

LIBRARY

OF THE

MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

BOXSTEP

:

A NEW STRATEGY FOR LARGE SCALE

MATHEMATICAL PROGRAMMING

660-73

June 1973

W. W. Hogan*, R. E. Marsten**, and J. W. Blankenship***

MASSACHUSETTS

;
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 0213'

MASS. INST. TECH.

OCr 18 1973

DEWEY LVd?Mf

BOXSTEP

:

A NEW STRATEGY FOR LARGE SCALE

MATHEMATICAL PROGRAMMING

660-73

June 1973

W. W. ^ogan*, R. E. Marsten**, and J. W. Blankenship***

* U. S. Air Force Academy

** Sloan School of Management, Massachusetts Institute of Technology

*** Institute for Defense Analysis

/\6. Q,Cp0^^b>

REnnvFD
OCT 30 1973

<V1. 1. T. LlbHAiUtS

Abstract

A new strategy is presented for large scale mathematical programming.

Several specific applications are described and computational results are

cited. These applications of the BOXSTEP strategy fall in the conceptual

continuum between steepest ascent methods and outer approximation methods.

BOXSTEP is able to capture the best features of both of these extremes

while at the same time mitigating their bad features.

071*^690

CONTENTS

1. Introduction 1

2. The BOXSTEP Method 3

3. Implementation: solving the local problem by outer approximation . 7

4. Application: price-directive decomposition 11

5. Application: resource-directive decomposition 16

6. Application: price-direction revisited 22

7. Conclusion 25

1. Introduction

This paper presents a very simple idea that has unified some previously

separate areas of theory and has produced some surprising computational ad-

vantages. The idea can be stated as follows. Suppose that we want to maxi-

mize a concave function v(y) over a convex set Y. Let B denote a "box"

(i.e., hyper-cube) for which Y (1 B is non-empty. Let y be a point at

which v(y) achieves its maximum over Y H B. If y lies in the interior of

*
the box, then by the concavity of v, y must be globally optimal. If, on

the other hand, y lies on the boundary of the box, then we can translate

B to obtain a new box B' centered at y and try again. By "try again" we

mean maximize v over Y H B' and check to see if the solution is in the in-

terior of B'. This intuitive idea is developed rigorously in section 2.

Note immediately that we presuppose some appropriate algorithm for solving

each local problem. This "appropriate algorithm" is embedded in a larger

iterative process, namely maximizing v over a finite sequence of boxes.

Computational advantage can be derived if each local problem with feasible

region Y H B is significantly easier to solve than the global problem with

feasible region Y.

The problems that we have in mind are those where v(y) is the optimal

value of a sub-problem (SPy) that is parameterized on y. Thus v(y) is not

explicitly available and evaluating it at y means solving (SPy). This

arises in the context of decomposition methods for large scale mathematical

programs and it was in this context that the BOXSTEP idea was developed.

We begin by presenting it in a more general context so as to facilitate its

application to other kinds of problems, e.g., non-linear programs where

v(y) is explicitly available. In this case BOXSTEP bears some resemblance

• 2-

to the Method of Approximation Programming (MAP) originally proposed by

Griffith and Stewart [] and recently revived by Beale [] and Meyer

[].

Section 2 presents the BOXSTEP method in very general terms and

proves its convergence. Section 3 shows how an Outer Linearization/

Relaxation scheme can be used to solve each local problem. In this form

BOXSTEP falls between the feasible directions methods at one extreme and

outer approximation or cutting plane methods at the other extreme. One

can obtain an algorithm of either type, or something "in between", by

simply adjusting the size of the box. Sections 4, 5, and 6 contain spe-

cific applications to large structured linear programs. Section 7 relates

BOXSTEP to other recent developments in large scale optimization and

points out some very promising directions for additional research.

-3-

2. The BOXSTEP Method

BOXSTEP is not a completely specified procedure but rather a method

of replacing a single difficult problem by a finite sequence of simpler

problems. These simpler problems are to be solved by an appropriate algo-

rithm. This "appropriate algorithm" may be highly dependent on problem

structure but by assuming its existence and convergence we can establish

the validity of the overall strategy. In this section, therefore, we

present a general statement of the BOXSTEP method, prove its finite e-

optimal termination, and discuss some modifications of the basic method

which will not upset the fundamental convergence property.

