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Abstract

Online, forward-search techniques have demonstratedigiragresults for solv-
ing problems in partially observable environments. Theséniques depend on
the ability to efficiently search and evaluate the set ofdfglieachable from the
current belief. However, enumerating or sampling actibsesvation sequences
to compute the reachable beliefs is computationally demngndoupled with the
need to satisfy real-time constraints, existing onlinead can only search to a
limited depth. In this paper, we propose that policies camgyérerated directly
from thedistribution of the agent’s posterior belief. When the underlying state
distribution is Gaussian, and the observation functionnieaponential family
distribution, we can calculate this distribution of bedigfithout enumerating the
possible observations. This property not only enables paioin problems with
large observation spaces, but also allows us to search degpensidering poli-
cies composed of multi-step action sequences. We presermdbterior Belief
Distribution (PBD) algorithm, an efficient forward-searBl®OMDP planner for
continuous domains, demonstrating that better policiesganerated when we
can perform deeper forward search.

1 Introduction

The Partially Observable Markov Decision Process (POMBR)deneral framework for sequential
decision making in partially observable environments, mvthee agent is unable to exactly observe
the state of its environment. Traditionally, a POMDP solgenerates a policy offline, computing
an action for a set of possible beliefs before policy ex@tutiHowever, for problems with large
domains, offline methods can incur significant computatimst& Recently, online forward-search
methods have demonstrated promising results in problethdavge domains (see [17] for a review),
suggesting that POMDP planning can be performed efficidntlgnly considering the belief states
that are reachable from the agent'’s current belief.

If a POMDP solver is able to search deep enough, it will findap&mal policy for the current
belief [6, 14]. Unfortunately, the number of belief stateachable within deptid is (|A||Z])?,
where| A| and|Z| are the sizes of the action and observation sets. Not only ttheesearch quickly
become intractable aB increases, but online techniques generally have to mektimea con-
straints, which limits the planning time available for edgtehation. Existing online, forward search



algorithms seek to reduce the number of possible obsenstlat have to be explored by using
branch-and-bound [10], Monte Carlo sampling [9] and heigriearch [15, 21] techniques.

Fundamentally, these algorithms still branch on the péssilalividual actions and observations to
determine the set of reachable posterior beliefs. An atera approach would be to consider shal-
low policies composed of multi-step action sequences, @rmactions [20], branching only at the
end of each action sequence. However, to plan with mulg-attion sequences, an algorithm must
have the ability to determine the set of posterior belieé tould result after the action sequence,
since the goal of a POMDP solver is to generate the policyrtteatimizes the agent’s expected dis-
counted reward. This set of beliefs is usually computed lyreerating or sampling from the set of
observation sequences, which is itself a costly processethetes the potential savings of macro-
actions. If it were possible to efficiently characterize th&tribution of posterior beliefs after an
action sequence without enumerating the possible obsemngaforward search POMDP planning
could then be done much more efficiently. If the distributbmer posterior beliefs can be computed
efficiently and is of a low dimension, then sampling from ttistribution requires substantially
fewer samples and much less computation, allowing muclerfagtarch and efficient planning in
POMDP problems with large observation spaces.

In this paper, we demonstrate that when the agent’s beliebhaervation models can be represented
in parametric form, the distribution of the agent’s posiebeliefs can be directly computed for a
multi-step action sequence. Parametric representateresgreviously been proposed [2, 3, 12, 16]
as an alternative for compactly representing high-dinmradibelief spaces, and are especially valu-
able for POMDP problems with continuous state spaces. Bqaby, we focus on problems where
the agent’s belief is reasonably represented as a Gausstahution over a continuous state space,
and where the transition and observation models belong yarember of the exponential fam-
ily of distributions, such as the linear-Gaussian or moitiial distributions that often characterize
POMDP problems. By also constraining the agent’s postértief to the Gaussian parametric rep-
resentation, we can directly compute how the sufficientsstes of the agent’s belief are expected
to evolve over multi-step action sequences. FurthermoreGhussian distributions, we will see
that the second moment of the belief distribution (i.e., ¢beariance) can be computed in amor-
tized O(1) for a given multi-step action sequence, increasing theieffay of the search process.
We present the Posterior Belief Distribution (PBD) aldumit an efficient, POMDP forward search
algorithm that can perform much deeper forward searches.

