
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2009-044 September 23, 2009

Efficient POMDP Forward Search by
Predicting the Posterior Belief Distribution
Ruijie He and Nicholas Roy

Efficient POMDP Forward Search by Predicting the
Posterior Belief Distribution

Ruijie He
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02142
ruijie@mit.edu

Nicholas Roy
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, MA 02142
nickroy@mit.edu

Abstract

Online, forward-search techniques have demonstrated promising results for solv-
ing problems in partially observable environments. These techniques depend on
the ability to efficiently search and evaluate the set of beliefs reachable from the
current belief. However, enumerating or sampling action-observation sequences
to compute the reachable beliefs is computationally demanding; coupled with the
need to satisfy real-time constraints, existing online solvers can only search to a
limited depth. In this paper, we propose that policies can begenerated directly
from thedistribution of the agent’s posterior belief. When the underlying state
distribution is Gaussian, and the observation function is an exponential family
distribution, we can calculate this distribution of beliefs without enumerating the
possible observations. This property not only enables us toplan in problems with
large observation spaces, but also allows us to search deeper by considering poli-
cies composed of multi-step action sequences. We present the Posterior Belief
Distribution (PBD) algorithm, an efficient forward-searchPOMDP planner for
continuous domains, demonstrating that better policies are generated when we
can perform deeper forward search.

1 Introduction

The Partially Observable Markov Decision Process (POMDP) is a general framework for sequential
decision making in partially observable environments, when the agent is unable to exactly observe
the state of its environment. Traditionally, a POMDP solvergenerates a policy offline, computing
an action for a set of possible beliefs before policy execution. However, for problems with large
domains, offline methods can incur significant computation costs. Recently, online forward-search
methods have demonstrated promising results in problems with large domains (see [17] for a review),
suggesting that POMDP planning can be performed efficientlyby only considering the belief states
that are reachable from the agent’s current belief.

If a POMDP solver is able to search deep enough, it will find theoptimal policy for the current
belief [6, 14]. Unfortunately, the number of belief states reachable within depthD is (|A||Z|)D,
where|A| and|Z| are the sizes of the action and observation sets. Not only does the search quickly
become intractable asD increases, but online techniques generally have to meet real-time con-
straints, which limits the planning time available for eachiteration. Existing online, forward search

1

algorithms seek to reduce the number of possible observations that have to be explored by using
branch-and-bound [10], Monte Carlo sampling [9] and heuristic search [15, 21] techniques.

Fundamentally, these algorithms still branch on the possible individual actions and observations to
determine the set of reachable posterior beliefs. An alternative approach would be to consider shal-
low policies composed of multi-step action sequences, or macro-actions [20], branching only at the
end of each action sequence. However, to plan with multi-step action sequences, an algorithm must
have the ability to determine the set of posterior beliefs that could result after the action sequence,
since the goal of a POMDP solver is to generate the policy thatmaximizes the agent’s expected dis-
counted reward. This set of beliefs is usually computed by enumerating or sampling from the set of
observation sequences, which is itself a costly process andreduces the potential savings of macro-
actions. If it were possible to efficiently characterize thedistribution of posterior beliefs after an
action sequence without enumerating the possible observations, forward search POMDP planning
could then be done much more efficiently. If the distributionover posterior beliefs can be computed
efficiently and is of a low dimension, then sampling from thisdistribution requires substantially
fewer samples and much less computation, allowing much faster search and efficient planning in
POMDP problems with large observation spaces.

In this paper, we demonstrate that when the agent’s belief and observation models can be represented
in parametric form, the distribution of the agent’s posterior beliefs can be directly computed for a
multi-step action sequence. Parametric representations have previously been proposed [2, 3, 12, 16]
as an alternative for compactly representing high-dimensional belief spaces, and are especially valu-
able for POMDP problems with continuous state spaces. Specifically, we focus on problems where
the agent’s belief is reasonably represented as a Gaussian distribution over a continuous state space,
and where the transition and observation models belong to any member of the exponential fam-
ily of distributions, such as the linear-Gaussian or multinomial distributions that often characterize
POMDP problems. By also constraining the agent’s posteriorbelief to the Gaussian parametric rep-
resentation, we can directly compute how the sufficient statistics of the agent’s belief are expected
to evolve over multi-step action sequences. Furthermore, for Gaussian distributions, we will see
that the second moment of the belief distribution (i.e., thecovariance) can be computed in amor-
tizedO(1) for a given multi-step action sequence, increasing the efficiency of the search process.
We present the Posterior Belief Distribution (PBD) algorithm, an efficient, POMDP forward search
algorithm that can perform much deeper forward searches.