Consider any problem of the form

(P) max v(y) , with Y c: r" and vtY-R .

ySY

If, for yeY and P > 0, the local problem

P(y; P) min v(y) s.t. lly - ylL ^ 3

yeY

is considerably easier to solve, either initially or in the context of a

reoptimization, then (P) is a candidate for the BOXSTEP method.

BOXSTEP Method

Step 1 : Choose y eY, e s 0, P > 0. Let t = 1.

Step 2 : Using an appropriate algorithm, obtain an e-optimal solution

of P(y ; g), the local problem at y . Let y denote this

solution.

Step 3 ; If v(y) ^ v(y) + e, stop. Otherwise let t = t + 1 and go

to Step 2.

The BOXSTEP mnemonic comes from the fact that at each execution of

Step 2 the vector y is restricted not only to be in the set Y but also in

a box of size 2p centered at y and the box steps toward the solution as t is

incremented. The appeal of this restriction springs both from heuristics and

empirical observations which are discussed below. In essence, these results

indicate that 3 ~ +* > which corresponds to solving problem (P) all at once,

is not an optimal choice. Notice that the stopping condition at Step 3 is

based on the objective function rather than on y being in the interior of

the box. This is necessary because v(y) may be flat on top, in which case

we might never obtain an interior solution.

The simplicity of the concept would indicate that the convergence

of any algorithm is not upset when embedded in the BOXSTEP method. This

is formally verified in the subsequent theorem for which we need the fol-

lowing definitions:

6 s max ||x- yH^ .

x,yeY

X = min [p/6, l)

and
*

v = max v(y)

.

yeY

Theorem : If Y is a compact convex set and v is an upper semi -continuous

concave function on Y, then the BOXSTEP method will terminate after a finite

number of steps with a 2e/X optimal solution.

Proof : First we establish that the method terminates finitely. If e > 0,

then non- termination implies that v(y) ^ v(y) + te and, therefore,

lim sup v(y) = ". This contradicts the fact that an upper semi-continuous

function achieves its maximum on a compact set.

If e = 0, then either jly - y lloo
= ^ ^°^ ^^^^ ^ °^ lly " ^ Hm *^ ^

li 'p T+l||
for some T. If ||y - y Hod

"^ ^ then the norm constraints are not binding

-5-

T+1 *
and, by concavity, may be deleted. This implies that v(y) = v and

termination must occur on the next iteration. If ||y - y ||
= P for each

t, then, without termination, v(y) > v(y) for each t. If l|y
- y |1„

"^ 3/2

for any s > t, then this would contradict the construction of y as the

maximum over the box centered at y (because c = 0) . Therefore ||y - y H ^ P/2

for all s > t and for each t. This contradicts the compactness of Y. Hence

the method must terminate finitely.

T+1 TWhen termination occurs, say at step T, we have v(y) ^ v(y) + e.

Let y be any point such that v(y) = v . Then, by concavity,

v((l - X)y'^ + \y*^ ^ (1 - >^)v(y'^) +Xv(y*).

Now the definition of X implies that

l|(l-X)y^ + \y*-y^l|^ ^ 3 ,

T+1
and by the construction of y it follows that

v(y^''"^) + e s v((l -X)y'^ + Xy*) s (1 - X)v(y^) + Xv

Therefore, since termination occurred,

v(y^)+2e^ (1 - X)v(y^) +Xv''

Hence,

XvCy"^) + 2e s Xv .

v(y^) ^ V*- 2e/X.

Q.E.D.

This robust convergence result requires at least one qualification.

With the exception of the case where v is piecewise linear, there are not

many situations in which it is clearly evident that Step 2 can be per-

formed in a finite number of steps when e = and the choice of e > be-

-6-

comes mandatory. This touches upon the whole range of problems related

to speed of convergence and numerical stability in the execution of Step

2 but, due to the intentional vagueness of the term "appropriate", it is

not possible to discuss these except in the context of a specific appli-

cation.