2 POMDPs

Formally, a POMDP consists of a set of statgsa set of actions4, and a set of observatiois.

It also includes a state-transition mog@éd’|s, a), an observation model z|a, s’), a reward model
rs(s,a), as well as a discount factarand initial beliefbely. The goal of a POMDP solver is to
compute a policyr mapping beliefs to actions : bel — o that will maximize the agent’s expected
total reward over its lifetime. Given a policy and current beliebel, the agent takes an action
a = 7(bel) and obtains an observatian It then updates its belief according to

bel'(s') = 7(bel,a,z) = n p(z|a, s')/ p(s'|s, a)bel(s)ds (1)
seS
wherer(bel, a, z) represents the belief update function apés a normalization constant. Each
policy 7 is also associated with a value functigp : bel — R, specifying the expected total reward
of executing policyr starting frombel

Vi (bel) = max [rp(bel,a) +v ;p(dbel, a)Vzx(7(bel, a, 2))] 2)

where the functiomp (bel, a) = [ _g bel(s)rs(s,a)ds specifies the immediate expected reward of
executing actioru in belief bel. A POMDP solver seeks to find the optimal poligy(bely) that

maximizesV« (belp).

Traditionally, policies have been computed offline, and cless of POMDP solvers that has
achieved particular success is the point-based methodsdi§@ete state spaces, point-based ap-
proaches such as PBVI [11] and HSVI [18] leverage the piesehhear and convex (PWLC) as-
pects of the value function [19] to obtain lower bounds onualkeie function (Eqn. 2), performing



value updates only at selected belief states. The valudifumicas similarly been shown [12] to be
PWLC for continuous state spaces.

3 Forward Search in Parametric Space

Rather than computing a policy for every possible belief
state, forward search techniques avoid the computational
complexity of full policy computation by directing com-
putational effort only towards belief states that are reach
able from the current belief under different actions. These
techniques alternate between a planning and execution
phase, planning online only for the belief at the currehig. 1: A forward search tree. An action is
timestep. During the planning phase, a forward sear@ipsen at each belief node (OR-node), while
algorithm creates an AND-OR tree (Fig. 3) of reachabfd observations must be considered at the
belief states from the current belief state. The tree is G¢tion nodes (AND-node)

panded using action-observation pairs that are admisisiniethe current belief, and the beliefs at
the leaf nodes are found using Eqn. 1. By using a value heulst] that estimates the value at the
fringe nodes, the expected value of executing a policy floencurrent belief can be propagated up
the tree to the root node (Eqn. 2).

To obtain the set of reachable beliefs, existing forwardaealgorithms branch on the possible
actions and observations at each successive depth. Undbety, the branching factor for reasonably
large discrete or continuous action and observation se&sely limits the maximum search depth
achievable in real-time. Even if we restrict our action sptica set of macro-actions, and compute
the expected reward of each macro-action by sampling oaenvsequences of corresponding
length [20], the size of the observation space and samptingpéexity will grow exponentially with
the length of the action sequence.

For a particular macro-action, the probability of the agent T

A . . . Posterior belief given a sampled ...
obtaining an observation sequence is equivalent to thecwservation sequende -
probability of obtaining the posterior belief associated_ -~ .
with that observation sequence. Seen from another an- .
gle, every macro-action generates a distribution over bé
liefs, or a distribution of distributions. If we are able to?®
calculate the distribution over posterior beliefs for gver ™ o -
action sequence, and branch at the end of the action se- state el
guence by sampling posterior beliefs within this distribu-  posterior belicf over all” -
tion, the sampling complexity is then independent of the observation sequerices
macro-action length. Furthermore, the expected rewasrd 7
of an action sequence can then be computed by finding the
expected rewards with respect to that distribution, rather .
than by sampling the possible observations. '
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In this paper, we focus on problems where the agent'’s be-
lief bel = N(p,X) is normally distributed over the state
space, and the observations are drawn from an exporfafi-2: Distribution of posterior beliefs. a) A
tial family distribution [1]. Without loss of generality, G@ussian posterior belief results after incor-
only the observations are modeled as an exponential ff:ting an observation sequence. b) Over
ily distribution here, though the same analysis could possible observation sequences, the dis-

