

Center for Information Systems Research

Massachusetts Institute of Technology

Alfred P Sloan School of Management
50 Memorial Drive

Cambridge. Massachusetts, 02139

617 253-1000

Building a Decision Support System:
The Mythical Man-Month Revisited

Peter G. W. Keen
Thomas J. Gambino

May 1980

CISR No. 57
Sloan WP No. 1132-80

to appear as a chapter in Building Decision Support Systems , edited
by J. F. Bennett, Addison-Wesley Series on Decision Support.

-2-

TABLE OF CONTENTS

1. Introduction 4

1 .

1

Overview 4

1.2 The Mythical Man-Month 5

2. School Finance Policy Issues 8

3. ISSPA Design Features 12

3.1 Introduction 12

3.2 Program Structure 19

4. The Development Process 21

4.1 Introduction 21

4.2 Phase 1: The First Meeting 26

4.3 Initial Commands 27

4.4 Version 30

4.5 Phase 2: Bringing in the Users 31

4.6 Phase 3: Building a System Product 37

4.7 Conclusion 44

5. Principles of Adaptive Design 46

5.1 Introduction 46

5.2 The Cognitive Loop 47

5.3 The Implementation Loop 48

5.4 The Evolution Loop 50

5.5 Adaptive Design in ISSPA 51

6. Command-Based DSS and User Verbs 56

7. APL and the Mythical Man-Month 66

8. Conclusion: Guidelines for Building DSS 78

n,i/->

3-

FIGURES

1. Brook's Assessment of Relative Prograinining Effort . . 6

2. CHOOSing Variables in ISSPA 17

3. ISSPA Program Structure 20

4. Identifying Variables in ISSPA 22,23

5. EQUITY Command 25

6. EDA Commands 38,39,40

7. Rules of Thumb for Building a DSS 45

8. An Adaptive Design Framework for DSS 48

9. IMPS (Interactive Modeling and Planning System) . . . 59,60,61

10. Task Representation in Adaptive Design 64

11. Sample Dialog from APL-Based System 74

TABLE

1. ISSPA Commands 14,15,16

-4-

1. Introduction

1.1 Overview

This paper describes the development of a Decision Support System,

from its beginning as part of a research project through to the

implementation of it as a commercial product used by six state

agencies and public sector consulting groups. The system was designed

by individuals with a long-standing involvement with DSS. As such,

it provided an excellent opportunity to test the conventional wisdom

on principles and techniques for DSS design.

We had clear expectations as to what would be easy and what would

be hard to implement. We wanted to see if the DSS field is at a stage

where one can give builders reliable rules of thumb — not a cookbook,

but the sort of pragmatic advice that would be welcomed by a capable

systems analyst, consultant or programmer setting out for the first

time to deliver an interactive computer system to support decision

makers in a complex task.

ISSPA (Interactive Support System for Policy Analysts) is a DSS,

written in APL, that supports administrators, analysts and researchers

concerned with public policy issues at the state and local level. The

initial application which this paper discusses is in the area of school

finance: the funding of public education in individual states. How-

ever, ISSPA is of general relevance to planning and policy making in

both the public and private sectors.

The development strategy was based on principles of adaptive

design, derived from the recommendations of several researchers and

practitioners (see Section 5)

.

These principles assume that the "final" system must evolve

through usage and learning. Rather than focus on functional specifi-

cations, the designer relies on a prototype to:

(1) Find out quickly what is important to the user as

opposed to what the designer thinks ought to be

important;

(2) provide something concrete for the user to react to

and experiment with; and

(3) define a clear architecture for the DSS, so that it

can easily be modified and evolved.

The prototype is a real system, not a mock-up or experiment.

It provides the base for learning-by-using.

As well as prototypes, adaptive design emphasizes:

(1) Careful attention to the user-DSS dialog , and thus to

the design of the software interface;

(2) the importance of user learning , in terms of the

evolution of the system and the need for flexibility

in the DSS and responsive service by the system builders;

(3) getting started , rather than getting finished; and

(4) a command-based structure ; ISSPA is built up of APL

functions that directly correspond to the action words

or the "verbs" users employ in their own problem-solving.

A verb is a statement "do this", such as "give me descrip-

tive statistics", which ISSPA performs with a DESCRIBE

function.

1. 2 The Mythical Man-Month

The adaptive design approach used with ISSPA, and the choice of

-6-

APL, reflect a hypothesis that is the main topic of this chapter:

Adaptive design resolves the problem of the

mythical man-month .

2
The mythical man-month is F.P. Brooks' summary of the discrepancy be-

between the expected and actual effort required to develop software

products. Designers estimate the time for completion in terms of man-

months; their projections almost invariably turn out to be badly wrong

and the system often does not work.

Brooks identifies a number of explanations for the widespread

problems in planning for and delivering software systems. Assessments

of man-months are often based on the number of lines of code, However,

program coding is only 10% of the total effort. Moreover, if X is the

effort required to write and test a program, 3X is needed to make it

into a program product and 9X to integrate it into a system product

(Figure 1)

.

FIGURE I: Brook's Assessment of Relative Programming Effor t

System System Product
3X * 9X

Making a program into a product involves documentation, additional

testing to ensure "robustness" (i.e., it should be able to handle inputs

and uses outside the range of the initial special-purpose program) , error-

handling routines, etc. Integrating a program into a system requires

-7-

substantial testing of linkages, and often additional code must be

written to ensure consistency.

Brooks reconunends several techniques to solve the problem of the mythical

man-month. Ho emphaslzos the Importanii.' of u clear design arrhlti-ct uro, the

use of "sharp tools" (including APL) , and systematic testing procedures.

We were particularly concerned about the mythical man-month since we

wished to make ISSPA into a system product and had an extremely limited

budj^et. In essence, we started with a set of hypotheses about DSS develop-

ment, in terms of adaptive design, system architecture, APL, and the

mythical man-month. The rest of this chapter describes our experiences,

focussing on the surprises. We found that:

(1) The principles of adaptive design, which are unique to

the DSS faith and stand in sharp contrast to the methods

of the systems development life cycle, hold up well.

Given APL as a tool, we have been able to evolve a complex

system out of simple components and respond quickly to

our users' changing needs.

(2) We underestimated the importance of having skilled users;

much of the testing process relies on them.

(3) While APL immensely speeds up the development process, it

has some hidden costs. It is extremely difficult, even

for expert programmers, to estimate the relative efficiency

of the source code. ISSPA is expensive to run and we

found that rewritting some sections of the code reduced

the processing cost by a factor of 20. We suspect that

many super-high-level languages share with APL a charac-

teristic we term opaqueness: the surface (the source code)

gives no clear indication of depths (machine-level).

-8-

(4) Brook's estimate of 9X seems to hold. Even with APL,

adaptive design and a highly skilled programmer, the

initial development effort has to be supplemented by

continuous attention to improving the usability of the

DSS. Of course, since APL reduces X, it also makes

the total effort — 9X — acceptable.

2. School Financial Policy Issues

Since the early 1970' s, the funding of public schools has been

a major legislative and judicial issue in at least half the states

3
in the country. The Serrano case in California (1973) established

that a child's opportunity for education — expressed in terms of

expenditures per pupil in each school district in the state — should

not be determined by his or her parents' and neighbors' wealth.

Towns with high wealth and property values can raise large revenues

for less effort than poor ones. Since local property taxes are the

major component of school revenues, this has resulted in huge dis-

parities between neighboring districts. To resolve this inequity,

the state must both limit rich districts' expenditures and provide

substantial aid to poor ones.

The main result of school finance reform has been to place

responsibility on the state legislature and executive to determine

the "formula", the set of precise equations on which each district's

state aid is based. This requires fundamental rather than incremental

analysis. A school district can base next year's plans on a budgeting

procedure which largely examines cost increases (especially in teachers'

salaries). The voters in the town will approve — or, increasingly in

recent years, reject — the budget. Similarly, in states where school

finance is not a major issue, the legislature can adjust last year's

formula, increasing the basic state aid by, say, 8%.

-9-

This incremental process, which has worked reasonably well for

a century, breaks down when a judge declares the state's existing

system unconstitutional or when school finance becomes a "hot" issue

because of taxpayer revolts or when inflation affects the ability of

local districts to raise adequate revenues. There must then be funda-

mental, not incremental analysis of policy choices.

Unfortunately, the professional staff responsible for such

analysis can rarely provide it. The whole aim of ISSPA is to break

through the technical constraints they face, but many organizational

ones remain. The key problem is that the whole system has always

relied on incrementalism. There is no policy focus. Even when a

court decision forces rethinking, legislators are mainly concerned

with the "bottom line", the exact impact of a proposed formula on

each of their constituent districts. This "costing out" of the

formula leads to a narrow focus; the planning horizon is next year

and longer-term qualitative issues are ignored.

The key issues in school finance concern data. It is a "numbers"

game with lengthy arguments about who has the right figures. The

state aid formula is generally based on a variety of data: attendance

by grade, enrollment (which is not necessarily even close to attendance),

local tax rates and revenues, transportation expenditures, special

and vocational education information, etc., etc. School finance is

a morass of numbers. In New York, for example, every local school

superintendent must supply the state with up to 1,200 pages of data

a year.

Control over this data is the major source of influence for the

department of education, which is generally a poor step-child in

state government. A few states have effective collection, control

-10-

and reporting procedures, but on the whole, the data management process

is clumsy and inefficient. There is a shortage of programmers. Low

salaries and lack of hardware, management and training mean the policy

analysts' major problem is access to high quality information.

These analysts are mainly legislative staff or professionals

working for executive fiscal and budget agencies. Their responsibili-

ties vary; they are partly watchdogs who monitor other parts of govern-

ment (legislative or executive). They may initiate policy alternatives.

Above all, they evaluate information on the current state aid system

and on competing proposals for change. In general, the only computer-

based aids available to them are SPSS (the standard Statistical Package

for the Social Sciences) and limited batch "simulations" which do little

more than calculate what each school district would have received last

year had a proposed formula been used. Only a few states have more

advanced tools. These tend to be expensive but highly valued by their

users.

While legislative debates on school finance are limited to

incremental analysis and the bottom line, the policy issues are complex.

There is a rich research literature on measures of equity and alterna-

tive structures for a formula (foundation, guaranteed yield and pupil

weighting), and the field has an esoteric jargon — recaptures, save

harmless, mills, and caps. The gap between the research concepts and

the practice of policy analysts is huge.

ISSPA is intended to bridge the gap, to provide analysts with a

"portable technology" that can help them add a real policy focus to

school finance. Since access to information is the key to effective

analysis, and even more, to influencing the legislative debate, ISSPA

is designed to allow fast and flexible manipulation and display of

-11-

information. It is a DSS for policy analysts not for policy analysis.