2 POMDPs

Formally, a POMDP consists of a set of statesS, a set of actionsA, and a set of observationsZ.
It also includes a state-transition modelp(s′|s, a), an observation modelp(z|a, s′), a reward model
rS(s, a), as well as a discount factorγ and initial beliefbel0. The goal of a POMDP solver is to
compute a policyπ mapping beliefs to actionsπ : bel → a that will maximize the agent’s expected
total reward over its lifetime. Given a policyπ and current beliefbel, the agent takes an action
a = π(bel) and obtains an observationz. It then updates its belief according to

bel′(s′) = τ(bel, a, z) = η p(z|a, s′)

∫

s∈S

p(s′|s, a)bel(s)ds (1)

whereτ(bel, a, z) represents the belief update function andη is a normalization constant. Each
policy π is also associated with a value functionVπ : bel → R, specifying the expected total reward
of executing policyπ starting frombel

Vπ(bel) = max
a∈A

[

rB(bel, a) + γ
∑

z∈Z

p(z|bel, a)Vπ(τ(bel, a, z))
]

(2)

where the functionrB(bel, a) =
∫

s∈S
bel(s)rS(s, a)ds specifies the immediate expected reward of

executing actiona in belief bel. A POMDP solver seeks to find the optimal policyπ∗(bel0) that
maximizesVπ∗(bel0).

Traditionally, policies have been computed offline, and oneclass of POMDP solvers that has
achieved particular success is the point-based methods. For discrete state spaces, point-based ap-
proaches such as PBVI [11] and HSVI [18] leverage the piecewise-linear and convex (PWLC) as-
pects of the value function [19] to obtain lower bounds on thevalue function (Eqn. 2), performing

2

value updates only at selected belief states. The value function has similarly been shown [12] to be
PWLC for continuous state spaces.

3 Forward Search in Parametric Space

Fig. 1: A forward search tree. An action is
chosen at each belief node (OR-node), while
all observations must be considered at the
action nodes (AND-node)

Rather than computing a policy for every possible belief
state, forward search techniques avoid the computational
complexity of full policy computation by directing com-
putational effort only towards belief states that are reach-
able from the current belief under different actions. These
techniques alternate between a planning and execution
phase, planning online only for the belief at the current
timestep. During the planning phase, a forward search
algorithm creates an AND-OR tree (Fig. 3) of reachable
belief states from the current belief state. The tree is ex-
panded using action-observation pairs that are admissiblefrom the current belief, and the beliefs at
the leaf nodes are found using Eqn. 1. By using a value heuristic [17] that estimates the value at the
fringe nodes, the expected value of executing a policy from the current belief can be propagated up
the tree to the root node (Eqn. 2).

To obtain the set of reachable beliefs, existing forward search algorithms branch on the possible
actions and observations at each successive depth. Unfortunately, the branching factor for reasonably
large discrete or continuous action and observation sets severely limits the maximum search depth
achievable in real-time. Even if we restrict our action space to a set of macro-actions, and compute
the expected reward of each macro-action by sampling observation sequences of corresponding
length [20], the size of the observation space and sampling complexity will grow exponentially with
the length of the action sequence.

Fig. 2: Distribution of posterior beliefs. a) A
Gaussian posterior belief results after incor-
porating an observation sequence. b) Over
all possible observation sequences, the dis-
tribution of posterior means is a Gaussian
(black line), and for each posterior mean, a
Gaussian (blue curve) describes the agent’s
posterior belief.

For a particular macro-action, the probability of the agent
obtaining an observation sequence is equivalent to the
probability of obtaining the posterior belief associated
with that observation sequence. Seen from another an-
gle, every macro-action generates a distribution over be-
liefs, or a distribution of distributions. If we are able to
calculate the distribution over posterior beliefs for every
action sequence, and branch at the end of the action se-
quence by sampling posterior beliefs within this distribu-
tion, the sampling complexity is then independent of the
macro-action length. Furthermore, the expected reward
of an action sequence can then be computed by finding the
expected rewards with respect to that distribution, rather
than by sampling the possible observations.

In this paper, we focus on problems where the agent’s be-
lief bel = N(µ, Σ) is normally distributed over the state
space, and the observations are drawn from an exponen-
tial family distribution [1]. Without loss of generality,
only the observations are modeled as an exponential fam-
ily distribution here, though the same analysis could be
applied to the state-transition model. These model as-
sumptions imply that the posterior belief is not strictly
Gaussian, since the Gaussian distribution is not a con-
jugate prior for generic exponential family observation
models. We nevertheless assume that the agent’s posterior belief remains Gaussian, and show in Sec-
tion 4 that the distribution over posterior beliefs is itself a Gaussian over Gaussian beliefs (Fig. 3).
We will show that all posterior beliefs in this distributionhave the same covariance, and the pos-
terior means are normally distributed over the continuous state space. Given an action sequence,
the posterior distribution over beliefs is therefore a joint distribution over the posterior means and

3

the corresponding distribution over states. We can then evaluate the expected reward of an action
sequence by performing Monte Carlo integration over this distribution of distributions.

4 Gaussian Posterior Prediction

Our state-transition and observation models can be represented as follows:

st = Atst−1 + Btut + εt, st−1 ∼ N(µt−1, Σt−1), εt ∼ N(0, Rt) (3)

p(zt|θt) = exp(zT
t θt − bt(θt) + κt(zt)) (4)

We assume that our state-transition model is linear-Gaussian, andAt andBt are the linear transition
matrices. θt and bt(θt) are respectively the canonical parameter and normalization factor of the
exponential family distribution that generates the observation.