. - ution of posterior means is a Gaussian
applied to the state-transition model. These model Arack line) pand for each posterior mean, a

sumptions imply that the posterior belief is not strictlayssian (blue curve) describes the agent's
Gaussian, since the Gaussian distribution is not a c@@sterior belief.

jugate prior for generic exponential family observation

models. We nevertheless assume that the agent’s posteliefriemains Gaussian, and show in Sec-
tion 4 that the distribution over posterior beliefs is ifselGaussian over Gaussian beliefs (Fig. 3).
We will show that all posterior beliefs in this distributidrave the same covariance, and the pos-
terior means are normally distributed over the continudatesspace. Given an action sequence,
the posterior distribution over beliefs is therefore a jarstribution over the posterior means and

Slate 00 Pasterior mean



the corresponding distribution over states. We can theluatathe expected reward of an action
sequence by performing Monte Carlo integration over thégrifhution of distributions.

4 Gaussian Posterior Prediction

Our state-transition and observation models can be reptexsas follows:
s¢ = Aysp—1 + Brug + 4, sp—1~ N(pe-1,%¢-1), e ~NO,R)  (3)
P(210:) = exp(z/ 0y — b (6:) + e (1)) (4)

We assume that our state-transition model is linear-GansandA4; andB; are the linear transition
matrices. 0; andb;(0,) are respectively the canonical parameter and normalizddictor of the
exponential family distribution that generates the obsgon.

The exponential family encompasses a large set of paranustributions, including the Gaussian
distribution. When the state-transition and observatiamtets are normally distributed and linear
functions of the state, the Kalman filter provides a closauf solution for the posterior belief
(¢, 2¢), given a prior belief (:—1, ¢ —1),

Ty = Agpe—1 + Brug pe =Ty + K (2 — Ciiy) )
_ _ =1 _
S = A1 AT + Ry S = (C7Q'C+%, )Y, (6)

whereC; is the observation matrixiz, and @), are the covariances of the Gaussian process and
measurement noise respectively, ddis the Kalman gaing, andX; are the mean and covariance
after an action is taken but before incorporating the measant.

Egn. 5 and 6 show that for problems with linear-Gaussiaredtansition and observation mod-

els, the covariance update is independent of the obsenvalitained. This is because the Fisher
information associated with the observation modé|,= C’tTQt_lCt, is dependent only on the ob-

servation model parameters, rather than the observati@inelol [4]. For linear-Gaussian models,
M, is also constant across the entire state space.

Unfortunately, the linear-Gaussian assumption is higb$trictive, and most POMDP models have
observation functions that are non-Gaussian. A more gefaa of the Kalman filter update
exists, which allows for a closed-form solution of the pastebelief for problems with observation
models that belong to a larger class of parametric disiobst the exponential family. Building on
statistical economics research for time-series analysisw-Gaussian observations [5], a dynamic
generalized linear model [22] has been shown to provide tpereential family equivalent of the
Kalman filter (efKF). The key idea is to construct linear-Gsian models which approximate the
non-Gaussian exponential family model in the neighborhaioithe conditional modes;|z;. The
approximate linear-Gaussian observation model can thasdxtin a traditional Kalman filter. Since
this idea was developed elsewhere, the derivation of thex fitpresented as an Appendix, and we
present the main equations here.

Constructing the approximate linear-Gaussian model req@omputation of the first two moments
of the distribution and linearizing about the mean estinatevery timestep. For an exponential
family observation model, the first two moments of the disttion [22] are,

Ob.(6;) 02b4(0y)

E(210,) = b, = Y —p = =\t 9, —
(2¢[6e) = b 00, lo,=w,) Var(zl:) = b 00,00F lo.=w (m,) e = Wist),
(7)

whereb, andb; are t_he derivatives of the exponential family distributsonormalization factor,
both linearized about; = W (z,). W(.) is the canonical link function, which maps the states to
canonical parameter values, and depends on the particalaber of the exponential family.

Given an action-observation sequence, the posterior mighe agent'’s belief in the efKF can then
be updated according to

Ay = Agpie—1 + Brug e =Ty + Ki(2 — W(T,)), (8)
S, = A5 AT + R, 2= (S, 4 YY), ©)



where K, = 3,Y;(V;,Y; + b;1)~1 is the efKF Kalman gain, ang, = 6, — b1 - (b, — z) is
the projection of the observation onto the parameter spateecexponential family observation

model.Y; = %\gﬂ_ is the gradient of the exponential family distribution’s\caical parameter,
St lst=p,

linearized abouf, .

