22.26 36.63 44.67 52.22
WT 8.71 26.88 45.03 67.58

Table 1: Estimated values of IT , NT , and WT given
in seconds per robot team size (the columns).

respectively). HRTs with six and eight robots are statisti-
cally the same.

Figure 4 also shows that the average number of robots lost
per session increases as robot team size increases. Robots
were lost if they were in the maze when time expired. A
clear distinction exists between groupings of 2- and 4-robot
teams and 6- and 8-robot teams as demonstrated by a χ2-
test (χ2 = 14.12, df = 3, p = .033)4. This result is signifi-
cant as it indicates a performance drop between four and six
robots. Thus, while robot teams with six and eight robots
collected more objects than smaller robot teams, they also
lost more robots.

These results indicate that the HRTs in the user study
with the highest performance had, on average, between 4
and 6 robots. Thus, FO for this particular situation appears
to be between four and six robots.

5.2 Analysis of Sets of Metrics
We now analyze selected sets of metrics drawn from IE,

NE, and AAE with respect to the three attributes listed in
the introduction. Namely, we want to determine how well
these metrics determine the limits of the agents (both the
human and the robots) in the team, predict system charac-
teristics, and provide key performance parameters (KPPs).
We analyze each attribute separately.

5.2.1 Limits of the Agents
The observed values of IT , NT , and WT (the average wait

time per interaction-neglect cycle) are given in Table 1. We
used the following heuristics to calculate them:

• IT was determined by observing clicks on the robot
selection buttons as well as other mouse activity. Es-
timated switch times, which were about 1.7 seconds in
each condition, are included in this measure.

• NT was determined to be the time elapsed between
the operator’s last interaction with the robot and the
time at which the operator again interacted with the
robot or the robot reached its designated goal location.

• WT was determined to be the average time a robot
waited to be serviced after it reached its goal. Thus,
both WTQ and WTSA are included in this measure.
If a robot did not reach its goal before the operator
chose to service it, we assumed that no wait times
accrued.

Previous discussions of operator capacity based on the
measures IT , NT , and WT are given in [16, 14, 5]. We
provide analysis of operator capacity using these measures
for our specific study.

In a 2-robot team, Table 1 shows that, on average, a robot
was serviced for about 18 seconds (IT ), then moved pro-
ductively toward its goal while being neglected for about 22

4The χ2-test for significance was used in this case since the
data violated the assumptions on an ANOVA test.

seconds (NT ), and then waited for operator input for a little
less than 9 seconds (WT ). Thus, the robot was either ac-
tively pursuing its goal or being serviced more than 82% of
the time. This indicates that the operator was usually able
to provide adequate attention to both robots. However, as
the number of robots in the team increased, the amount of
time the operator was able to give adequate attention to
each robot decreased noticeably. In 8-robot teams, the user
was typically unable to attend to the needs of each robot
in the team as each robot spent about half of its time wait-
ing for operator input. As a result, as team size increased,
the number of objects collected reached a plateau while the
number of robots lost continued to increase (see Figure 4).

We can make observations about the limits of the robots
by observations of NT . In the 8-robot condition, when in-
teractions with each robot were infrequent, NT was about
53 seconds. Since each robot received little attention from
the users in this condition, this value is largely a function of
the average time it took for the robots to reach their goals.
Thus, it appears that a main limitation of the robots’ auton-
omy was its dependence on user specified goals. Thus, future
improvements in robot autonomy could include giving the
robots the ability to create their own goals or initiatives.

5.2.2 Predictive Power
In this context, predictive power is the ability to deter-

mine how the HRT will perform in unobserved conditions.
Thus, metrics are predictive if measures obtained in one
condition (e.g., a fixed robot team size) can be used to
accurately calculate measures for other (unobserved) con-
ditions (e.g., other robot team sizes). Predictive metrics
have two attributes. First, they are accurate, meaning that
their predictions are close to the actual measures we would
have observed in that condition. Second, they are consistent,
meaning that the predictions are accurate regardless of the
observed condition(s). These attributes can be assessed in
both relative and absolute ways [27].

In this subsection, we will analyze the ability of three
methods to predict FO and system effectiveness as robot
team size changes. Each method uses a different set of met-
rics drawn from the IE, NE, and AAE metric classes.

Predicting Fan-out. The first method, which was pre-
sented in [15], estimates FO using:

FO =
NT

IT
+ 1. (4)

Thus, this method assumes FO is determined by the number
of interactions that can occur with other robots while a robot
is being neglect.

The second method, presented in [14], adds wait times to
Equation (4) so that FO is computed using:

FO =
NT

IT + WT
+ 1, (5)

where WT = WTQ + WTSA.
The third method is a performance-based method de-

scribed in [3]. This method uses the metrics IT , ĪI, N̄I,
and NT (though IT and NT are determined in a slightly
different fashion than in Table 1). In short, values of IT , ĪI,
and N̄I are enumerated for all possible values of NT . For
each possible tuple (IT, NT ) a corresponding average robot
performance V̄ is calculated using

V̄ =
1

IT + NT

�
IT · ĪI + NT · N̄I

�
.



Figure 5: FO predictions using measures obtained
from observing 2-, 4-, 6-, or 8-robot teams.

Each robot in the team is then assigned its own (IT, NT )
tuple such that the sum of robot performances is maximized
given the constraint: NTj ≥

P
i6=j ITi for all j (where NTi

and ITi are the neglect and interaction times assigned to
robot i). This calculation is made for teams of all sizes. FO
is the point where performance peaks or plateaus.

FO predictions for each of these methods (using the val-
ues shown in Table 1) are shown in Figure 5. In the figure,
the x-axis represents the robot team size that was observed
and the y-axis shows the resulting FO prediction. None of
the methods consistently predicts the true FO (which, as
we discussed previously, was between four and six robots).
Method 1 predicts FO to be anywhere from 2.45 (when ob-
serving two robots) to 4.32 (when observing eight robots).
Thus, this method is not consistent due to variations in the
estimate of NT . Method 2’s FO estimates, though pes-
simistic, are relatively consistent. This is an interesting re-
sult since Method 2 is the only method of the three that
uses a metric with (partial) membership in the AAE metric
class (other than combining ST with IT ). It appears that
the variabilities in NT are counteracted by WT . Future
work should investigate whether this trend holds in other
contexts. Method 3, also provides a pessimistic estimate,
though its predictions are consistent except for the 6-robot
team condition (at which point it gives a good estimate of
FO). We illustrate why this method fails by analyzing its
ability to predict system effectiveness.

Predicting System Effectiveness. Methods 1 and 2
use temporally-based methods that only predict the num-
ber of robots a team should have. They do not predict
what a team’s effectiveness will be (for any robot team size).
Method 3, however, was designed to predict system effec-
tiveness [3]. These predictions for the HRTs observed in the
user study are shown in Figure 6. A set of predictions for
each observed robot team size is given. We make several
observations.

First, these predictions are not consistent in the abso-
lute sense, though they are in the relative sense. While the
predictions follow similar trends they do not always even
accurately predict the observed conditions. Second, the fig-
ure shows that these predictions are on scale with the ac-
tual scores. However, the predictions plateau much sooner
than the actual observed scores do. This shortcoming ap-

Figure 6: Predictions of system effectiveness based
on metrics obtained using 2-, 4-, 6-, and 8-robot
teams.

pears to be caused (at least in part) to the method’s reliance
on average values of IT , NT and robot performance. Fu-
ture work should investigate this claim. Lastly, though not
demonstrated here, this method can make vastly incorrect
predictions under certain situations [3]. Some reasons for
these failures are addressed in [10].

In closing our discussion on predictive power, we make
the following observations. First, it appears that predictive
tools that use measures from all three metric classes (IE,
NI, and AAE) may be better at providing consistent pre-
dictions. Second, performance-based measures seem to be
more desirable than time-based measures as they (a) appear
to give more accurate predictions and (b) can predict more
measures.

5.2.3 Key Performance Parameters (KPPs)
The third desirable element of a set of metric classes is

that they contain KPPs. Obviously, more than one KPP
can exist. However, in the interest of space we discuss just
one KPP for this user study, which was the average time
it took for a user to to locate a city on the map (part of
IT ). Several users in the study believed that their perfor-
mance was driven by how quickly they could perform this
primary task. Their claim seems to be somewhat valid as
the average time it took a user to find a city on the map
was negatively correlated (r = −717) with the users’ score
(from Equation 3). Thus, it appears that an effective way to
improve these HRTs’ overall effectiveness would be to pro-
vide the operator with additional aids in locating the city
on the map (or, for a real world example, aids for identify a
potential target in video imagery). Such aids could include
automated target recognition assistance, etc.

6. DISCUSSION AND FUTURE WORK
We have advocated that sets of metric classes for human-

robot teams be developed that indicate the limits of the
agents in the team, provide predictive power, and contain
key performance parameters. We presented a set of metric
classes and analyzed it with respect to these three attributes.
While sets of metrics drawn from this set of metric classes
show limits of the agents in the team and contain KPPs,
they fall short in the category of predictive power. Future



sets of metrics drawn from these classes and other metric
classes should improve upon these results.
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Identifying Predictive Metrics for Supervisory
Control of Multiple Robots

Jacob W. Crandall and M. L. Cummings

Abstract— In recent years, much research has focused on
making possible single operator control of multiple robots. In
these high workload situations, many questions arise including
how many robots should be in the team, which autonomy levels
should they employ, and when should these autonomy levels
change? To answer these questions, sets of metric classes should
be identified that capture these aspects of the human-robot team.
Such a set of metric classes should have three properties. First,
it should contain the key performance parameters of the system.
Second, it should identify the limitations of the agents in the
system. Third, it should have predictive power. In this paper, we
decompose a human-robot team consisting of a single human and
multiple robots in an effort to identify such a set of metric classes.
We assess the ability of this set of metric classes to (a) predict
the number of robots that should be in the team and (b) predict
system effectiveness. We do so by comparing predictions with
actual data from a user study, which is also described.

Index Terms— Metrics, human-robot teams, supervisory con-
trol.

I. INTRODUCTION

While most operational human-robot teams (HRTs) cur-
rently require multiple humans to control a single robot, much
recent research has focused on a single operator controlling
multiple robots. This transition is desirable in many contexts
since it will (a) reduce costs, (b) extend human capabilities,
and (c) improve system effectiveness. To achieve this goal,
additional research must address many issues related to the
human operator, the robots, and the interactions between them.

For HRTs consisting of a single operator and multiple
robots to be effective, many questions must be answered,
including: How many robots should there be in the team?
What human-robot interaction methodologies are appropriate
for the given human-robot team, mission, and circumstances?
What autonomy levels should the robots in the team employ,
and when should changes in these autonomy levels be made?
What aspects of a system should be modified to increase the
team’s overall effectiveness?

To answer these questions, generalizable metrics should be
identified that span the domain of HRTs [1]. Since metrics
of system effectiveness vary widely across domains [2] and
are typically multi-modal, it is unlikely that any one metric
or set of metrics will suffice. However, a set of metric classes
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that spans the parts (and subparts) of HRTs is likely to be
more generalizable. Loosely, a metric class is a set of metrics
that measure the effectiveness of a certain aspect of a system.
For example, we might consider the metric class of human
performance, which includes metrics of reaction time, decision
quality, situation awareness, workload, etc.