The exponential family encompasses a large set of parametric distributions, including the Gaussian
distribution. When the state-transition and observation models are normally distributed and linear
functions of the state, the Kalman filter provides a closed-form solution for the posterior belief
(µt, Σt), given a prior belief (µt−1, Σt−1),

µt = Atµt−1 + Btut µt = µt + Kt(zt − Ctµt) (5)

Σt = AtΣt−1A
T
t + Rt Σt = (CT

t Q−1
t Ct + Σ

−1

t)−1, (6)

whereCt is the observation matrix,Rt andQt are the covariances of the Gaussian process and
measurement noise respectively, andKt is the Kalman gain.µt andΣt are the mean and covariance
after an action is taken but before incorporating the measurement.

Eqn. 5 and 6 show that for problems with linear-Gaussian state-transition and observation mod-
els, the covariance update is independent of the observation obtained. This is because the Fisher
information associated with the observation model,Mt = CT

t Q−1
t Ct, is dependent only on the ob-

servation model parameters, rather than the observation obtained [4]. For linear-Gaussian models,
Mt is also constant across the entire state space.

Unfortunately, the linear-Gaussian assumption is highly restrictive, and most POMDP models have
observation functions that are non-Gaussian. A more general form of the Kalman filter update
exists, which allows for a closed-form solution of the posterior belief for problems with observation
models that belong to a larger class of parametric distributions, the exponential family. Building on
statistical economics research for time-series analysis of non-Gaussian observations [5], a dynamic
generalized linear model [22] has been shown to provide the exponential family equivalent of the
Kalman filter (efKF). The key idea is to construct linear-Gaussian models which approximate the
non-Gaussian exponential family model in the neighborhoodof the conditional mode,st|zt. The
approximate linear-Gaussian observation model can then beused in a traditional Kalman filter. Since
this idea was developed elsewhere, the derivation of the filter is presented as an Appendix, and we
present the main equations here.

Constructing the approximate linear-Gaussian model requires computation of the first two moments
of the distribution and linearizing about the mean estimateat every timestep. For an exponential
family observation model, the first two moments of the distribution [22] are,

E(zt|θt) = ḃt =
∂bt(θt)

∂θt

∣

∣

∣

θt=W (µt)
V ar(zt|θt) = b̈t =

∂2bt(θt)

∂θt∂θT
t

∣

∣

∣

θt=W (µt)
θt = W (st),

(7)

where ḃt and b̈t are the derivatives of the exponential family distribution’s normalization factor,
both linearized aboutθt = W (µt). W (.) is the canonical link function, which maps the states to
canonical parameter values, and depends on the particular member of the exponential family.

Given an action-observation sequence, the posterior mean of the agent’s belief in the efKF can then
be updated according to

µt = Atµt−1 + Btut µt = µt + K̃t(z̃t −W (µt)), (8)

Σt = AtΣt−1A
T
t + Rt Σt = (Σ

−1

t + Ytb̈tY
T
t)−1, (9)

4

whereK̃t = ΣtYt(YtΣtYt + b̈−1
t)−1 is the efKF Kalman gain, and̃zt = θt − b̈−1

t · (ḃt − zt) is
the projection of the observation onto the parameter space of the exponential family observation
model.Yt = ∂θt

∂st

∣

∣

st=µt

is the gradient of the exponential family distribution’s canonical parameter,
linearized aboutµt.

While our relaxation of the observation model to the exponential family necessarily implies that the
Gaussian posterior belief is an approximation of the true posterior, the Gaussian assumption does
allow the use of a Kalman filter variant, which in turn allows us to approximate our distribution of
posterior beliefs efficiently and in closed-form. In the following subsections, we take advantage of
the efKF to compute the distribution of the posterior beliefs after a multi-step action sequence. Since
our belief is assumed to be Gaussian, expressing a distribution over the posterior beliefs requires us
to have a distribution over the posterior means and covariances.

4.1 Prediction of Posterior Mean Distribution

Eqn. 8 reveals that the posterior meanµt directly depends on the observationzt. Nevertheless, we
demonstrate in this section that given a current prior belief after an action,belt ∼ N(µt, Σt), the
expecteddistributionof the posterior meansp(µt|µt) is normally distributed aboutµt.

Given the two moments of the exponential family observationmodel, we can represent the condi-
tional distributionz̃t|st according to

z̃t|st ∼ N(W (st), b̈
−1
t) (10)

∼ N(W (µt) + Yt(st − µt), b̈
−1
t) (11)

We can then marginalize outst usingp(z̃t|µt) =
∫

p(z̃t|st, µt)p(st|µt)dst and using linear trans-
formations,

z̃t|µt ∼ N(W (µt), YtΣtY
T
t + b̈−1

t) (12)

µt + K̃t(z̃t −W (µt))|µt ∼ N(µt, K̃t(YtΣtY
T
t + b̈−1

t)K̃T
t) (13)

µt|µt ∼ N(µt, ΣtYtK̃
T
t) (14)

Eqn. 14 indicates that the posterior mean after a measurement updateµt is normally distributed
about theµt, with a covariance that depends on the prior covarianceΣt and the observation model
parametersYt and b̈t. The observation model parameters are linearized about theprior meanµt;
hence, for an action-observation sequence of length 1, the parameters are independent of the obser-
vation that will be obtained.

