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Abstract

The problem of portfolio choice is an example of sequential decision making under un-
certainty. Investors must consider their attitudes towards risk and reward in face of an
unknown future, in order to make complex financial choices. Often, mathematical models
of investor preferences and asset return dynamics aid in this process, resulting in a wide
range of portfolio choice paradigms, one of which is considered in this thesis. Specifically,
it is assumed that the investor operates so as to maximize his expected terminal wealth,
subject to a risk (variance) constraint, in what is known as mean-variance optimal (MVO)
portfolio selection, and that the log-prices of the assets evolve according a simple linear sys-
tem known as a cointegrated vector autoregressive (VAR) process. While MVO portfolio
choice remains the most popular formulation for single-stage asset allocation problems in
both academia and industry, computational difficulties traditionally limit its use in a dy-
namic, multistage setting. Cointegration models are popular among industry practitioners
as they encode the belief that the log-prices of many groups of assets are not WSS, yet move
together in a coordinated fashion. Such systems exhibit temporary states of disequilibrium
or relative asset mis-pricings that can be exploited for profit.

Here, a set of multiperiod trading strategies are developed and studied. Both static and
dynamic frameworks are considered, in which rebalancing is prohibited or allowed, respec-
tively. Throughout this work, the relationship between the resulting portfolio weight vectors
and the geometry of a cointegrated VAR process is demonstrated. In the static case, the
performance of the MVO solution is analyzed in terms of the use of leverage, the correlation
structure of the inter-stage portfolio returns, and the investment time horizon. In the dy-
namic setting, the use of inter-temporal hedging enables the investor to further exploit the
negative correlation among the inter-stage returns. However, the stochastic parameters of
the per-stage asset return distributions prohibit the development of a closed-form solution
to the dynamic MVO problem, necessitating the use of Monte Carlo methods. To address
the computational limitations of this numerical approximation, a set of four approximate
dynamic schemes are considered. Each relaxation is suboptimal, yet admits a tractable
solution. The relative performance of these strategies, demonstrated through simulations
involving synthetic and real data, depends again on the investment time horizon, the use
of leverage and the statistical properties of the inter-stage portfolio returns.

Thesis Supervisor: Dr. Charles E. Rohrs
Title: Research Scientist, Digital Signal Processing Group
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Chapter 1

Introduction

This thesis is concerned with the application of signal processing and stochastic control

theory to financial decision making. Specifically, the problem of multistage portfolio selec-

tion within a restricted universe of financial assets is considered. Since the 1950s, many

variations of this theme have been explored in the finance literature. This has led to the

classification of portfolio selection problems according to an extensive list of properties,

including investor preferences, time horizons, and statistical models for the investment op-

portunities. One important, yet little studied, case is when the prices (or log-prices) of the

underlying assets are assumed to evolve according to a particular type of linear system,

known as a cointegrated vector autoregressive (VAR) process. Here, the random process

modeling each component process is nonstationary1; however, it is possible to find linear

combinations of the signals that produce asymptotically wide-sense stationary (AWSS) ran-

dom processes. Constraining the price dynamics to follow such a model induces a particular

statistical structure on the per-stage asset returns, knowledge of which can be exploited to

achieve a higher mean portfolio return over the cumulative investment period.

The organization of this chapter is as follows. Section 1.1 explains why the cointegrated

VAR process was chosen as the basis for this thesis, and is followed by a brief description

of the intended audience for this work in Section 1.1.2. The utility of this research in light

of the ongoing global financial crisis is discussed in Section 1.1.3. The role of quantitative

models within the finance world is discussed in Section 1.1.4, and the inherent limitations

of the methods and models used in thesis are outlined in Section 1.1.5. Finally, in Section

1.2, a detailed survey of the overall thesis is given.
1Throughout this thesis, the term nonstationary refers to a specific type of nonstationarity, in which the

process variance grows linearly over time due to the presence of one or more integrators (poles at unity).
Such processes are referred to as marginally unstable systems, and are described in Section 3.1.
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18 CHAPTER 1. INTRODUCTION

1.1 Thesis Background and Motivation

1.1.1 Why Cointegration

The model at the forefront of this thesis is the cointegrated vector autoregressive (VAR)

process. Pick up your favorite econometrics textbook, and without doubt, there will be

at least one entry under “cointegration” in the index [19, 27, 60]. These linear systems are

commonly used by both academics and industry practitioners to describe groups of time se-

ries in which each underlying component process is well-modeled by a nonstationary process

that contains one or more integrators, yet there exists a linear combination of the signals

that produces an asymptotically wide-sense stationary (AWSS) random process. In the time

domain, such signals often appear to move together in a coordinated fashion, a property

which is commonly present in financial time series, such as stocks from the same economic

sector, or government bonds covering varying times to maturity on the yield curve. The

cointegrated VAR process is a simple model that encodes the belief that while the prices (or

log-prices) of many financial instruments are nonstationary, the corresponding returns (or

log-returns) admit asymptotically stationary distributions, with non-negligible inter-asset

and inter-temporal correlations.

While detection and estimation techniques for this class of models are well studied, surpris-

ingly little has been written about how to trade such systems in a multiperiod environment.

As discussed in greater detail in Section 3.5.1, the majority of the existing literature focuses

on statistical arbitrage techniques that exploit the mean-reverting property of the AWSS

linear combination of the underlying series. In this thesis, a set of techniques for trading

a system of cointegrated assets is developed, that is optimal in the “mean-variance” sense,

a criterion that is precisely defined in Section 2.3.1. The resulting trading strategies tend

to be market neutral, as it is possible to earn profit both from increasing and decreasing

asset prices. Trading systems built around cointegrated securities exploit the co-movement

of prices, and are therefore robust in both bull and bear markets. In addition, during times

of crisis, asset returns tend to become more correlated and the corresponding prices tend

to exhibit an increased degree of co-movement, potentially increasing the applicability of

cointegration models.
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The study of linear systems within the field of electrical engineering has a long and fruitful

history, and this thesis offers a new look at cointegrated systems through a detailed linear

systems approach. In particular, the use of state-space analysis methods for the study of

cointegrated VAR processes enables one to gain a deeper understanding of the underlying

structure, or geometry, of the system. The resulting portfolio weight vectors can also be

interpreted within the context of this geometry, providing a deeper level of understanding

and intuition for each strategy. For example, the direction of the portfolio weight vectors

relative to the underlying subspaces of a cointegrated VAR process indicate whether the

short-term error-correcting forces or the long-term common-trend forces more heavily influ-

ence the investment decision. In addition, the length of the portfolio weight vector indicates

how the notion of leverage is utilized in order to achieve a desired level of risk. Throughout

this thesis, the geometry of asset allocation is considered, both for a fixed time interval and

as the length of the investment time horizon increases.

1.1.2 Intended Audience

The intended audience for the asset allocation schemes presented in this thesis are profes-

sional traders that work within proprietary trading groups or hedge funds. Despite the rel-

atively simple underlying framework, a fair degree of mathematical sophistication, network

infrastructure, and computing power are required to run the strategies period to period2.

The average retirement investor typically relies on a long-term buy and hold strategy [56],

and may, at most, rebalance the portfolio holdings once or twice a year. On the other

hand, Wall Street traders often build algorithmic trading strategies, where computerized

models make a multitude of trading decisions per day, executing them with no human in-

tervention. These systems often fall into the class of statistical arbitrage methods, in which

relatively small gains can be made over short time horizons by identifying temporary asset

mis-pricings within the financial marketplace. However, implementation disclaimer aside,

the general themes developed in this thesis and lessons learned regarding the fundamental

tradeoff between risk and return apply at some level to all investors, regardless of whether

or not they utilize the algorithms in practice.
2The length of time within one period is left up to the trading system designer to determine. One period

could correspond to a year, a day, a second, etc.
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1.1.3 The Global Financial Crisis

It is a precipitous task to write a thesis on the topic of portfolio selection, from the per-

spective of an electrical engineer, in the middle of a global financial crisis. The collapse

of the sub-prime mortgage market led to the decline of many Wall Street firms, including

Bear Stearns, Lehman Brothers and Merrill Lynch. In early September, the United States

government was called upon to bail out mortgage lenders Fannie Mae and Freddie Mac,

and shortly followed suit with a rescue package for the insurance giant AIG. On October 3,

the Congress passed the Emergency Economic Stabilization Act of 2008, which authorized

the Treasury department to spend up to 700 billion dollars to purchase “distressed” assets

directly from the banks, which includes complex mortgage-backed securities. But the crisis

is not limited to the housing financial industry. The value of worldwide equity and com-

modity markets also declined, as banks around the world scrambled to get bad loans off

their books. The commercial paper market, the market in which corporations finance their

operating expenses, completely dried up, driving stock prices even further down, and the

banks stopped lending money to each other. The full effect of the events of September and

October 2008 remains to be seen.

In writing this thesis, the backdrop of a global crisis has a few benefits, and naturally, a few

disadvantages. On the one hand, the crisis brings to light the need for expanded research

from government, industry, and academia into all areas of finance, including corporate fi-

nance, financial markets, securitization, financial regulation, and investment management.

While this thesis falls under the investment management umbrella, it only scratches the

surface of complex issues such as risk management, the effect of leverage (borrowing), and

the impact of government regulation (such as a ban on short-sales). No single model or

framework can capture all aspects of portfolio selection, or hope to be equally relevant to all

investors, independent of their goals and risk preferences. However, each piece of research

brings to bear its own insights and intuition, and only through the aggregation of these

ideas can we begin to better understand the financial world around us.

While the current crisis highlights the need for financial research, it also brings into ques-

tion the legitimacy of complex mathematical models of financial systems. Many trading

strategies fail in the middle of a crisis. As a result, banks or hedge funds that do not ap-
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propriately manage their risk can go bankrupt overnight as they find themselves unable to

cover huge accumulated losses. While some degree of disbelief is healthy, these models do

play an important role in helping managers to understand financial markets and products,

a theme that is explored in greater detail in Section 1.1.4.

Throughout much of this thesis, the reader is asked to operate within an idealized financial

market, far from the realities of the global crisis, one in which there is an infinite supply

of liquidity and trades are executed immediately at the desired price, with no transaction

costs. The reader must trust that the asset return model is correct and remains valid

over the entire investment horizon. However, such an idealized world does not exist, and

therefore this thesis also addresses some practical restrictions and issues, such as the use

of a budget-constraint, the presence of a no short-sale constraint, and the impact of model

parameter estimation error. One is not so naive to think that one can create a model that

perfectly describes every aspect of a true trading system. As this thesis demonstrates, there

is still much knowledge to be gained from the study of simple models that capture even a

small subset of real-world behavior.

1.1.4 The Role of Financial Models

Quantitative models can be found in all areas of modern finance theory. There are mod-

els that quantify the relationship between the expected returns among a set of assets and

their relative risk levels, such as the Capital Asset Pricing Model (CAPM) or the Arbitrage

Pricing Theory (APT). There are models used to price financial products, including stocks,

bonds, options, and complex instruments such as mortgage-backed securities. And of par-

ticular interest for this thesis, there are models used to guide asset allocation decisions, such

as the Markowitz Mean-Variance criterion or the set of expected utility-theoretic paradigms.

While this list is in no sense complete, it begins to give a sense of the wide range of topics

covered under the heading of mathematical finance.

Econometricians and financial engineers seek models that can capture some measure of

observed market behavior, such as inter-asset return correlations or long-term common

trends between macro-economics variables. In contrast to the natural sciences where one

can devise repeatable experiments to test a hypothesis, in the field of quantitative finance



22 CHAPTER 1. INTRODUCTION

only one sample path of a random process is available. One must identify interesting be-

havior from historical data alone and devise a model that explains not only the current

observation set, but also future data. No one expects a financial model to be able to per-

fectly predict tomorrow’s stock prices, or to be able to perfectly explain the relationship

between stock market returns and government bond yields. A model is just a model, and

is meant to guide an investor’s actions, not dictate them.

It is important to realize the fundamental limits of any financial model. A detailed analysis

of the limitations of the model used in this thesis is presented in Section 1.1.5. Perhaps

some on Wall Street have still not learned the lesson that ultimately brought down the

hedge fund Long-Term Capital Management (LTCM) in 1998, after Russia defaulted on its

government bonds. The following description of one of LTCM’s partners, Lawrence Hili-

brand, from Roger Lowenstein’s book When Genius Failed, best summarizes the type of

blind faith in financial models that can at times lead to devastating consequences,

If the firm could have been distilled into a single person, it would have been

Hilibrand. While veteran traders tend to be cynical and insecure, the result of

years of wrong guesses and narrow escapes, Hilibrand was cool and madden-

ingly self-confident. An incredibly hard worker, he was the pure arbitraguer; he

believed in the models, stuck to his prices, was untroubled by doubt. Rosenfeld

hated to hedge by selling a falling asset, as theory prescribed; Hilibrand beleived

and simply followed the form [39].

If the current financial crisis teaches us anything, it is that all financial engineers should be

troubled by doubt, and should not always blindly follow form.

1.1.5 Model and Methodology Limitations

In early November, the following statement appeared in the New York Times, “Todays

economic turmoil, it seems, is an implicit indictment of the arcane field of financial engi-

neering.... the larger failure, they say, was human in how the risk models were applied,

understood and managed” [38]. In order to prevent future failures of this magnitude, finan-

cial engineers must learn the delicate skill of identifying not only the strengths, but also the

weaknesses of their models. In this section, the inherent limitations of the models used in
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this thesis are given.

First, throughout this thesis, an extremely simple measure of risk is used to describe the

investor’s preferences, namely the variance of the terminal portfolio return. Future returns

are random and are thus not known exactly, and the variance statistic captures the dis-

persion of the set of possible outcomes about the mean or expected outcome. Under the

assumption that returns are Normally distributed, the variance completely characterizes

the shape of the return distribution. However, it is generally accepted that returns are

heavy-tailed, meaning that rare events such as extreme positive and negative returns are

more likely to occur than predicted by the Gaussian distribution. In addition, the use

of variance as a measure of risk implies that the investor cares equally about upside and

downside deviations from the mean, which in most cases is not true. Furthermore, the use

of variance to define risk does not account for the possibility that the investor could go

bankrupt over the course of the investment horizon. While there are many other definitions

of risk that do address these concerns, some of which are discussed in Section 2.2, the use of

variance is selected due to the fact that it is simple, intuitive, and computationally tractable.

Second, it is assumed that the stochastic input to the cointgerated vector autoregressive

system used to describe the evolution of the asset log-prices over time is driven by an in-

dependent and identically distributed (i.i.d.) Gaussian random process. This assumption,

in turn, induces per-stage asset returns that are jointly Normal and dependent. As stated

above, the Gaussian postulate does not capture the heavy-tailed nature of past historical

returns, but it does provide computational tractability. In many places throughout this the-

sis, the given results can be easily extended to consider alternative innovation distributions.

There are only three places where the Gaussian assumption is explicitly used. The first is

in the maximum likelihood estimator used to determine the parameters of a cointegrated

vector autoregressive process from sample data, as described in Section 3.4.2. Second, in

Chapter 5, the analytic form of the Gaussian probability distribution function is used to

compute a set of importance weights needed to compute the optimal dynamic portfolio

weight vector. And third, in Section 6.2, the Gaussian assumption is invoked in order to

compute certain expectations in closed-form using Gaussian product moment factoring.
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Third, the task of identifying assets in which the log-prices are cointegrated is in itself

a non-trivial undertaking. It is often considered an artform to identify cointegrated securi-

ties or to determine the time scale over which to sample the data. For example, a pair of

assets may be well-modeled by a cointegrated VAR process when sampled according to a

stochastic arrival process, but not when sampled on a uniform discrete-time grid. In addi-

tion, the parameters of a cointegrated VAR process may in practice only remain constant

over short time horizons, corresponding to a handful of stages, after which time the models

need to be retrained and the trading stratgegy reinitialized. As an alternative to identify-

ing naturally occuring cointegrated securities, one can construct tracking portfolios that are

cointegrated with a target financial instrument, such as an individual stock or index fund

[2]. The resulting system is cointegrated by design, and the trading strategies developed in

this thesis may be directly applied.

1.2 Thesis Organization

Chapter 2 provides the reader with the necessary background related to the theory of port-

folio selection. The concepts of simple and log-returns are defined, and a group of common

models for the time evolution of returns is presented. A set of portfolio risk measures are

surveyed, including those based on the dispersion of a return distribution and the curvature

of the investor preference function (i.e., utility function). Single-stage and multistage asset

allocation problems are formally defined, and discussed within both the mean-variance and

expected utility frameworks.

Chapter 3, in conjunction with Appendix A, provides the reader with an overview of coin-

tegrated vector autoregressive processes, taking a detailed linear systems approach. Both

error-correcting and state-space forms for a cointegrated VAR process are discussed, and

their equivalence is established. An alternative form of the total system response (i.e.,

Granger Representation) is given which clearly decomposes the process into stationary and

non-stationary components, each of which exists within non-orthogonal subspaces. In ad-

dition, the maximum likelihood estimation procedure for a cointegration VAR model is

detailed, and the existing literature on cointegration in portfolio theory and econometrics

is surveyed.
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In Chapter 4, the problem of static asset allocation, when inter-stage rebalancing is pro-

hibited, is explored. In particular, two strategies are studied corresponding to the so-called

“Beta” solution, popular among industry practitioners, and the mean-variance optimal

(MVO) solution derived here. The performance of these asset allocation rules both with

and without a budget constraint is measured, and the statistics of the per-stage portfolio

returns are computed. In particular, the covariance, or correlation, between the inter-stage

portfolio returns is quantified, and is interpreted within the context of the geometry of a

cointegrated VAR system. The role of both per-asset and net portfolio leverage in achieving

a given level of portfolio risk is also explored. In addition, the asymptotic properties of the

MVO solution are derived, and the conditions are given under which the MVO solution

converges to the Beta solution in the limit of an infinite trading horizon.

In Chapter 5, the problem of dynamic asset allocation, when inter-stage rebalancing is

allowed, is explored. The original dynamic MVO problem is mapped into an auxilliary

framework that enables the sequence of optimal portfolio policies to be computed using

dynamic programming. The resulting solution cannot be fully computed in closed-form,

and an efficient numerical approximation scheme based on Monte Carlo and importance

sampling methods is described. The dynamic MVO asset allocation problem is also pre-

sented within the context of a linear quadratic regulator with random system matrices.

In addition, the inclusion of a budget constraint, explicit risk-free asset, and a no short-

sale constraint are discussed in detail. Lastly, the per-stage portfolio return statistics and

asymptotic properties of the dynamic MVO solution are studied.

To address the numerical implementation issues surrounding the MVO dynamic portfo-

lio choice solution, Chapter 6 details a set of four approximate dynamic trading strategies.

Each scheme relaxes one or more of the assumptions of the original problem in order to

derive a suboptimal, yet tractable, solution. The first strategy, known as the separable em-

bedding certainty equivalence approximation scheme, replaces the stochastic parameters of

the per-stage return distributions with their time t0 conditional expectations. The second

strategy, known as the sequential rescaling approach, imposes the assumption that the so-

lution to an (N + 1)-stage problem is found by modifying only the scale (i.e., degree of net
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leverage), not the direction (i.e., relative asset proportions) of the N -stage optimal solution.

The third approximation strategy, known as the optimal linear scheme, parametrizes the

portfolio policy at each stage using a linear function of the log-prices. Finally, the fourth

scheme, known as the semi-myopic approach, solves the multistage problem as a series of

consecutive single-stage problems. All the dynamic asset allocation schemes considered are

compared through an empirical study of their corresponding risk-reward characteristics us-

ing synthetic data. Again, the relative performance of each scheme is explained in terms of

the use of leverage and the inter-stage return correlations.



Chapter 2

Portfolio Theory

This chapter presents an overview of the theory of portfolio selection, which studies the al-

location of capital among a set of investment instruments. Investors often have significantly

different objectives, time horizons, risk tolerances and views on investment opportunities, all

of which must be taken into account in a systematic manner. For example, some investors

seek low-risk, short-term capital preservation, while others, with a high risk tolerance, seek

long-term growth. Portfolio theory provides a mathematical framework in which to encode

these goals and beliefs.

The organization of this chapter is as follows. In Section 2.1, the fundamental notion

of an asset return is defined, and a set of commonly employed models for the evolution of

returns over time is presented. A survey of portfolio risk measures is given in Section 2.2,

including those based on the dispersion of a return distribution and the curvature of a utility

function, which is a mathematical mapping used to encode an investor’s attitudes towards

risk and reward. In Section 2.3, the single-stage asset allocation problem is defined, and

both the Markowitz mean-variance and expected utility frameworks are presented. Lastly,

in Section 2.4, the mulitstage portfolio choice problem is defined, and presented from the

mean-variance and utility-theoretic points of view.

2.1 Asset Returns

The first step in establishing a mathematical framework for portfolio selection is to select

asset prices or returns as the basic unit of measure in order to describe the value of a

tradable security over time. While this distinction may seem trivial due to the simple

relationship between them, as defined in Eq. 2.1 below, the subsequent impact on the

27
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choice of statistical models is significant. Whereas returns may be positive or negative,

asset prices are constrained to be nonnegative, implying that a two-sided distribution (e.g.,

Gaussian) should not be used to model them. In addition, it is widely accepted that returns,

not prices, exhibit the properties of stationarity1 and ergodicity2 [19]. It is for these reasons

that throughout this thesis, the basic portfolio choice problem is formulated as a function of

the underlying asset returns. Specifically, the asset log-returns, not simple returns, are used,

as discussed in Section 2.1.1. Having selected asset returns as the basic unit of measure,

the next step is to select a model that describes their evolution over time. A set of common

models are presented in Section 2.1.2, while discussion of the specific model used in this

thesis, the cointegrated vector autoregressive process, is deferred to Chapter 3.

2.1.1 Types of Returns

Let pk ∈ R+ denote the price of a single asset at time tk, and let Rk ∈ R denote the

corresponding return over the period from (tk−1, tk], defined as:

Rk =
pk − pk−1

pk−1
=

pk

pk−1
− 1, (2.1)

which represents the percent change in value of the asset. Here the subscript k indicates

that the value of the return is known at time tk. This type of return is often referred to

as a simple return. A second type of return, the log-return, is defined as the change in the

asset’s log-price over the length of the investment period, as:

rk = log (1 + Rk) = log (pk)− log (pk−1) . (2.2)

Log-returns are also known as continuously-compounded returns, since the quantity log (1 + Rk)

represents the equivalent continuously-compounded rate, rc
k, corresponding to the simple

rate Rk. For example, when Rk is 10% per year, then rc
k is computed as:

1 + Rk = 1 + 0.1 = erc
k → rc

k = log (1.1) = 0.0953.

1For a complete discussion of stationarity, see Section 3.1.
2The property of mean ergodicity, which loosely states that a time average can be replaced with an

ensemble average, is required so that the parameters of a return model can be estimated from a single
sample path of historical data.
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When Rk is sufficiently near zero, so that the Taylor series approximation given by:

log (1 + Rk) ≈ rk, (2.3)

is valid, the log-return is a good proxy for the simple return. The relationship holds with

equality when the simple rate Rk is continuously compounded. Note that the monotonic

relationship between the simple and log-returns, given by Rk = erk−1, implies that optimiz-

ing in one domain can be equivalent to optimizing in the other. For example, if a portfolio

choice problem is constructed so as to maximize the simple return of an investment over

a horizon of length T , then the optimal portfolio also maximizes the equivalent log-return

over a period of the same length.

In a multiperiod setting, the total simple return across a set of N investment periods,

denoted by RT , is computed as the product of the per-stage simple returns, as follows:

1 + RT =
N∏

k=1

(1 + Rk) =
N∏

k=1

pk

pk−1
=

pN

p0
. (2.4)

One advantage of using log-returns over simple returns is that the multiperiod log-return

is equal to the sum of the per-stage returns, rather than their product, and is given by:

rT = log (1 + RT ) = log

(
N∏

k=1

(1 + Rk)

)
=

N∑
k=1

log
(

pk

pk−1

)
,

=
N∑

k=1

(log (pk)− log (pk−1)) = log (pN )− log (p0) . (2.5)

The additive accumulation of the log-return is beneficial in multiperiod portfolio selection

problems, so that efficient computational techniques, such as dynamic programming, can

be readily applied.

In addition to the important distinction between multiplicative and additive multistage

returns, simple and log-returns have different properties when computing the return of a

portfolio of assets. While the portfolio simple return is computed as a linear combination

of the simple returns of the constituent assets, it is not possible to compute the log-return

of a portfolio in the same manner, due to the fact that the log of a sum is not equal to
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the sum of logs. In order to circumvent this issue, the approximation of Eq. 2.3 is used3.

Thus, the single-stage individual asset returns are given by the change in the log-prices,

and the per-stage portfolio returns are given by a weighted sum of the asset log-returns.

Furthermore, the portfolio returns are assumed to add across stages in accordance with the

properties of log-returns.

2.1.2 Statistical Models of Returns

Numerous models exist to describe the evolution of asset returns over time. The choice of

model depends on the set of properties one is trying to describe, such as cross-asset and

temporal return correlations, mean-reverting behavior, or common stochastic and growth

trends. A model may describe the behavior of a single asset, or may jointly define the

evolution of a set of dependent assets. As a general rule, the properties of a system can best

be understood by choosing the simplest model that captures the set of desired behaviors.

This section surveys a set of commonly used models, popular in both the literature and

among practitioners.

One simple model is to assume that the per-stage asset returns are best represented as

white noise, i.e. are independent and identically distributed (i.i.d.). The returns may

be modeled by a Normal distribution, or a heavy-tailed distribution, such as a Pareto or

Cauchy distribution. However, one must be careful in a multiperiod setting to understand

the impact of the single-stage return model on the corresponding multiperiod return. For

example, if the single-stage simple returns are assumed to be Normally distributed, then the

multistage returns are no longer Gaussian. On the other hand, if the single-stage log-returns

are assumed to be Gaussian, the equivalent multistage returns, now formed as the sum of

the per-stage log-returns, are also Gaussian. This, in turn, implies that the single-stage

and multistage simple returns follow a shifted log-normal distribution as the support of the

probability density function is over [−1,∞] rather than [0,∞] [19].

In order to capture serial autocorrelation of the returns, a linear Markov process may

be used. A common choice is to assume that the log-return, r[k], is well-modeled by a
3If the assumption is not valid over the time-scale initially chosen for the problem, one can increase the

rate at which the log-price process is sampled until the assumption is valid.
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first-order autoregressive (AR) process, given by:

rk = αr[k − 1] + σz[k],

where z is a zero-mean, unit-variance white noise sequence. The resulting process is sta-

tionary so long as |α| < 1, with zero mean and variance σ2
r = σ2

1−α2 . The corresponding

autocorrelation function decays exponentially as E [r[k]r[k −m]] = σ2
zα

|m|.

In some cases, it may be desirable to jointly model the return dynamics of a set of p

assets, such as when examining multiple stocks from the same industry. One simple, yet

powerful, model is a vector autoregressive (VAR) process, which is able to capture not only

the serial correlation of the return processes in time, but also the inter-asset correlations

or cross-sectional interactions. Letting rk ∈ Rp denote a vector of stacked asset returns at

time k, an Lth−order VAR process is defined as:

rk =
L∑

i=1

Airk−i + zk, (2.6)

where the matrices Ai encode the coupling relationships between rk and its lags, and zk ∈ Rp

is typically assumed to be an i.i.d. zero-mean Gaussian process with covariance matrix Ψ.

An overview of these processes is presented in Appendix A.

2.2 Risk Measures

The second step in establishing a mathematical framework for portfolio selection is to

define a measure for investment risk. Fundamentally, portfolio choice is the study of risk

and reward. For assets within the class of “risk-free securities,” the value of the asset at any

future date is known exactly, and is computed according to a deterministic schedule. While

the concept of a risk-free asset is an idealization, for all intents and purposes U.S. Treasuries,

particularly T-bills, can be thought of as providing a guaranteed rate of return with no

default risk. For all other assets, the future value is not known with certainty, placing these

investments within the class of “risky securities.” In general, many investors make financial

decisions so as to maximize their reward, i.e. portfolio return, while placing some type

of constraint on the associated risk. However, not all investors agree how risk should be
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defined in a precise mathematical manner. Here, two common approaches are summarized.

First, in Section 2.2.1, risk is defined by the dispersion of the return distribution. Second,

in Section 2.2.2, risk is defined in terms of the curvature of the investor preference function

(utility function) of wealth. Given these two risk paradigms, Section 2.2.3 concludes with a

discussion of portfolio budget constraints, which limit the amount of risk an investor may

assume.

2.2.1 Return Distribution Dispersion

Perhaps the most popular proxy for risk used in portfolio choice problems is return variance.

In [42], Markowitz simply states that variance, or standard deviation, is the “natural mea-

sure” of the dispersion of the return distribution. Indeed, when it is assumed that returns

are Normally distributed, the variance exactly defines this dispersion. In addition, the vari-

ance of a portfolio of multiple assets can easily be computed by knowing the variances and

correlations among the constituent components. Given this definition of risk, Markowitz

hypothesized that investors act to maximize the expected return of the portfolio, subject

to a variance constraint, or equivalently, to minimize the variance of the portfolio subject

to a constraint on the desired portfolio return. A detailed discussion of Markowitz’s mean-

variance portfolio choice framework is presented in Section 2.3.1.

Later, in [43], Markowitz proposed the use of the semi-variance (variance of deviations

below the mean) as a measure of return distribution dispersion that focuses on “downside-

risk.” However, when the return distribution is symmetric, both variance and semi-variance

measures produce identical results. A generalization of the semi-variance idea, known as the

Lower Partial Moment [11, 25], considers the dispersion of returns relative to a benchmark

other than the mean, such as the risk-free rate or the zero return. In practice, the choice of

dispersion statistic should take into account both the shape of the return distribution and

some baseline performance metric.

2.2.2 Utility-Theoretic Risk

In addition to Markowitz’s variance risk criteria, an investor’s attitudes towards risk and

reward may be encoded in a more general mathematical mapping known as a utility func-

tion. Under the assumption that more wealth is preferred to less wealth, all utility functions
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Figure 2-1. The investor’s preferences towards risk may be inferred from the curvature of the utility
function. A concave function indicates that the investor is a risk averter, a convex shape implies he is a risk
taker, and a linear shape corresponds to a risk neural investor.

are monotonically increasing, but the shape of the function depends on the investor’s risk

preferences. A concave utility function indicates that the investor is a risk averter, a convex

shape implies he is a risk taker, and a linear shape corresponds to a risk neural investor, as

depicted in Figure 2-1.

The class of risk-averse utility functions can be further subdivided into two classes, based

on the work of Pratt [49] and Arrow [4]. Let RA(w) and RR(w) denote the coefficients of

absolute and relative risk aversion, respectively, defined as follows:

RA(w) = −u
′′
(w)

u′(w)
RR(w) = −u

′′
(w)

u′(w)
w = Ra(w)w.

The first sub-class contains all utility functions with constant absolute risk aversion (CARA).

The canonical example of this class of risk averse functions is the negative exponential func-

tion, shown in the third panel of Fig. 2-2. The second sub-class contains all utility functions

with constant relative risk aversion (CRRA), which includes the power and log utility func-

tions shown in the top two panels of Fig. 2-2. Also of note is the quadratic utility function,

shown in the fourth panel of Fig. 2-2, which is neither CRRA nor CARA, but is character-

ized by the fact that the marginal (incremental) utility, u
′
(w), is linear in wealth. The plot

in Fig. 2-2 illustrates the different curvatures of these utility functions for the case where

the parameter α is 0.5.
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Figure 2-2. Comparison of four risk averse utility functions.

2.2.3 Budget Constraint

The last component considered here for defining portfolio risk is the concept of a budget

constraint. Such constraints are used to limit the degree of total market exposure assumed

by an investor, by requiring that the total value of the portfolio equals the available wealth.

This implies that the the investor may not arbitrarily borrow additional funds for free in
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order to magnify (leverage) the effective realized returns. For example, suppose an investor

has an initial wealth of $100, and identifies an asset that earns a guaranteed 5% rate of

return over a single period. If the investor were able to borrow an additional $100 from a

bank, he would have made a profit $10, instead of $5, making the effective realized return

10% instead of 5%. In the real world, of course, the investor would also need to pay inter-

est on the money he borrowed, at an appropriate rate of interest, but it is clear from the

example that leverage provides a powerful tool for increasing expected returns. The danger

of leverage, however, is that it also increases the investor’s exposure to market risk, making

it possible to lose more money than the investor is worth. The ability to borrow capital can

be combined with a budget constraint by explicitly including a risk-free asset in the model,

so that the capital received from borrowing is accounted for in the computation of available

wealth.

Formally, let w ∈ Rp denote a portfolio weight vector of p assets, where wi denotes the

percentage of initial wealth invested in the ith asset. The typical budget constraint is ex-

pressed as
∑p

i=1 wi = 1, or wT1 = 1. In this setting, it is easy to enforce the budget

constraint by applying an affine transformation to the portfolio weight vector, as derived

next. Let wc denote the constrained portfolio weight vector, and let v ∈ Rp−1, which are

related as follows:

wc = c + Dv =


v1

...

vp−1

1−
∑p−1

i=1 vi



T

, c =


0
...

1


T

, D =

Ip−1

−1T

 . (2.7)

The optimal policy is then derived as a function of v, which is subsequently mapped back

into the higher dimensional space according to the rule w∗
c = c + Dv∗. In a dynamic mul-

tistage setting, the investor is required to reinvest all of his current wealth at the beginning

of each stage. In this case, the relationship wc = c(1 + rk) + Dv should be used, where rk

denotes the cumulative portfolio return at time tk.

When short-selling is allowed (weights can be positive or negative), there are two possi-

ble ways in which budget constraints may be incorporated. The familiar budget constraint
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wT1 = 1 is used when short-sales are viewed as a source of income. On the other hand,

when short-sales are viewed as a source of spending, the Lintner budget constraint is used

[37]. Here the `1 norm of the portfolio weight vector must equal unity:

||w||1 =
p∑

i=1

|wi| = 1.

Omission of either budget constraint is equivalent to introducing a risk-free asset with rate

rf = 0. However, when a risk-free asset is explicitly included in the model, a budget

constraint must be utilized in order to prevent the percent allocated to the risk-free asset

from growing arbitrarily large.

2.3 Single-Stage Portfolio Choice

Having presented an overview of asset return models in Section 2.1 and definitions for port-

folio risk in Section 2.2, two single-stage portfolio choice frameworks can now be described.

In the first framework, based on the pioneering work of Markowitz, the optimal portfolio is

defined as the one which maximizes the expected portfolio return, subject to a constraint

on the associated portfolio return variance. In the second framework, the optimal portfolio

is defined as the one that maximizes the expected value of the investor’s utility of wealth.

2.3.1 Mean-Variance Optimization

As discussed in Section 2.2.1, the Markowitz formulation assumes that investors act to op-

timize the tradeoff between portfolio return risk (variance) and reward (mean), within a

restricted universe (finite set) of tradable assets. The asset allocation scheme is chosen in

order to maximize the expected return of the portfolio, subject to a variance constraint,

or equivalently, to minimize the variance of the portfolio subject to a constraint on the

desired portfolio return. It is also common to include a budget constraint, as discussed in

Section 2.2.3. Such a formulation leads to the production of an efficient frontier, which is a

functional representation of the expected return realized for each level of portfolio standard

deviation, as described here.

Let r ∈ Rp denote a random vector of returns corresponding to each of the p assets available

to the investor, with known mean, µ, and covariance matrix, Σ. Given this information,
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asset with rate rf = 2%. Returns are given in annual percentages.

the Markowitz mean-variance investor seeks the optimal portfolio w∗, so that:

w∗ = arg max
w

wT µ

subject to wTΣw = σ2
0

wT1 = 1,

where the variance σ2
0 defines the allowable “risk-budget”, set by the investor. It is impor-

tant to note that the Markowitz framework does not assume that the return distributions

are jointly Gaussian; it simply states that the investor makes decisions based only on the

first and second moments of the return distribution. In cases where these returns are Nor-

mally distributed, the first and second moments completely characterize the full probability

distribution of the return. The mean-variance asset allocation scheme is illustrated using a

portfolio comprised of two risky assets in the following example.

