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Abstract
It is the goal of this thesis to examine the frontal cortex-basal ganglia system during arbitrary
visuomotor association learning, the forming of arbitrary links between visual stimuli and motor
responses (e.g. red means stop), a fundamental learning process that underlies much of our
complex behavior such as written language.  The experiments contained in this thesis
investigate the involvement of four components of this system in the acquisition of these
associations: dorsolateral prefrontal cortex (dlPFC), caudate nucleus (Cd), frontal eye field
(FEF), and the internal segment of the globus pallidus (GPi).  Extracellular electrophysiological
recordings were performed in awake-behaving primates performing three different learning
tasks.  In the different behavioral paradigms used in these studies, learning with and without
reversals is investigated and compared both directly within the same experiment and indirectly
across experiments.

The results of these studies suggest that a complex interplay between brain areas in the frontal
cortex-basal ganglia system exists. The study of FEF during reversal learning revealed that FEF
contains task-related information from the start of learning, suggesting that it may be passing
information onto PFC and Cd to aid the learning process.  In addition, GPi is shown to contain
more specific information about the learned association during the reversal task, providing
evidence for an increase in the complexity of information processing through the basal ganglia.  

The in-depth study of dlPFC and Cd suggests that the frontal cortex-basal ganglia system
functions only when competition between learning contexts exist.  When all competition is
eliminated by removing reversal learning from the behavioral task, Cd does not show
involvement in the learning process.  But when competition exists, both Cd and PFC show
learning-related changes in task-relevant information.  As determined by coherence analysis of
local field potentials, communication between dlPFC and Cd is greater during reversal learning,
when competition is heightened.  This communication also decreases as learning progresses
suggesting a role in the transfer of information between areas in facilitating the learning process.
Overall, these studies further the understanding of the role of the frontal cortex-basal ganglia
system in arbitrary visuomotor learning and posit that the function of the system is dependent on
the existence of competition between learned information.  

Thesis Supervisor: Earl K. Miller, Ph.D.
Title: Picower Professor of Neuroscience
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Chapter 1: General Introduction

A fundamental question in neuroscience today is how memories are encoded and ultimately

stored.  From the individual molecules, proteins, receptors, etc. to the large-scale changes in

network connections and dynamics involved in learning and memory, knowledge is progressing,

but there is still much to discover.  The goal of this thesis is to investigate the neural basis of the

learning process involved in the formation of a particular type of memory: the arbitrary

association between a visual stimulus and a motor response.  The experiments performed here

take a systems neuroscience approach to investigate this question, as the activity of populations

of single neurons and local field potentials are recorded in different brain areas of the frontal

cortex-basal ganglia system, and the learning-related dynamics of the different populations are

the central focus of study.

The term "arbitrary" is used to characterize a visuomotor association when there is nothing

inherent about the visual stimulus that may lead naturally to the associated response (Murray et

al., 2000; Wise et al., 1996b).  In contrast, a "standard" visuomotor association is what one uses

to configure their hand appropriately when reaching to grasp a coffee mug (Wise et al., 1996b).

When performing this standard visuomotor association, the visual input is a three-dimensional

representation of the mug, and this visual-spatial input is transformed into the correct hand

configuration from the inherent spatial configuration of the handle on mug, the mug's size, etc.

While this type of standard visuomotor learning is crucial for an organism's successful

interaction with the environment, the learning process for this ability develops early in one's life,

as humans and other primates can grasp a brand new object correctly in the first interaction with

the object.  In contrast, arbitrary visuomotor association learning occurs throughout the lifespan

and pervades our everyday lives.  This ability to learn a particular behavioral response to a

certain visual stimulus is what allows us to stop at red traffic lights and go at green.  We can

learn simple rules for the correct direction to turn a lid of a jar to open it ("righty-tighty, lefty-

loosy"), and extremely complex associations between symbolic written language and the

sounds we should produce to pronounce them. It is this ability to learn arbitrary visuomotor

associations, and the neural basis of the learning process, that is the focus of this thesis.  
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Neural Basis of Arbitrary Visuomotor Association Learning

The entire process of associating a visual stimulus in the environment with a particular

behavioral response involves much of the brain (Figure 1.1).  First, sensory information is

transmitted from the sensory periphery up to sensory cortex (red), and ultimately, motor

structures execute the appropriate motor command (blue).  The structures where this sensory-

motor integration is thought to occur are the frontal cortical areas and the basal ganglia (purple).

The hippocampus has also been implicated in this process (Cahusac et al., 1993; Wirth et al.,

2003; Murray et al., 2000); however, arbitrary stimulus-response learning is not dependent on

hippocampal function (White & McDonald, 2002; Packard & Knowlton, 2002).  Hippocampal

responses to arbitrary visuomotor learning have been shown to be weak (Cahusac et al., 1993),

and the role of the hippocampus has been hypothesized to be secondary to, in support of, or in

competition with, the learning occurring in cortical-basal ganglia pathways (Murray et al., 2000;

White & McDonald, 2002; Poldrack et al., 2001).  Thus, an investigation of the hippocampus

was not included in the current studies.  

The areas involved in forming arbitrary sensory-motor associations, the frontal cortex and basal

ganglia, are highly interconnected.  In particular, multiple, parallel, anatomically and functionally

distinct loops connect cortex and basal ganglia (Alexander et al., 1986; Middleton & Strick,

2000b).  In these loops, information from cortex is sent to the striatum (caudate nucleus and

putamen) of the basal ganglia, processed in basal ganglia circuits, and ultimately passed to

thalamus by the globus pallidus or substantia nigra pars reticulata to be sent back up to cortex.

It is important to note here that while these circuits are anatomically distinct, there is much

overlap in the cortical regions that are involved in each loop.  For example, two specific loops

described by Alexander et al. (1986) are the oculomotor loop and the dorsolateral prefrontal

loop.  The oculomotor loop connects the frontal eye field as well as the dorsolateral prefrontal

cortex with the basal ganglia, whereas the dorsolateral prefrontal loop connects dorsolateral

prefrontal cortex as well as premotor cortex with the basal ganglia.  

This convergence of information onto the input structures of the basal ganglia (i.e. striatum)

coupled with the output of these loops projecting primarily to frontal cortical areas provides a

well-suited substrate for the integration of information for the purpose of controlling behavior.

Alexander et al. (1986) described the idea of information "funneling" in this system.  Not only 
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Figure 1.1 
Framework for Neural Basis of Arbitrary Visuomotor Association Learning
When an arbitrary visuomotor association is learned, much of the brain is involved in the
process.  The sensory information about the visual stimulus enters through the periphery and
ultimately reaches sensory cortex.  This information then gets passed to both frontal cortical
areas and the striatum, the input areas of the basal ganglia. The interaction between the frontal
cortex and basal ganglia is thought to mediate visuomotor learning as both motor information
(blue) and visual information (red) are present in these areas (purple).  The frontal cortex and
basal ganglia communicate via loops involving the thalamus; thus, the transfer of information is
bi-directional between the areas.  The output of this system ultimately influences the motor
responses of the animal.  



14

does anatomical convergence occur, but the idea here is that functional convergence may occur

as well.  This theory suggests that functional properties of neurons in the different parts of the

system may differ in specificity, with output structures containing more highly specific

information than input structures.  With these overarching ideas of the frontal cortex-basal

ganglia system in mind, I now turn to discuss each area of this system in detail.

Prefrontal Cortex

There is an extensive literature of the role of prefrontal cortex (PFC) in memory processing.

Early physiological recordings of single PFC neurons demonstrated their property of sustained

increases in firing rate during delay intervals in which specific memories had to be maintained in

order to appropriately respond at the end of the trial (Fuster & Alexander, 1971).  This

maintenance property of PFC neurons provided support for the role of PFC in "working

memory": the ability to keep information in mind for a specific goal on a timescale of seconds to

minutes (Ungerleider, 1995; Fuster, 1973).  An example used often to describe this

phenomenon is the now culturally irrelevant task of having to remember a phone number long

enough to dial the phone correctly.  This type of short-term memory behavior has also been

shown to be PFC-dependent; for example, Fuster and Alexander (1970) cooled PFC to inhibit

neuronal activity and found a behavioral deficit on a delayed-response task that relies on

successfully maintaining information across a delay period.  

This maintenance of increased activity in PFC was then further investigated to determine the

information contained in this neuronal activity and whether PFC contains any functional

organization.  Goldman-Rakic was a strong proponent of the idea that each subregion of PFC

performs similar functions but for different information domains (Goldman-Rakic, 1996;

Romanski, 2004).  One study providing evidence for this idea concluded that the "what" and

"where" visual pathways are also segregated in PFC (Wilson et al., 1993).  This study found that

ventrolateral PFC contained cells responsive to visual form and thus obtained more input from

the ventral "what" visual pathway, and dorsolateral PFC contained cells responsive to visual

spatial location and thus obtained more input from the dorsal "where" visual pathway.  However,

there is evidence against such a strict delineation of the PFC subregions (Miller and Cohen,

2001; Wallis et al., 2001).  
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The investigation of the function of the PFC has drifted away from a strictly working memory

perspective.  Newer ideas stress a higher cognitive role for PFC, such as involvement in

response selection (Rowe et al., 2000; Lebedev et al., 2004; Passingham 1993), including the

inhibition of unwanted responses (Robbins 1996; Funahashi et al., 1993; McDonald et al.,

2007).  Miller & Cohen (2001) provided a unified way to think of PFC function: PFC provides

context-dependent bias signals to many brain structures that aid in sensory processing as well

as response selection for the purpose of successfully producing goal-directed behavior.  In

order for PFC to have such high level cognitive functions, PFC cells must contain high level

task-specific information.  Primate physiology studies have provided this evidence, showing, for

example, that PFC neurons contain information about behavior-guiding rules (Wallis et al.,

2001) and visual category information that is irrespective of actual visual form similarity

(Freedman et al., 2001).  

With this anatomical and functional understanding of PFC, PFC seems well suited to play an

integral role in the learning of arbitrary visuomotor associations.  Through a series of lesion

experiments performed by Petrides, evidence supported the idea that the frontal cortex is

important for the visuomotor learning process (Petrides 1982, 1985a, 1985b, 1997).

Specifically, because dorsolateral PFC is more highly connected to motor output regions yet still

receives extensive visual information (Miller & Cohen, 2001; Fuster, 2000), this subregion of

PFC has been implicated in the learning process.  In the context of an arbitrary visuomotor

learning task, Asaad et al. (1998) showed that cells in PFC encode both the direction of the

animal's behavioral response as well as the identity of the visual objects used in the

associations.  In addition, learning-related changes in the response-related information encoded

in the PFC cell population were presented: information about the animal's response appeared

earlier in the trial in the PFC cell population as learning progressed.  

Striatum

The striatum is the input structure of the basal ganglia and consists of the caudate nucleus (Cd)

and the putamen.  Like the PFC, the striatum receives input from much of cortex, both sensory

and motor-related areas (Graybiel & Saka, 2004).  Information conveyed through these vast

input connections is segregated into multiple, parallel modules in the striatum.  One such

segregation is in the matrisomal versus striosomal compartments of the striatum (Graybiel &

Ragsdale, 1978). These compartments are biochemically distinct and are thought to receive
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input from distinct cortical areas (Eblen & Graybiel, 1995).  Another mode of segregation of

inputs occurs through two pathways in the basal ganglia, the direct and indirect pathways (Mink,

1996; Wilson, 2004).  The direct pathway connects the striatum with the internal segment of the

globus pallidus (GPi) directly.  In contrast, striatal cells of the indirect pathway transfer

information to the external segment of the globus pallidus (GPe) and the subthalamic nucleus

before the information reaches GPi.  

This segregation of information in the striatum may serve an important computational purpose

and aid in the different functions subserved by the basal ganglia.  Proposals for the functions of

the basal ganglia are many.  Extending and modifying the perspective that the basal ganglia's

main function is the initiation of movement, Mink (1996) proposed that the basal ganglia activate

desired motor programs while also inhibiting competing programs. Graybiel suggests that the

basal ganglia is involved in "chunking" action sequences into discrete units then used to more

easily guide behavior (Graybiel & Saka, 2004; Graybiel 1998; Jog et al., 1999, Graybiel et al.,

1994).  Others have argued for a more cognitive role of the basal ganglia (Middleton & Strick,

2000a, 2000b; Saint-Cyr, 2003).  For example, Packard & Knowlton (2002) comprehensively

reviewed evidence that the basal ganglia are responsible for stimulus-response learning and

memory.  

The proposed ideas of the learning and memory functions of the basal ganglia stem from both

anatomical and behavioral evidence.  Lesions of the dorsal striatum have shown behavioral

deficits in the processes involved in learning and reversing associations (Bellebaum et al., 2008;

El Massioui et al., 2007).  Important anatomical inputs to the basal ganglia for this learning

theory are the dopamine projections from the substantia nigra pars compacta (SNpr).  These

inputs modulate the cortico-striatal synapses and may guide the synaptic changes underlying

learning and memory (Schultz, 2002; Kawagoe et al., 1998; Reynolds et al., 2001; Aosaki et al.,

1994).  Studies using methods to deplete dopamine concentrations have shown effects on

stimulus-response learning and reversing (O'Neill & Brown, 2007; Lee et al., 2007).  The NMDA

receptor coupled with the striatal acetylcholinergic interneuron population may also play a role in

the learning process, as Palencia & Ragozzino (2006) observed a learning deficit resulting from

the blockage of an increase in acetylcholine efflux in the striatum combined with the infusion of

an NMDA antagonist.  
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Animal electrophysiology studies from Ann Graybiel’s group provide evidence for how the

information encoding in the striatal population may change through the learning process.  For

example, Jog et al. (1999) showed that during the learning of a T-maze task, where the animal

learns to associate a particular sensory instruction cue (e.g. auditory tone) with a direction to

turn at the T-maze juncture, striatal neurons changed their firing patterns with learning.  Initially

the majority of cells fired around the time when the animal executed its behavioral response, but

as learning progressed the cell population instead fired more at the start and end of the maze.

This dynamic reorganization of striatal firing patterns suggests the striatum may play a crucial

role in arbitrary stimulus-response association learning.  

Globus Pallidus

The globus pallidus (GP) consists of two parts: the internal (GPi) and external segments (GPe).

While GPe is mainly involved in information processing of the indirect pathway, GPi is one of the

main outputs of the basal ganglia and is thus involved in processing of both direct and indirect

pathway projections.  The main output of GPi is the inhibition of thalamus. (For a

comprehensive review of basal ganglia anatomy see Wilson (2004))

GP has long been thought to be involved in movement control (DeLong, 1971). Neurons in GP

fire at very high rates, and their activity correlates with parameters of movement, such as

movement type (e.g. flexion, extension), direction, and amplitude (DeLong, 1971; DeLong et al.,

1985; Turner & Anderson, 1997).  Both increases and decrease in discharge rate have been

observed, although the relative frequencies of these types of firing rate changes vary between

studies (DeLong, 1971; Turner & Anderson, 1997).