The state department of education often has a monopoly on data

and data processing. It is also difficult for analysts to get appro-

priations for computer resources — the centralized data processing

unit can generally thwart local efforts to use other services. ISSPA

had to be "portable". A portable technology is one that can be easily

transferred and maintained. Portability includes:

(1) low cost ; even $10,000 may be too expensive to

justify, regardless of potential payoff — if it

involves a capital investment proposal and

legislative approval;

(2) installation ; given the frequent organizational

isolation of analysts and the hostility of the

data processing unit, it must be easy to build

and update the ISSPA database and to bring up

the DSS;

(3) ease of use and elimination of the need for

training; the analysts have little experience with

computers; it was important to make ISSPA self-

explanatory;

(4) evolution ; one long-term aim is to use ISSPA as

a means of translating research concepts into

analytic techniques. This means ongoing develop-

ment; it is essential that users be able to get

access to — and contribute to — the results.

Portability is as much a political as a technical concept.

-12-

ISSPA Design Features

3. 1 Introduction

ISSPA is a command-driven system. There are five categories

of command:

(1) data management

(2) data manipulation

(3) data display and reporting

(4) statistical analysis

(5) user-system linkages (e.g., 'help' commands)

Conceptually, the database is a matrix in the form:

4planning units (rows x variables (columns))

There is no fixed limit on either the rows or columns; ISSPA fills up

the workspace with variables (via the CHOOSE command) until it is full.

Labels for rows and columns may be of any length; users are not con-

strained to or muddled by uncommunicative mnemonics. In a typical

school finance application, the database contains 500-600 variables

for each of 500-750 planning units (school districts).

We deliberately chose a simple data structure and approach to

data management for ISSPA. Our assumption was that policy analysis

largely involves exploring and manipulating a small amount of high

quality data, and that analysts think of the data as a simple table

of values.

Commands in ISSPA are simple and kept as close to the users'

vocabulary as possible. Almost all DSS claim to be English-like, and

easy to learn and use. The evidence that ISSPA is indeed so is that

users have been able to operate the system, drav/lng on most of its

commands, with under an hour of training. The training is simply

-13-

a one-hour demonstration. There are currently almost 50 commands;

the initial system, put into use seven months ago, contained 22.

Table 1 lists the commands, with brief comments on how they evolved.

Considerable effort was put into the design of the user-

system interface. Conventions were kept to a minimum. Most commands

involve typing a single word, which is generally self-explanatory,

such as LIST, PLOT, REGRESS, DEFINE or COUNTIF. A structured dialog

is used within the more complex commands; ISSPA prompts the user, in

a fixed sequence: "DO YOU WANT A OR B?"

The only conventions which take time to learn and use concern

CHOOSing variables and variable identifiers. Since the database may

be of any size, only a part of it can be in the workspace at any time.

Users are told to view the DSS as a scratchpad. The commands operate

on whatever is in the scratchpad. The user CHOOSEs which variables

to bring in from disk (see Figure 2) . We assumed that this would not

be constrictive since users will rarely want, or be able, to deal with

more than 10-20 variables at the same time (see also Morton, Carlson

and Sutton)

.

Labels and mnemonics for variables are cumbersome to use and

hard to remember, especially since an ISSPA database often contains

over 600 variables. The convention used in ISSPA is that 'variables

are referenced by either a permanent identifier Vxxx, set up when the

database is created, or by a temporary number Axx, showing the variable's

location in the workspace ('A'xx = active variable number xx)

.

While analysts found their convention reasonably easy to accept,

they still wished to define their own labels at least for those variables

they used frequently. We added a SYNONYM facility so that now variables

can be referred to by their V-number, A-number or a one-word user-supplied

label.

-14-

-15-

2. Added when Version made available to users

(I) (2) (3) (4)

ADD/DROP DATABASE

CLEAR ^

FORMAT

GROUPIF/UNGROUP x

PARTIAL CORK x

RANGE, MIN, MAX, MEAN,

MEDIAN, TOTAL

SCALE/RESCALE x

WAVERAGE

3. Added at user request

COMMAND COST/SESSION COST x

CONTINUE X X

DISPLAY FOR UNITS x

SELECT UNITS x

SYNONYM

VARS X x

WHAT IS .

X

YEARS '

* SAMPLE

-16-

4. User-defined (1) (2) (3) (A)

OHIO

WTILES X

5. "Evolved" commands added by designers

BOXPLOT

CONDENSE

EQUITY

STEMLEAF

6. Extended Capability

IMPS

(1) library? = taken from APL public library?

(2) modify dialog? = were substantial changes made to user-DSS
dialog in response to user reactions?

(3) extend/improve? = were extensions or improvements made to the

command, in terms of function not dialog?

(4) system command? = is this a general system command rather than
user command?

-17-

FIGURE 2 - CHOOSING ISSPA VARIABLES

(User responses are underlined)

COH^AMD: DIFFrrOKT
THE AVAILABLE D/c'icneCOHIES ASti

1 FURnLLMEMT
2 FFVFHUE
3 EXPENDITURES
I* STAFF
5 TAX RASE AMD TAX RATE
6 DISTRICT CHARACTERISTICS

EXPLORE ANY CROUP {'HO')? ENROLLMEHT
/lOl TOTAL ADM 79

"

fl02 TOTAL ADM 79

f 103 SPECIAL EDUCATIOH ADM 79

/lOH SPECIAL EDUCATIOH ADM 78

EXPLORE ARr CROUP (.•RO')r 2

V701 TOTAL REVERUE 79

l'?02 TOTAL REVENUE 78

^203 LOCAL REVENUE 79
l'20^ LOCAL REVENUE 78

l'20S STATE BASIC AID 79

V706 STATE BASIC AID 78

VJOl SPECIAL EDUCATION AID 79
1'208 SPECIAL ErUCATION AID 78

V209 OTrlER REVENUE 79

V210 OTHER REVENUE 78

(1)

(2)

DIRECTORY
permanent

lists variable
database

groups in the

VlOl is permanent numeric identifier number,
and TOTAL ADM 79 its permanent discriptor

(3) Group 2, REVENUE, has 10 variables

COMMAMDl VAHS

* » 'to ACTIVE VAKIABLSS* • •

CCSMARD: CROOSS
GROUP OR ITEMT

~'
CROUP

CPOLT NAME (STOP)?' ~ ERROLLMEKT
GROUP HAMS IST0P)T STOP

CURRENT RUNBES OP ACTIVE VARIABLES: »

COMMAHD: VARS_
TEE ACTIVE VARIABLES ARgt
Al VlOl TOTADKl'i
A7 CI 02 T0TADM16
A3 CI 03 SPECEDADM79
Al ClOH SPECEDADMlt

(4) the workspace is currently empty

(5) CHOOSing the ENROLLMENT group results in
four active variables

TOTAL ADM 79
TOTAL ADM 78

SPECIAL EDUCATION ADM 79
SPECIAL EDUCATION ADM It

(6) an active variable may be referenced by its
A-number, V-number or synonym (user-supplied)
to, (e.g., Al, VlOl or TOTADM79) may be
used interchangeably with any command

COMHARD: CROOSS
CROUP OR ITEM? ' ITEM
ESTER VARIABLE (C) NUMBER (•STOP'):?
ESTER VARIABLE (V) NUMBER ('STOP'):?
ERTER VARIABLE (V) NUMBER ('STOP'):?

y20\ (7) CHOOSE individual variables rather than a groupC201
l'301

yrar

CURRENT HUMBES OP ACTIVE VARIABLES: 6

-18-

COMMAKD: VAKS

-19-

We allowed variable names to be of any length, to ensure that

reports would be meaningful and clear. If users — or the legislator

or public interest groups for whom they prepare analysis — think of

a variable as "GUARANTEED YIELD, GOVERNOR'S PROPOSAL", then that is

what must appear on reports, not "GY, GVR" . Obviously, by providing

maximum flexibility on variable labels, we had to find a compact and

efficient (from the user's perspective) mode of reference.

3. 2 Program Structure

The program structure of ISSPA is relatively simple in concept.

There are three separate components (See Figure 3)

:

(1) User-system interface;

(2) commands ("LIST", "REGRESS", etc.); and

(3) data management routines, transparent to

the user.

Most of the initial effort went to defining the interface, which

handles the dialog between the users and the system and thus strongly

determines if they will view the DSS as friendly and easy to use. Once

the initial system was released for use, significant effort was needed

for the data management routines. Many of the commands use APL functions

from public libraries (see Section 6) , especially those for statistical

analysis.

Brooks draws attention to the "architecture" of a system. The

command-based structure we used for ISSPA meets many of his recommendations;

(1) It reflects a top-down approach and the dialog-manager is

independent of the commands and data management routines:

(2) each command is fully independent of the other; a new one

can be added to ISSPA with no change to the logic of the

dialog manager or to any other command;

-20-

-21-

(3) our design methodology is a form of "stepwise refinement".

We implemented an initial version of a routine and refined

it on the basis of users' experiences and reactions.

The convention for naming variables illustrates this last point.

We started by deciding that there would be no restrictions on variable

labels for reports. This meant that the label could not be used as

the variable indentifier, since this could mean typing 50 characters or

more. We struggled to defind a compact method and initially tried the

V-number approach. We added A-numbers to deal with variables defined

from other variables (e.g., DEFINE (VlOl + V109) 4- V217)

.

The initial system was used for several months before we extended

it. We added (Figure 4):

(1) SYNONYM;

(2) WHAT IS; to allow easy identification of a variable;

(3) IDENTIFIER: this lists the full label for any A-number,

V-number or synonym;

(4) VARS; this shows the identifiers for all the variables

currently active.

Adaptive design assumes that such extensions will be added as a

direct result of system usage . One cannot predict in advance exactly

what will be needed. The early users of ISSPA in effect taught us

.

4. The Development Process

4. 1 Introduction

This section briefly summarizes the sequence of the development

process. Adaptive design is based on rules of thumb. We present the

rules as we proceed and list them at the end of the narrative.

-22-

FIGURE 4: IDENTIFYING VARIABLES IN ISSPA

(User Inputs Underlined)

(1) SYNONYM V404

CURRENT SYNONYM: LOCAL TAX BASE

NEW SYNONYM: LOOT

SYNONYM All

NO CURRENT SYNONYMS

NEW SYNONYM: FEDTAX79

(2) WHAT IS TOTENRL78

Al V102 TOTENRL78 TOTAL ENROLLMENT 78

(3) IDENTIFIER Al

TOTAL ENROLLMENT 78

23-

(4) VARS

THE ACTIVE VARIABLES ARE:

Al K201 T0TREV7S TOTAL REVEl^UE 79

A2 1^30 1 T0T0PEXP79 TOTAL OPEHATIiW EXP. 79

A3 P'lOl T0TENRL13 TOTAL ENROLLMEl^T 7 9

>}4 SURPLUS13 OPERATING SURPLUS (DEFICIT) 1979

-24-

The initial system took roughly 70 hours of effort on the part

of the programmer (Gambino) . Keen, in an ongoing research study,

had spent six months studying the design and use of the computer models

and information systems in state government agencies concerned with

school finance policy making. The computer systems available to policy

analysts in most states were cumbersome and very limited in scope.

The analysts complained of their lack of flexibility and of the unavail-

ability of data. Generally, they were unable to get programs written

to produce special reports; the data processing staff were unresponsive,

overworked or incompetent. A few states had useful interactive systems,

but these were expensive ($200,000 - $1,000,000).

The initial design aim for ISSPA was to show that a simple, general,

flexible and cheap DSS could be built that would meet the analysts'

needs and also facilitate better and more extensive exploration of

policy issues. Limited funds were available for the initial system.