Example 2.1.

Suppose an investor must decide how to allocate his wealth between two risky assets, cor-

responding to the S&P 500 Composite index and the 10 Year U.S. Treasury Bond4, with
4Here, the U.S. Treasury bond is being used as a risky asset, as compared with the discussion in Section
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single-period returns rS and rB, respectively. Through the analysis of past daily returns

from 1925 to 2000 obtained via the CRSP database (Center for Research in Security Prices),

the first and second order statistics for the annual return over the next year were estimated

to be:

µ =

E[rS ]

E[rB]

 =

10.03

5.79

 , Σ =

 var[rA] cov[rA, rB]

cov[rA, rB] var[rB]

 =

245.40 17.83

17.83 81.67

 .

As evidenced by the non-diagonal structure of the covariance matrix Σ, the two assets are

correlated, with a correlation coefficient of ρ = 0.13. The set of efficient (optimal) portfolios

that result for this example as the allowable risk parameter varies is shown by the red curve

(solid line) in Figure 2-3. The blue curve (dashed line) highlights portfolios that do not

maximize return for a given level of risk, but rather minimize risk for a given level of return.

When a risk-free asset is also available, such as a 30-day U.S. government T-bill, the investor

can achieve a higher expected return for the same level of risk by employing a strategy of

investing in both the market portfolio and the risk-free asset, as described by James Tobin

in [58]. This “Two Fund Separation Theorem” leads to the creation of the capital market

line (CML), the line tangent to the efficient frontier that intercepts the y-axis at the risk-

free rate, rf . For the example given here, a representative CML is shown in green (dotted

line) in Figure 2-3, and the tangent portfolio is highlighted. If the investor is allowed to

be leveraged, he may borrow money from the risk-free asset in order to achieve the set of

operating points on the CML to the right of the tangent portfolio. The slope of the CML

is referred to as the Sharpe ratio [55], defined as:

S =
E[rp]− rf

σp
, (2.8)

where rp denotes the portfolio return and σp denotes the corresponding portfolio return

standard deviation. The Sharpe ratio measures the amount of return a strategy can earn

in excess of the risk-free asset, per unit risk. Note that removal of the budget constraint

implies the investor can borrow for free (i.e., rf = 0), resulting in an efficient frontier that is

2.2, where the U.S. Treasury T-Bill was cited as a source of a risk-free asset. The difference here is that due
to the long time horizon of 10 years, the face value of the bond within the fixed income market fluctuates
day to day, and is therefore considered risky.
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a straight line through the origin. Without a budget constraint, only the variance constraint

determines the size (i.e., scale) of the portfolio.

Another interesting point of view regarding the Markowitz mean-variance solution is that

it also satisfies Roy’s Safety-First portfolio choice criteria [51], in which the investor acts so

as to minimize the probability a disaster occurs. Here disaster is defined as the event that

the total return is less than a pre-defined threshold, d, and both the return mean, m, and

standard deviation, σ, are known to the investor. According to Chebyshev’s inequality, the

probability that the realized return, r, is less than the desired threshold d is bounded above

by:

P (r ≤ d) = P (r −m ≤ d−m) ≤ P (|m− r| ≥ m− d) ≤ σ2

(m− d)2
.

Minimizing P (r ≤ d) is equivalent to maximizing m−d
σ , which in turn, is equivalent to

Markowitz’s mean-variance criteria.

2.3.2 Expected Utility Maximization

Recall from Section 2.2.2 that in addition to using return variance in order to define risk, it

is also possible to encode an investor’s attitudes towards risk and reward in a mathematical

mapping known as a utility function. In this case, the investment decision is chosen to

maximize the expected utility of the investor’s portfolio return at the end of the investment

horizon. This framework has its foundations in the early work of von Neumann and Mor-

genstern [62] on game theory, and was first applied to portfolio selection in 1958 by Tobin

[58].

Formally, an investor with a total return preference function u, seeks the optimal port-

folio w∗, so that:

w∗ = arg max
w

E
[
u
(
wT r

)]
,

where r again denotes a random vector of individual asset returns. Depending on the choice

of utility function, a closed-form solution may exist or numerical methods may be required.

There are three scenarios concerning utility functions and return distributions in which

the resulting portfolio weights are equivalent to the Markowitz mean-variance formulation
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[20], as listed here:

• Quadratic utility, with no additional assumption on asset returns,

• Exponential utility (from CARA family), with normally distributed asset returns,

• Power utility (from CRRA family), with log-normally distributed asset returns.

While not explored further here, the relationship between these utility-theoretic portfolio

choice problems and the Markowitz mean-variance approach is exploited in Chapter 5 in

order to solve the dynamic, multiperiod mean-variance problem.

2.4 Multistage Portfolio Choice

The foundations for a theory of multiperiod portfolio selection can be traced back to the

1962 work of Tobin [59], where he states that “...the portfolio sequence or strategy that

promises the highest return for one date is not the same one that promises the highest return

for another date,” and rebalancing of the portfolio may be desired so long as the “...new

portfolio must promise enough advantage in return to compensate for these [transaction]

costs.” In this section, multistage extensions to the mean-variance and expected utility

maximization portfolio choice frameworks are described. In addition, brief discussions of

portfolio policy classifications and transaction costs are presented in Sections 2.4.3 and

2.4.4, respectively.

2.4.1 Mean-Variance Optimization

In a multistage setting, there are two extensions to the mean-variance portfolio choice prob-

lem often considered in the literature. In the first, a constraint is placed on the per-stage

variances of the portfolio, while in the second, a constraint is placed on the variance of

the total, cumulative return. In cases where the per-stage returns are independent, these

two formulations are equivalent. However, if the portfolio returns are serially correlated,

the latter generalization can achieve higher expected returns for a given level of risk by

exploiting inter-stage return dependence.

Let wk denote the portfolio weight vector at time tk, rk denote the stacked log-returns
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of a set of p assets at stage k, and the scalar rk denote the stage k portfolio return. The

total portfolio log-return, rT , across N stages, is computed as:

rT =
N∑

i=1

ri =
N−1∑
i=0

wT
i ri+1.

The investor seeks the optimal sequence of portfolios,
{
w∗

0, ...,w
∗
N−1

}
, by solving either

Problem M1 or Problem M2, as described below.

Case 1: Additive Mean-Variance Framework One multistage extension to the Markowitz

mean-variance framework that does not consider the inter-stage return correlation structure

is given by Problem M1, as follows:

{
w∗

0, ...,w
∗
N−1

}
= arg max

{w0,...,wN−1}
E
[∑N−1

i=0 wT
i ri+1

]
subject to

∑N−1
i=0 var

[
wT

i ri+1

]
= σ2

0

M1,

where σ2
0 represents the total allowable “risk-budget”. The portfolio weight vectors over

all but the first stage, {w1, · · · ,wN−1}, are each state dependent random variables. The

portfolio at time tk is a function of the observed value of the asset log-prices at the beginning

of each stage, i.e. wk = fk (xk). While Problem M1 ignores non-zero correlations among

the inter-stage returns, the corresponding objective function is additive in the number of

stages, and therefore dynamic programming techniques can yield computationally efficient

solutions in order to determine the optimal sequence of portfolio policy functions.

Case 2: Non-additive Mean-Variance Framework The second multistage extension to the

Markowitz mean-variance framework does take into account the inter-stage return statistics,

and is given by Problem M2, as follows:

{
w∗

0, ...,w
∗
N−1

}
= arg max

{w0,...,wN−1}
E
[∑N−1

i=0 wT
i ri+1

]
subject to var

[∑N−1
i=0 wT

i ri+1

]
= σ2

0

M2,

where:

vart0

[
N−1∑
i=0

wT
i ri+1

]
=

N−1∑
i=0

vart0

[
wT

i ri+1

]
+

N∑
i=1

N∑
j=1,i6=j

covt0

[
wT

i ri+1,wT
j rj+1

]
.
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The trading strategy produced by Problem M2 may be preferable over the trading strategy

corresponding to Problem M1 when the inter-stage portfolio return are negatively corre-

lated. Such a correlation structure enables a greater degree of per-stage variance to be

taken, while maintaining the same level of total variance. This enables the investor to uti-

lize leverage to earn a higher expected total portfolio return, a theme that is explored in

great detail throughout this thesis.

In contrast to Problem M1, Problem M2 does not admit an additive cost function due

to the inclusion of covariance terms, and therefore dynamic programming techniques can-

not be naively applied in order to learn the optimal sequence of portfolio policy functions.

In addition, it does not fall within the class of expected utility maximization problems, due

to the presence of the variance constraint. Specifically, the variance term may be expanded

out as follows:

vart0

[
N−1∑
k=0

wT
k rk+1

]
= E

(N−1∑
k=0

wT
k rk+1

)2
− E

[
N−1∑
k=0

wT
k rk+1

]2

.

The squared expectation operator prevents this term from being expressed as the expected

value of a function of terminal wealth. However, as discussed in Chapter 5, it is possible

to map Problem M2 into a related, auxiliary problem using a quadratic utility function in

order to learn the optimal sequence of MVO portfolios [36].

2.4.2 Expected Utility Maximization

Extensions of the expected utility maximization framework to multiple stages can be traced

to the 1968 work of Mossin [45], in which it is stated that “any sequence of portfolio decisions

must be contingent upon the outcomes of previous periods and at the same time take into

account information on future probability distributions.” Mossin was the first to propose

that investors act to maximize the expected utility of terminal wealth, expressed formally

as:

{
w∗

0, ...,w
∗
N−1

}
= arg max

{w0,...,wN−1}
E [u (rT )] = arg max

{w0,...,wN−1}
E

[
u

(
N−1∑
i=0

wT
i ri+1

)]
.
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In this work, Mossin also proposed the use of dynamic programming methods to solve

such optimization problems. In the following year, Samuelson and Merton expanded upon

Mossin’s work [44, 52], by including the expected utility of consumption in the portfolio

choice framework, working in discrete and continuous-time, respectively.

2.4.3 Policy Classification

Once the multistage portfolio selection problem has been solved, the resulting policy can

be characterized as belonging to one of three general classes. Under certain conditions,

the solution to the multiperiod problem may reduce to solving a sequence of independent

single-stage problems, in which case the investor is said to follow a myopic policy [13].

This situation typically arises when one assumes that the asset returns are independent

and identically distributed (i.i.d.) in time. When the return distributions are allowed to

vary at each stage, but are known in advance, the resulting solution is referred to as a pre-

commitment policy, and the portfolio is rebalanced according to a deterministic schedule

[7]. A truly dynamic portfolio selection problem arises only when the return distributions

change over time in a stochastic manner, and the new information that becomes available

at the beginning of each stage is taken into consideration before an investment decision is

made. Policies generated in the presence of return distribution uncertainty typically have

one component corresponding to the original myopic policy, and a second component that

hedges against future investment uncertainty [47].

2.4.4 Transaction Costs

There are many forms of transaction costs that penalize the investor for executing a given

portfolio policy. Possible sources of transaction costs include broker or exchange commis-

sions and fees, bid/ask spreads, price fluctuations (timing cost), and the price impact of

trading (liquidity cost) [64]. While this is an important and interesting topic from both

academic and practical perspectives, transactions costs are not considered in this thesis.
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Chapter 3

Cointegration

This chapter presents an overview of cointegrated vector autoregressive (VAR) processes

using a state-space approach, expanding on the development of the VAR model found in

Appendix A. A single definition of the cointegration property is given, which is stated in-

dependent of any specific random process describing the time evolution of the constituent

signals. Given this definition, two equivalent sets of restrictions on the parameters of a VAR

process are given, each of which is shown to produce a cointegrated system.

In contrast to other cointegration primers found in the literature, special attention is placed

here on understanding the geometry of the resulting system, a theme that is continued in

the subsequent development of mean-variance optimal portfolios. Of particular interest is

the distribution of cointegrated data over time, which clusters around a reduced-dimension

subspace of Rp, the space spanned by the asset log-prices vectors. In addition, the subspaces

associated with the short and long-term dynamics are identified and characterized in terms

of the parameters of a cointegrated VAR system.

The organization of this chapter is as follows. In Section 3.1, a set of definitions regard-

ing stability and integrated processes is presented. In Section 3.2, the error-correcting and

state-space forms for a cointegrated VAR process are discussed, and their equivalence is

established. Building on the state-space approach, the total system response is given in

Section 3.3, resulting in an alternative form of the Granger Representation Theorem [29].

In Section 3.4, a formal estimation procedure for fitting a cointegration VAR model to

a data set is detailed. Lastly, in Section 3.5, a brief survey of the existing literature on

cointegration in portfolio theory and econometrics is given.

45
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3.1 Preliminary Notions

Consider a scalar, discrete-time, linear time-invariant (LTI) system with the following au-

toregressive (AR) input-output relationship:

y[n] =
p∑

k=1

aky[n− k] + x[n], (3.1)

for some a1, ..., ap ∈ R. Letting X(z) and Y (z) denote the Z-transforms of the signals x[n]

and y[n], respectively, the system transfer function, H(z), is given by:

H(z) =
Y (z)
X(z)

=
1

1−
∑p

k=1 akz−k
. (3.2)

Assuming the system is causal (i.e., the output does not depend on future inputs), the unit

impulse response is computed as follows:

h[n] = Z−1 (H(z)) =
p∑

k=1

Akλ
n
ks[n], (3.3)

where A1, ..., Ap ∈ R, s[n] is the unit-step function, and {λ1, ..., λp} denote the p roots of the

polynomial in the denominator of Eq. 3.2, which are also equal to the poles of the system.

An LTI system is bounded-input, bounded-output (BIBO) stable if the following condition

holds:
∞∑

k=−∞
|h[k]| <∞.

For the specific system defined by Eq. 3.3, BIBO stability implies that |λk| < 1, k = 1, ..., p.

A random process x[n] is wide-sense stationary (WSS) if both the mean and the variance of

the process remain constant over time, and the autocorrelation function, E[x[n]x[m]], only

depends on the time difference, |n−m|, not the absolute times. A process that starts at time

n0 = 0 is asymptotically WSS (AWSS) if any initial condition response decays to zero as

n→∞ and the process’ statistics approach those of a WSS process [67]. A process that is

WSS is also AWSS. For example, let x[n] denote an independent and identically distributed

(i.i.d.) Gaussian white noise process with zero mean and variance σ2, and let y[n] denote

the output process produced by putting x[n] through the system defined by Eq. 3.1 with
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p = 1, |a1| < 1, and arbitrary initial condition y[0]. Then, x[n] is WSS, and y[n] is AWSS,

where the limiting stationary distribution has zero mean, variance σ2

1−a2
1
, and autocorrelation

function E[x[n]x[n − k]] = a
|k|
1 σ2. In summary, putting a WSS random process through a

BIBO stable LTI system beginning at time n0 = 0 produces an output process that is AWSS.

For the system defined by Eq. 3.1, if there is a single pole at unity, λ1 = 1, while the

remaining poles all satisfy |λk| < 1 for k = 2, ..., p, the system is said to be marginally un-

stable. When a WSS random process is passed through such a marginally unstable system,

the output process is said to be integrated of order one, denoted as I(1)1. Integrated pro-

cesses are not AWSS, as the process variance grows linearly with time. Such I(1) processes

have the property that the corresponding first-difference series, ∆x[n] = x[n]− x[n− 1], is

AWSS. A simple example of an I(1) process is a random walk, which is the sum of i.i.d.

random variables. Formally, the process evolves according to:

x[n] = x[n− 1] + ε[n] =
n∑

i=0

ε[i],

with initial condition x[0] and where the ε[n] are i.i.d. random variables.

Let x1[n] and x2[n] denote two scalar, discrete-time signals, each of which belongs to the class

of I(1) processes. For arbitrary a1, a2 ∈ R the linear combination y[n] = a1x1[n] + a2x2[n]

is also I(1). However, in some cases, it is possible to choose a1 and a2 so that y[n] is AWSS,

thus removing the effect of a shared integrator, also referred to as a common trend or ran-

dom walk component. When this occurs, x1 and x2 are said to be co-integrated. While

the general notions of integrated and co-integrated time series apply to processes with an

arbitrary number of integrators, attention here is restricted to the case where the underly-

ing processes are all assumed to be I(1), as many real-world financial time series have been

empirically shown to fall within this class [12, 26].

1Even in a discrete-time setting, the name integrator is commonly used in place of the name accumulator.
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3.2 Cointegrated Vector Autoregressive Processes

As defined in the previous section, a group of random processes are said to be cointegrated

if each is well-modeled by an integrated process, yet there exists a linear combination of

them that is AWSS. Here, a set of restrictions are imposed on the parameters of a vector

autoregressive (VAR) process so that the underlying component signals are cointegrated.

The conditions are given for both the error-correcting and state-space representations of

a VAR process, in Sections 3.2.1 and 3.2.2, respectively. Furthermore, the equivalence of

these restrictions is established.

3.2.1 Form 1: Error-Correction Model

Let x[n] ∈ Rp denote a random vector in discrete time, indexed by n, which evolves accord-

ing to an order k vector autoregressive, V AR(k), process. As stated in Appendix A, the

canonical form for such a process is given by:

x[n] = Π1x[n− 1] + Π2x[n− 2] + · · ·+ Πkx[n− k] + Φd[n] + ε[n], (3.4)

where:

• The Πi ∈ Rp×p are matrices of coupling coefficients,

• d ∈ Rr×1 is a vector of deterministic inputs,

• Φ ∈ Rp×r matrix of coefficients relating the deterministic terms to the elements of x,

• ε ∈ Rp×1 is a Gaussian random vector with zero mean and covariance matrix Ψ.

The input-output relationship may also be expressed in error-correcting model (ECM) form,

as follows:

∆x[n] = Πx[n− 1] +
k−1∑
i=1

Γi∆x[n− i] + Φd[n] + ε[n] (3.5)

where:

Π ,
k∑

i=1

Πi − Ip, (3.6)

∆x[n− i] , x[n− i]− x[n− i− 1]

Γi , −
k∑

j=i+1

Πj (3.7)
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This form of a VAR process relates the current change in the output not only to the set of

k−1 previous output changes, but also to the current log-price level (i.e., x[n−1]) through

the matrix Π.

A VAR process exhibits the cointegration property if the matrix Π has reduced rank r < p,

as stated in Restriction 3.1 below.

Restriction 3.1.

Let the vector random process x[n] evolve according to a V AR(k) model defined in the

error-correcting model form of Eq. 3.5. Furthermore, assume that each of the component

processes of x[n] is I(1). The system is said to be cointegrated if the matrix Π, defined by

Eq. 3.6 has reduced rank 0 < r < p, and can therefore be factored as the outer-product of

two p× r matrices, as follows:

Π = αβT . (3.8)

Given the reduced rank matrix Π, the matrices α and β are computed using the singular

value decomposition of Π, as described in Appendix 3.B.

In order to show that this restriction on a VAR system implies the component processes

are cointegrated, substitute Eq. 3.8 into Eq. 3.5, as follows:

∆x[n] = αβTx[n− 1] +
k−1∑
i=1

Γi∆x[n− i] + u[n], (3.9)

where the total system input u[n] = φd[n] + ε[n] is AWSS, implying that the deterministic

component is zero or constant. Under the assumption that each component process is I(1),

the process on the left side, ∆x[n], is AWSS, and therefore the process on the right-hand

side must also be AWSS. The middle term,
∑k−1

i=1 Γi∆x[n− i], is AWSS as it is the sum of

lagged first-differences, and the third term, u[n], is assumed to be AWSS. Therefore, the

first term, αβTx[n − 1], must also be AWSS. This implies that βTx[n − 1] is AWSS, and

that each column of the matrix β is a cointegrating vector.

The following two examples illustrate the use Restriction 3.1.
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(a) VAR(1) system from Ex. 3.1, com-
prised of two independent random walks
that are not cointegrated.
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(b) VAR(1) system from Ex. 3.2, com-
prised of two cointegrated time-series.

Figure 3-1. Sample paths of non-cointegrated and cointegrated VAR systems.

Example 3.1.

Consider the following VAR(1) model, with no deterministic inputs:

x[n] =

1 0

0 1

x[n− 1] + ε[n],

where ε[n] ∼ N (0,Ψ) and Ψ = I2, which denotes the 2 × 2 identity matrix. The matrix

Π = Π1 − I2 = 0 has rank 0, and cannot be factored according to Eq. 3.8. The underlying

processes correspond to two independent random walks, as depicted in Fig. 3-1(a), and are

not cointegrated.

Example 3.2.

Now consider a second V AR(1) model, again with no deterministic inputs:

x[n] =
(

1.18 −0.14
0.51 0.62

)
x[n− 1] + ε[n],

where ε[n] ∼ N
(
0, 10−3I

)
. Here, the matrix Π has rank 1, and factors according to:

Π = Π1 − I2 =
(

.18 −0.14
−0.49 0.62

)
=
(
−0.28
−0.77

)(
−0.66 0.5

)
.
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The ECM form is given by:

∆x[n] = αβTx[n− 1] + ε[n] =
(
−0.28
−0.77

)(
−0.66 0.5

)
x[n− 1] + ε[n]. (3.10)

Figure 3-1(b) depicts a sample path of this process of length 200. The two component

signals share a long-term stochastic “common-trend” and move together in a coordinated

fashion, yet deviate from each other by an amount that is well-modeled by a random process

that is asymptotically WSS (AWSS).

After reading these two examples, readers may find it helpful to recall the analogy of the

“drunk walking a dog” [46]. Just as a sample path of a random walk is often likened to

a drunkard’s walk, one may think of cointegration as what happens when the drunk takes

a puppy along on the stroll. The two time series meander about in a seemingly random

pattern, however, never deviate from each other “too much” due to the presence of the

“leash”, or rather error-correction forces that work to restore them to their long-run equi-

librium behavior. The drunk and the dog share a single random walk (common trend),

and each signal deviates from this shared trend by an amount well-modeled by a random

process that is AWSS.

The system in Ex. 3.2 can also be used to study the geometry of a cointegrated sys-

tem, revealed in a scatter plot of the component processes. Figure 3-2 displays three views

of data generated from this model after N = {100, 200, 600} steps, respectively, with arbi-

trary initial condition x[0] =
(
3.9 5.5

)T
. As the figure indicates, the data appears to have

finite variance in the direction of β and growing variance in the direction of β⊥. The space

spanned by β⊥ represents the long-term or steady-state equilibrium relationship between

the variables x1 and x2, and is often referred to as the attractor or equilibrium space. The

scalar process βTx[n] measures how far out of equilibrium the process is at time n, mea-

sured by the distance of the vector x[n] from a hyperplane through the origin with normal

vector β. The space spanned by β is referred to as the cointegrating space, as any vector in

this space is a cointegrating vector. The change to the process at each time step is deter-

mined by measuring the disequilibrium error, βTx[n], which is “corrected for” through the

restoring “forces” in the α direction, as described by Eq. 3.10. It is for this reason that the

spaced spanned by α is referred to as the error-correcting or disequilibrium readjustment
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(c) N = 600

Figure 3-2. Scatter plot of cointegrated VAR system over time. The data has finite variance in the direction
of β and growing variance in the direction of β⊥.

Subspace Dimension Common Names
α r error-correcting space, disequilibrium readjustment space
β r cointegrating space

β⊥ p-r attractor space, equillibrium space

Table 3.1. Subspaces of a cointegrated VAR system.

space. A summary of the subspaces defining the geometry of a cointegrated VAR system is

given in Table 3.1.

3.2.2 Form 2: State-Space Model

As presented in Appendix A, a vector autoregressive process can be expressed in state-space

form, as follows:


x[n]

x[n− 1]
...

x[n− (k − 1)]


︸ ︷︷ ︸

q[n+1]

=


Π1 · · · Πk−1 Πk

Ip · · · 0 0
...

. . .
...

...

0 · · · Ip 0


︸ ︷︷ ︸

A


x[n− 1]

x[n− 2]
...

x[n− k]


︸ ︷︷ ︸

q[n]

+


Ip

...

0

0


︸ ︷︷ ︸

b

(
Φd[n] + ε[n]

)
︸ ︷︷ ︸

un

x[n]︸︷︷︸
y[n]

=
(
Π1 · · · Πk−1 Πk

)
︸ ︷︷ ︸

cT


x[n− 1]

x[n− 2]
...

x[n− k]


︸ ︷︷ ︸

qn

+
(
Ip

)
︸︷︷︸
d[n]

(
Φd[n] + ε[n]

)
︸ ︷︷ ︸

u[n]

.(3.11)
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where A ∈ Rpk×pk, b ∈ Rpk×p, cT ∈ Rp×pk, d ∈ Rp×p, u ∈ Rp×p, q ∈ Rpk×1, and Ip is

the p × p identity matrix. Given this representation, the cointegration property can be

expressed in terms of a simple restriction on the eigendecomposition of the state transition

matrix, A, as stated below.

Restriction 3.2.

Let the vector random process x[n] evolve according to a VAR(k) model, represented in

state-space form by Eq. 3.11. Furthermore, assume that the state transition matrix, A, is

diagonalizable, and admits an eigendecomposition of the form A = MDM−1, where D is a

diagonal matrix containing the eigenvalues of A, and M is a matrix whose columns consist

of the corresponding eigenvectors, which are all linearly independent, but not necessarily

orthogonal. Then, the vector process is cointegrated if there is at least one eigenvalue

satisfying |λi| < 1, and at least one eigenvalue satisfying λi = 1. Eigenvalues with |λi| > 1

and |λi| = 1 but λi 6= 1 are not considered.

In order to establish that Restriction 3.2 implies the component processes are cointegrated,

one must examine the total system response, often referred to as the Granger Representa-

tion. While the full derivation of the Granger Representation is deferred until Section 3.3,

for now it is sufficient to state that this representation utilizes the eigenvalue assumption in

order to express the process x[n] as a linear combination of integrated and AWSS random

processes, denoted by x1 and x2 respectively, as follows:

x[n] = C1x1[n] + C2x2[n], (3.12)

where C1,C2 ∈ Rp×p. Furthermore, in Section 3.3.2 it is shown that:

C1 = β⊥
(
αT
⊥Γβ⊥

)−1
αT
⊥.

This implies that the scalar random process formed by taking the inner product of both

sides of Eq. 3.12 with any vector b ∈ span {β} is AWSS, since the term corresponding to

the integrated component drops out, leaving:

bTx[n] = bTC2x2[n].
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Restriction 3.2 for a cointegrated process bears strong resemblance to the condition in Thm.

A.1 for an AWSS VAR process. Only the existence of at least one eigenvalue at unity differ-

entiates an AWSS VAR process from a cointegrated VAR process. In addition to containing

at least one unit eigenvalue, it is also important that the process has at least one eigenvalue

satisfying |λi| < 1. Recall from Ex. 3.1 that a system with A = Π1 = I2, which contains

2 unit eigenvalues, generates two independent random walks, and is, therefore, not cointe-

grated.

The matrices α and β can be expressed not only in terms of the SVD of Π as described in

Appendix 3.B, but also in terms of the eigendecomposition of A. Theorem 3.1 gives a set

of basis vectors for each of the four subspaces of Π in terms of the eigenvectors of the state

transition matrix A, and Corollary 3.1 expresses the eigendecomposition of A in terms of

the subspaces of Π for a VAR(1) system.

Theorem 3.1.

Consider a cointegrated VAR(k) model expressed in state-space form, defined by Eq. 3.11.

Furthermore, consider the block form of the eigenvector and inverse eigenvector matrices

M and M−1 corresponding to the state transition matrix, A, as introduced in Appendix A,

and repeated here:

M =


m1,1 m1,2 · · · m1,pk

λ−1
1 m1,1 λ−1

2 m1,2 · · · λ−1
pk m1,pk

...
...

. . .
...

λ−k+1
1 m1,1 λ−k+1

2 m1,2 · · · λ−k+1
pk m1,pk

 ,

M−1 =


nT

1,1 nT
1,2 · · · nT

1,k

nT
2,1 nT

2,2 · · · nT
2,k

...
...

. . .
...

nT
pk,1 nT

pk,2 · · · nT
pk,k

 ,

In addition, assume that the first p − r eigenvalues of A are equal to unity, while the rest

satisfy |λi| < 1 for i = p − r + 1, ..., pk. Then, basis vectors for the four fundamental

subspaces of Π can be defined in terms of the eigendecomposition of A, as follows:
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Subspace of Π Name Basis Vectors

Column space α m1,p−r+1, ...,m1,pk

Left nullspace α⊥ nT
1,1, ...,n

T
p−r,1

Row space β
∑k

j=1 nT
p−r+1,j , ...,

∑k
j=1 nT

pk,j

Nullspace β⊥ m1,1, ...,m1,p−r

Corollary 3.1.

For a cointegrated VAR(1) system, the eigendecomposition of Π may be expressed as follows:

A =
(
β⊥ α

)I 0

0 D2

(αT
⊥Γβ⊥

)−1
αT
⊥(

βT α
)−1

βT

 ,

where the diagonal matrix D2 contains all the non-unit eigenvalues.

The proofs of Thm. 3.1 and Corollary 3.1 are given in Appexdix 3.A. As shown, there is a

direct mapping between the subspaces of the matrix Π and the eigenvectors of the matrix

A, and therefore a restriction in one domain implies a restriction in the other. In particular,

the VAR-ECM and state-space model cointegration restrictions of Sections 3.2.1 and 3.2.2,

are equivalent, as established in Theorem 3.2.

Theorem 3.2.

Restrictions 3.1 and 3.2, which place conditions on the parameters of a vector autoregressive

process so that the underlying time series are cointegrated, are equivalent.

The proof of Thm. 3.2 is given in Appendix 3.A.

3.3 System Response

Here, the moving-average representation for the general VAR process given in Section A.3,

is extended to the case of a cointegrated VAR process. First, closed-form expressions for

the zero-input and zero-state responses are derived and the resulting total system response

is presented. This expression is an alternative form of the Granger Representation Theorem

[30], which is then compared to existing versions found in the literature.
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3.3.1 Zero Input Response

Recall the zero-input response (ZIR) for a general VAR process, given in Eq. A.22. Let the

vector g = M−1q[0] contain the expansion coefficients of the initial state vector q[0]. In a

cointegrated VAR system with exactly p− r unit eigenvalues, the ZIR is equal to:

yzir[n] =
p−r∑
i=1

gim1,i +
pk∑

i=p−r+1

giλ
n+1
i m1,i,

= β⊥g + αDn+1
2 g, (3.13)

where the columns of the matrices
(
m1,1 · · · m1,p−r

)
and

(
m1,p−r+1 · · · m1,pk

)
span

the β⊥ and α spaces, respectively, as established in Thm. 3.1. Furthermore, the diagonal

matrix D2 again contains all of the non-unit eigenvalues {λp−r+1, ..., λpk}.

As Eq. 3.13 reveals, the ZIR is the sum of constant and time-varying terms. The time-

varying component is along the α subspace, which is consistent with the interpretation that

this is the error-correcting (disequilibrium readjustment) space, as discussed in Section 3.2.1.

In the limit as n → ∞, this component vanishes, since |λi| < 1 for i = p − r + 1 · · · pk,

and the overall ZIR converges to the constant component, β⊥g. Thus, in the absence of a

driving input process, the output process converges to a fixed point in the space spanned

by the columns of β⊥, justifying the interpretation of this subspace as the attractor space.

Recall from Section 3.1 that there exists some b ∈ Rp so that the scalar process z = bTx

is AWSS, which implies that the ZIR must decay to zero as time increases. Choosing

b ∈ span{β} produces a ZIR equal to:

zzir[n] = bTyzir[n] = bT
(
β⊥g + αDn+1

2 g
)

= bT αDn+1
2 g,

which indeed converges to zero as n→∞ as all of the elements of D2 have magnitudes less

than one.

3.3.2 Zero State Response

In Appendix A, the zero-state response for a general VAR process is characterized by the

transfer function matrix of Eq. A.27. In the special case of a cointegrated VAR system
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with exactly p− r unit eigenvalues, the transfer function matrix is equal to:

H(z) =
m1,1...p−rnT

1...p−r,1

1− z−1
+

pk∑
i=p−r+1

m1,inT
i,1

1− λiz−1
,

=
β⊥
(
αT
⊥Γβ⊥

)−1
αT
⊥

1− z−1
+ αD2(z)

(
βT α

)−1
βT . (3.14)

where the diagonal matrix D2(z) contains the terms 1
1−λiz−1 for i = p − r + 1, .., pk. Sub-

sequently, the matrix H(z) is the sum of a marginally unstable component due to the pole

at z = 1, and a BIBO stable component due to all of the remaining poles strictly inside the

unit circle. The corresponding time domain transfer function is computed by taking the

inverse Z-transform of Eq. 3.14, as follows:

h[n] = β⊥
(
αT
⊥Γβ⊥

)−1
αT
⊥ + αDn

2

(
βT α

)−1
βT for n ≥ 0.

The overall zero-state response of a cointegrated VAR is equal to:

yzsr[n] = h[n] ∗ u[n]

= β⊥
(
αT
⊥Γβ⊥

)−1
αT
⊥

n∑
j=0

u[j] +
n∑

j=0

αDn−j
2

(
βT α

)−1
βTu[j].

As with the ZIR, it is necessary to confirm that there exists some b ∈ Rp so that the scalar

process z = bTx is WSS. Letting b ∈ span{β}, the ZSR is equal to:

zzsr[n] = bTyzsr[n]

=
n∑

j=0

bT αDn−j
2

(
βT α

)−1
βTu[j],

which is indeed WSS since |λi| < 1 for i = p− r + 1 · · · pk.
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3.3.3 Total System Response

The total output response of a cointegrated VAR process, is computed as the sum of its

zero-input and zero-state responses, as follows:

y[n] = yzsr[n] + yzir[n]

= β⊥
(
αT
⊥Γβ⊥

)−1
αT
⊥

n∑
j=0

u[j] +
n∑

j=0

αDn−j
2

(
βT α

)−1
βTu[j] + β⊥g + αDn+1

2 g.

(3.15)

The first term represents an integrated process, scaled by the matrix factor β⊥
(
αT
⊥Γβ⊥

)−1
αT
⊥.

The second term represents an AWSS random process, as it is the sum of a set of AWSS

random processes formed by convolving the input process u[n] = Φd[n] + ε[n] with an ex-

ponentially decaying moving-average sequence. Finally, the last two terms comprising the

zero-input response consist of a constant term and a term that decays to zero as n increases.

A simple rearrangement of the terms in Eq. 3.15 yields:

y[n] = β⊥

(αT
⊥Γβ⊥

)−1
αT
⊥

n∑
j=1

u[j] + g

+ α

 n∑
j=0

Dn−j
2

(
βT α

)−1
βTu[j] + Dn+1

2 g

 .(3.16)

This representation for y[n] clearly shows that a cointegrated VAR process can be de-

composed into two components that exist within non-orthogonal subspaces. The first part

corresponds to an integrated component plus a constant term within the β⊥ subspace, while

the second part corresponds to an AWSS random process within the α subspace. From this

representation it is clear that the scalar process z[n] = bTy[n] for b ∈ span{β} is also an

AWSS random process, due to the fact that the integrated and constant components are

removed as bT β⊥ = 0.

3.3.4 Relationship to Granger Representation Theorem

The total system response of a cointegrated VAR system, defined by Eq. 3.15, is an alternate

form of the celebrated Granger Representation Theorem. There are numerous versions of

this theorem in the literature, each establishing the relationship between the cointegration

property and the various forms of a VAR process. The name was first coined by Engle and
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Granger [24], in which the equivalence of the autoregressive, moving-average, and error-

correcting forms of a cointegrated VAR process is established. The theorem is subsequently

expanded on by Johansen [29], who derived an explicit moving-average representation that

decomposes the output into three factors corresponding to a random walk component,

stationary component, and an initial value response, as follows:

y[n] = β⊥
(
αT
⊥Γβ⊥

)−1
αT
⊥

n∑
j=1

u[j] + C1(L)u[n] + a,

where the vector a depends on the initial conditions and satisfies βTa = 0, and C1(L) is

a infinite order matrix polynomial of the lag (delay) operator L. Furthermore, the term

C1(L) satisfies:

1
I− z−1Π1 + . . . + z−(k−1)Πk−1 + z−kΠk

=
C

1− z
+ C1(z),

for z 6= 1. Johansen implicitly defines C1(L) in terms of the characteristic polynomial of

the VAR process and the matrix coefficient of the random walk component.