A functional distinction between the two output pathways of the basal ganglia, one through GP

and the other through the substantia nigra pars reticulata (SNpr), is thought to exist.  GP has

often been studied in the context of skeletal movements (DeLong, 1971; DeLong et al., 1985;

Turner & Anderson, 1997) and the study of SNpr has focused on eye movements (Hikosaka &

Wurtz, 1983a, 1983b, 1983c, 1983d).  However, this strict delineation of function ignores both

anatomical and behavioral evidence of the functional overlap of these basal ganglia output

structures.  All five loops (including both "oculomotor" and "motor") outlined in DeLong  et al.

(1986) include both GPi and SNpr.  In addition, saccade-related deficits in patients with

Huntington's Disease have been demonstrated (Lasker & Zee, 1997), and using deep brain
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stimulation of GPi has shown to alleviate the severity of these saccadic symptoms (Fawcett et

al., 2005).  

Due, at least in part, to the precise anatomical link between GPi and PFC (Middleton & Strick,

2002), higher level functions of GPi have also been proposed.  Arkadir et al. (2004) provided

evidence for the encoding of multiple task-related parameters, including both movement

direction and trial outcome (i.e. reward prediction).  Turner and Anderson (2005) have shown

that GPi activity is context-dependent, where movement-related changes in firing rate differ

depending on the context of the movement (e.g. in a memory task versus sensory driven task).  

Although much evidence exists to implicate GPi in higher level cognitive function, only one

report has provided evidence of the role of GPi in arbitrary visuomotor learning (Inase et al.,

2001).  This study required the monkey to associate three different visual images with specific

arm movements.  When the animals performed previously-learned associations, firing rate

changes were seen during the delay period of the task in which the animal had to wait before

executing the movement associated with the previously displayed visual stimulus.  During the

learning of new associations, these changes in delay activity were enhanced, thus providing

evidence that GPi is involved in arbitrary visuomotor learning.

Motor-Related Cortical Areas

Just as the pyramidal tract originating in primary motor cortex (M1) sends output directly to

spinal cord circuits to initiate the execution of voluntary skeletal movements, FEF sends output

directly to brainstem nuclei that control voluntary eye movements (for review see Krauzlis,

2005).  Thus, neural coding in these areas primarily reflects essential movement parameters.

For example, activity of cells in M1 has been shown to encode the force required for specific

movements (Evarts, 1968) and the direction of the executed movements (Georgopoulos et al.,

1982).  Paralleling these findings in M1, evidence has shown that FEF encodes saccade

direction and amplitude, as well as displaying coding of visual information during visually guided

saccades (Bruce & Goldberg, 1985).  

The activity of both M1 and FEF are influenced by supporting cortical areas, including the

premotor cortex and supplementary eye field (SEF), respectively.  Compared to activity in motor

cortex, activity in premotor cortex shows neural coding for more complex motor parameters,

such as sequences, and often activity significantly precedes movement (Mushiake et al., 1991;
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Tehovnik, 2000).  Similarly, neuronal coding in SEF has been shown to display higher level

cognitive effects, such as attentional modulation, to a greater extend and earlier in time, (Coe et

al., 2002) than similar effects seen in FEF (Schall, 2004).  

Studies from the laboratory of Steven Wise have demonstrated the involvement of premotor

cortex, SEF, and FEF during the acquisition of arbitrary visuomotor associations (Chen & Wise,

1995a; Chen & Wise, 1995b; Mitz et al., 1991).  In all areas, both increases and decreases in

firing rate were seen as learning arbitrary associations progressed.  In a study directly

comparing SEF and FEF (Chen & Wise, 1995b), more cells were found to be modulated by

learning in SEF than in FEF. However, it is clear that all motor-related cortical areas are

involved in some way in the learning process. Now that the main components of the frontal

cortex-basal ganglia system have been discussed, focus now turns to the function of the system

as a whole, particularly during associative learning.    

Theories of the Role of FC-BG System in Arbitrary Visuomotor Association Learning

The work of Richard Passingham has been crucial to the understanding of the neural basis of

arbitrary visuomotor learning.  Passingham suggests that one main role of the frontal cortex is to

select appropriate motor responses, and he offers that the basal ganglia may function to bias

the response selection (Rowe et al., 2000; Passingham, 1993).  To investigate this hypothesis,

numerous human brain imaging studies have been performed, which have been helpful in

determining the large-scale brain networks involved in this process.  Toni et al. (2001a)

described a network for executing arbitrary visuomotor associations that included prefrontal,

striatal, and premotor areas.  The temporal dynamics of the network were then analyzed during

learning, and it was shown that activation of prefrontal cortex decreased as learning progressed,

whereas activation of basal ganglia increased with learning (Toni et al., 2001b).  In a

subsequent study (Toni et al., 2002), the connectivity of the frontal-striatal network was

analyzed during learning (using the same data set as Toni et al., 2001b), and the connectivity of

the frontal-striatal network was shown to increase as learning progressed.  These results

suggest that PFC is involved in the initial learning of arbitrary visuomotor associations, but as

learning progresses so does the communication between the frontal cortex and basal ganglia.

Thus, the basal ganglia may be involved in the memory consolidation process rather than the

initial learning phase.  The long-term memory stored in the basal ganglia may then be able to

bias PFC's response selection when needed.  
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Building on these ideas, Wise et al. (1996) proposed an alternative view of the function of the

frontal cortex-basal ganglia system.  Instead of the basal ganglia aiding in PFC's response

selection, Wise et al. (1996, p. 342) argued that the PFC may aid the basal ganglia in exerting

its influence in potentiating rules already learned:

"Rather than view the basal ganglia as mediating PF's [PFC's] motor outputs, the
present thesis treats PF as mediating much of the basal ganglia's influence on the
remainder of the CNS [central nervous system].  [...]  For example, the efferent
projection from PFv [ventral PFC] to inferior temporal cortex has been proposed to result
in a "top-down" suppression of sensory responses to familiar stimuli as well as in
enhancement of neuronal responses to anticipated ones.  As one component of the
larger frontal cortex-basal ganglia system, PFv may be viewed as exerting the basal
ganglia's influence over visual information processing."

Wise et al. (1996) suggests that PFC acts when new learning needs to occur or when previously

learned information needs to be suppressed and that the basal ganglia acts to "train" PFC when

previously learned information is relevant to the current context and thus should guide current

behavior.  Wise et al. (1996) stresses the role that context plays in this learning process.  The

basal ganglia are thought to encode the context of specific associations and thus recognize

when that context occurs to enforce the context-appropriate association (Houk & Wise, 1995).  

A recent study from the Wise laboratory has extended these ideas to include the direct

interaction between premotor cortex and the basal ganglia (Brasted & Wise, 2004).  Direct

comparisons of striatal activity and premotor cortex activity were made during arbitrary

visuomotor learning, and it was shown that the firing rates of the population of recorded cells in

both areas changed with a similar time course as learning progressed. Thus, it seems that the

role of the interaction between motor-related cortical areas and basal ganglia differs from the

interaction between prefrontal cortex and basal ganglia during the learning and execution of

arbitrary visuomotor associations.  

A study from Earl Miller's laboratory (Pasupathy & Miller, 2005) provided evidence in support of

this difference in interaction between cortical regions and basal ganglia. Instead of comparing

premotor cortex and striatum, Pasupathy & Miller (2005) compared dorsolateral PFC (dlPFC)

and striatum (specifically Cd).  Results from this study showed that both dlPFC and Cd cell

populations exhibit learning-related changes in the motor-related information encoded by the



21

neurons.  In particular, motor-related information encoded in the cell populations appeared

earlier in the trial as learning progressed.  However, unlike the results of Brasted & Wise (2004),

the changes in PFC and Cd showed different time courses.  Changes occurred in Cd much

earlier in learning than similar changes in dlPFC.  Pasupathy & Miller (2005) interpreted this as

evidence that basal ganglia may learn these visuomotor associations first and then transfer this

information to PFC to guide behavior.  

If this in fact is true, that there are slow learning mechanisms occurring in the cortex and fast

learning mechanisms occurring in the basal ganglia, what benefits accompany this type of

system?  In describing this result and placing it in the context of the large body of knowledge

regarding the learning of goal-directed behavior, Miller & Buschman (2007) argue that this

particular organization benefits the organism.  While an organism needs the ability to learn from

every behavioral experience, a system that utilizes this information to regulate behavior on a

very short timescale is prone to errors.  In contrast, a system that needs multiple experiences

from which to extract information about the appropriate behavior is slow and costly.  However, a

slower system is less error-prone and has the potential to guide behavior in complex ways.

MIller & Buschman (2007) suggest that the fast learning system of the basal ganglia training the

slow, yet complex learning system of the PFC ultimately produces appropriate goal-directed

behavior that can be complex or abstract.  

While this interpretation of Pasupathy & Miller (2005) is valid and also supported by theoretical

modeling results (Daw, et al., 2005), it does disregard one crucial point.  The animals in this

study were performing a visuomotor learning task with serial reversals: once the stimulus-

response association (e.g. image A, saccade right) was learned it was subsequently, and

repeatedly, reversed (e.g. image A, saccade left).  Thus, this learning task had additional

requirements of inhibiting or overwriting the previous association that may be reflected in the

neural activity in PFC and Cd.  Or perhaps the animal (or brain) considers the two different

associations (i.e. original and reversed) as different contexts (ala Houk & Wise, 1995) and the

role of the basal ganglia is to recognize the context and relay this information to PFC to guide

behavior appropriate to the current context.  

T.W. Robbins has done a series of work to disentangle the behavioral processes involved in this

sort of learning task (for review see Robbins, 2007).  This work originally stemmed from the use
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of the Wisconsin Card Sorting Task (Milner, 1963), where subjects are asked to sort a deck of

cards according to different rules (e.g. color, shape, or number of the symbols drawn on the

cards) that are learned by trial and error.  Throughout the sorting process, the appropriate rule

to use may change, and, through feedback, the subject must recognize this change and alter

behavior accordingly.  In this task, patients with damage to PFC can learn to correctly

implement the first rule; however, once the rule changes the patients are unable to switch their

behavior and instead continue to apply the previously appropriate rule (termed "perseveration")

(Milner, 1963).  This deficit has been interpreted as an inability of these patients to inhibit

previously correct behavior.  In the task used by Robbins (Owen et al., 1991; Owen et al., 1992;

Owen et al., 1993), subjects are also asked to apply rules to sets of images, based on certain

parameters of the images (e.g. curvy lines, rectangular shape).  However, Robbins alters the

types of changes in behavior that are required to determine if inhibitory mechanisms are

disrupted producing perseveration or if new learning processes are disrupted.  Findings suggest

a dissociation of the contributions of basal ganglia and frontal cortex: patients with basal ganglia

dysfunction find new learning processes difficult, whereas patients with frontal lobe dysfunction

find inhibiting previously correct behavior difficult (Owen et al., 1993).  

Overview of Studies in this Thesis

With all of these different ideas about the function of the frontal cortex-basal ganglia system

during arbitrary visuomotor learning, it seems clear that the involvement of this system in the

learning process is far from clear.  The experiments presented in this thesis attempt to further

the understanding of the overall function of the frontal cortex-basal ganglia system during

learning, while at the same time also contributing knowledge of the roles of specific parts of the

system.  Three experiments were performed and are briefly introduced here.

The first aim of this work is to expand on the results of Pasupathy & Miller (2005).  Specifically,

the roles of the frontal eye field (FEF) and the internal segment of the globus pallidus (GPi) are

investigated during the same learning task as Pasupathy & Miller (2005): an arbitrary

visuomotor learning task that required monkeys to learn and serially reverse learned

associations. Data from this experiment will help determine if other motor-related cortical areas,

such as FEF, play a role in the learning process, and if the information acquired during learning

is passed through the BG unaffected, or whether each part of the BG contributes unique

information relevant to the learning process.  
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The second experiment investigates the consequences of changing the learning context on the

activity in dlPFC and Cd.  In this learning task, reversing associations will be eliminated.  Thus,

the dependence of the learning-related changes seen in Pasupathy & Miller (2005) on the

specific learning context will be revealed.  Perhaps the fast learning seen in Cd and the slow

learning in PFC only occur during the specific task with reversals.  This experiment will also

shed light on the context-dependency of the BG proposed by Houk & Wise (1995).  

In the third experiment, changes during learning with and without reversals will be directly

compared in dlPFC and Cd.  An analysis of both single cell recordings and local field potentials

will be presented in order to determine the function of the frontal cortex-basal ganglia system as

a whole during the different types of learning.  The study of single cells will provide an

understanding of the information encoded in the activity of the two populations of cells, whereas

the study of oscillatory activity of dlPFC and Cd may provide insight into how these two areas

are processing information locally and communicating globally.  
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Chapter 2: Learning-Related Changes in FEF and GPi During Learning With Reversals

Introduction

The ability to form associations between arbitrary sensory stimuli and appropriate motor

responses pervades our everyday lives.  This learning process underlies our ability to drive

safely to work in the morning, and also provides the foundation for written language.  Previously,

the learning of arbitrary visuomotor associations was shown to involve both Cd and PFC

(Pasupathy & Miller, 2005).  However, the learning-related changes in these brain areas differed

in time course: changes in Cd were rapid and occurred early in learning, whereas changes in

PFC were gradual and occurred later in learning, more closely paralleling behavioral

performance.  

PFC and Cd are two key components of the frontal cortex-basal ganglia system that is thought

to mediate this type of stimulus-response learning.  But there are other components of this

system that may be contributing to this learning process.  The goal of the experiment described

here is to investigate the involvement of two other areas during the learning of arbitrary

visuomotor associations: the frontal eye field (FEF) and the internal segment of the globus

pallidus (GPi).  Data from FEF provides insight into the origins of the learning-related changes

seen in Pasupathy & Miller (2005), and data from GPi sheds light on the internal processing

occurring in the basal ganglia during the learning process.  

Methods

[for more methodolgical details see Chapter 6]

Subjects

One Rhesus macaque monkey (Macaca mulatta), Monkey P, was used in these experiments.

All animal procedures conformed to the NIH guidelines and were approved by the MIT

Committee on Animal Care.  It should be noted that data from Monkey P was also used in

Pasupathy & Miller (2005), thus providing justification for direct comparisons between the two

studies.