One important modification of the basic method that can be intro-

duced without upsetting convergence is a line search. When far from the

solution, it is possible to view BOXSTEP as an ascent method which uses

Step 2 as a procedure employing more than strictly local information in

the determination of the next direction of search, d = y - y . As

stated above, a step of size one is taken in this direction. Depending

on the structure of (P), it may be beneficial to do an exact or approxi-

mate line search maximizing v(y +9(y -y)) over feasible values of

9 s 1. This can be incorporated in Step 3 in the natural way without

disturbing the statement of the theorem.

It should be emphasized that the interpretation of BOXSTEP as an

ascent method does not apply in the neighborhood of a solution. Near

termination, the BOXSTEP method becomes a restricted version of the algo-

rithm chosen to execute Step 2.

The BOXSTEP method is an acceleration device which should encourage

the exploitation of problem structure. For example, successive executions

of Step 2 involve problems which are highly related and information from

one solution can be used in the next iteration. The well-known advantages

of reoptimization should be exploited if possible. These advantages and

other important computational considerations are discussed in the context

of the more specific applications contained in the subsequent sections.

-7-

3. Implementation: solving the local problem by outer approximation.

We now specify that for the remainder of this paper Step 2 of the

BOXSTEP method is to be executed with an outer approximation (cutting

plane) algorithm. Thus, in Geoffrion's framework [], each local prob-

lem will be solved by Outer Linearization/Relaxation.

Both V and Y can be represented in terms of the family of their

linear supports. Thus

(3.1) v(y) = min (f^ + g\)
keK

(3.2) Y = {y e r"
I

p^ + q\ s for j e jj

where J and K are index sets, p and f are scalars, and q and g eR .

These are such that

k k
a) for each keK there is a y e Y with v(y) = f +g y; and

b) for each j e J there is a y e Y with p +q y = 0.

In the applications presented in sections 4, 5, and 6 the function v(y)

represents the optimal value of a subproblem that is parameterized on y.

The set Y contains all points y for which (SPy) is of interest. When

yeY the algorithm for (SPy) produces a linear support for v at y, but

if y ({ Y it produces a constraint that is violated at y. Thus in the

k* k*
former case we get f and g such that

(3.3) v(y) = f +g y

i >'< i *
while in the latter case we get p and q such that

(3.4)
pJ +q^ y < 0.

Given the representations in (3.1) and (3.2), the local problem at

any y c Y can be written as

-8-

max

9-

then we could immediately move the center of the box to y and set y = y.

This would eliminate unnecessary work far from the global maximum.

Step 2b requires the solution of a linear program. The role of re-

optimization within a single execution of Step 2 is obvious. Between

successive executions of Step 2 there is an opportunity for reoptimization

arising from the fact that the constraints indexed by J and K are valid

globally. Thus at Step 2a we may choose the initial J and K to include any

constraints generated in earlier boxes. An obvious choice is to retain any

constraint that was binding in the final optimal tableau of the preceding

local problem.

The question of whether or not to carry over constraints from one

local problem to the next is, in fact, an empirical one and the answer is

highly dependent on problem structure. For the application discussed in

section 5 it was clearly best to save old constraints and omit the line

search between boxes. This was because of the substantial computational

burden involved in reoptimizing the subproblem (SPy) . In the application

of section 4, however, it proved best to discard all constraints upon com-

pleting a local problem and to use the line search before placing the next

box.

In the case where v(y) is the optimal value of (SPy), there is also

an opportunity to use reoptimization techniques on (SPy). When this is

possible the BOXSTEP method is especially attractive. This is because

the successive points y for which the solution of (SPy) is needed are pre-

vented, by the box, from being very far apart. Suppose, for example, that

(SPy) is an out-of-kilter problem whose arc costs depend on y. Reoptimization

is then very fast for small changes in y but may equal the solution-from-scratch

time for large changes in y.