From the start, however, ISSPA was intended to be a system product

in Brooks' sense of the term; it was expected that there would be

sufficient demand for such a system that funds would be available for

continued development.

The development fell into three distinct phases:

(1) Phase 1: build the initial system. Version 0.

(2) Phase 2: extend it, adding new commands and improving

existing ones in response to users' reactions.

(3) Phase 3: create the system product that is portable,

stable and documented.

Each phase posed different challenges.

25-

FIGURE 5: EQUITY COMMAND

COHHAKD: WHAT IS V101.A31.A3t
Al /lOl T0TADH79 TOTAL ADM 79

A37 RBVPBSPUPIL S REVEKUE PER PUPIL
4 3« EIPPERPVPIL19 $ SIPEMDITURES PER PUPIL 7 9

COMMAHD: EQUITI A37.A3B BI I'lOl

EHTBS PERCENT FOR 'PERCENT MEAN' CALCULATION:? 50
ENTER 'E' VALUE FOR 'ATKINSON'S INDEX' CALCULATION?

PER PUPIL PER PUPIL
1979 1979

NO. OBS. (.N)

-26-

4.2 Phase 1: The First Meeting

At their first meeting. Keen and Gambino began by sketching out

the user-system dialog. Keen, as the analyst, had a clear idea of

the initial set of user verbs to be supported. For example, it was

obvious that analysts relied heavily on rankings; e.g., they would

create a report listing expenditure figures, with the district with

the largest average revenues per pupil showed first. This became a

command: "RANK BY".

Keen presented the verbs and Gambino suggested the exact dialog.

Keen would respond to the recommendation; generally, it would be

rejected if it was cumbersome or clumsy for a non-technical, inexperienced

user.

The meeting lasted three hours. There was a constant give-and-take

between analyst and technician. A general dialog was agreed on but

not set in concrete. This dialog determined the nature of the data

management routines. We had started by focussing on the representation

of the data; it must appear to the user as a simple table of values.

Each command must operate directly on the table, with no specific pro-

cedures needed on the part of the user to get, manipulate or update data.

It is worth noting that our approach was the opposite of standard

systems analysis. We began from the outputs and worked back to the in-

puts, leaving the procedures to be specified later. This reflects our

view that what happens at the terminal determines the "quality" of the

DSS; to the user, the interface i£ the system. Most programmers focus

on defining the input data and then the procedures, leaving the outputs

to last.

This strategy also allowed Gambino, who was completely unfamiliar

with school finance, to quickly Jearn a great deal about the intended

-27-

users. Many programmers have a naive view of the user. Indeed, the

"user" is often only an abstraction. From the start, all our design effort

emphasized what the user would say and see. The "quality" of the DSS

was defined in terms of ease of use, lucidity and gracefulness. Far

from being an abstraction, the user was a real presence.

This initial phase of the development process reflects a key

and reliable rule-of-thumb

:

Rule 1 : Design the dialog first . Forget about input files,

functional capabilities, etc.:

R. 1(a) : Define what the user says and sees

at the terminal.

R. 1(b) : Define the representation of the data*

what does it look like to the user?

4. 3 Initial Commands

Keen distinguishes between usefulness and usability in a DSS.

Usefulness relates to the capabilities of the system: models, retrieval

facilities and report routines. Usability refers to the user-system

dialog. Our first rule of thumb stresses usability. Obviously, though

the initial system has to contain something worth using.

The link between users' verbs and DSS commands is a key one for

our design strategy (see Section 6) . Understanding the user involves

identifying his or her verbs. The verbs provide design criteria for

the commands that constitute the useful components of ISSPA. We defined

two types of command:

(1) Those based on generic verbs; and

(2) those that are special-purpose •

-28-

Generic verbs are the ones common to most problem-solving and

analysis, and that are required in most DSS. For example, any task

involving data analysis needs a LIST, RANK and HISTO (gram) command.

We identified a dozen generic commands, most of which could be provided

with minimal programming.

Generic commands will already have been implemented in other

systems. We chose to use APL partly because excellent public libraries

are available on several computers. APL is a convenient language for

borrowing routines since integrating them into a program requires very

little effort. All the statistical routines in ISSPA come from public

libraries. We have found that 2-8 hours are required to modify, integrate

and test a routine from a library. Since it has already been at least

partially, and in most cases entirely, debugged, we save much of the

9X of effort Brooks identifies. The main modifications needed in

adding a function to ISSPA involve the user-system dialog. Many of

the designers of APL programs show little sensitivity to the user

(see Section 7)

.

Most special-purpose commands obviously must be programmed. For

policy analysis in general, we identified well over 20 special-purpose

verbs and for school finance another 10. The general verbs largely

related to statistical techniques and measures and the school finance

ones to measures of equity and approaches to comparing and ranking

school districts.

Examples of the various types of command we identified for

potential inclusion in the initial version are:

(1) generic: LIST, RANK, DESCRIBE (descriptive statistics),

HISTO (gram), DEFINE (new variable) , FREQUENCIES , ADD (to)

DATABASE.

-29-

(2) special-purpose:

(a) policy analysis: SELECT UNITS, COUNTIF, BOTTOM,

NTILES, GROUP, REGRESS, ANOVA

(b) school finance: EQUITY, (equity measures),

GINI, LORENZ''

We put priorities on the commands. This was done informally

and based on four criteria:

(1) The priority to the user ; i.e., the extent to which this

command reflected a verb the analysts rely on or would

immediately find useful;

(2) ease of implementation ; HISTO and REGRESS could be taken

directly from an APL public library;

(3) clarity of user-DSS dialog ; with REGRESS, we could lay out

in advance a simple complete dialog. We found it hard

to do so for ANOVA (analysis of variance) and thus left

that for a later version; and

(4) likelihood of acceptance ; we avoided trying to force

unfamiliar or contentious routines on the user; we could —

and did — add them later.

The focus on user verbs and the use of a command-based program

structure were an effective and simple technique. Our ability to

extend version from 12 to 50 commands directly resulted from these

rules of thumb:

Identify the users' special-purpose verbs.

Identify generic verbs, relevant to this DSS.

Translate the verbs into commands, and vice versa.

Check public libraries for off-the-shelf routines,

especially for generic verbs.

Rule

-30-

Rule 6 : Set priorities for implementing commands for version 0.

Rule 7 : Support first, extend later; aim at giving the user

something he or she will readily accept and add the

less familiar, more complex capability later.

4.4 Version

Q
A working system was available within 40 hours. It contained the

following user commands:

LIST, DESCRIBE, RANK, TOP, BOTTOM,

HISTO, REGRESSION, CORRELATE and NTILES

(e.g., 10 NTILES = deciles, 4 NTILES - quartiles)

The regression, histogram and correlation routines were taken from

a public library. Version included other commands needed to manage

the user-system dialog or improve the usability of the DSS; e.g.,

DIRECTORY, CHOOSE, ENVIRONMENT.

When the preliminary system was ready, we spent substantial time

(10 hours) improving what the users saw on the terminal. The major

changes that needed to be made concerned the formats of the outputs.

Whereas functional specifications involve laying out a report format

in some detail, adaptive design is similar to the concept of stepwise

refinement. Instead of asking users "What do you want?", we said

"How do you like this?".^

We entirely redesigned the dialog and style of the outputs by

playing with the system, prior to showing it to potential users. After

an additional 20 hours of programming effort, we had an operational

system (70 hours in total), with over 30 commands. This was made avail-

able to a senior policy analyst and his assistant in a large state's

education agency. Over the next three months, they worked with the

system and many extensions and modifications were made (see 4.5 below).

-31-

This first phase of development worked out well. Even at

commercial rates for programming and computer time, we had spent under

$4,000. We demonstrated the system in several states; instead of trying

to sell an idea, we could show a complete working DSS. We kept careful

track of the development process up to this stage; we wanted to check

our experience with the general conclusions of Ness, Courbon et al .

,

and Grajew and Tolovi. We agree with Grajew and Tolovi's estimate

that the initial system, which will then evolve through usage, can

be built for under $10,000 in less than 16 weeks.

This is an important point, since:

(a) It reduces the user's risk and encourages experiment; a

DSS becomes more of an R&D effort than a capital invest-

ment; and

(b) the lead time between the initial proposal and a usable

system is short enough that the users' enthusiasm and

momentum are not dissipated.

Version was simple but not simplistic. The analysts who saw

it were impressed by how easy ISSPA is to use and by its power:

Rule 8 : Keep it simple from the start; aim for a few useful

commands for version and evolve a complex DSS

out of simple components.

Rule 9 : Deliver version quickly and cheaply.

Rule 10: Make sure version sells itself; it must be easy to

use, the outputs clear and the dialog self-explanatory.

4 . 5 Phase 2: Bringing in the Users

In a sense, potential users of ISSPA were involved from the start.

Keen's and Clark's studies of school finance had included surveys and

-32-

interviews with analysts, legislators and administrators in eleven

states. They discussed the idea of ISSPA with Several experienced

analysts, who worked with version and played a major role in the

evolution of ISSPA.

We were extremely selective in looking for potential users.

Since version was intendedly only a start and not the final system,

the skills and creativity of the early users would strongly influence

the quality of the full system. Adaptive design relies on good users.

Our first user was a widely-respected senior analyst in a large

mid-western state. He was impressed with ISSPA and, with the help of

a subordinate who had some knowledge of computers, began using it

after one demonstration. There was no user manual: while this led to

12occasional problems, ISSPA is largely self-explanatory.

We wanted the initial users to react to ISSPA and to test it.

We did not want them to have to debug it. Debugging means finding

errors; testing, in our sense, means seeing how well the system works,

deciding what needs to be changed or added and, above all, critiquing

the quality of the interface.

Version was not bug-free. We had left the complex issue of data

management till last. We had carefully designed the representation of

the data — how it looked to the user. As we built the data management

routines, we introduced errors; what worked on Monday bombed for no

apparent reason on Tuesday.

In retrospect, we should not have released version until we had

implemented a reasonably complete initial version of these routines.

Some users get very unhappy very quickly with an unstable system.

(However, they are also very tolerant of errors in the first release

of a new command.)

-33-

As we expected, we learnt a lot from the early users. One

episode was instructive. NTILES is a command that identifies the

cutpoints that break the distribution of values into equal groups;

e.g., 5 NTILES REVENUES lists quintiles, 10 NTILES deciles, etc.

This was an obvious command to include in version 0, since in school

finance court cases and legislative reports, a frequent comparison

is made between, say, the top 10% and the bottom 10% of school districts.

We assumed that the NTILES command would be seen by analysts as helpful,

but not unusual.

In fact, NTILES was enough in itself to sell the merits of ISSPA,

In most states, calculations of deciles are done by hand. SPSS, the

standard statistical package analysts use, does not allow observations

to be reordered. In several states, we found instances where COBOL

programs had been written to print the 5%, 10%, 25%, 33%, 95%

intervals for a distribution, but only for specified variables. The

idea that such programs could be generalized and on-line access provided

came as a surprise to many analysts.