Behavioral Task

The animal performed a serial reversal learning task (Figure 2.1).  In this task, the animal had to

associate a visual stimulus with a particular saccadic response direction (e.g. see picture A, 
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Figure 2.1 
Serial Reversal Task Trial Events and Block Structure
The behavioral task used in this experiment requires the animal to associate a particular
saccadic response with a particular visual stimulus.  A.  The animal is shown a visual stimulus
for 500ms, and after a one-second delay period, is required to make a saccade to one of two
peripherally presented targets.  Each visual stimulus is associated with a particular saccade
direction.  Execution of the correct saccade results in the delivery of a juice reward.  B.  The
block structure for the tasks used in collection of GPi data (left) and FEF data (right).  The
animal first learns new associations at the start of every session (blue) then repeatedly reverses
the learned associations (gray).  The FEF task also contained delayed-match-to-sample blocks
(green) which were not analyzed here. 



26

saccade right).  Once the animal learned the correct associations by trial and error, the

associations were reversed (e.g. see picture A, saccade left), and this pattern continued

throughout the session.  In the FEF recordings, the serial reversal task was interleaved with a

delay-match-to-sample task; however, the analyses presented here will focus only on the data

collected during reversal learning.  The GPi experiment consisted only of serial reversal learning

(same as Pasupathy and Miller, 2005). 

Electrophysiological Data Collection

Up to 16 Tungsten microelectrodes were acutely implanted into FEF and GPi in a single session

(23 sessions for FEF, 30 sessions for GPi).  These recordings were performed in separate

experiments; thus, these recordings are not simultaneous.  Each single unit included in analysis

contained at least four full behavioral learning blocks of data.  A total of 200 FEF cells and 96

GPi cells were used in analysis.

Microstimulation was used to confirm FEF recording locations.  In separate sessions before

recordings were performed, electrodes were lowered into hypothesized FEF sites and

microstimulation was applied to electrodes as the animal naturally scanned the visual world.

Stimulation currents between 50 and 150µA were used for each pulse phase of the biphasic

current pulses.  Sites in which microstimulation elicited vector saccadic eye movements were

confirmed to be located in FEF, and subsequent recordings focused on those sites.

Analytical Techniques

Analysis of the behavioral data focused on accuracy and reaction time across learning.  All

recording sessions (53 total: FEF, N=23; GPi, N=30) were used in this analysis.  All correct and

incorrect trials were used in the order in which they occurred in each learning block (trials in

which the animal made a fixation error were ignored).  Means +/- SE were computed across all

blocks from all sessions (319 total blocks: FEF, N=129; GPi, N=190).  

In order to identify cells that contained task-related information, a 2-way ANOVA (with object

identity and saccade direction as factors) was performed on average firing rate in each of 4 task

epochs: 100-600ms after cue onset (“Cue”), 600-1500ms after cue onset (“Delay”), 150ms

before to 150ms after saccade initiation (“Saccade”), and 50-300ms after the start of reward

delivery (“Reward”).  A cell was considered to contain object or saccade direction information if
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it only had a significant main effect of object or direction, respectively.  A cell was considered to

contain object-saccade association information if it had a main effect of object and direction or a

significant interaction term.  Significance level was set at p < 0.05, and was corrected for

multiple comparisons using Bonferroni’s correction.  To graphically show cells containing task-

related information, firing rate histograms of individual cells were used.  Firing rate in each trial

was computed in a 100ms bin, and the bin was slid in 10ms steps across time in trial.  The

mean +/- SE across trials was computed and is shown in Figures 2.4 and 2.5.

In order to further characterize the firing rate dynamics of the cells containing task-related

information, a comparison between each cell’s average firing rate (across all correct trials) in a

baseline period of central fixation (from 450-200ms before the onset of the visual cue) and each

cell’s average firing rate (across all correct trials) in each task epoch (one-sided ttest, p <0.05,

Bonferroni corrected).  It is important to note here that all trials were used in this analysis.  Thus,

even cells containing task-related information may appear to have “no change” in firing rate as a

result of this analysis.  Selectivity measures differences between trial types, and this firing rate

dynamics analysis is averaging across all trial types, so information specific to trial type is lost.  

To investigate the learning-related changes in the activity of the cell populations, two measures

were used: normalized firing rate and direction selectivity.  [For detailed explanation of the

calculation of these measures, see chapter 6.]  It is important to stress that all color plots

presented here are averages of a population of cells.  The goal of this type of analysis is to

understand the learning-related changes occurring on the population level, and how the

observed changes are different across brain areas.  Directly comparing three-dimensional plots

becomes difficult; thus, two linear measures are used to compare the learning-related changes

in direction information carried by these populations of cells: peak selectivity and risetime. Peak,

or maximum, selectivity is used as a measure of the strength of information.  Risetime is defined

as the time to half maximum selectivity and is used as a measure of the changes in time course

of information.  The half maximum is calculated as: 

Minimum FEVdir + [ (Maximum FEVdir – Minimum FEVdir) ] / 2
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One note about the risetime calculation in GPi: the risetimes in GPi during the cue period were

calculated as time to 55% selectivity (instead of 50%) due to the very small range of selectivity

strength in this population during the early trial period. 

Average direction selectivity was compared across different trial types to attempt to link this

saccade direction information with behavior.  The different trial types used were correct trials

performed on the associations that reversed, incorrect trials on these reversal associations, and

correct trials performed on the two familiar associations the animal had practiced for

months/years.  The number of these different trial types is drastically different; thus, a titration

procedure was used to equate the number of trials in each category.  This procedure used the

minimum number of trials performed in each category (most often this was the number of

incorrect trials performed). Then, for each incorrect trial used, the closest correct reversal trial

and correct familiar trial were used.  Since the majority of incorrect trials occur at the start of

learning, this procedure attempts to equate the trial types, not just for number, but also for time

in learning.  This is an important aspect of the analysis since it is shown that direction selectivity

may increase or decrease as learning progresses.  Once trials were chosen in this manner,

average saccade direction information during the cue (100-500ms after cue onset) or saccade

period (0-400ms after saccade onset) was averaged across the trials for each cell, and then

averaged across cells.  To determine if significant information was contained in the cell

populations during these time periods of the trial, ttests were performed against zero for each

trial type.  Comparisons between trial types were performed using paired ttests.  All p-values are

presented in Tables 2.1 and 2.2.  

Results

The behavioral performance of the animal across all recording sessions (N=53) is depicted in

Figure 2.2.  At the start of learning, mean performance dropped close to zero percent correct

(13.8% +/- 1.9%) and slowly increased as learning progressed, and reaction time was greatest

early in learning and decreased as learning progressed. Since no cue was given at the start of a

new learning block, the animal continued to perform the previously rewarded associations for

the first trial in a new block.  This first trial phenomenon can also be seen in the animal's

reaction times. The first trial of the block (which is usually an incorrect trial) had very low

reaction time (170.1ms +/- 0.14), similar to the previously correct trials at the end of the last 
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Figure 2.2 
Behavioral Performance in the Visuomotor Association Learning Task with Reversals
Percent correct performance (top) and reaction times (middle and bottom) are plotted taking into
account all correct and incorrect trials.  On the first trial in learning, accuracy is close to 0% and
the animal performs very quickly since the previously rewarded associations are still being
performed.  Subsequently, performance jumps to chance level (50% correct, dotted line) and
reaction time sharply increases.  As learning progresses, accuracy increases and reaction time
decreases.  
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learning block.  The rest of the incorrect trials, at any point during learning, had much higher

reaction times, about 30ms higher, than the majority of correct trials. 

In total, 200 FEF and 96 GPi cells were analyzed.  In order to determine the type of information

encoded by each single cell, a 2-way ANOVA with object identity and saccade direction as

factors, was performed in each of 4 epochs of the trial: the cue period (100-600ms after cue

onset), the delay period (600-1500ms after cue onset), the saccade period (from 150ms before

saccade onset to 150ms after saccade onset), and the reward period (from 50ms after reward

onset to 300ms after reward onset).  A significance value of p<0.05 was used and p-values

were corrected for multiple comparisons using Bonferroni correction.  Cells with only a

significant main effect of direction were classified as saccade "direction selective".  Cells with

only a significant main effect of object identity were classified as "object selective.  And cells that

had significant main effects of both direction and object or a significant interaction between

object and direction were classified as object-saccade "association selective" cells.  

Figure 2.3A shows the fraction of cells in each brain area that contains specific task-related

information in each of the four time epochs of the trial.  The FEF and GPi data are compared

with the previous PFC and Cd data from Pasupathy and Miller (2005).  Fractions are based on

total cell counts: 200 FEF, 96 GPi, 350 PFC, and 250 Cd.  Overall, there are very few cells in all

of these brain areas that contain information about object identity (yellow bars), and the fraction

of cells that do show this information is greatest early in the trial when the object is presented.

The majority of the information encoded by the cells is either the direction of the saccade (blue

bars) or more specific information about the object-saccade association (purple bars).  The

distribution of direction information across time in trial appears to be slightly different in the

different brain areas.  While FEF has a consistently large population of direction selective cells

during the delay, saccade, and reward periods, the largest population of direction selective cells

in Cd appears during the saccade period.  PFC shows large numbers of direction cells during

both the saccade and reward periods, and direction cells in GPi are most numerous during the

reward period.   These timing differences suggest that this saccade direction information may be

transferred through the network from FEF to Cd and then to GPi and PFC.  

Figure 2.3B summarizes the total fraction of direction (left panel), association (middle panel),

and object (right panel) selective cell populations in the four areas.  FEF followed by PFC 
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Figure 2.3 
Fractions of Cells Containing Task-related Information in FEF, GPi, dlPFC, and Cd
A.  The fraction of cells containing saccade direction (blue), object identity (yellow), and object-
saccade association (purple) information is plotted by time epoch (Cue, Delay (Del), Saccade
(Sac), and Reward (Rew)) in trial for FEF (top left), GPi (top right), dlPFC (bottom left), Cd
(bottom right).  B.  Total fractions of cells in any trial epoch containing direction (left), object-
saccade association (middle), and object (right) are compared across brain areas.  The cortical
areas contain more cells with saccade direction information, the basal ganglia contain more
cells with object-saccade association information, and PFC and Cd contain the greatest fraction
of cells with object information.
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contain the largest fraction of direction selective cells.  In contrast, GPi followed by Cd contain

the largest fraction of object-saccade association cells.  PFC and Cd show the largest object

selective population reflecting the larger visual input to these areas. 

In order to understand what the firing patterns of cells containing task-related information look

like, an example direction selective FEF neuron is shown in Figure 2.4.  The rasters in the top

panel are provided to show the consistency, and thus the stability of recordings, of the firing

patterns of the cell across the entire session.  This cell contains data from six learning blocks,

as delineated by the horizontal black lines through the rasters.  Only data from correct trials is

shown in this figure.  Information about the direction of the animal's saccadic response is

encoded by this cell in the differential firing patterns between trials in which the animal made a

leftward saccade (darker colors) and trials in which the animal made a rightward saccade

(lighter colors).  The left panel of this figure shows the activity of the cell aligned on the onset of

object presentation (0ms), whereas the right panel of the figure aligns the end of the trial on

saccade onset (0ms).  This cell contains saccade direction information during the delay,

saccade, and reward epochs of the trial (2-Way ANOVA, p<0.05, Bonferroni corrected).  

There are many ways in which a cell could be classified as an object-saccade association cell.

Thus, to understand precisely what these association cells are encoding, histograms of single

cells were analyzed.  Two example GPi neurons are provided in Figure 2.5.  The top panel

depicts a cell classified as association selective during the delay, saccade, and reward trial

epochs.  This cell seems to treat each association differently, and thus contains significant

interactions between object and direction information.  The cell depicted in the bottom panel of

Figure 2.5 shows a different trend.  This cell is classified as an association cell during the cue

epoch of the trial, as it exhibited a significant main effect of object and a significant object-

direction interaction.  It appears to respond at a higher rate during "object A-saccade Right"

trials, and it responds the same to the other three associations. Over the population of GPi

association cells, there was not a uniform way in which this association information was

exhibited.  

The cell in the bottom panel of Figure 2.5 is also classified as object selective during the delay

period and direction selective during the saccade and reward periods.  As a general

observation, this type of "multi-tasking" cell is quite prevalent in all the brain areas analyzed.  
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Figure 2.4 
FEF Example Cell Containing Saccade Direction Information
This FEF cell displays both a visual response during the presentation of the visual cue and
saccade-related activity around the time of saccade and contains information about the direction
of the executed saccade during the delay, saccade, and reward periods of the task (2-way
ANOVA, p < 0.05, Bonferroni corrected).  Rasters (top) and histograms (bottom) display activity
for all correct trials, and the different colors represent different trial types: trials in which object A
was presented (red), trials in which object B was presented (green), trials in which the animal
made a rightward saccade (light colors), and trials in which the animal made a leftward saccade
(dark colors).  Neural activity depicted in the left panel is aligned on the onset of the visual cue,
and data in the right panel is aligned on the animal’s initiation of the saccadic response.
Histograms display mean +/- SE.
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Figure 2.5 
Two GPi Example Cells Containing Object-Saccade Association Information
Firing rate histograms of two GPi cells are shown with formatting similar to Figure 2.3. Top
panel: This cell contains object-saccade association information during the delay, saccade, and
reward task periods.  Bottom panel: This cell contains object-saccade association information
during the cue period, object information during the delay period, and saccade direction
information during saccade and reward task periods (2-way ANOVA, p < 0.05, Bonferroni
corrected).  
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These cells can contain different task-related information at different points in the trial,

suggesting that the transfer of information between cells within and between areas is quite

complex. 

The three cells presented in Figures 2.4 and 2.5 all show increases in firing rate at various times

throughout the trial.  However, there were cells in the recorded populations that showed

inhibitory behavior, or decreases in firing rate from baseline.  Figure 2.6 characterizes the

population of selective cells in FEF and GPi cells according to these firing rate dynamics.  The

average firing rate in each trial epoch was compared to the average firing rate during a baseline

period from 450ms to 250ms before the onset of the cue image during the fixation period at the

start of the trial (ttest, p<0.05, Bonferroni corrected).  Fractions of cells are based on the total

number of selective cells (for either direction, object, or association) for each trial epoch (GPi:

cue N=33; delay N=40; saccade N=28; reward N=29.  FEF: cue N=59; delay N=82; saccade

N=68; reward N=59).  Decreases in firing rate of these selective cells were the minority, but in

each trial epoch there was a small population that showed this inhibitory behavior.  