We claim that a set of metric classes can only answer the
previously mentioned questions with high fidelity if it has three
properties. A set of metric classes should (a) contain the key
performance parameters (KPPs) of the HRT, (b) identify the
limits of the agents in the team, and (c) have predictive power.

The first property states the need for metrics that are KPPs.
A KPP is a measurable quantity that, while often only mea-
suring a sub-portion of the system, indicates the team’s overall
effectiveness. Thus, the identification of KPPs helps determine
what aspects of the system should be improved to cause the
greatest increase in the system’s overall effectiveness.

The second property states the need to measure the capac-
ities and limits of both the human operator and the robots in
the team. Identifying metrics with this property is necessary
to answer questions dealing with the number of robots that
should be in the team and what autonomy levels these robots
should employ. Additionally, they help identify whether an in-
teraction paradigm is acceptable to a human operator. Failures
to adequately measure and identify these limits can lead to
catastrophic consequences.

The third property states the need for metrics that have
the ability to predict, or generalize, to other situations. Since
measures of HRTs are typically only taken over specific
conditions, they do not indicate how well a team will perform
under untested conditions, many of which are likely to occur
when the system is deployed. Conditions can vary in many
ways, including variations in the mission type, changes in the
environment in which the mission is performed, and variations
in the make-up of the team (e.g., number of robots). Thus,
without predictive metrics, an extremely large number of user
studies must be conducted in order to assess the effectiveness
of an HRT. Such a process is expensive, time consuming,
and, ultimately, impossible. Thus, sets of metrics should be
identified that can, from a small set of measured conditions,
adequately estimate the performance characteristics of an HRT
under unmeasured conditions.

A set of metrics that can predict a system’s overall effective-
ness under unmeasured conditions necessarily includes metrics
that are KPPs, as well as metrics that demonstrate the limits
of the agents in the team. Thus, in this paper, we focus on
developing metrics with predictive power. Specifically, we will
attempt to identify a set of metrics and their metric classes
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that can predict system effectiveness characteristics when the
number of robots in the team changes.

The remainder of this paper will proceed as follows. In Sec-
tion II, we review related work in the literature. In Section III,
we decompose an HRT consisting of a single human operator
and multiple robots. From this decomposition, we derive a
set of metric classes. To validate the usefulness of this set of
metric classes, we performed a user study involving multiple
simulated robots. We describe the design of the user study in
Section IV. In Section V, we present results from the study.
Based on measures obtained from this study, we construct
predictive tools for various system effectiveness measures. We
present these results in Section VI.

While HRTs of the future will include heterogeneous sets
of robots, we focus in this paper on the homogeneous case.
However, the principles and theories discussed in this paper
also apply to heterogeneous robot teams, though additional
issues will need to be considered for those teams. We also
assume that (a) the robots are remotely located from the
operator, and (b) the robots perform independent tasks.

II. BACKGROUND AND RELATED WORK

We now review related work and give relevant definitions.

A. Related Work

The work of this paper relies on and contributes to many
topics throughout the literature on human-robot teams. We fo-
cus on four topics: supervisory control of multiple robots, Fan-
out, metrics for human-robot teams, and adjustable autonomy.

1) Supervisory Control of Multiple Robots: When a human
operator supervises multiple robots, care must be taken to
ensure that the operator has the capacity to perform all of
her/his tasks. Adherence to multiple principles are required to
make this possible, including offloading low-level control of
the robots to automation [3], [4], [5], [6], ensuring that the au-
tomation is reliable [7], and improving interface technologies
(e.g. [8], [9]). Predictive metrics provide a means to evaluate
these technologies in a cost-effective manner.

When a human controls multiple robots, (s)he must nec-
essarily determine how to allocate his/her attention between
the various robots or groups of robots. This is related to the
concept of time-sharing of cognitive resources (see [2], [10]).
Time-sharing capabilities can be measured by metrics in the
attention allocation efficiency metric class, which we discuss
in the next section.

2) Fan-out: The term Fan-out (FO) refers to the number
of (homogeneous) robots that a single operator can effectively
control [11]. One line of research on this topic estimates FO
using measures of interaction time and neglect time [12], [11].
These metrics have been modified to include the use of wait
times [13], [14]. We analyze how effectively these metrics
estimate the observed FO in Section VI-A.

3) Metrics for Human-Robot Teams: Much of the work
on metrics in HRTs has focused on the human operator.
The most common of these metrics are metrics of operator
workload and situation awareness (SA). Metrics for measuring
operator workload include subjective methods [2], secondary

task methods (e.g. [15]), and psychophysiological methods
(e.g., [16], [17]). Operator workload is critical in determining
operator capacity thresholds [4]. SA, defined formally in [18],
is deemed to be critical to human performance in HRTs.
Efforts to formalize SA for the human-robot domain include
the work of Drury et al. [19], [20]. Despite its popularity,
measuring SA effectively in an objective, non-intrusive manner
remains an open question, though note [21].

In this paper, we combine metrics from various aspects of
the HRT to obtain measures of system effectiveness. This
is related to the work of Rodriguez and Weisbin [22], who
compute a measure of system effectiveness from measures
of the individual subtasks. However, their approach does not
address supervisory control of multiple robots.

4) Adjustable Autonomy: Central to the success of an HRT
is the level of automation employed by the robots in the
team. Sheridan and Verplank’s [23] general scale of levels of
automation has been widely accepted and adapted for use in
system design (e.g., [24], [25]). A system’s level of automation
need not be static. Due to dynamic changes in operator
workload and task complexities, appropriate variations in the
level of automation employed by the system are often desirable
(e.g., [6], [26]). We believe that predictive metrics such as
those discussed in this paper can assist in creating HRTs that
use adjustable autonomy more effectively.

B. Definitions

Throughout this paper, we refer to metrics, metric structures,
and metric classes. A metric class is a set of metrics and metric
structures that can be used to measure the effectiveness of a
particular system or subsystem. A metric structure denotes a
mathematical process or distribution that dictates performance
characteristics of measurements from within that class. Each
metric class has at least one metric structure. For brevity, we
often refer to metric structures as metrics.

III. A SET OF METRIC CLASSES

In this section, we identify a set of metric classes by
decomposing an HRT consisting of a single human operator
and multiple (remote) robots. We first decompose an HRT
consisting of a human operator and a single (remote) robot.
We then consider the multi-robot case.

A. The Single-Robot Case

An HRT consisting of a single robot has the two control
loops shown in Fig. 1, which is adapted from [12]. These
control loops are the control loops of supervisory control
defined in [27]. The upper loop shows the human’s interactions
with the robot. The robot sends information about its status
and surroundings to the human via the interface. The human
synthesizes the information and provides the robot with input
via the control element of the interface. The lower control-
loop depicts the robot’s interactions with the world. The robot
combines the operator’s input with information it gathers from
its sensors, and then acts on the world using its actuators.

The two control loops provide a natural decomposition of
an HRT with a single robot into two parts. Each part defines a
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Fig. 1. The two control loops of an HRT consisting of a single human
operator and a single (remote) robot. Adapted from [12].

metric class. Corresponding to the top control loop are metrics
that describe the effectiveness of human-robot interactions.
These metrics are members of the interaction efficiency (IE)
metric class. Corresponding to the bottom control loop are
metrics that describe the effectiveness of a single robot when
it is ignored by the operator. These metrics are members of
the neglect efficiency (NE) metric class. However, while these
two metric classes are separate, they are not independent from
each other. A failure in one control loop is likely to cause a
failure in the other control loop.

We now discuss a few metrics in each class.
1) Interaction Efficiency (IE): The IE metric class includes

several metrics that have been discussed in the literature. One
such metric is interaction time (IT ), which (for the single
robot case) is the amount of time needed for the operator to
(a) orient to the robot’s situation, (b) determine the inputs (s)he
should give to the robot, and (c) express those inputs to the
robot via the interface [28]. Measuring IT can be difficult
since doing so requires knowledge of what the operator is
thinking. Efforts to estimate IT include [11], [12].

Using IT to capture IE infers that shorter interactions are
more efficient than longer ones. Since this is not always the
case, we might consider metrics that more fully measure the
performance benefits of an interaction. Such metrics can be
derived from the metric structure interaction impact (II(t)),
which is the random process that describes a single robot’s
performance on a particular task as a human interacts with
it. This random process is a function of (among other things)
operator time-on-task t, which is the amount of time since
the operator began interacting with the robot. Additional
discussion of II can be found in [12]. One metric derived from
II is the robot’s average performance during interactions:

ĪI =
1

IT

∫ IT

0

E[II(t)]dt, (1)

where E[II(t)] denotes the expected value of II(t).
Other metrics in the IE class include wait times during

interactions (WTIs) [13] and the operator’s SA with respect
to that particular robot (SAr).

Fig. 2. In HRTs consisting of a single human and multiple robots, the human
must determine how to distribute his/her attention between the robots.

2) Neglect Efficiency (NE): The NE metric class consists
of metrics that describe the robot’s performance when the
human’s attention is turned elsewhere. Neglect time (NT ),
the average amount of time a robot can be ignored by the
operator before its expected performance falls below a certain
threshold [28], is a member of this metric class. Like IT ,
NT does not completely account for the robot’s performance.
This additional information can be obtained from the metric
structure neglect impact NI , which is the random process that
describes a single robot’s performances when it is ignored by
the operator. Additional information on NI can be found in
[12]. From NI , we can calculate the average performance of
the robot when it is neglected:

N̄I =
1

NT

∫ NT

0

E[NI(t)]dt, (2)

where E[NI(t)] denotes the expected value of NI(t).

B. The Multi-Robot Case

When a human interacts with multiple robots, the nature
of each human-robot interaction is similar to the single-robot
case with the important exception depicted in Fig. 2. The figure
shows two separate sets of control loops, one for each robot.
However, unlike the single-robot case, the upper loop for each
robot is not always closed. To close the loop, the human must
attend to the corresponding robot and neglect the others. Thus,
critical to the system’s effectiveness is the efficiency with
which the human allocates his/her time between the robots.
Metrics that seek to capture this efficiency have membership
in the attention allocation efficiency (AAE) metric class.

1) Attention Allocation Efficiency (AAE): Several metrics in
the AAE metric class have been studied in the literature. These
metrics include SA of the entire HRT (denoted SAg, for global
SA, to distinguish it from SAr), wait times due to loss of SA
(WTSA) (times in which a robot is in a degraded performance
state due to a lack of operator SA [13]), and switching
times (ST s) (the amount of time it takes for the operator
to decide which robot to interact with). Additional metrics
with membership in AAE can be determined from estimates of
the operator’s robot selection strategy SS (a metric structure).
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Fig. 3. A set of metric classes ({IE, NE, AAE}) and various metrics
drawn from those classes.

One such metric could be the probability that an operator’s
selection corresponds to the optimal policy (i.e., selection
strategy). We denote this metric as %OP (percent optimal
policy). We note that the optimal policy might ultimately be
impossible to know, though it can be approximated in some
domains using the metric structures II and NI (via dynamic
programming or some other optimization technique).