•10-

Finally, the desire to use the framework of column generation for the

reoptimization techniques at Step 2b dictates that we work on the dual of

P(y ; P). We record this dual here for future reference.

, . n, n,
(3.6) minE_ fV + S_ pJ^L

. - E (y!^ - g)
6"!" + E(y^ + p)6'

keK " jej J 1=1^ ^ ' ^ i=r ^ ' "

s.t. IL \ = 1

keK
'^

E_(.g^)\ + E_(-qJ)^L. - 16"^ + 16" =

kcK jej J

X, ^L, 6"^, 6" ^ .

The similarity of (3,6) to a Dantzig-Wolfe master problem will be commented

upon in the next section.

All of the computational results presented in the subsequent sections

were obtained by implementing the BOXSTEP method, as described above, within

the SEXOP linear programming system []

.

11-

A. Application: price-directive decomposition

Consider the linear program

(DW) min ex s.t. Ax i b

xeX

where X is a non-empty polytope and A is an (mxn) matrix. This is the

problem addressed by the classical Dantzig-Wolfe decomposition method [].

It is assumed that the constraints determined by A are coupling or "compli-

cating" constraints in the sense that it is much easier to solve the La-

grangian subproblem

(SPy) min ex + y(Ax - b)

xeX

for a given value of y than to solve (DW) itself. If we let v(y) denote

the minimal value of (SPy), then the dual of (DW) with respect to the

coupling constraints can be written as

(4.1) max v(y).
y^O

Let -jx
I

k c Kr be the extreme points and iz-'
\ j e Jj- be the extreme

rays of X. Then v(y) > - <» if and only if yeY' where

(4.2) Y' = |y e R^"
I

cz-^ + yAz-^ > for j e j|

and when yeY' we have

k k
(4.3) v(y) = min (ex -I- yAx) - yb

keK

The set Y of interest is the intersection of Y' with the non-negative

orthant , since (4.1) specifies that y be non-negative. Thus Y and v(y)

are of the form discussed in section 3, except for the yb term in (4.3).

(Note also that y is a row vector.) In this context the local problem is

-12-

(4.4) max a - yb

s.t.

k k
a - y(Ax) ^ ex for k e K

- y(Az-^) ^ cz-" for j e J

-y. 5 -max jo, y. - pj for i = 1,,.., m

y . ^ y . + B for i = 1 , . . . , m

and the problem solved at Step 2b (see (3.6)) is

(4.5) min E_(cx)X, + Tj_(cz^)[i . - Emax-^0, y^ - B
f

6 f E(y^+3)67
keK jej J i=l ^ 1 J 1 ^^^\ 1 / 1

s.t.

2- k = 1

keK
"

E_(-Ax'^)X + S_(-Az-^)ii. - 16"^ + 16" = -b

keK jeJ ^

X, li, 6 ,
6~ ^ .

If the point y is in fact the origin (y = 0) then the objective

function of (4.5) becomes

(4.6) E_(cx)X + E_(czJ)m,. + SB67
k€K jeJ ^ i=l

^

and hence (4.5) becomes exactly the Dantzig-Wolfe master problem. There

is a slack variable 6. and a surplus variable 6. for each row. Since the
1 1

constraints were Ax s b each slack variable has zero cost while each sur-

plus variable is assigned the positive cost p. The cost 3 must be large

enough to drive all of the surplus variables out of the solution. In terms

of the BOXSTEP method, then, Dantzig-Wolfe decomposition is simply the solu-

tion of one local problem over a sufficiently large box centered at the

origin. The appearance of a surplus variable in the final solution would

13-

indicate that the cost p was not large enough, i.e., that the box was not

large enough.

The test problem that we have used is a linear program of the form

(DW) which represents a network design model. The matrix A has one row

for each arc in the network. The set X has no extreme rays, hence Y is

just the non-negative orthant. The subproblem (SPy) separates into two

parts. The first part involves finding all shortest routes through the

network. The second part can be reduced to a continuous knapsack problem.

For a network with M nodes and L arcs problem (DW), written as a single

linear program, has M(M - 1) + 3L + 1 constraints and 2LM + 3L variables.