In order to investigate how the FEF and GPi populations of cells are changing with learning,

focus was placed on direction information and those cells classified as direction selective cells

in any of the four trial epochs.  Direction selectivity was used instead of object-saccade

association selectivity for a couple reasons.  Firstly, since Pasupathy and Miller (2005) focused

on the evolution of saccade direction information with learning and it was my goal to compare

the current FEF and GPi data to this previous data, at least first-round analysis needed to be the

same.  Secondly and more importantly, direction selectivity is consistent from block to block,

whereas association selectivity is not necessarily consistent.  The association selective cells

may only have an altered firing rate for one association, say object A-go Right.  Thus, during the

blocks where object A is paired with a leftward saccade, the cell may not distinguish between

the two relevant associations for that particular block (e.g. cell depicted in Figure 2.5, bottom

panel).  This specificity of information minimizes the amount of data that can be analyzed for

learning effects, and thus makes any statistical analysis much more difficult since statistical

power is diminished.  

To graphically represent how populations of cells are changing across the trial and across

learning, a three-dimensional plot is necessary.  Since this type of plot will be presented many 
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Figure 2.6 
Firing Rate Dynamics of FEF and GPi Task-related Cells
Fractions of all FEF (left) and GPi (right) cells containing task-related information that show
average increases (blue), decreases (red), or no change (gray) in average firing rate from a
baseline period of fixation at the start of the trial.  Both areas show more cells with increases
versus decreases in firing rate, and the trends across the time epochs of the trial are also
consistent between brain areas.
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times in this thesis, it is important to understand how to read these figures, so I will take the

opportunity here to explain the plots in general.  Two dimensions are plotted on the x- and y-

axes, and the third dimension is represented by color.  The x-axis in these plots is always time

in trial, and depending on the particular plot, time in trial may either be aligned on visual cue

onset at the start of the trial or saccade onset at the end of the trial.  Trial in learning is plotted

on the y-axis, and all of these colorplots need to be read from the bottom-up, as the first trial in

learning is plotted at the bottom of the figure. Color may be used to represent different

dimensions of the data.  The two main variables I will use for the color axis are normalized firing

rate and direction selectivity (fraction explained variance by the direction factor in an ANOVA,

FEVdir).  It is important to keep in mind three key points: 1) normalized firing rate is an average

of all correct trials, 2) direction selectivity is a measure of the differences in firing rate between

trials when the animal made a correct rightward and leftward saccade, and 3) all colorplots

depict aspects of a population of cells.  

 

The top panel of Figure 2.7 presents the direction selectivity of the FEF population of direction

selective cells (N=104) across learning.  The left panel shows data from the entire trial and well

into the inter-trial interval.  This plot shows two main bands of direction information: one around

the time of visual cue presentation and the other around the time of saccade execution.

Zooming in on the beginning of the trial, the middle panel shows that saccade direction

selectivity is present from the very start of learning.  The black dots on this figure show the

risetimes for this direction selectivity: the time in each trial where half-maximum selectivity was

reached. These risetimes can be used as a measure of the timing of information, and from them

it appears that the timing of saccade direction information does not change as learning

progresses.  The rightward most panel shows the band of direction information around the time

of saccade execution, and again it appears that the timing of this information does not change

with learning.  

In addition to direction selectivity, Figure 2.7 shows averaged normalized firing rate for the same

population of FEF cells.  Two bands of activity, at the start and end of the trial, are also present

in this plot.  This data is presented to make the point that the saccade direction information does

not necessarily reflect the overall average firing rate, as direction selectivity is a measure of the

difference in activity on right versus left trials.  Two main differences to point out between the 
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Figure 2.7 Changes in Saccade Direction Selectivity with Learning in FEF
Learning-related changes in information (FEVdir) about saccade direction (top) and in
normalized firing rate (bottom) for the entire saccade direction selective population of FEF cells
(N = 104) is shown.  Data from the entire trial (left) shows two main bands of increased
information/activity: one around the time of visual cue presentation (middle) and one around the
time of saccade execution (right).  Risetimes, the time to half-maximum direction selectivity, are
shown as block dots.  There are two main learning-related changes apparent: information about
saccade direction during the cue period decreases in strength as learning progresses, and firing
rate around the time of saccade execution decreases as learning progresses.  
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firing rate and direction selectivity of this population of cells: 1) while the firing rate does not

change with learning around the time of visual cue presentation, the strength of direction

selectivity decreases as learning progresses, and 2) while the strength and timing of direction

selectivity around the time of saccade execution does not change with learning, the firing rate of

this population decreases as learning progresses.  

The same analysis was performed on the direction-selective population of GPi cells (N=31), and

the results are shown in Figure 2.8.  Like FEF, GPi exhibits two bands of direction information

during the trial: one around the time of cue presentation and one around the time of saccade

execution.  However, in GPi, the band of information early in the trial is much weaker than the

information around the time of saccade execution.  The increases in firing rate of this population

of GPi cells (Figure 2.8, bottom) also occur at these time periods in the trial; however, the

changes in firing rate do not differ between the different time periods.  There is also a third band

of firing rate increase during the inter-trial interval, which is not seen in the other brain areas

investigated.  

Two linear measures of this saccade direction information were used to compare the learning-

related changes in information across learning in the different brain areas: risetime, a measure

of the timing of information, and peak information, a measure of the strength, or amount, of

information.  These two variables are plotted across learning in the four brain areas investigated

during the early-trial period of the reversal learning paradigm in Figure 2.9.  Risetimes in FEF

and GPi (Figure 2.9A) are consistent across learning; there is information from the start of

learning in both areas and the timing of this information remains constant as learning

progresses.  This consistency sharply contrasts with the saccade direction information observed

in dlPFC and Cd: both PFC and Cd show drastic learning-related changes in the timing of

information (Figure 2.9B).  Another difference between these brain areas is observed in the

learning-related changes in strength of saccade direction information: strength of information in

FEF decreases with learning (Figure 2.9C), whereas strength of information in PFC and Cd

increases with learning (Figure 2.9D).  

But what is the role for this early-trial saccade direction information in FEF and GPi that is

present from the start of learning?  Since these are primarily motor structures, it is possible that

this information is strictly motor-related, simply reflecting the planning of the animal's saccadic 
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Figure 2.8 Changes in Saccade Direction Selectivity with Learning in GPi
Learning-related changes in information (FEVdir) about saccade direction (top) and in
normalized firing rate (bottom) for the entire saccade direction selective population of GPi cells
(N = 31) is shown by these colorplots.  Data from the entire trial (left) shows two main bands of
increased direction information: one around the time of visual cue presentation (middle) and one
around the time of saccade execution (right), although the latter band is much stronger than the
former.  Risetimes, the time to half-maximum direction selectivity, are shown as block dots.
Strength of direction selectivity around the time of saccade execution increases as learning
progresses, and no learning-related changes in firing rate are seen.
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Figure 2.9 
Changes in Early-Trial Direction Selectivity with Learning in FEF, GPi, dlPFC and Cd
The timing (left) and strength (right) of information about saccade direction during the cue period
at the start of the trial is compared between FEF (top), GPi (top), Cd (bottom), and PFC
(bottom).  A.  Saccade direction information is present from the start of learning in FEF and GPi
and the time course of this information doesn’t change with learning.  B.  Saccade direction
information in PFC and Cd appears progressively earlier in the trial with learning.  This change
in timing happens earlier in learning and more abruptly in Cd than in PFC.  C.  Strength of
saccade direction information decreases as learning progresses in FEF.  D.  Strength of
saccade direction information increases as learning progress in PFC and Cd.  
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Figure 2.10 
The Relationship Between Early-Trial Saccade Direction Selectivity and Behavior
Average saccade direction selectivity in FEF (left) and GPi (right) for incorrect trials on reversing
associations (red), correct trials on reversing associations (blue), and correct trials on familiar
associations (green) is shown across time in trial.  

FEF Correct
Reversal

Incorrect
Reversal

Zero

Correct Familiar P = 0.019 P = 0.0011 P = 0.0011

Correct Reversal P = 0.0055 P = 0.00025

Incorrect Reversal P = 0.91

GPi Correct
Reversal

Incorrect
Reversal

Zero

Correct Familiar P = 0.3651 P = 0.1420 P = 0.1316

Correct Reversal P = 0.3115 P = 0.2046

Incorrect Reversal P = 0.9974

Table 2.1 
P-values for Comparisons of Early-Trial Direction Selectivity Between Trial Types
Paired ttests were done on the average firing rate in FEF (top) and GPi (bottom) during the cue
period for the different trial types depicted in Figure 2.9: correct trials of familiar associations,
correct trials of reversal associations, and incorrect trials of reversal associations. Average firing
rate was calculated from 100-500ms after cue onset.  Top. FEF exhibits significant information
during the cue period (compared with zero, right column) in correct trials of both the familiar and
reversal associations, but not for incorrect reversal associations.  All pair-wise comparisons
between the trial types were significant. Bottom.  GPi contains no significant information during
the cue period (compared with zero, right column) in any trial type, nor are there any significant
differences between any trial types.
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eye-movement.  If this were true, the cell population would express this information on every

trial where the animal makes a saccade.  To investigate this claim, the saccade direction

information on different trial types was compared (Figure 2.10 and Table 2.1).  Correct trials on

the reversal associations were compared to both incorrect trials of reversal associations as well

as correctly performed trials of familiar associations.  To perform a fair comparison between the

trials, an equal number of each trial type were used: all incorrect trials were used (as this

category contains the fewest trials), and correct familiar and reversal trials were chosen to be as

close in time to each incorrect trial to minimize effects of the placement of trials within the block.

Direction selectivity was computed across the chosen trials and averaged over all direction

cells.  During the time of cue presentation (100-500ms after cue onset), FEF contains significant

saccade direction information in correct familiar and reversal trials, and this information is

greatest for familiar trials (Figure 2.10 and Table 2.1).  In contrast, GPi contains no significant

direction information on any trial type during this early-trial period.  

End of trial effects, around the time of saccade execution, show a different trend.  FEF shows

no changes with learning in either the timing (Figure 2.11A) or strength (Figure 2.11C) of

saccade direction information.  However, saccade direction information around the time of

saccade in GPi appears progressively earlier in the trial (Figure 2.11A) and increases in

strength (Figure 2.11C) with learning.  These effects observed in GPi parallel those seen in Cd

and PFC (Figure 2.11B,D).  When comparing the late-trial (0-400ms after saccade initiation)

direction selectivity in the different trial types (Figure 2.12 and Table 2.2), FEF does contain

significant saccade direction information on all trial types, significantly more information on

familiar associations than correct or incorrect reversal associations, and the same amount of

information on incorrect and correct reversal associations.  GPi only shows significant direction

information in correct trials of familiar associations, but, like FEF, this information is greater than

the selectivity in either the correct or incorrect trials of reversal associations.  
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Figure 2.11
Changes in Late-Trial Direction Selectivity with Learning in FEF, GPi, dlPFC and Cd
The timing (left) and strength (right) of information about saccade direction during the saccade
period at the start of the trial is compared between FEF (top), GPi (top), Cd (bottom), and PFC
(bottom).  A.  Saccade direction information becomes progressively earlier in GPi as learning
progresses, but does not change in FEF.  B.  Saccade direction information in PFC and Cd
appears progressively earlier in the trial with learning.  This change in timing happens earlier in
learning in Cd than in PFC.  C.  Strength of saccade direction information increases as learning
progresses in GPi.  D.  Strength of saccade direction information increases as learning progress
in PFC and Cd.  
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Figure 2.12 
The Relationship Between Late-Trial Saccade Direction Selectivity and Behavior
Average saccade direction selectivity in FEF (left) and GPi (right) for incorrect trials on reversing
associations (red), correct trials on reversing associations (blue), and correct trials on familiar
associations (green) is shown across time in trial.  

FEF Correct
Reversal

Incorrect
Reversal

Zero

Correct Familiar P = 0.0016 P = 0.00034 P = 8.7 x 10-7

Correct Reversal P = 0.1909 P = 7.6 x 10-6

Incorrect Reversal P = 0.00014

GPi Correct
Reversal

Incorrect
Reversal

Zero

Correct Familiar P = 0.0047 P = 0.0059 P = 0.0049

Correct Reversal P = 0.2847 P = 0.1098

Incorrect Reversal P = 0.2822

Table 2.2 
P-values for Comparisons of Late-Trial Direction Selectivity Between Trial Types
Paired ttests were done on the average firing rate in FEF (top) and GPi (bottom) during the
saccade period for the different trial types depicted in Figure 2.11: correct trials of familiar
associations, correct trials of reversal associations, and incorrect trials of reversal associations.
Average firing rate was calculated from 0-400ms after saccade onset.  Top. FEF exhibits
significant direction information in all trial types during the saccade period, and all comparisons
between trials are significant except for the difference between correct and error trials of
reversal associations.  Bottom.  GPi contains significant direction information only in correct
trials of familiar associations during the saccade period, and significantly more information in
familiar trials versus correct and incorrect trials of reversal associations.  
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Discussion

This study of the activity of FEF and GPi during the acquisition of arbitrary visuomotor

associations uncovered two main results.  First, the task-related information contained in these

structures is different: the FEF population contains more information about the direction of the

behavioral response, and GPi contains more information regarding the specific visuomotor

association.  Second, when investigating the motor response-related information, FEF exhibits

this information during the early-trial period from the start of learning and shows a learning-

related decrease in the strength, or amount, of information.  On the other hand, most of the

motor-related information in GPi occurs around the time of the behavioral response and this

information increases in strength and appears earlier in the trial as learning progresses.  

These main results are graphically represented in Figure 2.13.  Two cortico-basal ganglia loops

are shown: the oculomotor loop which includes FEF, and the dlPFC loop (Alexander et al.,

1986).  While these loops do operate in parallel, overlap does exist, as dlPFC is known to

contribute to the oculomotor loop as well.  The finding from the study presented here that FEF

contains response-related information from the start of learning suggests that FEF may be

contributing to the accumulation of information in Cd and/or PFC (red arrows) either directly

through FEF's projections to these areas, or indirectly through potential crosstalk, or

convergence, of information in the BG.  Also, the learning-related decrease in the strength of

information contained in FEF coupled with the learning-related increases in the strength of

information in both PFC and Cd provide further evidence for this information transfer from FEF

to these structures.  

The grayscale shading of the areas connected in these loops shown in Figure 2.13 represents

the processing of information occurring in the frontal cortex-basal ganglia system.  Black and

white portions represent populations of cells containing different types of information (e.g.

visual object identity and saccade direction).  While these populations are mainly separate in the

cortex, the convergence of information in BG creates increased overlap in this information,

ultimately resulting in GPi (outlined in red) containing a majority of cells encoding specific

object-saccade associations as was presented here.  