Fig. 2 also shows a connecting link between robots in the
team. This link captures the notion that interactions between
robots can have a significant impact on the team. This impact
could be made manifest in measures of IE, NE, and AAE, or it
could potentially be defined by a fourth metric class. However,
when robots perform independent tasks (as we assume in this
paper), this link has no effect on the behavior of the team.

C. Summary of Set of Metric Classes

The set of metric classes we have discussed is summarized
by Fig. 3. Note the intentional overlap of the metric classes as
some metrics span multiple classes. For example, the metric
WTQ (wait times in the queue [13]) is a metric dependent on
the interplay between all three metric classes.

IV. A CASE STUDY

We conducted a user study to evaluate the predictive power
of sets of metrics drawn from the previously described set of
metric classes. The user study was performed using a software
test-bed designed to capture the abstract tasks performed by
HRTs. In this section, we describe the software test-bed and
the experimental procedure of the user study.

A. Software Test-bed

We describe the software test-bed in three parts: the HRT’s
mission, the human-robot interface, and the robots’ behaviors.

1) Mission: Across many mission types, an HRT operator
commonly assists in performing a set of abstract tasks. These
abstract tasks include mission planning and re-planning, robot
path planning and re-planning, robot monitoring, sensor anal-
ysis and scanning, and target designation. Each of these tasks
can be performed using various levels of automation [23].

In designing this test-bed, we sought to capture each of these
tasks in a time-critical situation. The HRT (which consisted of
the participant and multiple simulated robots) was assigned the
task of removing as many objects as possible from the maze
in an 8-minute time period. At the end of 8-minutes, the maze
“blew up,” destroying all robots and objects that remained in
it. Thus, in addition to collecting as many objects as possible,
users needed to ensure that all robots were out of the maze
when time expired.

An object was removed from the maze (i.e., collected) using
a three-step process. First, a robot moved to the location
of the object (i.e., target designation, mission planning, path
planning, and robot monitoring). Second, the robot “picked
up” the object (i.e., sensor analysis and scanning). In the real
world, performing such an action might require the human
operator to assist in identifying the object with video or laser
data. To simulate this task, we asked users to identify a city on
a map of the mainland United States using GoogleTM Earth-
style software. Third, the robot carried the object out of the
maze via one of two exits.

The mission also had the follow details:
• At the beginning of the session, the robots were posi-

tioned outside of the maze next to one of two entrances.
• The form of the maze was initially unknown. As each

robot moved in the maze, it created a map which it shared
with the participant and the other robots.

• The objects were randomly spread through the maze. The
HRT could only see the positions of six of the objects
initially. In each minute of the session, the locations of
two additional objects were shown. Thus, there were 22
possible objects to collect during a session.

• The participant was asked to maximize the following
objective function:

Score = ObjectsCollected−RobotsLost, (3)

where ObjectsCollected was the number of objects re-
moved from the area during the session and RobotsLost
was the number of robots remaining in the area when
time expired.

2) Interface: The human-robot interface was the two-screen
display shown in Fig. 4. On the left screen, the map of the
maze was displayed, along with the positions of the robots
and (known) objects in the maze. The right screen was used
to locate the cities.

The participant could only control one robot at a time. When
a user desired to control a certain robot, (s)he clicked a button
on the interface corresponding to that robot (labeled UV1,
UV2, etc.). Once the participant selected the robot, (s)he could
direct the robot by designating a goal location and modifying
the robot’s intended path to that goal. Designating a goal for
the robot was done by dragging the goal icon corresponding
to the robot in question to the desired location. Once the robot
received a goal command, it generated and displayed the path
it intended to follow. The participant was allowed to modify
this path using the mouse.

To assist the operator in determining which robots needed
input, warning indicators related to a particular robot were
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Fig. 4. Two displays used in the experiment (on separate monitors). The display at left shows the map of the maze, the locations of the robots, their
destinations, the locations of the objects to be gathered, etc. The display at right shows the interface for the abstract visual task.

displayed next to its corresponding button. There were four
kinds of warning indicators:

• Assign Task Indicator – The robot had reached its goal
position.

• Visual Task Indicator – The robot had reached the object
it was designated to collect.

• Time Warning – In the last minute of a session, the robot
was still in the maze and had not been told to leave it.

• Deliver Object Indicator – The robot was carrying an
object, but had not been told to leave the maze.

If no status or warning was reported, the system determined
that the robot was satisfactorily progressing on its task.

3) Robot Behavior: The robots’ map of the maze took the
form of an undirected graph. Each edge of the graph was an
ordered pair (u, v) representing a connection between vertices
u and v in the graph. Associated with each edge was a weight
indicating the cost for a robot to move along that edge. Since
the maze was not fully known, a robot had to choose between
(a) moving along the shortest path of the known maze to its
user-specified goal and (b) exploring the unknown portions
of the maze in hopes of finding a shorter path. To make
this decision, a robot assumed that an unmapped edge from
a known vertex v led directly to the goal position with a
cost equal to the Manhattan distance from v to the robot’s
goal, plus some cost of exploration (CE). The robot used
Dijkstra’s algorithm on the resulting graph to determine the
path it intended to follow.

Using this approach, the constant CE determines the degree
to which the robots explore the unknown maze. Higher values
of CE result in less exploration. We used a small value of CE

for a robot that was searching for an object, and a higher
value for a robot that was carrying an object. Since users
sometimes felt that the resulting behavior was undesirable,
they were allowed to modify a robot’s path if they desired.

B. Experimental Procedure

Following training on all functions of the system and
after completing a comprehensive practice session, each user
participated in six eight-minute sessions. In each of the first
four sessions, a different number of robots (2, 4, 6, or 8) were

allocated to the team. In the last two sessions, the experimental
conditions (i.e., the robot team size) of the first two session
were repeated. The conditions of the study were counter-
balanced and randomized. The participants were paid $10 per
hour; the highest scorer also received a $100 gift certificate.

Twelve people (one professor, ten students, and one other
person from the community) between the ages of 19 and
44 years old (mean of 27.5) participated in the study. Of
these twelve participants, eight were U.S. citizens, two were
Canadian, one was Hispanic, and one was Egyptian. Three of
the participants were female and nine were male.

C. Note on Simulation

While simulated environments make it possible to evalu-
ate metric technologies in a cost-effective manner, simulated
robots often behave differently than real robots. For example,
our simulated robots have errorless localization capabilities,
but real robots typically do not. Thus, measures of system
performance characteristics of a human, real-robot team will
be different than those of a human, simulated-robot team (see,
for example, [12]). However, in both situations, we believe that
measures of AAE, IE, and NE are necessary to (a) thoroughly
evaluate the effectiveness of the HRT and (b) predict how the
HRT will behave in unmeasured conditions. All of the metrics
and metric classes we discuss in this paper can be used to
measure the performance of HRTs with both simulated and
real robots. Thus, while the results of this user study do not
generalize to HRTs with real robots, they are a demonstration
of the usefulness of these proposed metric classes.

V. RESULTS – EMPIRICAL OBSERVATIONS

The user study allows us to address two distinct questions
related to the HRT in question. First, how does the number of
robots in the team affect the system’s effectiveness? Second,
how does the number of robots in the team affect measures
drawn from the IE, NE, and AAE metric classes?

A. System Effectiveness Measures

The dependent variables we consider for system effec-
tiveness are those related to Eq. (3): the number of objects
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Fig. 5. Means and distributions of number of objects collected for each robot
team size.

collected by the HRT over the course of a scenario and the
number of robots lost during a scenario. We analyze each
variable separately.

1) Objects Collected: Fig. 5 shows the means and distribu-
tions of number of objects collected for each robot team size.
The figure shows that the number of objects collected steadily
increases as the number of robots in the team increases up to
six robots, at which point effectiveness plateaus. A repeated
measure ANOVA revealed a statistically significant difference
in number of objects collected across team sizes, α = 0.05
(F (3, 15) = 24.44, p < 0.001). Pairwise comparisons show
that 2-robot teams collected significantly less objects than did
4-, 6-, and 8-robot teams (p ≤ 0.001), and 4-robot teams
collected less objects than 6-robot teams (marginal statistical
significance; p = 0.057) and 8-robot teams (p = 0.035).

Teams with six and eight robots collected only about 3
more objects than teams with two robots. This relatively small
performance increase appears to be a bit deceiving, since
objects were weighted equally, regardless of how far into the
maze a robot had to travel to reach them. While both smaller
and larger robots teams collected the objects closest to the
exits, larger teams tended to collect more objects that were
deeper in the maze. This trend is illustrated by Fig. 6, which
shows the distributions of average (for each session) object
difficulty weightings of the collected objects for each team
size. Formally, each object i’s difficulty weight (denoted wi)
was defined by wi = di

E[di]
, where di was the shortest path

from the object to one of the two maze exits and E[di] is the
average distance from an exit to an object. Thus, an average
difficulty weight (wi) was equal to one, and objects with lower
weights were generally easier to collect. Thus, the difference
between the amount of work done by larger and smaller robot
teams is greater than Fig. 5 seems to indicate.

2) Robots Lost: Robots were lost if they were still in the
maze when time expired. Operators failed to help robots leave
the area for a number of reasons, including incorrectly esti-
mating the speed at which the robots moved, underestimating
the amount of time it took to locate a city on the map, and
employing too many robots toward the end of the session.

Fig. 6. Box plot showing difficulty of the objects collected under each robot
team size.

Fig. 7. Means and distributions of number of robots lost for each robot team
size.

Fig. 7 shows the number of robots lost for each team
size. A clear, statistically significant, distinction exists between
groupings of 2- and 4-robot teams and 6- and 8-robot teams
(χ2 = 13.71, df = 6, p = 0.033). This result indicates a
performance drop between four and six robots. Thus, while
robot teams with six and eight robots collected more objects
than smaller robot teams, they also lost more robots.

These results show that the HRTs in the user study with the
highest effectiveness had, on average, between four and six
robots. The “optimal” robot team size depends on the ratio
between the values of the objects and the robots.

B. Effects of Team Size on Measurements of IE, NE, and AAE

In this section, we discuss how metrics from the three metric
classes varied across conditions (i.e., numbers of robots). We
begin with the IE metric class.

1) Effects on Interaction Efficiency: For the IE metric class,
we consider interaction time IT . Distributions of IT s are
shown in Fig. 8. A repeated measures ANOVA shows a
statistical difference between IT s for different robot team sizes
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Fig. 8. Distributions of interaction times for different team sizes.

Fig. 9. Distributions of neglect times for different team sizes.

(F (3, 15) = 3.29, p = 0.049). Average IT was slightly shorter
for larger team sizes, though the difference was relatively small
(just 2.34 second difference between 2- and 8-robot teams).
Thus, robot team size had little impact on IT .

2) Effects on Neglect Efficiency: As an indicator of the NE
metric class, we consider neglect time NT . For this user study,
we calculated NT as the time between when the operator
finished servicing a robot until the time that either (a) the
robot arrived at its goal, or (b) the operator again decided to
service that robot. Distributions of NT s are shown in Fig. 9.