While our relaxation of the observation model to the expadiaéfamily necessarily implies that the
Gaussian posterior belief is an approximation of the trustex@r, the Gaussian assumption does
allow the use of a Kalman filter variant, which in turn allonsto approximate our distribution of
posterior beliefs efficiently and in closed-form. In theléaling subsections, we take advantage of
the efKF to compute the distribution of the posterior baligiter a multi-step action sequence. Since
our belief is assumed to be Gaussian, expressing a distribover the posterior beliefs requires us
to have a distribution over the posterior means and coveg®n

4.1 Prediction of Posterior Mean Distribution

Eqn. 8 reveals that the posterior mgandirectly depends on the observation Nevertheless, we
demonstrate in this section that given a current prior bafier an actionpel; ~ N(z,, %:), the
expectedlistributionof the posterior means(y: |z, ) is normally distributed abodqt,.

Given the two moments of the exponential family observatimudel, we can represent the condi-
tional distributionz;|s; according to

Zilse ~ N(W(sy), b ") (10)

~ N(W () + Ye(se — 7). by ) (11)

We can then marginalize ot usingp(:[i,) = [ p(Z|s¢, & )p(s¢|i,)ds; and using linear trans-
formations,

&l ~ N(W (@), YiSeY,” +5;) (12)
B+ Ki(Z = W(E))IE, ~ N, K (VY + b, K (13)
pelfy ~ N(By, EthKtT) (14)

Eqgn. 14 indicates that the posterior mean after a measuteupeatey, is normally distributed
about thez,, with a covariance that depends on the prior covariaicand the observation model
parameterd’; andb,. The observation model parameters are linearized abouyirtbemeany, ;
hence, for an action-observation sequence of length 1,gtengeters are independent of the obser-
vation that will be obtained.

To obtain the posterior mean distribution after a multpstetion sequence update, we first
combine the process and measurement updates by margigabumit i, using p(u:|pi—1) =

I p(pe|72,)p(T | p1e—1 ) dFz,., obtaining
Mt|ﬂt—l ~ N(At,ut—l + Btut,ft}/;f{f) (15)

We assumed above that for a one-step belief upgdate, is a fixed value. For a multi-step update,
the mean is a random variable, i@,_; ~ N(m;_1,S:—1). We can then marginalize out_; to
obtain

e ~ N(Aymy_1 + Byug, Sy + S, Yo KL (16)

Equation 16 can now be used to perform a prediction of thespiostmean distribution after a multi-
step action sequence. Assuming that the agent is currdrittpet and has a particular prior mean
ui—1 ~ N(u:—1,0), the posterior mean after an action sequencE tinesteps is therefore

t+T
perr ~ N(f (-1, Avarr, Buerr, tragr), » | SiYiK]) 17)

i=t

wheref (ui—1, Air1:047, Biv1.+r, urr1.47) IS the deterministic transformation of the means ac-
cording topsrr = Atk pirk—1 + Birk usrr. Since an observation on its own does not shift
the mean valuen, . of the distribution of posterior meansy; ;. is dependent only on the state-

transition model parameters and can be calculated via asigewpdate along the action sequence.



4.2 Single-step Prediction of Covariance

Eqn. 9 dictates how the posterior covariance of the agertiefttan be calculated, after an action
is taken and an observation is obtained. Given that the Fisfermation associated with the ob-
servation modeM; = Y;b,Y,” is independent of the observations, the posterior covegiaan be
computed in closed form, and is independent of the posteréan.

For greater efficiency, it has been shown [13] that for a Kalifilteer model, the process and mea-
surement updates can be compiled into a single linear gafghction by using a factored repre-
sentation of the covariancg&,;_; = Bt_lct‘_ll. Adapting this result to our model, the complete
covariance update step can be written as:

Ve = [gL = B ng]t [21 ]?A‘TTL {g]tl’ (18)

which enables us to collapse multi-step covariance updates single stepl; ;.7 = HiTzl v,,

recovering the posterior covarianke, r from ¥, = BHTCt;lT. OnceV,, .7 is constructed
for a given action sequence, it can be reused for the santnastguence at future beliefs.