On the other hand, an explicit representation for C1(L) is developed in [28]. The coef-

ficients of the polynomial are given by the following recursion:

∆C1[n] = ΠC1[n] +
k−1∑
i=1

Γi∆C1[n− i], (3.17)

C1[0] = I−C,

C1[−1] · · ·C1[−(k − 1)] = −C.

Note the similarity of Eq. 3.17 to the VAR-ECM form given in Eq. 3.5. While this work

goes one step further than Johansen’s representation by providing an explicit closed-form

representation for each of the coefficients, the resulting representation is not a pure moving-

average equation due to the recursive definition for C1(L).

A state-space approach to analyzing cointegrated VAR processes, similar to the approach

taken here, is presented in [9]. The coefficient matrices preceding each factor in Eq. 3.15

are expressed in terms of the Jordan form of the state-space model, rather than as functions
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of the base block vectors {m1,i,ni,1} of the original system transition matrix.

In contrast to existing representations, the total system response dervied here and given in

Eq. 3.15 highlights the underlying geometry of a cointegrated system. The nonstationary

integrated and AWSS components are explicitly defined in terms of the {α,α⊥,β,β⊥} sub-

spaces of the matrix Π, without the need for any recursive specifications. From this form

it is immediately clear why choosing any vector from the span of β produces a WSS scalar

random process.

3.3.5 Order of Integration

The total system response given in Eq. 3.15 contains only a single integrator, and therefore

encodes the belief that each component process of the vector process is at most integrated

of order one. In this section, a restriction on the parameters of the VAR model is given

that can be used to test that the resulting component processes are indeed I(1), and not

integrated of order two, denoted as I(2). Two forms of the restriction are presented, one in

terms of the eigenstructure of the state transition matrix A, and the other in terms of the

matrices α and β.

First consider the following example, which elucidates the relationship between the unit

eigenvalues of A and the order of integration of the process.

Example 3.3.

Consider a cointegrated VAR(2) process:

x[n] = Π1x[n− 1] + Π2x[n− 2] + ε[n].

When expressed in state-space form, suppose that the state transition matrix, A =

Π1 Π2

I 0

,

has eigenvalues λ = {1, 1, 0.25, 0.5}. While the algebraic multiplicity of the unit eigenvalue

is two, further assume the associated eigenspace has reduced rank, implying that the geo-

metric multiplicity is equal to one. As a result, A is not diagonalizable, but rather may be

factored into Jordan canonical form, as discussed in Appendix A.2.3. Accordingly, the state

transition matrix is equal to A = MDM−1, where the columns of the matrix M contain the
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generalized eigenvectors, and the matrix D contains the Jordan blocks along the diagonal.

For the VAR(2) process under consideration here, these two matrices are given by:

D =


1 1 0 0

0 1 0 0

0 0 0.25 0

0 0 0 0.5

 , M =

m1,1 m1,2 m1,3 m1,4

m1,1 m1,2 −m1,1 4m1,3 2m1,4

 .

While it is not possible to transform the system to modal coordinates, it is possible to apply

the transformation r = M−1q, yielding a system similar to the form given in Eq. A.16.

Here the modes are not fully decoupled, but are separated as much as possible. The system

transfer function can be computed according to Eq. A.26, as follows:

H(z) = c̃T
(
zI− Ã

)−1
b̃ + d̃,

= c̃T


z − 1 1 0 0

0 z − 1 0 0

0 0 z − 0.25 0

0 0 0 z − 0.5



−1

b̃ + d̃,

= c̃T



1
(z−1)

1
(z−1)2

0 0

0 1
(z−1) 0 0

0 0 1
(z−0.25) 0

0 0 0 1
(z−0.5)

 b̃ + d̃,

where the last line follows by computing the matrix function f(A) = (zI−A)−1 using the

characteristic polynomial of A, as described in Chapter 2 of [21]. The transfer function

contains both 1
(z−1) and 1

(z−1)2
terms, so that the inverse Z-transform contains terms of the

form
∑n

i=0 u[i] and
∑n

j=0

∑j
i=0 u[i], resulting in an I(2) output process.

As this example demonstrates, there is a direct relationship between the geometric and

algebraic multiplicities for the unit eigenvalues and the resulting order of integration. This,

in turn, naturally leads to an equivalent restriction in terms of the α and β matrices. Both

restrictions are given in Theorem 3.3 below.
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Theorem 3.3.

A cointegrated vector autoregressive process is integrated of order one so long as:

• The unit eigenvalues associated with the state transition matrix A have equivalent

geometric and algebraic multiplicities, or equivalently,

• the condition αT
⊥Γβ⊥ = 0 holds.

The proof of Thm 3.3 is given in Appendix 3.A. The first restriction, expressed in terms

of the dimension of the eigen space of A corresponding to the unit eigenvalues, prevents

anything but a single integrator from appearing at the output. The second restriction,

expressed in terms of the subspaces of the matrix Π, is closely related to the I(1) condition

given in [29], which states that only the determinant of αT
⊥Γβ⊥ must be non-zero in order

for the system to be integrated of order one.

3.4 Estimation

This section presents an overview of the procedure needed in order to estimate the param-

eters of a cointegrated VAR process from a random sample of data. As depicted in Fig.

3-3, the presence of a unit root must first be verified in each of the constituent time series.

Once confirmed, the number of cointegrating relations (r) and common trends (p− r) must

be estimated, and only then can the VAR model parameters can be computed. Each block

of Fig. 3-3 is described in detail below. The maximum likelihood analysis used both to

estimate r and the VAR model parameters follows the work of Johansen [30]. While not

discussed here, many alternative estimation procedures can be found in the literature, in-

cluding the non-parametric work of [15], the subspace methods of [8, 10, 63], the Bayesian

techniques described in [32, 33, 61], the canonical correlations analysis used by [14, 16], and

the principal components analysis method proposed by [57].

3.4.1 Unit Root Test

The cointegrated VAR model defined here assumes that the shaping filter for each con-

stituent time series contains a single pole at unity, while all of the remaining poles lie

strictly inside the unit circle. This implies that while the signal is integrated of order one,

the resulting first-difference series is WSS or AWSS, depending on the choice of initial con-
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Figure 3-3. Cointegrated VAR Estimation Procedure.

dition. The presence of unit pole (unit root) in each data set must be statistically verified

before the parameters of the cointegrated VAR can be estimated. The most popular sta-

tistical test for the presence of a unit root is the Dickey-Fuller (DF) test [22], described here.

Let xi[n] denote the scalar time series comprising the ith component of the vector pro-

cess x[n]. In the DF test, one first estimates a model of the form:

∆xi[n] = a0 + a1n + a2xi[n− 1] + ε[n],

by ordinary least squares (OLS) regression. Absence or presence of the unit root is deter-

mined by a likelihood ratio hypothesis test against a null hypothesis that a2 = 0. Lagged

first difference terms may be included to remove any serial autocorrelation present in the

data, resulting in what is known as the Augmented Dickey-Fuller (ADF) test. In this case

the regression model may be written as follows:

∆xi[n] = a0 + a1n + a2xi[n− 1] +
k∑

i=1

bi∆xi[n− i] + ε[n],

in which the parameters are again fit via an OLS procedure.

3.4.2 Likelihood Analysis

Both the order of cointegration and estimates for the cointegrated VAR model parameters

are determined from an analysis of the likelihood function of the observed data sample under

the assumption that the stochastic input, εn, is i.i.d. according to a Normal distribution

with zero mean and covariance matrix Ψ. The ML estimator given in Section A.4 does not

enforce the restriction that Π has reduced rank and can be factored as Π = αβT . A new

estimator can be derived starting from the ECM form of a VAR process, given by Eq. 3.9,
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as this description explicitly contains the matrices α and β. The set of parameters to be

estimated is now given by {α,β,Γ1, ...,Γk−1,Φ,Ψ}, which in turn can be used with Eq. 3.7

to determine the parameters {Π1, ...,Πk}. For notational convenience, Eq. 3.9 is rewritten

in linear regression form, as follows:

z0[n] = αβTz1[n] + θTz2[n] + ε[n], (3.18)

where:

z0 = ∆x[n], z1 = x[n− 1], z2 =


∆x[n− 1]

...
∆x[n− k + 1]

d[n]

 , θ =


Γ1
...

Γk−1

Φ

 .

Given a random sample
{
x1, ...,xM

}
, the likelihood function is equal to:

L (α,β,θ,Ψ) = Prα,β,θ,Ψ

(
x1, ...,xM

)
,

=
M∏
i=1

1
(2π)p/2|Ψ|1/2

exp
[
−0.5

(
zi
0 −αβTzi

1 − θTzi
2

)T
Ψ−1

(
zi
0 −αβTzi

1 − θTzi
2

)]
,

with corresponding log-likelihood function:

` (α,β,θ,Ψ) = −pM

2
log(2π)− M

2
log (|Ψ|)

−1
2

M∑
i=1

(
zi
0 −αβTzi

1 − θTzi
2

)T
Ψ−1

(
zi
0 −αβTzi

1 − θTzi
2

)
. (3.19)

The estimators are defined as solutions to the following optimization problem:

α̂, β̂, θ̂, Ψ̂ = arg max
α,β,θ,Ψ

` (α,β,θ,Ψ) ,

and are computed according to the following two-step procedure, known in the literature

as reduced-rank regression and first introduced by Anderson [3]. First, the log-likelihood

function is differentiated with respect to θ, which produces an estimator that is a function

of α and β, given by:

θ̂(α,β) =

((
M∑
i=1

zi
0z

iT
2

)
− αβT

(
M∑
i=1

zi
1z

iT
2

))(
M∑
i=1

zi
2z

iT
2

)−1

. (3.20)
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Next, substitute Eq. 3.20 back into Eq. 3.18, resulting in a new regression equation, given

by:

w0[n] = αβTw1[n] + ε̃[n], (3.21)

with:

w0 = z0 −

(
M∑
i=1

zi
0z

iT
2

)(
M∑
i=1

zi
2z

iT
2

)−1

z2,

w1 = z1 −

(
M∑
i=1

zi
1z

iT
2

)(
M∑
i=1

zi
2z

iT
2

)−1

z2.

For fixed β, estimates of α and Ψ are obtained from Eq. 3.21, as follows:

α̂T (β) =

(
M∑
i=1

βTwi
1w

iT
1 β

)−1( M∑
i=1

βTwi
1w

iT
0

)
, (3.22)

Ψ̂(β) =
1
M

M∑
i=1

(
wi

0 − α̂βTwi
1

) (
wi

0 − α̂βTwi
1

)T
,

=
1
M

M∑
i=1

wi
0w

iT
0 −

2
M

α̂βT
M∑
i=1

wi
1w

iT
0 +

1
M

α̂βT

(
M∑
i=1

wi
1w

iT
1

)
βα̂T ,

=
1
M

M∑
i=1

wi
0w

iT
0 −

1
M

α̂βT

(
M∑
i=1

wi
1w

iT
1

)
βα̂T , (3.23)

where the last line follows from the fact that
∑M

i=1 βTwi
1w

iT
0 =

∑M
i=1 βTwi

1w
iT
1 βα̂T . All

that remains is to estimate β. To this end, observe that substitution of the ML estimates

for θ, α and Ψ back into Eq. 3.19 yields a log-likelihood function that is proportional to∣∣∣Ψ̂∣∣∣. For notational convenience, define:

Sij =
1
M

M∑
k=1

wi
kw

kT
j ,
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so that the determinant of Ψ̂ can be expressed as follows:

∣∣∣Ψ̂∣∣∣ =
∣∣∣S00 − α̂βTS11βα̂T

∣∣∣ ,
=

∣∣∣S00 − S01β
(
βTS11β

)−1
βTS10

∣∣∣ ,
=
|S00|

∣∣βT
(
S11 − S10S−1

00 S01

)
β
∣∣∣∣βTS11β

∣∣ . (3.24)

According to Lemma A.8 of [30], Eq. 3.24 is maximized by choosing:

β̂ =
(
v1 · · · vr

)
, (3.25)

which represents the eigenvectors corresponding to the r largest eigenvalues that satisfy:

λiS11vi = S10S−1
00 S01vi.

It is also shown in Lemma A.8 of [30] that the corresponding maximal value for
∣∣∣Ψ̂∣∣∣ is

|S00|
∏r

i=1 λi.

The ML estimators for the parameters of a cointegrated VAR are given by Eqs. 3.25,

3.22, 3.23, and 3.20, and all that remains is to estimate the value of r, the rank of the

matrix β (i.e. the dimension of the cointegrating space). This parameter must either be

known a priori or determined from the data. One estimation procedure, as described in Ch.

12 of [30], is based on a sequence of likelihood ratio tests. Let H(r) denote the hypothesis

that there are r cointegrating relations, and let H(p) denote the hypothesis that there are

p relations, i.e. that the matrix Π has full rank. Next, let Qr denote the likelihood ratio

test statistic of H(r) versus H(p), defined as follows:

Qr = −2 log
|S00|

∏r
i=1 λi

|S00|
∏p

i=1 λi
= − 1

M

p∑
i=r+1

λi.

The estimator for the order of cointegration at a given confidence level, r̂, is given by the

smallest value of r such that Qr ≤ cp−r, where ci denote the corresponding critical value,

as tabulated in [30].
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3.5 Literature Review

3.5.1 Previous Work in Portfolio Theory

Cointegration has been the focus of a small set of research on trading and portfolio selection.

Early work focused on the use of statistical arbitrage techniques to trade an AWSS linear

combination of the cointegrated price or log-price time series, formed by selecting a port-

folio weight vector from within the span of the cointegrating space, β. One such technique

is a mean-reverting scheme, detailed in [31], in which the entire portfolio is bought when

the portfolio value deviates from its mean by some predetermined threshold such as one

standard deviation, and the position is closed when the signal mean reverts. Such portfolios

are often referred to as the Beta portfolios, as discussed in detail in Section 4.1.

Another area of research focuses on the construction of tracking portfolios that are cointe-

grated with a market index or benchmark [2]. Drawing on ideas from enhanced indexation

[54], replicating portfolios are formed that track a benchmark return plus or minus some

additional fixed return, so that the spread on these two portfolios may be traded. For exam-

ple, one may construct a two portfolios, one whose value is cointegrated with the S&P 500

index plus 5%, the other which is cointegrated with the S&P 500 index minus 5%. The

investor can then take a long position in the plus portfolio, and a short position in the

minus portfolio, earning, on average, the 10% spread.

The work of Burgess draws on both the idea of cointegrated replicating portfolios and

statistical arbitrage [18]. First, a portfolio is constructed so that the value of the portfolio

is cointegrated with the value of some target asset, such as a particular stock. The resulting

system, cointegrated by construction, can then be used as the basis for a pairs “relative

value” trading scheme, in which positions in the two assets are taken based on whether the

current prices are “cheap” or “expensive” relative to the long-term equilibrium value.

A continuous-time formulation of the portfolio choice problem with cointegrated assets

is studied by Lucas [40]. Here it is assumed that the investor makes decisions based on

constant relative risk averse (CRRA) preferences, such as those captured by a log utility

function, as compared to the mean-variance approach adopted in this thesis. In Lucas’
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model, the investor acts to maximize the present value of his or her expected utility across

the entire trading period, and both short- and long-term time horizons are considered. The

results of Chapter 4 of this thesis agree with the general theme of the results in [40], mainly

that for short periods both the error-correction (α) and cointegration (β) forces play a role

in the choice of portfolio weights, while for long time horizons the cointegration effects dom-

inate. However, the details differ due to the different underlying assumptions concerning

investor preferences.

3.5.2 Applications in Econometrics

In addition to modeling tradable asset prices or returns, cointegrated VAR processes have

played a notable role in the econometrics literature. For example, such models are often

used in the study of exchange rate dynamics [5, 6, 23]. For studies of cointegration in fixed

income markets, see [26, 65, 68]. More recently, cointegration has been used in the study

of the consumption wealth ratio. In [41], it is shown that consumption, asset wealth, and

labor income are cointegrated, and this idea is further exploited in [34] to build a linear

predictor of asset returns.
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3.A Proofs of Chapter 3 Theorems

Proof of Theorem 3.1.

A set of basis vectors for the α and β subspaces are determined in terms of the eigenvectors

of the state transition matrix A. According to Eq. 3.27, the nullspace of Π is spanned

by the set of vectors {m1,i} for i = 1, ..., p− r, which correspond to the base blocks of the

p− r eigenvectors of A with unit eigenvalue. Similarly, Eq. A.14 with λi = 1 implies that

the left nullspace of Π is spanned by the set of vectors
{
nT

i,1

}
from the base blocks of the

corresponding left eigenvectors. Furthermore, according to the SVD of Π given in 3.B, the

right and left nullspaces of Π are also spanned by the columns of β⊥ and α⊥, respectively.

Hence, sp {m1,i} = sp {β⊥}, and the sp {ni,1} = sp {α⊥}.

Basis vectors for the α and β subspaces are determined as follows:

Π =


Ip

...

0

0



T

A


Ip

Ip

...

Ip

− Ip =


Ip

...

0

0



T

MDM−1


Ip

Ip

...

Ip

−


Ip

...

0

0



T

MM−1


Ip

Ip

...

Ip



=
(
m1,1 m1,2 · · · m1,pk

)


λ1 − 1 0 · · · 0

0 λ2 − 1 · · · 0
...

...
. . .

...

0 0 · · · λpk − 1




nT

1,1 + nT
1,2 + · · ·+ nT

1,k

nT
2,1 + nT

2,2 + · · ·+ nT
2,k

...

nT
pk,1 + nT

pk,2 + · · ·+ nT
pk,k



=
(
m1,p−r+1 · · · m1,pk

)
λp−r+1 − 1 · · · 0

...
. . .

...

0 · · · λpk − 1



∑k

j=1 nT
2,j

...∑k
j=1 nT

pk,j

 .

Setting

α =
(
m1,p−r+1 · · · m1,pk

)
λp−r+1 − 1 · · · 0

...
. . .

...

0 · · · λpk − 1


1/2
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and

βT =


λp−r+1 − 1 · · · 0

...
. . .

...

0 · · · λpk − 1


1/2

∑k
j=1 nT

2,j

...∑k
j=1 nT

pk,j

 ,

the result follows.

Proof of Corollary 3.1.

Here, the eigendecomposition of A is expressed as a function of the four subspaces of Π.

First, without loss of generality, the matrix β⊥ can be represented as:

β⊥ = m1,1...p−r ,
(
m1,1 m1,2 · · · m1,p−r

)
.

Second, according to Eq. A.15, the following must be true when λi = 1:

nT
i mi = 1,

nT
i,1

 k∑
j=2

j−1∑
k=1

λ−k
i Πj

m1,i = 1,

nT
i,1

 k∑
j=2

(j − 1)Πj

m1,i = 1,

nT
i,1Γm1,i = 1, (3.26)

where

Γ , I−
k−1∑
j=1

Γj =
k∑

j=2

(j − 1)Πj ,

and Γj is defined according to Eq. 3.7. For the specific case where m1,1...p−r = β⊥, the
corresponding n1...p−r,1 are constrained as:

n1...p−r,1 ,


nT

1,1

nT
2,1
...

nT
p−r,1

 = CαT
⊥ =

(
αT
⊥Γβ⊥

)−1
αT
⊥,

where the normalization matrix C ∈ Rp−r×p−r is chosen so that Eq. 3.26 is satisfied. For

m1,p−r+1,...,p = α, the corresponding np−r+1...p,1 are computed so that:

β⊥
(
αT
⊥Γβ⊥

)−1
αT
⊥ + αnT

p−r+1...p,1 = I

implying that nT
p−r+1...p,1 =

(
βT α

)−1
βT . Therefore, the eigendecomposition of A is equal
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to:

A =
(
β⊥ α

)I 0

0 D2

(αT
⊥Γβ⊥

)−1
αT
⊥(

βT α
)−1

βT

 ,

where the diagonal matrix D2 contains all of the non-unit eigenvalues.

Proof of Theorem 3.2.

First, it is shown that Restriction 3.2 implies Restriction 3.1. In section A.2.1, the block

structure for the eigenvectors of a vector autoregressive system is derived, as given by Eq.

A.6. According to Eq. A.7, the base vector satisfies:

(
λ−1

i Π1 + λ−2
i Π2 + · · ·+ λ−k

i Πk − Ip

)
m1,i = 0.

According to Restriction 3.2, in a cointegrated VAR system, there is at least one eigenvalue

at λi = 1, so that the following must be true:

(Π1 + Π2 + · · ·+ Πk − Ip)m1,i = 0,

Πm1,i = 0, (3.27)

where the last line follows from Eq. 3.6. Thus, it is immediately clear that Π has reduced

rank, since m1,i is a non-trivial member of the nullspace of Π. If the matrix A has more

than one unit eigenvalue, then the rank of Π is equal to the rank of the matrix formed

by concatenating the base blocks m1,i for each of the corresponding eigenvectors. Let r

denote the rank of the matrix Π, which implies that the matrix A has at least p − r unit

eigenvalues. Since Π has rank r < p it can be factored according to Eq. 3.8, and indeed

Restriction 3.2 for a cointegrated system implies Restriction 3.1.

To establish the converse, observe that the eigenvalues of A satisfy det(A − λIp) = 0,

which is equivalently given by the expression in Eq. A.4. Since Π has reduced rank and

therefore its determinant equals zero, λi = 1 is clearly a solution. Hence Restriction 3.1

implies Restriction 3.2.
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Proof of Theorem 3.3.

First, consider the condition to guarantee that each component process is at most I(1), in

terms of the eigenspace associated with the unit eigenvalues. When the geometric multi-

plicity is less than the algebraic multiplicity, there will be at least one Jordan block of the

form:

Ji =


λi 1

λi
. . .
. . . 1

λi

 . (3.28)

As a result, when the transfer function if computed according to Eq. A.26, the inverse term

will contain a block of the form:

1
(z−1)

1
(z−1)2

· · · 1
(z−1)k

0 1
(z−1)

. . .
...

0 0
. . . 1

(z−1)2

0 0 0 1
(z−1)


[21]

and higher-order integrators will appear at the output, which can only be prevented by

requiring that the geometric and algebraic multiplicities agree.

Second, consider the condition to guarantee that each component process is at most I(1),

in terms of the matrices α and β. When the geometric and algebraic multiplicities do not

agree, the two generalized eigenvectors , as defined in equations A.20 and A.6, are related

as follows:

(A− λI)m2 = m1
Π1 − λiI Π2 · · · Πk−1 Πk

Ip −λiIp · · · 0 0
...

...
. . .

...
...

0 0 · · · −λiIp 0
0 0 · · · Ip −λiIp




m1,2

m1,2 −m1,1
...

m1,2 − (k − 2)m1,1

m1,2 − (k − 1)m1,1

 =


m1,1

m1,1
...

m1,1

m1,1
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Multiplying out the top row yields:

m1,1 = (Π1 − λiI)m2,1 + Π2 (m2,1 −m1,1)
+ · · ·+ Πk−1 (m1,2 − (k − 2)m1,1) + Πk (m1,2 − (k − 1)m1,1)

0 = (Π1 + Π2 + · · ·+ Πk−1 + Πk − λiI)m1,2

− (Π2 + 2Π3 + · · ·+ (k − 2)Πk−1 + (k − 1)Πk − I)m1,1

0 = Πm1,2 − Γm1,1

Γm1,1 = Πm1,2

Γm1,1 = αβTm1,2

αT
⊥Γm1,1 = 0

αT
⊥Γβ⊥ = 0. (3.29)

3.B Singular Value Decompositon of Π

Recall from Eq. 3.8 that the reduced rank matrix Π can be factored according to Π = αβT

where α,β ∈ Rp×r. The matrices α and β can be defined according to the singular value

decomposition (SVD) of Π, as derived here.

The SVD of Π is given by:

Π = UΣVT ,

where U,V ∈ Rp×p are unitary matrices and Σ ∈ Rp×p is a diagonal matrix of singular

values. The columns of the matrices U and VT contain basis vectors for the four funda-

mental subspaces of Π. The first r columns of U span the column space or range of Π,

while the last p− r columns span the left nullspace. The first r columns of VT span the row

space of Π or range of ΠT , while the last p − r columns span the right nullspace. Under

the assumption that Π has reduced rank r < p, onlt the first r singular values, denoted by

{σ1, · · · , σr}, are non-zero. The matrices α and β are defined by:
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Π = UΣVT =
(
u1 · · · ur ur+1 · · · up

)


σ1

. . .
σr

0





vT
1
...

vT
r

vT
r+1
...

vT
p



=
(
u1 · · · ur

)σ1

. . .
σr


1/2

︸ ︷︷ ︸
α

σ1

. . .
σr


1/2vT

1
...

vT
r


︸ ︷︷ ︸

βT

(3.30)

The matrix α is equal to the non-zero columns of UΣ
1
2 and the matrix βT is equal the

non-zero rows of Σ
1
2 VT . Equation 3.30 also indicates that the columns of α form basis for

the column space of Π, while the columns of β form a basis for the row space of Π. Hence,

the columns of β⊥ form a basis for the nullspace of Π and the columns of α⊥ form a basis

for the left nullspace of Π.



Chapter 4

Static Portfolio Choice

This chapter considers static multistage portfolio construction over an N -stage investment

horizon, where inter-stage portfolio rebalancing is prohibited. It is assumed that the log-

prices of the assets evolve according to a cointegrated vector autoregressive process, as

described in the previous chapter. The investor makes a single decision at the beginning

of the first stage and the resulting portfolio is held without modification for all N periods.

This scenario often occurs in the real world, as professional portfolio managers and individ-

ual investors frequently hold a position for extended time periods (e.g., weeks or months)

despite the availability of daily (or intra-day) price data and market news.

Two investment strategies for the static asset allocation problem are presented and com-

pared. In the first strategy, the portfolio vector is chosen from within the span of the

cointegrating space (i.e., span{β}). Such portfolios encode the belief that the current log-

prices represent a state of relative asset mispricing (i.e., temporary disequilibrium), and that

the prices will revert back to their steady-state levels within the attractor (i.e., equilibrium)

space. While these portfolios are popular among industry practitioners, it is shown here

that they are not mean-variance optimal, in the sense of Section 2.3.1. Thus, a second strat-

egy is considered, in which the additional requirement is imposed that the investor act in

accordance with the Markowitz mean-variance framework. Given this preference function,

closed-form solutions for the mean-variance optimal (MVO) static portfolios are derived

as functions of the cointegrated VAR model parameters and investment horizon length.

The resulting asset allocation vectors are interpreted geometrically within the context of

the cointegrated VAR model. Of particular interest is the relationship between the MVO

portfolio weight vector and the α and β subspaces, both for fixed N and in the limit as N

increases. It is shown that only in the limit of an infinite trading horizon does the MVO
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portfolio equal the Beta portfolio. For finite N , there is an additional, positive expected

return to be gained from choosing the portfolio not only in the direction of finite variance,

but also in the direction of expected change.

The organization of this chapter is as follows. In Section 4.1 the static Beta portfolio is pre-

sented. Next, in Section 4.2, the static Markowitz mean-variance asset allocation problem

is presented, and the MVO portfolio weight vector is derived in this setting, both with and

without a budget constraint. In Section 4.3, the properties of these portfolios are further

explored. In particular, in Section 4.3.1, the statistics of the per-stage portfolio returns

are characterized; in Section 4.3.2, the ability of the MVO solution to capture short-term

predictability is analyzed; in Section 4.3.3, the asymptotic properties of the MVO solution

are derived; and lastly, in Section 4.3.4, the mean-variance tradeoff is explored through the

use of a leverage constraint.

4.1 The Beta Portfolio

Consider the static portfolio choice problem, where a single portfolio, w, is constructed

and held without modification over an investment time horizon of N stages. Furthermore,

assume that the asset log-prices, xk ∈ Rp, are well-modeled by a first-order1 cointegrated

vector autoregressive process, detailed in Chapter 3, as follows:

x[n + 1] = Π1x[n] + Φd[n] + ε[n], (4.1)

with stochastic input ε[n] ∼ N (0,Ψ), constant deterministic input Φd[n] = φ, and initial

condition, x0. The vector φ, also referred to as the drift term, is included in order to

capture the overall linear growth trend present in the historical log-prices of most assets.

The corresponding log-return of the assets after N stages is defined as:

r[N ] = x[N ]− x[0].
1While throughout this chapter primary attention is given to the first-order VAR system, extensions to

higher-order systems, achieved by augmenting the state space, are also briefly discussed.



4.1. THE BETA PORTFOLIO 77

The variance of both x[N ] and r[N ] is given by:

var [r[N ]] = var [x[N ]] =
N∑

k=1

ΠN−k
1 ΨΠ(N−k)T

1 .

Due to the cointegration assumption, the state transition matrix A = Π1 contains at least

one eigenvalue at unity. Therefore, the process variance grows linearly over time, and the

variance of any estimator of future log-prices or returns is asymptotically unbounded in the

limit as the length of investment horizon increases.

While xN is difficult to predict, it is known that in the long-run the zero-input response

(ZIR), derived in Section 3.3.1, converges to a fixed point within the attractor space,

span{β⊥}. Consequently, it is often suggested [2, 31] that the portfolio weight vector

be selected in the direction of the orthogonal projection from x[0] to this space (i.e.,

w ∈ span{β}), appropriately earning it the name Beta portfolio. The realized return,

r[n] = βT r[n], evolves according to an AWSS random process, and subsequently the Beta

portfolio is commonly referred to as the portfolio with asymptotically convergent variance.

The following example illustrates how the Beta portfolio is constructed for a system of

three assets with up to two integrators.

Example 4.1.

Consider a system of three risky assets where the log-prices are assumed to evolve according

to a cointegrated VAR process without drift, as follows:

x[n + 1] = Π1x[n] + ε[n].

First, assume the eigendecomposition for the matrix Π1 is given by:

Π1 = MDM−1 =


0.1533 −0.4674 −0.3198

0.7832 −0.8826 −0.8160

0.6026 −0.0498 0.4815




1 0 0

0 0.9 0

0 0 0.7




0.1533 −0.4674 −0.3198

0.7832 −0.8826 −0.8160

0.6026 −0.0498 0.4815


−1

.

This system contains a single unit eigenvalue (i.e., one common trend), implying that the

matrices α and β, which define the error-correcting and cointegrating subspaces, respec-
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tively, span two-dimensional subspaces, as depicted in Figure 4-1(a). Furthermore, the

attractor space, defined by the matrix β⊥, spans a one-dimensional subspace. The di-

rection of the Beta portfolio, w, is chosen by computing the orthogonal projection of the

current state of the system, x0, back to the attractor, such that w ∈ span{β}. While any

vector from within the cointegrating space forms a portfolio whose value has finite variance,

only the vector corresponding to the orthogonal projection of x0 onto span{β⊥} encodes the

belief that the current log-prices represent a state of temporary disequilibrium, or relative

asset mispricing, and that over time the process will revert back to equilibrium, settling at

a point within the attractor space.

Second, consider a system where the eigendecomposition for the matrix Π1 contains two

unit eigenvalues, as follows:

Π1 = MDM−1 =


−0.4674 −0.3198 0.1533

−0.8826 −0.8160 0.7832

−0.0498 0.4815 0.6026




1 0 0

0 1 0

0 0 0.7



−0.4674 −0.3198 0.1533

−0.8826 −0.8160 0.7832

−0.0498 0.4815 0.6026


−1

.

The underlying geometry for this system is shown in Fig. 4-1(b). Here, the matrices α and

β define one-dimensional subspaces of R3, while the matrix β⊥ defines a two-dimensional

attractor space. While there are two choices for the portfolio direction (i.e., w = ±β), the

one corresponding to the projection of x[0] onto span{β⊥} is chosen.

As this example illustrates, the justification for the Beta portfolio is readily understood

using a geometric interpretation of a cointegrated VAR process. The change in the asset

log-prices, ∆x = xN − x0, can be expanded in a {β,β⊥} basis, as follows:

∆x = c1b1 + c2b2,

where c1, c2 ∈ R,b1 ∈ span{β},b2 ∈ span{β⊥}. The corresponding total log-return is

computed as:

rN = wT ∆x = c1β
T β,

and therefore the Beta portfolio investor only earns profit due to the component of ∆x in

the β direction, and is indifferent to movement along the β⊥ direction. While the portfolio
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(b) Two common trends.

Figure 4-1. Portfolio weight vectors in the three asset system considered in Example 4.1. The portfolio is
chosen by computing the orthogonal projection of the current state of the system, x0, back to the attractor,
sp{β⊥}, which corresponds to a vector from within the span of the cointegrating space, sp{β}.

direction is initially chosen independent of any investor preference function, there is an

implicit assumption that the investor prefers to hedge against uncertainty in the shared

common trends of the underlying assets. However, for finite N , such portfolios are not

mean-variance optimal in the sense of Section 2.3.1, as discussed next.

4.2 Mean-Variance Optimal Portfolio Construction

Consider again the static portfolio choice problem of Section 4.1, where now the additional

assumption is imposed that the investor acts in accordance with the Markowitz mean-

variance framework of Section 2.3.1. Specifically, the objective is to maximize the expected

value of the cumulative portfolio log-return over an investment length of N stages, given

an equality constraint on the corresponding portfolio return variance. Formally, the static

mean-variance portfolio choice problem, P0, is given by:

{w∗
N} = arg max

wN

wT
NµrN

s.t. wT
NΣrN wN = σ2

0

 P0,

where the N stage log-return vector, rN , xN−x0, is a Gaussian random vector with mean

Et0 [rN ] = µrN
and covariance matrix vart0 [rN ] = ΣrN . The expectation and variance
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operators are taken with respect to the information available at the start of the investment

horizon, denoted as t0. Both leveraged and non-leveraged portfolios are considered, in

Sections 4.2.1 and 4.2.2 respectively, with the latter case achieved by adding a budget

constraint of the form wT
N1 = 1 to problem P0. Without the budget constraint, the net

leverage (i.e., size) of the portfolio is limited only by the allowable risk parameter, σ0.

4.2.1 Case 1: No Budget Constraint

Let λL ∈ R be a Lagrange multiplier, so that problem P0 can be rewritten as follows:

{w∗
N , λ∗L} = arg max

wN ,λL

wT
NµrN

− λL

(
wT

NΣrN wN − σ2
0

) }
P
′
0.

The objective function is quadratic in wN , and admits the well-known closed-form solution:

w∗
N =

1
2λ∗L

Σ−1
rN

µrN
=

σ0√
µT

rN
Σ−1

rN
µrN

Σ−1
rN

µrN
. (4.2)

It is shown that for finite N , there is an additional, positive expected return to be gained

from choosing the portfolio weight vector not only in the β direction, but also with a

component in the direction of expected change (i.e., the µrN
direction).

Solving for µrN
The mean of the cumulative return over N stages is computed according

to the cointegrated VAR model of Eq. 4.1 and is given by:

µrN
= E [rN ] = E [xN − x0] =

(
ΠN

1 − I
)
x0 +

(
N−1∑
i=0

Πi
1

)
φ. (4.3)

When this cointegrated VAR process is expressed in state-space form, the state transition

matrix is equal to A = Π1, with corresponding eigendecomposition A = MDM−1. Fur-

thermore, assume that A has exactly one unit eigenvalue (i.e., λ1 = 1), while the remaining

p− 1 eigenvalues lie strictly inside the unit circle (i.e., |λi| < 1, i = 2, ..., p). Letting mi de-

note the columns of the matrix M and nT
i denote the rows of the matrix M−1, the expected
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cumulative N -stage return is equal to:

µrN
= M

(
DN − I

)
M−1x0 + M

(
N−1∑
i=0

Di

)
M−1φ,

= Nm1nT
1 φ +

p∑
i=2

((
λN

i − 1
)
minT

i x0 +
1− λN

i

1− λi
minT

i φ

)
, (4.4)

=
p∑

i=1

cimi, (4.5)

where c1 = NnT
1 φ and ci = nT

i

((
λN

i − 1
)
x0 + 1−λN

i
1−λi

φ
)

for i = 2, ..., p. As Eq. 4.5 shows,

the expected change in the asset log-prices can be expressed as a linear combination of the

eigenvectors of the matrix A = Π1. When drift is present (i.e., φ 6= 0), the weight on

the component in the direction m1 grows over time, while the weights on the remaining

eigenvectors converge to finite quantities since |λi| < 1 for i = 2, ..., p. Recall from Theorem

3.1 that the vector m1 forms a basis for the β⊥ subspace, while the vectors {m2, ...,mp}

form a basis for the α subspace. As Eq. 4.5 indicates, only in the absence of drift does the

expected N stage return fall within the α subspace.