The details of this model are given by Agarwal []

.

For this type of problem the best performance was obtained by solving

each local problem from scratch. Thus constraints from previous local

problems were not saved. A line search, as indicated in section 2, was

performed between successive boxes. This was done with an adaptation of

Fisher and Shapiro's efficient method for concave piecewise linear func-

tions [] .

Table 1 summarizes our results for a test problem with M = 12 nodes

and L = 18 arcs. The problem was run with several different box sizes.

Each run started at the same point y - a heuristically determined solu-

tion arising from the interpretation of the problem. For each box size p

the column headed N(3) gives the average number of constraints generated

per box. Notice that this number increases monotonically as the box size

increases. For a fixed box size, the number of constraints generated per

box did not appear to increase systematically as we approached the global

optimum. The column headed T gives the total computation time, in seconds,

for a CDC6400.

14-

Table 1. Solution of network design test problem by liOXSTEP (price

directive) with varying box sizes.

P (box size) no. of boxes required N(P) T (seconds)

0.1 34

0.5 18

1.0 13

2.0 9

3.0 6

4.0 4

5.0 5

6.0 4

7.0 3

20.0 2

25.0 2

30.0 1

1000.0 1

12.7

-15-

The largest box (3 = 1000) represents the Dantzig-Wolfe end of the

scale. The smallest box (g = 0.1) produces an ascent that is close to

being a steepest ascent. A pure steepest ascent algorithm, as proposed

by Grinold [], was tried on this problem. With Grinold's primal/dual

step-size rule the steps became very short very quickly. By taking op-

timal size steps instead, we were able to climb higher but appeared to

be converging to the value 5097. The maximum was at 5665. The poor

perfoinnance of steepest ascent is consistent with our poor results for

very small boxes.

-16-

5. Application: resource-directive decomposition

The dual or Lagrangian orientation of the previous section is comple-

mented by the formulation discussed in this section. Here the function

v(y) is obtained from the application of Geoffrion's primal resource-

directive strategy [] to a large structured linear program.

A large-scale contract selection and distribution problem is fonnu-

lated as a structured mixed integer linear programming problem by Austin

and Hogan [] . The linear program consists of a large single commodity

network with a few resource constraints on some arcs. The integer por-

tion of the problem models a binary decision regarding the inclusion or

exclusion of certain arcs in the network. Embedded in a branch-and-

bound scheme, the bounding problem is always a network problem with re-

source constraints. Hogan [] has applied a primal resource directive

strategy to such problems, resulting in a subproblem of the form

(SPy) min Z/ c X
r r

r

s.t,

E X - E X =

r€B.
1

reA.
1

for all i

for r ^ R

where

i, < X -i min {h , y } for r e R

is the flow on arc r

is the cost per unit of flow on arc r

is the lower bound of flow on arc r

is an upper bound of flow on arc r

the arcs with node i as sink

-17-

A. : the arcs with node i as source
1

R : the arcs subject to resource constraints.

For any vector y, v(y) is the minimal value of (SPy) . Note that there is

one variable y for each arc that is resource-constrained. Let
•^r

(5.1) Y^ = -fy
I

(SPy) is feasiblej ,

and

(5.2) Y^ = {y I
E a.^y^ ^ b. for i = 1, . . . , m}.

2
Thus Y is the feasible region (in y-space) determined by the resource

1 2
constraints. The set Y of interest is then Y H Y .

The piecewise linear convex function v can be evaluated at any point

y by solving a single commodity network problem. As a by-product we ob-

tain a linear support for v at y. Similarly, the implicit constraints in

Y can be represented as a finite collection of linear inequalities, one

of which is easily generated whenever (SPy) is not feasible. Thus v(y)

lends itself naturally to an outer approximation solution strategy. The

details are given by Hogan []

.