To obtain the posterior mean distribution after a multi-step action sequence update, we first
combine the process and measurement updates by marginalizing out µt using p(µt|µt−1) =
∫

p(µt|µt)p(µt|µt−1)dµt, obtaining

µt|µt−1 ∼ N(Atµt−1 + Btut, ΣtYtK̃
T
t) (15)

We assumed above that for a one-step belief update,µt−1 is a fixed value. For a multi-step update,
the mean is a random variable, i.e.µt−1 ∼ N(mt−1, St−1). We can then marginalize outµt−1 to
obtain

µt ∼ N(Atmt−1 + Btut, St−1 + ΣtYtK̃
T
t) (16)

Equation 16 can now be used to perform a prediction of the posterior mean distribution after a multi-
step action sequence. Assuming that the agent is currently at time t and has a particular prior mean
µt−1 ∼ N(µt−1, 0), the posterior mean after an action sequence ofT timesteps is therefore

µt+T ∼ N(f(µt−1, At:t+T , Bt:t+T , ut:t+T),

t+T
∑

i=t

ΣiYiK̃
T
i) (17)

wheref(µt−1, At+1:t+T , Bt+1:t+T , ut+1:t+T) is the deterministic transformation of the means ac-
cording toµt+k = At+k µt+k−1 + Bt+k ut+k. Since an observation on its own does not shift
the mean valuemt+k of the distribution of posterior means,mt+k is dependent only on the state-
transition model parameters and can be calculated via a recursive update along the action sequence.

5

4.2 Single-step Prediction of Covariance

Eqn. 9 dictates how the posterior covariance of the agent’s belief can be calculated, after an action
is taken and an observation is obtained. Given that the Fisher information associated with the ob-
servation modelMt = Ytb̈tY

T
t is independent of the observations, the posterior covariance can be

computed in closed form, and is independent of the posteriormean.

For greater efficiency, it has been shown [13] that for a Kalman filter model, the process and mea-
surement updates can be compiled into a single linear transfer function by using a factored repre-
sentation of the covariance,Σt−1 = Bt−1C

−1
t−1. Adapting this result to our model, the complete

covariance update step can be written as:

Ψt =

[

B
C

]

t

=

[

0 I

I Y b̈Y

]

t

[

0 A−T

A RA−T

]

t

[

B
C

]

t−1

, (18)

which enables us to collapse multi-step covariance updatesinto a single stepΨt+1:T =
∏T

i=1 Ψi,
recovering the posterior covarianceΣt+T from Σt+T = Bt+T C−1

t+T . OnceΨt+1:T is constructed
for a given action sequence, it can be reused for the same action sequence at future beliefs.

Calculating the Fisher information associated with the observation modelMt again requires us to
perform linearizations about the mean of the agent’s prior belief µt−1. This implies that the covari-
ance update after a multi-step action sequence depends on the posterior mean after each timestep.
Nevertheless, as shown in Section 4.1, the agent’s expectation of the posterior mean after a mea-
surement updateµt+1 is a normal distribution around theµt. Hence, when considering the effect of
taking an action sequence from the agent’s current belief, we perform our linearizations aboutµt,
the prior mean at each step along the action sequence.

5 Posterior Belief Distribution (PBD) Algorithm

Section 4 demonstrates that, given the agent’s current belief (µt, Σt), the parameters describing the
distribution of posterior beliefs can be computed without enumerating the observations. In particular,
the posterior covarianceΣt+T can be predicted via a transfer function (Eqn. 18), while theposterior
meanµt+T is normally distributed according to Eqn. 17. These resultsenable us to consider a
subset of admissible action sequences and obtain the associated distribution of posterior beliefs
without enumerating the corresponding observation sequences. We now present an algorithm, the
Posterior Distribution Prediction (PBD) algorithm, that takes advantage of the results to perform
forward search to much greater depths.

The PBD algorithm, shown in Algs. 1 and 2, builds upon a generic online forward search for
POMDPs [17], alternating between a planning and execution phase at every iteration. During the
planning phase, the next best action sequenceâseq is chosen, and the first actionat of this action se-
quence is executed. The agent then updates its current belief according to the observation obtained,
and the cycle repeats.

During the planning phase, the EXPAND() subroutine is executed recursively in a depth-first search
manner. The agent first samples a number of multi-step actionsequences that it can execute from
its current belief. The choice of these action sequences is domain-specific. For each of these action
sequences, the algorithm calculates the parameters of the agent’s posterior belief, i.e., the parame-
ters of the posterior mean distributionmt+T , St+T according to Eqn. 17, as well as the posterior
covarianceΣt+T according to Eqn. 18. These three sets of parameters are the sufficient statistics of
the distribution of beliefs shown in Fig. 3.