In the case of higher-order VAR systems, µrN
can be readily computed by augmenting

the state-space according to Eq. A.2. First, define:

xN :N−k+1 ,
(
xN xN−1 · · · xN−k+1

)T

φN :N−k+1 ,
(
φ 0 · · · 0

)T

T ,
(
Ip 0p×(k−1)p

)
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which implies that Eq. 4.3 can be rewritten as:

µrN
= T

(
AN − I

)
x0:−(k−1) + T

(
N−1∑
i=0

Ai

)
φ0:−(k−1)

= TM
(
DN − I

)
M−1x0:−(k−1) + TM

(
N−1∑
i=0

Di

)
M−1φ0:−(k−1),

= Nm1,inT
1 φ +

p∑
i=2

(
λN

i − 1
)
m1,inT

i x0 +
1− λN

i

1− λi
m1,inT

i φ,

=
p∑

i=1

cim1,i,

Thus, in higher-order VAR systems, the direction of expected change is equal to a linear

combination of the base blocks of the eigenvectors of A, denoted by m1,i, when represented

in the block form of Eq. A.6.

Solving for ΣrN The covariance matrix of the total return can be computed directly from

Eq. 4.1 as follows:

ΣrN = var [rN ] = var [xN − x0] =
N−1∑
i=0

AiΨ
(
Ai
)T

, (4.6)

or can be computed recursively, according to the matrix difference equation:

ΣrN = AΣrN−1A
T + Ψ.

For higher order VAR systems, the covariance matrix is again computed by augmenting the

state-space, as follows:

ΣrN = var [rN ] = var [xN − x0] =
N−1∑
i=0

TAiΨ̃
(
Ai
)T

TT , (4.7)

where the augmented covariance matrix Ψ̃ ∈ Rpk×pk is defined as:

Ψ̃ = diag
(
Ψ 0 · · · 0

)
. (4.8)

As shown here, the first and second order statistics of the asset cumulative N stage log-

returns are readily computed given only a model for the evolution of the asset log-prices
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over time. The asymptotic properties of µrN
and ΣrN are discussed in Section 4.3.3. The

next section extends the analysis presented here for the case where a budget constraint is

included in the mean-variance framework.

4.2.2 Case 2: With Budget Constraint

In order to ensure that the investor allocates all of the initial wealth among the available

assets, a budget constraint of the form wT1 = 1 is introduced. Recall from Section 2.2.3,

that such a constraint can be enforced using the following affine relation:

w = c + Dv

c =


0
...

1


T

, D =

Ip−1

−1T



and subsequently solving for the optimal reduced dimension portfolio weight vector, v∗.

Under this simple transformation, Problem P0 can be rewritten as Problem P
′′
0 , as follows:

v∗N = arg max
vN

(c + DvN )T µrN

s.t. (c + DvN )T ΣrN (c + DvN ) = σ2
0,

 P
′′
0 ,

which, in turn, can be expressed using Lagrange multiplier λL, as follows:

v∗N , λ∗L = arg max
vN

(c + DvN )T µrN
− λL

(
(c + DvN )T ΣrN (c + DvN )− σ2

0

)
.

Taking the derivative with respect to vN and setting the result equal to zero yields:

v∗N =
1

2λ∗L

(
DTΣrN D

)−1
DT

(
µrN
− 2λ∗LΣrN c

)
,

which implies that the optimal portfolio weight vector, w∗
N , is given by:

w∗
N = c +

1
2λ∗L

D
(
DTΣrN D

)−1
DT

(
µrN
− 2λ∗LΣrN c

)
.
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In order to determine λ∗L, first let wN = 1
2λL

f + g, where:

f = D
(
DTΣrN D

)−1
DT µrN

,

g = c−D
(
DTΣrN D

)−1
DTΣrN c.

The relationship between λL and σ2
0 is given by the following quadratic equation:

σ2
0 = (c + DvN )T ΣrN (c + DvN ) ,

=
(

1
2λL

f + g
)T

ΣrN

(
1

2λL
f + g

)
,

= λ−2
L 0.25fTΣrN f + λ−1

L fTΣrN g + gTΣrN g. (4.9)

While there are two values of λL for every value of σ0, one of the roots is extraneous, earning

a lower expected value for a given level of risk than the other, and must be discarded. An

alternative derivation of the budget-constrained solution, which uses an additional Lagrange

multiplier rather than the linear transformation of Section 2.2.3, is given in Appendix 4.B.

The following example illustrates the differences between the Beta and MVO solutions,

both with and without the presence of a budget constraint.

Example 4.2.

Consider a system of two assets, in which the log-prices are assumed to evolve over an

investment horizon of two stages according to the first-order cointegrated VAR system of

Eq. 4.1, with:

Π1 =

0.7878 0.0707

0.2634 0.9122

 and Ψ =

0.22 0

0 0.072

 .

The initial value of the log-prices is arbitrarily chosen as x0 =
(
1.75 4.3

)T
and the drift

is assumed to be φ = 0. The underlying geometry of this system is depicted in Fig. 4-2(a),

and the efficient frontiers for a two-stage trading strategy are shown in Fig. 4-2(b), both

for the mean-variance optimal and Beta strategies. The two curves corresponding to the

mean-variance optimal portfolios, with and without a budget constraint, achieve a higher

expected return for a given level of risk (standard deviation) as compared to the efficient
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(a) Underlying cointegrated VAR system ge-
ometry in Example 4.2.
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(b) Efficient Frontiers for Beta vs. MVO
portfolios in two stage, two asset example.

Figure 4-2. Efficient Frontiers for Beta vs. MVO portfolios in two stage, two asset example.

frontiers for the Beta portfolio. As there is only one scaling of the β vector that also satisfies

βTΣrN β = σ2
0, the corresponding efficient frontier only contains a single point, as shown.

As Fig. 4-2(b) illustrates, the efficient frontier corresponding to the case where the budget

constraint is omitted is tangent to the curve with the budget constraint included. This is

due to the fact that omission of the budget constraint implies that the investor can borrow

from a risk-free source for free (i.e., rf = 0), thereby achieving any convex combination of

a portfolio of the risk-free asset and a portfolio of all risky assets. In this case, the optimal

portfolio of risky assets the investor seeks is the one that maximizes the slope of the efficient

frontier line, defined by the line tangent to the red curve that goes through the origin.

As Ex. 4.2 illustrates, the two MVO solutions significantly outperform the Beta port-

folio, as they capitalize not only on expected movements in the direction of β, but also

take advantage of the short-term predictability of a cointegrated VAR process along the α

direction.

4.3 Portfolio Properties

The following section explores the properties of the static Beta and MVO portfolio weight

vectors, both with and without a budget constraint through a series of illustrative examples.

First, in Section 4.3.1, the per-stage portfolio return distributions are derived, and the inter-
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stage return correlation structure is explored. Second, in Section 4.3.2, the nature of the

predictable component in a cointegrated VAR is quantified. Third, in Section 4.3.3, a com-

plete asymptotic analysis of the MVO solution is presented, and the relationship between

the direction of the optimal portfolio weight vector and the subspaces of a cointegrated

VAR is revealed. Finally, in Section 4.3.4, the mean-variance tradeoff is explored.

4.3.1 Per-stage Return Statistics

As stated in Section 4.2, the random vector corresponding to the N stage individual asset

returns is Gaussian with mean µrN
, defined in Eq. 4.3, and covariance matrix ΣrN , defined

in Eq. 4.6. In static asset allocation, the portfolio weight vector, wN , is determined by

the information available at time t0, and therefore the cumulative return on the portfolio,

rN , is a scalar Gaussian random variable with mean wT µrN
and variance wTΣrN w. In a

two-stage problem, the per-stage portfolio returns are denoted by r1 = wT (x1 − x0) and

r2 = wT (x2 − x1). Each of these returns is Gaussian, with distributions parametrized as

follows:

r1 ∼ N
(
wTΠx0,wTΨw

)
r2 ∼ N

(
wTΠΠ1x0,wT

(
Ψ + ΠΨΠT

)
w
)

Furthermore, the covariance between r1 and r2 is given by:

cov [r1, r2] = E [r1r2]− E [r1]E [r2]

= E
[
wT (x1 − x0) (x2 − x1)

T w
]
− E

[
wT (x1 − x0)

]
E
[
wT (x2 − x1)

]
= wT E

[
(Πx0 + ε1) (Π (Π1x0 + ε1) + ε2)

T
]
w −wTΠx0xT

0 ΠT
1 ΠTw

= wT
(
Πx0xT

0 ΠT
1 ΠT + ΨΠT

)
w −wTΠx0xT

0 ΠT
1 ΠTw

= wTΨΠTw. (4.10)

Thus, in static portfolio choice, the inter-stage return covariance is a simple quadratic form

of the portfolio weight vector. The following example compares the per-stage portfolio

return statistics between the Beta and MVO portfolios.
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Example 4.3.

Consider again the system of two assets from Ex. 4.2. The Beta portfolio that also satisfies

the budget constraint of wT1 = 1, corresponds to a total portfolio return standard deviation

of σ0 = 0.37. Table 4.1 displays the per-stage return statistics for all three strategies when

executed at this risk level, and reveals two interesting characteristics of static portfolios.

First, for the two strategies with no budget constraint, there is a direct relationship between

the total expected return and the degree of negative correlation between the inter-stage

portfolio returns. Since the total return, rN , is defined as the sum of the per-stage log-

returns, the total variance is computed as:

var [rN ] = var [r1] + var [r2] + 2cov [r1, r2] .

Thus, higher negative correlation implies that the per-stage variances can increase, while

the total variance remains constant.

The second property of static portfolios revealed in Table 4.1 is that the increased per-

stage portfolio return variance is realized through the use of leverage. As the portfolio

weights for the MVO solution with the budget constraint indicate (Table 4.1, line 3), the

investor enters into a long position in asset 2 using 310% of the initial wealth, which is, in

turn, financed by a short position in asset 1 using 210% of the initial wealth. The presence of

an explicit risk-free asset is not required since the net position is unlevered. However, while

this trading scheme is able to outperform the Beta strategy, it is the MVO solution without

the budget constraint that achieves the highest expected return of all three strategies, due

its use of both high negative inter-stage return correlation and net leverage.

As Ex. 4.3 illustrates, both the Beta and MVO portfolios exhibit negative inter-stage

Trading Budget
Portfolio Weights Stage 1, r1 Stage 2, r2 Correlation Total, rT

Strategy Constraint Asset 1 Asset 2 Total Mean Std Mean Std ρ = cov(r1,r2)
σ1σ2

Mean Std
Leverage (σ1) (σ2) (σT )

Beta YES -1.50 0.50 1.00 0.14 0.30 0.10 0.33 -0.29 0.24 0.37
MVO NO -0.87 3.45 2.58 0.35 0.30 0.24 0.37 -0.41 0.59 0.37
MVO YES -2.10 3.10 1.00 0.30 0.33 0.21 0.37 -0.46 0.50 0.37

Table 4.1. Second-order statistics for static trading strategies in a two-stage example with total risk budget
σ0 = 0.37.
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portfolio return correlations. This naturally raises the question as to whether negative

correlation alone explains the increase in expected return for a given level of standard

deviation realized by the MVO solution over the Beta solution. Furthermore, one might

wonder whether the MVO solution corresponds to the portfolio weight vector that yields

the largest negative correlation between the first and second stage returns over all possible

vector directions. These questions are explored next.

Example 4.4.

Consider a first-order cointegrated VAR process with the following parameters:

Π1 =

0.7878 0.0707

0.2634 0.9122

 , Ψ = I2, φ = 0.

Figure 4-3(a) depicts the direction of the vectors {α,α⊥,β,β⊥} and the two-stage MVO

portfolio weight vector w∗
2 centered at an arbitrary initial condition of x0 =

(
1.75 4.3

)T
.

In order to explore the relationship between the direction of the portfolio policy and the

degree of negative correlation achieved between the inter-stage portfolio returns, a set of

portfolios are determined by rotating the portfolio weight vector over a range of angles θ =

[0, π] from the Beta direction. Figure 4-3(b) displays the correlation coefficient between the

returns for the first and second stages as a function of the rotation angle. Also highlighted

is the correlation level achieved by the MVO solution and by four vectors corresponding to

the {α,α⊥,β,β⊥} subspaces. While the MVO solution is able to realize a larger degree of

negative correlation than the Beta solution, it is not the direction with maximum negative

correlation. This in turn suggests that negative correlation is only part of the story, and

must be considered alongside individual asset and total portfolio leverage.

In addition to demonstrating that the MVO solution does not maximize the negative cor-

relation between the inter-stage returns, the preceding example also revealed that the cor-

relation coefficient between the inter-stage portfolio returns is not negative for all portfolio

vector directions. In order to understand this result, first represent an arbitrary portfolio

weight vector w using the non-orthogonal basis {α⊥,β}, as follows:

w = c1β + c2α⊥, (4.11)
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(b) Correlation coefficient between first and
second stage returns as a function of the port-
folio vector direction. While the MVO solu-
tion realizes a larger degree of negative cor-
relation than the Beta solution, it does not
correspond to the portfolio direction which
maximizes the negative correlation.

Figure 4-3. Correlation coefficient between first and second stage returns as a function of the portfolio
vector direction.

where the constants c1, c2 ∈ R are computed according to the oblique projections:

c1 =
(
αT β

)−1
αTw, c2 =

(
βT
⊥α⊥

)−1
βT
⊥w.

Next, substitute Eq. 4.11 into Eq. 4.10, the covariance between the first and second stage

returns, which yields:

cov [r1, r2] = c2
1β

TΨβαT β + c2
2α

T
⊥ΨβαT α⊥ + c1c2β

TΨβαT α⊥ + c1c2α
T
⊥ΨβαT β.

Due to the fact that αT α⊥ = 0, the second and third terms are equivalently zero. The

first term, which corresponds to a portfolio purely in the β direction, is always negative, as

established in Thm. 4.1 below.

Theorem 4.1.

Consider a two-stage asset allocation problem in which the log-price process x ∈ Rp is

assumed to evolve according to a first-order cointegrated VAR system. The matrix Π1

contains exactly p − 1 unit eigenvalues, so that the matrix Π can be factored as the outer

product of two p−dimensional vectors, as Π = αβT . When the static portfolio weight
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vector is chosen according to w ∝ β, the covariance (equivalently the correlation coefficient)

between the portfolio returns for the first and second stages is negative.

The proof of Thm. 4.1 is given in Appendix 4.A. Thus, the covariance between the first

and second stage returns is positive when the following condition is met:

c1β
TΨβ < −c2α

T
⊥Ψβ → wTΨβ < 0,

which follows using the fact that αT β < 0, as established in the proof of Thm. 4.1.

As a final point of interest, consider the two portfolio weight vectors corresponding to

zero inter-stage return covariance. These can be directly determined through examination

of Eq. 4.10, which can be factored as follows:

cov [r1, r2] = wT (Ψβ) αTw.

Hence, choosing w ∝ (Ψβ)⊥ or w ∝ α⊥ produces a correlation coefficient of zero. In Ex.

4.4, the covariance matrix of the input was chosen as Ψ = I2, and therefore the two zero

crossings of the correlation coefficient function occur at w = {β⊥,α⊥}. The zero crossing at

w = α⊥ can be best understood by examining the total system response for a cointegrated

VAR process defined in Eq. 3.16. The portfolio value (i.e., log price) at any given point is

given by the scalar process v[n] = wTx[n]. Therefore, when w = α⊥, the second term of

x[n] corresponding to the AWSS random process drops out, leaving the portfolio value to

be defined by a nonstationary integrated process. This in turn implies that the log-return

process is an i.i.d. random process, with per-stage returns that are uncorrelated.

4.3.2 Short-term Predictability

The increased expected return earned by the MVO portfolio over the Beta portfolio for a

given level of risk is due to the ability of the MVO solution to capture not only expected

movements in the direction back towards the attractor (β⊥), but also short-term movements

along the error-correcting space, α. While the eigenvector associated with the unit root of a

cointegrated VAR system defines the long-term equilibrium relationship among the assets,

the remaining eigenvalues and eigenvectors provide a source of predictability exploited by
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Figure 4-4. Capturing short-term predictability in a cointegrated VAR system. The largest expected
returns are realized for the smallest values of λ2. In the limit as λ2 → 1, the time series approach two
independent random walks, and all predictability disappears.

the MVO trading strategy, as explored next.

Example 4.5.

For the cointegrated VAR system considered in Ex. 4.2, the eigendecomposition of the state

transition matrix is given by:

A = Π1 =

0.7878 0.0707

0.2634 0.9122

 =

−0.6274 −0.3162

0.7787 −0.9487

0.7 0

0 1

−0.6274 −0.3162

0.7787 −0.9487

−1

.

Figure 4-4 contains a family of efficient frontiers (all with the budget constraint included)

produced as the non-unit eigenvalue, λ2, is varied over the set {0.55, 0.65, 0.75, 0.85, 0.95, 0.999}.

In the limit as λ2 → 1, the matrix Π1 approaches the identity matrix, and the two under-

lying time series become uncorrelated random walks. In that limit, all the predictability

disappears, evidenced by the fact that the efficient frontier flattens out to near zero expected

return for all levels of risk.

4.3.3 Asymptotic Analysis

Having computed closed-form expressions for µrN
and ΣrN in Section 4.2, both for systems

with and without log-price drift and a budget constraint, the asymptotic properties of the
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resulting portfolio weight vectors are now investigated. Of particular interest is whether the

portfolio vectors converge to a steady-state solution as N increases, and how this value, if

it exists, is related to the α and β subspaces of the cointegrated VAR system. It is shown

that the MVO portfolio weight vector satisfies w∗
N ∈ sp {β} only in the limit of an infinite

trading horizon when drift is omitted, both with and without a budget constraint. To begin,

the behavior of the mean of the log-return, µrN
, is characterized in Theorem 4.2.

Theorem 4.2.

Consider a cointegrated VAR(1) system, where A = Π1 has exactly one unit eigenvalue

(i.e., λ1 = 1), while the remaining p − 1 eigenvalues all lie strictly inside the unit circle

(i.e., |λi| < 1). As the length of the trading horizon increases, the mean of the asset returns

behaves according to:

µr = lim
N→∞

µrN
=


−
∑n

i=2 minT
i x0 if φ = 0 (no drift),

∞ otherwise (drift).

The proof of Thm. 4.2 is detailed in Appendix 4.A. As the theorem states, the vector of

expected assets returns over an infinite trading horizon converges to a steady-state solution

only when a constant drift term is not included in the cointegrated VAR log-price model.

One may be tempted to hypothesize that in the presence of drift, a steady-state solution

for the portfolio weight vector does not exist, since the portfolio weight vector explicitly

depends on the expected return, as given by Eq. 4.2. However, this is not the case. The

asymptotic properties of ΣrN must be examined first, and the relationship between µr and

Σr must be jointly considered.

In order for ΣrN to admit a steady-state solution, Σr, it must satisfy the discrete-time

Lyapunov equation, given by:

Σr −AΣrAT −Ψ = 0.

However, due to fact that A has an eigenvalue at unity, the matrix difference equation given

by Eq. 4.7 is asymptotically unstable, and ΣrN has one eigenvalue that diverges as N in-

creases. Fortunately, the optimal portfolio weights, given in Eq. 4.2, do not directly depend
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on ΣrN , but rather on Σ−1
rN

, which is well-behaved. These observations are summarized in

Theorem 4.3, which describes the behavior of the eigenvectors and eigenvalues of the return

covariance and inverse covariance matrices as a function of the trading horizon, N .

Theorem 4.3.

Consider a cointegrated VAR(1) system, where A = Π1 has exactly one unit eigenvalue

(i.e., λ1 = 1), while the remaining p − 1 eigenvalues lie strictly inside the unit circle (i.e.,

|λi| < 1). When N = 1, the p eigenvectors of ΣrN and Σ−1
rN

are aligned with the eigenvectors

of Ψ. These eigenvectors converge to vectors within the column spans of {β,β⊥} as N

approaches infinity, where β ∈ Rp×p−1 and β⊥ ∈ Rp×1. The p − 1 eigenvalues associated

with the eigenvectors in span{β} converge to strictly positive, real-valued scalars, while the

single eigenvalue associated with the eigenvector proportional to β⊥ diverges in ΣrN and

converges to zero in Σ−1
rN

.

The proof of Thm. 4.3 is given in Appendix 4.A. The main ideas from this theorem are

illustrated in Ex. 4.6, below.

Example 4.6.

Consider a system comprised of two assets (p = 2) whose log-prices evolve according to

Eq. 4.1, with Ψ = I. The matrix Π1 contains one unit eigenvalue (λ1 = 1) and one eigen-

value strictly inside the unit circle (|λ2| < 1). Recall from Chapter 3 that the eigenvector

associated with λ1 forms a basis for the attractor space (span{β⊥}), while the eigenvector

associated with λ2 forms of basis for the error-correcting space (span{α}). As depicted

in Figure 4-5, the principal axes of ΣrN are initially aligned with the unit vectors in the

plane, and converge to {β,β⊥} as N increases. The eigenvalue associated with β converges

to γ = 1
1−λ2 , while the eigenvalue associated with β⊥ diverges. The eigenvectors of the

inverse covariance matrix, Σ−1
rN

, are the same eigenvectors as the eigenvectors of ΣrN , but

the eigenvalues of Σ−1
rN

approach 1− λ2 and zero.

It is now possible to combine the results of Theorems 4.2 and 4.3 in order to derive steady-

state portfolio weight vectors for each of the four cases corresponding to the presence or

absence of drift and a budget constraint, respectively, as given in Theorem 4.4 below.
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Figure 4-5. Evolution of Covariance Matrix Principal Axes. The lengths of the axes are proportional to
the corresponding eigenvalues. In the system considered in Ex. 4.6, the axes are initially aligned with the
unit vectors in the plane, and converge to {β, β⊥} as N increases.

Theorem 4.4.

Consider a cointegrated VAR(1) system, where A = Π1 has exactly one unit eigenvalue

(i.e., λ1 = 1), while the remaining p − 1 eigenvalues lie strictly inside the unit circle (i.e.,

|λi| < 1). The mean vector, µrN
, and covariance matrix, ΣrN , of the expected return over

a trading horizon of length N in a static setting are given by Eqs. 4.5 and 4.6, respectively.

The optimal static mean-variance portfolio weight vector always converges to a steady-state

solution. In the case of no drift (i.e., φ = 0), the steady-state solution is in the span of β;

when drift is present, the steady-state solution contains components in both the β and β⊥

subspaces. These results are the same whether or not a budget constraint is enforced.

The proof of Thm. 4.4 is given in Appendix 4.A. The results of this theorem are best

illustrated through a simple example, presented next.

Example 4.7.

Consider a system of two assets, in which the log-prices are assumed to evolve according

to a first-order cointegrated VAR system, as defined in Eq. 4.1, with Ψ =

0.22 0

0 0.072

.
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(d) Drift, budget constraint.

Figure 4-6. Direction of static portfolio weight vectors as a function of investment length. The steady-state
portfolio policy converges to a vector in the span of β only in the case where drift is not present.

Throughout this example Π1 =

0.7878 0.0707

0.2634 0.9122

, which implies that:

Π = Π1 − I = αβT =

−0.2122 0.0707

0.2634 −0.0878

 =

−0.3746

0.4649

(0.5665 −0.1888
)

.

The initial value of the log-prices is assumed to be x0 =
(
1.75 4.3

)T
and the drift, when

included, is given by φ =
(
.5 .25

)T
.

For each of the four cases considered in Theorem 4.4, the direction of the N -stage mean-
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Figure 4-7. Degree of total leverage, wT 1, when a budget constraint is omitted, as a function of the trade
horizon, N , for the system in Example 4.7.

variance optimal portfolio weight vector is computed as N is varied from 1 to 1000, and the

results are depicted in Figure 4-6. As the plots confirm, the steady-state solution converges

to a direction in the span of β only in the case where drift is not present. The trajectory

of the optimal portfolio weight vector direction in the third case (no drift, with budget

constraint), is particularly interesting. Here, the weight vector initially moves towards β

in the counter-clockwise direction, but after five steps, w∗
N reverses its direction of motion,

and approaches β from the clockwise direction. This abrupt change of direction occurs as

the optimal portfolio weight vector must always point in the direction towards, not away

from, the attractor space.

When the budget constraint is omitted, the degree of total leverage, 1Tw, can be com-

puted as function of the trade horizon, as shown in Figure 4-7. While the amount of

leverage converges regardless of whether or not drift is included in the model, the presence

of drift can significantly alter the asymptotic solution. In Ex. 4.7, the overall position is

net long 153 percent of initial wealth when drift is included, while the net position is short

132 percent of initial wealth when drift is omitted.

4.3.4 Mean-Variance Tradeoff

In addition to the Beta portfolio, another solution to consider inspired by the geometry of a

cointegrated VAR system is known as the Alpha portfolio, which occurs when the portfolio
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Figure 4-8. Expected return as a function of trading horizon, with portfolio return standard deviation
error bars. For the system considered in Ex. 4.8, the mean-variance optimal portfolio is initially aligned
with α, but as N increases and the variance grows, it is pulled toward β in order to satisfy the variance
constraint, until they are perfectly aligned in the limit of an infinite trading horizon.

is bought from within the error-correcting space (i.e., span{α}). Such portfolios may be

optimal when the variance constraint of Problem P0 is replaced by a leverage constraint

(i.e., a constraint on the length of the portfolio vector), such as wTw = 1. As Thm. 4.5

shows, in this case the optimal action is to choose a portfolio proportional to the direction of

the expected log-return (i.e., µrN
), which in one particular case is equal to the α direction.

Theorem 4.5.

Consider the following static portfolio choice problem, in which the portfolio is selected to

be mean-leverage optimal, in accordance with problem P
′′′
0 , as follows:

{w∗
N} = arg max

wN

wT
NµrN

s.t. wT
NwN = 1

 P
′′′
0 ,

Given a constraint on the degree of portfolio leverage, the optimal portfolio weight vector for

a trading horizon of length N is proportional to the direction of expected change, as follows:

w∗
N ∝ µrN

= Nm1nT
1 φ +

p∑
i=2

(
λN

i − 1
)
minT

i x0 +
1− λN

i

1− λi
minT

i φ.
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In the limit of an infinite trading horizon and when φ = 0, the optimal weight vector is

proportional to:

w∗
∞ ∝ −

n∑
i=2

(
nT

i x0

)
mi.

The proof of Thm. 4.5 is given in Appendix 4.A. It is important to note that in a first

order VAR system with p = 2, φ = 0, and the constraint wTw = 1, the direction of the

optimal portfolio is proportional to m2 ∝ α. The following example utilizes the idea of a

leverage constraint in order to further explore the mean-variance trade-off experienced in

systems where the log-prices of the assets follow a cointegrated VAR model.

Example 4.8.

A set of three portfolios is compared for a system comprised of two assets whose log-prices

are known to evolve according to a cointegrated VAR process. Furthermore, it is assumed

that the covariance matrix of the input process, Ψ, is proportional to the identity matrix.

The first portfolio is constructed to be proportional to the α vector, the second portfolio

is chosen so that the weights are proportional to the β vector, and the third so that the

weights are proportional to the mean-variance optimal (MVO) portfolio, w∗, computed

with no budget constraint. Once the three portfolio directions are determined, each vector

is normalized so that ||w||2 = 1. As depicted in Fig. 4-8, for a given N , the highest

expected return is achieved with the Alpha portfolio, due to the fact that when p = 2, the

direction of expected change, µN , is proportional to α for all N . However, as shown by the

corresponding error bars, the variance of this portfolio grows linearly over time due to the

unit eigenvalue in the state transition matrix. On the other hand, the Beta portfolio has

smaller expected return, but the variance converges to a finite quantity. In the middle is

the MVO portfolio. Due to the assumption that Ψ is proportional to the identity matrix,

when N = 1 the MVO portfolio is aligned with the Alpha portfolio. As N increases and

the portfolio return variance grows, the MVO portfolio is pulled toward the β direction in

order to satisfy the variance constraint. Only in the limit of an infinite trading horizon does

the MVO portfolio align with the Beta portfolio.

As Example 4.8 demonstrates, the time horizon of the investor matters. For short horizons,

there is additional profit earned by buying the portfolio with a component not only in the
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direction of finite variance, i.e. the Beta direction, but also in the direction of expected

change. However, for long horizons, the variance constraint effectively limits the investor

to buy more and more in the Beta direction.
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4.A Proofs of Chapter 4 Theorems

Proof of Theorem 4.1.

Consider the static two-stage, two-asset portfolio choice problem with portfolio weight vector

w. Since the correlation coefficient is related to the covariance through a positive scale factor

(i.e., the product of the standard deviations corresponding to the portfolio returns for the

first and second stages), it is sufficient to show that the covariance between the portfolio

returns for the first and second stages is always negative when w is chosen in the Beta

direction. Let r1 denote the return for the first stage, and r2 denote the return for the

second stage, so that the general form of the covariance is computed as:

cov [r1, r2] = E [r1r2]− E [r1]E [r2]

= E
[
wT (x1 − x0) (x2 − x1)

T w
]
− E

[
wT (x1 − x0)

]
E
[
wT (x2 − x1)

]
= wT E

[
(Πx0 + ε1) (Π (Π1x0 + ε1) + ε2)

T
]
w −wTΠx0xT

0 ΠT
1 ΠTw

= wT
(
Πx0xT

0 ΠT
1 ΠT + ΨΠT

)
w −wTΠx0xT

0 ΠT
1 ΠTw

= wTΨΠTw.

Next consider the case where w = cβ, where c = ±1, so that the covariance is equal to

cov [r1, r2] = c2βTΨβαT β. Since c2 > 0 and βTΨβ > 0 due to the fact that Ψ is a positive

definite covariance matrix, the desired result follows only when αT β < 0. As shown next,

the latter condition follows as a direct result of the assumption concerning the non-unit

eigenvalue of the matrix Π1, λ. Recall from Thm. 3.1 that when the matrix Π has rank

r = 1, the first p − 1 eigenvectors of Π, Mβ⊥ = {m1, ...,mp−1}, form a basis for the β⊥

subspace with corresponding eigenvalues of zero, while the remaining eigenvector, mp, forms

a basis for the α subspace, with eigenvalue −2 < λ − 1 < 0. Now let Π = αβT , and let

mp = kα for some k ∈ R. The eigendecomposition of Π is given by:

Π =
(
Mβ⊥ kα

)0

λ− 1

(Mβ⊥ kα
)−1

=
(
Mβ⊥ kα

)0

λ− 1

(αT
⊥Mβ⊥

)−1
αT
⊥

k
(
βT α

)−1
βT


= k2 (λ− 1)

(
βT α

)
αβT .
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Equating the two factorizations for Π reveals that k2 (λ− 1)
(
βT α

)
= 1. Since k2 > 0 and

−2 < λ− 1 < 0, it follows that βT α = αT β < 0.

Proof of Theorem 4.2.

For fixed N , the mean of the total return is given by Eq. 4.4. Thus the limit as N increases

is given by:

lim
N→∞

µrN
= lim

N→∞
Nm1nT

1 φ +
p∑

i=2

(
λN

i − 1
)
minT

i x0 +
1− λN

i

1− λi
minT

i φ,

Since A has exactly one unit eigenvalue, i.e. λ1 = 1, while the remaining p−1 eigenvalues all

lie strictly inside the unit circle, i.e. |λi| < 1, i = 2, ..., p, the term λN
i → 0 as N increases.

Therefore, when drift is not present, i.e. φ = 0, the first and third terms drop out, and

the mean of the return vector converges to a weighted combination of the eigenvectors of

A corresponding to the non-unit eigenvalues, −
∑n

i=2 minT
i x0. In the presence of drift, the

first term dominates the summation, thus the overall expected return µrN
diverges.

Proof of Theorem 4.3.

According to Eq. 4.6, when N = 1, Σr1 = Ψ. Next consider the case where N > 1 and let

Ψ = SST and A = MDM−1, so that the N period covariance matrix for rN , ΣrN , can be

expressed as follows:

ΣrN =
N−1∑
i=0

MDiM−1SST
(
M−1

)T DiMT

= M

[
N−1∑
i=0

(
DiM−1S

) (
DiM−1S

)T]
MT

= M
N−1∑
i=0


ci
1,1q

T
1 q1 . . . ci

1,nq
T
1 qn

ci
2,1q

T
2 q1 . . . ci

2,nq
T
2 qn

...
...

ci
n,1q

T
nq1 . . . ci

n,nq
T
nqn

MT ,

where ci,j = λiλj and qi is the ith column of the matrix Q = M−1S. Using the fact that
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λ1 = 1, define K as follows:

K =


NqT

1 q1 . . .
1−cN

1,n

1−c1,n
qT

1 qn

1−cN
2,1

1−c2,1
qT

2 q1 . . .
1−cN

2,n

1−c2,n
qT

2 qn

...
...

1−cN
n,1

1−cn,1
qT

nq1 . . .
1−cN

n,n

1−cn,n
qT

nqn

 ,

so that the covariance matrix can be expressed as follows:

ΣrN = MKMT =
n∑

i=1

n∑
j=1

Ki,jmimT
j .

As N approaches infinity, the first term, NqT
1 q1m1mT

1 , dominates the summation, causing

the covariance matrix to diverge in the direction of m1 = β⊥. Hence Σr has one eigenvector

in the direction of β⊥ with corresponding eigenvalue of infinity. Using the fact that the

eigenvectors of any real, symmetric matrix are orthogonal, the remaining eigenvectors must

form a basis for β, each with bounded eigenvalue γi. The inverse covariance matrix Σ−1
r

has the same eigenvectors as Σr, with eigenvalues of zero and 1
γi

, respectively.

Proof of Theorem 4.4.

First, consider the case where φ = 0 and no budget constraint is included. The optimal

steady-state portfolio weight vector is computed using Eq. 4.2 as follows:

w∗
∞ = lim

N→∞

σ0√
µT

rN
Σ−1

rN
µrN

Σ−1
rN

µrN

As described by Theorems 4.2 and 4.3, the term µrN
converges as N increases, while the

inverse covariance matrix converges to Σ−1
r =

(
β β⊥

)
. Since the eigenvalues associated

with the β⊥ eigenvectors asymptotically approach zero, the matrix product Σ−1
rN

µrN
con-

verges to a vector in the span of β. In addition, the scale factor σ0q
µT

rN
Σ−1

rN
µrN

also converges

to a fixed point, as neither µrN
nor Σ−1

rN
µrN

diverges as N increases.

Second, consider the case where drift is present, i.e. φ 6= 0, but the budget constraint

is not enforced. Here both µrN
and ΣrN contain terms that depend on N , and therefore

the two limits cannot be examined independently. To this end, recall the definition of µrN
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from Eq. 4.4 and let µrN
= Nβ⊥ + b, where:

b =
p∑

i=2

(
λN

i − 1
)
minT

i x0 +
1− λN

i

1− λi
minT

i φ,

and nT
1 φm1 ∈ sp{β⊥}. Now the product Σ−1

rN
µrN

can be divided into two pieces, NΣ−1
rN

β⊥

and Σ−1
rN

b. The presence of the additional factor of N in the first term has significant impact.

While the matrix NΣ−1
rN

still has eigenvectors that approach β and β⊥ as N increases, the

eigenvalue associated with β⊥ no longer diverges, as was the case in Theorem 4.3. Thus,

NΣ−1
rN

β⊥ is proportional to β⊥, and Σ−1
rN

b is proportional to β. Thus the overall asymptotic

direction of the optimal portfolio weight vector is a linear combination of these two vectors,

and is not purely in the direction of β, as was the case when drift was not present. Also note

that in the case where drift is present, the denominator of the scale factor contains an ex-

tra factor of
√

N , so the degree of leverage utilized by this strategy decreases as N increases.