An outer approximation algorithm was, in fact, implemented for the

problem

(5.3) min v(y).
yeY

This algorithm was subsequently embedded in the BOXSTEP method with sub-

stantial computational improvement. To examine the effect of varying the

box size, twenty five test problems of the type found in [1 were ran-

domly generated and solved. The basic networks had approximately 650

arcs of which four important arcs were constrained by two resource con-

straints. In each case, the problem was initialized with a solution of

18-

(SPy) without the resource constraints (i.e., y ^ h) and a randomly

generated initial value of y. The mean B6700 seconds to solution are

recorded in Table 2 under the column headed T, . Sporadically available

results from larger test problems indicated greater sensitivity of solu-

tion times to box sizes.

The theoretic appeal of BOXSTEP in this case arises from three major

points which can be classified as: cut requirements, reoptimization of

the subproblem, and reoptimization of the local problem.

Cut requirements ; The v ftinction is piecewise linear or polyhedral. Hence

its epigraph, epi v, has a finite number of faces. To characterize v over

any subset of Y, the outer approximation method generates a series of cuts

or linear supports. Each cut is coincident with at least one face of epi v

and no cut is repeated. The smaller the subset of Y the smaller the number

of faces and, therefore, the smaller the number of cuts needed to describe

v. It follows that the smaller the box, the smaller the computational

burden in solving the local problem at Step 2. This has already been demon-

strated by the results of section 4.

Reoptimization of the subproblem : Once an initial solution for the basic

network has been obtained, v(y) can be determined by reoptimizing the basic

network with changes in some of the arc capacities (i.e., for r e R) . If

these changes are small, as they must be when 3 is small, these reoptimi-

zations can be performed quickly. Since most of the computational burden

in this problem is devoted to reoptimizing the network, this proves to be

a significant consideration.

Reoptimization of the local problem : Since the generation of cuts requires

the relatively expensive reoptimization of the subproblem, some or all of

-19-

Table 2. Solution of 25 resource constrained network problems by

BOXSTEP (resource directive) with varying box sizes

P (box size) T^^ (seconds) T^ (seconds)

10^ 31.8 4.1

10^ 23.1 5.8

10^ 21.2 14.9

10^ 34.6 25.0

T : Mean time to solution using a randomly generated vector as the

initial y.

T2 : Mean time to solution using an optimal solution as the initial y.

-20-

these cuts should be retained as the box moves. This greatly reduces the

number of cuts that must be generated to solve each local problem after

the first one. In contrast to the application presented in section 4,

saving cuts paid off but the line search did not. The mechanism for saving

cuts was very simple. Up to a fixed number were accumulated. Once that

number was reached every new cut replaced an old non-basic cut.

Although the size of the box is inversely related to the effort re-

quired to solve the problem within the box, the results indicate a trade-

off between the size of the box and the number of moves required to solve

the overall problem (5.3). There is a notable exception to this rule how-

ever. Frequently, if not always, there is a readily available prior esti-

mate of an optimal solution point y . Most large-scale problems have a

natural physical or economic interpretation which will yield a reasonable

estimate of y . In this application, recall that (5.3) is actually the

bounding problem in a branch -and -bound scheme. The v function changes

slightly as we move from one branch to another. The minimizing point y

changes little if at all. Thu5 we wish to solve a sequence of highly re-

lated problems of the form (5.3). Using the previous y as the starting

point on a new branch would seem quite reasonable. Furthermore, the size

of the box used should be inversely related to our confidence in this esti-

mate. To illustrate this important point, the twenty five test problems

were restarted with the box centered at the optimal solution. The mean

time required, in B6700 seconds, to solve the problem over this box is

recorded in Table 2 under the column headed T„ . These data and experience

with this class of problems in the branch and bound procedure indicate that

starting with a good estimate of the solution and a small boxsize reduces

-21-

the time required to solve (5.3) by an order of magnitude as compared to

the case with g = -1-'=
. Clearly a major advantage of the BOXSTEP method is

the ability to capitalize on prior information.

Ascent methods typically exploit prior information in the form of a

good initial estimate but the information generated during the solution

procedure is not cumulative. Outer approximation methods, in contrast, do

not exploit prior information but the cuts generated during solution are

cumulative. The current applications of the BOXSTEP method fall in the con-

ceptual continuum between these two extremes and capture the best features of

both.