Calculating the Fisher information associated with theeobation modelM; again requires us to
perform linearizations about the mean of the agent’s prétiebz, _,. This implies that the covari-
ance update after a multi-step action sequence dependg qosgterior mean after each timestep.
Nevertheless, as shown in Section 4.1, the agent’s expmctaitthe posterior mean after a mea-
surement update,; is a normal distribution around the. Hence, when considering the effect of
taking an action sequence from the agent's current beliefparform our linearizations abopt,
the prior mean at each step along the action sequence.

5 Posterior Belief Distribution (PBD) Algorithm

Section 4 demonstrates that, given the agent’s currergfligli, >, ), the parameters describing the
distribution of posterior beliefs can be computed withoutmerating the observations. In particular,
the posterior covariancé, .+ can be predicted via a transfer function (Eqn. 18), whilepthsterior
meanyur is hormally distributed according to Eqn. 17. These resetigble us to consider a
subset of admissible action sequences and obtain the atbdlistribution of posterior beliefs
without enumerating the corresponding observation sexmpseniWe now present an algorithm, the
Posterior Distribution Prediction (PBD) algorithm, thakés advantage of the results to perform
forward search to much greater depths.

The PBD algorithm, shown in Algs. 1 and 2, builds upon a generiline forward search for
POMDPs [17], alternating between a planning and executi@se at every iteration. During the
planning phase, the next best action sequénggis chosen, and the first actian of this action se-
guence is executed. The agent then updates its current detierding to the observation obtained,
and the cycle repeats.

During the planning phase, thexBaAND() subroutine is executed recursively in a depth-first dearc
manner. The agent first samples a number of multi-step aségnences that it can execute from
its current belief. The choice of these action sequencesmsath-specific. For each of these action
sequences, the algorithm calculates the parameters ofg’'ssposterior belief, i.e., the parame-
ters of the posterior mean distribution;. 1, S;+r according to Eqn. 17, as well as the posterior
covariance’;  r according to Egn. 18. These three sets of parameters areffloéesit statistics of
the distribution of beliefs shown in Fig. 3.

As discussed in Section 3, we then sample from the posteeigefldistribution to instantiate be-
liefs for deeper forward search. Given that the covariarmsele assumed constant, we perform
importance sampling only on the posterior mean distrilmytgeenerating samples of posterior be-
liefs by associating the posterior mean samgles; with the posterior covariancg;.r. These
beliefs are then used to perform an additional layer of déighsearch, and this process repeats
for a pre-determined search degth At the leaf nodes, a value heuristic is used to provide an es-
timate of being at the belief associated with the node. Thakes are then propagated up the tree
(Alg. 2, Eqn. 12), and consists of both the instant rewardsxettuting the action sequence and a



Algorithm 1 Posterior Belief Distribu- Algorithm 2 EXPAND()

tion Algorithm Require: b : Belief node to be expanded,
Require: bo : Agent’s initial belief, d : Depth of expansion undéy
D : Maximum search depth, V4 : Value heuristic function
V4 : Value heuristic function 1: if d = 0then
1: be «— bo 2: V() — Vi(b)
2: while not EXECUTIONEND() do 3. return V(b)
3:  while not PLANNING END() do 4: else
4. Gseq = EXPAND(be, D, V1) 5. V(b) « —0
5: end Wh||e 6: for a” Aseq,i S Aseq do
6:  Execute first actiof; of Gseq 7 V(b,a;) — RB(b, aseq,i)
7:  Obtain new observatiog, 8: Computemyr, Se+r, Lerr  (EQn. 17, 18)
8:  Update current belief 9: Sample set of posterior meafis; }
be «— T(be, Gz, z¢) according toN (my+ 1, Se+1)
9 t+—t+1 10: for all n; do
10: end while 11: b — N(n;, Sitr)
12: V (b, aseq,i) H(V((b; aseq,z')Jr)vp(m\n)mT, Sevr)
X EXPAND(T (b, Gseq,is 2),d — 1
FVRS[8S] | 33 if V(b,a:) > V(b) then
Ave Online| Offline| 14. V(b) <~ V(b, aseq.i)
re- time | time | 7g. at e a.. ; sed
wards | (s) ) 16: endif "
QMDP 12.93 | 0.0001] 9.18 17: end for
HSVI(150s) | 12.89 | 0.035 | 150 | 1g' end for
RTBSS(d1) | 12.97 | 2.13 150 19: end if
PBD(d1,5103)1267 0.19 0 20: return V(b),a;eq