[Note: In this figure the populations of cells carrying different information are depicted as arising
from the same cortical structures.  That does not necessarily need to be so, and actually most
likely is not so; however, this representation graphically simplifies the figure to emphasize the
main results found in this study.]
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Figure 2.13
Summary and Interpretation of FEF and GPi during Learning With Reversals: A Model
Evidence presented in this chapter suggests that FEF may provide Cd and PFC with saccade
direction information directly (red arrows from FEF) or indirectly, through interactions between
cells in the basal ganglia (red arrow, middle), to aid the development of this information in PFC
which may then be used to guide behavior.  GPi was shown to contain many cells with specific
object-saccade association information, supporting the information “funneling” idea posed by
Alexander et al. (1986) and depicted here with grayscale coloring.  Black and white portions in
cortical areas are different cell populations containing different types of information (e.g. cell
populations encoding saccade direction and object identity).  These populations converge
slightly in Cd and converge even further in GPi resulting in cells with increasing specificity of
information encoding (i.e. association cells). 
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Chapter 3: Learning-Related Changes in PFC and Cd During Learning Without Reversals

Introduction

The PFC and Cd are two key components of the frontal cortex-basal ganglia system that is

thought to mediate arbitrary visuomotor association learning, forming links between arbitrary

visual stimuli and motor responses.  Previously, learning-related changes in these brain areas

were shown to exhibit differential time courses of the expression of task-related information: Cd

contained response-specific informatoin early in learning and changes in this information

occurred early in the learning process, in contrast to the slow and late changes that occurred in

PFC with learning (Pasupathy & Miller, 2005). Crucially, the behavioral performance of the

animal more closely paralleled the time course of changes exhibited by PFC, suggesting that

PFC is more closely linked with behavioral control in arbitrary visuomotor learning. These

differences were interpreted to suggest a transfer of information from BG to PFC; BG learns an

association first, trains the PFC and the PFC then guides behavior.

The goal of the present experiment is to investigate the context-dependency of the function of

the frontal cortex-basal ganglia system during learning.  Perhaps it is only under certain

behavioral circumstances that the frontal cortex-basal ganglia system operates in the manner

described by Pasupathy & Miller (2005).  The previous behavioral task required the animals to

learn new associations (e.g. object A, look Right) and then subsequently, and repeatedly,

reverse the associations (e.g. object A, look Left).  The current study altered the behavioral

paradigm by eliminating reversals to determine the effects on the function of the frontal cortex-

basal ganglia system.  

Methods

[for more methodolgical details see Chapter 6]

Subjects

Two Rhesus macaque monkeys (Macaca mulatta), Monkey P and Monkey A, were used in

these experiments.  All animal procedures conformed to the NIH guidelines and were approved

by the MIT Committee on Animal Care.  It should be noted that data from the same animals was

also used in Pasupathy & Miller (2005), thus providing justification for direct comparisons

between the two studies.
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Behavioral Task

The animal performed a visuomotor learning task without any reversals of the object-saccade

associations (Figure 3.1).  In this task, the animal had to associate a visual stimulus with a

particular saccadic response direction (e.g. see picture A, saccade right).  Once the animal

learned the correct associations by trial and error, the objects were discarded and replaced by

new objects and the animal had to learn the new object-saccade association (e.g. see picture B,

saccade left).  This pattern continued throughout the experimental session. 

Electrophysiological Data Collection

Up to 16 Tungsten microelectrodes were acutely implanted into dlPFC and Cd in a single

session (31 sessions for Monkey A, 5 sessions for Monkey P).  PFC data was collected from

both animals, and Cd data was collected only from Monkey A.  In Monkey A, PFC and Cd much

of the data was collected simultaneously, but not all.  Each single unit included in analysis

contained at least four full behavioral learning blocks of data.  A total of 196 PFC cells (99 from

Monkey A and 97 from Monkey P) and 52 Cd cells (all from Monkey A) were used in analysis.

Analytical Techniques

Analysis of the behavioral data focused on accuracy and reaction time across learning.  All

recording sessions (Total: N=36) were used in this analysis (Figure 3.2).  All correct and

incorrect trials were used in the order in which they occurred in each learning block (trials in

which the animal made a fixation error were ignored).  Means +/- SE were computed across all

blocks from all sessions (187 total blocks: Monkey A, N=156; Monkey P, N=31).  For the

behavioral analysis shown in Figure 3.4, reaction time and accuracy were computed using a 5-

trial window centered on each correct trial in learning.  Data shown is mean across all blocks in

the task with reversals and without reversals.  

In order to identify cells that contained task-related information, a 1-way ANOVA (with saccade

direction as the factor) was performed on average firing rate in each of 4 task epochs: 100-

600ms after cue onset (“Cue”), 600-1500ms after cue onset (“Delay”), 150ms before to 150ms

after saccade initiation (“Saccade”), and 50-300ms after the start of reward delivery (“Reward”).

A cell was considered to contain saccade direction information if it had a significant main effect

of direction.  Significance level was set at p < 0.05, and was corrected for multiple comparisons 
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Figure 3.1 
Trial Events and Block Structure of the Learning Task Without Reversals
The behavioral task used in this experiment requires the animal to associate a particular
saccadic response with a particular visual stimulus.  A.  The animal is shown a visual stimulus
for 500ms, and after a one-second delay period, is required to make a saccade to one of two
peripherally presented targets.  Each visual stimulus is associated with a particular saccade
direction.  Execution of the correct saccade results in the delivery of a juice reward.  B.  The
block structure for the task required the animals to learn new associations (blue) in every block.
Once the animal learned the associations in a block, the images were discarded.
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using Bonferroni’s correction.  A bar graph showing the fraction of cells in PFC and Cd

containing saccade direction information is presented in Figure 3.3

Normalized firing rate, direction selectivity (fraction of explained variance by the direction factor),

and risetimes were computed in the same manner as previously described (see Chapters 2 and

6).  The color plots are averages across all cells containing saccade direction information (PFC:

N=102 (73 from Monkey A, 29 from Monkey P); Cd: N=22).

Results

Unlike the behavioral task with serial reversals (Chapter 2), animals begin this task with no

history with the visual images or particular object-saccade associations.  Thus, at the start of

learning behavioral accuracy is at chance performance (50% correct), and reaction time is at a

maximum (Figure 3.2).  As learning progresses, accuracy increases to criterion level and

reaction time decreases.

To determine which cells of the recorded population (PFC: N=196, Cd: N=52) contained task-

related information, a 1-way ANOVA (with direction as the factor; p<0.05, Bonferroni corrected)

was performed on the firing rate of each cell at each of four time epochs of the trial: 100-600ms

after cue onset ("Cue"), 600-1500ms after cue onset ("Delay"), 150ms before to 150ms after

saccade initiation ("Saccade"), and 50ms-300ms after the start of reward delivery ("Reward").

Results of this analysis are presented in Figure 3.3.  Approximately equal proportions of

neurons displayed information related to the direction of the animal's saccadic response in PFC

(green bars, total N=102) and Cd (yellow bars, total N=22).  

The saccade direction information contained in the population of PFC direction-selective cells

(N=102) changes during the early-trial period as learning progresses (Figure 3.4, top). This

information appears earlier in the trial as learning progresses, but this is not a gradual change.

Very early in learning this change occurs abruptly and continues at asymptote for the rest of

learning.  In contrast, saccade direction information around the time of saccade execution does

not change with learning.  In addition, no learning-related changes are observed in the

normalized firing rate of this population of PFC cells at any point in the trial (Figure 3.4, bottom).  
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Figure 3.2 
Behavioral Performance in the Visuomotor Association Learning Task without Reversals
Percent correct performance (top) and reaction times (middle and bottom) are plotted taking into
account all correct and incorrect trials.  On the first trial in learning, accuracy is at chance (50%)
and the reaction time is very high.  As learning progresses, accuracy increases and reaction
time decreases.  
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Figure 3.3 
Fraction of Cells Containing Task-related Information in PFC and Cd
The fraction of cells containing saccade direction information is plotted by time epoch (Cue,
Delay (Del), Saccade (Sac), and Reward (Rew)) in trial for Cd (yellow) and PFC (green).
Similar trends are seen across the two areas. Fractions are based on total cell count (PFC: N =
196; Cd: N = 52).  Direction cells were defined as having a significant main effect of direction
from a one-way ANOVA (p < 0.05, Bonferroni corrected).  
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Figure 3.4 
Changes in Saccade Direction Selectivity with Learning in PFC
Learning-related changes in information (FEVdir) about saccade direction (top) and in
normalized firing rate (bottom) for the entire saccade direction selective population of PFC cells
(N = 102) is shown by these colorplots.  Data from the entire trial (left) shows two main bands of
increased direction information: one around the time of visual cue presentation (middle) and one
around the time of saccade execution (right).  Risetimes, the time to half-maximum direction
selectivity, are shown as block dots.  Saccade direction information during the cue period
appears progressively earlier in the trial as learning progresses.  No learning-related changes in
firing rate are seen.
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The timing change observed in the early-trial saccade direction information in PFC during the

current behavioral task without reversals is compared to the changes observed in PFC and Cd

during the task with reversals in Figure 3.5 (top).  Whereas PFC changed slowly with learning

during the task with reversals, the timing changes occurring in PFC during the task without

reversals appear very similar to the changes seen in Cd during the task with reversals.  The

behavior of the animals is plotted in a similar manner as the risetimes for comparison purposes

(Figure 3.5, bottom).  The changes in the timing of saccade direction information between the

two behavioral tasks qualitatively reflect the differences in behavioral performance, both

reaction time and accuracy, between the two tasks.  

The saccade direction information in Cd also shows differences between the two tasks.  Instead

of containing two bands of saccade direction information during the trial (during the cue and

saccade periods) as was seen in the task with reversals, Cd shows only one band of information

that occurs around the time of saccade execution during the task without reversals (Figure 3.6,

top).  There is little to no information during the cue period in Cd.  However, the firing rate of this

population of cells still increases during the cue period (Figure 3.6, bottom).  There is just no

information contained in this neural activity.  
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Figure 3.5 
Comparing Early-Trial Saccade Direction Selectivity in PFC and Cd in Learning With and
Without Reversals
Top.  The timing of saccade direction information during the early-trial cue period is plotted for
PFC during the learning task with reversals (light red) and the task without reversals (blue) as
well as Cd during the learning task with reversals (dark red).  In both tasks, saccade direction
information in PFC appears progressively earlier in the trial as learning proceeds; however, this
change in PFC occurs earlier in learning and more abruptly during the task without reversals,
and shows striking similarities to the time course of direction information in Cd during the task
with reversals.  Bottom.  Behavioral measures of reaction time (left) and accuracy (right) in the
task with reversals (red) and without reversals (blue) are plotted in a similar manner to the
risetimes for comparison purposes.  The change in the timing of information in PFC between the
two tasks qualitatively parallels the differences in behavior between the two tasks.  
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Figure 3.6
Changes in Saccade Direction Selectivity with Learning in Cd
Learning-related changes in information (FEVdir) about saccade direction (top) and in
normalized firing rate (bottom) for the entire saccade direction selective population of Cd cells
(N = 22) is shown by these colorplots.  Data from the entire trial (left) shows only one band of
increased direction information that occurs around the time of saccade execution (right).
Risetimes, the time to half-maximum direction selectivity, are shown as block dots.  Saccade
direction information during the cue period is conspicuously absent, even though firing rate
increases during the cue period are still apparent.  
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Discussion

This experiment changed the behavioral context for learning by removing the requirement of

reversing the object-saccade associations.  The change in the behavioral paradigm produced

two striking effects in the neural activity of PFC and Cd: 1) the early-trial saccade direction

information in PFC changed abruptly at the start of learning, similar to changes seen in Cd

during the task with reversals, and 2) Cd no longer contained information during the early-trial

period.  These effects suggest that the PFC always parallels behavioral performance, as it may

be the driving force behind response selection, and that the basal ganglia's involvement in the

visuomotor learning process is context-specific.

There are some important differences between the behavioral learning tasks with and without

reversals.  For one, the objects are only ever used once in the learning task without reversals;

after the animal learns the object-saccade association, the object is discarded and replaced by

a new object.  The animal never sees the learned object again.  Perhaps this limited temporal

importance of the learned visuomotor association obviates the need to encode the visuomotor

association information in the basal ganglia.  This interpretation is supported by much of Ann

Graybiel's work, as she has argued the importance of the basal ganglia in the formation of

habits (Jog et al., 1999; Graybiel & Saka, 2004).  

Another distinction between the two behavioral tasks is that the task without reversals has no

component of inhibition of previously learned information.  It is possible that the role of the basal

ganglia in the inhibition of undesired motor output, through the indirect pathway, is more

powerful than its role in selective activation of desired motor output, through the direct pathway

(Mink, 1996; Graybiel & Saka, 2004).  Thus, in a task without the need for this inhibition (i.e. the

task without reversals), the role of the basal ganglia may be marginalized. 

A third difference between the two tasks is the singularity of context in the task without

reversals.  In this task, there is only one behavioral context, whereas in the learning task with

reversals there are two contexts between which the animal must switch.  Perhaps the role of the

basal ganglia in visuomotor learning is to provide context-dependent bias signals to cortex for

the purpose of effectively guiding behavior (Passingham, 1993).  However, if only one context

exists, the necessity of encoding in basal ganglia might diminish.  
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Chapter 4: Learning-Related Changes in PFC and Cd During Learning With and Without
Reversals: Analysis of Single Units and Local Field Potentials

Introduction

The previous chapter presented evidence that the role of the basal ganglia is highly dependent

on the context when learning arbitrary visuomotor associations.  Specifically, it was shown that

Cd exhibited no motor-related information during the early-trial period during a task that did not

require animals to reverse the object-saccade associations.  This result opposes previous work

that used a serial reversal task: these previous results suggested that the basal ganglia may

learn an association first and then transfer that information to PFC to guide the slow learning

process of PFC (Pasupathy & Miller, 2005; Miller & Buschman, 2007).  

This comparison of the neural activity of PFC and Cd during these two tasks was performed

across experiments.  Thus, different cells were recorded in each data set.  While the cells were

recorded from the same animals, this comparison would be more appropriate when performed

in the same experiment, with the same cells being recorded.  This is the goal of the study

presented here.  The behavioral task interleaved learning with and without reversals in order to

directly compare the neural activity of PFC and Cd during the two tasks.

Methods

[for more methodolgical details see Chapter 6]

Subjects

Two Rhesus macaque monkeys (Macaca mulatta), Monkey P and Monkey A, were used in this

experiment.  All animal procedures conformed to the NIH guidelines and were approved by the

MIT Committee on Animal Care. 