-22-

6. Application: price-direction revisited

Some of the resource-constrained network problems introduced in sec-

tion 5 have also been solved by price-directive decomposition as developed

in section 4. These results will be presented very briefly. Using the

notation of section 5 the problem as given is

for all i

(6.1)

-23-

Table 3 . Price -directive results for a resource-constrained network problem.

BOX SIZE (p) Number of boxes required T (seconds)

.1 ? > 150

.5 7 70

1.0 4 55

2.0 2 76

3.0 2 119

4.0 1 92

5.0 1 108

1000.0 1 > 150

Table 4. Solution of 25 resource constrained network problems by

BOXSTEP (price directive) with varying box sizes.

*
T.. (seconds)

67.8

35.1

17.0

22.4

27.1

p

-25-

7. Conclusion

We have only scratched the surface as far as applications of the

BOXSTEP method are concerned. The main avenues for future work appear

to be the following.

Structured linear programs ; Many other problems for which decomposition

has failed in the past need to be re-investigated. This is especially true

when BOXSTEP is considered in conjunction with other new developments in

large-scale optimization (more on this below).

Structured non-linear programs ; BOXSTEP has yet to be tried on non-linear

problems. Two very likely starting points are Geoffrion's tangential approxi-

mation approach to the resource-directive decomposition of non-linear sys-

tems [] and Geoffrion's generalized Benders decomposition method [].

General non-linear programs ; In the case where v(y) is an explicitly avail-

able concave function, BOXSTEP could perhaps be used to accelerate the

convergence of any outer approximation or cutting plane algorithm. This

has not yet been tried. There may be other kinds of algorithms that can

profitably be embedded in the BOXSTEP method.

Integer programming ; Geoffrion [] and Fisher and Shapiro [] have re-

cently shown how the maximization of Lagrangian functions can provide strong

bounds in a branch-and -bound framework. The BOXSTEP method should find many

fruitful applications in this context. It has the desirable property that

the maximum values for successive boxes form a monotonically increasing se-

quence.

There are also several tactical questions to be investigated. Is

there a rule-of-thumb for the best box size to use for a given problem?

When should cuts be saved? When is the line search beneficial? We shall

-26-

confine ourselves here to one such question: How should the starting

point y be chosen?

The BOXSTEP method can take advantage of a good starting point. This

point may be derived heuristically from the interpretation of the problem,

as in section 4, or it may be taken as the optimal solution of a closely

related problem, as in section 5. Alternatively, we can start BOXSTEP

where some other algorithm leaves off. Suppose that an algorithm with

good initial behavior but slow convergence is applied to the given prob-

lem. As soon as this algorithm stops making satisfactory progress a

switch can be made to the BOXSTEP method. This has been tried with dra-

matic success. BOXSTEP has been coupled with the subgradient relaxation

method recently introduced by Held and Karp [] and Held and Wolfe [].

A sample of the results will indicate the benefits that may be derived

from this kind of hybrid algorithm.

Recall the representation (3.1) of v(y) in terms of its linear sup-

-rr / t. £k(t) , k(t) t ^, .^ . ,, , ^, ^ k(t) .ports. If v(y) = f^'^+g^'^y, then it is well-known that g ^ '^ is

a subgradient of v at y . Held and Wolfe propose the following iterative

process starting at any point y :

,^ ,, t+1 _ t ^ k(t)
(7.1) y = y + s^g ' ''

k(t) t r •)°°

where g is a subgradient of v at y and is j is a sequence for which

s -• but ^-<r_i s = ". Any point generated by this process could be taken

as the starting point for BOXSTEP. The hybrid algorithm was tested on the

p-median problem (see Marsten [] or ReVelle and Swain []). The con-

tinuous version of this problem has the form

n n

(7.2) min 72 Z/c..x.
i=l j=l

ij ij

-27-

(7.3)

-28-

Table 5 . Results for p-median problem with hybrid algorithm

L

2

3

4

8

9

10

11

20

30

^125

17474.0

14538.7

12363.0

7449.1

6840.9

6263.8

5786.8

2779.7

509.8

"^250

17474.0

14622.5

12363.0

7454.0

6843.6

6265.4

5786.9

2785.9

514.3

max

17474.0

14627.0

12363.0

7460.0

6846.0

6267.0

5787.0

2786.0

515.0

!