Fig. 3: FVRS results. Algorithm pa-
rameters: HSVI(# seconds), RTBSS(search
depth), PBD(multi-step search depth, # sam-
ples)

Monte Carlo integration of the value estimates from the dathposterior beliefs. At the root, the
algorithm chooses the action sequence with the highestegbdiscounted value.

5.1 Errors Induced by Linearizations

Sampling the distribution of posterior means induces aorem the expected rewards. However,
error bounds can be computed using Hoeffding’s inequality [

" —2n2e?
p(VS (ba aseq,i) -V (b7 aSqui) Z ’}/TLE) S exp _n(Vmaw _ szn)Q ’ (19)

whereVs(.) andV*(.) are the sampled and “exact” value estimates respectiigly, andV,,;, are
the maximum and minimum rewards that could be obtainedyaisdhe number of samples. For a
desired accuracy, we can recover the appropriate number of samples.

In addition, for a generic exponential family observatioodel, calculating the posterior mean and
covariance after a single action (Eqn. 14 and 9) require® Uisi¢arize about the prior mean to
calculate the Jacobiang andb;. When determining the posterior belief distribution atiemulti-
step action sequence (Egn. 17 and 18), we make the assuntiptipwe know the future prior
means at each step along the action sequence, in order tompdiiearization at every step along
that sequence. This assumption is an approximation, dieceiture mean explicitly depends on the
observation sequence. As a result, the Jacobians usedttdatalthe Kalman gain and covariance
are approximate, and the error of the approximation in thienida gains and covariances increases
with macro-action length. Bounds on approximation errorsiie EKF are known to exist [8], and
in future, we plan to provide analysis of how these boundsheansed to determine the length of
the macro-actions.



6 Empirical Results

We provide initial results demonstrating the performarfde® PBD algorithm. Unfortunately, most
existing benchmark POMDP problems do not require POMDPesslio search deeply to generate
good policies. For example, the Rocksample problem, caibyiproposed in [18], and the extension
FieldVisionRockSample (FVRS) problem [15] both allow simppproximation techniques to per-
form well. In the FVRS problem, an agent explores and sanmplelss in a grid world. The agent is
fully aware of the position of both itself and the rocks. Atkdimestep, it receives a binary, noisy
observation of the value of each rock, and the observatioaracy increases as the agent moves
closer to the rock.

The original Rocksample and FVRS problems appear easisabla with existing POMDP tech-
nigues such as HSVI [18] and AEMS [15]. Moving to sample thekrimvolves the same actions as
moving to acquire more information of the rock. For thesebfgms, a greedy policy of finding the
shortest path to all the rocks is a good approximation to thteral policy. Fig. 3 shows that our
algorithm is competitive with offline solvers such as HSMIf Buggests that even a naive QMDP
solver will perform well. Our PBD algorithm performs sligypoorer since it approximates the
discrete state space as continuous, but the error inducaaly,iis not statistically significant. For
all the experiments reported in this paper, we adapted thél it§plementation from the ZMDP
software packade while our RTBSS implementation uses the QMDP and HSVI algwtors as
upper and lower bounds on the value function. HSVI ran in Gstile we ran the QMDP, RTBSS,
and PBD algorithms in Matlab.

To better test the algorithms, we propose the Informatioar&@e RockSample problem (ISRS)
(Fig. 4), modifying the FVRS problem in two ways. We introéua set of beacons (shown as
yellow triangles) that each correspond to a rock (shown @ggjrcles). Rather than the observation
accuracy depend on the proximity to each rock, the agemiust instead move to the beacBi; ;

to get better information. Second, we modified the rock &R, ; to each have a continuous
value of between 0 and 1, rather than being a binary-valuiedl$e agent continues to receive a
binary, noisy observation of the value of each raegkaccording to:

—4llr¢—RB; ¢ll2

0.5+ (m —0.5)2 Do zig =1
O: p(zit|RViy =m,ry, RBit) = —allry—RB; 43 (20)
05— (m—05)2" Do z,=0

whereDy is a tuning parameter that controls how quickly the accucditiie observations decrease
with greater distance between the agent and the beacongéhéssensor can therefore be modeled
as a Bernoulli observation model, and the observations ssenaed to be more accurate than an
unbiased coin. The agent obtains a large reward if it sangptesk that has a high value, but incurs
a large cost for wrongly doing so. Small costs are incurredrfoving around the environment.