Once the analysts had access to a general routine like NTILES,

they used it in new ways and developed new ideas from it. For example,

UTILES adds an equity measure to the simple deciles or quantiles NTILES

provides (WTILES stands for Weighted NTILES). It allows the analyst

to answer such questions as "What are the 1978 expenditures for the

bottom 10% and bottom 90% of the students in the state?". The analyst

who defined WTILES used it as the basis for a major report on school

finance equity and felt that the analysis could not have been done

previously.

The sequence of events summarized above occurred several other

times. The general pattern was:

-34-

(1) Data processing had provided a specific solution to a

specific problem;

(2) we identified the general verb relevant to the problem;

(3) we provided a flexible command;

(4) use of the command stimulated a distinctive new idea

or approach; and

(5) we added the resulting user-defined command to ISSPA.

We strongly feel that this pattern is a central aspect of DSS

development. Keen studied over 20 published case descriptions of

DSS and concluded that in many instances, the most effective uses of

the systems were both entirely different from the intended ones and

13
could not have been predicted beforehand (see Section 5) . Learn-

ing and evolution of system commands are a natural outcome of adaptive

design.

Such learning requires skilled users. Throughout the second phase

of the development of ISSPA, we found the users' role to be central;

we had not anticipated their importance in testing. At one stage, we

had users in five separate states. One of them was of immense value

to us, one was close to a disaster. We feel sure that the experience

provides a general lesson to DSS builders. Adaptive design provides

a working system quickly. The designer realizes that there will be many

things wrong with it and gains immensely from the users' reactions . If

the users are not highly skilled in their own job and actively interested

in the DSS, the designer does not get essential feedback.

A "working" system is one that has no obvious bugs. "*I39VW" or

"SYNTAX ERROR" is clearly a bug, but $210 instead of the correct $160

is not. Because a DSS is intendedly a flexible tool, under the user's

control, it does not have a set of "correct" inputs, procedures and

-35-

outputs. Even in a standard data proces.slng apyillcatlon, it is

impossible to test all combinations. Flexibility, generality, ad hoc

uses, and variety of inputs, commands and outputs compound the problem.

Only a good user can alleviate it. User A (the good one) provided

invaluable feedback. User Z either did not recognize errors or simply

complained that "something's wrong"; the credibility of ISSPA suffered

as a result. In several instances, legislators were given incorrect

reports. The errors were subtle and only an expert on school finance

could spot them. User Z was, reasonably enough, very bothered when

errors were revealed but did little to uncover or cure them. User A

sought them out.

What we learned from all this was that a distinguishing aspect

of DSS development is that it is user-dependent:

(1) Adaptive design is an interactive process of learning

and feedback between a skilled user and a skilled

technician.

(2) the user tests a DSS;

(3) many DSS bugs are unobtrusive and remain dormant

until a user finds them;

(A) the range of functions exercised depends on the user.

Bugs reveal themselves only by use. Only an imaginative,

confident, involved user gives the DSS an adequate

work out.

Rule 11: Pick a good user; look for someone who:

(a) has substantial knowledge of the task the

DSS supports;

(b) has intellectual drive and curiosity;

-36-

(c) will take the initiative in testing and in

evolving version 0; and

14
(d) enjoys being an innovator.

During this second phase of development, ISSPA grew in scope and

sophistication. Very few commands were left unchanged; many of the

improvements were minor enhancements in formatting or ease of use. New

commands were added that were specific to school finance (i.e., not

based on generic verbs). For example, EQUITY (see Figure 5) provides

12 measures of the equity of an existing or proposed state aid plan.

It is derived from a research paper by Berne which has had substantial

influence on school finance policy research but little on policy making.

Whereas the initial commands supported analysts' existing processes,

EQUITY was specifically intended to add something new.

Gerrity introduced the cpncept of descriptive and prescriptive

mapping of a decision process in DSS development. The descriptive map

identifies how the task is currently handled; our focus on user verbs

is one approach to doing so. The prescriptive map provides a long-term

direction for improving the process. It reflects a normative concept,

often derived from theory and research.

Keen and Clark had identified as major shortcomings in existing

policy analysis a lack of any real focus on strategic issues, long-term

forecasting and conceptual models. Berne's research on equity measures

was too far from most analysts' experience and interests for them to

apply it. By embedding the easy-to-use EQUITY command in ISSPA, we could

encourage them to adopt a broader approach to policy issues. We

explicitly viewed ISSPA as a way of bringing policy research to policy

making.

-M-

We did not force analysts to use EQUITY. It is one of many

resources available in the DSS. Since it involves typing a single

phrase, there is minimal effort involved in trying it out. Keen argues

1 Q

that a DSS is often a way of making useful models usable. We took

Berne's 12 measures — the useful component — and made them accessible.

Once we had a complete and stable system, more and more of our effort

went into commands like EQUITY which extend rather than support the

user. Figure 6 shows three commands, BOXPLOT, STEM and LEAF and CONDENSE,

19
taken from Tukey's Exploratory Data Analysis (EDA). They required

20
very little programming effort and some of our users are unaware they

exist; they are an unobtrusive method for stimulating learning. Rule 7

stated: support first, extend later. For a DSS to be more than a

convenience, it obviously must go beyond LIST, RANK, DESCRIBE, etc. At

the same time, unfamiliar concepts and routines must be presented in a

simple way. We did not define an EQUITY model or an EDA package . The

verb-based architecture provided an easy bridge between usefulness and

usability.

4. 6 Phase 3: Building a System Product

Phase 3 involved converting ISSPA from a system to a product.

Users were now buying a DSS. We had to provide technical support,

documentation and training. Increasingly, we were concerned with costs.

APL programs are not inexpensive to run. We had expected ISSPA to cost

$50 an hour on the excellent system we were using. The actual figure

was closer to $200 an hour. We found that APL penalizes careless pro-

gramming very heavily indeed. Unfortunately, however, whenever we improved

the efficiency of the programs, users were able to do more work in a

given time, so that our cost per hour increased . We hired a group of APL

-38-

FIGURE 6: EDA COMMANDS

1. BOXPLOT; displays distribution of values for variable (s)

^qtMHftNr«; BaxPCDT TaTE:Nm.73, TaTCN«i.79

t-t- DDCUMENTftT 1 DN
SflHPUE DRTREftSE

25 DISTRICTS
3.'--24/80

TDTRL I I

ENROLLMENT X- I * I—XQ
1978 I I

TDTflL I 1

ENROLLMENT >«;- | # | X

1979 I I

—
- I

—
I

~
I

~
t

10000 20000 30000 40(^80

* = median

box shows lower and upper quartiles

= interquartile distance

X = lowest and highest data values falling within line
which is same length as the interquartile distance
extended from lower and upper quartiles

= values outside the above range

* = values falling more than 1.5 interquartile distances
from lower and upper quartiles

-39-

STEMLEAF: stem-and-leaf plot

(1) divides range of data into intervals of fixed
length (a scale factor may be specified)

(2) stem is vertical line, with interval boundary
(0-3) shown to left

(3) leaf is second significant digit of data value
e.g., enrollment of 13,000 has stem of 1 and
leaf of 3, 2,000 has stem of and leaf of 2

(4) leaves are sorted and shown in ascending order

CaMt"»«NI>; STEML-EftF TDTEN«l-73

SCfH_e FrtCTDRs £

TOT'=»'- ENFfDLI-MHiNT 78

001 01111
ooiaaeeasj
001445
0016667
00138
01 II

01 13

Oil

01 16

Oil
021
G2I
021
82

»

021
031
031
031
031
0319
PP.

t/«»i»ir) cftSES: 25
HJSSIJMS CBSES;

-AO-

(3) CONDENSE: summarizes distribution of values

CDMMrtND; CONDENSE TnTENR»_79, TaTef««-79
STATISTICS ('«I_U' , ! STDP ') -^ ftl_U

•PF-

-41-

experts who were sure they could halve the cost per hour. They were

unable to do so. From this, we could conclude that with APL, the code

gives little idea of the run time.

Efforts to use desk tops and minicomputers to reduce cost were

amusing but ineffectual. With an IBM 5100, run time went from seconds

to hours. Even with an HP-3000, we reduced costs by a factor of five

and increased response time by twenty. Every improvement in the cost

effectiveness of hardware improves DSS capability. However, current

technology is still inadequate in providing fast and cheap and easily

developed and flexible systems.

Whereas in Phase 1 we were concerned with the process of developing

a DSS, in Phase 3 we had to shift our attention to the system product.

The transition is expensive. Over a four month period, we added few

new user commands but spent almost 800 hours on programming. The effort

went into:

(1) improved data management routines;

(2) overlaying functions to reduce cost;

(3) user-system commands, such as:

(a) SESSION COST: How much have I spent so far?

(b) WHAT IS Vxxx: What is the label for V?

(4) new commands demanded and often defined by users;

it is worth noting that in most cases, the commands

represented new ideas and approaches stimulated by

ISSPA; and

(5) user documentation, including a comprehensive manual.

As we expected, data and data management became a key issue.

Policy analysis generally involves both operational data, such as

historical figures on expenditures, program levels and budgets, and

-42-

planning data, which is often not available from routine sources.

We deliberately limited the data management capabilities in ISSPA and

required users to provide us with a single tape containing "clean" data.

This in effect provided a barrier to entry; if a state lacks capability

in data collection or if reliable, current historical data are not

available, it makes no sense to provide an interactive DSS to process

bad data more quickly and in more detail. McCoubrey and Sulg provided

us with a useful decision rule: "Assume the data do not exist, no

matter what Data Processing tells you.".

Creating an ISSPA database is technically very simple. Even so,

we encountered a variety of irritating minor problems, many procedural.

Even with operational data pulled directly off computer tapes, there

is some manual link needed. We had to provide a variety of facilities

for error checking, and for updating, correcting and adding to the

database. Obviously, a generalized database management system would

have helped, especially by reducing the manual work required. However,

it was, and still is, an infeasible option. DBMS requires a maturation

in the use of computers, financial investment and level of technical

competence that state governments (and, in our experience, many mid-

sized private businesses) lack.

We found that most of the complicated programming for ISSPA went

into minor functions for data management. Moreover, we were unable to

provide the same responsive service to users in this area that we boasted

of in anything involving ISSPA commands. If a user wanted a special

analytic routine, we could provide it overnight. Whenever there were

problems with a command, the difficulty was invariably easy to resolve,

since it was localized. A disadvantage of having data management be

"transparent" to the users was that when an error occurred, they had no

-43-

idea what was going on — and at times, neither did we. (Transparent

means that users are kept unaware of the dynamics or complexity of the

system operations; everything "happens" without effort on their part.)

The error often affected several user commands.

We found no guidance in the DSS literature, which provides little

discussion of data management. None of our problems were complex or

hard to resolve, but we found, increasingly:

(a) Programming effort was diverted from user commands

to system functions;

(b) processing time and inefficiencies increased as we

tackled data management issues; for example, we often

had several duplicate copies of matrices to keep

track of in the workspace; and

(c) our simple data structure in matrix form (from the

user's view) and vector form (the physical structure)

was still the best solution. The dilemma for DSS

design is that since uses are varied and unpredictable

(Section 5) , there is no optimal physical or logical

structure. Complex data management procedures greatly

add to system overhead.