Measures of NT differed significantly and drastically across
team sizes (F (3, 15) = 47.21, p < 0.001). This trend can be
attributed to two different reasons. First, in the conditions with
less robots, operators had less to do. As such, they tended
to micro-manage the robots, changing the robots’ goals and
routes when they appeared to behave erratically. This meant
that the users’ decisions to interact often ended the neglect
period prematurely. On the other hand, when operators had
more to do (with larger robot teams), they tended to focus
less on local robot movements and more on global control
strategies. Thus, neglect periods were longer since they often
lasted until the robot reached its goal. A second reason that

Fig. 10. Estimated percentage of optimal robot selections by the operators.

NT was higher for larger robot teams is due to differences in
the distances robots traveled to reach their goals (Fig. 6). In
larger teams, it took robots longer to reach their goals since
they were assigned goals deeper in the maze.

3) Effects on Attention Allocation Efficiency: As an in-
dicator of AAE, we use an estimate of %OP . Recall from
Section III that %OP is the percentage of time the operator
serviced the “right” robot. Via a discrete event simulation,
models of robotic behavior in the presence and absence of
human attention (i.e., II and NI , respectively) can be used to
estimate how various robot selection strategies would affect
the system’s effectiveness. In this way, we can estimate the
(near) optimal robot selection strategies and then compare
these strategies with actual operator selections to determine
%OP . The resulting estimates of %OP from our user study
are shown in Fig. 10. The figure shows that the users’ ability
to determine which robot should be serviced decreased as the
number of robots in the team increased.

VI. RESULTS – PREDICTIVE POWER

We now turn to the task of extrapolating measures from
a single observed condition to unmeasured conditions. We
assume that we can observe the system in only a single
condition, which we refer to as the measured condition. Thus,
we must predict measures for the other desired conditions (the
unmeasured conditions) based on the measurements from the
measured condition. In this case, we seek to make predictions
for different robot team sizes.

The effectiveness of a predictive metric is determined by
two attributes: accuracy and consistency. Accuracy refers to
how close the predictions are to reality. Consistency refers
to the degree to which the metric predicts the same quantity
from different measured conditions. For example, a consistent
prediction algorithm would predict the same quantity for
a particular robot team size regardless of the whether the
measured condition had two or four robots.

In this paper, we consider predicting two different system
characteristics: FO and overall system effectiveness.
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Fig. 11. Fan-out predictions of four different methods for four measured
conditions (x-axis).

A. Predicting Fan-out

Predicting FO consists of predicting the point at which the
system’s effectiveness peaks or plateaus [11]. We consider four
methods for predicting FO found in the literature. The FO
predictions made by each method for each measured condition
are shown in Fig. 11. In the figure, the x-axis designates the
measured condition (i.e., robot team size), and the y-axis gives
the corresponding estimate of FO. Recall that we observed in
Section V-A that FO was between four and six robots. We
discuss the results from each predictive method in turn.

1) Method 1: This method, described in [11], predicts FO
to be the average number of robots that are active (called
activity time). Thus, this measure does not consider whether
or not a robot is gainfully employed, but just if it is doing
something. The method relies on the assumption that the
operator has as many robots at his/her disposal as (s)he
desires. When this assumption does not hold, the prediction
fails, as demonstrated in Fig. 11. The figure shows that the
estimate of FO increases as the number of robots in the
measured condition increases. Thus, this predictive method is
not consistent. It does, however, make a reasonable estimate
of FO ≈ 4 from the 8-robot measured condition.

2) Method 2: Olsen and Goodrich [29], [28] proposed that
FO could be estimated using the equation

FO =
NT

IT
+ 1. (4)

Thus, this method uses metrics drawn from the IE and NE
metric classes, but not AAE. To obtain predictions using
this method, we estimated IT and NT as discussed in the
previous section. The resulting FO predictions are shown in
Fig. 11. Like method 1, these predictions increase nearly
linearly with the number of robots in the measured condition.
Thus, this method also fails to be consistent in this case (due
to variations in measures of NT for different team sizes). The
FO predictions from the 6- and 8-robot conditions, however,
do fall into the range of 4-6 robots. Thus, like method 1, this
second method might require that measures be extracted from
measured conditions with many robots to be accurate.

Fig. 12. Predictions of overall system effectiveness using method 4 [12].
Actual refers to the mean (and standard error) of observed scores in the user
study and Predictions from N Robots shows the predictions (for all team sizes
shown along the x-axis) from the N -robot measured condition.

3) Method 3: Cummings et al. [13] modified Eq. (4) to
include wait times (WT ). Thus, this method considers metrics
from all three metric classes discussed in Section III. The
resulting FO equation is

FO =
NT

IT + WT
+ 1. (5)

Fig. 11 shows that the resulting predictions are relatively
consistent, though they are lower than the observed FO. At
least in this case, the inclusion of wait times counteracts
variations in NT . This makes an argument that predictive tools
should use metrics from IE, NE, and AAE.

4) Method 4: The previous methods we considered used
temporal-based measures to estimate FO. The fourth method,
described in [12], considers both temporal and performance-
based measures, including IT , ĪI , and N̄I (see Eqs. (1)
and (2)), but no measure of AAE. Using these quantities
(determined from the measured condition), it estimates the sys-
tem’s effectiveness for each potential robot team size (Fig. 12)
and then reports FO as the point at which performance is
maximized. Fig. 11 shows the resulting predictions. From the
2-, 4-, and 8-robot measured conditions, this method predicts
that FO = 3. From the 6-robot condition, it estimates FO =
5. Thus, this method has a semblance of consistency, though
its predictions still vary and tend to be pessimistic.

5) Summary: None of the methods we analyzed consis-
tently predicts the observed FO (between four and six robots).
Methods 1 and 2 appear to require that the measured condition
include many robots. Method 3’s predictions were consistent,
though low, suggesting that using metrics from all three metric
classes are needed for robust predictive power. Method 4
made, perhaps, the closest predictions on average, though its
predictions are also low and lacked some consistency. Thus,
while each of these metrics might have descriptive power, they
are unable to consistently predict the observed FO.
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Fig. 13. Predictions of objects collected (left) and robots lost (right) compared to the sample means obtained in the user study. Actual refers to the mean
(and standard error) of observed scores in the user study and Predictions from N Robots shows the predictions (for all team sizes shown along the x-axis)
from the N -robot measured condition. Each prediction is the average of 10,000 samples.

B. Predicting System Effectiveness

Method 4 was designed to predict an HRT’s overall effec-
tiveness [12]. Such predictions for the HRTs discussed in this
paper are shown in Fig. 12. The figure shows four sets of
predictions of HRT scores (Eq. (3)). Each set of predictions
estimates the HRT’s score for all team sizes (the x-axis) for a
single measured condition (specified in the legend). The figure
also shows the actual average scores (labeled Actual) in the
user study for each team size.

The general trend of each set of predictions in Fig. 12
is similar to the actual average scores from the users study,
especially those predictions made from the 6-robot measured
condition. However, a few noticeable differences between the
predictions and actual results are present. First, this method
assumes that predictions plateau once performance peaks,
which may not be the case, as it appears that HRTs with more
than six robots have degraded scores. To predict such a trend,
it is likely that a predictive algorithm must use measures of
AAE. Second, as was shown in the previous subsection, this
method predicts that overall effectiveness peaks sooner (i.e.,
with smaller team sizes) than it actually does. This seems
to be due to the reliance of the algorithm on the means of
the random processes and temporal variables rather than the
complete distributions. Third, Fig. 12 shows that this predictive
method is not as consistent as it otherwise might be.

We sought to improve these results by creating a new
predictive tool. This predictive tool uses stochastic metric
structures from each of the metric classes. As in method 4, II
and NI are modeled from data gathered from the measured
condition (i.e., robot team size) in the user study. Models
of SS (the operator’s strategy for choosing which robots to
service) and ST (the amount of time it takes the operator to
select a robot) are also constructed from this data in order to
represent metrics from the AAE metric class. If we assume
that these metric structures describe how the human operator
and each robot in the team would behave for each robot team
size, we can run a discrete event simulation using these models
for different robot team sizes to estimate how the number of

robots in the team will affect system effectiveness.
The average (out of 10,000 data samples) predictions gen-

erated by the discrete event simulations are shown in Fig. 13.
On the left are predictions of number of objects collected,
and on the right are predictions of number of robots lost.
The predictions give reasonably accurate estimates of the
conditions from which the metrics were modeled, especially
for objects collected. For example, from the 2-robot measured
condition, predictions of the number of objects collected for
2-robot teams are within the standard error of the actual
mean value. This result is important, as it suggests a certain
robustness in the set of metric structures used to obtain the
predictions. We note, however, that the predictions tend to
be slightly pessimistic, as they tend to estimate that the HRTs
would collect slightly less objects and lose slightly more robots
than they actually did.

The predictions also follow the trend of the actual observed
results. However, predictions tend to be less accurate when
the distance between the team size in the measured condition
and the team size for which we want to make estimates
is high. This is particularly true of predictions made from
the 2-robot measured condition. This is likely caused by a
number of issues, not the least of which is that, like NT and
%OP (Fig. 9), NI and SS vary depending on the number of
robots in the measured condition. Predicting how these met-
rics change would allow for more accurate predictions. This
could potentially be achieved by using multiple measurement
conditions, though this would require larger user studies.

VII. SUMMARY AND FUTURE WORK

The goal of this research is to identify sets of metrics that
(a) have predictive power, (b) identify the limits of the agents
in the team, and (c) are KPPs. In this paper, we focused on
constructing predictive metrics from a particular set of metric
classes, which we identified by decomposing a human-robot
team consisting of a single human and multiple robots. We
assessed the ability of predictive algorithms to predict Fan-out
and overall system effectiveness by conducting a user study in
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which participants controlled multiple simulated robots. From
the data collected in this study, we constructed models of
human and robotic behavior. We then used those models to
estimate Fan-out and system effectiveness in unmeasured con-
ditions. We compared these predictions to the actual results.

Though these results are encouraging, future work is
needed. Improvements should be made to the metrics dis-
cussed in this paper, and other important metrics and metric
classes should be identified. Future work should also consider
extrapolating predictions from multiple measured conditions
rather than a single condition in order to obtain more robust
predictions. Other future research directions in this area should
address HRTs with multiple human operators and robots that
perform dependent tasks.
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A Predictive Model for Human-Unmanned Vehicle

Systems
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Advances in automation are making it possible for a single operator to control multiple
unmanned vehicles (UVs). However, the complex nature of these teams presents a difficult
and exciting challenge for designers of human-UV systems. To build such systems effec-
tively, models must be developed that describe the behavior of the human-UV team and
that predict how alterations in team composition and system design will affect the system’s
overall effectiveness. In this paper, we describe a methodology for modeling human-UV
systems consisting of a single operator and multiple independent UVs. Via a case study,
we show that this modeling methodology yields an accurate description of the observed
human-UV system. Additionally, results show that the model is also able to accurately
predict how changes in the human-UV interface and the UVs’ autonomy levels will alter
the system’s effectiveness.

I. Introduction

Many important missions, including search and rescue, border security, and military operations, require
human reasoning to be combined with automated unmanned vehicle (UV) capabilities to form a synergistic
human-UV team. However, the design and implementation of such systems remains a difficult and challenging
task. Challenges related to the human operators, the UVs, and the interactions between them must be solved
before human-UV systems will realize their full potentials.