Third, consider the case where φ = 0, but a budget constraint of the form wT1 = 1 is

now included. The optimal steady-state portfolio weight vector is computed using Eq. 4.12

as follows:

w∗
∞ = lim

N→∞

1
2λ∗L

Σ−1
rN

(
µrN
− γ∗L1

)
.

Since the quantities
{
Σ−1

rN
µrN

,Σ−1
rN

,1TΣ−1
rN

1,µT
rN

Σ−1
rN

1
}

all converge to steady-state so-

lutions, λ∗L and γ∗L also admit steady-state solutions. Again, the overall portfolio weight

vector converges to a vector in the span of β as the null-space of the steady-state inverse

covariance matrix is equal to β⊥.

Finally, consider the case where both drift and a budget constraint are included. As with

the second case, the quantity Σ−1
rN

µrN
no longer converges to a vector in the span of β, but

instead converges to a vector with components in both the β and β⊥ subspaces. Hence, the

optimal steady-state portfolio weight vector is a linear combination of three vectors, with

the first two in the span of the β and β⊥ subspaces, and the third one in the direction of

Σ−1
rN

1.
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Proof of Theorem 4.5.

According to the Cauchy-Schwartz inequality, the inner product wT µrN
subject to wTw = 1

is maximized when the vector w is chosen to be proportional to µrN
. Since |λi| < 1 for

i = 2 . . . n and Φ = 0T , the limit follows.

4.B Alternative derivation of MVO solution with budget constraint

In the Markowitz mean-variance framework, the budget constraint may be enforced by

introducing a second Lagrange multiplier, γL ∈ R, to Problem P0, as follows:

{w∗
N , λ∗L, γ∗L} = arg max

wN ,λL,γL

wT
NµrN

− λL

(
wT

NΣrN wN − σ2
0

)
− γL

(
wT

N1− 1
) }

P
′′
0 ,

with solution:

w∗
N =

1
2λ∗L

Σ−1
rN

(
µrN
− γ∗L1

)
=

1
2λ∗L

Σ−1
rN

(
µrN
−

(
µT

rN
Σ−1

rN
1− 2λ∗L

1TΣ−1
rN

1

)
1

)
. (4.12)

In order to determine the value of λ∗L, again let wN = 1
2λL

f + g, where the vectors f and g

are now defined as follows:

f = Σ−1
rN

(
µrN
−

(
µT

rN
Σ−1

rN
1

1TΣ−1
rN

1

)
1

)
,

g = −

(
1

1TΣ−1
rN

1

)
Σ−1

rN
1.

The relationship between λL and σ2
0 is again given by a quadratic function. Due to the

presence of term ΣrN , the coefficients in the original expression, given by Eq. 4.9, diverge

as N increases. On the other hand, here the coefficients depend on Σ−1
rN

, which converges

as N increases, as shown in Section 4.3.3.



Chapter 5

Dynamic Portfolio Choice

The static MVO portfolios considered in Chapter 4 do not take advantage of new informa-

tion that becomes available over the lifetime of the trade, such as updated asset prices or

realized gains and losses. The investor makes a single decision at the beginning of the in-

vestment period, and holds the resultant portfolio for the entire time horizon. On the other

hand, dynamic portfolio strategies, such as those considered in this chapter and the next,

enable the investor to rebalance the portfolio at intermediate stages, taking into account

new information as it becomes available.

Dynamic multistage portfolio construction has been discussed in the literature since the

1960s, as summarized in Section 2.4. When the portfolio choice problem is formulated

within the framework of expected utility maximization, the optimal sequence of portfo-

lio policies can be readily determined using a dynamic programming approach. On the

other hand, it was not known until forty years later how to construct dynamically optimal

portfolios when the investor’s terminal wealth is mean-variance efficient. In particular, Li

and Ng [36] show that the mean-variance preference function can be mapped into the ex-

pected utility framework by transforming the desired problem into an auxiliary one that

uses a quadratic objective function, that can subsequently be solved using existing meth-

ods. They prove that if the investor acts to maximize the expected value of a quadratic

function of terminal wealth, the resultant portfolios sequence is also mean-variance efficient.

The method of [36], referred to as the Separable Embedding technique, suffers from one

fundamental limitation. While their framework allows stochastic modeling of the per-stage

asset returns, the parameters of the return distributions must be known in advance. This

restriction poses a problem when modeling the asset log-prices using a cointegrated vector

105
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autoregressive model, because in this case the per-stage return distributions have state-

dependent mean vectors. Thus, the return statistics are not known at time t0, as required

by [36]. Here, a new algorithm is presented that extends the separable embedding technique

to the case of stochastic asset return distributions by incorporating the use of Monte Carlo

and importance sampling methods to solve the resulting dynamic programming problem1.

While the new method is presented within the context of cointegrated log-price dynamics,

the methodology is general and can be applied to any setting in which the asset return

distributions are changing over time in a stochastic manner.

The organization of this chapter is as follows. In Section 5.1.1, the dynamic mean-variance

portfolio choice problem is presented, and the Principle of Separable Embedding is applied

in order to derive an auxiliary quadratic utility problem. In Section 5.1.2, the solution to

auxiliary problem is derived using the dynamic programming algorithm. A Monte Carlo

based algorithm for solving a set of recursive equations required for the computation of

the optimal portfolio policies is detailed in Section 5.1.3. The mapping from the auxiliary

problem back to the original mean-variance problem is given in Section 5.1.4. Section 5.1.5

represents the auxiliary quadratic utility problem using the linear quadratic regulator frame-

work. The inclusion of a budget constraint, risk-free asset, and no short-sale constraint are

discussed in Sections 5.2.1, 5.2.2, and 5.2.3, respectively. Section 5.3.1 analyzes the per-

stage portfolio return statistics, and finally, the asymptotic properties of the dynamic MVO

solution are explored in Section 5.3.2.

5.1 Mean-Variance Optimal Portfolio Construction

In this section, the optimal sequence of mean-variance efficient portfolio policies is computed

for the case where inter-stage rebalancing is allowed. Unlike the static solution of Chapter

4, in which a single portfolio weight vector is held without modification across all N stages

of the investment horizon, here the portfolio weights at the beginning of each stage are

allowed vary in a dynamic fashion according to some function of the observed state, which

includes both updated asset log-prices and realized portfolio gains (losses). A detailed
1One attempt to generalize the work of [36] for the case of asset returns with stochastic parameters in

continuous-time is given in Chapter 6 of [66]. However, the model used to describe the evolution of the asset
prices over time does not account for inter-temporal correlations among the assets, as captured by a system
of cointegrated assets.
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Figure 5-1. Multistage dynamic portfolio choice problem.

problem formulation is presented next.

5.1.1 Problem Formulation

Let xk be a p-dimensional random vector representing the log-prices of a group of assets that

are assumed to evolve according to a first-order cointegrated vector autoregressive process,

as follows:

x[n + 1] = Π1x[n] + Φd[n] + ε[n], (5.1)

with stochastic input ε[n] ∼ N (0,Ψ) and constant deterministic drift Φd[n] = φ. The

drift is included in order to capture the overall linear growth trend present in the historical

log-prices of most assets. A detailed description of such models is given in Chapter 3. Even

though attention is focused on the first-order VAR system, extensions to higher-order sys-

tems are easily realized by augmenting the state space.

The multistage Markowitz mean-variance portfolio choice framework presented in Section

2.4.1 is utilized here. The investor acts so that the terminal return is mean-variance efficient.

Under such preferences, the objective is to maximize the expected value of the portfolio ter-

minal return, subject to an equality constraint on its variance. Under the assumption that

the asset log-prices evolve according to a cointegrated VAR process, the terminal return is

computed as the sum of the per-stage log-returns (i.e., change in the log-prices). Formally,
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the optimization problem, P0, can be stated as follows:

{
w∗

0,w
∗
1, . . . ,w

∗
N−1

}
= arg max

w0,w1,...,wN−1

Et0

[∑N−1
k=0 wT

k rk+1

]
s.t. vart0

[∑N−1
k=0 wT

k rk+1

]
= σ2

0,

 P0

where the per-period vector of individual asset returns, rk, is defined by:

rk = ∆xk = xk − xk−1. (5.2)

All expectation and variance operators are computed with respect to the information avail-

able at the start of the investment horizon, time t0. The inner product represented by

wT
k rk+1 denotes the return of the portfolio at stage k. The portfolio weight vector wk rep-

resents the relative percentage of wealth to allocate to each asset with positive and negative

weights indicating long and short positions, respectively. The portfolio is allowed to be

leveraged (i.e., the market value of the portfolio may exceed the available wealth), and in-

clusion of a budget constraint of the form 1Twk = 1 is considered in Section 5.2.1. Without

a budget constraint, the degree of leverage is limited only by the allowable risk parameter,

σ2
0. Recall from Section 2.2.3, that omission of a budget constraint is inherently equivalent

to including a risk-free asset in the model with a rate of rf = 0.

As discussed in Section 2.4.1, it is not possible to solve Problem P0 exactly using dy-

namic programming techniques, as the objective function is not additive in the number

of stages due to the (potentially) non-zero covariance terms. However, as Li and Ng [36]

show, it is possible to first solve a related, auxiliary problem in order to learn the optimal

sequence of MVO portfolios. The resulting technique, known as the (Principle of Separable

Embedding), is stated in Theorem 5.1 below.

Theorem 5.1.

Consider the problem of maximizing the expected value of a quadratic function of the cumu-

lative N stage portfolio return, as follows:

{
w∗

0,w
∗
1, . . . ,w

∗
N−1

}
= arg max

w0,w1,...,wN−1

Et0

[
γN
∑N−1

k=0 wT
k rk+1 − λN

(∑N−1
k=0 wT

k rk+1

)2
] }

P1,
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where the scale factors γN and λN define the shape of the utility function, and are deter-

ministic quantities set by the investor in accordance with his risk preferences. The optimal

sequence of portfolio policies,
{
w∗

0, . . . ,w
∗
N−1

}
for Problem P0 is also optimal for Problem

P1, for some appropriate choice of {γN , λN}.

Hence, the original mean-variance portfolio choice problem is embedded into an auxiliary

problem that is separable in the sense required by dynamic programming. The proof of

Thm. 5.1 is given in Appendix 5.A.

In applying Thm. 5.1 in order to compute the portfolio weight vector functions, w∗
k (xk), Li

and Ng assume that the parameters of the return distributions are known exactly at time t0.

However, under the assumption that the asset log-prices evolve according to a cointegrated

vector autoregressive model, the per-stage return distributions have state-dependent mean

vectors, and are therefore not known at the start of the investment horizon. To address this

limitation, a novel extension to their algorithm is developed here, that integrates the use of

Monte Carlo and importance sampling methods within the separable embedding framework

in order to solve the dynamic mean-variance problem for cointegrated log-price dynamics.

5.1.2 Optimal Portfolio Policies

In this section, the solution to Problem P1 is derived using the dynamic programming

algorithm. Here, care is taken to explicitly highlight how the assumption that the asset

log-prices evolve according to a cointegrated VAR process prevents the solution in [36] from

being applied directly, thus necessitating the use of the Monte Carlo methods derived in

Section 5.1.3.

To begin the derivation, let the value function at the last stage, denoted as J∗N (rN ), be

defined by:

J∗N (rN ) = U (rN ) = γNrN − λNr2
N .

According to the Bellman principle of optimality, at time tN−1, the investor acts to maximize

the sum of his current reward and the expected reward-to-go:

w∗
N−1 = arg max

wN−1

EtN−1 [0 + JN (rN )] .
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The conditional expectation is computed with respect to the information that is available

at time tN−1, implying that the only source of randomness is xN , or equivalently, εN . Here,

the total return can be decomposed into two terms, as rN = rN−1 + wT
N−1 (xN − xN−1),

where the first term is a known, deterministic quantity with respect to the information

available at time tN−1, while the second term is random. Thus, the value function at time

tN−1 is given by:

J∗N−1 (rN−1) = max
wN−1

EtN−1 [JN (rN )] = max
wN−1

EtN−1

[
γNrN − λNr2

N

]
= max

wN−1

EtN−1

[
γN

(
rN−1 + wT

N−1 (xN − xN−1)
)

−λN

(
rN−1 + wT

N−1 (xN − xN−1)
)2]

= max
wN−1

γNrN−1 + γNwT
N−1E [xN − xN−1]− λNr2

N−1

−2λNrN−1wT
N−1E [xN − xN−1]

−λNwT
N−1E

[
(xN − xN−1) (xN − xN−1)

T
]
wN−1

= max
wN−1

γNrN−1 + γNwT
N−1mN−1 − λNr2

N−1 − 2λNrN−1wT
N−1mN−1

−λNwT
N−1SN−1wN−1, (5.3)

where the vector mN and the matrix SN are defined as follows:

mN−1 = EtN−1 [xN − xN−1]

SN−1 = EtN−1

[
(xN − xN−1) (xN − xN−1)

T
]
.

When it is assumed that the log-prices evolve according to the cointegrated VAR model of

Eq. 5.1, the above two moments admit closed-form solutions, given by:

mN−1 = ΠxN−1 + φ (5.4)

SN−1 = Ψ + mN−1mT
N−1. (5.5)

Note that since mN−1 and SN−1 are functions of the state, xN−1, they are also random

variables. At times these quantities will be denoted as mN−1 (xN−1) and SN−1 (xN−1) in

order to emphasize their inherent state dependence.

The optimal portfolio policy for the last stage, w∗
N−1, can be found by setting the derivative
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of Eq. 5.3 equal to zero, and solving for the portfolio weight vector, which yields:

w∗
N−1 =

1
2λN

(γN − 2λNrN−1)S−1
N−1 (xN−1)mN−1 (xN−1) . (5.6)

Therefore, the optimal portfolio policy at time tN−1 is not only a function of the observed

asset log-prices, xN−1, but also of the cumulative return to date, rN−1.

The expression for w∗
N−1 can now be plugged back into Eq. 5.3, and after some alge-

bra, it is possible to show that the value function can again be expressed as a quadratic

function of the cumulative, realized return up to time tN−1, as follows:

J∗N−1 (rN−1) = γN−1rN−1 − λN−1r
2
N−1 + cN−1,

where:

γN−1 = γN

(
1−mT

N−1 (xN−1)S−1
N−1 (xN−1)mN−1 (xN−1)

)
, (5.7)

λN−1 = λN

(
1−mT

N−1 (xN−1)S−1
N−1 (xN−1)mN−1 (xN−1)

)
, (5.8)

cN−1 = 0.25
γN

λN
mT

N−1 (xN−1)S−1
N−1 (xN−1)mN−1 (xN−1) . (5.9)

It is important to observe that the coefficients in the quadratic objective function, γN−1 and

λN−1, defined by Eqs. 5.7 and 5.8, respectively, are themselves random variables, as the

terms mN−1 and SN−1 depend on the random variable xN−1. It is in this crucial manner

that the case of cointegrated log-prices considered in this thesis differs from the assumptions

of [36].
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Applying the Bellman recursion once more, the value function at time tN−2, is given by:

J∗N−2 (rN−2) = max
wN−2

EtN−2 [JN−1 (rN−1)]

= max
wN−2

EtN−2

[
γN−1rN−1 − λN−1r

2
N−1 + cN−1

]
= max

wN−2

EtN−2

[
γN−1

(
rN−2 + wT

N−2 (xN−1 − xN−2)
)

−λN−1

(
rN−2 + wT

N−2 (xN−1 − xN−2)
)2

+ cN−1

]
= max

wN−2

γNrN−2νN−2 + γNwT
N−2mN−2 − λNr2

N−2νN−2

−2λNrN−2wT
N−2mN−2 − λNwT

N−2SN−2wN−2 + E[cN−1], (5.10)

where νN−2, mN−2 and SN−2 are defined as follows:

zN−2 = 1−mT
N−1 (xN−1)S−1

N−1 (xN−1)mN−1 (xN−1) (5.11)

νN−2 = EtN−2 [zN−2] (5.12)

mN−2 = EtN−2 [zN−2 (xN−1 − xN−2)] (5.13)

SN−2 = EtN−2

[
zN−2 (xN−1 − xN−2) (xN−1 − xN−2)

T
]
. (5.14)

With respect to the information available at time tN−2, only xN−2 is known, and therefore

the expectations are computed over the random variable xN−1. Only the constant terms λN

and γN can be pulled out from the expectation, whereas the terms zN−2 and (xN−1 − xN−2)

depend on xN−1 and are therefore random. This is in direct contrast to the derivation found

in the Appendix of [35], where the entire term corresponding to λN−1 is pulled out of the

expectation.

Comparing Equations 5.3 and 5.10 reveals that by setting νN−1 = 1, the two expressions

have identical structure. Thus, Eqs. 5.12 through 5.14 can be rewritten as follows:

νN−2 = EtN−2

[(
νN−1 −mT

N−1S
−1
N−1mN−1

)]
,

mN−2 = EtN−2

[(
νN−1 −mT

N−1S
−1
N−1mN−1

)
(xN−1 − xN−2)

]
,

SN−2 = EtN−2

[(
νN−1 −mT

N−1S
−1
N−1mN−1

)
(xN−1 − xN−2) (xN−1 − xN−2)

T
]
.
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The optimal portfolio policy for the second to last stage, wN−2, can be found by differen-

tiating Eq. 5.10 and setting the resulting expression equal to zero, yielding:

w∗
N−2 =

1
2λN

(γN − 2λNrN−2)S−1
N−2 (xN−2)mN−2 (xN−2) . (5.15)

The function for the portfolio weight vector two stages from the end has identical structure

to that portfolio weight vector for the last stage, given in Equation 5.6. This suggests a

generalization of the results derived in this section. The optimal portfolio weight vector

corresponding to time tk, when the investor acts so as to maximize the expected utility of

terminal wealth according to a quadratic utility function, is given by:

w∗
k (xk, rk) =

1
2λN

(γN − 2λNrk)S−1
k (xk)mk (xk) , (5.16)

where the moment functions νk (xk), mk (xk) and Sk (xk) evolve recursively according to:

νk (xk) = Etk

[
νk+1 −mT

k+1S
−1
k+1mk+1

]
, (5.17)

mk (xk) = Etk

[(
νk+1 −mT

k+1S
−1
k+1mk+1

)
(xk+1 − xk)

]
, (5.18)

Sk (xk) = Etk

[(
νk+1 −mT

k+1S
−1
k+1mk+1

)
(xk+1 − xk) (xk+1 − xk)

T
]
. (5.19)

Thus, an exact solution to Problem P1 has been found in terms of the functions {mk (xk) ,Sk (xk)},

the deterministic constants {γN , λN}, and the cumulative portfolio return, rk. In order to

map Problem P1 back into the original mean-variance portfolio choice framework given by

Problem P0, one must determine the relationship between the choice of {γN , λN} and the

total variance constraint, σ2
0, as discussed in Section 5.1.4. However, it is first necessary

to derive a technique for solving Equations 5.17 through 5.19, which do not admit closed-

form solutions. An algorithm based on Monte Carlo and importance sampling methods is

presented next, in Section 5.1.3.

5.1.3 A Monte Carlo Based Algorithm

While the functions mN−1 and SN−1 can easily be computed in closed-form, as given by

Eqs. 5.4 and 5.5, the remaining terms νk, mk and Sk do not admit analytic solutions. For

example, at time tN−2, all of the required expectations involve the term
(
1−mT

NS−1
N mN

)
,



114 CHAPTER 5. DYNAMIC PORTFOLIO CHOICE

which is equal to (with drift φ = 0):

1−mT
N−1S

−1
N−1mN−1

= 1− xT
N−1Π

T
(
Ψ−1 −Ψ−1ΠxN−1

(
1 + xT

N−1Π
TΨ−1ΠxN−1

)−1
xT

1 ΠTΨ−1
)
ΠxN−1

= 1− xT
N−1Π

TΨ−1ΠxN−1 +

(
xT

N−1Π
TΨ−1ΠxN−1

)2
1 + xT

N−1Π
TΨ−1ΠxN−1

=
1

1 + xT
N−1Π

TΨ−1ΠxN−1

,

where the first equality follows by applying the matrix inversion lemma to SN−1. The pres-

ence of a quadratic function of xN−1 in the denominator makes νN−2, mN−2, SN−2, and

all subsequent moments, difficult to compute analytically2.

In lieu of closed-form solutions, the sequence of optimal portfolio policies must, there-

fore, be computed numerically. Specifically, the functions νk (xk), mk (xk) and Sk (xk) can

be approximated through a two stage Monte-Carlo scheme consisting of a training phase,

in which these functions are evaluated over a set of sample paths of the log-price process,

and a testing phase, in which the resulting functional approximations are applied to real

data. This approach bears resemblance to the Approximate Dynamic Programming (ADP)

framework [48], in which the value function is directly approximated over a set of sample

paths of the underlying state and control spaces.

In order to implement a Monte Carlo based approximation scheme, sample paths of the

asset log-price process are required. One approach is to simulate the log-price process ac-

cording to an M-ary tree, as shown in Figure 5-2(a), where each node of the tree contains

the p−dimensional vector xk. On the one hand, this scheme suffers from the curse of dimen-

sionality, since the size of the tree grows exponentially with the number of stages. However,

a tree structure allows for easy computation of each expectation as a sample mean. For

each node in the tree, a set of M samples from the conditional distribution f
(
xk+1|xi

k

)
are available at the next level, indexed by j, and therefore Eqs. 5.17 through 5.19 may be

2In the case where Π = 0, which corresponds to a system of p independent walks, the expressions for mk

and Sk do admit closed-form solutions and the Monte-Carlo algorithm described here is not needed.
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generated according to a tree. The size
of the tree grows exponentially with the
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(b) In order to avoid the curse of di-
mensionality, a fixed number of sample
paths of the log-price process are gener-
ated.

Figure 5-2. Sample path simulation schemes.

approximated using a backwards recursion algorithm, as follows:

νk

(
xi

k

)
= Etk

[
νk+1 −mT

k+1S
−1
k+1mk+1

]
' 1

M

M∑
j=1

(
νj

k+1 −
(
mj

k+1

)T (
Sj

k+1

)−1
mj

k+1

)
,

mk

(
xi

k

)
= Etk

[(
νk+1 −mT

k+1S
−1
k+1mk+1

) (
xk+1 − xi

k

)]
' 1

M

M∑
j=1

(
νj

k+1 −
(
mj

k+1

)T (
Sj

k+1

)−1
mj

k+1

)(
xj

k+1 − xi
k

)
,

Sk

(
xi

k

)
= Etk

[(
νk+1 −mT

k+1S
−1
k+1mk+1

) (
xk+1 − xi

k

)
(xk+1 − xk)

T
]

' 1
M

M∑
j=1

(
νj

k+1 −
(
mj

k+1

)T (
Sj

k+1

)−1
mj

k+1

)(
xj

k+1 − xi
k

)(
xj

k+1 − xi
k

)T
.

While the tree structure enables direct computation of the required moments at each level

using the sample mean estimator, a total of MN sample paths must be generated. Hence,

this method quickly becomes computationally intractable3.

A second approach, depicted in Figure 5-2(b), addresses the curse of dimensionality by

generating a fixed number of sample paths of the log-price process. Here, samples of
3Note that a tree structure is also required for computation of the desired moments using a numerical

integration approach, which also suffers from the curse of dimensionality
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f (xk+1|x0), not f
(
xk+1|xi

k

)
, are available, and therefore importance sampling methods

(see Appendix B) must be utilized in order to approximate the functions {νk,mk,Sk} using

a sample mean estimator. Specifically, each component in the sample mean summation

must be scaled by a weighting factor, wij , defined by:

wij =
f
(
xj

k+1

∣∣∣xi
k

)
f
(
xj

k+1

∣∣∣x0

) .

Equations 5.17 through 5.19 may now be approximated using the modified backwards re-

cursion algorithm:

νk

(
xi

k

)
' 1

M

M∑
j=1

wij

(
νj

k+1 −
(
mj

k+1

)T (
Sj

k+1

)−1
mj

k+1

)
,

mk

(
xi

k

)
' 1

M

M∑
j=1

wij

(
νj

k+1 −
(
mj

k+1

)T (
Sj

k+1

)−1
mj

k+1

)(
xj

k+1 − xj
k

)
,

Sk

(
xi

k

)
' 1

M

M∑
j=1

wij

(
νj

k+1 −
(
mj

k+1

)T (
Sj

k+1

)−1
mj

k+1

)(
xj

k+1 − xj
k

)(
xj

k+1 − xj
k

)T
,

where M now represents the total number of sample paths generated in the training set

and j indices the samples from the conditional distribution f (xk+1|x0). The full training

phase procedure is summarized in Algorithm 1.

Once the training phase is complete, the grid of simulated log-prices and corresponding

values of νk, mk and Sk can be used to determine the optimal portfolio weights for a new

sequence of test log-prices. However, with the exception of the initial state, an exact log-

price match will not be available in the training set. Thus, one must estimate the values

of mk, and Sk by interpolating over the available samples. One possible scheme, based

on the idea of a kernel-density estimate [53], is to weight the training values according to

their “closeness” to the current test value. The scalar version of this interpolation scheme

is illustrated in Fig. 5-3. A multivariate Gaussian kernel is selected, with a mean equal

to the current test state, denoted by xtest
k , and covariance matrix equal to the one period

covariance of the underlying cointegrated VAR process. The corresponding weights are
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Algorithm 1 Training Phase: Approximating νk (xk), mk (xk) and Sk (xk).
STEP 1: Generate Sample Paths
for k = 1 to N do

for i = 1 to M do
xi

k ← Π1xi
k−1 + φ + εi

k

end for
end for
STEP 2: Initialization
for i = 1 to M do

νi
N−1

(
xi

N−1

)
← 1

mi
N−1

(
xi

N−1

)
← Πxi

N−1 + φ
Si

N−1

(
xi

N−1

)
← Ψ + mi

N−1

(
xi

N−1

)
miT

N−1

(
xi

N−1

)
end for
STEP 3: Run backwards recursion
for k = N − 2 to 0 do

for i = 1 to M do
for k = 1 to M do

wij ←
f(xj

k+1|xi
k)

f(xj
k+1|x0)

zj ← νk
k+1

(
xk

k+1

)
−
(
mj

k+1

(
xj

k+1

))T (
Sj

k+1

(
xj

k+1

))−1
mj

k+1

(
xj

k+1

)
end for
νk

(
xi

k

)
← 1

M

∑M
j=1 wijzj

mk

(
xi

k

)
← 1

M

∑M
j=1 wikzj

(
xj

k+1 − xj
k

)
Sk

(
xi

k

)
← 1

M

∑M
j=1 wikzj

(
xj

k+1 − xj
k

)(
xj

k+1 − xj
k

)T

end for
end for

computed as follows:

vtest,j = f
(
xj

k|x
test
k

)
∼ N

(
xj

k;x
test
k ,Ψ

)
.

In addition, the weights must be normalized so that
∑M

j=1 vj = 1. Now, the two functions

needed for the optimal portfolio weight vector are approximated as:

mk

(
xtest

k

)
'

M∑
j=1

vtest,jm
j
k,

Sk

(
xtest

k

)
'

M∑
j=1

vtest,jS
j
k,
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Figure 5-3. Illustration of kernel density estimate.

The portfolio weight vector at time tk is computed as follows:

w∗
k

(
xtest

k , rk

)
=

1
2λN

(γN − 2λNrk)S−1
k

(
xtest

k

)
mk

(
xtest

k

)
.

The full testing phase procedure is summarized in Algorithm 2.

Thus, it is possible to utilize Monte Carlo and importance sampling methods to derive

an algorithm for estimating a set of state-dependent recursive moments required for the

computation of the dynamically optimal sequence of mean-variance portfolio policies, given

by Eq. 5.16. The resulting procedure consists of a training phase, in which the functions

are approximated over a grid of sample paths of the underlying log-price process, and a

testing phase, in which the functions are evaluated on new data by interpolating between

the training samples using an estimator based on a Gaussian kernel. The last step in de-

riving the full dynamic MVO solution is to determine how to initially select the constants

γN and λN of Problem P1 so that the variance constraint from Problem P0 is satisfied, as

addressed in Section 5.1.4 next.

5.1.4 Computation of Total Risk

Mapping the quadratic utility auxiliary Problem P1 back to the original mean-variance ob-

jective defined in Problem P0 is achieved by determining the relationship between γN and

λN with σ0, as depicted in Figure 5-4. First, observe that the constant γN can be factored
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Algorithm 2 Testing Phase: Determining the optimal sequence of asset allocation policies.
STEP 1: Fix {γN , λN}
STEP 2: Compute optimal portfolio weight vectors
for k = 0 to N − 1 do

for i = 1 to M do
for j = 1 to M do

vij ← f
(
xj

k|x
i
k

)
end for
vij ← vijP

j vij

mk

(
xi

k

)
←
∑M

j=1 vijm
j
k

(
xj

k

)
Sk

(
xi

k

)
←
∑M

j=1 vijS
j
k

(
xj

k

)
w∗

ik

(
xi

k, rk

)
← 1

2λN
(γN − 2λNrk)S−1

k

(
xi

k

)
mk

(
xi

k

)
end for

end for
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Figure 5-4. The mapping from problem P1 back to the original mean-variance objective given in Problem
P

′
0 can be established by directly determining the relationship between γN and λN with σ2

0 , bypassing the
intermediate step of mapping from γN and λN to λL.

out of the objective function in Problem P1, without affecting the overall solution. The

resulting quadratic term is scaled by λN
γN

, and therefore it is only this ratio, not the absolute

values of these constants, that matters. As a result, γN may be set to unity, leaving only

one free parameter.

Recall from Eq. 5.16 that the portfolio weight vector for the first stage is given by:

w0 =
γN

2λN
S−1

0 m0 =
1

λN
v0. (5.20)
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The above expression emphasizes the relationship between the portfolio weight vector and

λN . For the second stage, the relationship between w1 and λN is given by:

w1 =
1

2λN
(γN − 2λNr1)S−1

1 m1 =
1

2λN

(
γN − 2λNwT

0 (x1 − x0)
)
S−1

1 m1,

=
1

2λN

(
γN − 2vT

0 (x1 − x0)
)
S−1

1 m1 =
1

λN
v1,

which has identical structure to Eq. 5.20. A similar procedure can be carried out for all of

the remaining stages, generating a recursive representation for the portfolio weights with

the term 1
λN

factored out. This factorization facilitates the easy computation of the variance

of the total cumulative portfolio return, σ2
0, as follows:

σ2
0 = vart0

[
N∑

k=1

rk

]
= vart0

[
N−1∑
k=0

wT
k (xk+1 − xk)

]
= vart0

[
1
λ1

N−1∑
k=0

vT
k (xk+1 − xk)

]
.

The relationship between λN and σ0 is given by:

λN =
stdt0

[∑N−1
k=0 vT

k (xk+1 − xk)
]

σ0
. (5.21)

Due to the lack of closed-form expressions for the terms mk and Sk, the above expression for

λN cannot be computed in closed-form, and Monte Carlo methods must again be employed.

However, the numerator only needs to be estimated once for σ0 = 1, as additional values

scale according to Eq. 5.21.

5.1.5 Formulation as Linear-Quadratic Regulator

One important class of sequential decision making problems are known as the Linear-

Quadratic Regulator (LQR) problem, which is characterized by linear state evolution and

an additive per-stage cost that is a quadratic function of the state and control variables.

These problems have been extensively studied in the literature [13], and can be solved ana-

lytically using the well-known Riccati equations. While the original dynamic mean-variance

objective given in Problem P0 cannot be directly mapped into this framework as explained

in Section 2.4, the quadratic utility version defined by Problem P1 can. The resulting system

is a special case of an LQR, in which the state evolution matrices are themselves stochas-

tic. While formulation within the LQR framework provides a convenient and well-known
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representation for the problem of constructing MVO portfolios in systems where the log-

prices evolve according to cointegrated VAR dynamics, it does not eliminate accompanying

computational difficulties, as shown here.

In order to map Problem P1 into the LQR framework, let yk ∈ Rn×1 denote the system

state, defined as:

yk =

 rk

wk

 ,

where rk and wk denote the cumulative return and portfolio weight vector at time tk,

respectively. The state vector evolves according to the following linear system:

yk+1 = Akyk + Buk + εk,

where the vector uk ∈ Rm×1 represents the set of actions to be taken at stage k, here

corresponding to the asset rebalancing task, and the vector εk ∈ Rn×1 corresponds to the

stochastic input process driving the log-price process, defined by Eq. 5.1. The matrices

Ak ∈ Rn×n and Bk ∈ Rn×m are given by:

Ak =

1 ∆xT
k+1

0 I

 , Bk =

∆xT
k+1

I

 .

The asset log-prices, xk, are not included as part of the state vector, but rather appear

within the state transition matrices. This “trick” works due to the additional assumption

that the control action does not influence the asset log-prices (i.e., the trade does not move

the market). In this way, it is possible to express an otherwise non-linear system using the

LQR framework, at the expense of creating time-dependent, random system matrices. The

optimal set of actions is chosen to maximize the following quadratic cost function:

E
εk,k=0,...,N−1

{
yT

NQNyN +
N−1∑
k=0

(
yT

k Qkyk + uT
k Rkuk

)}
,
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where the matrices Qk ∈ Rn×n and Rk ∈ Rm×m for k = 0, ..., N − 1 are equivalently equal

to the zero matrix, and the terminal cost, QN ∈ Rn×n, is given by:

QN =

λN 0

0 0

 .

Initializing the cumulative return to r0 = γN
2λN

produces the desired quadratic objective

function defined in Problem P1. All of the reward is attributed to the final stage, as the

investor acts so as to maximize his or her expected utility of terminal wealth.

Due to the presence of the term ∆xk+1, both Ak and Bk are time-varying and stochastic,

and therefore the standard LQR solution does not apply. As shown in [13], the optimal

control law is still a linear function of the state, with form:

uk = −
(
Rk + E

[
BT

k Kk+1Bk

])−1
E
[
BT

k Kk+1Ak

]
yk = Lkyk,

where the matrices Kk evolve recursively according to:

KN = QN

Kk = E
[
AT

k Kk+1Ak

]
− E

[
AT

k Kk+1Bk

] (
Rk + E

[
BT

k Kk+1Bk

])−1
E
[
BT

k Kk+1Ak

]
+ Qk.

It can be shown that the resulting set of moments needed here are identical to the moments

required for the computation of Eqs. 5.17 through 5.19. On the one hand, the LQR frame-

work provides a convenient and well-known representation for the problem of constructing

dynamic MVO portfolios under the assumption that the log-prices evolve according to a

cointegrated VAR process. However, such a formulation does not eliminate accompanying

computational difficulties, and approximations schemes, such as the Monte Carlo based

methods proposed in Section 5.1.3, must still be utilized.

5.2 Model Extensions

Portfolio choice problems often include a budget constraint to ensure that all the investor’s

assets are accounted for among the available investment vehicles. Without a budget con-

straint, there is an implicit assumption that the investor can borrow additional capital for
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free, and as a result, the optimal solution often utilizes leverage to achieve a higher expected

return for a given level of risk. In the real world, however, investors must pay interest on

borrowed funds, at the so-called risk-free rate, rf , and this expense must be taken into ac-

count when determining the optimal portfolio weights. Therefore, it is common to explicitly

incorporate both a budget constraint and a risk-free asset into the model, as discussed in

Sections 5.2.1 and 5.2.2, respectively.

5.2.1 Budget Constraint

The dynamic MVO portfolio choice problem considered thus far does not include a budget

constraint of the form wT1 = 1, as discussed in Section 2.2.3. Such a constraint can easily

be incorporated into a dynamic portfolio choice setting, as presented here.

Recall that in the static portfolio choice setting, the budget constraint is enforced by rep-

resenting the portfolio weight vector in a p− 1 dimensional space, using the affine transfor-

mation wN = c+DvN , as defined by Eq. 2.7. In a dynamic multiperiod setting, the vector

c must be replaced with the term c (1 + rk), where rk represents the cumulative realized

return up to time tk. This change captures the fact that at the beginning of each stage,

the investor must allocate all his current wealth among the risky and risk-free assets, not

just his initial wealth. The value function one stage from the end can now be rewritten as

follows:

J∗N−1 (rN−1) = max
wN−1

EtN−1 [JN (rN )] = max
wN

EtN−1

[
γNrN − λNr2

N

]
= max

wN−1

EtN−1

[
γN

(
rN−1 + wT

N−1 (xN − xN−1)
)
− λN

(
rN−1 + wT

N−1 (xN − xN−1)
)2]

= max
vN−1

rN−1αN−1 − r2
N−1βN−1 + (c (1 + rN−1) + DvN−1)

T (mN−1 − 2rN−1nN−1)

− (c (1 + rN−1) + DvN−1)
T SN−1 (c (1 + rN−1) + DvN−1) (5.22)
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where:

αN−1 = EtN−1 [γN ] ,

βN−1 = EtN−1 [λN ] ,

mN−1 = EtN−1 [γN (xN − xN−1)] ,

nN−1 = EtN−1 [λN (xN − xN−1)] ,

SN−1 = EtN−1

[
λN (xN − xN−1) (xN − xN−1)

T
]
.