The whole issue of data management in DSS is a complex one, and

we could find little help that translated into reliable rules of thumb.

Carlsen describes a methodology for data extraction that is powerful

21
but expensive. In general, techniques for ad hoc modeling are far

ahead of those for ad hoc data management, especially with large data

bases. In Gerrity's PMS and GADS, a DSS developed at the IBM Research

22
Laboratory, most of the programming effort and computing resource was

needed for data extraction: pulling from a large permanent database

-44-

the relatively small subset of variables needed for a given user command.

We could not have afforded such overhead; the price we paid was an

imbalance between the responsiveness, low cost and flexibility of our

analytic commands and the limited, slightly cumbersome nature of our

data management routines.

Rule 12: Recognize that data management, not commands

(or models) are binding constraint on DSS develop-

ment :

(a) choose as simple a representation as possible

(e.g., a matrix); and

(b) avoid complex data extraction and

manipulation.

4. 7 Conclusion

ISSPA is now (early 1980) a commercial product. It has to compete

in a market that is very cost conscious. Users also expect instant

service. V-Thereas at the end of Phase 1, we were ready to write a paper

on the mythical man-month defeated, now we are not so sure. APL, and

the middle-out strategy and a command-driven architecture provide

immensely powerful techniques for developing a DSS. However, extending

a working system to a system product is a complex process, with many

hidden costs. For example, there is no quick or cheap way to produce

a good user manual. In Phase 1, we were able to "sell" the system

through explanation and hands-on experiment, because we were personally

credible with our users. By Phase 3, the manual was needed to establish

the credibility of ISSPA.

Figure 7 lists our 12 rules of thumb, with two more added:

.1^'^.

FIGURE 7: RULES OF THW1B FOR BUILDING DSS

RULE

1. Design the dialog first:

define what user says and sees

define representation of data

2. Identify user's special-purpose verbs

3. Identify generic verbs relevant to this DSS

4. Translate verbs into commands , and vice versa

5. Check public libraries for off-the-shelf routines

6. Set priorities for implementing commands for Version

7. Support first, extend later

8. Evolve complex DSS out of simple components

9. Deliver Version quickly and cheaply

10. Make sure Version sells itself

11. Pick a good user :

has substantial knowledge of task

has intellectual drive and curiosity

will take initiative in testing and evolving^
Version

- enjoys being innovator

12. Recognize data management is main constraint , not commands

13. Remember Brooks is right

programming is 10% of effort

14. Know your user at all times

-46-

Rule 13: Remember Brooks is right.———

—

^ <•

Rule 14 : Know your user at all times.

Rule 13 may be restated in several ways:

(1) programming is 10% of the effort;

(2) if you want to build a product that will

stand by itself, recognize the time and

effort needed; and

(3) Version can be built in weeks.

Rule 14 reflects the whole logic of adaptive design. Of all

techniques for applying computer-based models and information systems

to complex decision processes, Decision Support involves the most

attention to the user as a real person. At every single step in the

development of ISSPA, our success depended on:

(1) supporting a person, not solving a problem or building

a model;

(2) getting feedback from analysts' direct use of the DSS; and

(3) responding to users' ideas and requests.

Principles of Adaptive Design

5.1 Introduction

23
A recurrent theme in DSS research is user learning. A DSS does

not solve problems, but lets individuals exploit their own skills in

problem-solving. The obvious strategy for DSS design is to support

first, extend later; the initial system is close enough, in terms of

commands and mode of dialog, to the users' current procedures to be

both attractive and easy to use. Clearly, however, if the DSS is to

stimulate chanRes in the decision process, learning has to occur.

-47-

Keen (1979) draws attention to a consistent finding in DSS case

studies: the unpredictability of system uses. The actual uses of a

DSS are frequently entirely different from the intended ones. For

example, Gerrity's Portfolio Management System, intended to support

the investment decision, became instead a valuable aid to marketing

and communicating with customers. Often, the most innovative and

valued uses of a DSS could not have been anticipated by the designer.

Keen summarizes this process, which has substantial implications

for the choice of a design architecture and an implementation strategy,

in a framework that views — in fact defines — a Decision Support

System as an adaptive development strategy applicable only to situations

where the "final" system cannot be predefined, but must evolve through

the interactions of user, system and designer. Figure 8 shows these

adaptive influences.

This conceptual framework was developed partly from a review of

DSS research and case studies and partly through the process of developing

ISSPA. It translates into some very specific design criteria and tech-

niques. Most importantly, it views user learning as a direct outcome

of DSS usage and a contributor to it. The explicit reason for building

ISSPA was to help improve policy analysis; learning was viewed as the

central issue for design and usage.

5. 2 The Cognitive Loop

Each arrow in Figure 8 indicates an adaptive influence. System —^ User

,

for example, indicates that the DSS stimulates changes in the user's problem-

solving process. If an interactive system does not require or aim at

such user learning, then the label DSS is superfluous. Keen argues

that it is meaningful to label a system a DSS only if doing so leads

to a different development strategy than would otherwise have been chosen.

-48-

FIGURE 8: AN ADAPTIVE DESIGN FRAMEWORK FOR DSS

USER

SYSTEM

jniddle-out

design

facultative
implementation

BUILDER

evolution of
system functions

-49-

Situations where a system cannot be predefined and used independent

of the choices and judgments of the user, and where it will be extended

and modified, require a distinctive development process in which learn-

ing, adaptation and evolution are central.

The interactions between the user and the system directly relate

to learning. The DSS is intended to stimulate changes in user think-

ing: at the same time, it must be flexible enough to adapt to the

user as these changes occur. New tools must shape new uses, and vice-

versa . As the user develops a new approach to problem-solving, he or

she must not be constrained by the previous one. If a system follows

a rigid sequence of routines, learning is blocked. The User —System

link thus relies on a design architecture that permits personalized

use; without it, any learning stimulated by the DSS cannot be exploited.

5. 3 The Implementation Loop

Keen terms the user-system links, the cognitive loop.

The implementation loop refers to the relationship between the designer

and the user.

Ness defined a key aspect of adaptive design: "middle-out"

development. ^'^ This is contrasted with top-down or bottom-up approaches,

and relies heavily on fast development and prototyping. Middle-out

design provides a means for the designer to learn from the user

(User — Designer) . While the concept of adaptive design is somewhat

broader than middle-out, Ness's concepts are at its core.

The implementation process requires a facilitative strategy on

the part of the designer (Designer — User) . A DSS is not an off-the-

shelf product. Building it requires close involvement with the user.

Several researchers have commented on the need for an intermediary (Keen)

-50-

or integrating agent (Bennett) who can act as a crusader, teacher and

25
even confidant. Adaptive design is a joint venture between user and

designer. Each needs to respect and understand the other. The designer's

job goes well beyond traditional systems analysis and functional

specifications. He or she needs to:

(1) understand the task and user;

(2) be able to humanize and even customize the system; and

(3) be responsive to the user and help stimulate exploration

and learning.

In most instances of successful DSS development, the system is

associated with a skilled intermediary/impleraenter . The DSS is as

much a service as a product.

5.4 The Evolution Loop

The evolution loop relates to the process by which learning,

personalized use, middle-out and facilitative implementation combine

to make the initial system obsolescent and evolution essential. This

is shox-m in Figure 8 as an adaptive link from system to designer.

Evolving the system means adding new commands (Designer —¥ System)

.

Knowing when and how to evolve it requires keeping track of user and

usage (System —* Designer)

.

The main value of the command-based architecture used in ISSPA

is that it is easy to add commands, given APL. The DSS designer has

to plan for evolution. Since many of the new commands will be user-

defined, they may be very different from the preceding ones. Obviously,

however complex or esoteric they may be, it is essential that they do

not involve restructuring the program, only adding independent modules

to it. Brooks describes the need for "conceptual integrity" in the

architecture of a system:

-51-

"The purpose of a programming system is to make a

computer easy to use Because ease of use is the purpose,

(the) ratio of function to conceptual complexity is the

ultimate test of good system design

For a given level of function, however, that system

is best in which one can specify things with the most

simplicity and straightforwardness."

Evolving a DSS relies on conceptual integrity. The command-

based, top-down structure of ISSPA provides for this. A major

postulate of the adaptive design framework is that a DSS is a

vehicle for user learning and hence, that evolution is inevitable

and essential.

Knowing when and how to evolve the DSS is often difficult. In

the initial stages of development, there is usually close and direct

contact between Designer and User. Later, however, the designer will

need a more formal methodology for tracking usage. The obvious one

is a data trap which records, with users' permission, each command

they invoke. These records may be analyzed in terms of mode of use,

reliance on individual commands, and stringing commands together into

distinct sequences or sentences. A data trap can provide a wealth

of information to the designer. However, there is no easy way of

interpreting it. (Stabell, Andreoli and Steadman provide one approach,

used to evaluate Gerrity s Portfolio Management System.)

5.5 Adaptive Design in ISSPA

The descriptive mapping of the ISSPA users' decision process was

done by Keen and Clark, with a view towards defining ways to improve

28 ^
analytic capability in school finance policy analysis. it was clear

that analysts most want, and know how to use, simple, reliable data.

-52-

Whereas in statistical analysis they focus on medians, averages

and correlations, they are also concerned with measures of range and

variance, and with outliers. For example, they often need to look at

extremes, such as the lowest and highest 10% of districts in terms

of tax revenues per pupil. Their role is frequently to explain issues

to legislators, and respond very quickly to their requests for analysis.

The descriptive mapping identifies the key issues in making a

DSS usable . The prescriptive map defines how to make it more useful .

Our analysis was similar to Gerrity's and Stabell's assessment of the

Portfolio Management System. We found that the analysts had fairly

simple concepts of policy analysis and relied on only a few techniques,

especially ranking and linear regression. The descriptive map for a

DSS focusses on how people carry out a task. The prescriptive map

looks at the task itself. Gerrity found a lack of analytic concepts

among portfolio managers. There is a rich body of financial theory

relevant to their job that they do not draw on. They do not base their

decisions on analysis of their customers' portfolios, but think in

terms of individual stocks, ignoring issues of risk-return trade-offs.

The school finance analysts similarly ignore policy research; they

think incrementally and rarely go beyond the discussion of the bottom

line. They focus on very few overall policy issues.

Gerrity built PMS to support the existing process and move users

towards a more analytic one. Stabell found that the intended change

did not occur and argued that not enough attention was paid to how

to stimulate learning. With ISSPS, we intended to evolve the system

by adding commands that reflected concepts new to the analysts. For

example, we hoped to introduce adaptive forecasting techniques,

incorporate research on equity measures and encourage sensitivity

-53-

analysis and exploratory data analysis. Clearly, it is unlikely that

analysts subject to organizational traditions and pressures of day-

to-day operations, will spontaneously adopt these new approaches. We

needed some leverage point and decided that the key issue for stimulating

learning is to find a really good user. Our assumption, backed up by

the findings from DSS case studies is that skilled users, helped per-

haps by capable intermediaries (Designer —»User in Figure 8), will

explore the DSS, find personal ways of using it (User —* System), pro-

vide the design team with insights and challenges (User — Designer)

and respond to recommendations and training (Designer » User) . In

this way, they themselves will help the system evolve.