6.1 Comparison with other algorithms

The ISRS problem was used to compare the PBD algorithm dgaifast upper bound (QMDP),
a point-based offline value iteration technique (HSVI) amdaaline forward search algorithm
(RTBSS). Macro-actions were generated for the PBD algoritly sampling robot poses in the
grid world and computing the sequence of actions necessasath the sampled pose. Fig. 4 and
6 illustrate the fundamentally different policies geneddby our PBD algorithm, relative to existing
techniques. In Fig. 4, the RTBSS solver obtains an observatiggesting that rock 1 is valuable.
Unfortunately, its inability to search beyond depth 1 catisto fail to realize that good information
about rock 1 can be obtained by making a short detour. Insitdaehds towards rock 1, but because
subsequent observations are noisy, due to distance frobeteon, the solver is unable to commit
to sampling the rock and is stuck at a local minimum. In casttrlne PBD solver (Fig. 6) is able
to evaluate the value of making a detour when seeking infoomabout rock 5. Subsequently, the
agent moves to the region with multiple beacons, concluussthere is little value left to sample,
and exits the problem.

Fig. 5 reports the performance of the different algoritheséetd on the ISRS problem. The problem
was initialized with different hidden values of the rocksda0 trials were conducted for each sim-
ulation. The different algorithms were also initializedhvlifferent offline processing time (HSVI),

1ZMDP Software for POMDP and MDP Planning. http://www.csicetuA-trey/zmdp/



ISRS[B,5] (2304s, 53, 320
Ave Online| Offline
#l £ re- time(s) time(s) | [% La
i £z wards Az
OMDP 9.43 | 0.0001 104 e ——
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) RTBSS(d1) | 28.08 | 2.88 150 —
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Fig. 4: ISRS world. Blue IIneézig. 5: Performance of POMDP solvers in ISREI9- 6: Example PBD policy
indicates example RTBS

policy problem

different search depth (RTBSS), and different posterioamg&amples (PBD). The results demon-
strate that the PBD algorithm is able to perform significabttter than other existing algorithms,
thereby demonstrating the value of searching deeper.

7 Conclusion and Discussion

We have demonstrated the ability to perform belief updatesilti-step action sequences in closed
form for models that have specific parametric represemtsatid/hen the models are linear-Gaussian,
our expression for the posterior belief distribution attemulti-step action sequence is exact. For
observation models that are members of the exponentialyffathe belief update can be approx-
imated by using a linearized variant of the Kalman filter. Byirly able to compute the agent's
distribution of posterior beliefs after multi-step actisequences, we developed an algorithm that
can perform deeper forward search when planning under tawest While we may sacrifice an
exhaustive search over all action sequences up of a patirgth, our algorithm enables us to
search to an equivalent length of multi-step action segenchis effectively allows us to search
deeper, allowing us to discover policies that would otheewiot have been found with a shallow
search depth.

In contrast to most POMDP solvers, our algorithm assumegitesagent’s belief and observation
models are representable as particular classes of pafadistributions. This necessary implies that
our algorithm is not a generic POMDP solver. Neverthelesdyelieve that not only do these classes
of probability distributions represent a wide variety ofibedistributions, but also that continuous,
parametric representations are our only solution for amgithe curse of dimensionality [2], espe-
cially as we seek to solve larger POMDP problems in futureaddition, the notion of predicting
the distribution of posterior beliefs should be extendable broader class of belief representations.
Exponential family distributions that are conjugate psito exponential family observation models
are attractive candidates for representing the beliefespsince the posterior belief after a belief
update belongs to the same parametric class as the prief.beli
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Appendix A: Exponential Family Kalman Filter

Building on statistical economics research for time-seaigalysis of non-Gaussian observations [5],
we present the Kalman filter equivalent for systems withdim@aussian state-transitions and obser-
vation models that belong to the exponential family of disttions.