Behavioral Task

The animal performed a visuomotor learning task that interleaved learning with and without

reversals of the object-saccade associations (Figure 4.1).  In this task, the animal had to

associate a visual stimulus with a particular saccadic response direction (e.g. see picture A,

saccade right).  Once the animal learned the correct associations by trial and error, the

associations were reversed (e.g. see picture A, saccade left).  After the animal learned the

reversal, the objects were discarded and replaced by new objects and the animal had to learn

the new object-saccade association (e.g. see picture B, saccade left).  This pattern continued 
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Figure 4.1 
Trial Events and Block Structure of the Task Interleaving Learning With and Without
Reversals
The behavioral task used in this experiment requires the animal to associate a particular
saccadic response with a particular visual stimulus.  A.  The animal is shown a visual stimulus
for 500ms, and after a one-second delay period, is required to make a saccade to one of two
peripherally presented targets.  Each visual stimulus is associated with a particular saccade
direction.  Execution of the correct saccade results in the delivery of a juice reward.  B.  The
block structure for the task required the animals to learn new associations (blue) and reverse
them only once (grey).  Thus, every other block is a reversal of the previous block's
associations.  
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throughout the experimental session, where every other block was a reversal of the previous

block's object-saccade associations. 

Electrophysiological Data Collection

Up to 16 Tungsten microelectrodes were acutely implanted into dlPFC and Cd in a single

session (33 sessions for Monkey A, 31 sessions for Monkey P).  In both monkeys, much of the

data from the two areas was collected simultaneously, but not all.  Each single unit included in

analysis contained at least four full behavioral learning blocks of data.  A total of 382 PFC cells

(185 from Monkey A and 197 from Monkey P) and 130 Cd cells (98 from Monkey A and 32 from

Monkey P) were used in analysis.

Local field potentials were also recorded from each electrode and are also analyzed here.  Only

electrodes from which a cell was recorded and analyzed (thus, the cell was well isolated and

contained at least four full blocks of data) were used in analyses.  Local field potentials were

recorded at 1 kHz, and digitized for offline analysis.  All signals were referenced to a common

ground. Data is presented from a total of 226 electrodes in PFC (114 in Monkey A, 112 in

Monkey P) and 99 electrodes in Cd (71 in Monkey A, 28 in Monkey P).  For coherence analysis,

314 PFC-Cd pairs (228 in Monkey A, 86 in Monkey P), 792 PFC-PFC pairs (340 in Monkey A,

452 in Monkey P), and 170 Cd-Cd pairs (140 in Monkey A, 30 in Monkey P) were used in

analysis.  All electrodes used in the pairings were at least 1mm apart.  

Analytical Techniques

Analysis of the behavioral data focused on accuracy and reaction time across learning.  All

recording sessions (Total: N=64) were used in this analysis (Figure 4.1).  All correct and

incorrect trials were used in the order in which they occurred in each learning block (trials in

which the animal made a fixation error were ignored).  Means +/- SE were computed across all

blocks from all sessions (420 total blocks with reversal: Monkey A, N=203; Monkey P, N=217;

428 total blocks without reversal: Monkey A, N=208; Monkey P, N=220). 

To determine which cells of the recorded populations contained task-related information, a 2-

way ANOVA (with object identity and saccade direction as factors) was performed on each cell's

average firing rate in each of 4 task epochs: 100-600ms after cue onset (“Cue”), 600-1500ms

after cue onset (“Delay”), 150ms before to 150ms after saccade initiation (“Saccade”), and 50-
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300ms after the start of reward delivery (“Reward”).  A cell was considered to contain object or

saccade direction information if it only had a significant main effect of object or direction,

respectively.  A cell was considered to contain object-saccade association information if it had a

main effect of object and direction or a significant interaction term.  Significance level was set at

p < 0.05, and was corrected for multiple comparisons using Bonferroni’s correction.  Because

this analysis did not seem to accurately capture the information contained in the cell population,

a second analysis was performed to extract cells with saccade direction information.  A sliding

receiver operating characteristic (ROC) analysis was performed across time in trial and it

compared all left trials with all right trials.  ROC analysis essentially provides a quantification of

the separation between two distributions; in this case, the firing rate of left trials versus the firing

rate of right trials.  The ROC calculation was performed on 50ms bin of data slid by 50ms

throughout the trial (thus, the bins are nonoverlapping).  The ROC values obtained from each

calculation was then converted into a zscore by a randomization procedure: 1) the ROC

calculation was performed 1000 times with the left and right trial assignment randomly assigned,

2) then for each time bin the true ROC value was converted to a zscore based on the

distribution of ROC values obtained from the randomization procedure.  The results of this

analysis are shown in Figure 4.3B, where the ROC zscores for each time bin across the trial (x-

axis) are plotted for each individual cell (y-axis).  A cell was determined to contain saccade

direction information if at least two consecutive time bins received a zscore of greater than 3.

Cells are aligned in Figure 4.3B on the first significant time bin.  

To validate that this ROC analysis was accurately selecting cells with saccade direction

information, percent explained variance by the direction factor (using the parsing of variance of

the 2-way ANOVA) was plotted for the entire population of cells, as well as for the population of

direction selective cells determined by the ROC analysis (Figure 4.4).  Since the direction

population very accurately portrayed the direction information in the entire population, this

direction selective population was used in all further analyses.  Changes in saccade direction

information with learning were quantified and displayed as in previous experiments, and the

same linear measures of the population trends were used: risetime for timing trends and peak

value for strength trends.  These measures were quantified separately for the learning blocks

with reversal versus without reversals and compared in Figures 4.6 and 4.8.  
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The analysis of local field potentials focused on two main quantitative measures: power and

coherence.  The power spectrum was calculated using a one-sided fourier transform of the

continuous LFP signals.  Power is calculated as the square of the magnitude of the transform.

For data presented in Figures 4.9 and 4.10, 200ms bins of data were used for the power

calculations (thus resulting in 5Hz resolution in the frequency domain).  Because of the tradeoff

between time and frequency resolution in this analysis, 200ms was chosen to provide adequate

resolution in both domains.  For the analysis of learning-related changes in the power spectrum,

the data in the entire cue (0-500ms after cue onset) or delay periods (0-1000ms after cue offset)

were used.  Averages were then taken across prominent, high power, frequency bands to

quantify learning-related changes.  

In order to investigate communication between brain areas, coherence analysis was performed

on the LFPs.  The coherence statistic provides a measure of the extent that two signals are

oscillating together.  The idea behind the use of this analysis is that if two signals are oscillating

together, the probability is higher that they are in direct or indirect communication.  The

coherence statistic is normalized by the power in each frequency, thus underlying power

changes (as seen in the power analysis) should not affect the results of this coherence analysis.

Coherence was calculated as: 

Syw = (Ŷ*(ƒ) / ρY(ƒ)) (Ŵ(ƒ) / ρW(ƒ))

Coh = | E {Syw} |

Where Syw is the normalized cospectrum of two signals Y and W, Ŷ* is the complex conjugate of

the transform of Y, Ŵ is the transform of W, ρY is the magnitude of the transform of Y, ρw is the

magnitude of the transform of W, and Coh is the coherence statistic that is presented in Figures

4.15 and 4.16.  

Results

Analysis of Single Units
The animals' behavioral performance (Figure 4.2) on this task that interleaved learning with and

without reversals was consistent with their performance when the two tasks were performed

separately.  During blocks where the animals were presented with new objects with which to

form object-saccade associations (termed "new learning" or "without reversals"), accuracy 
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Figure 4.2 
Behavioral Performance in the Task Interleaving Learning With and Without Reversals
Percent correct performance (top) and reaction times (bottom) are presented for all correct and
incorrect trials during the learning task that interleaves learning with (gray) and without (blue)
reversals.  As was seen when these tasks were performed separately by the animals, on the
first trial in learning, accuracy is close to 0% during reversals and the animals perform very
quickly since the previously rewarded associations are still being performed. Subsequently,
performance jumps to chance level (50% correct, dotted line) and reaction time sharply
increases.  During new association learning reaction time at the start of a new block begins high
and accuracy starts at chance level (50% correct).   In general, as learning progresses,
accuracy increases and reaction time decreases.  
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began at chance level (50% correct) and slowly rose to the learning criterion (90% correct), and

reaction time began high and decreased as learning progressed.  In contrast, during reversal

learning blocks, accuracy began at 0% correct and reaction time was very low, since the

animals were still performing the previously rewarded associations.  After the first trial of the

reversal block, accuracy rose to chance level and reaction time jumped over 100ms.  With

learning, reaction time decreased and accuracy increased to criterion level.

To determine which cells of the recorded population (PFC: N=382, Cd: N=130) contained task-

related information, a 2-way ANOVA (with object and direction as factors; p<0.05, Bonferroni

corrected) was performed on the firing rate of each cell at each of four time epochs of the trial:

100-600ms after cue onset ("Cue"), 600-1500ms after cue onset ("Delay"), 150ms before to

150ms after saccade initiation ("Saccade"), and 50ms-300ms after the start of reward delivery

("Reward").  Results of this analysis are presented in Figure 4.3A.  This analysis did not reveal

many cells containing direction information (PFC: 12/382, Cd: 4/130), but a large number of

cells containing object-saccade association information.  Because an inspection of each cell’s

histograms revealed a different qualitative result (where it seemed that many cells were carrying

information regarding saccade direction), a sliding receiver operating characteristic (ROC)

analysis was performed to extract cells with saccade direction information (Figure 4.3B).  This

analysis revealed many more direction-selective cells: 241 of 382 PFC cells and 49 of 130 Cd

cells.

To validate the results of the ROC analysis, the fraction of explained variance explained by the

direction factor was calculated across time in trial and also across trials in learning.  Figure 4.4

presents this data for the entire recorded population of PFC and Cd cells (top row) and also for

the direction-selective populations revealed by the ROC analysis (bottom row).  These figures

are very similar; that is, the identified population of cells thought to contain saccade direction

information does a very good job at representing the information present in the entire recorded

population.  In PFC, two distinct bands of information are present: one during the cue period

and the other around the time of saccade execution.   This information is present very early in

learning during the early-trial period and does not change drastically as learning progresses.

Cd exhibits a slightly different pattern of information.  This population of cells does not show two

bands of information, but fairly sustained information throughout the trial, up to and including the

time of saccade execution.
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Figure 4.3
Fractions of Cells Containing Task-related Information in dlPFC and Cd
A.  The fraction of cells containing saccade direction (blue), object identity (yellow), and object-
saccade association (purple) information is plotted by time epoch (Cue, Delay (Del), Saccade
(Sac), and Reward (Rew)) in trial for dlPFC (left) and Cd (right).  These results were obtained
from a two-way ANOVA with object and direction as factors.  Very few cells containing saccade
direction information were found (PFC: 12/382, Cd: 4/130)  B. To more precisely extract cells
containing saccade-direction information, a sliding ROC analysis was performed and all cells
with significant direction information were termed “direction cells” (PFC: 241/382, Cd: 49/130).
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Figure 4.4
Information about Saccade Direction in PFC and Cd
Information about saccade direction is apparent in both PFC and Cd during the performance of
the behavioral task.  The top row presents the saccade direction information (quantified by
fraction of explained variance by the direction factor, FEVdir) in the entire population of recorded
cells (PFC: 382, Cd: 130).  The bottom row shows the information contained in the population of
direction-selective cells revealed by the ROC analysis (PFC: 241, Cd: 49).  The population of
direction cells qualitatively represents the entire population accurately, where there are two
distinct bands of information in PFC and sustained information throughout the trial in Cd.  
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The crucial point of this experiment, though, is to see if there are differences between learning

with and without reversals.  Figure 4.5 plots the saccade direction information in the direction-

selective population of PFC cells separately for the two types of learning.  The information

present during the execution of the two tasks is quite similar.  However, there are some subtle

differences to point out that might be most easily observed in the risetime and strength of

selectivity plots of Figure 4.6.  During the task with reversals, saccade direction information is

stronger and appears earlier in the trial at the start of learning than information in the reversal

task.  In both tasks, strength of early-trial direction selectivity increases as learning progresses.

Information around the time of saccade execution does not differ between the two tasks,

although there is an increase in the strength of information in the middle of the learning process

without reversals that is not seen in the reversal task. 

The saccade direction information in Cd shows different trends in general throughout the trial,

although there are similar differences between the two tasks as was present in PFC (Figures

4.7 and 4.8).  Instead of two distinct bands of information, Cd shows more sustained information

throughout the trial.  Like PFC, Cd exhibits greater strength of information during learning

without reversals than learning with reversals; however, unlike PFC, this trend is seen in the

saccade period in addition to the cue period.  Similar timing differences during the early-trial

period are also seen in Cd, where saccade direction information is present earlier in the trial at

the start of learning in the task without reversals.  
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Figure 4.5 
Learning-related Changes in PFC Direction Selectivity With and Without Reversals
The saccade direction information for the population of PFC direction-selective cells (N = 241) is
show separately for learning with (top) and without (bottom) reversals.  In both tasks, two
distinct bands of information are present (left).  However, when looking closer at the early-trial
period (middle), subtle differences between the two tasks in the timing and strength of
information are apparent.  
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Figure 4.6 
Differences in Strength and Timing of PFC Direction Information With and Without
Reversals
The timing (left) and strength (right) of saccade direction information in PFC is depicted for both
the reversal (red) and nonreversal (blue) tasks.  During the cue period (top), information is
present earlier in the trial during the task without reversals and information through learning is
greater without reversals.  Information during the saccade period (bottom) does not change with
learning or differ between the two tasks in PFC.  
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Figure 4.7
Learning-related Changes in Cd Direction Selectivity With and Without Reversals
The saccade direction information for the population of Cd direction-selective cells (N = 49) is
show separately for learning with (top) and without (bottom) reversals.  This population of cells
does not exhibit two distinct bands of information, but more sustained information throughout
the trial.  The most noticeable difference between the two tasks also occurs during the cue
period, where information appears earlier and is stronger in the task without reversals.  
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Figure 4.8
Differences in Strength and Timing of Cd Direction Information With and Without
Reversals
The timing (left) and strength (right) of saccade direction information in Cd is depicted for both
the reversal (red) and nonreversal (blue) tasks.  During the cue period (top), information is
present earlier in the trial during the task without reversals and information through learning is
greater without reversals.  Since there was no clear band of information around the time of
saccade execution, no timing information could be reasonably extracted from the data.  Strength
calculations (bottom) do show differences between the two tasks early in learning, where the
task without reversals contains higher information than the task with reversals.    
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Analysis of Local Field Potentials
Figure 4.9 presents the average power spectrum of all PFC (N=226, Monkey A: N=114, Monkey

P: N=112) and Cd (N=99, Monkey A: N=71, Monkey P: N=28) local field potential (LFP)

recordings plotted across time in trial.  In both brain areas the lower frequencies contain the

most power, and this power changes as trial events occur.  Specifically, a decrease in power is

observed during the time of cue presentation and saccade execution in frequencies around 15-

25 Hz.  There are some prominent differences in the power spectrums of the data collected from

the two animals, so, in addition to the spectrograms of the entire data set (top row),

spectrograms of the data from each animal are presented separately.  Data from Monkey A

(middle row) shows an increase of power in high frequencies (~75-115Hz) at the end of the trial

in Cd.  The power spectrum of LFPs recorded from Monkey P exhibit high power in lower

frequencies (~10-15Hz in PFC and ~10Hz in Cd) that is not observed in Monkey A.  