To understand and address these issues more fully, comprehensive models of human-UV systems should
be developed. These models should have two important capabilities. First, they should adequately describe
the behavior and performance of the team and the system as a whole. Second, these models should be able
to accurately predict the behavior and performance of the team as the environment, mission, or human-UV
system changes.

A model with both descriptive and predictive abilities has a number of important applications. For
example, such a model can improve the design and implementation processes of human-UV systems. As in
any systems engineering process, test and evaluation plays a critical role in fielding new technologies. In
systems with significant human-automation interaction, testing with representative users is expensive and
time consuming. Thus, the development of a high-fidelity model of a human-UV system with both descriptive
and predictive capabilities will streamline the test and evaluation cycle since it can both help diagnose the
cause of previous system failures and inefficiencies, and indicate how potential design modifications will affect
the behavior and performance of the system.

A model with both descriptive and predictive abilities can also, among other things, be used to determine
successful combinations of UVs within the team (team composition). The composition of futuristic human-
UV teams is likely to dynamically change both in number and type due to changing mission assignments
and resource availability. High-fidelity models can be used to ensure that changes in team composition will
not cause system performance to drop below acceptable levels. Furthermore, given the team composition,
these models can suggest which autonomy levels are appropriate for the UVs to employ.

As a step toward developing such high-fidelity and comprehensive models, we propose a methodology
for modeling human-UV systems consisting of a single human operator and a team of homogeneous and
∗Postdoctoral Associate, Department of Aeronautics and Astronautics, Cambridge MA 02139. AIAA Member
†Assistant Professor, Department of Aeronautics and Astronautics, Cambridge MA 02139. AIAA Associate Fellow
‡Ph.D. Candidate, Department of Aeronautics and Astronautics, Cambridge MA 02139
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independent UVs. In this modeling methodology, stochastic models of both the human operator and the
UVs in the team are formed from observational data. Combined, these models can successfully predict how
changes in the UVs’ autonomy and the human-UV interface affect the performance of the human-UV system.

The remainder of this paper proceeds as follows. In Section II, we define a stochastic model of human-UV
systems consisting of a single operator and multiple independent UVs. This stochastic model is constructed
using observational data as described in Section III. In Section IV, we describe a user study in which users
controlled a simulated UV team to perform a search and rescue mission. We use data observed from this
user study to model the human-UV team and make predictions about how design changes will affect the
system’s effectiveness. In Section V, we compare these predictions with observed results from the user study
to validate the effectiveness of the model. We conclude and discuss future work in Section VI.

II. Modeling Human-UV Systems

In this section, we define the specific kinds of human-UV systems we consider in this paper. We then
describe a modeling methodology for such systems.

II.A. Human-UV Teams

While current UV technologies typically require multiple human operators to control a single remote UV, it
is anticipated that continued advances in technology will make it possible for a few operators to supervise
many UVs. This capability is particularly desirable given a report that operators of unmanned aerial vehicles
(UAVs) are overworked due to an insufficient numbers of crew members.1 As such, in this paper, we consider
systems with reduced manning. In particular, we focus on systems consisting of a single operator and multiple
UVs.

A number of design decisions affect the nature of the interactions between the operator and the UVs in
these systems. One of these design decisions is the level of automation at which the UVs operate, ranging
between complete human control and complete system autonomy.2 The effects of levels of automation on
human-UV systems have been analyzed in many contexts, including work by Mitchell et al.,3 Kaber and
Endsley,4 and Wang and Lewis.5 Our modeling methodology can be applied to teams employing any level
or combined levels of automation.

Another design decision that affects human-UV interactions, and, ultimately, the system’s effectiveness,
is the level of teaming used in the system. Goodrich et al.6 discussed two teaming paradigms. In sequen-
tial control, the human operator attends to each UV individually. This approach is often necessary with
independent UVs. On the other hand, a human may desire to direct multiple UVs simultaneously through
goal-based commands. An example of such control is the PlaybookTM methodology.7 The model we present
in this paper assumes sequential control.

Futuristic human-UV teams will often be composed of UVs of multiple types (i.e., heterogeneous UV
teams). For example, teams could be composed of both unmanned aerial vehicles and unmanned ground
vehicles. While the model we present in this paper can be extended to teams with heterogeneous UV
capabilities, we consider only the homogeneous case in this paper. Nehme et al.8 and Wang and Lewis9

present models that explicitly consider the heterogeneous UV case. Our model also makes the assumption
that the UVs perform independent tasks, though it can be extended to include the collaborative case.

We now describe a methodology for modeling these human-UV systems.

II.B. A Stochastic Model

Our modeling methodology requires that stochastic models be constructed for various aspects of the system,
including the behaviors of both the human operator and the UVs. These separate models are then combined
to form a complete model of the human-UV system. In general, high-fidelity models of the separate aspects
of a system do not necessarily equate to a high-fidelity model of the complete system, particularly in the
case of complex interactions between team members. However, in our methodology, the separate stochastic
models are joined by the common theme of system state, which makes it possible to capture the interactions
between these individual models. Thus, joined together, the individual models form a complete model of the
human-UV system.

We first define system state as it pertains to the human-UV teams we consider. We then describe
individual stochastic models used to describe the behavior of the various members of the human-UV team.
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II.B.1. System State

Let the (factorized) system state be a vector of m features σ = (f1, . . . , fm) ∈ Σ, where Σ is the set of
system states, and where each feature fi can take on either a discrete or continuous set of values. A critical
challenge in modeling human-UV systems, then, is to identify the features that determine the behavior and
performance of the team at any given time.

In this paper, we define system state with two features, indicated with the tuple σ = (s, τ). The first
component of system state consists of the states of the individual UVs in the team. Formally, let si be the
state of UV i. Then, the joint state of the UVs in the team is given by the vector s = (s1, . . . , sn). Second,
in time-critical missions, system state is also determined by mission time τ , which is defined as the time
elapsed since the mission began. Other features, including the human operator’s cognitive state and world
complexity, could affect the behavior of the human-UV team. However, for simplicity, we do not explicitly
consider these features in this paper, though doing so is a subject of future work.

System state can be used to define various models of human-UV systems. We now describe our models,
beginning with models of individual UV behavior.

II.B.2. Modeling UV Behavior

A UV’s behavior is dependent on its automated capabilities as well as the frequency and duration of human-
UV interactions.10 Thus, one method for modeling UV behavior is via the temporal metrics of neglect
time and interaction time.10–12 A UV’s neglect time is the expected amount of time the UV can maintain
acceptable performance levels in the absence of interactions with the human operator. Interaction time is the
average amount of time an operator must interact with the UV to restore or maintain desirable performance
levels. Paired together, these metrics have been used to estimate a number of UV properties, including UV
attention demand ,13 which refers to the amount of time an operator that must be devote to a single UV,
and Fan-out ,10,12 which refers to the number of UVs that a single operator can effectively control.

While neglect time and interaction time are valuable and informative metrics, they often do not provide
a sufficiently detailed model of UV behavior to accurately describe and predict many relevant aspects of UV
behavior.14 An alternate modeling methodology is to describe a UV’s behavior with random processes.10,14

In this methodology, two sets of random processes are constructed, one which describes the UV’s performance
during human-UV interactions, and the other which describes the UV’s performance in the absence of
human-UV interactions. We call these random processes interaction impact (II) and neglect impact (NI),
respectively. Our modeling methodology follows this approach, though the random processes we construct
describe a UV’s state transitions rather than measured performance.

Formally, let σ ∈ Σ be the system’s state when the human began interacting with UV i. Then, the
random process II(σ) stochastically models UV i’s states throughout the duration of the interaction. The
time variable of the process takes on all values in the interval [0, l], where l is the length of the human-UV
interaction and t = 0 corresponds to the time that the human-UV interaction began. Thus, for each t ∈ [0, l],
II(σ; t) is a random variable that specifies a probability distribution over UV states.

Likewise, we model the behavior of a UV in the absence of human attention with a random process. Let
σ ∈ Σ be the system’s state when the UV’s last interaction with the operator ended. Then, the random
process NI(σ) describes the UV’s state transitions over time in the absence of human attention. Hence, for
each t ∈ [0,∞), where t = 0 corresponds to the time that the UV’s last interaction with the operator ended,
NI(σ; t) is a random variable that specifies a probability distribution over UV states.

The structures II(σ) and NI(σ) assume the Markov property that UV behavior is dependent only on
the system state σ at the beginning and end of the human-UV interaction, respectively. For the situations we
consider in this paper, this assumption does not appear to significantly detract from the predictive ability
of the model. However, if needed, the first-order assumption could be exchanged for an n-order Markov
assumption, though doing so drastically increases the amount of data needed to model these processes. In
large part, the accuracy of the Markov assumption is dependent on the set of UV states considered.

Finally, we note that when the UVs perform independent tasks, II(σ) and NI(σ) need not consider the
full joint state s of the UVs in the team. Rather, it is only necessary to consider the state of the UV in
question. Since we assume independent UVs in this paper, we use the simplified system state σ = (si, τ) in
these structures.

3 of 17

American Institute of Aeronautics and Astronautics



II.B.3. Modeling Operator Behavior

The human operator plays a crucial role in the success of the human-UV system. Thus, any high-fidelity
model of human-UV systems must accurately model the human operator. Since II(σ) and NI(σ) are driven
by human input, they implicitly model human behavior during interactions with an individual UV. However,
these structures do not account for how the human operator allocates attention to the various UVs in the
team, a process which we call attention allocation. Thus, our model must include other structures to model
operator attention allocation.

Previous work has identified two important aspects of attention allocation. The first aspect of attention
allocation involves how the operator prioritizes multiple tasks,15–17 which we define as the operator’s selection
strategy. A second important aspect of attention allocation is switching time, which is the time it takes the
operator to determine which UV to service.18,19

As is the case with modeling UV behavior, temporal metrics can be derived to measure attention allo-
cation. One such set of metrics involves the concept of wait times, or times that UVs spend in degraded
performance states.16,20,21 Higher wait times typically indicate less effective prioritization schemes and
longer switching times. Such metrics have been used to augment Fan-out predictions.20,21

However, as in modeling UV behavior, we choose to model operator selection times stochastically with
two separate structures. Formally, let σ ∈ Σ be the system state at the time that the previous human-UV
interaction ended. Then, ST (σ) is a random variable describing operator switching time given the system
state σ. Similarly, given σ, the operator’s selection strategy is defined by the random variable SS(σ), which
specifies a probability distribution over the UVs in the team.

In this model, the switching time ST (σ) is a combination of two kinds of time periods. First, it consists
of the time it takes for the operator to (a) orient to the circumstances of the UVs in the team, (b) select
a UV to service, and (c) carry out the necessary steps to select that UV. Second, it consists of any time in
which the operator chooses not to service any of the UVs in the team when he believes none of the UVs
need servicing. In such situations, the operator simply monitors the UVs’ progress, etc. In many situations,
it is desirable to distinguish between these time periods, though doing so requires knowledge of operator
intentions. We leave further investigation of this extension to future work.