We viewed ISSPA specifically as a vehicle for stimulating user

learning. We expected that:

(a) initially users would rely on fairly simple commands,

reflecting simple user verbs;

(b) as they got used to the DSS and found it valuable,

they would string these together into sentences, re-

flecting a methodology for analysis; once this occurred,

we would need to provide an "exec" facility" and

(c) they would then ask for extensions to existing commands,

define new ones and be ready to try out ones such as

EQUITY.

The principles of adaptive design indicated that for this sequence

to occur (as it did) , we had to ensure that the development process

allowed all the adaptive links to operate:

(1) for the cognitive loop, this meant:

(a) the interface and dialog must be communicative,

responsive and easy to use and the commands directly

-54-

relevant to the existing process, to facilitate

use and learning (System — User) . (We have no

formal measures of the quality of these features

of the interface; the number of user errors, as

revealed by the data trap, and user comments are

reasonably adequate indicators.); and

(b) the DSS be command-based, with minimal constrictions

on mode and sequence of use, to allow personalized,

innovative use (User — System)

(2) for the implementation loop:

(a) middle-out design, relying on APL to permit responsive

service (User — Designer) ; and

(b) close contact with users, either by one of the

development teams or a technical intermediary with

good knowledge of school finance, from within the

user organization (Designer —• User)

(3) for the evolution loop:

(a) a data "trap" to monitor how individual users work

with ISSPA; and

(b) ongoing addition of new commands, expecially in

response to user requests and ideas (Designer — System)

;

this also requires continued research on our part.

The weakest aspect of our efforts to apply this adaptive develop-

ment strategy was in the implementation loop. We frequently did not

provide adequate facilitation (Designer —^ User) . Users need "hand-

holding" not because they are stupid or scared of the system, but because

the adaptive links, especially the cognitive loop, consistantly strain

the existing system . There is a continuous state of flux. Users who

-55-

have had no trouble for months may move to more complex analysis, using

the same commands, or want to try new ones. The designer has to remain

in the loop and the middle-out process has to continue. We frequently

got phone calls from users, trying to tell us what they needed and asking

for very small adjustments to the DSS. Failure to respond in such

situations blocks learning or interrupts the users' efforts to adapt

the system to their own problem-solving.

We found that personalized usage is, as we expected, the rule

and not the exception. Every ISSPA user has an individual style.

Some are very visual and rely on graphics rather than tables, and some

continuously define new variables (e.g., (VlOl + V207)/V371 = "number

of special education students per full-time teacher") . Some use ISSPA

as a report generator, others as a means of model-building. Some are

systematic and others more divergent in their problem-solving. Almost

invariably, dissatisfactions with ISSPA comes from a user's need for an

individualized system.

The good users quickly identified new commands they wanted. These

could not have been defined in advance. We spent substantial time

when the initial version was released getting a "wish list" from the

first users. However, it was the actual use of the DSS that stimulated

demands and specifications.

The success of ISSPA has depended on supporting the cognitive loop

and evolving the DSS. We anticipated this and conclude that DSS designers

should, as we did:

(1) design the dialog first and ensure it provides an immediately

usable, flexible and responsive system;

(2) think in terms of verbs and commands; and

(3) present users with a simple, clear data representation.

-56-

6. Command-Based DSS and User Verbs

The second point above is contentious and conflicts with the

recommendations of several DSS researchers. Bennett, for example,

29
demonstrates the value of a menu-driven approach for interactive graphics.

It is easier for users to be reminded of what they can choose than to

have to specify it. A menu design minimizes the need for prior know-

ledge and provides familiar and recognizable options. Artman shows

how a DSS architecture can combine the merits of the menu representation

and command flexibility, using an APL-based menu generator developed

30
by Sigle and Howland.

Our choice of command-driven system was based on both behavioral

and technical considerations:

(1) Given our concern for stimulating learning and, hence, the

use of new analytic methods, we wanted the design structure

to be directly related to the users' way of thinking.

(2) If the DSS is a collection of discrete, independent functions,

APL can be used to great advantage.

A new function in ISSPA is defined by the user in terms of:

VERB: NOUN(S): MODIFIER.

For example, RANK V401, V509 by VlOl. The verbs are APL functions and

the nouns are data items. There is a minimal amount of translation

from the user's concept to the technical implementation. Users under-

stand the idea of commands; their specification is bounded by the use

of the verb, even though they may not define exact calculations and out-

put formats.

This approach is ideally suited to middle-out design. The designer

and user sketch out the dialog and the designer produces a first cut

that can be quickly modified in response to the user's reactions.

-57-

The modifier is, conceptually, an adverb. ISSPA is command-based.

Within a command, we use a structured dialog or menu to handle sub-

options. The initial version of CORRELATE thus asked:

DO YOU WANT PARTIAL CORRELATIONS?

WHICH VARIABLE DO YOU WANT TO CONTROL FOR?

Our ideas on verbs and commands were influenced by Blanning and

31
Contreras. Blanning takes a linguistic approach to DSS design and

aims towards a generative grammar. Contreras, following Berry, shows

how APL allows levels of language that permit a rich English-like dialog

32
to be built up from very simple building blocks. Keen and Wagner

describe IFPS, a FORTRAN-based end-user planning language, well-suited

33
to DSS development. IFPS is not command-based, but reflects the same

focus on specifications being given to the system via a simple syntax

based on command/verb, nouns and adverbs, that corresponds to something

in the user's head. Examples are:

3A
(a) Contreras and Skertchly:

DEFINE 'RESULTS' AS (PRICE x SALES) - (COST x INVENTORY)

COMPUTE RESULTS

DISPLAY MEDIAN PROFIT

COUNT DEMAND "> AVERAGE DEMAND.

DEFINE, AVEPJVGE, COMPUTE, DISPLAY and MEDIAI^J are APL functions,

(b) IFPS:

COLUMNS 4

SALES 109, 115, 1.03 * PREVIOUS SALES

WHAT IF SALES 110, 116, 1.05* PREVIOUS SALES

-58-

(c) ISSPA:

DESCRIBE TOTENRL78; AVERAGE; MEDIAN; SIOP^^

DISPLAY VlOl FOR DISTRICTS

SELECTIF COUNTY = 2

The ISSPA "sentences" are less rich than the others. However,

this building-block approach is easily extended. The initial version

of ISSPA was a simple set of commands. Noise words (AND) and adverbial

modifiers were added, e.g., CROSSTAB ... BY, DISPLAY ... PER. More

recently, Gambino has extended the command syntax and developed an

ISSPA planning language, which provides a model-building capability

(Figure 9) . Interactive Modelling and Planning System (IMPS) has grown

directly out of ISSPA. This suggests that a DSS for learning and adapt-

ive development is in effect an end-user language and that the verb-based

structure is an elementary pidgin-English. Blanning's richer linguistic

formalization and Contreras' use of APL are a natural extension of our

more simple approach.

Each ISSPA command is a single "do something to something". In

several instances, we later broke a command into two; CORRELATE originally

included full and partial correlations. This is really two separate "do

somethings". The dialog was clumsy and much of it redundant. It was

easy to change the code. The main reason for the original design was

that the function was taken directly from a public library. We have

consistently found that APL programmers — perhaps most programmers —

seem to pay very little attention to the connection between the user's

way of thinking and the program. The dialog is often cumbersome and

output formats visually cluttered and hard to follow. In integrating

any function from a public library into ISSPA, we generally have to do

very little to the logic, but must tidy up the dialog.

59-

FIGURE 9: IMPS (INTERACTIVE MODELING MP PLANNING SYSTEM)

IMPS creates a file of inputs to an ISSPA run and APL
statements. This permits:

(1) Simulations to be created, quickly. (IMPS was used
in one state to build a generalized school finance
model in about a week.)

(2) ISSPA commands to be strung together into "exec"
files; in the example below, line 1100 generates the

asterisked user inputs and sequence of ISSPA
commands

.

IMPS Code

100 rt PRQPDSftU 2 CflTEGDRICftC i=> I D SET Tn Q.
200 n INCENTH/E RID SET TD 100 ^CT MftTCHlNS,
300 fli-'l=tRll=»BLE SECTION
400 BMSICi=iIDPUPILt-3£5.

500 SFECEDCLRSSSIZE<t-12
t.00 SPECEDGRftNTiS-O.

700 INCENTH/'ERftTE.*-!

30 STi=tTEEG!MILU(=ieE^25

100-300
Comment lines

400-800

APL statements
creating non-ISSPA
variables which are
needed in a simulation
capability

-60-

900 flEC'Ui=lTiaN SECTION
1000 CLEftR lonn-3900 ISSPA

1100 '-hddse; I ; 1^1 ci£; 1/104; 1/504; i^-jO^; STOP command sequence
1200 fl COMPUTE STftTE ERSIC RID
1300 C'EFINE TDTMDM7gxEi=isiCi=»iDP"jPii. 1000 clear all current

1400 STi=iTE EftSic MiD PROPOSAL 2 active variables

1500 Ei=tsiCP2

1600 STATE ERS I C/R I D/PROPOSftU 2
1700 f^l5.2

1800 fl COMPUTE CRTEGORICRL RID (SPEC I RU ED,)
1900 DEFINE SPECEDGPRNTx < rSPECEDRDM7g-^SPECEDCl.RSSS I ZE)
£00 CRTEeORICRL RID PROPDSRU 2
£100 CRTE>3DRICRI_P2

££0 CRTEijnRICRU/RID/PPOPDSRL. £
£300 '^15.£

£4 00 fl COMPUTE IHCENTIl/E RID
£500 DEFIh4E INCENTIi/ERRTExC. 1 -< T 1^5 04-STRTEECrM I LUR'JE) xV-'SOfe

£600 STRTE INCENTIl-'E RID PPOPOSRU £
£700 INCENTII^EPO
£S00 INCENTIiyE,'RID,-PROPaSRU £
£"?00 F^15.£

3000 fl COMPUTE TOTRL STRTE RID UNDER PPOPOSRl.
3100 DEFINE ERSICP£ + CRTEGOR ICRUP£ + INCENTII/'EPg
3£00 TOTRL STRTE RID UNDER PROPOSRl- £
33 00 TOTRIDP2

34 00 TOTRU STRTE/RID/PROPDSRl. £
3500 P15.£
3600 flDISPURY SECTION
3700 DISPLRY ERSICP£,CRTEGORICRLP£, INCENTIt'EPg FDR DISTRICTS
3800 ASRMPL.E
3900 STOP

-61-

2. Part of the IMPS Run

* COMMAND: CLEAR

* COMMAND: CHOOSE

* GROUP OR ITEM? I

* ENTER VARIABLE TO BE CHOSEN ('STOP) V102

*

*

*

*

CaMMAND: rtCDMf=UTE ST«TE EfiSIC ft I

D

CaMMftND: DEFINE TDTftlJM/gxBftS I Cft I t'PUP 1 1-

ENTER IDENTIFIER: STl=i,TE BftSlC ft I D PRDPDSftL £

ENTER SYNONYM ,DNE WORD ND El_ftNKS> : EflSICP^

ENTER FPINT LftEEL: STftTE I ftS I C/ft I D/PRDPnSftU 2

ENTER FDRMftT CODE; FJ^.g

V104

V504

V506

STOP

(line 1000)

(line 1100)

(line 1200)

(lines 1300 - 1700)

(run for lines 1800

3500 oaitted here)

CDMMftND: flDISPLftY SECTION - -

EftSICPC.,CftTEe;DRICftt-P£, INCENTII/EP2 FOR DISTRICTS
CDMMftND: DlSPLftY
DISTRICT. (STOP):
DISTRICT (STOP):
• PP.

jkSftMPUE
STOP

(line 3600)

(3700)

(3800)
(3900)

I

STftTE EftSIC
ftID

PRDPOSftL

1. I'llOc' EEftCHWnOD CITY S.D,

2. 0301 Eie CITY s.D.