The power increase of high frequencies in Cd observed in Monkey A at the end of the trial was

hypothesized to be linked to reward (and possibly the influx of dopamine).  With this hypothesis

in mind, comparing the late-trial power spectrum during correct trials with incorrect trials should

show differences if this power is related to reward.  Figure 4.10 presents the late-trial power

spectrum with the data aligned on the initiation of the animal’s saccadic response.  The incorrect

trials do exhibit a much smaller power increase than the correct trials; however, a power

increase of these high frequencies does still occur.  

In order to examine the changes in these oscillations across learning, a specific time period of

the trial had to be chosen.  The first period examined was the entire delay period, from 0-

1000ms after the offset of the visual stimulus.  These results are presented in Figure 4.11.

Again, due to the differences between the animals, the data is presented with both animals

combined (top row) and then separately for each animal.  In general, the frequencies with the

highest power in Monkey A are higher than those in Monkey P.  Learning-related changes were

not found in the combined data or in Monkey P's data.  However, Monkey A shows a decrease

in power of frequencies in the beta range (~16-34Hz) as learning progresses.   Although this

effect is seen in both PFC and Cd, the range of frequencies affected is slightly higher in PFC

(~25-34Hz) than in Cd (~16-25Hz).  
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Figure 4.9
Changes in PFC and Cd Power Spectrum through Trial Events
Average power spectrum density for all PFC (left) and Cd (right) electrodes is plotted across
time in trial.  The highest power is seen in the lower frequencies in both areas, and these show
event related desynchronization (i.e. power decreases).  Data from each animal is shown
combined (top row) and separated (middle and bottom rows) to show differences in the two
animals.  Monkey A shows an increase in power at relatively high frequencies at the end of the
trial in Cd, and in general Monkey P shows higher power in the 5-15Hz range across the trial in
both PFC and Cd.  The increase in power at 60Hz in all recordings is due to the standard
electrical noise. 
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Figure 4.10
The Relationship Between Late-Trial High Frequency Power in Cd and Behavior
The increase in high frequency power present at the end of correct trials (left) is reduced during
incorrect trials (right).  This result is only apparent in the data from Monkey A, as this power in
high frequencies is not observed in Monkey P.  Here, data is aligned on saccade onset (0ms).
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Figure 4.11 
Learning-related Changes in Cd and PFC Power Spectrum during the Delay Period 
The power spectrum, focused on lower frequencies, for the entire one second delay period (0-
1000ms after cue offset) is plotted across trials in learning.  The data is presented both
combined (top row) and separated by animal (middle and bottom rows).  Power spectrum for
PFC (left) and Cd (right) are quite similar; however, there are differences seen in the relative
frequencies expressed.  The only learning-related change in power occurs in the beta frequency
range in both PFC and Cd in Monkey A: power in beta decreases as learning progresses.  
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Figure 4.12 
Learning-related Decrease in Beta Power during the Delay Period in Monkey A
The decrease in beta (16-34Hz) power is plotted separately for learning with (black) and without
(blue) reversals in both PFC (top) and Cd (bottom).  The decrease is seen in both areas, and a
difference between the two tasks is evident in both areas as well: although power begins the
same in both tasks, in the reversal task the decrease takes more trials.  
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This decrease in beta is broken down by task in Figure 4.12.  Because the range of frequencies

was slightly different in PFC and Cd, the average power in the 16-34Hz band was used in this

analysis to incorporate the bands in both areas.  The decrease in beta occurs during learning

both with and without reversals (paired ttest of trial 1 versus trial 30, p<0.05).  However, in the

reversal task this power decrease takes more trials.  Beta power begins at the same level in

both tasks, but power in the reversal task is significantly higher until trial 10 in Cd, with the

exception of trial 8 which did not reach significance, and until trial 6 in PFC (paired ttests,

p<0.05, Bonferroni corrected).  

The same analysis was performed on the data during the cue period, from 0-500ms after cue

onset (Figure 4.13).  Similar to the delay period, a decrease in beta power with learning was

found in Monkey A (paired ttest of trial 1 versus trial 30, p<0.05), but not in Monkey P.  Although

this decrease was seen in both PFC and Cd, differences between the two tasks were only

observed in Cd (Figure 4.14), where there was higher power in the 16-34Hz band in the reversal

task versus the task without reversals (paired ttests, p<0.05, Bonferroni corrected.  Trials with

significant differences: 2, 5, 7-12, 15-17, 22, 24).  

Although the power spectrum in the LFPs of PFC and Cd may provide insight into the

functioning of the areas on a more macro scale, what is really of importance is understanding

the communication between the areas during learning, and how this communication might

change during the learning process.  To investigate this question, coherence analysis was used.

The coherence statistic quantifies the extent that two signals oscillate together: if their phase

offset is constant this measure would produce a value of 1, whereas if their phase offset is

random coherence would be 0.  The assumption here is that there is a higher probability of

interaction between two signals if they are oscillating together; thus, higher coherence is

interpreted to be greater communication between the signals.  Because coherence normalizes

for the power in each frequency, the magnitude of power does not effect the coherence

calculation.  Thus, for this analysis, the data from both animals were compiled together.

Although there were slight differences between the animals in which frequencies were most

coherent, the overall trends were the same.  

There were two main trends observed in the coherence data.  First, coherence decreases as

learning progresses (paired ttest of trial 1 versus trial 30, p<0.05), and second, coherence is
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greater during learning with reversals then learning without reversals (paired ttests, p<0.05,

Bonferroni corrected).  Coherence results for the delay period (0-1000ms after cue offset) are

presented in Figure 4.15.  Coherence was calculated between all signal pairings: between PFC

and Cd (PFC-Cd, top row), within PFC (PFC-PFC, middle row), and within Cd (Cd-Cd, bottom

row).  PFC-Cd coherence in the 16-24Hz band during the delay period decreases with learning

for both tasks, and is greater during the task with reversals mostly at the start of learning.  PFC-

PFC coherence in the 10-22Hz band does not show learning-related decreases during the delay

period, but is consistently higher during the task with reversals versus without reversals

throughout the learning process.  Cd-Cd coherence does not differ between the two tasks, but

does show learning-related decreases in coherence in both tasks.  

Coherence during the cue period shows similar trends, where coherence is greater for the

reversal task than the task without reversals, and decreases in coherence are seen as learning

progresses.  However, here not only does Cd-Cd coherence not show differences between the

two tasks, it also does not decreases with learning. Also in contrast to the delay period, PFC-

PFC coherence does show learning-related decreases in both tasks.  
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Figure 4.13 
Learning-related Changes in Power Spectrum during Cue Period
The power spectrum, focused on lower frequencies, for the cue period (0-500ms after cue
onset) is plotted across trials in learning.  The data is presented both combined (top row) and
separated by animal (middle and bottom rows).  Power spectrum for PFC (left) and Cd (right)
are quite similar; however, there are differences seen in the relative frequencies expressed.
The only learning-related change in power occurs in the beta frequency range in Cd in Monkey
A: power in beta decreases as learning progresses.  
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Figure 4.14
Learning-related Changes in Beta Power during the Cue Period in Monkey A
Beta (16-34Hz) power during the cue period is plotted separately for learning with (black) and
without (blue) reversals in both PFC (left) and Cd (right).  A decrease in beta power is seen in
both PFC and Cd, but a difference between the two tasks is only apparent in Cd.  
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Figure 4.15 
Learning-related Changes in Coherence during the Delay Period
Coherence for all frequencies and across learning (colorplots) was calculated on the entire
delay period (0-1000ms after cue offset) for all signal pairings: PFC-Cd (top), PFC-PFC
(middle), and Cd-Cd(bottom).  Two main trends are seen in the coherence data: coherence
decreases as learning progresses (except in PFC-PFC interaction), and coherence during the
reversal task is higher than coherence during the task without reversals.  Asterisks mark
significant differences between tasks (paired ttests, p<0.05, Bonferroni corrected).
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Figure 4.16
Learning-related Changes in Coherence during the Cue Period
Coherence for all frequencies and across learning (colorplots) was calculated on the entire cue
period (0-500ms after cue onset) for all signal pairings: PFC-Cd (top), PFC-PFC (middle), and
Cd-Cd(bottom).  The same two main trends are seen in the coherence data: coherence
decreases as learning progresses (except in Cd-Cd interaction), and coherence during the
reversal task is higher than coherence during the task without reversals (except in Cd-Cd
interaction).  Asterisks mark significant differences between tasks (paired ttests, p<0.05,
Bonferroni corrected).



84

Discussion

The findings of this study directly comparing learning with and without reversals suggests that

the expression of information in and the communication between dlPFC and Cd does underlie

learning and differs depending on the specifics of the learning process.  PFC and Cd both

displayed changes in their expression of task-related information, specifically saccade-direction

information, where information appeared earlier in the trial and with greater strength at the start

of learning without reversals versus with reversals.  This availability of information in these two

brain structures suggests that communication between the two areas may not be as crucial

during learning without reversals, and this hypothesis was supported by evidence from an

analysis of LFPs in PFC and Cd.  Both areas showed learning-related decreases in power in the

beta band (~16-34Hz), and this decrease took more trials during learning with reversals.  This

result suggests an increased communication between the areas, which coherence analysis

supported, showing that beta coherence (~16-24 Hz) between PFC and Cd is greater during

learning with reversals.  Coherence was also shown to be higher at the start of learning versus

the end of learning in both tasks.  

It seems noteworthy that the main frequencies with changes during learning occurred in the

beta frequency range.  Beta has been implicated in motor preparation (Sanes and Donoghue,

1993) and sensorimotor integration (Murthy and Fetz, 1992), is found in both PFC (Zhang et al.,

2008a) and Cd (Courtemanche et al., 2003), and as such seems to be an appropriate candidate

for involvement in visuomotor learning.  The desynchronization of beta oscillations observed in

the current data is also in line with many previous findings that have linked this

desynchronization to motor preparation in both cortical and subcortical regions (Zhang et al.,

2008b; Kuhn et al., 2004).  It is even thought that aberrant beta oscillations may underlie some

of the motor deficits observed in diseases such as Parkinson’s Disease (Bergman et al., 1988).

Recently, it was shown that suppression of beta in the subthalamic nucleus by high frequency

stimulation improves motor performance in Parkinson's patients (Kuhn et al., 2008).  This

provides a more direct link to the function of these oscillations and supports the idea that

neuronal oscillations may underlie brain function in very fundamental ways (Singer, 1999).

Thus, if we can understand these oscillations and their role in behavior, we may be able to treat

diseases more effectively and provide patients with some relief.  
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Increasingly, the field of neuroscience is moving towards understanding brain function more

holistically.  In addition to understanding the function and modulation of individual neurons, it is

crucial to understand how information is processed within and across brain areas if

neuroscience is ever to understand brain function in any depth.  Thus, neuronal oscillations

have become a prime target of investigation, and their presence throughout the brain,

mechanistic explanation, and modulation by behavior are areas of intense research.  One

common way to measure these oscillations (primarily in animal studies like the present

experiment) is the recording of LFPs, which are thought to reflect the synaptic input to the

recorded area, in contrast to single or multi-unit recordings which are thought to reflect the

neural output of the area (Logothetis et al., 2001; Legatt et al., 1980).  LFP recordings have

been shown to be modulated by behavior; for example, attention (Fries et al., 2008), movement

(Aumann and Fetz, 2004), and memory encoding and retreival (Herrmann et al., 2004; Leiberg

et al., 2006).  Thus, it will be important for future studies to examine these local oscillations to

gain a better understanding of communication between and within brain areas.  
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Chapter 5: General Discussion

The main goal of this thesis is to provide insight into the function of the frontal cortex-basal

ganglia system during arbitrary visuomotor learning.  Two tasks were used to study this learning

process: learning new associations and learning to reverse previously learned associations.

And the differences between the tasks were exploited to investigate underlying neural activity

involved in the learning process.  Evidence from the studies presented here suggests that the

frontal cortex-basal ganglia system underlies the learning process only when competition

between learning contexts exists.  

Two primary structures of the system were investigated in depth: dorsolateral prefrontal cortex

(dlPFC) and the caudate nucleus (Cd) of the basal ganglia.  Previous work, on which the current

thesis is based, from the same laboratory using the same animal subjects, suggested that the

basal ganglia may learn an association first, during reversal learning, and transfer this

information to dlPFC to aid in the learning process and ultimately guide behavior (Pasupathy

and Miller, 2005).  When the task was changed to eliminate reversal learning (Chapter 3), the

basal ganglia no longer showed functional involvement in the learning process.  This suggests

that something inherent to the reversal task selectively employs the frontal cortex-basal ganglia

system.  

There are many differences between learning new associations and learning to reverse

previously learned associations.  When learning to reverse associations there is a history with

the associations that is in competition with learning the reversal.  This competition may be

thought of as necessitating inhibition or suppression of the previously learned response or a

separation of the two learning contexts in some way.  In whatever way this competition

manifests itself, the fact of additional learning requirements in the reversal process is

undeniable, as this difference between the tasks is robustly expressed in the animals' behavior.

The reversal task is a much more difficult task for the animals, and this is reflected both in

longer reaction times and lower accuracy.  Thus, this contextual competition may be the factor

guiding the function of the frontal cortex-basal ganglia system in the learning process, and

without this competition, as seen in the experiment without reversals in Chapter 3, the basal

ganglia need not play a role.
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In order to insert this contextual competition back into the behavioral task, while at the same

time maintaining the ability to compare the two different learning processes with and without

reversals, a new task was designed.  This behavioral task alternated between the two learning

tasks where every other block was a reversal of the previous block's associations (Chapter 4).

Here, Cd again became involved in the learning process, not only during the reversal blocks but

also during the learning of new images.  This suggests that the basal ganglia might be a key

player in encoding the competing contexts.