We note that operator behavior in human-UV systems is driven by a number of important cognitive
processes and limitations. These processes and limitations include, among others, operator workload,22

operator utilization,23–25 operator trust in automation,26 operator situation awareness,27,28 and automation
bias.29 Because our stochastic structures directly model human behavior, they implicitly capture the results
of each of these cognitive effects, though they do not do so explicitly.

II.B.4. Model Summary

In summary, we have identified four stochastic structures that, when combined, form a model of the human-
UV system. The random processes of interaction impact II(σ) and neglect impact NI(σ) describe the
behavior of each of the UVs in the team in the presence and absence of interactions with the human operator.
Meanwhile, operator switching time ST (σ) and operator selection strategy SS(σ) describe how the human
operator allocates his attention among the UVs in the team. Taken together, these structures describe the
behavior of all members of the team at any given time.

In the next section, we describe how these stochastic structures can be constructed from data obtained
from observing the human-UV system.

III. Constructing the Model from Data

The mathematical structures II(σ), NI(σ), ST (σ), and SS(σ) can be constructed in a number of
ways. In the pre-implementation phase of human-UV system design, these structures can be handcrafted
to represent a hypothetical team from which inexpensive, yet powerful evaluations of the target system can
be made. However, once a human-UV system is implemented and observed in operations, data from these
observations can be used to construct a high-fidelity model of the system. This model can then, in turn, be
used to (a) analyze the shortcomings of the human-UV team, (b) estimate the effectiveness of various design
improvements, and (c) predict how the human-UV team will behave in previously unobserved situations. In
this section, we focus on situations in which the stochastic structures are constructed from observed data.
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Time τ0 τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8 τ9 τ10 τ11 τ12 τ13 τ14 τ15 τ16 τ17 τ18

Human 1 1 1 3 3 1 1 1 1 2 2

UV 1 s1 s2 s2 s2 s2 s2 s3 s3 s3 s3 s4 s4 s2 s2 s2 s2 s3 s4 s4

UV 2 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s1 s3 s3

UV 3 s1 s1 s1 s1 s1 s1 s2 s2 s2 s3 s3 s3 s3 s4 s4 s3 s3 s3 s4

(a) Hypothetical data from a single human, 3-UV team from time t0 through time t18.

UV System State Sequence

1 (τ0, s1) s1, s2, s2

3 (τ5, s1) s1, s2

1 (τ9, s3) s3, s4, s4, s2

2 (τ16, s1) s1, s3

UV System State Sequence

1 (τ3, s2) s2, s2, s2, s3, s3, s3, ??

3 (τ7, s2) s2, s2, s3, s3, s3, s3, s4, s4, s3, s3, s3, s4, · · ·
1 (τ13, s2) s2, s2, s2, s3, s4, s4, · · ·
2 (τ18, s3) s3, · · ·

(b) The set ΘII (c) The set ΘNI

System State Switch Time(
τ3, s = (s2, s1, s1)

)
2(

τ7, s = (s3, s1, s2)
)

2(
τ13, s = (s2, s1, s4)

)
3(

τ18, s = (s3, s1, s3)
)

?

System State State Selected (xo)(
τ0, s = (s1, s1, s1)

)
s1(

τ5, s = (s2, s1, s1)
)

s1(
τ9, s = (s3, s1, s3)

)
s3(

τ16, s = (s3, s1, s3)
)

s1

(d) The set ΘST (e) The set ΘSS

Figure 1. Data logged from observations of a human-UV system is organized into four sets of samples. (a) Hypothetical
data of a human-UV team with 3-UVs. (b)-(e) Sets of samples derived from the hypothetical data.

III.A. Constructing the Individual Behavioral Models

To model II(σ), NI(σ), ST (σ), and SS(σ), the data is first organized into four sets of data samples, which
we denote ΘII , ΘNI , ΘST , and ΘSS . We then implicitly model II(σ), NI(σ), ST (σ), and SS(σ) for each
σ ∈ Σ by forming probability distributions over the samples in these sets. These probability distributions
over samples can then be used to model the human-UV system via a discrete event simulation.

III.A.1. Extracting Data Samples

To see how data is organized into the sets of samples ΘII , ΘNI , ΘST , and ΘSS , consider Figure 1a, which
shows a hypothetical data log for a 3-UV team sampled at the discrete mission times τ0 through τ18. In
the figure, the row labeled “Human” indicates the UV that the operator attended to at each mission time,
with empty cells indicating that the operator was not servicing any UV. For example, at mission time τ6,
the operator was attending to UV 3. The figure also shows the state of each UV at each mission time. For
example, at mission time τ6, the joint state was s = (s3, s1, s2), meaning that UV 1 was in state s3, UV 2
was in state s1, and UV 3 was in state s2.

Figure 1b-e shows the various sets of data samples derived from this set of hypothetical data. The set
ΘII contains four data samples (Figure 1b), one corresponding to each human-UV interaction. A data
sample in ΘII consists of two pieces of information: the system state at the beginning of the interaction and
the UV’s sequence of states throughout the duration of the interaction. Thus, the second entry in Figure 1b
corresponds to the operator’s second interaction in the data segment, in which the operator serviced UV 3
at times τ5 through τ6.

Corresponding to each sample x ∈ ΘII is a sample in ΘNI . These samples, which are shown for our
hypothetical example in Figure 1c, contain the same kinds of information as those in ΘII , except that the
sequences of UV states in these samples are theoretically infinite (since they represent UV behavior in the
absence of UV interactions). This is problematic, since the data log in Figure 1a does not provide such
information. For example, the sequence of UV states for the first entry of Figure 1c is incomplete since this
sequence was trumped by human interaction at time τ9. Thus, UV behavior in the absence of human-UV
interactions after this time is unknown and must be estimated.

The sets ΘST and ΘSS formed from the example data log are shown in Figures 1d and 1e, respectively.
Each of these samples is composed of the system state at the time the sample occurred and the outcome
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of that particular sample. The outcomes take on the form of a switching time in ΘST and the state of the
selected UV in ΘSS .

III.A.2. Constructing Probability Distributions over Samples

The structures II(σ), NI(σ), ST (σ), and SS(σ) can be estimated for all σ ∈ Σ by forming probability
distributions over the sets of samples just described. We now formally define these probability distributions
for each structure.

II(σ). The behavior of a UV during a human-UV interaction can be estimated using the state sequences
of the samples in ΘII that are close matches to the target system state σ. Specifically, the probability that
sample x ∈ ΘII is chosen to model a UV’s behavior during an interaction given the target system state σ is

Pr(x|σ) =
wIIx (σ)∑

y∈ΘII w
II
y (σ)

. (1)

The value wIIz (σ), where z ∈ {x, y}, is a weight determined by the distance of the sample’s system state
zσ = (zs, zτ ) to σ = (si, τ). Formally,

wIIz (σ) =

{
f(zτ − τ) if si = zs

0 otherwise
(2)

where f(·) is a time-weighting function that gives higher weight to samples in which zτ is close to τ . In
words, the weight of sample z is given by the proximity of the target mission time τ to the sample’s mission
time zτ , provided that the target UV state si is equal to the sample’s UV state zs.

NI(σ). Likewise, the stochastic behavior of a UV while being neglected can be estimated with a
probability distribution over the samples in ΘNI . However, in practice this is not necessary, since the
behavior of the UV when it is neglected follows from the previous human-UV interaction. Thus, the sample
y ∈ ΘNI that succeeds the selected sample from ΘII can be used to describe UV behavior after the
interaction is completed. For example, if the first entry of Figure 1b were selected to define a UV’s behavior
during a human-UV interaction, then the first sample of Figure 1c would be selected to define the behavior
of the UV when the interaction terminated.

ST (σ). Operator switching time is modeled as a probability distribution over the samples in ΘST .
However, unlike the samples in ΘII and ΘNI , samples in ΘST consider the complete joint state s rather than
just the individual UV’s state si. Thus, determining the proximity of a sample’s system state xσ = (xs, xτ )
to the target system state σ = (s, τ) becomes more complicated than in Equation (2).

To define the proximity between s and xσ, let Vx be the set of permutation vectors of xs and let vix be the
ith element of the vector vx ∈ Vx. Then, the similarity between the joint states s and xs, denoted Φ(s, xs),
is given by

Φ(s, xs) = min
vx∈Vx

n∏
i=1

φ(si, vix), (3)

where φ(si, vix) ∈ [0, 1] is the similarity between the individual UV states si and vix, and where φ(si, vix) = 1
when si = vix. In words, the similarity between the joint states s and xs is the product of the similarities
between the individual UV states when the states in the two vectors are reordered to form the closest match
between the two vectors.

Then, the weight of a sample x ∈ ΘST is a combination of Φ(s, xs) and the difference between the sample
mission time xτ and the target mission time τ . Formally, let

wSTx (S, T ) = Φ(s, xs) · f(xτ − τ), (4)

where f(·) is defined as before. Thus, the probability that a sample x ∈ ΘST given the system state σ is:

Pr(x|σ) =
wSTx (σ)∑

y∈ΘST w
ST
y (σ)

. (5)
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1. Set τ = 0, determine an initial sample from ΘNI for each UV
2. Repeat

(a) τ = τ + xo, where xo is the outcome of some sample x ∈ ΘST

(b) Update the joint state s
(c) Select a UV (denoted UV k) to service using sample x ∈ ΘSS

(d) Select a sample x ∈ ΘII for UV k
(e) τ = τ + l (l is the length of the state sequence of sample x chosen in (d))
(f) Update the joint state s
(g) Select a sample x ∈ ΘNI for UV k

Algorithm 1: Outline of the discrete event simulation. Samples are selected as described in Section III.A.2.

SS(σ). The operator’s switching strategy in the target system state σ is modeled with a probability
distribution over the samples in ΘSS . This probability distribution is defined in the same manner as ST (σ),
except that wSSx (σ) is defined as

wSSx (σ) =

{
Φ(s, xs) · f(xτ − τ) if ∃si ∈ {s} : si = xo

0 otherwise
(6)

where xo is the outcome (or selected state) in sample x ∈ ΘSS and {s} denotes the set of individual UV
states contained in s. In words, wSSx (σ) is defined identically to wSTx (σ) except that we consider only samples
with an outcome xo that matches the state of one of the UVs in the target joint state s.

III.B. Combining the Behavioral Models

Once constructed, these four stochastic structures can be used to simulate the behavior of a human-UV
system using a discrete event simulation, outlined in Algorithm 1. In step 2a, the human operator’s switching
time is determined, during which time we observe the UVs’ state transitions defined by each UV’s chosen
sample in ΘNI . In steps 2c-d, UV k is selected for servicing and a sample is drawn from ΘII . UV k acts
according to this sample’s state sequence for the next l time units, while the other UVs continue to act
according to their samples of ΘNI . When the interaction is completed, another sample is chosen to simulate
the behavior of UV k from ΘNI . The process then repeats.

III.C. Implementation Specific Modeling Parameters

The model we have described can be used to model a wide variety of human-UV systems performing a wide
variety of missions. However, the model requires several mission and team-specific definitions. First, the
model requires that a set of individual UV states be identified. As in any mathematical model that uses the
concept of state, a good set of individual UV states balances two objectives. First, if two situations cause
different behaviors from either the human operator or a UV in the team, they should be marked as different
states. Second, a good set of individual UV states should be as small as possible in order to make the model
efficient. In general, a smaller state space is necessary for smaller data sets, while a larger state space can
be used for larger data sets.

