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ABSTRACT

Let f be a density function defined on the closed interval [a, b].

The k-means partition of this interval is defined to be the k-partition
with the smallest within cluster sum of squares. The properties of this
k-raeans partition when k becomes large will be obtained in this paper.
The results suggest that the k-means clustering procedure can be used to
construct a variable-cell histogram estimate of f using a sample of ob-
servations taken from f.
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1 . INTRODUCTION

Let the univariate observations X, ,X~, . . . , X,, be sampled

from a distribution F with density function F. In cluster

analysis, the k-means clustering method (see Hartigan (1975),

Chapter 4) is often used to partition the sample of N observa-

tions into k clusters with means U, , ..., U, . The resultant
1 k

clusters satisfy the property that no movement of an observation

from one cluster to another reduces the sample within cluster

sum of squares

N . „

N . , l£l<k ' ' 1 J
'

'

1=1 •^~ -^

For these sample k-means clusters, if I. is used to denote the

interval containing all points in R closer to U. than to any

other cluster means, then (I-i > •••> I^,^ defines a k-partition of

the sampled space. The corresponding k-means partition in the

population F is defined by the k-population means m. , ..., m, ,

which are selected in such a way that the within cluster (or

interval) sum of squares

WSS = //"^^ M X - m.
I

1^ dF

is minimized.
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The k-means method has been widely used in clustering

applications (see Blashfield and Aldenderfer, 1978), and the

efficient computational algorithm given in Hartigan and Wong

(1979) has been included in the multivariate programs BMDPKM of

the BMDP statistical package. The properties of sample k-means

clusters have also been studied by several investigators. In

Fisher (1958), and Fisher and Van Ness (1971), it is shown that

k-means clusters are convex, i.e., if an observation is a

weighted average of observations in a cluster, the observation

is also in the cluster. And the asymptotic convergence (as

N ->- °°) of the sample k-means clusters to the population k-means

cluster for fixed number of clusters k has been studied by

MacQueen (1967), Hartigan (1978), and Pollard (1981), in which

conditions that ensure the almost sure convergence of the set

of means of the k-means clusters can be found. However, little

work have been done in examining the properties of population

k-means clusters, especially when k becomes large. In

Dalenius (1951), it is shown that the cut-point between neighbor-

ing population clusters is the average of the means in the

clusters, and in Cox (1957), the cut-points for the k-means

clusters in the standard normal distribution are given for

k = 1 '' 6

In this paper, the asymptotic properties (as k becomes

large) of the population k-means clusters in one dimension are

obtained. It is shown in Section 2 that the optimal population
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partition is such that the within cluster sums of squares of the

k cluster intervals are asymptotically equal, and that the sizes

of the cluster intervals are inversely proportional to the one-

third power of the underlying density at the midpoints of the

intervals. The implications of these results are discussed in

Section 3.

2. ASYIIPTOTIC PROPERTIES OF POPULATION K-MEANS CLUSTERS

Let f(x) be a density function defined on the interval

[a,b], and denote the ith derivative of f at x by f (x).

Let the k-partition of [a,b] specified by the k-1 cutpoints

a < y, < y^ < . . . < y i
* t> be the k-partition with the smallest

within cluster sum of squares

k ^ ^i 2
WSS = Z WSS. = E / (x - m.) f(x) dx,

i=l ^ i=l ^i-1 ^

where a = y , b = y, , and

y • y-
m. = / ^ X f(x) dx / / ^ f(x)dx.
" ^i-1 ^i-l

In this section, we will describe the properties of this k-means
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partition of a finite interval [a,b] as the number of cluster

intervals (or cells) becomes large.

Theorem ; Let f(x) denote a density function on the interval

[a,b]. And let a =
y^j^

< y^^ < ... <
y(k_i)k

< ^kk
= ^ ^^

the cutpoints specifying the k-means partition of [a,b]. If f

is positive and has four bounded derivatives in [a,b], then we

have uniformly in 1 i i ^ k.

k e., f./^^ - /^ [f(x)]^^^dx (2.1)
ik ik a

^ Pik ^k''^' - ^a
[fWl'^'^i- (2-2)

k^SS., ^ [/^ [f(x)
]'-'' ^dx]^/12 (2.3)

as k

«here e.^ = y.^ -
y^.,^)^^

f .,
= f (1/2 y., + 1/2 v,. ... )

ik ^ik (i-l)k

p = /^^ f(x) dx
^(i-l)k

^ik ^ik 2
and WSS., = f

^^
[x - / ^ x f(x)dx/p,, ]^ f(x)dx.