3. 05ril CftPITDL CITY S.D.

4. 05U4'?f'""'^'''^^'^ HEIGHTS
X 5. 04 01 HUNTINI3TDN UDCftL S.D

6. 0403 NI^MI EftST I_DCmU S.D

7. 01 Ot. NDNPDEl''Il-l_E UDCftL

3. OcOr WINDHftM EX l^ILl- S,D.

9. 0£06 XENIft CITY S.D,
SIM*

CftTE'SDRICftL-

ftlD

PRDPDSftI- £

INCENTIVE
ftIB

PRDPDSmU

5c'£j9c'5. 00
5,874,475. 00
S5c.'t.9«S'bc'.50

45t.«950. 00
4 0t.« OOt.. £5
5£6» 743. 75

£53, 01 £.50
51£!.443.75

2, £01,550. 00

0. 00
0. 00

0. 00
0. 00

.

0. 00
0. 00
0'. 00
0.

3,534. 331 .50

b£, 33 0, 435. 72
15,637,347.47

t.7£,3t.£. 03
35,944.39
cc 1,1 00 . *'l-

391,533.37
311, 1 04.92

1,£S£' 141.51

-62-

A useful additional benefit of a command-based design is that

one may disguise the DSS. We can make ISSPA look like a simple reporting

system by not informing users that commands such as REGRESS, CROSSTABS

and EQUITY exist. Similarly, we can present it as a statistical pack-

age. More importantly, we can hide and later reveal commands. For

example, we designed several simple functions for exploratory data

analysis (Tukey) . They can be incorporated into the system and brought

to the attention of individual users when the time seems right. A com-

mand becomes apparent only when it is used. Already, we have developed

commands specifically for an individual user. These are part of ISSPA

but not revealed to all users.

The commands relate to learning and evolution. The adaptive

development strategy also implies a level of representation of user

behavior, design criteria and system functions. We need a common and

comparable methodology for:

(1) descriptive mapping: at a global level, one could

capture users' problem-solving in terms of, say

cognitive style (McKenney & Keen, Henderson) or at

a micro-level in terms of uses of visual images.

Neither level of analysis, however, provides clear

design criteria for a DSS.

(2) prescriptive mapping: here again, one might define

an optimal decision process in terms of an overall

logic (e.g., decision theory, linear programming) or,

at the micro-level, in relation to individual decision

rules. There is no link in either case with the

descriptive map.

-63-

(3) DSS design structure: a macro-level representation

is a set of program (or mode]) specifications, and

the micro-level, the program logic. There is no

link here with the maps of the task and user processes.

An intermediate level permits comparability and integration.

User verbs, correspond to subtasks and translate into commands.

Figure 10 extends the adaptive design framework to include task

representation. Adaptive design involves describing decision processes

in terms of verbs, tracking user learning in relation to the use of

commands and the verbs they reflect (and vice versa) , and evolving

new commands. Learning can really only be monitored in relation to

the concrete evidence provided by the data trap.

The command-verb link is thus the means by which an understanding

of the decision situation is translated into system functions and their

use observed in order to extend the DSS. We find the use of command-

verb as the discrete unit of analysis and design to be convenient,

reliable and informative.

We are currently analyzing longitudinal data collected by the

data trap. Essentially, this involves a form of protocol analysis.

The data support our initial expectations that:

(1) Usage of ISSPA will be personalized; there is no

overall pattern across users;

(2) Each user will develop consistent command sequences,

for a given task. A sequence might be, for regression

analysis:

(a) SCATTER, get a scatter diagram;

(b) CORRELATE;

-64-

FIGURE 10: TASK REPRESENTATION IN ADAPTIVE DESIGN

USER

COGNITIVE
LOOP

Descriptive
inap of user
processes

TASK
REPRESENTATION

Design
of DSS

functions
(commands)

SYSTEM

IMPLEMENTATION
LOOP

Prescriptive
niap of task

performance

BUILDER

EVOLUTION LOOP

-65-

(c) REGRESS;

(d) DESCRIBE residuals.

This sequence reflects a coherent approach to analysis,

largely stimulated by the DSS.

(3) The scope of analysis will be broadened; this is

indicated by the use of the more "prescriptive" commands,

manipulation of variables and idiosyncratic sequences

reflecting a concept, heuristic or personal strategy.

The data trap records user identification, day, time, and ISSPA

command. It is simple and informative. With one user, for instance,

we tracked over a two-week period, a shift from correlation analysis

and tabular displays with limited manipulation of variables (via the

DEFINE command) to:

(1) Examine outliers and divide the distribution into

discrete groupings (e.g., deciles).

(2) Analysis of selected districts, grouping districts

into categories.

(3) Weighting individual groups, and manipulating the grouped

variables.

From both research on DSS and our own experience, we strongly

conclude that a command-based strategy is natural for DSS development.

It clarifies how to look at the users' process, before and with the

DSS, how to design and evolve the system and how to evaluate it. What

is missing at present is a clear theory of user learning. There is a

gap between the descriptive and prescriptive decision process; bridging

it is a rather haphazard process at present.

-66-

APL and the Mythical Man-Month

The preceding two sections discuss aspects of program design

rather than programming. DSS do not involve any distinctive technology;

they use FORTRAN, APL, CRT's, standard data management concepts, etc.,

and are frequently small in scale. They imply, however, a particular

programming style. The main reason many DSS designers advocate the

use of APL is their concern for:

(1) fast delivery of the system;

(2) the ability to restructure the DSS at short notice;

(3) direct and responsive service to users; and

(4) reducing the fixed costs of program development and

making it a marginal cost venture.

The first three of these points follow from the principles

of adaptive design. Middle-out, in particular, relies on fast delivery

and fast modifications; all momentum and credibility are lost if users

have to wait for a month for response. Case studies of DSS (see Keen,

37
Alter) emphasize these issues, particularly the value of having a proto-

type system being made available at a low cost to demonstrate the

feasibility and value of the DSS. Quite often, these prototypes are

"bootlegged"; the design team spends one or two weeks rushing to get

a system up while management is still discussing the business problem

and their options. Low cost is essential in such a situation. Manage-

ment clearly is unlikely to approve a $50,000 investment to try out

the designers' ideas: the prototype is, after all, only a first-cut,

a hypothesis and an experiment.

One of the major blockages to the application of computer tech-

nology to management decision making over the past decade has surely

been the high fixed costs of programming. Data processing departments

-67-

cannot respond to ad hoc requests for small reports or simple analysis.

Any COBOL program is likely to involve a month to write and test, even

when the logic is simple. Similarly, changes to an existing program

are surprisingly expensive (surprising to the client). Often, they

are not even feasible, because they require major changes to the exist-

ing program structure.

Adaptive design and evolution are likely to succeed only if DSS

development involves low fixed costs. Developing the initial system

and adding a new command should require only an incremental investment,

where the main cost is the programmer's charge per hour.

The cost function for program development is basically:

Cost = F + (PH X PR) + (MH x MR) + (UH x UR)

where:

(1) F is the fixed cost of logic design, housekeeping

and system set up (e.g., JCL, ENVIRONMENT DIVISION

statements in COBOL) ; this is basically independent

of the application;

(2) PH is number of programmer hours and PR the cost

per hour;

(3) MH and MR are the machine hours (for testing and

trial use) and cost per hour; and

(4) UH and UR are the users' time and costs.

In traditional data processing applications, F is high, and the

costs for machine time and user time relatively low. The programmer

cost per hour for COBOL is also low in relation to that for really

outstanding programmers working in, say, a marketing staff unit or as

consultants. PH is generally high.

-68-

The costs are very different in DSS applications. PR will

be high since:

(1) middle-out and descriptive and prescriptive

mapping require an understanding the decision

making context; the designer has to be able

to relate well to and interact with relatively

senior managers and professionals; the average

systems analyst and COBOL programmer lacks

the training or interest for this;

(2) if a system is to be built quickly, the programmer

has to be far more productive than the average

data processing professional; and

(3) the importance of a clear program architecture,

flexible structure, functional generality, and

responsive interface requires that the programmer

have experience with on-line applications, and

strong skills in programming techniques. Much

of the adaptive development strategy is similar

to top-down design, structured programming and

stepwise refinement. These tools for improving

software productivity are not easy to learn:

EDP Analyzer reports that programmers need to be

"converted and very likely they will resist

the new techniques at first".

-69-

If PR is high, PH needs to be low. Moreover, DSS development

requires users to be directly involved. Grajew and Tolovi found that

the number of hours required — using middle-out — is not high (less

than 50 hours spread over 16 weeks) but whereas "users" in data process-

ing applications are generally junior to middle-level clerical personnel

and supervisors, with DSS they are higher-paid managers or professionals,

who also have little time available. Reducing PH helps reduce UH.

The attractiveness of APL for many designers follows from the

trade-offs it allows among components of the cost function. F is

negligible, particularly using a command-based structure: in general,

one can "bread-board" a system and get started quickly. APL relieves

the programmer of set-up charges such as dimensioning arrays, and

declaring variable types of data names. PH is dramatically reduced;

a given piece of program logic can be coded in about one-tenth of the

time required with FORTRAN. With a DSS, much of the existing code

at any stage will later be rewritten; this is especially true with

the initial version of the system. The language is compact, with one

APL line equivalent to 6-15 lines of FORTRAN.

With APL, the cost function becomes:

a low fixed cost (F) + low programmer hours (PH) x

high programmer cost per hour + high machine cost +

relatively high user costs (UH x UR)

.

If delivery time is a key factor, then obviously users will be ready

to pay a premium in terms of PR to reduce PH.

With APL, one must accept relatively high machine costs. Middle-

out implies a fairly continuous cycle:

program —^ test —-» try out — modify

t i

-70-

The process is inefficient in terms of machine usage. Machine costs

per hour are likely to be high for several reasons:

(1) APL is an interpretive language.

(2) An interactive system must provide good response time;

this often is possible only with a high quality,

expensive time-shared system, especially if, as with

ISSPA, there are operations on large matrices.

(3) A good user can do a great deal of work in an hour

with a well-designed DSS.

Cheap APL services are available. Too often, however, they are

unreliable and overloaded. Cadillac service is not cheap.

It is extremely unlikely that we could have built the initial

version of ISSPA without APL. With middle-out design, every day counts.