In addition to an enumeration of individual UV states, the model requires two other definitions. First,
definitions of similarities between the individual UV states are necessary (see (3)). Second, in time-critical
missions, the model requires that the time-weighting function f(·) be defined. Ideally, the model should
select only samples taken in similar mission times to the target mission time. However, when the data set is
small, this restriction must often be relaxed.

In the next section, we describe a user study that illustrates the descriptive and predictive abilities of
this modeling methodology.

IV. Experimental Case Study

To validate the modeling methodology, we conducted a user study in which a human operator directed
a simulated UV team in a search and rescue mission. In this section, we describe this user study, including
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Figure 2. The human-UV interface used in the experiment. The display at left shows the map of the maze, the locations
of the UVs, their destinations, the locations of the objects to be gathered, etc. The display at right shows the interface
for locating cities.

the the study’s software test-bed and experimental procedure. We also define system- and mission-specific
modeling parameters needed to model the human-UV systems in the study. In the next section, we demon-
strate the descriptive and predictive power of our modeling methodology using data obtained from this user
study.

IV.A. Software Test-bed

In the user study, participants supervised simulated UVs in RESCU (Research Environment for Supervisory
Control of Unmanned-Vehicles). A simulated UV environment was chosen since current UV capabilities do
not allow for rapid prototyping of systems that allow a single human to control multiple UVs simultaneously.
Furthermore, while simulated UVs obviously behave differently than real UVs in many respects, the modeling
methodology described in this paper can be used to model teams with both simulated and real UVs.

We now describe the software test-bed used in the user study in three parts: the human-UV team mission,
the human-UV interface, and the UVs’ behaviors.

IV.A.1. Mission

Each participant was tasked with using simulated UVs to collect as many objects as possible from a maze
in an eight-minute time period, while ensuring that all UVs were out of the maze when time expired. The
objects were randomly spread through the initially unknown maze. However, as each UV moved about the
maze, it created a map that it shared with the participant and the other UVs in the team. Initially, only the
positions of six of the objects were shown to the team. The locations of two additional objects were shown
to the team in each minute of the scenario, so there were 22 possible objects for the team to collect.

An object was collected from the maze using a three-step process. First, a UV moved to the location of
the object in the maze. Second, the UV picked up the object. In the real world, performing such an action
might require the human operator to assist in identifying the object with video or laser data. To simulate
this task, we asked users to identify a city on a map of the mainland United States using Google Earth-style
software. Third, the UV carried the object out of the maze via one of two exits.

The subjects were told to maximize the following objective function:

Score = ObjectsCollected− UV sLost, (7)

where ObjectsCollected was the number of objects removed from the area during the session, and UVsLost
was the number of UVs remaining in the area when time expired.

IV.A.2. Interface

The human-UV interface was the two-screen display shown in Figure 2. The map of the maze was displayed
on the left screen, along with the positions of the UVs and the known objects in the maze. The participant
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used the right screen to identify cities on the map. The participant could only control one UV at a time,
which he selected by clicking a button on the interface corresponding to that UV. Once the participant
selected the UV, she could direct the UV by designating a goal location and modifying the UV’s intended
path to that goal. To designate a goal, the user dragged the goal icon corresponding to the UV in question to
the desired location. The UV then generated and displayed the path it intended to follow. The participant
could modify this path using the mouse.

Two different interface modes were used in the user study. In the first mode, the operator was provided
no assistance in identifying the cities on the map. In the second mode, the operator was assisted by an
automated visioning system (AVS). The AVS suggested two candidate cities on the map to the user. These
suggestions were imposed on the map as blinking red boxes around the suggested cities. The system was
designed so that one of these suggestions was correct about 70-75% of the time.

IV.A.3. UV Behavior

The UVs used Dijkstra’s algorithm to plan their movements through the maze toward their goal destinations.
However, as the maze was incomplete, the UVs had to decide between exploring the unknown maze and
taking a known, possibly longer, path. Further details on how the UVs made these decisions are documented
in previous work.14 The participant was allowed to modify a UV’s path if she desired.

Two different UV autonomy modes were used in the study. In the first mode, goal generation was solely
the task of the participant. If the participant did not provide a goal for the UV, the UV did not act. In the
second mode, each UV automatically selected a new goal when it was left idle. Specifically, a management-
by-exception (MBE) level of automation was used in which a UV left idle at its goal destination, but not
on an object in the maze, waited 15 seconds for the user to intervene. If the user did not intervene, the UV
automatically derived its own goal. In the case that the UV was searching for an object, it made the nearest
unassigned object its new goal. On the other hand, if the UV was already carrying an object, it set the
nearest perceived exit as its new goal. Additionally, when the user did not intervene, the UVs automatically
chose to exit the maze via the nearest perceived exit in the final 45 seconds of a session.

IV.B. Experimental Procedure

The experiment was a 4 (decision support) x 4 (UV team size) mixed design study. Decision support (DS)
was a between-subjects factor, with the four levels of decision support being (1) noDS (no AVS and no
MBE), (2) AVS (AVS but no MBE), (3) MBE (MBE but no AVS), and (4) AVS-MBE (both AVS and
MBE). UV team size was a within-subjects factor; each participant performed the search and rescue mission
for team sizes of two, four, six, and eight UVs. The order in which the participants used each team size was
randomized and counter-balanced throughout the study.

Each participant was randomly assigned to a DS condition and trained on all aspects of that system. The
participant then completed three comprehensive practice sessions. Following these practice sessions, each
participant performed four test sessions, each with a different team size. After the session, a retrospective
verbal protocol was conducted in which participants answered questions about their behavior in the study.
Each participant was paid $10 per hour; the highest scorer also received a $100 gift certificate. Sixty-four
participants between the ages of 18 and 49 participated in the study, 16 in each condition.

IV.C. Model Parameters

As outlined in Section III.C, our modeling methodology requires a set of individual UV states, a similarity
metric, and a time-weighting function f(·). We now give these definitions for the human-UV system used in
the user study.

IV.C.1. A Set of UV States

Recall that a set of UV states should distinguish among situations that evoke or should evoke different
behaviors from the human operator or the UVs in the team. We used statistical analysis of participants’
selection strategies during the user study as well as user’s post-experiment comments to identify such a set of
states in RESCU. From this process, we identified 21 distinct UV states. The decision tree for determining
a UV’s state is shown in Figure 3.
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Figure 3. The decision tree used to define a UV’s state at any given time in the user study.

As shown in Figure 3, a number of features were used to determine a UV’s state. These features included
whether a UV was searching for an object, exiting the maze, waiting for the human to help pick up an object,
or waiting for a goal assignment from the human. The state of a UV searching for an object or exiting the
maze was further distinguished by features such as whether or not the UV was following a known path to
the goal, and if another unassigned object was closer to the UV than its currently assigned destination.

IV.C.2. A State Similarity Metric

A similarity function φ(si, sj), which defines the similarity of state si to state sj , for RESCU can also be
derived from the decision tree shown in Figure 3. In the decision tree, features that have a higher impact
on human and UV behavior are placed higher in the tree. Thus, states in the same subtree tend to have a
higher similarity than those that are not in the same subtree. This point can be exploited to construct a
similarity metric.

Formally, let g(si, sj) denote the length of the path in the decision tree from si to the nearest common
ancestor of si and sj . For example, g(s1, s2) = 1 since the states s1 and s2 share the same parent, whereas,
g(s1, s5) = 3 since the nearest common ancestor is three levels up the tree. Then, φ(si, sj) is given by

φ(si, sj) =
1

g(si, sj)c
, (8)

where c is some positive integer that controls the sensitivity of the metric. Increasing c decreases the
similarities between states.

IV.C.3. A Time-Weighting Function f(·)

Recall that the time-weighting function f(·) is used to weight each sample x based on how closely a sample’s
mission time (xτ ) matches the target mission time τ . We use a function proportional to a truncated Gaussian,
namely

f(xτ − τ) =

{
exp

(
− (xτ−τ)2

2ν2

)
if (xτ − τ) < W

0 otherwise
(9)

where ν and W are positive constants. Due to the time-critical nature of RESCU, we chose to truncate the
Gaussian function (with W ) so that a sample’s weight was positive only if xτ was close to τ .

V. Results

In this section, we discuss the results of the user study, beginning with a summary of the system effec-
tiveness achieved by the human-UV systems in each condition of the study. We then analyze the model’s
ability to describe human-UV systems and predict how changes in the system will alter its effectiveness.
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Figure 4. Mean number of objects collected (left) and UVs lost (right) observed in each experimental condition.

V.A. Observed System Effectiveness

In the user study, system effectiveness was determined by the number of objects collected and the number
of UVs lost. Figure 4 shows the average number of objects collected and UVs lost in each condition of the
study. The figure shows several trends. First, a repeated measures ANOVA shows that team size had a
main effect on the number of objects collected (F (3, 180) = 92.65, p < 0.001). Pairwise comparisons show a
significant difference in objects collected for all team sizes (p < 0.001 in each case) except six- and eight-UV
teams (p = 0.663). The number of objects collected increased with team size up to six UVs.

A second trend visible in Figure 4 is that the number of UVs lost also increased with team size (F (3, 180) =
19.27, p < 0.001). Pairwise comparisons show similar trends to those seen in number of objects collected.
Four-UV teams lost more UVs than two-UV teams (p = 0.003), six- and eight-UV teams lost more UVs than
four-UV teams (p = 0.033 and p = 0.001, respectively), but there was not a statistical difference in UVs lost
between six- and eight-UV teams (p = 0.663).

Analysis of decision support type showed a main effect on the number of objects collected (F (3, 60) =
3.616, p = 0.018), but not on the number of UVs lost (F (3, 60) = 0.54, p = 0.655). Pairwise comparisons
show a statistical difference in objects collected between the noDS and AVS-MBE decision support types
(p = 0.013), but not in any of the other pairings. However, these results, coupled with the trends shown
in the figure, suggest that the AVS and the MBE enhancements both had a positive effect on the number
of objects collected by the system, though only the combined effect showed a statistical difference from the
noDS condition.

However, in practice, a human-UV system and its enhancements are typically deployed in series and not
in parallel. Thus, system designers do not often have the benefit of statistical comparisons between the
base system and its enhancements. As an example, consider the situation in which the noDS human-UV
system is implemented and deployed. After observations of this system during deployment, various system
improvements could be considered if the noDS system was not deemed sufficiently effective. High-fidelity
models can be used to accurately evaluate these enhancements in a cost-effective manner.

In the remainder of this section, we analyze the ability of the modeling methodology described in this
paper to provide such capabilities. In so doing, we use data from the noDS condition of the user study to
model the noDS system for each team size. We use the resulting models to predict the system effectiveness of
AVS-, MBE-, and AVS-MBE-enhanced systems, without the benefit of data obtained from observing these
systems. We compare these predictions to the results observed in the user study.