The optimal value for the reduced-dimension portfolio weight vector over the last stage is

determined by setting the derivative of the objective function equal to zero, yielding:

v∗N−1 = 0.5
(
DTSN−1D

)−1
DT

(
mN−1 − 2rN−1nN−1 − 2DTSN−1c (1 + rN−1)

)
.

The value of v∗N−1 is then substituted back into Eq. 5.22, which can then be rearranged

into a quadratic function of rN−1, as follows:

J∗N−1 (rN−1) = γN−1rN−1 − λN−1r
2
N−1 + cN−1,

where:

λN−1 = βN−1 + 2gT
N−1nN−1 + gT

N−1SN−1gN−1,

γN−1 = αN−1 + gT
N−1mN−1 − 2fT

N−1 (nN−1 + SN−1gN−1) ,

cN−1 = fT
N−1mN−1 + fT

N−1SN−1fN−1,

fN−1 = c + 0.5D
(
DTSN−1D

)−1
DT (mN−1 − 2SN−1c) ,

gN−1 = c−D
(
DTSN−1D

)−1
DT (nN−1 + SN−1c) .

The above procedure can then be repeated to solve for {vN−2, . . . ,v0}. Therefore, when a

budget constraint is included, the portfolio weight vector at time tk is computed as:

w∗
k (xk, rk) = c + 0.5D

(
DTSkD

)−1
DT

(
mk − 2rknk − 2DTSkc (1 + rk)

)
.

The relationship between λN and σ2
0 is again determined as shown in Section 5.1.4.
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Figure 5-5. Efficient frontiers for static and dynamic MVO portfolios, with and without a budget constraint.

The following example illustrates how the multistage dynamic mean-variance efficient fron-

tier is affected by the presence of a budget constraint.

Example 5.1.

Consider again the system of two risky assets from Ex. 4.2, in which the log-prices are

assumed to evolve according to the following cointegrated VAR process:

xk+1 =

0.7878 0.0707

0.2634 0.9122

xk + εk,

where εk ∼ N (0,Ψ) and Ψ =

0.0400 0

0 0.0049

. The initial condition is chosen to be

(
1.7500 4.3000

)T
. During the training phase, the portfolio weight vector functions are

numerically approximated using a grid of M = 5000 sample paths. This is followed by a

testing phase in order to generate the efficient frontier shown in Fig. 5-5 using a set of

T = 5000 test paths. Recall that removal of the budget constraint implies the investor

can borrow for free, evidenced here by the fact that the corresponding efficient frontier

line intercepts the y-axis at the origin. In contrast to the static portfolio choice problem

considered in Chapter 4, the set of MVO portfolios for the case where the budget constraint

is omitted is no longer tangent to the efficient frontier with the budget constraint. Tangency
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implies that the same percentage of wealth is invested in the risk-free asset over both stages,

whereas the true dynamic MVO solution is allowed to change the amount allocated to the

risk-free asset as needed. Figure 5-5 compares the efficient frontiers for this example using

both the dynamic and static MVO solutions, illustrating that the dynamic strategy does

indeed outperform its static counterpart, both with and without the budget constraint.

5.2.2 Risk-free rate

In addition to including a budget constraint in the portfolio choice problem, it is often

desirable to explicitly model the availability of a risk-free asset for borrowing and lending.

In this case, the vector of individual asset returns, rk, defined by Eq. 5.2, is augmented as

follows:

rk =

∆xk

rf

 =

xk − xk−1

rf

 . (5.23)

In addition, the length of the portfolio weight vector, wk, is increased by one to account

for the additional asset, and the functions mk, nk, and Sk must be augmented as follows:

mk = Etk

γk+1 (xk+1 − xk)

γk+1rf

 =

E [γk+1 (xk+1 − xk)]

γk+1rf

 ,

nk = Etk

λk+1 (xk+1 − xk)

λk+1rf

 =

E [λk+1 (xk+1 − xk)]

λk+1rf

 ,

Sk = Etk

λk+1 (xN − xk) (xk+1 − xk)
T

λk+1r
2
f

 =

E
[
λk+1 (xN − xk) (xk+1 − xk)

T
]

λk+1r
2
f

 .

Thus the presence of a risk-free asset is easily incorporated into the model through aug-

mentation of the asset return state vector. For a given portfolio weight vector, a risk-free

weight of wrf
∈ [0, 1] represents investing wrf

% in the risk-free investment, while a weight

of wrf
< 0 represents borrowing wrf

% of the available wealth in order to increase exposure

to the set of risky investments. The following example demonstrates how the presence of

the risk-free asset influences the shape of the efficient frontier.
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Figure 5-6. Efficient frontier for system in Ex. 5.2 with risk-free rate rf = 0.05. The system with the
budget constraint and risk-free asset initially outperforms the alternative schemes. However, at some point
the advantage earned from borrowing capital at the higher risk-free rate is outweighed by the additional cost
of interest paid to the lender.

Example 5.2.

Consider the system of two risky assets presented in Example 5.1. Now suppose the model

is augmented to include a risk-free investment opportunity, with corresponding risk-free

rate of rf = 5%. The resulting efficient frontier is shown in Fig. 5-6, along with the efficient

frontiers for the case where the budget constraint is omitted and the case with a budget

constraint but no risk-free asset. As expected, the new efficient frontier is a straight line

that intercepts the y-axis at the rate earned by keeping all of the available wealth in the

risk-free asset for both stages, computed as:

rT = (1.05)2 − 1 = 0.1025.

As Fig. 5-6 reveals, the new efficient frontier for the system with the budget constraint and

the risk-free asset initially outperforms the alternative schemes. However, at some point

the blue and green lines intersect, corresponding to the regime where any advantage earned

from borrowing capital at the higher risk-free rate is outweighed by the additional cost of

interest paid to the lender.
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5.2.3 No short-sale constraint

On September 19, 2008, the Securities and Exchange Commission (SEC) enacted a tem-

porary short-selling ban on the stock of 799 financial companies, in order to “protect the

integrity and quality of the securities market and strengthen investor confidence” [1]. While

this action was only a short-term emergency measure, it is possible that similar short-selling

bans may come into effect permanently as the SEC introduces new regulation in reaction

to the ongoing global financial crisis. Therefore, it is of interest to study the impact of such

constraints on the trading strategies presented in this thesis. First, brief summaries of how

to incorporate the no short-sale constraint into both the optimal static and dynamic MVO

strategies are given, followed by the presentation of two illustrative examples.

In Section 4.2, closed-form solutions for the multistage static portfolio choice problem are

presented, both with and without a budget constraint. By introducing a no short-sale

constraint, Problem P0 may be rewritten as Problem Q0:

{w∗
N} = arg max

wN

wT
NµrN

s.t. wT
NΣrN wN = σ2

0

wN � 0

 Q0.

While Q0 is still a quadratic program that must be solved once at time t0, it no longer ad-

mits a closed-form solution, and a numerical optimization search routine must be utilized.

When using numerical search, the budget constraint is easily incorporated by adding a lin-

ear constraint of the form wT
N1 = 1, rather than using the affine transformation described

in Section 4.2.2. The resulting efficient frontier is a proper subset of the efficient frontier

for the unconstrained version, and corresponds to a finite range of risk levels (i.e., for some

choices of sigma0 no feasible solution to Problem Q0 exists).

In the dynamic MVO solution derived in Section 5.1.2, closed-form solutions for the opti-

mal portfolio weight vectors wk exist as functions of the moments mk(xk) and Sk(xk). As

with the static case, introducing a no short-sale constraint of the form wN � 0 necessitates

the use of numerical search at each stage to solve the resulting quadratic program for the

optimal portfolio policy. Specifically, at time tk, the optimal portfolio policy w∗
k is found
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by solving Problem Q1, as follows:

{w∗
k} = arg max

wk

(γN − 2λNrk)wT
k mk − λNwT

k Skwk

s.t. wN � 0

 Q1.

Again, the budget constraint is easily incorporated by adding a linear constraint of the

form wT
k 1 = 1 + rk to Problem Q1. It is important to note that the Monte Carlo methods

required to compute mk(xk) and Sk(xk) are unaffected by the presence of the additional

constraint; only the manner in which they are used is altered by the short-sale ban.

The following example illustrates the impact of a no short-sale constraint on the exam-

ple system studied throughout this chapter.

Example 5.3.

Consider again the system of two risky assets from Ex. 5.1, in which the log-prices are

assumed to evolve according to a first-order cointegrated VAR system with parameters:

Π1 =

0.7878 0.0707

0.2634 0.9122

 , Ψ =

0.22 0

0 0.072

 ,

and arbitrary initial condition x0 =
(
1.75 4.3

)T
. The efficient frontiers for a two-stage

investment horizon are shown in Figure 5-7, for the four scenarios corresponding to the

inclusion of a budget and no-short constraint. When the MVO static strategy of Ch. 4 is

used, the efficient frontier when both the budget and no-short constraints are active is a

subset of the efficient frontier when just the budget constraint is active, as shown in Fig.

5-7(a). In addition, the efficient frontier for the budget/no short-sale case does not include

all convex combinations of the portfolios between w∗ = (1, 0) and w∗ = (0, 1). Only oper-

ating points between the portfolios w∗ = (0.053, 0.947) and w∗ = (0, 1) are shown, as this

segment corresponds to the upper half of the budget constrained efficient frontier parabola.

The rest of the operating points between w∗ = (1, 0) and w∗ = (0.053, 0.947) reside on the

lower half of the parabola and can be achieved by solving the related mean-variance problem

of minimizing the variance subject to an equality constraint on the expected return, with

both a budget and no short-sale constraint.



130 CHAPTER 5. DYNAMIC PORTFOLIO CHOICE

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Risk (Return Standard Deviation)

E
x

p
e

c
te

d
 R

e
tu

rn

Static Efficient Frontiers

Original

With budget constraint

No-short constraint

No-short and budget constraint

 !*
0.053, 0.947"w

 !*
0,1"w

(a) Impact of no short-sale constraint on
MVO static portfolio choice for two-stage,
two-asset example.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Risk (Return Standard Deviation)

E
x
p

e
c
te

d
 R

e
tu

rn

Dynamic Efficient Frontiers

Original

With budget constraint

No-short constraint

No-short and budget constraint

 !  !* *

0 1
0, 1 ,    E 0.15, 0.93" #$ $% &w w

 !  !* *

0 1
0, 1 ,    E 0.18, 0.91" #$ $% &w w

(b) Impact of no short-sale constraint on
MVO dynamic portfolio choice for two-
stage, two-asset example.

Figure 5-7. Efficient frontiers in two-stage, two-asset example, with no short-sale constraint.

When the dynamic MVO solution of Ch. 5 is used, the efficient frontier for the budget/no-

short case is no longer a subset of the efficient frontier with only the budget constraint, as

depicted in Fig. 5-7(b), as the two strategies do not form the same portfolio weights for

both stages. It is also interesting to note that in the dynamic case, the portfolio weights

for the first stage sweep across a wider range of convex combinations of the two assets as

compared to the static solution. The remainder of the operating points corresponding to

portfolios between w∗
0 = (1, 0) and w∗

0 = (0.285, 0.715) are achievable by solving the related

minimum variance problem.

As this example illustrates, while a ban on short-sales limits the performance of both the

static and dynamic MVO solutions, it does not necessarily imply that no profitable trading

strategies exist. For the system presented here, there are still mean-variance efficient oper-

ating points that earn a positive expected return and satisfy the no short-sale constraint,

both with and without a budget constraint. However, it is possible to construct a system

in which there are no MVO operating points that satisfy both the budget and no short-sale

constraint and have positive expected return, as illustrated in Ex. 5.4.
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Figure 5-8. Efficient frontiers in two-stage, two-asset example, with no short-sale constraint, when first
stage portfolio vectors are all short.

Example 5.4.

In the system from Ex. 5.3, the matrix Π can be factored according to:

Π = αβT =

−0.37

0.46

(0.57 −0.19
)

.

The system for this new example is generated by replacing α with α′ =
(
−0.58 −0.15

)T
,

so that the direction of expected change is negative for both assets. The new efficient

frontiers for a two-stage investment horizon are shown in Figure 5-8, again for the four

scenarios corresponding to the inclusion of a budget and no-short constraint, using both

the static and dynamic MVO solutions. Unlike, the previous example, here regions of

the efficient frontiers corresponding to both positive and negative expected returns are

shown. As illustrated in Fig. 5-8(a) for the static case, there are no mean-variance efficient

operating points with positive expected return that satisfy the no short-sale constraint, with

or without the budget constraint. For the case where only the no short-sale constraint is
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enforced, the investor must enter into positions using the risky assets in order to satisfy

the budget constraint, even though he will lose money due to his inability to utilize short

sales. Sitting out is not an option. On the other hand, in the dynamic case depicted in Fig.

5-8(b), while there are no profitable operating points with both constraints active, there

are feasible portfolios when only the short-sale ban is imposed. Solutions along this line

correspond to exiting the market for the first stage by choosing w∗
0 = (0, 0), and waiting for

a second-stage, long-only opportunity to present. Unlike the static case, the investor can

sit out during the first stage, as the variance constraint applies to the total portfolio return,

not the per-stage returns. In the dynamic case where both constraints are enforced, the

investor is forced to enter into a position for the first stage that is expected to lose money,

and unfortunately, any expected gains from the second stage are not enough to cover these

losses and produce a net positive mean return.

Given the results of these simulations, it may still be possible to construct a profitable

dynamic MVO trading strategy using a system of cointegrated assets, even in the presence

of a short-sale ban. In the system studied in Ex. 5.4, while there were no efficient operating

points corresponding to the use of both a budget and no short-sale constraint, removal of

the budget constraint yielded an efficient frontier with positive expected return. Recall

from Ch. 2 that removable of the budget constraint corresponds to an implicit assumption

that the investor has access to a risk-free asset with rate rf = 0. Hence, the investor was

able to sit out of the market for the first stage, effectively allocating all of his money in the

risk-free investment, waiting for a long-only investment opportunity to appear.

5.3 Portfolio Properties

The purpose of this section is explore the properties of the dynamic MVO solution derived

here, both with and without the budget constraint. The dynamic solution is also compared

to the static MVO strategy developed in Chapter 4. First, in Section 5.3.1, the per-stage

portfolio return distributions and inter-stage return correlation structure are explored. Sec-

ond, in Section 5.3.2, the behavior of the dynamic MVO solution as a function of the trading

horizon is studied.
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5.3.1 Return Statistics

In Section 4.3.1, the per-stage and cumulative portfolio returns for any static asset alloca-

tion scheme were shown to be Normally distributed. However, in dynamic asset allocation,

the portfolio weight vectors are state dependent random variables, and therefore the result-

ing per-stage portfolio returns are no longer all equivalently Gaussian, as explored here.

Consider the per-stage portfolio returns in a 2−stage example, with r1 = wT
0 (x1 − x0)

and r2 = wT
1 (x2 − x1). While the exact form for w0 is not known in closed-form, it is not

random with respect to the information available at time t0. Thus, the return for the first

stage is distributed as r1 ∼ N
(
wT

0 Πx0,wT
0 Ψw0

)
. For the second stage, the MVO portfolio

weight vector is known in closed-form, and is given by:

w1 =
1

2λN
(γN − 2λNr1)S−1

1 (x1)m1 (xN−1)

=
1

2λN

(
γN − 2λNwT

0 (x1 − x0)
) (

Ψ + Πx1xT
1 ΠT

)−1
Πx1.

However, despite the fact that w1 is a known, non-linear function of x1, it is not possible

to determine the exact form of the distribution of r2, which depends on both x1 and x2. In

addition, it is not possible to derive an analytic expression for the covariance between r1

and r2, as was done in Chapter 4 for the case of static asset allocation. The nature of these

statistics must be studied through empirical studies, such as the one presented next.

Example 5.5.

Consider again the system from Ex. 5.1, with a variance budget of σ2
0 = 0.22 = 0.04. While

it is not possible to determine the exact distribution for the portfolio returns over either

stage in closed-form, one can examine a histogram of returns, as depicted in Figure 5-9(a).

Strategy
Stage 1, r1 Stage 2, r2 Total, rT

Mean Std
Weights

Mean Std
Weights corr[r1, r2] Mean Std

w1 w2 net lev w1 w2 net lev

Dynamic: no BC 0.31 0.26 -0.87 2.85 1.98 0.14 0.23 -0.15 1.47 1.32 -0.69 0.44 0.20
Dynamic: with BC 0.24 0.24 -0.99 1.99 1.00 0.14 0.23 -0.38 1.62 1.24 -0.60 0.38 0.20

Static: no BC 0.19 0.16 -0.47 1.86 1.39 0.13 0.20 -0.47 1.86 1.39 -0.39 0.32 0.20
Static: with BC 0.19 0.17 -0.64 1.64 1.00 0.13 0.21 -0.64 1.64 1.00 -0.45 0.31 0.20

Table 5.1. Second-order statistics comparing static vs. dynamic MVO solutions for two-stage example,
with total risk budget σ0 = 0.20, both with and without a budget constraint.
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in dynamic MVO solution.
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(b) In the first stage, the
dynamic solution utilizes
more leverage, and has a
slightly larger component
in the β direction.
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(c) In the second stage, the
dynamic solution assumes
less leverage, and alters its
position away from β di-
rection.

Figure 5-9. Per-stage portfolio return empirical distributions and corresponding portfolio weight vectors.

The plots confirm that the returns over the first stage appear Normally distributed, while

the returns over the second stage are characterized by a non-symmetric distribution with

higher kurtosis (peakedness) than a Gaussian. The corresponding second-order statistics

are displayed in Table 5.1. As was true in Ex. 4.2, there is a direct relationship between

the total expected return and the degree of negative correlation between the inter-stage

portfolio returns. Higher negative correlation between r1 and r2 allows the per-stage return

variances to assume a larger magnitude, while the total variance remains fixed. The in-

creased amount of per-stage risk is realized through the use of leverage. Whereas the static

MVO solution uses a net leverage of 139% across both stages, the dynamic MVO solution

first takes on a net leverage of 198%, followed by a total leverage level of 132%.

Figures 5-9(b) and 5-9(c) contrast the portfolio weight vectors for the static and dynamic

solutions graphically. The plots highlight not only the different directions taken by each

strategy, but also the different degrees of leverage, represented by the relative lengths of

the two vectors. In the first stage, the dynamic solution utilizes more leverage than its

static counterpart, and has a slightly larger component in the β direction. Due to the

state dependence of the portfolio policy for the second stage, the figure depicts the average

vector direction and length, which utilizes less leverage, and alters its position away from

β direction, as compared to the static solution.
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Figure 5-10. Direction of dynamic portfolio weight vectors as a function of investment length.

5.3.2 Asymptotic Analysis

The behavior of the dynamic MVO solution as a function of the total investment horizon

is explored. Specifically, for a fixed initial condition, the relationship between the optimal

portfolio vector direction over the first stage and the α and β subspaces of a cointegrated

system is investigated. Recall from Thm. 4.4 of Ch. 4, that when intermediate portfolio

rebalancing is prohibited, the weight vector always converges to a steady-state direction,

but the value of that direction depends on whether or not drift is present in the log-price

model. Only in systems without drift does this vector asymptotically approach the span

of the cointegrating space, β. The availability of a closed-form solution for the static

portfolio weight vector facilitated the asymptotic analysis, and the results were confirmed

via simulation. In the dynamic setting, analytic solutions for the portfolio weight vectors at

each stage are not available, and a numerical approximation scheme is utilized instead. In

lieu of closed-form solutions, the corresponding asymptotic analysis can only be performed

via Monte Carlo simulation, as illustrated in Example 5.6.
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Example 5.6.

Consider the system of two risky assets presented in Ex. 5.1. Figure 5-10 depicts the

direction of the dynamic MVO portfolio weight vector as a function of the number of total

stages in the problem, for each of the four cases corresponding to the inclusion of a budget

constraint and log-price drift. The solutions are represented both graphically, as vectors

within the space spanned by the log-prices of the two assets, and numerically, as the angle

between the MVO solution and β direction. As the figure reveals, in only one of the four

cases does the dynamic MVO portflio weight vector asymptotically approach the span of

the cointegrating space, β. One intuitive explanation for this phenomenon is that when

rebalancing is permitted, there is some benefit to buying the portfolio with a component in

the direction of expected short-term change.
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5.A Proofs of Chapter 4 Theorems

Proof of Theorem 5.1.

The following is based on the proof of Theorem 1 in [36]. Let π∗1 = {w∗
0, ...,w

∗
N−1} denote

the optimal sequence of portfolio policies for Problem P1. Assume to the contrary that the

set π∗1 does not also solve Problem P0, the original mean-variance dynamic portfolio choice

problem. Furthermore, the objective function of Problem P0 may be expressed as a convex

function of the vector variable x =
(
E[rN ] E[r2

N ]
)T

, as follows:

f(x) = f(E[rN ], E[r2
N ]) = −λLE[r2

N ] +
(
E[rN ] + λLE2[rN ]

)
+ λLσ2

0,

where λL denotes the Lagrange multiplier for the variance equality constraint. Thus, there

exists some other sequence of portfolio policies that is optimal for Problem P0, denoted by

π∗0, that satisfies the following first-order optimality condition [17]:

5f
(
x|π∗0

)(
x|π∗1 − x|π∗0

)
> 0 (5.24)

(
1 + 2λL E[rN ]|π∗0 −λL

) E[rN ]

E[r2
N ]

∣∣∣∣∣∣
π∗1

>
(
1 + 2λL E[rN ]|π∗0 −λL

) E[rN ]

E[r2
N ]

∣∣∣∣∣∣
π∗0

.

Furthermore, since f is convex, the following is also true [17]:

f
(
x|π∗1

)
≥ f

(
x|π∗0

)
+5f

(
x|π∗0

)(
x|π∗1 − x|π∗0

)
.

However, since the term5f
(
x|π∗0

)(
x|π∗1 − x|π∗0

)
is positive by Eq. 5.24, the above implies

that f
(
x|π∗1

)
≥ f

(
x|π∗0

)
. Hence, if π∗0 is optimal for Problem P0, it must be true that π∗1

is also optimal, which contradicts the original assumption.
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Chapter 6

Approximate Dynamic Portfolio

Choice

The solution to the dynamic portfolio choice problem presented in Chapter 5 is mean-

variance efficient with respect to final wealth. The optimal sequence of portfolio policies is

derived by invoking the Principle of Separable Embedding [36], in which the original mean-

variance objective function is embedded into an auxiliary quadratic utility problem, which

is separable in the sense required by dynamic programming. While an exact solution to the

auxiliary problem can be found, the resulting portfolio weight vectors depend on a set of

moments that cannot be computed in closed-form. This necessitates the use of Monte Carlo

methods, which in turn, introduces approximation error, and the overall method becomes

intractable as the number of assets and stages increases.

To address these computational limitations, a set of four approximate dynamic schemes

for mean-variance portfolio choice are considered. The name approximate dynamic does

not refer to a set of techniques for approximating the optimal dynamic solution derived in

Chapter 5, but rather refers to the fact that each approximation scheme relaxes at least one

of the assumptions of the original dynamic MVO problem in order to derive a suboptimal,

yet tractable, trading scheme. As of result of these simplifications, three out of four of

the methods admit closed-form solutions, while the fourth only requires the use of a single

numerical search routine.

All of the approximation schemes presented here are compared using a series of simula-

tions based on synthetic data. It is shown that the performance of these trading strategies

cannot all be ranked on an absolute scale, as some solutions have a regime over which it may

139
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be preferred to alternative methods. In addition, the per-stage statistics of the portfolio

returns are studied, and the performance of each scheme is explained in terms of use of

leverage and the inter-stage return correlations.

The organization of this chapter is as follows. First, Section 6.1 presents the separable em-

bedding certainty equivalence approximation scheme, in which the stochastic parameters of

the per-stage return distributions are replaced with their time t0 conditional expectations.

Next, Section 6.2 details the sequential rescaling approach, in which it is assumed that the

solution to an (N +1)-stage problem is found by modifying only the scale (i.e., degree of net

leverage), not the direction (i.e., relative asset proportions) of the N -stage optimal solution.

The third approximation strategy parametrizes the portfolio policy at each stage using a

linear function of the log-prices, as derived in Section 6.3. This is followed by a discussion

of a semi-myopic approach in Section 6.4, in which the N -stage problem is solved as a series

of consecutive single-stage problems. Finally, Section 6.5 concludes with an empirical study

of the risk-reward characteristics of all the approximate dynamic portfolio asset allocation

schemes considered.

6.1 Separable Embedding Certainty Equivalence

The first relaxation scheme considered in this chapter applies the principle of certainty

equivalence to the separable embedding technique utilized in Chapter 5, in order to derive

a sequence of optimal portfolio policies that can be computed without the use of numerical

approximation methods. By replacing the stochastic parameters of the per-stage return dis-

tributions with their expectations, the portfolio weight vectors admit closed-form solutions

that depend only on the cumulative realized return.

6.1.1 Problem Formulation

Recall from Chapter 5 that in the dynamic multistage mean-variance portfolio choice frame-

work, the optimal sequence of portfolio policies is computed according to Problem P0, as

follows:

{
w∗

0,w
∗
1, . . . ,w

∗
N−1

}
= arg max

w0,w1,...,wN−1

Et0

[∑N−1
k=0 wT

k rk+1

]
s.t. vart0

[∑N−1
k=0 wT

k rk+1

]
= σ2

0,

 P0,
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where the per-period vector of individual asset returns, rk, is defined by:

rk = ∆xk = xk − xk−1, (6.1)

and the vector xk denotes the log-prices of the assets at time tk. Under the assumption that

the log-prices evolve according to the first-order cointegrated VAR process of Eq. 5.1, the

per-stage asset returns are multivariate Gaussian random variables with mean Πxk−1 and

covariance matrix Ψ. Thus, the expected value of the per-stage returns depends explicitly

on the value of the asset log-prices at the beginning of the period, and is therefore itself

a random variable with respect to the information available at the start of the investment

horizon. It is precisely this stochastic nature of the return distribution parameters that ne-

cessitates the use of Monte Carlo methods to determine the sequence of optimal portfolios

in Chapter 5.

Here, a relaxation of Problem P0 is considered in which the true, state-dependent return

statistics are replaced by a set of deterministic proxies. By invoking the Principle of Cer-

tainty Equivalence [13], the stochastic means are approximated by their time t0 conditional

expectations. Letting x0 denote the initial log-prices, the return vector over the first stage

is computed as:

r1 = x1 − x0 = (Π1 − I)x0 + φ + ε1 = Πx0 + φ + ε1.

Under the assumption that ε1 is Normally distributed with zero-mean and covariance matrix

Ψ, the return r1 is also multivariate Gaussian with mean Πx0 + φ and covariance Ψ. In a

similar manner, the stage k return is computed as:

rk = xk − xk−1 = (Π1 − I)xk−1 + εk = Πxk−1 + φ + εk.

In order the remove the dependence of rk on any time tk−1 information, the log-prices xk−1

are represented by their equivalent moving-average form, as follows:

xk−1 = Πk−1
1 x0 +

k−1∑
i=1

Πk−1−i
1 (φ + εi) .
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The asset returns over stage k is now given by:

rk = ΠΠk−1
1 x0 + Π

k−1∑
i=1

Πk−1−i
1 (φ + εi) + φ + εk.

Therefore, conditioned on the information available at time t0, rk is Gaussian with mean:

µk = ΠΠk−1
1 x0 + Π

k−1∑
i=1

Πk−1−i
1 φ + φ, (6.2)

and covariance matrix:

Σk = var

[
Π

k−1∑
i=1

Πk−1−i
1 εi + εk

]
=

k−1∑
i=1

ΠΠk−1−i
1 Ψ

(
Πk−1−i

1

)T
ΠT + Ψ. (6.3)

While the principle of certainty equivalence is useful in order to remove the stochastic nature

of the return statistics, the downside is that the return statistics are not updated as new

information becomes available over the lifetime of the trading strategy. In addition, due

to the cointegration assumption, the matrix Π1 has at least one eigenvalue at unity, and

therefore the covariance matrix Σk diverges at the number of stages increases, as stated in

Thm. 4.3. Hence, the estimate of the per-stage asset return means becomes less reliable as

time progresses.

6.1.2 Optimal Solution for Separable Embedding Certainty Equivalence Scheme

The per-stage asset return distributions are now characterized by a set of deterministic

moments, given by Eqs. 6.2 and 6.3. Again, the Principle of Separable Embedding (Thm.

5.1) can be applied so that Problem P0 can be solved by first computing the optimal sequence

of portfolio policies for Problem P1, according to:

{
w∗

0,w
∗
1, . . . ,w

∗
N−1

}
= arg max

w0,w1,...,wN−1

Et0

[
γN
∑N−1

k=0 wT
k rk+1 − λN

(∑N−1
k=0 wT

k rk+1

)] }
P1.

The resulting quadratic utility problem is solved by applying the dynamic programming

algorithm, as derived next.

To begin the derivation, the value function one stage from the end, at time tN−1, is given
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by:

J∗N−1 (rN−1) = max
wN−1

EtN−1 [JN (rN )] = max
wN−1

EtN−1

[
γNrN − λNr2

N

]
,

= max
wN−1

EtN−1

[
γN

(
rN−1 + wT

N−1rN

)
− λN

(
rN−1 + wT

N−1rN

)2]
,

= max
wN−1

EtN−1

[
γN

(
rN−1 + wT

N−1rN

)
− λN

(
r2
N−1 + 2rN−1wT

N−1rN + wT
N−1rNrT

NwN−1

)]
,

= max
wN−1

γN

(
rN−1 + wT

N−1µN

)
− λN

(
r2
N−1 + 2rN−1wT

N−1µN + wT
N−1

(
ΣN + µNµT

N

)
wN−1

)
.(6.4)

where µN and ΣN are non-random and are defined by Eqs. 6.2 and 6.3, respectively.

Differentiating with respect to wN−1 and setting the result equal to zero yields the following

portfolio weight vector for the last stage:

w∗
N−1 =

1
2λN

(γN − 2λNrN−1)
(
ΣN + µNµT

N

)−1
µN . (6.5)

While Eq. 6.5 does not depend on the current log-prices of the system, it does depend on

the cumulative portfolio return, rN−1, and therefore w∗
N−1 is therefore state-dependent. In

this sense, the strategy is still dynamic, taking advantage of some of the new information

that becomes available over time.

The expression for w∗
N−1 can now be plugged back into the objective function given by

Eq. 6.4, and after some algebra, it is possible to show that J∗N−1 (rN−1) is also a quadratic

function of rN−1, as follows:

J∗N−1 (rN−1) = γN−1rN−1 − λN−1r
2
N−1 + cN−1,

where:

λN−1 = λN

(
1− µT

N

(
ΣN + µNµT

N

)−1
µN

)
γN−1 = γN

(
1− µT

N

(
ΣN + µNµT

N

)−1
µN

)
cN−1 = 0.25

γN

λN
µT

N

(
ΣN + µNµT

N

)−1
µN .

In contrast to Eqs. 5.8 through 5.9 in which λN−1 and γN−1 are functions of the asset

log-prices xN−1, here the coefficients of the cost function are deterministic quantities that

can be computed in closed-form.
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The above procedure is repeated for each successive stage. At time tk, the value func-

tion is given as:

J∗k (rk) = max
wk

Etk [Jk+1 (rk+1)] = max
wk

Etk

[
γk+1rk+1 − λk+1r

2
k+1

]
+

N−1∑
i=k

ci,

= max
wk

γk+1

(
rk + wT

k µk+1

)
− λk+1

(
r2
k + 2rkwT

k µk+1 + wT
k

(
Σk+1 + µk+1µ

T
k+1

)
wk

)
+

N−1∑
i=k

ci. (6.6)

Differentiating with respect to wk and setting the result equal to zero yields the following

portfolio weight vector for stage k:

w∗
k =

1
2λk+1

(γk+1 − 2λk+1rk)
(
Σk+1 + µk+1µ

T
k+1

)−1
µk+1. (6.7)

The scalars λk, γk, and ck evolve according to:

λk = λk+1

(
1− µT

k+1

(
Σk+1 + µk+1µ

T
k+1

)−1
µk+1

)
(6.8)

γk = γk+1

(
1− µT

k+1

(
Σk+1 + µk+1µ

T
k+1

)−1
µk+1

)
(6.9)

ck = 0.25
γk+1

λk+1
µT

k+1

(
Σk+1 + µk+1µ

T
k+1

)−1
µk+1 (6.10)

Thus, as shown here, by replacing the state-dependent per-stage return distribution pa-

rameters with their time t0 expectations, a closed-form solution for the optimal sequence

of portfolio weight vectors can be determined using the separable embedding technique of

[36]. While the resulting solution does not depend on the new asset log-prices observed over

time, the portfolio policies do depend on the cumulative realized return, and therefore the

overall strategy is still dynamic.

6.1.3 Budget Constraint

The addition of a budget constraint of the form wT1 = 1 to the certainty-equivalence

approximation scheme is now considered. As discussed in Section 2.2.3, the constraint is
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enforced by representing the portfolio weight vector by wk = c (1 + rk) + Dvk, where:

c =


0
...

1


T

, D =

Ip−1

−1T

 .

The expression c (1 + rk) represents the investor’s current wealth budget, which varies stage

to stage. Equation 6.6 is now given by:

J∗k (rk) = max
vk

γk+1rk + γk+1 (c(1 + rk) + Dvk)
T µk+1

− λk+1r
2
k − 2λk+1rk (c(1 + rk) + Dvk)

T µk+1

− λk+1 (c(1 + rk) + Dvk)
T (Σk+1 + µk+1µ

T
k+1

)
(c(1 + rk) + Dvk) +

N−1∑
i=k

ci(6.11)

Differentiating Eq. 6.11 with respect to vk and setting the result equal to zero, yields the

following portfolio weight vector for time tk:

v∗k =
1

2λk+1

(
DT

(
Σk+1 + µk+1µ

T
k+1

)
D
)−1

DT ·(
(γk+1 − 2λk+1rk) µk+1 − 2λk+1(1 + rk)

(
Σk+1 + µk+1µ

T
k+1

)
c
)
,

= fk + gkrk,

where:

fk =
1

2λk+1

(
DT

(
Σk+1 + µk+1µ

T
k+1

)
D
)−1

DT
(
γk+1µk+1 − 2λk+1

(
Σk+1 + µk+1µ

T
k+1

)
c
)
,

gk = −
(
DT

(
Σk+1 + µk+1µ

T
k+1

)
D
)−1

DT
(
µk+1 +

(
Σk+1 + µk+1µ

T
k+1

)
c
)
.

The scalars λk, γk, and ck now evolve according to:

λk = λk+1

(
1 + (c + Dgk)

T (2µk+1 +
(
Σk+1 + µk+1µ

T
k+1

)
(c + Dgk)

))
γk = γk+1

(
1 + (c + Dgk)

T µk+1

)
− 2λk+1 (c + Dfk)

T (µk+1 +
(
Σk+1 + µk+1µ

T
k+1

)
(c + Dgk)

)
ck = γk+1 (c + Dfk)

T µk+1 − λk+1 (c + Dfk)
T (Σk+1 + µk+1µ

T
k+1

)
(c + Dfk) +

N−1∑
i=k

ci

Again, the scalars λk, γk, and ck are non-random, as is the case in the work of [36]. An

in depth look at the characteristics and performance of the certainty equivalence separable
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Figure 6-1. Timeline for Sequential Rescaling Algorithm.

embedding technique presented here, both with and without a budget constraint, is given

in Section 6.5.