As discussed in Section 3, we then sample from the posterior belief distribution to instantiate be-
liefs for deeper forward search. Given that the covariance can be assumed constant, we perform
importance sampling only on the posterior mean distribution, generating samples of posterior be-
liefs by associating the posterior mean samples{ni} with the posterior covarianceΣt+T . These
beliefs are then used to perform an additional layer of depth-first search, and this process repeats
for a pre-determined search depthD. At the leaf nodes, a value heuristic is used to provide an es-
timate of being at the belief associated with the node. Thesevalues are then propagated up the tree
(Alg. 2, Eqn. 12), and consists of both the instant rewards ofexecuting the action sequence and a

6

Algorithm 1 Posterior Belief Distribu-
tion Algorithm
Require: b0 : Agent’s initial belief,

D : Maximum search depth,
Vh : Value heuristic function

1: bc ← b0

2: while not EXECUTIONEND() do
3: while not PLANNING END() do
4: âseq = EXPAND(bc, D, Vh)
5: end while
6: Execute first action̂at of âseq

7: Obtain new observationzt

8: Update current belief
bc ← τ (bc, ât, zt)

9: t← t + 1
10: end while

FVRS[8,5]
Ave
re-
wards

Online
time
(s)

Offline
time
(s)

QMDP 12.93 0.0001 9.18
HSVI(150s) 12.89 0.035 150
RTBSS(d1) 12.97 2.13 150
PBD(d1,s100)12.67 0.19 0

Fig. 3: FVRS results. Algorithm pa-
rameters: HSVI(# seconds), RTBSS(search
depth), PBD(multi-step search depth, # sam-
ples)

Algorithm 2 EXPAND()
Require: b : Belief node to be expanded,

d : Depth of expansion underb,
Vh : Value heuristic function

1: if d = 0 then
2: V (b)← Vh(b)
3: return V (b)
4: else
5: V (b)← −∞
6: for all aseq,i ∈ Aseq do
7: V (b, ai)← RB(b, aseq,i)
8: Computemt+T , St+T , Σt+T (Eqn. 17, 18)
9: Sample set of posterior means{ni}

according toN(mt+T , St+T)
10: for all ni do
11: b′ ← N(ni, Σt+T)
12: V (b, aseq,i)← V (b, aseq,i)+γp(ni|mt+T , St+T)

×EXPAND(τ (b′, aseq,i, z), d− 1)
13: if V (b, ai) > V (b) then
14: V (b)← V (b, aseq,i)
15: a⋆

seq ← aseq,i

16: end if
17: end for
18: end for
19: end if
20: return V (b), a⋆

seq

Monte Carlo integration of the value estimates from the sampled posterior beliefs. At the root, the
algorithm chooses the action sequence with the highest expected discounted value.

5.1 Errors Induced by Linearizations

Sampling the distribution of posterior means induces an error on the expected rewards. However,
error bounds can be computed using Hoeffding’s inequality [7],

p(VS(b, aseq,i)− V ∗(b, aseq,i) ≥ γnǫ) ≤ exp

(

−
−2n2ǫ2

n(Vmax − Vmin)2

)

, (19)

whereVS(.) andV ∗(.) are the sampled and “exact” value estimates respectively,Vmax andVmin are
the maximum and minimum rewards that could be obtained, andn is the number of samples. For a
desired accuracyǫ, we can recover the appropriate number of samples.

In addition, for a generic exponential family observation model, calculating the posterior mean and
covariance after a single action (Eqn. 14 and 9) requires us to linearize about the prior mean to
calculate the JacobiansYt andb̈t. When determining the posterior belief distribution aftera multi-
step action sequence (Eqn. 17 and 18), we make the assumptionthat we know the future prior
means at each step along the action sequence, in order to perform linearization at every step along
that sequence. This assumption is an approximation, since the future mean explicitly depends on the
observation sequence. As a result, the Jacobians used to calculate the Kalman gain and covariance
are approximate, and the error of the approximation in the Kalman gains and covariances increases
with macro-action length. Bounds on approximation errors for the EKF are known to exist [8], and
in future, we plan to provide analysis of how these bounds canbe used to determine the length of
the macro-actions.

7

6 Empirical Results

We provide initial results demonstrating the performance of the PBD algorithm. Unfortunately, most
existing benchmark POMDP problems do not require POMDP solvers to search deeply to generate
good policies. For example, the Rocksample problem, originally proposed in [18], and the extension
FieldVisionRockSample (FVRS) problem [15] both allow simple approximation techniques to per-
form well. In the FVRS problem, an agent explores and samplesrocks in a grid world. The agent is
fully aware of the position of both itself and the rocks. At each timestep, it receives a binary, noisy
observation of the value of each rock, and the observation accuracy increases as the agent moves
closer to the rock.

The original Rocksample and FVRS problems appear easily solvable with existing POMDP tech-
niques such as HSVI [18] and AEMS [15]. Moving to sample the rock involves the same actions as
moving to acquire more information of the rock. For these problems, a greedy policy of finding the
shortest path to all the rocks is a good approximation to the optimal policy. Fig. 3 shows that our
algorithm is competitive with offline solvers such as HSVI, but suggests that even a naive QMDP
solver will perform well. Our PBD algorithm performs slightly poorer since it approximates the
discrete state space as continuous, but the error induced, if any, is not statistically significant. For
all the experiments reported in this paper, we adapted the HSVI implementation from the ZMDP
software package1, while our RTBSS implementation uses the QMDP and HSVI alpha-vectors as
upper and lower bounds on the value function. HSVI ran in C++,while we ran the QMDP, RTBSS,
and PBD algorithms in Matlab.