V.B. Modeling Observed Results

We constructed four separate models, one corresponding to each team size, from observational data taken
from the user study in the noDS conditions. Using the least mean squared error criteria, we set the parameters
found in Equations (8) and (9) so that c = 10, ν = 10 seconds, and W = 100 seconds, though these parameter
values had relatively little affect on the accuracy of the models. The resulting models were then used to
simulate the noDS human-UV system using Algorithm 1.
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Figure 5. Comparison of observed system effectiveness in the user study in the noDS conditions to the models’ estimates
of objects collected (left) and UVs lost (right). The models’ estimates are the mean of 5,000 simulations of Algorithm 1.
Error bars represent a 95% confidence interval on the mean.

Figure 5 compares the average number of objects collected and UVs lost in the noDS condition of the
user study to the estimates made by our models. The figure shows that the models’ estimates of objects
collected are nearly identical to those observed in the user study. Furthermore, the models’ estimates of
UVs lost are also reasonably good. For two- and four-UV teams, the estimates are almost identical to the
observed values. However, for six- and eight-UV teams, the model slightly over-estimates the number of UVs
lost, though estimates are still well within the 95% confidence intervals.

The reason for the slight inaccuracies in estimating UVs lost for larger teams appears to be tied to small
inaccuracies in the modeling of operator selection strategies. To avoid losing UVs in RESCU, an operator
is sometimes required to make precise time-critical decisions in order to ensure that UVs leave the maze in
time, whereas the same time-critical precision is not required to collect objects. As the joint state space
becomes larger with larger teams, the relatively small number of data samples compared to the size of the
joint state space makes it difficult to model operator strategies with sufficient precision. As a result, the
model slightly over-estimates the number of UVs lost in larger UV teams.

Despite these small inaccuracies, the estimates are, overall, reasonably good. They demonstrate that this
modeling methodology is able to describe the performance of the system in the noDS condition. However,
these results do not demonstrate predictive ability since the model is only duplicating observed results. To be
predictive, the model must have the capability of predicting the effectiveness of the system under alternate
conditions. Such alternate conditions include changes in the system design itself, including the AVS, MBE,
and AVS-MBE enhancements.

V.C. Predicting the Effects of System Design Modifications

We now assess the models’ ability to predict the effectiveness of the system with the AVS, MBE, and
AVS-MBE enhancements. We discuss each set of predictions separately.

V.C.1. Predicting the Effects of the AVS Enhancement

To predict how the AVS enhancement would change the human-UV system’s effectiveness, we must determine
which aspects of the team will be affected and in what way they will change. These anticipated changes
in the system must then be reflected in the individual samples contained in the model, which entails either
deriving a new set of samples, or editing the existing samples. We use the latter approach in this paper.

Since the AVS assists in human-UV interactions, it will mostly affect II; we assume that the other
structures are left unchanged. To capture the change in II induced by the AVS enhancement, we edit
the samples in ΘII in which the operator identified a city on the map. In these samples, the amount of
time taken to identify the city should be altered to reflect the change in search times caused by the AVS.
We estimated the city search times with the AVS enhancement using data from a different user study, and
substituted these new search lengths into the samples of the model. On average, the AVS decision support
tool reduced city search times by approximately five seconds.
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Figure 6. Comparison of model predictions to observed data from the AVS condition. The predictions are the mean
of 5,000 simulations of Algorithm 1. Error bars represent a 95% confidence interval on the mean.
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Figure 7. Comparison of model predictions to observed data from the MBE condition. The predictions are the mean
of 5,000 simulations of Algorithm 1. Error bars represent a 95% confidence interval on the mean.

After modifying the samples in ΘII from the noDS condition to model the effects of the AVS enhancement,
we simulated the AVS-enhanced team using the discrete event simulation outlined in Algorithm 1. We then
adjusted the simulation’s predictions of system effectiveness to account for the initial errors present in the
model. Specifically, we multiply the simulation’s predictions by the ratio of the observed values to the
modeled values in Figure 5. The resulting predictions are shown in Figure 6 along with the observed
effectiveness of the AVS-enhanced system in the user study. For each team size, the models’ predictions are
reasonably accurate for both objects collected and UVs lost, as all predictions fall within the 95% confidence
intervals. Thus, for this case, the model was able to predict how changes in the human-UV interface affect
the system’s effectiveness.

V.C.2. Predicting the Effects of the MBE Enhancement

The MBE enhancement alters a UV’s behavior in the absence of human-UV interactions. Thus, whereas the
AVS enhancement primarily affected II, the MBE enhancement primarily affects NI. As such, to simulate
the MBE enhancement, we must modify the samples in ΘNI to reflect this new behavior.

To estimate how each sample x ∈ ΘNI would change due to the MBE enhancement, we must first identify
when the MBE enhancement would cause changes in each sample’s state transition sequence. Second, we
must determine new state transition sequences for these samples. We used MBE’s rules for automated goal
assignment to determine when state transition sequences would change. To estimate UV behavior at these
times, we assumed that a UV’s behavior would be similar to a UV’s state transition sequence after the
operator assigned the UV a goal in the noDS condition. Thus, state transition sequences in ΘNI that would
be altered by the MBE enhancement can be edited with state transition sequences in ΘNI that came directly
after goal assignments.
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Figure 8. Comparison of model predictions to observed data from the AVS-MBE condition. The predictions are the
mean of 5,000 simulations of Algorithm 1. Error bars represent a 95% confidence interval on the mean.

After modifying each sample x ∈ ΘNI as described, we predicted the effectiveness of the MBE-enhanced
system using the same process as we used for the AVS condition. Figure 7 compares these predictions to
the observed performance of the MBE-enhanced system in the user study. For number of objects collected,
the figure shows that the model makes reasonably good predictions for each team size, as all predictions
fall within the 95% confidence interval. However, the predictions for UVs lost, though accurate for six- and
eight-UV teams, are low for smaller UV teams. This is particularly true of the two-UV case in which the
prediction is outside of the 95% confidence interval. While the model predicted a slight drop in number
of UVs lost from the noDS condition for small teams, the number of UVs lost in these conditions actually
increased. This trend, however, is not statistically significant. The increase in UVs lost could be due to
operators’ over-trust in the UVs’ ability to remove themselves from the maze in sufficient time. Since the
model does not explicitly account for operator trust, we leave further analysis and inclusion of this factor to
future work.

V.C.3. Predicting the Effects of the AVS-MBE Enhancement

The AVS-MBE enhanced system can be simulated by combining the changes in the models used to simulate
the AVS- and MBE-enhancements individually. Figure 8 compares predictions of system effectiveness made
by the models against those observed in the user study. Once again, the predictions made by the model
are reasonable, though not perfect. For each team size, the predictions of objects collected are higher than
the observed results, while the predictions of UVs lost are lower than the observed results. However, with
the exception of the prediction of objects collected in the four-UV condition, all predictions are with the
95% confidence interval. These results demonstrate that the model is capable of giving reasonably good
predictions even for multiple design changes.

V.D. Implications for Human-UV System Design

In this section, we have shown that our models can both describe and predict the effectiveness of human-UV
systems consisting of a single operator and multiple UVs. Thus, the modeling methodology described in this
paper could be of value to designers of human-UV systems. For example, consider the situation in which the
noDS system has been designed, implemented, and deployed. Since the noDS system often loses a substantial
number of UVs and collects, on average, no more than half of the total possible objects (Figure 4), it would
be desirable to alter the system to improve its effectiveness. Our modeling methodology can evaluate the
effectiveness of various potential system alterations, including the AVS, MBE, and AVS-MBE enhancements,
without the benefit of implementing them.

The predicted effects of the AVS, MBE, and AVS-MBE enhancements on the system’s effectiveness
are shown together in Figure 9. The figure shows predictions for objects collected (Figure 9a), UVs lost
(Figure 9b), and system score (Figure 9), which is the objective function given in Equation (7) that subjects
were asked to maximize. The predictions show several key insights into the AVS, MBE, and AVS-MBE
enhancements. First, the predictions indicate that each of the design enhancements would increase the
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Figure 9. Comparison of the predicted effectiveness of various design improvements with respect to (a) objects collected,
(b) UVs lost, and (c) system score.

effectiveness of the system. Implemented alone, our models predict that the AVS and MBE enhancements
would produce moderate improvements for each team size. The model predicts that the AVS enhancement
will increase the system score by 15%, 21%, 16%, and 26% for two-, four-, six-, and eight-UV teams,
respectively. Similarly, the MBE enhancement is predicted to increase the system score by 4%, 10%, 18%,
and 23%, respectively. These results indicate that, while the MBE and AVS enhancements are predicted
to have similar impact on the system’s effectiveness in larger teams, the AVS enhancement would be more
effective for two- and four-UV teams. This trend is also present in the observed data in the user study
(Figure 4).

Predictions indicate that the combined AVS and MBE enhancements would substantially improve the
system’s effectiveness. In fact, the AVS-MBE enhancement is predicted to improve the system score by 16%,
33%, 41%, and 59% in two-, four-, six-, and eight-UV teams, respectively. These improvements are due to
both increases in number of objects collected and decreases in number of UVs lost.

However, these predicted increases in system score are potentially misleading, as system designers must
also consider the costs of performance increases. Since increases in UV capabilities would likely increase the
UVs’ cost, a system designer must also alter the system objective function from Equation (7) to:

Score = ObjectsCollected− (UV CostRatio · UV sLost), (10)

where UV CostRatio is the ratio of the cost of a UV in the original implementation (noDS) to the cost of a
UV equipped with AVS and MBE capabilities.

Figure 10 shows the effects that different values of UV CostRatio have on the predicted system scores
of the AVS-MBE-enhanced system. Even when the cost of a UV is doubled, the model predicts that the
AVS-MBE-enhancement would still increase the system score by 9%, 24%, 27%, and 36% for two-, four-,
six-, and eight-UV teams, respectively.
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Figure 10. Predicted system score of the AVS-MBE enhanced system for various UV CostRatio’s.

VI. Conclusions and Future Work

In this paper, we have described a methodology for modeling human-UV systems consisting of a single
operator and multiple UVs. In this model, the stochastic behavior of both the human operator and UVs is
constructed using data obtained from observing the human-UV system. These structures can then be used
to describe and predict the behavior of the human-UV system in previously unobserved situations, such as
when the human-UV interface or UV autonomy levels are altered. Via a user study, we have shown that the
model can adequately predict the effects of changes in UV autonomy and the human-UV interface. These
results have significant implications for the design and implementation of future human-UV systems.

While these results are encouraging, the model has a number of limitations that should be addressed in
future work. First, it is limited to UV teams performing independent tasks. Future work should consider how
this model can be extended to collaborative UV teams. Second, the modeling methodology we have proposed
in this paper does not explicitly consider the cognitive state of the human operator. While our models gave
reasonably good predictions for the scenarios discussed in this paper, we anticipate that we would need
to explicitly model the human operator’s cognitive state in order to generate accurate predictions in some
situations, such as when fatigue could significantly hamper performance.
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Appendix D

Comparing the Predicted Effects of System Enhancements
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Figure 1: Comparison of the predicted effectiveness of various design improvements with respect to (a) objects
collected, (b) UVs lost, and (c) system score. SS-Opt refers to the predicted effectiveness of using the
recommended selection strategy. The other labels are equivalent to those used in Phase 2.