The state-transition and observation models can be remessas follow:
s¢ = Aysp—1 + Brug + €4, sp-1 ~ N(pe—1,%¢-1), g~ N(0,Ry)  (21)
P(210:) = exp(z 0; — by(6:) + re(21)), 0 = W(s¢) (22)

For the state-transition mode, is the system’s hidden state; is the control actions4; and B;
are the linear transition matrices, ands the state-transition Gaussian noise with covaridice

The observation model belongs to the exponential family isfributions. 6, and b,(6;) are the
canonical parameter and normalization factor of the distion, andi?/(.) maps the states to canon-
ical parameter valued¥ (.) depends on the particular member of the exponential farRily.ease
of notation, we let

Bi(2e]60r) = —logp(2410:) = —2/ 0, + by (0r) + ke (2) (23)
Following the traditional Kalman filter, the process updzda be written as
Et = AtILLtfl + Bt’ll,t, St = AtEt,lAf + Rt (24)

wherefz, andY; are the mean and covariances of the posterior belief aféepibcess update but
before the measurement udpate. For the measurement upedateek to find the conditional mode

pe = arg maxp(se |2¢) (25)
= argmax p(2; |s¢)bel(s;) (Bayes rule) (26)
= argmax p(z;6;)bel(s;) (27)

1 —
= argmsaxexp(—Jt), whereJ; = —log p(2¢|0:) + 5(5t 1) S (se— 1)

(28)
o % - 3@(%7915)% w1 =
= 0= 3825 St:ll«ti 691& 8St + Et (H’t :ut)’ (29)
Taking the derivative of, = TV (s;) about the prior meap,, we let
v, = 2 (30)
St St:ﬁt
Similarly, performing Taylor expansion d#-%) aboutd, = W (7,),
35t(2t|9t) 35t(2t|9t) 625t(2t|9t) 7
= 0, — 0 31
0, 9 oz, 06,007 Gt:@( e =B (1)
b 0 A _
M =0 + B¢(0: — 04) (32)
00
. 0
where (B == (=27 0; + bi(0:) — ke(21)) . (Egn. 23) (33)
00, 9,—3,
Ob:(6:)
= — 4
00, 0,=0, “ (34)
Bt :i)t — Zt (35)
5 8Qﬂt(zt|9t) -
and ﬂt —W o, (ot - et) (36)
Be =by (37)
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Plugging Equations 35 and 37 into Equation 32, and then igteakon 29,

Yy (b — 20+ b6 — 01) = =5, (e — 1) (38)

Yy by (b by — 20) — 0, + 00) = — 5, (e — 7,) (39)
Yy be((0 — by (be — 20)) — 00) =5, ( —Ty) (40)
Yy bi(Z — W (sy)) :it_ (e — 1) (41)

wherez, = (6, — b; *(b, — z)) is the projection of the observation onto the parameterespéithe
exponential family distribution, and is independentsef In Equation 41 we substitutetj using
Equation 22.

Mean Update

Using Equation 41 and substitutipg for s,

=1

Sy (e — 1) = Ya be(Z — W () (42)
=Y by(Z — W () + W(H,) — W(i,) (43)
=Y, bi(2 — W(R,)) — Yz be(W () — W(T,)) (44)
LinearizingW (s,) aboutz,,

W(se) = W) + W' (se)s,=p, (5¢ — Tiy) (45)

— W(E) + Y (e — T5y) (46)

= 5 e —T) = Vi (B~ W(E)) — Ve beYs (e — Ty) (47)
Y be(Ze — W) = (5, + Yo beYa ) (e — ,) (48)
=3 (e — 1) (49)

= =T = Y b(E - W(R,) (50)

whereY.,Y; b; = K; is the Kalman gain for non-Gaussian exponential familyritigtions. Via a
standard transformation, the Kalman gain can be writtearim$ of covariances other thay,

Ky =54Y, (Yi5,Y, + b, 1)7! (51)
and e = i, + Ke( — W(H,)) (52)

Covariance Update

Given a Gaussian posterior beli%% is the inverse of the covariance of the agent’s belief

o ‘?;St (53)
= S = ) = Vi b — Wsn) 54
=5, 1Y by, (55)

=% = (5, +Y bY;) ! (56)
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