To better test the algorithms, we propose the Information Search RockSample problem (ISRS)
(Fig. 4), modifying the FVRS problem in two ways. We introduce a set of beacons (shown as
yellow triangles) that each correspond to a rock (shown as grey circles). Rather than the observation
accuracy depend on the proximity to each rock, the agentrt must instead move to the beaconRBi,t

to get better information. Second, we modified the rock values RVi,t to each have a continuous
value of between 0 and 1, rather than being a binary-valued set. The agent continues to receive a
binary, noisy observation of the value of each rockzt, according to:

O : p(zi,t|RVi,t = m, rt, RBi,t) =

{

0.5 + (m− 0.5)2
−4‖rt−RBi,t‖2

D0 zi,t = 1

0.5− (m− 0.5)2
−4‖rt−RBi,t‖2

D0 zi,t = 0
(20)

whereD0 is a tuning parameter that controls how quickly the accuracyof the observations decrease
with greater distance between the agent and the beacon. The agent’s sensor can therefore be modeled
as a Bernoulli observation model, and the observations are assumed to be more accurate than an
unbiased coin. The agent obtains a large reward if it samplesa rock that has a high value, but incurs
a large cost for wrongly doing so. Small costs are incurred for moving around the environment.

6.1 Comparison with other algorithms

The ISRS problem was used to compare the PBD algorithm against a fast upper bound (QMDP),
a point-based offline value iteration technique (HSVI) and an online forward search algorithm
(RTBSS). Macro-actions were generated for the PBD algorithm by sampling robot poses in the
grid world and computing the sequence of actions necessary to reach the sampled pose. Fig. 4 and
6 illustrate the fundamentally different policies generated by our PBD algorithm, relative to existing
techniques. In Fig. 4, the RTBSS solver obtains an observation suggesting that rock 1 is valuable.
Unfortunately, its inability to search beyond depth 1 causes it to fail to realize that good information
about rock 1 can be obtained by making a short detour. Instead, it heads towards rock 1, but because
subsequent observations are noisy, due to distance from thebeacon, the solver is unable to commit
to sampling the rock and is stuck at a local minimum. In contrast, the PBD solver (Fig. 6) is able
to evaluate the value of making a detour when seeking information about rock 5. Subsequently, the
agent moves to the region with multiple beacons, concludes that there is little value left to sample,
and exits the problem.

Fig. 5 reports the performance of the different algorithms tested on the ISRS problem. The problem
was initialized with different hidden values of the rocks, and 20 trials were conducted for each sim-
ulation. The different algorithms were also initialized with different offline processing time (HSVI),

1ZMDP Software for POMDP and MDP Planning. http://www.cs.cmu.edu/∼trey/zmdp/

8

Fig. 4: ISRS world. Blue line
indicates example RTBSS
policy

ISRS[8,5] (2304s, 5a, 32o)
Ave
re-
wards

Online
time(s)

Offline
time(s)

QMDP 9.43 0.0001 10.4
HSVI(150s) 8.06 0.016 150
HSVI(500s) 5.31 0.040 500
HSVI(4000s) 10.46 0.17 4000
RTBSS(d1) 28.08 2.88 150
RTBSS(d2) 30.55 125.2 50
PBD(d1,s300)45.47 0.94 0
PBD(d2,s30) 45.38 19.53 0

Fig. 5: Performance of POMDP solvers in ISRS
problem

Fig. 6: Example PBD policy

different search depth (RTBSS), and different posterior mean samples (PBD). The results demon-
strate that the PBD algorithm is able to perform significantly better than other existing algorithms,
thereby demonstrating the value of searching deeper.

7 Conclusion and Discussion

We have demonstrated the ability to perform belief updates for multi-step action sequences in closed
form for models that have specific parametric representations. When the models are linear-Gaussian,
our expression for the posterior belief distribution aftera multi-step action sequence is exact. For
observation models that are members of the exponential family, the belief update can be approx-
imated by using a linearized variant of the Kalman filter. By being able to compute the agent’s
distribution of posterior beliefs after multi-step actionsequences, we developed an algorithm that
can perform deeper forward search when planning under uncertainty. While we may sacrifice an
exhaustive search over all action sequences up of a particular length, our algorithm enables us to
search to an equivalent length of multi-step action sequences. This effectively allows us to search
deeper, allowing us to discover policies that would otherwise not have been found with a shallow
search depth.

In contrast to most POMDP solvers, our algorithm assumes that the agent’s belief and observation
models are representable as particular classes of parametric distributions. This necessary implies that
our algorithm is not a generic POMDP solver. Nevertheless, we believe that not only do these classes
of probability distributions represent a wide variety of belief distributions, but also that continuous,
parametric representations are our only solution for avoiding the curse of dimensionality [2], espe-
cially as we seek to solve larger POMDP problems in future. Inaddition, the notion of predicting
the distribution of posterior beliefs should be extendableto a broader class of belief representations.
Exponential family distributions that are conjugate priors to exponential family observation models
are attractive candidates for representing the belief space, since the posterior belief after a belief
update belongs to the same parametric class as the prior belief.