^^ ^(i-l)k ^(i-l)k
^^
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(The theorem states that, for large k, the within cluster sums

of squares of the k intervals are nearly equal; it follows

that the length of the interval containing a point x of

-1/3
density f(x) is proportional to f(x) .)

Proof

:

The proof is in four parts.

(I) The k-partition of [a,b] consisting of k equal intervals

has a within cluster sum of squares of order k ~
; the contri-

bution from the ith interval to the optimal within cluster sum

3 ^3-2
of squares is of order e., . Therefore, T. e ., = (k ),

-2/3 ^^^
which implies that sup e., = (k ). To avoid complexity of

i

notation, the k's indexing partition will be dropped.

(II) In this part of the proof, it \^n.ll be shown that lengths of

neighboring clusters are of the same order of magnitude. Let

m. be the mean of the ith interval. Then
1

y • y-

m. = / ^ X f(x)dx// ^ f(x)dx.
1 y. 1 y.

T1-1 1-1

Consider any two neighboring intervals e. and e. ,. By the

optimality of the partition, as is shown in Dalenius (1951),
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y . - m. = m.
,

^ - y

.

2 J J+1 J

Thus

,

e . > y . - m

.

J J J

m.,^ - V.
J+1 J

= /
^^'- X f(x) dx//'^^-' f(x) dx - y.

V

.

y

.

J

e . e

.

= /
^"""^

X f (x + y.) dx//
^"'^

f(x -H/.) dx

>

M
1 1 u >/ 3.nf ^, , ,T • TT" • S-,T » where M, = , f(x) and
2 M 1+1 ' 1 aixib

u -"

„ _ sub ef \M = , r (x)

.

M
1 1

Sinalarly, e..^ ^ tt . tt- . e..
j+l 2 M 1

(III) We will now establish the asymptotic relationship between

the lengths of neighboring intervals. Denote the center of the

ith interval by C. (i = 1, . . .
, k) . It follows that

C. = y
• _i

+ — e.. Using the Taylor series expansion, we have, for

any x in the ith interval, f(x) = f(C.) +(x-C.) • f^''"\c.)

+ i (x-Cp2 . f(2)(c . ^i(x-Cj3 . f^^\c') +^ (x-C,)^ . f(^')^1 101 iz4i
(q ), where q is between x and C. Since the first four
^x ^x 1

derivatives are bounded on [a,b], it follows from the above
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series expansion that we have simultaneously for all l<i<k.

p^ = / ^ f(x)dx = e.[f(C.) +^ f^^^C.)e.2 + 0(e.S], (2.4)
i-1

and

^i 1 (I) "^ 1 (2)
f xf(x) dx = e. [C.f(C.) + ^ f^^^ (C.)e.^ + 2^ ^i

^ ^^ .)

.

i-1

e.^ + 0(e.^)] (2.5)

(Note that the universal bound contained in the term depends

only on the various bounds of the derivatives of f and is

independent of i.)

Therefore,

1 f^'^^V 2
m. = f\ X f (x)dx/p. = C. + Y2

•

f(c.)^ ^ +

0(e.^) (2.6)

Since the partition is optimal, we have simultaneously for all

l<i<k, (C . + — e . ) - m. = m.
,

, - (C .
,

, - tt e _ , ) , which when
1 2 1 1 1+1 1+1 2 1+1

combined with (2.6) gives

^i -
6

• f(C.) ^ " °^^i ^ = ^+1 ^ 6 f(C.^J ^+1
^

i+1'

°(4+i)-
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Since it has been shown in part [II] that e. and e.,^ are of"^

1 1+1

the same order of magnitude, we have for all l<i<k.,

^+1 "
6 f(C. ^+1 = ^ -

6
• -TiTT ^ ^ °^^i^-

It follows that

.(1),„ . f(l)rr ^ o2

^+1 = ^ ^1 -
6 ^ f(C.) ^^ f(C.,J ^^°(^)^'