6.2 The Sequential Rescaling Algorithm

A second relaxation of problem P0, which utilizes the backwards induction algorithm of

dynamic programming in a novel way, is given here. Given the optimal solution to an

N -stage problem, it is assumed that the solution to an (N + 1)-stage problem is found by

modifying only the magnitude (i.e., degree of net leverage), not the direction (i.e., relative

asset proportions) of the existing portfolio weight vectors. The optimal portfolio policies

are shown to be linear functions of the asset log-prices, which are modified by a constant

scale factor as new stages are added to the problem.

6.2.1 Problem Formulation

Consider the N -stage dynamic mean-variance portfolio selection task defined by Problem P0

of Section 6.1.1. The dynamic programming algorithm, often used to solve sequential deci-

sion making problems, cannot be directly applied due to the fact that the objective function

is not additive in the number of stages due to the presence of non-zero covariance terms.

However, a modified backwards recursive algorithm may still be used, as described here. As-

sume that at time tn+1, the optimal sequence of portfolio policies π∗n+1 = {w∗
n+1, ...,w

∗
N−1}

is known exactly, corresponding to a problem with N − n + 1 stages and a risk budget of

σ2
0, as depicted in Figure 6-1. Furthermore, each policy is known to be a linear function of

the asset log-prices (i.e., wk = Wkxk for all k = n + 1, ..., N − 1). Given π∗n+1, the optimal

portfolio policy at time tn, w∗
n, is found by solving Problem A2, defined as follows:

{
w∗

n, a∗n+1, .., a
∗
N−1

}
= arg max

wn,an+1,...,aN−1

E
[∑N

k=n+1 rk

]
s.t. var

[∑N
k=n+1 rk

]
= σ2

0

A2.
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where

rk = wT
k−1 (xk − xk−1) ,

wk = akWkxk.

Thus, in determining π∗n, the augmented set of mean-variance optimal policies for an N −n

stage problem with risk budget σ2
0, the assumption is imposed that each portfolio from π∗n+1

maintains the same direction, and only undergoes a proportional scaling by the constant ak.

For notational convenience, let zk = xT
k WT

k (xk+1 − xk) for k = n + 1 ... N − 1, and define

the vectors z and a as:

z =


xn+1 − xn

zn+1

...

zN−1

 , a =


wn

an+1

...

aN−1

 . (6.12)

The resulting linear-quadratic program, denoted as Problem A
′
2, is given by:

a∗, λ∗L = arg max
a,λL

aT µz − λL

(
aTΣza− σ2

0

) }
A
′
2,

with well-known solution:

a∗ =


w∗

n

a∗n+1

...

a∗N−1

 =
σ0√

µT
z Σ−1

z µz

Σ−1
z µz. (6.13)

The required moments of z, µz = E [z] and Σz = var [z], are computed in Section 6.2.2.

Problem A2 is solved for each successive stage until all N portfolio policies have been

computed, denoted by the set π∗0. As stated in Theorem 6.1, this backwards recursive ap-

proach, referred to as the sequential rescaling algorithm, produces a sequence of portfolio

weight vectors that are all linear functions of the state.

Theorem 6.1.

The optimal sequence of portfolio policies π∗0 = {w∗
0, ...,w

∗
N−1}, computed according to the
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sequential rescaling algorithm of Problem A2, are each linear functions of the asset log-

prices, xk, and have the form wk = Wkxk.

The proof of Theorem 6.1 is given in Appendix 6.A.

The sequential rescaling algorithm can be motivated from two perspectives. First, the

set π∗n+1 corresponds to a solution that uses all the allowed variance budget, σ2
0. Thus,

when a new stage is added at each iteration of the backwards recursion, the existing solu-

tions must be rescaled so that the risk can be optimally repartitioned across all the resulting

stages. In this way, the variance constraint is viewed as a shared resource that must be allo-

cated across the stages according to some scheduling scheme. Second, while a change to the

portfolio size can be achieved using a single scale factor, a modification to a p-dimensional

portfolio weight vector direction consists of multiplication by a rotation matrix with p− 1

parameters. In addition, the rotation matrices introduce a source of non-linearity into the

problem and make the resulting optimization problem intractable.

6.2.2 Optimal Solution for Sequential Rescaling Scheme

Analytic expressions for µz and Σz are derived here. All expectation operators are condi-

tioned on time tn information. While the vector z is not Gaussian, only its first and second

order statistics are required in order to solve Problem A2.

First, consider µz = E [z]. The expected value for the first entry is equal to:

E [xn+1 − xn] = E [Πxn + εn+1] = Πxn,

which is deterministic with respect to the information available at time tn. In order to

compute the remaining terms of µz, given by E[zk], observe that it is possible to equivalently

represent xk as:

xk = Πk−n
1 xn +

k∑
i=n+1

Πk−i
1 εi.

Accordingly, the quantity E [zk] for k = n + 1, ..., N − 1 is computed as follows:
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E[zk] = E
[
xT

k WT
k (xk+1 − xk)

]
= E

[
xT

k WT
k (Πxk + εk+1)

]
= E

[
xT

k WT
k Πxk

]
= mT

k WT
k Πmk + trace

[
WT

k ΠΣk

]
, (6.14)

where:

mk = Πk−n
1 xn (6.15)

Σk =
k∑

i=n+1

Πk−i
1 Ψ

(
ΠT

1

)k−i
. (6.16)

Second, consider the covariance matrix of z, Σz. The first entry is computed as:

var [xn+1 − xn] = var [Πxn + εn+1] = Ψ.

In order to compute all of the remaining terms on the diagonal, the law of total variance is

invoked, as follows:

var[zk] = var [E [zk|xk]] + E [var [zk|xk]] = var
[
xT

k WT
k Πxk

]
+ E

[
xT

k ΠTΨΠxk

]
.

Letting A = WT
k Π and B = ΠTΨΠ, the above expression can be rewritten as:

var[zk] = 4mT
k

(
A + AT

2

)
Σk

(
A + AT

2

)
mk + 2trace [AΣkAΣk] + mT

k Bmk + trace [BΣk] ,

(6.17)

where mk and Σk are defined by Eqs. 6.15 and 6.16 above.

Next, consider the off-diagonal terms of the covariance matrix. The entries of the first row

and column, which correspond to the covariance of xn+1−xn with zk for k = n+1, ..., N−1,
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are given by:

cov[zn, zk] = cov
[
(xn+1 − xn) , (Wkxk)

T (xk+1 − xk)
]
,

= E
[
(xn+1 − xn) (Wkxk)

T (xk+1 − xk)
]
− E [xn+1 − xn]E

[
(Wkxk)

T (xk+1 − xk)
]
,

= E
[
εn+1xT

k WT
k (xk+1 − xk)

]
,

= E

εn+1

(
Πk

1xn +
k∑

i=n+1

Πk−i
1 εi

)T

WT
k

(
Π

(
Πk

1xn +
k∑

i=n+1

Πk−i
1 εi

)
+ εk+1

) ,

= Ψ
(
Πk−n+1

1

)T (
ΠTWk + WT

k Π
)
Πk−n

1 xn. (6.18)

The remainder of the off-diagonal terms in Σz, cov[zi, zj ], are computed in Appendix 6.B.

Given µz and Σz, the solution to Problem A2 is given by Eq. 6.13. In addition, as

discussed in the Proof of Theorem 6.1 in Appendix 6.A, the optimal portfolio policy at time

tn is equal to the following linear function of the asset log-prices:

w∗
n =

(
1

2λL
Ψ−1Π−

N−1∑
k=n+1

a∗k

(
Πk−1

1

)T (
ΠTWk + WT

k Π
)
Πk−n

1

)
xn = Wnxn = Wnxn,(6.19)

with λL = σ0√
µT

z Σ−1
z µz

. Examination of Eq. 6.19 reveals that the optimal policy can be

divided into two distinct components. The first term, Ψ−1Πxn, is proportional to the

optimal solution for a single stage problem beginning at time tn, and thus can be thought

of as the “myopic” component. In this light, the second term of Eq. 6.19 can be viewed as a

correction factor or “inter-temporal hedging” component that modifies the myopic solution

to account for the uncertainty in the new log-price information that becomes available in

the future. The hedging component explicitly depends on both the values the {a∗k} and

{Wk} factors, and is directly due to the non-zero correlation between the stage n and all

future portfolio returns, as defined by Eq. 6.18. A detailed performance analysis of the

sequential rescaling dynamic approximation scheme is given in Section 6.5.

6.3 Linear Portfolio Parametrization

In the sequential rescaling scheme of Section 6.2, a sequence of portfolio policies with closed-

form solutions is computed using a backwards recursion algorithm based on the methodology
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of dynamic programming. As additional stages are considered, it is assumed that the exist-

ing portfolio policies are modified only by a constant scale factor. The resulting portfolios

are linear functions of the asset log-prices, which naturally raises the question of how these

policies relate to the optimal linear sequence of portfolio policies. Here, a linear parametric

form is imposed on the portfolio weight vectors, and the dynamic mean-variance problem

defined in Problem P0 is solved directly, without the need for dynamic programming or

other iterative methods.

6.3.1 Problem Formulation

Consider the N -stage dynamic mean-variance portfolio choice framework defined by Prob-

lem P0 of Section 6.1.1. Furthermore, assume that each portfolio weight vector is a linear

function of the log-prices, as follows:

w0 = W0x0

...
wN−1 = WN−1xN−1.

Hence, Problem P0 can be reformulated as Problem A3, according to:

{
W∗

0, ...,W
∗
N−1

}
= arg max

W0,...,WN−1

E
[∑N−1

k=0 xT
k WT

k (xk+1 − xk)
]

s.t. var
[∑N−1

k=0 xT
k WT

k (xk+1 − xk)
]

= σ2
0

 A3.

For notational convenience, define the stacked vector z0 and matrix W, as follows:

z0 =


x0

...

xN−1

 , W =


W0 · · · 0

0
. . . 0

0 · · · WN−1

 .

Problem A3 can be equivalently expressed by problem A
′
3, as:

{W∗, λL} = arg max
W,λL

Et0

[
zT
0 WT (z1 − z0)

]
− λL

{
vart0

[
zT
0 WT (z1 − z0)

]
− σ2

0

} }
A
′
3,

with Lagrange multiplier λL and where:

z1 = Az0 + ε
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A =


0 I · · · 0
...

...
. . .

...
0 0 · · · I
0 0 · · · Π1

 , ε =


0
...
0

εN+1

 .

All of the required moments of the objective function of Problem A
′
3 are computed next.

6.3.2 Optimal Solution for Linear Scheme

Before a solution to Problem A
′
3 is computed, expressions for the mean and variance of

zT
0 WT (z1 − z0) are required. The first moment is computed using the law of iterated

expectations, as follows:

Et0

[
zT
0 WT (z1 − z0)

]
= Ez0

[
Ez1

[
zT
0 WT (z1 − z0)

∣∣ z0

]]
= Ez0

[
zT
0 WT (A− I) z0

]
= trace

[
WT (A− I)

(
Σz + mzmT

z

)]
,

where mz and Σz are defined by:

mz = E [z0] =
(
x0 Π1x0 · · · ΠN−1

1 x0

)T

Σz = var [z0] = E
[
z0zT

0

]
−mzmT

z

=


E
[
x0xT

0

]
E
[
x0xT

1

]
· · · E

[
x0xT

N−1

]
...

...
. . .

...

E
[
xN−1xT

0

]
E
[
xN−1xT

1

]
· · · E

[
xN−1xT

N−1

]
−mzmT

z

E
[
xixT

j

]
= E

[
xjxT

i

]
= mT

i Π(j−i)T
1 mi + trace

[
Π(j−i)T

1 Σi

]
( for i < j)

mi = Πi
1x0

Σi =
i−1∑
j=0

Πj
1Ψ
(
ΠT

1

)j
.

Next, consider the variance of zT
0 WT (z1 − z0), which is computing using the law of total

variance, as follows:

var[zT
0 WT (z1 − z0)] = Ez0

[
varz1 [z

T
0 WT (z1 − z0)

∣∣ z0]
]
+ varz0

[
Ez1 [z

T
0 WT (z1 − z0)

∣∣ z0]
]

= Ez0

[
zT
0 WTΣεWz0

]
+ varz0

[
zT
0 WT (A− I) z0

]
= trace

[
WTΣεW

(
Σz + mzmT

z

)
+ BΣzB

(
0.5Σz + mzmT

z

)]
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where:
B = WT (A− I) + (A− I)T W.

The first-order optimality condition is computed by taking the derivative of Problem A
′
3

with respect to W, and setting the result equal to zero, yielding:

0 = (A− I) (Σz + mzmT
z )

−2λL

{
ΣεW

(
Σz + mzmT

z

)
+(A− I)

(
0.5Σz + mzmT

z

)
WT (A− I)T Σz + (A− I)ΣzWT (A− I)

(
0.5Σz + mzmT

z

)
+ (A− I)Σz (A− I)T W

(
0.5Σz + mzmT

z

)
+ (A− I)

(
0.5Σz + mzmT

z

)
(A− I)T WΣz

}
Unfortunately, this condition cannot be used to derive a closed-form expression for W, and

numerical search methods must be utilized instead. The performance of this relaxation

scheme is considered in Section 6.5.

6.4 Semi-Myopic

In the semi-myopic approach to the dynamic mean-variance portfolio choice problem, the

N−stage problem is solved as N consecutive single-stage problems. The direction of the

per-stage portfolio weight vectors are determined by solving the corresponding single-stage

MVO problem, with no consideration given to past or future stages. Once these directions

are computed, the amount of per-stage leverage is determined so that the total expected

return is mean-variance efficient.

6.4.1 Problem Formulation

Consider the N -stage dynamic mean-variance portfolio selection problem given by Problem

P0 of Section 6.1.1. Furthermore, assume that the portfolio weight vector is given by a scaled

version of the corresponding single-stage MVO solution starting at time tk, as follows:

w0 = a0Ψ−1Πx0

...

wN−1 = aN−1Ψ−1ΠxN−1.
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Like the sequential rescaling and optimal linear approaches of Sections 6.2 and 6.3, respec-

tively, the semi-myopic portfolio weight vectors are linear functions of the log-prices. The

name semi-myopic refers to the fact that the portfolio directions are determined according

to the single-stage MVO solution, but the vectors are jointly scaled so that the total solution

is mean-variance efficient. Problem P0 can be reformulated as problem A4, according to:

{
a∗0, ..., a

∗
N−1

}
= arg max

a0,...,aN−1

E
[∑N−1

k=0 akxT
k ΠTΨ−1 (xk+1 − xk)

]
s.t. var

[∑N−1
k=0 akxT

k ΠTΨ−1 (xk+1 − xk)
]

= σ2
0

 A4.

Now define the stacked vectors s ∈ RpN×1, with kth element xT
k ΠTΨ−1 (xk+1 − xk), and

a ∈ RN×1, with kth element ak. Futhermore, let µs denote the mean vector of s and

let Σs denote the corresponding covariance matrix. Subsequentially, Problem A4 can be

equivalently expressed by problem A
′
4, given by:

{a∗, λL} = arg max
a,λL

aT µs − λL

{
aTΣsa− σ2

0

} }
A
′
4,

with Lagrange multiplier λL. The required moments are given next.

6.4.2 Optimal Solution for Semi-Myopic Scheme

Problem A
′
4 is a linear-quadratic program with well-known solution, given by:

a∗ =
σ0√

µT
s Σ−1

s µs

Σ−1
s µs.

Letting Wk = Ψ−1Π, observe that the definition for the vector s used in Problem A
′
4 is

equivalent to the definition for z used in the sequential rescaling algorithm, as defined by Eq.

6.12. Therefore, the mean vector, µs, is computed according to Eq. 6.14 and the covariance

matrix, Σs, is computed according to Eq. 6.17 and Appendix 6.B. The performance of all

the approximate dynamic schemes presented in this chapter are considered next.

6.5 Comparison of Approximation Strategies

The four approximation strategies developed in this chapter are now contrasted in order

to determine the regimes in which each strategy performs best. For completeness, the
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strategies are also compared to the static portfolios of Chapter 4 and the dynamic MVO

solution of Chapter 5. All of the analysis presented here is based on synthetic data.

6.5.1 Portfolio Return Statistics

First, consider the per-stage portfolio return statistics for each relaxation scheme presented

in this chapter, in the context of a two-stage portfolio choice problem. Like the static and

dynamic MVO solutions, all four approximate dynamic strategies produce first stage port-

folio returns that are Normally distributed, with means wT
0 Πx0 and variances wT

0 Ψw0. On

the other hand, the distribution for the second stage portfolio return depends on the exact

functional form of w1, which is itself a random variable.

In the certainty equivalence scheme of Section 6.1, the portfolio weight vector over the

second stage may be expressed as an affine function of the log-prices, as follows:

w1 =
1

2λ2
(γ2 − 2λ2r1)

(
Σ2 + µ2µ

T
2

)−1
µ2

=
1

2λ2

(
γ2 − 2λ2wT

0 (x1 − x0)
) (

Σ2 + µ2µ
T
2

)−1
µ2

=
γ2

(
Σ2 + µ2µ

T
2

)−1
µ2

2λ2
−
(
Σ2 + µ2µ

T
2

)−1
µ2w

T
0 (x1 − x0)

= f + Lx1,

where f =
γ2(Σ2+µ2µT

2 )−1
µ2

2λ2
+
(
Σ2 + µ2µ

T
2

)−1
µ2w

T
0 x0 and L = −

(
Σ2 + µ2µ

T
2

)−1
µ2w

T
0 .

The corresponding return over the second stage is equal to:

r2 = wT
1 (x2 − x1) = fT (x2 − x1) + xT

1 LT (x2 − x1) , (6.20)

which is a Gaussian quadratic form with no known distribution 1.

In the remaining three approximation strategies, the portfolio weight vectors over the sec-

ond stage are all linear functions of the log-prices (i.e., w1 = Lx1). Thus, the corresponding

second-stage returns are also Gaussian quadratic forms with no known distributions. The
1Only certain Gaussian quadratic forms have known distributions. For example, if z ∼ N

`
0, σ2I

´
and the

matrix A is idempotent (A2 = A), then the quadratic form zT Az
σ2 follows a chi-squared distribution. The

quadratic form given in Eq. 6.20 is a sum of random variables with Gaussian, chi-squared, and Gaussian-
product distributions.
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Figure 6-2. Per-stage portfolio return histograms for approximate dynamic strategies.

distributions corresponding to the first and second stages of a two-stage example are char-

acterized experimentally in Ex. 6.1.

Example 6.1.

Consider again the system of two risky assets presented in Example 5.1. Using M =

5 × 104 test sample paths, the per-stage returns were computed using each of the four

dynamic approximation schemes presented in this chapter. The corresponding histograms

are depicted in Fig. 6-2. As predicted, the returns over the first stage appear to be Normally

distributed, while the returns over the second stage have no known distribution, but possess

higher kurtosis (peakedness) and skewness (asymmetry) than the Gaussian distribution.

Second, consider the relationship among the per-stage returns. Throughout this thesis,

the performance of each investment strategy is measured using the cumulative portfolio

log-return, which accumulates in an additive manner. This enables the variance of the

total return to be readily computed as the sum of the per-stage variances and inter-stage

covariances. As demonstrated by Example 6.2 below, the strategies that achieve the greatest

levels of negative inter-stage portfolio return correlation can in turn assume the highest
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degree of per-stage risk, thus earning the highest expected total return.

Example 6.2.

Table 6.1 displays the per-stage return statistics for all seven of the strategies considered

in this thesis under the synthetic system presented in Ex. 5.1, with a total portfolio return

risk of σ0 = 0.20. Here, the overall performance of each scheme is measured by the Sharpe

ratio (ratio of the total expected return to standard deviation), as defined by Eq. 2.8. This

statistic measures the quantity of reward (expected profit) earned per unit of risk (standard

deviation). As the table reveals, the dynamic MVO solution outperforms all other strate-

gies, and all four approximate dynamic solutions outperform both static schemes.

Recall from examples 4.2 and 5.5 that there was a direct correspondence between the to-

tal expected portfolio return and the magnitude of the inter-stage return correlation. One

might surmise that correlation alone explains the success of each strategy; however, a coun-

terexample to this hypothesis is shown in Ex. 4.4, as the static MVO portfolio vector did not

correspond to the direction with minimum correlation (i.e., maximum negative correlation).

The simulation results presented here confirm that both correlation and leverage determines

the relative success of each scheme. For example, while the dynamic semi-myopic scheme

yields a slightly higher Sharpe ratio than the static MVO strategy (1.62 vs. 1.59), the

semi-myopic scheme uses a significantly smaller correlation coefficient (−0.26 vs. −0.40).

On the other hand, while the static strategy uses a much larger net leverage of 139% of

initial wealth in each stage, the semi-myopic scheme utilizes a net leverage of 258% of initial

wealth in the first stage, followed by 73% of time t1 wealth in the second stage.

It is also interesting to note that all five dynamic schemes allocate more risk (standard

deviation) to the first stage as compared to the second. In all but the optimal linear ap-

proach, this corresponds to a higher degree of first stage net leverage. This implies that

net leverage is only part of the story, and both individual asset and total portfolio leverage

levels must be examined in order to understand the behavior of each strategy.
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6.5.2 Asymptotic Properties

Recall from the discussion of the static MVO solution of Chapter 4 that the time horizon

of the investor matters. For short investment horizons, the investor can earn additional

profit by constructing a portfolio with components both in the β direction, which produces

a portfolio value process that is AWSS, and in the direction of expected change, which

produces a portfolio value process that is integrated of order one. However, as the invest-

ment length increases and the variance along the direction of expected change grows, the

variance constraint placed on the terminal portfolio return limits the amount allocated to

the integrated component. Ultimately, in the limit of an infinite number of stages, all of

the wealth is allocated to a portfolio purely in the β direction (assuming the no drift, i.e.,

φ = 0).

In the dynamic MVO solution of Chapter 5, the direction of the optimal portfolio weight

vector does not converge to the β direction. Due to the ability of an investor to rebalance

the portfolio at the beginning of each stage, there is always some incentive to capitalize on

the short-term predictive power of the cointegrated VAR process. This logic should carry

over to the four approximate dynamic schemes, as explored in Example 6.3.

Example 6.3.

For the system of two risky assets in Example 5.1, the direction of the portfolio weight vector

Strategy
Stage 1, r1 Stage 2, r2 Total, rT

Mean Std
Weights

Mean Std
Weights corr

Mean Std
Sharpe

w1 w2 Net Lev w1 w2 Net Lev [r1, r2] Ratio
Dynamic: MVO 0.30 0.26 -0.88 2.94 2.06 0.14 0.23 -0.15 1.54 1.39 -0.69 0.44 0.20 2.22
Dynamic: Linear 0.23 0.23 -0.92 2.00 1.09 0.16 0.21 -0.17 1.75 1.58 -0.60 0.39 0.20 1.92
Dynamic: CE 0.30 0.24 -0.32 3.25 2.93 0.09 0.17 -0.09 0.96 0.87 -0.56 0.38 0.20 1.90
Dynamic: SR 0.23 0.23 -0.87 2.07 1.20 0.14 0.20 -0.12 1.21 1.09 -0.57 0.37 0.20 1.85
Dynamic: Myopic 0.23 0.19 -0.26 2.58 2.32 0.09 0.13 -0.07 0.80 0.73 -0.26 0.32 0.20 1.62
Static: MVO 0.19 0.16 -0.47 1.86 1.39 0.13 0.20 -0.47 1.86 1.39 -0.40 0.32 0.20 1.59
Static: Beta 0.08 0.16 -0.81 0.27 -0.54 0.05 0.17 -0.81 0.27 -0.54 -0.29 0.13 0.20 0.66

Table 6.1. Second-order return statistics for two-stage example. The success of each trading scheme,
measured in terms of the Sharpe ratio (ratio of expected return to standard deviation), depends both on the
inter-stage correlation and per-stage leverage. The dynamic MVO solution outperforms all other strategies,
and all four approximate dynamic solutions outperform both static schemes.
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Figure 6-3. Direction of approximate dynamic portfolio weight vectors as a function of investment length.

over the first stage is plotted as the length of the investment horizon is varied over the set

N = {2, . . . , 15}, as depicted in Figure 6-3. For clarity, the angle between the portfolio

weight vector and the direction of the Beta portfolio is also shown. As this series of figures

illustrates, only in the case corresponding to the optimal linear approximation scheme does

the direction of the portfolio weight vector converge towards the β direction as the number

of stages increases. In the certainty equivalence and semi-myopic schemes, the direction

of the portfolio weight vector is independent of the number of stages, and thus remains

constant over time. Furthermore, due to the fact that their corresponding portfolio vectors

are proportional, the two strategies admit equivalent angles. In the sequential-rescaling

strategy, the vector converges to a direction approximately 40 degrees away from β.

Thus, the preceding example demonstrates that all of the strategies do not exploit short-

term predictability. In some cases, such as the optimal linear strategy, sacrificing immediate

rewards in the early stages actually leads to a higher net expected return. However, it is

important for the reader to remember that a closed-form solution does not exist for the

portfolio weight vectors under the optimal linear strategy, and numerical search methods

are utilized to determine the sequence of portfolio policies. Therefore, the results from Ex.
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Figure 6-4. Cumulative Sharpe ratio.

6.3 represent one example problem, and should not be assumed to hold in general.

Having now established the relationship between the direction of the optimal portfolio

weight vector and the investment time horizon, the relative performance of the four approx-

imation schemes over time is now studied. Performance is again defined in terms of the

Sharpe ratio, defined by Eq. 2.8.

Example 6.4.

Consider once more the system of two risky assets from Example 5.1. The performance of

each strategy is accessed using the overall and normalized Sharpe ratios, denoted by S and

Sn, respectively, and defined as follows:

S =
E[rN ]
σN

, Sn =
E[rN ]
NσN

(6.21)

For each strategy, S and Sn are computed over the set of investment horizon lengths

N = {2, ..., 15}, as depicted in Figures 6-4 and 6-5. In each figure, the first plot depicts

the Sharpe ratio curves for all seven strategies, while the second plot displays all but the

dynamic MVO solution, so that the shape of each curve can be clearly discerned.



6.5. COMPARISON OF APPROXIMATION STRATEGIES 161

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

1

2

3

4

5

Number of Stages

Average per−stage sharpe ratio vs. number stages

 

 

Dynamic: MVO
Dynamic: Linear
Dynamic: SR
Dynamic: CE
Dynamic: myopic
Static: MVO
Static: Beta

(a) Normalized Sharpe ratio vs. in-
vestment time horizon.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Number of Stages

 

 

(b) Normalized Sharpe ratio vs. invest-
ment time horizon for all but dynamic
MVO solution.
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As Fig. 6-4 reveals, the dynamic MVO, optimal linear, sequential rescaling, and semi-

myopic approaches all have cumulative Sharpe ratios that grow over time, while the re-

maining three converge to steady-state levels. The cumulative Sharpe ratio for the dynamic

MVO solution appears to be growing at an exponential rate, dramatically out performing

all other strategies. In both the static MVO and dynamic certainty equivalence solutions,

the cumulative Sharpe ratio initially grows, before falling back and appearing to converg

to a smaller steady-state. It is also interesting to note that the semi-myopic strategy is

initially out performed by all but the Beta strategy. However, in the end, the semi-myopic

scheme ranks fourth out of seven, eventually overtaking both the static MVO and dynamic

certainty equivalence solutions. Finally, consistent with the results from Chapter 4, the

Sharpe ratio for the static MVO solution approaches the Sharpe ratio for the Beta portfolio

as time increases, as the direction of the static solutions converges to a vector in the span

of the β subspace.

The normalized Sharpe ratio curves are generated by dividing the cumulative Sharpe ratios

by their corresponding investment horizons. The result is that for all but the dynamic MVO

solution, the Sharpe ratios decline over time before appearing to converge to steady-state

solutions. Again, the curves for the sequential rescaling and semi-myopic schemes cross
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around N = 11, and the curve for the static MVO solution approaches the curve for the

static Beta scheme.

As examples 6.2 through 6.4 demonstrate, the performance of some of the strategies can be

ranked on an absolute scale, while others have regimes under which they may outperform

alternative strategies. First and foremost, the dynamic scheme developed in Chapter 5 is

the mean-variance optimal strategy for a multistage cointegrated asset allocation problem.

However, the algorithm to compute the optimal portfolio policy at each stage requires the

use of Monte Carlo numerical approximation methods and therefore may not be preferred

over alternative, computationally efficient trading schemes. Second, of the set of strategies

characterized by linear portfolio policies (i.e., the sequential rescaling, the optimal linear,

and the semi-myopic schemes), the optimal linear scheme of Section 6.3 is mean-variance

optimal by construction. However, the algorithm to compute these portfolio weight vectors

require the use of numerical search and therefore, like the true optimal dynamic solution,

may not be preferred over alternative, computationally efficient methods. In addition, the

sequential rescaling scheme always outperforms the semi-myopic scheme, as the portfolio

weight vector for the former strategy contains both an explicit myopic component, and

an inter-temporal hedging component that accounts for uncertainty in the future asset

log-prices. However, the performance of the certainty equivalence scheme relative to the

sequential rescaling and semi-myopic schemes changes over time. Initially, the certainty

equivalence scheme may earn a higher Sharpe ratio than either alternative. However, due

to the fact that the variance of the estimator used to characterize the per-stage asset returns

grows linearly with the length of the investment horizon, the performance of the strategy

degrades over time. In the limit as the number of stages increases, both sequential rescaling

and semi-myopic asset allocation rules outperform the certainty equivalence scheme. Lastly,

while the static MVO solution is mean-variance optimal by design and therefore must out-

perform the static Beta portfolio, it is not necessarily true that all of the dynamic schemes

always outperform all of the static schemes. In some cases corresponding to a short invest-

ment length, the static MVO solution may earn a higher Sharpe ratio than the semi-myopic

scheme.
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6.A Proofs of Chapter 6 Theorems

Proof of Theorem 6.1.

Consider the following proof by induction.

Base Case: At time tN−1, the investor faces a single-stage mean-variance portfolio choice

problem. According to Eq. 4.2, for an investment length of one period, the optimal portfolio

weight vector is given by:

w∗
N−1 =

σ0√
xT

N−1Π
TΨ−1ΠxN−1

Ψ−1ΠxN−1. (6.22)

The direction of the portfolio vector is determined by the quantity Ψ−1ΠxN−1, which is a

linear function of the asset log-prices, xN−1.

Assume true for M stage problem: Assume π∗N−M = {w∗
N−M , ...,w∗

N−1} denotes the

optimal sequence of portfolio policies for a dynamic mean-variance portfolio choice problem

with M stages, where each portfolio weight vector is a linear function of the asset log-prices,

i.e., w∗
k = Wkx for k = N −M, . . . , N − 1.

Show true for M +1 stage problem: In order to derive an explicit expression for w∗
N−M−1,

substitute a =
(
wN−M−1 aN−M · · · aN−1

)T
into Problem A2, and differentiate with

respect to wn, as follows:

w∗
N−M−1 =

(
1

2λL
Ψ−1Π−

N−1∑
k=N−M

ak

(
Πk−1

1

)T (
ΠTWk + WT

k Π
)
Πk−(N−M−1)

1

)
xN−M−1,(6.23)

with λL = σ0√
µT

z Σ−1
z µz

. Therefore, wN−M−1 is again a linear function of the state, xn.
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6.B Derivation of terms in sequential rescaling algorithm

In the sequential rescaling approximation scheme, the off-diagonal terms in Σz, denoted as

cov[zi, zj ], are computed as follows:

cov[zi, zj ] = E [zizj ]− E [zi]E [zj ]

= E
[(

xT
i WT

i Πxi + xT
i WT

i εi+1

) (
xT

j WT
j Πxj + xT

j WT
j εj+1

)]
−E

[
xT

i WT
i Πxi + xT

i WT
i εi+1

]
E
[
xT

j WT
j Πxj + xT

j WT
j εj+1

]
= E

[
xT

i WT
i ΠxixT

j WT
j Πxj + xT

i WT
i εi+1xT

j WT
j Πxj

+xT
i WT

i ΠxixT
j WT

j εj+1 + xT
i WT

i εi+1xT
j WT

j εj+1

]
−
(
mT

i WT
i Πmi + trace

[
WT

i ΠΣi

]) (
mT

j WT
j Πmj + trace

[
WT

j ΠΣj

])
Assuming i > j implies that xT

i WT
i εi+1xT

j WT
j Πxj and xT

i WT
i εi+1xT

j WT
j εj+1 are both

equal to zero. The last remaining two terms are evaluated as:

E
[
xT

i WT
i ΠxixT

j WT
j Πxj

]
= E

[(
Πi−n

1 xn +
i∑

`=n+1

Πi−`
1 ε`

)
WT

i Π

(
Πi−n

1 xn +
i∑

`=n+1

Πi−`
1 ε`

)
·

(
Πj−n

1 xn +
j∑

`=n+1

Πj−`
1 ε`

)
WT

j Π

(
Πj−n

1 xn +
j∑

`=n+1

Πj−`
1 ε`

)]

= xT
n

(
Πi−n

1

)T
WT

i ΠΠi−n
1 xnxT

n

(
Πj−n

1

)T
WT

j ΠΠj−n
1 xn

+xT
n

(
Πi−n

1

)T
WT

i ΠΠi−n
1 xn

j∑
`=n+1

trace
[(

Πj−`
1

)T
WT

j ΠΠj−`
1 Ψ

]

+xT
n

(
Πi−n

1

)T (
WT

i Π + ΠTWi

)( j∑
`=n+1

Πj−`
1 Ψ

(
Πj−`

1

)T
)(

WT
j Π + ΠTWj

)
Πj−n

1 xn

+
i∑

`=n+1

trace
[(

Πi−`
1

)T
WT

i ΠΠi−`
1 Ψ

]
xT

n

(
Πj−n

1

)T
WT

j ΠΠj−n
1 xn

+
j∑

`=i+1

trace
[(

Πi−`
1

)T
WT

i ΠΠi−`
1 Ψ

] j∑
`=n+1

trace
[(

Πj−`
1

)T
WT

j ΠΠj−`
1 Ψ

]

+E

( j∑
`=n+1

Πi−`
1 ε`

)T

WT
i Π

j∑
`=n+1

Πi−`
1 ε`

(
j∑

`=n+1

Πj−`
1 ε`

)T

WT
j Π

j∑
`=n+1

Πj−`
1 ε`





6.B. DERIVATION OF TERMS IN SEQUENTIAL RESCALING ALGORITHM 165

The quartic term above is also computable in closed-form, but is omitted here for brevity.

E
[
xT

i WT
i ΠxixT

j WT
j εj+1

]
= E

(Πi−n
1 xn +

i∑
`=n+1

Πi−`
1 ε`

)T

WT
i Π

(
Πi−n

1 xn +
i∑

`=n+1

Πi−`
1 ε`

)
·

(
Πj−n

1 xn +
j∑

`=n+1

Πj−`
1 ε`

)T

WT
j εj+1


= trace

[(
Πi−j−1

1

)T
WT

i ΠΠi−n
1 xnxT

n

(
Πj−n

1

)T
WT

j Ψ
]

+ trace

[
WT

i ΠΠi−j−1
1 ΨWj

(
j∑

`=n+1

Πj−`
1 Ψ

(
Πj−`

1

)T
)]

+ trace
[(

Πi−j−1
1

)T
ΠTWiΠi−n

1 xnxT
n

(
Πj−n

1

)T
WT

j Ψ
]

+ trace

[(
j∑

`=n+1

Πi−`
1 Ψ

(
Πj−`

1

)T
)

WT
i ΠΠi−j−1

1 ΨWj

]
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Appendix A

Vector Autoregressive Models

A vector autoregressive (VAR) process is an example of a linear multiple-input, multiple-

output (MIMO) system. This appendix explores the properties of VAR processes, providing

the necessary framework for the study of cointegrated VAR systems in Chapter 3. In Section

A.1, the canonical and state-space forms of a VAR model are presented. The transformation

to modal coordinates is derived in Section A.2. Section A.3 details the total system response,

which is comprised of the zero-input and zero-state responses. The maximum likelihood

estimation procedure for the process parameters is given in Section A.4.