9.2

8.9

11.8

13.6

11.5

14.9

15.2

14.5

14.6

-2.

0.3

19.6

0.2

8.4

3.3

0.7

1.0

0.9

1.7

boxes

1

3

1

3

2

2

2

2

2

-29-

References

Austin, L. M. and W. W. Hogan, (1973). "Optimizing Procurement
of Aviation Fuels for the Defense Supply Agency", Working Paper,
U. S. Air Force Academy, June.

Blankenship, J. W. (1973). "BOXSTEP: A New Approach to La Grangean
Decomposition", Ph.D. dissertation. Department of Industrial Engi-
neering and Management Sciences, Northwestern University.

Beale, E. M. (1971). "A Conjugate Gradient Method of Approximation
Programming", Scientific Control Systems Limited, London.

Dantzig, G. B. and P. Wolfe, (1960). "Decomposition Principles for
Linear Programs", Operations Research , Vol. 8 , No. 1 (Jan. -Feb.),
pp. 101-111.

Fisher, M. L. and J. F. Shapiro, (1973). "Constructive Duality for
Discrete Optimization", Unpublished paper. Graduate School of
Business, University of Chicago, (March).

Geoffrion, A. M. (1970), "Elements of Large-Scale Mathematical
Programming", Management Science , Vol. 16 , No. 11, (July),
pp. 652-691.

Geoffrion, A. M., (1970). "Primal Resource-Directive Approaches
for Optimizing Nonlinear Decomposable Systems", Operations Re-
search , Vol. 18 . pp. 375-403.

Geoffrion, A. M. , (1970). "Generalized Benders Decomposition",
Working Paper No. 159, Western Management Science Institute,
U.C.L.A.

Griffith, R. E. and R. A. Stewart (1971). "A Nonlinear Programming
Technique for the Optimization of Continuous Processing Systems",
Management Science , 7, pp. 379-392.

Grinold, R. C., (1972). "Steepest Ascent for Large Scale Linear
Programs", SIAM Review , Vol. 14 , No. 3 (July), pp. 447-464.

Held, M. and R. M. Karp, (1971). "The Traveling -Salesman Problem
and Minimum Spanning Trees: Part II", Mathematical Programming ,

I, pp. 6-25.

Held, M. and P. Wolfe, (1973). "Large-Scale Optimization and the
Relaxation Method", IBM Research, Yorktown Heights, New York.

Hogan, W. W. , (1973). "Single Commodity Network Problems With
Resource Constraints", Discussion Paper, Department of Economics
and Management, United States Air Force Academy.

-30-

r 1 Luenberger, D. G. , (1973). Introduction to Linear And Nonlinear
Programming , Addison-Wesley , Inc., Reading, Massachusetts.

[1 Marsten, R, E. , (1972). "An Algorithm for Finding Almost All of
the Medians of a Network", Discussion Paper No. 23, The Center
for Mathematical Studies in Economics and Management Science,
Northwestern University.

r 1 Marsten, R. E. , (1972). "SEXOP User's Instructions", Department
of Industrial Engineering, Northwestern University, (July).

r 1 Meyer, R. R. , (). "MAP And Related Linearization Procedures",
Shell Development Company, Emeryville, California.

r] Revelle, C. S. and R. W. Swain, (1970). "Central Facilities Lo-
cation", Geographical Analysis , 2_, No. 1, (Jan.), pp. 30-42.

r] Zangwill, W. I., (1969). Nonlinear Programming: A Unified
Approach , Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

)3

Date Due

Lib-26-67

4,55-7^

3 TDflD DD3 &E7 S3T

57 --7-^

3 TDflO 003 657 554
U-Uo-73

3 TOflO 003 flE? Sb2

%A
3 =|06D 003 627 5Tb

(tCsl-"?!

3 TOflO 003 flE7 blE

-\