1 1+1 1

After some Taylor series manipulation, we have

e.^^/e. = [f(C.^^)/f(C.)] ^/^
• [1 + 0(e^)]. (2.7)

Moreover, since it can be shown from (2.4), (2.5), and (2.6) that

WSS. = /
"• (x-m,)^ f(x)dx = ^ f(C.)eJ[l + 0(ej)],

1 y . , 3- 12 1 1 1
1-1

and from (2.4), p. = f(C.) e. [1 + 0(e.)], we obtain from 2.7

that

WSS. ^^ /WSS. = 1 + 0(ej) (2.8)

and p.^^/p. = [f(C.^^)/f(C.)]-''Ml + 0(ej)]. (2.9)
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[IV] Finally, we will now establish the relationship between e.

and e. for any l^i<j^k.. It follows from (2.7) that for any

pair of values of l^i^j^k,

e./e^ = [f(C.)/f(Cj)] ^^^{[1+O(ep][l+O(e^^^)]---[1+O(e^)]}.

But it has been shown in part [I] that . e. = 0(k ).

Hence, e./e^ = [f (C . ) /f (C
. )

]"^^^
[140(k"^/^)

]^

= [f(C.)/f(C.)]"^^^ [l+0(k"^/^^]

for all l-^i<ji^k, which implies that we have uniformly in

l<i<j<k,

(e./e^) • [f(C^)/f(Cj)]^^^ -> 1 as k ->

Since Z e. fCC.)-*"^-^ ^ /^ f(x)^'^^ dx, (2.1) follows..,11 a » \ /

1=1

Similarly, from (2.8) and (2.9), we have uniformly in l^i<j^k.

WSS^/WSS. ^ 1, and (p^/p . ) • [f (C^) /f (C .)
]~^''^ ^ 1 as

k -* °°, which in turn gives (2.3) and (2.2) respectively. And

the theorem is proved.
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3. DISCUSSION

In this paper, our effort is directed towards obtaining the

properties of univariate population k-means clusters when k

becomes large. The properties given in Section 2 indicate that

the lengths of the population k-means intervals (or cells) are

adaptive to the underlying density function: the intervals are

large when the density is low, while the intervals are small

where the density is high. This result suggests that the k-means

clustering procedure can be used to construct a variable-cell

histogram estimate of an underlying density using a sample of

observations taken from that density (see Wong, 1980). Such a

density estimation method is of interest because it makes use of

the computationally efficient k-means clustering procedure

(Hartigan and Wong, 1979) which is also applicable to multi-

variate data.

-10-



REFERENCES

Blashfield, R.K. , and Aldenderfer, M.S. (1978), "The Literature

on Cluster Analysis," Multivariate Behavioral Research , 13,

271-295.

Cox, D.R. (1957), "Notes on grouping," Journal of the American

Statistical Association , 52, 543-547.

Dalenius, T. (1951), "The problem of optimum stratification",

Skandinavisk Aktuarietidskrif

t

, 34, 133-148.

Fisher, W.D. (1958), "On grouping for maximum homogeneity,"

Journal of the American Statistical Association , 53, 789-

798.

Fisher, L., and Van Ness, J.N. (1971), "Admissible clustering

procedures," Biometrika , 58, 91-104.

Hartigan, J. A. (1975), Clustering Algorithms , New York: John

Wiley and Sons.

(1978), "Asymptotic distributions for clustering

criteria," Annals of Statistics , 6, 117-131.

, and Wong, M.A. (1979). "Algorithm AS136: A K-

means clustering algorithm," Applied Statistics , 28, 100-

108.

MacQueen, J.B. (1967), "Some methods for classification and

analysis of multivariate observations," Proceedings of the

Fifth Berkeley Symposium on Probability and Statistics ,

281-297.

-11-



Pollard, D. (1981), "Strong consistency of k-means clustering",

Annals of Statistics , 9, 135-140.

Wong, M.A. (1980), "Asymptotic properties of k-means clustering

algorithm as a density estimation procedures," Sloan School

of Management Working Paper #2000-80, M.I.T., Cambridge, MA.

L -12-









''^Ite Due



HD28.M414 no,1339- 82
Wong, M. Antho/Asymptotic properties o

745f76 D»BKS QQ1369""176 D»

3 TDflO DOS DM7 MMM