But encoding the competing contexts is not enough.  This information must be communicated in

order to control behavior effectively.  Results from the analysis of LFPs in dlPFC and Cd

presented in Chapter 4 suggests that this communication does occur between the two areas,

and that this communication is greater during the learning of reversals, when the contextual

competition is the greatest.  This communication also decreases as learning progresses

supporting the idea that this communication is involved in the transfer of contextual information

and also suggesting that communicating the context may place the system in a new state to

facilitate the learning process.  

This thesis also explored the roles of other members of the frontal cortex-basal ganglia system

during the reversal learning process (Chapter 2).  FEF was shown to contain task-related

information from the start of learning, suggesting that it may be transferring this information to

both or either dlPFC and Cd to aid the learning process.  GPi was shown to contain more

specific information about the learned associations providing evidence for information funneling

in the basal ganglia (Alexander et al., 1986).  These results suggest that the interplay between

many brain areas is responsible for the learning process, and leads one to conclude that the

way to truly address questions regarding the function of entire networks of brain areas is in

large-scale neural recordings with very fine spatial resolution, as is offered currently by LFP

recordings.  However, hopefully technology will advance such that invasive methods will be

replaced by noninvasive methods with very fine temporal and spatial resolution that allow both

an accurate portrayal of the properties of individual neurons as well as the more macroscopic

view of the interaction between brain areas.  Advances of this kind will revolutionize the field of

neuroscience.  
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Chapter 6: General Methodology

Subjects

For all experiments, two Rhesus monkeys (Macaca mulatta) were used: Monkey A (female,

weighing 5 kg) and Monkey P (male, weighing 6-10 kg) [for which of the animals were used for

the different experiments see the methods sections of the individual chapters].  All animal

procedures conformed to the guidelines of NIH and the MIT Committee on Animal Care.  Both

animals had titanium head restraints implanted under general anesthesia for use in head

immobilization, as well as titanium recording chambers for safe and repeated access to neural

tissue.  Chambers were positioned using stereotaxic coordinates based on structural MRI scans

of each animal.  Experiments using only one of the two animals are noted in the methods

section for that particular experiment. 

Behavioral Tasks

In all behavioral tasks, on each trial a visual image was presented and, after a one-second

delay, the animal had to make a saccade to one of two targets that appeared in the periphery

(Figure 6.1).  If the animal made the correct saccade, a juice reward was given.  Each visual

stimulus was paired with a single correct saccade direction, and the animals learned this

association by trial and error (i.e. no cue signifying the start of a new block of trials was ever

presented).  Specific criteria were used to determine if learning has occurred: 30 correct trials of

each association must have been performed, and 9 of the last 10 trials must have been

performed correctly (i.e. 90% correct performance) on each association.  

Each learning task differed in its block structure (Figure 6.2).  In the serial reversal task (Chapter

2), once learning criteria are met, the animal has to learn associations between the same

images and the opposite saccade directions.  Thus, in a single session the animal continually

reverses associations using the same visual images.  However, the task used to collect the FEF

data was slightly altered.  After every three reversal learning blocks, two delayed-match-to-

sample blocks were performed.  The analyses presented in this thesis focus only on the

reversal blocks of this task.  In the task without reversals (Chapter 3), once learning criteria are

met the learned images are replaced by new images, and the learned images are never used

again.  In the task interleaving reversals and new image learning (Chapter 4), each visual image

is paired exactly once with each saccade direction and then discarded.  
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Figure 6.1
Single Trial Events of All Behavioral Tasks
In every trial, the animal was presented with a visual stimulus and, after a one-second delay
interval, had to saccade to one of two peripheral targets.  The animal was required to fixate a
centrally located, white fixation point throughout the trial.  The onset of the two peripheral
targets occurred simultaneously with the disappearance of the central fixation point, which
signaled to the animal to make a response.  This figure depicts two different trials: in this
example, when the sunflower (right) was presented a saccade to the right was required,
whereas when the horse (left) was presented a saccade to the left was required.  If the animal
executed a saccade in the correct direction, a juice reward was given at the end of the trial.  If
the animal executed a saccade in the incorrect direction, or did not maintain fixation at any point
in the trial, reward was withheld and an increased inter-trial interval was given (as a “timeout”).  



90

Figure 6.2
Trial Block Structure of All Behavioral Tasks
Each set of associations, or “block”, changes once learning
criteria have been met, and the tasks used in the experiments
presented in this thesis differ in their block structure. A. In the
serial reversal task, every block is a reversal (gray) of the
previous block’s associations.  The serial reversal task used
to collect FEF data (bottom) includes also blocks of a
delayed-match-to-sample task (green), data from which were
not analyzed here.  B.  In the learning task without reversals,
new images (blue) are used in each block.  Once the animal
learns the set of associations those images are discarded and
never seen again.  C. In the task that interleaves learning with
and without reversals, every other block is a reversal of the
previous block’s associations.  In this figure, letters stand for
different visual objects, and “right” versus “left” represents the
direction of the saccadic response associated with each
image.
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All visual images used in the experiments were complex, colored shapes or scenes.  They were

compiled through image databases (such as Corel) or internet image searches.  All images

were scaled to be squares with sides of length four degrees of visual angle.  Reward given at

the end of a trial was titrated according to each animal's motivation through the training process

such that the animal would perform enough trials and work at a high enough rate to complete at

least four blocks in a session, yet still receive enough liquid each day to maintain health and

body weight.  Once these reward levels were determined they were kept constant throughout all

recording sessions.  

Behavioral Monitoring

All behavioral tasks were coded in C and the Cortex (www.cortex.salk.edu) behavioral

monitoring system was used to collect behavioral data and control the task display.  The

animals' eye position was tracked using an infrared system developed by ISCAN (Woburn, MA:

www.iscaninc.com) in which a camera monitored the reflections of an infrared beam aimed at

the animals' eye to calculate eye position.  The animal needed to maintain fixation within a

square of 3-4 degrees on a side.  

Electrophysiological Techniques

All electrophysiological recordings were performed with epoxy fully coated tungsten

microelectrodes from FHC (Bowdoin, ME) with 250 µm diameter.  Since dura was left in-tact,

electrodes had to be thick and stiff enough to penetrate the dura without bending or losing all

impedance.  Electrodes were lowered using custom built microdrive arrays that required the

manual rotation of screws to change the depth of the electrode.  For a small fraction of the

deeper recordings performed (GPi and Cd), a hydraulic microdrive was used (either from FHC

or Plexon, Inc).  All voltage signals were collected using the data aquisition system from Plexon,

Inc.  Both spike waveforms and local field potentials were recorded from every electrode.  Spike

waveforms were captured using an online threshold, but were sorted more accurately offline

using Offline Sorter (Plexon, Inc.).  Standard spike sorting methods were used including but not

limited to: principal components analysis, measures of energy, and specifics of waveform shape

such as peak and trough levels and waveform duration.  

Recording locations were determined using structural MRIs of each animal.  Well placement

was maximized for access to relevant brain areas and also for stabile placement on the skull.
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The recording wells were cylindrical with a 19mm diameter.  All PFC recordings were

concentrated in the dorsolateral portion of prefrontal cortex which lies dorsal (medial) to the

principal sulcus.  Cd recordings were concentrated in the head and body and primarily in the

dorsal portions of the structure since recording electrodes were lowered from the vertical.  

For Monkey A, both PFC and Cd recordings were performed in the right hemisphere.  The PFC

well was placed 29.6 mm anterior to the interaural line and 16mm lateral to the midline, and the

Cd well was placed 16.3mm anterior to the interaural line and 0.8mm lateral with no angle from

the vertical.  For Monkey P, FEF right hemisphere recordings were performed from a well

centered 18.2mm anterior and 17mm lateral.  The right hemisphere GPi well was centered 12.5

mm anterior and 24.3 mm lateral at a 42 degree angle from the horizontal.  The PFC well used

to collect data for Chapter 3 was centered 26.7mm anterior and 19.1 mm lateral on the right

hemisphere.  The PFC well used to collect data for Chapter 4 was centered 28.2mm anterior

and 24.6 mm lateral on the left hemisphere.  Monkey P's Cd well was centered 14 mm anterior

and 1.7 mm lateral and recordings targeted the right hemisphere.  

Analytical Techniques

Cell and Trial Inclusion

Not all data that was collected could be used in analysis due to many factors.  First, all cells

must have been properly isolated using standard cluster cutting techniques.  Second, all

included cells had to contain at least four full learning blocks of data.  This criterion ensures

enough trials are present to obtain an accurate account of the behavior of the cell.  To minimize

bias in analysis, trials in learning blocks not completed were not analyzed.  For example, if a cell

was recorded throughout the entire behavioral session, trials in the last learning block were

discarded if the block was not completed.  

Identifiying Cells with Task-Related Information

In order to identify cells that contained task-related information, an ANOVA was performed on

the average firing rate of each cell in all included trials broken down into four trial time epochs:

100-600ms after cue onset (“Cue”), 600-1500ms after cue onset (“Delay”), 150ms before to

150ms after saccade initiation (“Saccade”), and 50-300ms after the start of reward delivery

(“Reward”).  Thus, the average firing rate of each trial was defined by four single numbers, one

number (firing rate) for each of the four time epochs.  Then within each time epoch, an ANOVA
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was performed to extract the differences in firing rate between the different trial types.  The

specifics of this ANOVA varied depending on task.  For example, in the serial reversal task used

in Chapter 2, a 2-way ANOVA was used with object and direction as factors, and in the learning

task without reversals (Chapter 3) a 1-way ANOVA was performed with saccade direction as the

only factor.  

A cell was considered to contain task-related information if it only had a significant main effect of

the task factor.  For example, a cell was considered to contain information about saccade

direction if it had a significant main effect of direction (and not a significant main effect of object

or a significant interaction if a 2-way ANOVA was performed).  For the results from the 2-way

ANOVAs, a cell was considered to contain object-saccade association information if it had a

main effect of object and direction or a significant interaction term.  Significance level was set at

alpha = 0.05, and was corrected for multiple comparisons using Bonferroni’s correction.  

In the task interleaving learning with and without reversals used in the experiment presented in

Chapter 4, a sliding receiver operating characteristic (ROC) analysis on the firing rate of left

versus right trials was performed to determine direction-selective cells.  The area under the

ROC curve (which here I'm just terming ROC for short) is a measure of the distance between

two distributions. The simplest way to explain and understand this analysis is to consider ROC

to be the probability that an ideal observer would be able to categorize each data point in the

two distributions correctly.  So if the two distributions are nonoverlapping ROC has a value of 1

(the ideal observer would be correct every time), and if two distributions completely overlap

ROC has a value of 0.5 (chance probability level for the ideal observer since there are two

choices). The ROC value is calculated based on the true positive categorizations versus the

false positive categorizations.  It is the area under the curve plotting these two variables. 

Learning-related Changes in Normalized Firing Rate and Saccade Direction Information

The focus of analyses in this thesis, in general, is how the recorded cell populations are

changing as the animal learns the visuomotor associations.  Two measures of activity were

used here: normalized firing rate, and direction selectivity.  Both measures were computed in a

100ms bin slid across the trial in 10ms steps, and each trial bin in learning contained 8 trials of

each association in each learning block.  The trial bins were aligned on the first trial in the bin,

so the first trial bin used trials 1-8 of each association in each block of that session, and the
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second trial bin used trials 2-9 of each association in each block of that session.  Thus, since

the minimum number of trials per association in a block is 30, 23 trial bins were used to ensure

an equal number of trials in all trial bins. This explains why all colorplots have a maximum y-

value of 23.

Firing rate (FR) was computed for each trial, according to the details above, and once the two-

dimensional FR matrix was computed (with dimensions of time in trial and trial in learning),

normalization was performed for each individual cell.  Normalized firing rate was computed as

follows:

[ (FR) – (Minimum FR) ] / [ (Maximum FR) – (Minimum FR) ]

This normalization method scales the firing rate on a 0-1 scale, where 0 represents the

minimum firing rate and 1 represents the maximum firing rate of that particular cell.  After each

cell’s FR was normalized, averages were computed across the direction-selective cell

populations revealed by the ANOVA described above. 

Direction selectivity was quantified as the fraction of explainable variance by the direction factor

in an ANOVA.  The variance (Var) in the firing rate of each cell was partitioned according to the

partitions of an ANOVA.  For example, in a 2-way ANOVA with object and direction as factors,

the partitioning would be done as follows:

Total Var = Vardir + Varobj + Varint + Varerr

where Vardir is the variance explained by the direction factor, Varobj is the variance explained by

the object factor, Varint is the variance explained by the interaction of the two factors, and Varerr

is the unexplained variance (or variance due to error).  

The raw fraction of explained variance for direction was calculated as: 

Raw FEVdir = Vardir  / Total Var

This quantity was then normalized in two ways.  First, the mean (computed across both time

and trial bins) fraction of explained variance by direction in the baseline fixation period (from

450-200ms before cue onset) was subtracted out.

 FEVdir = (Raw FEVdir ) - (Mean Raw FEVdir during baseline period)
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Then, it was divided by the the maximum fraction of explainable variance (computed across all

time and trial bins):

FEVdir = (FEVdir) / (Maximum of (1 - Varerr)) 

This normalization procedure was used for a few reasons.  First, the differences in firing rate

between cells will impact the amount of explainable variance; this is particularly seen in cells

with low firing rates, since the dearth of spikes places the explainable variance at extremes.

Second, this procedure scales each cell so that comparisons of the changes in direction

information can be quantitatively compiled (through averaging) without biasing the population in

favor of certain cells with very high explained variance.  

Risetime and Peak Selectivity Calculations

Because directly comparing the three dimensional direction selectivity data presented in the

colorplots is extremely difficult, two linear measures were used.  A measure of the timing of

information was used, termed "risetime", and a measure of the strength, or amount, of

information was calculated.  Risetime was defined as the time in each trial bin in learning where

half-maximum selectivity was reached.  The strength of information was defined as the peak

(i.e. maximum) selectivity in each trial bin.  It is important to note that the purpose of these

measures is to pull out the trends observed in the colorplots of direction selectivity.  Thus, these

linear measures were calculated in time windows encompassing the band of information being

studied.  These linear measures were fit with either sigmoid, exponential, or linear functions

depending on the particular trend of the data.  The method of least squares was used to

determine the optimal parameters for the significant fits of each function. 
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Abbreviations

PFC: prefrontal cortex
dlPFC: dorsolateral prefrontal cortex
Cd: caudate nucleus
GPi: internal segment of the globus pallidus
FEF: frontal eye field
BG: basal ganglia
FC: frontal cortex
FEV: fraction of explained variance
FEVdir: fraction of explained variance that is explained by the direction factor
FR: firing rate
FRnorm: normalized firing rate
LFP: local field potential
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