References

[1] O.E. Barndorff-Nielsen. Information and exponential families in statistical theory.Bull. Amer.
Math. Soc. 1 (1979), 667-668., 273(0979), 1979.

[2] A. Brooks, A. Makarenko, S. Williams, and H. Durrant-Whyte. Parametric POMDPs for plan-
ning in continuous state spaces.Robotics and Autonomous Systems, 54(11):887–897, 2006.

[3] E. Brunskill, L. Kaelbling, T. Lozano-Perez, and N. Roy.Continuous-state POMDPs with
hybrid dynamics. InSymposium on Artificial Intelligence and Mathematics, 2008.

[4] T.M. Cover and J.A. Thomas.Elements of information theory. Wiley-Interscience, 2006.
[5] J. Durbin and SJ Koopman. Time series analysis of non-Gaussian observations based on state

space models from both classical and Bayesian perspectives. Journal of the Royal Statistical
Society: Series B (Methodological), 62(1):3–56, 2000.

9

[6] M. Hauskrecht. Value-function approximations for partially observable Markov decision pro-
cesses.Journal of Artificial Intelligence Research, 13(2000):33–94, 2000.

[7] W. Hoeffding. Probability inequalities for sums of bounded random variables.Journal of the
American Statistical Association, pages 13–30, 1963.

[8] B.F. La Scala, R.R. Bitmead, and M.R. James. Conditions for stability of the extended Kalman
filter and their application to the frequency tracking problem.Mathematics of Control, Signals,
and Systems (MCSS), 8(1):1–26, 1995.

[9] D. McAllester and S. Singh. Approximate planning for factored POMDPs using belief state
simplification. InProceedings of the Fifteenth Conference on Uncertainty in Artificial Intelli-
gence, pages 409–416, 1999.

[10] S. Paquet, L. Tobin, and B. Chaib-draa. An online POMDP algorithm for complex multiagent
environments. InProceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pages 970–977. ACM New York, NY, USA, 2005.

[11] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. InInternational Joint Conference on Artificial Intelligence, volume 18, pages 1025–
1032, 2003.

[12] J.M. Porta, N. Vlassis, M.T.J. Spaan, and P. Poupart. Point-based value iteration for continuous
POMDPs.The Journal of Machine Learning Research, 7:2329–2367, 2006.

[13] S. Prentice and N. Roy. The Belief Roadmap: Efficient Planning in Linear POMDPs by Factor-
ing the Covariance. InProceedings of the 13th International Symposium of Robotics Research
(ISRR), 2007.

[14] M.L. Puterman.Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, Inc. New York, NY, USA, 1994.

[15] S. Ross and B. Chaib-draa. AEMS: An Anytime Online Search Algorithm for Approximate
Policy Refinement in Large POMDPs. InProceedings of The 20th Joint Conference in Artificial
Intelligence (IJCAI 2007), Hyderabad, India, 2007.

[16] S. Ross, B. Chaib-draa, and J. Pineau. Bayesian reinforcement learning in continuous POMDPs
with application to robot navigation. InIEEE International Conference on Robotics and Au-
tomation, 2008. ICRA 2008, pages 2845–2851, 2008.

[17] S. Ross, J. Pineau, S. Paquet, and B. Chaib-draa. Onlineplanning algorithms for POMDPs.
Journal of Artificial Intelligence Research (JAIR), 32:663–704, 2008.

[18] T. Smith and R. Simmons. Point-based POMDP algorithms:Improved analysis and imple-
mentation. InProc. Uncertainty in Artificial Intelligence, 2005.

[19] E.J. Sondik. The optimal control of partially observable Markov processes over the infinite
horizon: Discounted costs.Operations Research, 26(2):282–304, 1978.

[20] G. Theocharous and L.P. Kaelbling. Approximate planning in POMDPs with macro-actions.
Advances in Neural Processing Information Systems, 17, 2003.

[21] R. Washington. BI-POMDP: Bounded, incremental partially-observable Markovmodel plan-
ning. In Proceedings of the 4th European Conference on Planning (ECP), pages 440–451.
Springer, 1997.

[22] M. West, P.J. Harrison, and H.S. Migon. Dynamic generalized linear models and Bayesian
forecasting.Journal of the American Statistical Association, pages 73–83, 1985.

10

Appendix A: Exponential Family Kalman Filter

Building on statistical economics research for time-series analysis of non-Gaussian observations [5],
we present the Kalman filter equivalent for systems with linear-Gaussian state-transitions and obser-
vation models that belong to the exponential family of distributions.

The state-transition and observation models can be represented as follow:

st = Atst−1 + Btut + εt, st−1 ∼ N(µt−1, Σt−1), εt ∼ N(0, Rt) (21)

p(zt|θt) = exp(zT
t θt − bt(θt) + κt(zt)), θt = W (st) (22)

For the state-transition model,st is the system’s hidden state,ut is the control actions,At andBt

are the linear transition matrices, andǫt is the state-transition Gaussian noise with covarianceRt.