A.1 State Space Representation

Let x[n] ∈ Rp denote a random vector, which evolves according to an order k discrete-time

vector autoregressive (VAR(k)) process, defined by:

x[n] = Π1x[n− 1] + Π2x[n− 2] + · · ·+ Πkx[n− k] + Φd[n] + ε[n], (A.1)

where:

• Πi ∈ Rp×p are matrices of coupling coefficients,

• d ∈ Rr×1 is a vector of deterministic inputs,

• Φ ∈ Rp×r matrix of coefficients relating the deterministic terms to the elements of x,

• ε ∈ Rp×1 is a Gaussian random vector with zero mean and covariance matrix Ψ.

The canonical difference equation form explicitly highlights the dependence of the current

state vector on the k previous states. Note, however, that the model does not include lags

of the inputs, known as moving average terms. More general vector autoregressive, moving-

average (VARMA) models do exist [27], but are not considered here.
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The system given in Eq. A.1 can be rewritten in state-space form by augmenting the

state vector, as:


x[n]

x[n− 1]
...

x[n− (k − 1)]


︸ ︷︷ ︸

q[n+1]

=


Π1 · · · Πk−1 Πk

Ip · · · 0 0
...

. . .
...

...

0 · · · Ip 0


︸ ︷︷ ︸

A


x[n− 1]

x[n− 2]
...

x[n− k]


︸ ︷︷ ︸

q[n]

+


Ip

...

0

0


︸ ︷︷ ︸

b

(
Φd[n] + ε[n]

)
︸ ︷︷ ︸

un

x[n]︸︷︷︸
y[n]

=
(
Π1 · · · Πk−1 Πk

)
︸ ︷︷ ︸

cT


x[n− 1]

x[n− 2]
...

x[n− k]


︸ ︷︷ ︸

qn

+
(
Ip

)
︸︷︷︸
d[n]

(
Φd[n] + ε[n]

)
︸ ︷︷ ︸

u[n]

,

(A.2)

where A ∈ Rpk×pk, b ∈ Rpk×p, cT ∈ Rp×pk, d ∈ Rp×p, u ∈ Rp×p, q ∈ Rpk×1, and Ip is the

p×p identity matrix. Beginning at time n0, the output of the system is uniquely determined

through knowledge of the sequence of inputs beginning with u[n0], and the initial value of

the state vector, q[n0]. Typically, the initial time is taken to be n0 = 0.

A random process x[n] is wide-sense stationary (WSS) if both the mean and the variance of

the process remain constant over time, and the autocorrelation function, E[x[n]x[m]], only

depends on the time difference, |n−m|. A process that starts at time n0 = 0 with arbitrarily

initial conditions is asymptotically WSS (AWSS) if any initial condition response decays to

zero as n→∞ and the process’ statistics approach those of a WSS process [67]. A process

that is WSS is also AWSS. It is possible to impose restrictions on the state transition matrix

A so that the output process is AWSS, as stated in Theorem A.1 below.

Theorem A.1.

Let the vector random process denoted by x[n] evolve according to the V AR(k) model given

in Eq. A.2, with no deterministic inputs (i.e., d[n] = 0) and WSS stochastic input ε[n].

Furthermore, the process begins at time n0 = 0 with initial condition q[0]. The output
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Figure A-1. Two views of an AWSS VAR process.

process is AWSS if the eigenvalues of the state transition matrix, A, satisfy |λi| < 1, ∀ i.

Proof. Since |λi| < 1, ∀ i, the system is bounded-input, bounded-output (BIBO) stable.

Putting a WSS process through a BIBO stable system produces an output process that is

AWSS.

When the stochastic input process is assumed to be i.i.d. with ε[n] ∼ N (µ,Ψ) and the

deterministic input is given by d[n] = 0, the asymptotic or steady-state distribution of x[n]

is also Gaussian, with the mean vector µ∞ and covariance matrix Σ∞ computed as follows:

µ∞ = C

( ∞∑
i=0

Aiµ̃

)
= 0, Σ∞ = C

( ∞∑
i=0

AiΨ̃
(
Ai
)T)

CT ,

where:

µ̃ =
(
µ 0 · · · 0

)T
, Ψ̃ = diag

(
Ψ 0p · · · 0p

)
, and C =

(
Ip 0p×kp−p

)
.

Convergence of the series is guaranteed by the assumption that all the eigenvalues of A are

inside the unit circle. An example of an AWSS VAR process, along with a derivation of the

corresponding asymptotic distribution, is presented next.
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Example A.1.

Consider the following VAR(1) model, with no deterministic inputs:

x[n] = Π1x[n− 1] + ε[n] =

0.9912 −0.0684

0.2549 0.7088

x[n− 1] + ε[n],

where ε ∼ N (0,Ψ) and Ψ = 0.001I2. The state transition matrix is given by A = Π1, and

here C = I. The covariance matrix of the limiting distribution of x[n] is found through an

eigendecomposition of A, as follows:

A =
(
m1 m2

)(λ1 0
0 λ2

)(
nT

1

nT
2

)
=
(

0.3000 0.1684
0.4000 0.4708

)(
0.9 0
0 0.8

)(
6.3724 −2.2793
−5.4142 4.0606

)
,

which results in:

Σ∞ =
∞∑
i=1

AiΨ̃
(
Ai
)T = 10−3

∞∑
i=1

MDiM−1
(
M−1

)T DiMT ,

= 10−3M

( ∞∑
i=1

DM−1
(
M−1

)T D

)
MT = 10−3M

( ∞∑
i=1

(
λ2

1n
T
1 n1 λ1λ2nT

1 n2

λ2λ1nT
1 n2 λ2

2n
T
2 n2

))
MT ,

=
(

0.0095 0.0064
0.0064 0.0079

)
.

Figure A-1 contains two views of this process in the time-domain for a single sample path

realization. On the left, the two underlying signals are plotted independently in time,

while the right side contains a scatter plot of the two series, which clearly highlights their

correlation structure. The eigenvectors or principal axes of Σ∞ are also shown.

A.2 Coordinate Transformations

It is often easier to analyze the properties of a state-space system in an alternate coordinate

system, obtained through a linear transformation of the state variables. For example, one

may be interested to know how each component of the input process impacts the current

state and output process, and whether or not the system is bounded-input, bounded-output

(BIBO) stable. One such representation is known as modal coordinates, which decouples

the system behavior along each eigenvalue or modal frequency of the system. This alternate

form relies on the spectral decomposition of the matrix A, discussed in Section A.2.1, which
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is followed by a description of the coordinate transformation in Section A.2.2. Section A.2.3

presents a second decomposition known as Jordan Canonical Form, which is used when the

matrix A is not diagonalizable.

A.2.1 Spectral Analysis

When the linear operator A is diagonalizable, it may be expressed as:

A = MDM−1, (A.3)

where D is a diagonal matrix containing the eigenvalues of A, and M is a matrix whose

columns consist of the corresponding eigenvectors, which are all linearly independent,

though not necessarily orthogonal. Linear independence of the eigenvectors is required

in order to guarantee that the inverse matrix, M−1, exists. Diagonalization is possible

when either:

• A has n distinct eigenvalues,

• A has repeated eigenvalues, but the geometric multiplicity of each (dimension of the
associated eigenspace) equals the algebraic multiplicity (number of times the repeated
eigenvalue appears).

In cases when the geometric multiplicity of an eigenvalue is less than the algebraic, the

matrix A can be factored into Jordan Canonical Form, as described in Section A.2.3.

The eigenvalues of A can be computed by determining the roots of det(A − λIp) = 0.

Using a cofactor expansion of the last row of A from Eq. A.2, it is possible to show that:

det(A− λIp) = det
(
Ip − λ−1Π1 − λ−2Π2 − · · · − λ−kΠk

)
, (A.4)

whereby the eigenvalues of A are the pk roots of Eq. A.4.

Once the matrix of eigenvalues D is determined, the corresponding eigenvector matrix

M can be computed. Let λi denote the ith eigenvalue and let mi ∈ Rpk denote the corre-

sponding eigenvector, which satisfy Ami = λimi. Expressing mi in block form to match
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the block structure of the matrix A, gives:


Π1 · · · Πk−1 Πk

Ip · · · 0 0
...

. . .
...

...

0 · · · Ip 0




m1,i

m2,i

...

mk,i

 = λi


m1,i

m2,i

...

mk,i

 .

Multiplying through results in the following system of matrix equations:

Π1m1,i + Π2m2,i + · · ·+ Πkmk,i = λim1,i, (A.5)

m1,i = λim2,i,

...

mk−1,i = λimk,i.

Thus, each eigenvector satisfies:

mi =
(
m1,i λ−1

i m1,i · · · λ−k+1
i m1,i

)T
. (A.6)

Furthermore, substituting Eq. A.6 back into Eq. A.5 yields:

Π1m1,i + λ−1
i Π2m1,i + · · ·+ λ−k+1

i Πkm1,i = λim1,i,

λ−1
i Π1m1,i + λ−2

i Π2m1,i + · · ·+ λ−k
i Πkm1,i −m1,i = 0,(

λ−1
i Π1 + λ−2

i Π2 + · · ·+ λ−k
i Πk − Ip

)
︸ ︷︷ ︸

Bi

m1,i = 0. (A.7)

The vector m1,i, subsequently referred to as the “base” vector of the eigenvector mi, is a

non-trivial member of the nullspace of the matrix polynomial denoted by Bi, or equiva-

lently, m1,i is the eigenvector of Bi corresponding to a zero eigenvalue. In summary, the
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eigendecomposition of the state transition matrix is given by A = MDM−1, where:

M =


m1,1 m1,2 · · · m1,pk

λ−1
1 m1,1 λ−1

2 m1,2 · · · λ−1
pk m1,pk

...
...

. . .
...

λ−k+1
1 m1,1 λ−k+1

2 m1,2 · · · λ−k+1
pk m1,pk

 , (A.8)

D =


λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λpk

 , (A.9)

M−1 =


nT

1,1 nT
1,2 · · · nT

1,k

nT
2,1 nT

2,2 · · · nT
2,k

...
...

. . .
...

nT
pk,1 nT

pk,2 · · · nT
pk,k

 , (A.10)

with the inverse eigenvector matrix also written in block form in order to match the overall

block structure of the decomposition. In Section A.3.2, the zero-state response of the overall

system is expressed as a function of the base vectors m1,i and nT
i,1, and thus it is useful to

understand in greater detail the relationship between them. Since M−1A = DM−1, each

nT
i vector is a left eigenvector of A, and satisfies:

nT
i A = λinT

i . (A.11)

Expressing ni in block form gives:

(
nT

i,1 nT
i,2 · · · nT

i,k

)


Π1 · · · Πk−1 Πk

Ip · · · 0 0
...

. . .
...

...

0 · · · Ip 0

 = λi

(
nT

i,1 nT
i,2 · · · nT

i,k

)
.
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Multiplying through produces the following system of matrix equations:

nT
i,1Π1 + nT

i,2 = λinT
i,1, (A.12)

nT
i,1Π2 + nT

i,3 = λinT
i,2,

...

nT
i,1Πk−1 + nT

i,k = λinT
i,k−1,

nT
i,1Πk = λinT

i,k.

Each nT
i vector satisfies:

nT
i =



ni,1(∑k
j=2 λ

−(k−j−1)
i ΠT

j

)
ni,1

...(∑k
j=k λ

−(k−j+1)
i ΠT

j

)
ni,1



T

. (A.13)

Whereas each m1,i is in the right nullspace of Bi, substituting the above block representation

for ni into Equation A.12 shows that the corresponding base vector nT
i,1 is in the left

nullspace of Bi, as:

nT
i,1

(
λ−1

i Π1 + λ−2
i Π2 + · · ·+ λ−k

i Πk − Ip

)
︸ ︷︷ ︸

Bi

= 0. (A.14)

All that remains is to determine the appropriate scale factors for m1,i and nT
i,1. Since

M−1M = I, the following must hold:

nT
i mi = 1,

nT
i,1

 k∑
j=2

j−1∑
k=1

λ−k
i Πj

m1,i = 1. (A.15)
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A.2.2 Modal Form

Once the state transition matrix has been factored according to A = MDM−1, the state-

space system given in Eq. A.2 can be rewritten as:

q[n + 1] = MDM−1q[n] + bu[n],

y[n] = cTq[n] + du[n].

Multiplying the top equation by M−1 and letting r = M−1q, yields the following state-space

model in the transformed coordinate system:

r[n + 1] = D︸︷︷︸
Ã

r[n] + M−1b︸ ︷︷ ︸
b̃

u[n],

y[n] = cTM︸ ︷︷ ︸
c̃T

r[n] + d︸︷︷︸
d̃

u[n]. (A.16)

The new state transition matrix, Ã = D, is a diagonal matrix, indicating that the evolution

of each state or mode depends only on its own past, having been completely decoupled from

all other states or modes. This transformation separates the states according to the eigen-

spectrum of A, and the new state-space system is said to be in modal form; each eigenvalue

is called a modal frequency, with each corresponding eigenvector a modal shape.

One of the main benefits of expressing the system in modal form is that many of its prop-

erties can be inferred by inspection. For example, examining the ith row and jth column of

the matrix b̃, given by:

b̃ = M−1b =


nT

1,1

nT
2,1

...

nT
pk,1
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reveals whether mode j is reachable from input i. Furthermore, examination of the corre-

sponding entries in the matrix c̃T , defined by:

c̃T = cTM

=
(
Π1 · · · Πk−1 Πk

)


m1,1 m1,2 · · · m1,pk

λ−1
1 m1,1 λ−1

2 m1,2 · · · λ−1
pk m1,pk

...
...

. . .
...

λ−k+1
1 m1,1 λ−k+1

2 m1,2 · · · λ−k+1
pk m1,pk


=

(
λ1m1,1 λ2m1,2 · · · λpkm1,pk

)
indicates whether mode i is observable at output j, where the last line follows from Equation

A.7. The asymptotic stability of the system (i.e., whether or not the zero-input response of

the system, to be discussed in Section A.3.1, decays to zero) can be determined by verifying

that all the eigenvalues lie strictly inside the unit circle of the complex plane. Lastly, this

modal form representation is utilized in Section A.3.2, in order to determine the overall

transfer function of the VAR system.

A.2.3 Jordan Canonical Form

Consider the case in which the state transition matrix A contains at least one eigenvalue

whose geometric multiplicity is less than its algebraic multiplicity. While diagonalization is

no longer possible, the matrix A can be put into Jordan Canonical Form, which also takes

the form A = MDM−1. The matrix D is no longer diagonal, but is rather block diagonal,

where each of the Jordan blocks, Ji, has the form:

Ji =


λi 1

λi
. . .
. . . 1

λi

 . (A.17)

Under this representation, the algebraic multiplicity of an eigenvalue corresponds to the

number of repeated roots of the characteristic equation, while the geometric multiplicity

corresponds to the total number of Jordan blocks. Diagonalization is a special case of the

Jordan Form where all of the Jordan blocks are 1× 1 matrices.
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The columns of the matrix M now contain the corresponding generalized eigenvectors,

described in Definition A.1.

Definition A.1.

Let A be a linear operator with eigenvalue λ of rank r (i.e., the size of the corresponding

Jordan block is r×r). Then mi ∈ Rpk is a generalized eigenvector of A if (A− λI)r mi = 0,

but (A− λI)r−1 mi 6= 0. The set of vectors
{
m1, · · · ,mr

}
, defined as:

mr , mi

mr−1 , (A− λI)mr

...

m1 , (A− λI)m2

is then referred to as a chain of generalized eigenvectors.

The remainder of this section contains a derivation of the general eigenvector structure in

a VAR process corresponding to an eigenvalue with rank 2. These eigenvectors are sub-

sequently used in Section 3.3.5 to obtain a condition that guarantees that the underlying

processes of a cointegrated VAR are at most integrated of order one.

Consider a matrix A with eigenvalue λi, with algebraic multiplicity two and geometric

multiplicity one, so that the corresponding Jordan block Ji has the form:

Ji =

λi 1

0 λi

 .

The two generalized eigenvectors {m1,m2} satisfy:

(A− λiI)2 m2 = 0, (A.18)

(A− λiI)m2 = m1. (A.19)
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Combining the two equations gives:

(A− λiI)m1 = 0,

which implies that the vector m1 has the same block structure given by Equation A.6.

The explicit form of the generalized eigenvector m2 can be found using Equation A.19.

Writing each eigenvector in block form yields:

(A− λiI)m2 = m1,

Π1 − λiI Π2 · · · Πk−1 Πk

Ip −λiI · · · 0 0
...

...
. . .

...
...

0 0 · · · −λiI 0

0 0 · · · Ip −λiI





m1,2

m2,2

...

mk−1,2

mk,2


=



m1,1

λ−1
i m1,1

...

λk−2
i m1,1

λk−1
i m1,1


.

Multiplying out the last k − 1 rows gives the following system of equations:

m1,2 − λim2,2 = λ−1
i m1,1,

...

mk−2,2 − λimk−1,2 = λ
−(k−2)
i m1,1,

mk−1,2 − λimk,2 = λ
−(k−1)
i m1,1,

producing the following overall block structure for m2:

m2 =
(
m1,2

λim1,2−m1,1

λ2
i

· · · λim1,2−(k−1)m1,1

λk
i

)T

. (A.20)

The rank 2 eigenvector is therefore a function of its own base vector, m1,2, and the base

vector for the eigenvector of rank 1, m1,1.

A.3 System Response

The overall response of a linear system can always be decomposed into two components

corresponding to the zero-input response and the zero-state response, as described next.
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A.3.1 Zero Input Response

Let u[n] = 0 for all n ≥ 0, and let q[0] denote the initial state of the VAR system. The

initial state vector can be expressed in the oblique (non-orthogonal) basis given by the pk

linearly independent eigenvectors of the diagonalizable state transition matrix A, as:

q[0] =
pk∑
i=1

gimi =
(
m1 · · · mpk

)
g1

...

gpk

 = Mg,

where the gi are the expansion coefficients defined by g = M−1q[0]. Using this representa-

tion, the state vector at time n is given by:

q[n] = Anq[0] =
N=pk∑
i=1

giAnmi =
N=pk∑
i=1

giλ
n
i mi,

and the system output is equal to:

yzir[n] = cTq[n] =
(
Π1 · · · Πk−1 Πk

) pk∑
i=1

giλ
n
i mi, (A.21)

Combining Equations A.6 and A.21 gives:

yzir[n] =
pk∑
i=1

giλ
n
i

(
Π1 Π2 · · · Πk

)


m1,i

λ−1
i m1,i

...

λ
−(k−1)
i m1,i

 ,

=
pk∑
i=1

giλ
n
i

(
Π1m1,i + Π2λ

−1
i m1,i + · · ·+ +Πkλ

−(k−1)
i m1,i

)
,

=
pk∑
i=1

giλ
n
i

(
Π1 + Π2λ

−1
i + · · ·+ +Πkλ

−(k−1)
i

)
m1,i,

=
pk∑
i=1

giλ
n+1
i

(
λ−1

i Π1 + λ−2
i Π2 + · · ·+ +λ

−(k−1)
i Πk

)
m1,i,

=
pk∑
i=1

giλ
n+1
i m1,i, (A.22)
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where the last line follows from Equation A.7. Thus, the system output due to the zero-input

response can be expressed as a linear combination of the base vectors of the eigenvectors of

A, denoted as m1,i.

A.3.2 Zero State Response

The zero-state response describes the behavior of the system when q[0] = 0, and is equal

to the matrix convolution of the system inputs, u[n], with the system transfer function

matrix, h[n]. The corresponding Z−domain transfer function matrix is denoted by H(z).

Once this matrix of transfer functions from each input to each output has been computed

and expressed in a simplified form using a partial fraction expansion, h[n] is found by taking

the inverse Z−transform.

The Z−transform matrix for the system defined by Eq. A.1 is:

H(z) =
(
I− z−1Π1 + . . . + z−(k−1)Πk−1 + z−kΠk

)−1
= F(z)−1 =

adj(F(z))
det(F(z))

, (A.23)

where adj(·) denotes the adjugate matrix and det(·) denotes the determinant. The adju-

gate is the transpose of the matrix of co-factors of F(z), where each co-factor, Cij , is the

determinant of the matrix formed by deleting row i and column j from F(z). The adjugate

matrix can also be computed using the characteristic polynomial of F(z), defined by:

p(t) = det (F(z)− tI) = p0 + p1t + · · ·+ pntn.

Then the adjugate is given as:

adj(F(z)) = −
(
p1I + p2F(z) + p3F2(z) + · · ·+ pnFn−1(z)

)
(A.24)

The determinant of F(z) is a polynomial in z−1 of degree pk, which is identical to the

polynomial in Equation A.4, used to compute the eigenvalues of A. Since the denominator

of H(z) is a polynomial in z, Equation A.23 can be expressed using a partial fraction
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expansion, as:

H(z) =
adj(F(z))
det(F(z))

=
p2∑
i=1

Ri

1− λiz−1
, (A.25)

where each residue matrix, Ri, is given by:

Ri =
adj(F(z))(1− λiz

−1)
det(F(z))

∣∣∣∣
z=λ

=
adj(F(z = λi))∏p2

λj 6=λi
(1− λj)

It is also possible to derive Equation A.25 using the transformed state-space system in

modal form, given in Equation A.16, as:

H(z) = c̃T
(
zI− Ã

)−1
b̃ + d̃, (A.26)

=
(
λ1m1,1 λ2m1,2 · · · λpkm1,pk

)


z − λ1 0 · · · 0

0 z − λ2 · · · 0
...

...
. . .

...

0 0 · · · z − λpk



−1
nT

1,1

nT
2,1

...

nT
pk,1

+ I,

=
pk∑
i=1

λim1,inT
i,1

z − λi
+ I,

=
pk∑
i=1

m1,inT
i,1

1− λiz−1
. (A.27)

Each residue is also given by the outer product of the base vectors from the eigendecompo-

sition of A, as Ri = m1,inT
i,1. Taking the inverse Z−transform, the unit impulse response

is given by:

h[n] =
pk∑
i=1

λn
i Ris[n]

where s[n] is the vector form of the unit-step function, where each component series si[n]

has the form:

si[n] =


1, if n ≥ 0

0, otherwise
. (A.28)
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The system output due to the zero-state response can be expressed as:

yzsr[n] = h[n] ∗ u[n] =
pk∑
i=1

λn
i Ris[n] ∗ u[n]

=
pk∑
i=1

Ri

n∑
j=1

λj
iu[n− j] =

pk∑
i=1

m1,inT
i,1

n∑
j=1

λj
iu[n− j].

A.3.3 Total System Response

The overall response of the vector autoregressive system presented here is the sum of the

components corresponding to the zero-input response and the zero-state response, as:

y[n] = yzir[n] + yzsr[n],

=
pk∑
i=1

giλ
n+1
i m1,i +

pk∑
i=1

m1,inT
i,1

n∑
j=1

λj
iu[n− j],

=
pk∑
i=1

m1,i

giλ
n+1
i +

n∑
j=1

λj
in

T
i,1u[n− j]

 . (A.29)

Hence, the overall system response may be expressed as a time-varying linear combination

of the m1,i vectors.

A.4 Estimation

The maximum likelihood (ML) estimation procedure for the unrestricted VAR process given

by Eq. A.1 is summarized here. It is assumed that the stochastic input, εn, is independently

and identically distributed (i.i.d.) according to a Normal distribution with zero mean and

covariance matrix Ψ, with known deterministic input, d[n]. Therefore, the set of parameters

to be estimated is given by {Π1, ...,Πk,Φ,Ψ}. It is easiest to derive the ML estimators by

rewriting Eq. A.1 in linear regression form, as follows:

x[n] = θTz[n] + ε[n],

where θ =
(
Π1 · · · Πk Φ

)T
and z[n] =

(
x[n− 1] · · · x[n− k] d[n]

)T
. Given a

random sample of data
{
x1, ...,xM

}
, the likelihood of the data given the parameters θ and
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Ψ is given by:

L (θ,Ψ) = Prθ,Ψ

(
x1, ...,xM

)
=

M∏
i=1

1
(2π)p/2|Ψ|1/2

exp
[
−0.5

(
xi − θTzi

)T
Ψ−1

(
xi − θTzi

)]
,

with corresponding log-likelihood function:

` (θ,Ψ) = −p

2
M log(2π)− 1

2
M log (|Ψ|)− 1

2

M∑
i=1

(
xi − θTzi

)T
Ψ−1

(
xi − θTzi

)
.

The ML estimators for θ and Ψ are defined as the solutions to the following optimization

problem:

θ̂, Ψ̂ = arg max
θ,Ψ

` (θ,Ψ) .

Differentiating the log-likelihood function with respect to θ and Ψ gives:

θ̂ =

(
M∑
i=1

ziziT

)−1( M∑
i=1

zixiT

)
,

Ψ̂ =
1
M

M∑
i=1

(
xi − θ̂

T
zi
)(

xi − θ̂
T
zi
)T

.

Due to the assumption that εn is Normally distributed, the ML estimators of θ and Ψ for

an unrestricted VAR correspond to the familiar least-squares estimators.
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Appendix B

Importance Sampling

Let x ∈ Rp denote a random vector distributed according to f(x). The expectation of a

function of x, denoted as g(x) : Rp → Rq, is defined as:

E [g(x)] =
∫
x

g(x)f(x)dx, (B.1)

where the integral is evaluated over each dimension of x. Depending on the choice of f and

g, it may or may not be possible to evaluate this integral in closed-form. The expectation

can be approximated using a sample mean, as:

E [g(x)] ≈
N∑

i=1

g(xi),

where each i.i.d. sample, xi, is drawn from the density f(x). According to the Strong Law

of Large Numbers, this approximation converges almost surely to the true expected value

[50].

When it is not possible to sample directly from f(x), the principle of importance sam-

pling may be used. First, Eq. B.1 is equivalently represented as:

E [g(x)] =
∫
x

g(x)
f(x)
h(x)

h(x)dx, (B.2)

where the distribution h(x) is chosen so that one can easily generate samples of x from it.

This implies that E [g(x)] can also be approximated as:

E [g(x)] ≈
N∑

i=1

g(xi)w(xi),

185
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ated.

Figure B-1. Sample path simulation schemes.

where each i.i.d. sample, xi, is now drawn from the density h(x), and the value of g(xi) is

weighted by the scale factor w(xi) = f(x)
h(x) .

While the importance sampling method applied to Monte Carlo integration is typically

used in cases where the target distribution (f(x)) is “hard” to sample from, it can also be

used when sampling from f is “easy”, but computationally intractable. The latter scenario

often occurs in a sequential setting, where one may need to generate samples of a random

process over time. These samples could be generated according to an M-ary tree, as de-

picted in the left panel of Figure B-1. However, this naive approach suffers from the curse of

dimensionality, as the size of the tree grows exponentially with the number of stages. This

limitation may be overcome by using the simulation scheme depicted in the right panel of

Figure B-1, in which a fixed number of price paths are generated. While the new grid is

more efficient, samples from the conditional target distribution f(xk+1|xk) are no longer

available, and the importance sampling techniques described here must be used instead, as

described in Section 5.1.3.



Bibliography

[1] SEC halts short selling of financial stocks to protect investors and markets, September
2008. http://www.sec.gov/news/press/2008/2008-211.htm.

[2] C. Alexander and A. Dimitriu. Index and statistical arbitrage. Journal of Portfolio
Management, 31(2):50–63, 2005.

[3] T. W. Anderson. Estimating linear restrictions on regression coefficients for multivari-
ate normal distributions. Annals of Mathematical Statistics, 22:327–351, 1951.

[4] K. Arrow. Essays in the Theory of Risk Bearing, chapter The Theory of Risk Aversion.
Markham Economics Series, 1970.

[5] R. Baillie and T. Bollerslev. Common stochastic trends in a system of exchange rates.
The Journal of Finance, 44(1):167–181, 1989.

[6] R. Baillie and T. Bollerslev. Cointegration, fractional cointegration, and exchange rate
dynamics. 49(2):737–745, 1994.

[7] S. Basak and G. Chabakauri. Dynamic mean-variance asset allocation. Working Paper,
London Business School, 2007.

[8] D. Bauer and M. Wagner. Estimating cointegrated systems using subspace algorithms.
Journal of Econometrics, 111(1):47–84, 2002.

[9] D. Bauer and M. Wagner. A canonical form for unit root processes in the state space
framework. Working Paper, University of Bern, 2003.

[10] D. Bauer and M. Wagner. The performance of subspace algorithm cointegration anal-
ysis: A simulation study. Working Paper, University of Bern, 2003.

[11] V. S. Bawa. Optimal rules for ordering uncertain prospects. Journal of Financial
Economics, 2:95–121, 1975.

[12] S. E. Beck. Cointegration and market efficiency in commodities futures markets. Ap-
plied Economics, 26:249–257, 1994.

[13] D. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, Belmont,
MA, 2000.

[14] R. Bewley and M. Yang. Tests for cointegration based on canonical correlation analysis.
Journal of the American Statistical Association, 90:990–996, 1995.

187



188 BIBLIOGRAPHY

[15] H. Bierens. Nonparametric cointegration analysis. Journal of Econometrics, 77:379–
404, 1997.

[16] P. Bossaerts. Common nonstationary components of asset prices. Journal of Economic
Dynamics and Control, 12:348–364, 1988.

[17] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[18] A. N. Burgess. Applied Quantitative Methods for Trading and Investment, chapter
Using Cointegration to Hedge and Trade International Equities. Wiley, 2003.

[19] J. Campbell, A. Lo, and A. C. MacKinlay. The Econometrics of Financial Markets.
Princeton University Press, Princeton, NJ, 1997.

[20] J. Campbell and L. Viceira. Strategic Asset Allocation: Portfolio Choice for Long-Term
Investors. Oxford University Press, 2002.

[21] C. T. Chen. Introduction to Linear System Theory. Holt, Rinhart and Winston, 1970.

[22] D. A. Dickey and W. A. Fuller. Distribution of the estimators for autoregressive time
series with a unit root. Journal of the American Statistical Association,, 74:427–431,
1979.

[23] F. Diebold, J. Gardeazbal, and K. Yilmaz. On cointegration and exchange rate dy-
namics. The Journal of Finance, 49(2):727–735, 1994.

[24] R. Engle and C. W. J. Granger. Co-integration and error correction: Representation,
estimation, and testing. Econometrica, 55(2):251–276, 1987.

[25] C. P. Fishburn. Mean-risk analysis with risk associated with below-target returns.
American Economic Review, 67(5):116–126, 1977.

[26] A. Hall, H. Anderson, and C. W. J. Granger. A cointegration analysis of treasury bill
yields. The Review of Economics and Statistics, 74:116–126, 1992.

[27] J. Hamilton. Time Series Analysis. Princeton University Press, Princeton NJ, 1994.

[28] Peter R. Hansen. Granger’s representation theorem: A closed-form expression for I(1)
processes. Econometrics Journal, 8:23–38, 2005.

[29] S. Johansen. Statistical analysis of cointegration vectors. Journal of Economic Dy-
namics and Control, 12:231–254, 1988.

[30] S. Johansen. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models.
Oxford University Press, New York, 1995.

[31] Y. Kawasaki, S. Tachiki, H. Udaka, and T. Hirano. A characterization of long-short
trading strategies based on cointegration. Proceedings of the 2003 International Con-
ference on Computational Intelligence for Financial Engineering (CIFEr2003), pages
411–416, 2003.

[32] F. Kleibergen and R. Paap. Priors, posteriors and Bayes factors for a Bayesian analysis
of cointegration. Journal of Econometrics, 111:223–249, 2002.



BIBLIOGRAPHY 189

[33] G. Koop, R. Strachan, H. K. van Dijk, and M. Villani. Palgrave Handbook of Econo-
metrics, Volume 1, chapter Bayesian approaches to cointegration. Palgrave Macmillan,
2006.

[34] M. Lettau and S. Ludvigson. Consumption, aggregate wealth, and expected stock
returns. The Journal of Finance, 56(3):815–849, 2001.

[35] D. Li, T. Chan, and W. Ng. Safety-first dynamic portfolio selection. Dynamic of
Continuous, Discrete, and Impulsive Systems, 4:858–600, 1998.

[36] D. Li and W. Ng. Optimal dynamic portfolio selection: Multiperiod mean-variance
formulation. Mathematical Finance, 10(3):387–406, 2000.

[37] J. Lintner. The valuation of risk assets and the selection of risky investments in stock
portfolios and capital budgets. The Review of Economics and Statistics, 47(1):13–37,
1965.

[38] S. Lohr. In modeling risk, the human factor was left out. The New York Times,
2008. http://www.nytimes.com/2008/11/05/business/05risk.html?partner=permalink
& exprod=permalink.

[39] R. Lowenstein. When Genious Failed: The Rise and Fall of Long-Term Capital Man-
agement. Random House, 2000.

[40] A. Lucas. Strategic and tactical asset allocation and the effect of long-run equilibrium
relations. Research Memorandum 1997-42, Vrije Universiteit, Amsterdam, August
1997.

[41] S. Ludvigson and C. Steindel. How important is the stock market effect on consump-
tion? Economic Policy Review, Federal Reserve Bank of New York.

[42] H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

[43] H. Markowitz. Portfolio Selection: Efficient Diversification of Investments. Yale Uni-
versity Press, 1959.

[44] R. Merton. Lifetime portfolio selection under uncertainty: The continuous-time case.
The Review of Economics and Statistics, 51:139–162, 1969.

[45] J. Mossin. Optimal multiperiod portfolio policies. The Journal of Business, 41(2):215–
229, 1968.

[46] M. Murray. A drunk and her dog: An illustration of cointegration and error correction.
The American Statisitician, 48(1):37–39, 1994.

[47] R. Oberuc. Dynamic Portfolio Theory and Management: Using Asset Allocation to
Improve Profits and Reduce Risk. McGraw-Hill, 2003.

[48] W. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality.
Wiley-Interscience, 2007.

[49] J. W. Pratt. Risk aversion in the small and in the large. Econometrica, 32(1):122–136,
1964.



190 BIBLIOGRAPHY

[50] C. Robert and G. Casella. Monte Carlo Statistical Methods. Springer, 2004.

[51] A. D. Roy. Safety-first and the holding of assets. Econometrica, 20(3):431–449, 1952.

[52] P. Samuelson. Lifetime portfolio selection by dynamic stochastic programming. The
Review of Economic and Statistics, 51(3):239–246, 1969.

[53] B. Scholkopf and A. Smola. Learning with Kernels. The MIT Press, Cambridge, MA,
2002.

[54] A. Scowcroft and J. Sefton. Advances in Portfolio Construction and Implementation,
chapter Enhanced Indexation. Butterworth-Heinemann, 2003.

[55] W. F. Sharpe. The sharpe ratio. Journal of Portfolio Management, 21(1):49–58, 1994.

[56] J. Siegel. Stocks for the Long Run, Fourth Edition. McGraw-Hill Companies, 2007.

[57] J. Stock and M. Watson. Testing for common trends. Journal of the American Statis-
tical Association, 83(404):1097–1107, 1988.

[58] J. Tobin. Liquidity preference as behavior towards risk. The Review of Economic
Studies, 67:65–86, 1958.

[59] J. Tobin. Theory of Interest Rates, chapter The Theory of Portfolio Selection. MacMil-
lan and Co Ltd, 1962.

[60] R. Tsay. Analysis of Financial Time Series. Wiley, 2005.

[61] M. Villani. Bayesian point estimation of the cointegration space. Journal of Econo-
metrics, 134:645–664, 2006.

[62] J. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior.
Princeton University Press, 1944.

[63] M. Wagner. A comparison of johansen’s, bierens’, and the subspace algorithm method
for cointegration analysis. Oxford Bulletin of Economics and Statistics, 66(3):399–424,
2004.

[64] W. H. Wagner. Best execution. Financial Analysts Journal, 49(1):65–71, 1993.

[65] M. Wallace and J. T. Warner. The fisher effect and the tern structure of interest rates:
Tests of cointegration. The Review of Economics and Statistics, 1993.

[66] J. Yong and X. Y. Zhou. Stochastic Controls: Hamiltonian Systems and HJB Equa-
tions. Springer, 1999.

[67] G. Zelniker and F. Taylor. Advanced Digital Signal Processing: Theory and Applica-
tions. CRC Press, 1993.

[68] H. Zhang. Treasury yield curves and cointegration. Applied Economics, 25:361–367,
1993.