The observation model belongs to the exponential family of distributions. θt and bt(θt) are the
canonical parameter and normalization factor of the distribution, andW (.) maps the states to canon-
ical parameter values.W (.) depends on the particular member of the exponential family.For ease
of notation, we let

βt(zt|θt) = − log p(zt|θt) = −zT
t θt + bt(θt) + κt(zt) (23)

Following the traditional Kalman filter, the process updatecan be written as

µt = Atµt−1 + Btut, Σt = AtΣt−1A
T
t + Rt (24)

whereµt andΣt are the mean and covariances of the posterior belief after the process update but
before the measurement udpate. For the measurement update,we seek to find the conditional mode

µt = argmax
st

p(st|zt) (25)

= argmax
st

p(zt|st)bel(st) (Bayes rule) (26)

= argmax
st

p(zt|θt)bel(st) (27)

= argmax
st

exp(−Jt), whereJt = − log p(zt|θt) +
1

2
(st − µt)

T Σ
−1

t (st − µt)

(28)

⇒ 0 =
∂Jt

∂st

∣

∣

∣

st=µt

=
∂βt(zt, θt)

∂θt

∂θt

∂st

+ Σ
−1

t (µt − µt), (29)

Taking the derivative ofθt = W (st) about the prior meanµt, we let

Yt =
∂W (st)

∂st

∣

∣

∣

∣

st=µt

(30)

Similarly, performing Taylor expansion on∂βt(zt|θt)
∂θt

aboutθt = W (µt),

∂βt(zt|θt)

∂θt

=
∂βt(zt|θt)

∂θt

∣

∣

∣

∣

θt=θt

+
∂2βt(zt|θt)

∂θt∂θT
t

∣

∣

∣

∣

θt=θt

(θt − θt) (31)

∂βt(zt|θt)

∂θt

=β̇t + β̈t(θt − θt) (32)

where β̇t =
∂

∂θt

(−zT
t θt + bt(θt)− κt(zt))

∣

∣

∣

∣

θt=θt

, (Eqn. 23) (33)

=
∂bt(θt)

∂θt

∣

∣

∣

∣

θt=θt

−zt (34)

β̇t =ḃt − zt (35)

and β̈t =
∂2βt(zt|θt)

∂θt∂θT
t

∣

∣

∣

∣

θt=θt

(θt − θt) (36)

β̈t =b̈t (37)

11

Plugging Equations 35 and 37 into Equation 32, and then into Equation 29,

Yt (ḃt − zt + b̈t(θt − θt)) =− Σ
−1

t (µt − µt) (38)

Yt b̈t(b̈
−1
t (ḃt − zt)− θt + θt) =− Σ

−1

t (µt − µt) (39)

Yt b̈t((θt − b̈−1
t (ḃt − zt))− θt) =Σ

−1

t (µt − µt) (40)

Yt b̈t(z̃t −W (st)) =Σ
−1

t (µt − µt) (41)

wherez̃t = (θt − b̈−1
t (ḃt − zt)) is the projection of the observation onto the parameter space of the

exponential family distribution, and is independent ofst. In Equation 41 we substitutedθt using
Equation 22.

Mean Update

Using Equation 41 and substitutingµt for st,

Σ
−1

t (µt − µt) = Yt b̈t(z̃t −W (µt)) (42)

= Yt b̈t(z̃t −W (µt)) + W (µt)−W (µt) (43)

= Yt b̈t(z̃t −W (µt))− Yt b̈t(W (µt)−W (µt)) (44)

LinearizingW (st) aboutµt,

W (st) = W (µt) + W ′(st)st=µt
(st − µt) (45)

= W (µt) + Yt (µt − µt) (46)

⇒ Σ
−1

t (µt − µt) = Yt b̈t(z̃t −W (µt))− Yt b̈tYt (µt − µt) (47)

Yt b̈t(z̃t −W (µt)) = (Σ
−1

t + Yt b̈tYt)(µt − µt) (48)

= Σ−1
t (µt − µt) (49)

⇒ µt − µt = ΣtYt b̈t(z̃t −W (µt)) (50)

whereΣtYt b̈t = K̃t is the Kalman gain for non-Gaussian exponential family distributions. Via a
standard transformation, the Kalman gain can be written in terms of covariances other thanΣt,

K̃t = ΣtYt (YtΣtYt + b̈−1
t)−1 (51)

and µt = µt + K̃t(z̃t −W (µt)) (52)

Covariance Update

Given a Gaussian posterior belief,∂2J
∂s2

t

is the inverse of the covariance of the agent’s belief

Σ−1
t =

∂2J

∂s2
t

(53)

=
∂

∂x
(Σ

−1

t (st − µt)− Yt b̈t(z̃t −W (st))) (54)

= Σ
−1

t + Yt b̈tYt (55)

⇒ Σt = (Σ
−1

t + Yt b̈tYt)
−1 (56)

12