Much of the interaction between designer and user involves trying out

ideas at the terminal. In several instances, we responded to a user's

request on the spot. For example, one analyst wanted to know if we

could provide a PERCENT function. Ten minutes later — and three lines

of APL — there it was. An interpretive language facilitates such

development

.

The specter of the mythical man-month loomed over us throughout

the development process. Brooks' warning for software designers is:

(1) When the code is written, 10% of the work is done.

(2) As program complexity grows by x, programming effort

increases by x , where the exponent a is estimated by

39
Nanus and Farr and by Weinwurm to be about 1.5:

man-
months

000' s of instructions

-71-

(j) Mucli of the I ncrfmonLa 1 90Z of the effort involves

testing and integration.

We believed that using APL would enable us to:

(1) reduce the time needed for the 10%;

(2) borrow from public libraries, thus reducing testing;

(3) break the program up into small, discrete units

so that X is close to x;

(4) integrate new routines easily; and

(5) reduce program errors.

In general, our expectations were met. We encountered three main

types of problems, all of which had a significant impact on development

time and costs:

(1) As the use of ISSPA became more complex and new functions

were added, interaction errors were introduced; Command A

works perfectly, as does Command B, but used in sequence,

they generate a bug, often an elusive one.

(2) Far more resources were needed for the user-system dialog

than for the logic of the commands.

(3) The initial commands permitted us simple "sentences".

Evolution, user learning and the addition of user-defined

commands result in — intendedly so — more complex ones.

It then became essential to introduce consistent system

conventions and add system commands. These do not add

to the functional capabilities of the system and diverted

resources from the evolution of user commands.

(4) Machine costs were far higher than expected and the code

was "opaque".

-72-

Brook§' response to the first three points might well be,

"I told you so.". He did. We thought we could finesse the problems

implicit in Figure 1. Almost certainly, we still saved substantial

time and effort by using APL but the pattern Brooks identifies seems

to hold as much for ISSPA as for data processing projects. Coding is

still 10% of the effort.

This point is not discussed much in work on either APL or DSS.

Many, perhaps most, model-based DSS described in case studies are

either for ad hoc use, in which case there is no need to make them

into products, or the work is done by high-quality, low cost programmers

working in universities. Clearly, APL is very effective for ad hoc

systems

.

The interaction errors often related to problems with internal

pointers and multiple copies of matrices which are not consistent. As

we elaborated the "syntax" of ISSPA, several commands would be used

within other commands. To the user, the structure remained simple;

indeed, the whole aim in designing the user-system dialog was to ensure

ISSPA be easy to use even by someone with no prior experience with

computer systems. Internally, however, the structure grew exponentially

more complex. This was also true for the data management routines.

The interaction errors were sometimes hard to trace. Errors in

the logic of a user command were quickly found. As mentioned earlier,

users played a key role in locating unobtrusive errors, ones which the

programmer is unlikely to spot. Their expertise in school finance com-

bined with initiative, intelligence, and interest in ISSPA significantly

affected the technical quality of Che DSS.

While the use of routines from public libraries clearly reduced

testing time, since they are already debugged, we had to spend substantial

-73-

effort in Improving the uner-systcm dialog. For example, the

FREQUENCIES command took two hours to integrate and check out and

almost twenty hours to redesign the dialog. Many programmers seem to

have little sense of aesthetics. Figure 11 shows a sample output

from an APL-based DSS that the designer regards as easy to use

and well-suited to managers' needs. It is fairly typical of the

style of most of the routines we took from public libraries, and

does not meet the standard of dialog we view as critical for DSS.

The output table is not self-explanatory, the abbreviations seem

unnecessary (QTY for QUANTITY) and the spacing poor.

Ness argues that a DSS cannot be made more useful by adding

"cosmetics". Gur view is very different, and seems to be supported

by users' reactions. We felt that a DSS has be be seen as a personal

tool and a mundane one. "Mundane" is hard to define here: it means

easy to live with, quickly integrated into one's ongoing activities

and then, in a way, taken for granted. A calculator is personal and

mundane in this sense. "Cosmetics" are an important aspect of mundane-

ness. The quality of the read-out display, the size of the buttons,

the location of functions, etc., make a particular calculator easy to

live with. An indication of one's satisfaction with it is that it is

taken for granted. With some calculators, one's attention is drawn

to very minor inconveniences or cosmetic flaws.

We felt, and still do, that for a DSS product , cosmetics are

important. The dialog in Figure 11 may be acceptable to a person with

a technical bent but not to most others. We went to great lengths

to build a mundane system. For example, the DESCRIBE command produces

descriptive statistics, including the standard deviation and variance

of a variable. If the variance is too large for the output field.

-74-

FIGURE 11: EXAMPLE OF APL DIALOG

SELECTION : PROD = CHA IR^CITY=A TL , BOS , CHI
FUNCTION-.CROSS
ROW CLASS 1 iOR ROW FIELD) -.CITY
COL CLASS 1 (OR COL FIELD) : QTI<,10
COL CLASS 2:=11_50
COL CLASS 3:>50
COL CLASS 4:

"

TAB FIELD -.PRICE^QTY
PERCENTAGES {Y OR N):Y'
PAGE NO. 1

12:35 4/20/77 APL DATA INTERFACE
DEMOSALES VFILE •,PROD0= ^ CHAIR * aPR0D1='> ^ aCITY^ATL ,B0S y-CHI -.CROSS'

TAB-.PRICE^QTY

Q.LTY

ATL

BOS

CHI

TOTAL

CI
* . 57
9340

+ . ;] '.

* .20
8300

-!- 0-31

-»- .24
8810

+ .33

-> .28
26450

QTY

-75-

initially asterisks were printed. This is a convention familiar to

FORTRAN users but makes no sense. The variance is not ***-^*******

.

While a policy analyst will get used to asterisks appearing on a report,

a legislator will wonder why the computer made a mistake. We decided

to substitute the words VERY LARGE. Similarly, if the variable has

no mode, we printed NONE instead of 0.

In several states, we did not make any presentation of ISSPA

to senior administrators in the users' organization. The users did so;

it was their system, not ours. They almost invariably emphasized the

"cosmetics", which they viewed as a reflection of our willingness

to tailor ISSPA to their needs. To an extent, functional capabilities

are taken as a given. A calculator multiplies and divides; the issue

is how well does it do so, which translates to how "mundane" it is.

In retrospect, we needed to carry the concepts of "verbs" and

commands further than we did in the initial design. ISSPA has become

in effect an end-user language. It involves a simple grammar, which

includes modifiers and conjunctions. The conventions must be consistent

and easy to learn. We had minor, but unnecessary problems with

prepositions. For example, the CROSSTAB, RANK, EQUITY, NTILES, WAVERAGE

(weighted average), and SCATTER commands all require a 'by', 'with', or

'versus'. We initially did not take into account the fact that as

commands evolve from simple generic verbs to user-defined routines,

prepositions and modifiers become more necessary and frequently used.

The surface texture of the dialog has be be graceful, consistent and

lucid. This obviously takes careful design; even though the programming

is simple, it takes up more time than does coding the user commands.

For similar reasons, we increasingly had to commit resources to

developing system commands, which either increased flexibility of the

-76-

DSS or provided help and information about ISSPA.

WHAT IS Vxxx

SYNONYM; this allows the user to change a variable

label or identifier.

LABEL; for improving readability of reports.

COMl'lAND COST

SESSION COST .

CONTINUE (originally named LUNCH) ; this allows the

user to log-off and restart at the same point.

All these commands were developed in response to user requests

or problems. The design structure made it easy to integrate them and

they involved small increments of effort. However, at one point, we

had to hire a junior programmer to handle them and for some time were

not able to keep up with our user's growing demands for such add-on

features.

Our initial estimate of the cost to run ISSPA was $40 an hour.

We used a high-quality time-sharing service with its own private

telecommunications network, which permitted total portability. We

could work from Philadelphia with users in California, Ohio or

Michigan and provide fast response. Database creation involved, of

course, shipping a tape to where the host computer is located.

Actual costs were far higher, often as high as $200"*an hour.

The program code was written lucidly and simply, avoiding the typical

APL-freak's habit of trying to get a whole program into a single line

of code. We expected that when ISSPA became a product, we would have

to tidy up the code. We soon found that APL heavily penalizes careless

programming. An equation calculating a value for 600 school districts

cost $160 written one way and $20 written another. The rules change

as the DSS becomes a product. The need at the start is fast development

-77-

which requires "brute force" programming and close attention to the

users' needs and perspective. At the product stage, one has to inspect

the code.

At one point, we felt that machine costs would be reduced by

completely rewriting the code. We contracted with the company whose

APL services we were using; they felt sure they could reduce the cost

by 50% and spent six weeks "optimizing" the code. There was virtually

no improvement; the original code was, on the whole, just as efficient.

Perhaps, as more experience is gained with APL, this problem of

"opaqueness" will be resolved, but we were surprised — expensively so —

by the extent to which highly experienced APL programmers have little

insight into the relationship between the source code and machine

performance. They do not need this insight for an ad hoc DSS or one

used only intermittently. Obviously, as machine costs decrease, the

cost problem we encountered will disappear. However, with any computer

product, some effort to optimize efficiency is necessary. We suspect

that this will be difficult for "problem-oriented" higher level languages

for at least the next few years.

Despite these problems, associated not so much with the development

as with the consolidation of ISSPA, APL provided the expected advantages.

In particular, the programming cost for a new user command is indeed

incremental with an extremely low fixed component . For one user, we

developed a major new command, which was based on ideas he had got from

using ISSPA and which added an important policy concept to school finance

analysis. It was "working" in a day; he estimated that at best, it

would take three months for the state education programmer's department

to implement a similar capability. He was quite willing to put up with

minor blemishes in the routine in exchange for such responsive service.

-78-

We estimate that about 800 programmer hours of effort have gone

into ISSPA. Of course, the system is much more powerful than the

initial version, but even so, the figure is painfully close to

Brooks' estimate that the final development effort will be nine times

the coding effort.

From the few case studies which describe the extension of a

DSS to a product, it is clear, in retrospect, that our experiences

are fairly typical (see, for example, Alter 's discussion of a DSS for

media planning) .'^^ We have given this paper the subtitle of the Mythical

Man-Month Revisited. Six months ago, we assumed it would be the

Mythical Man-Month Defeated.

8. Conclusion: Guidelines for Building DSS

In Section 1, we stated that one aim in developing ISSPA was

to see if the DSS field is now at a point where one can define

reliable guidelines for building DSS. Obviously, our experiences are

not generalizable. Nonetheless, they confirm much of the often

implicit principles of DSS design and the explicit findings of DSS

research. We thus feel that we can make some fairly strong assertions:

(1) Adaptive design is essential; any systems analyst,

programmer or consultant who wants to build DSS

has to know how to

:

(a) get started : DSS applications do not

come tidily packaged with neat spec-

ifications. The middle-out approach

provides a means of learning from

and responding to the user;

(b) respond quickly : A DSS is equivalent

to a system for evolution and learning.

-79-

The design structure and progrnmming

techniques must facilitate this.

(c) pay close attention to user-system inter-

faces and outputs : A DSS is a set of

relatively simple components that must fit

together to permit complex, varied and

idiosyncratic problem-solving. The designer

needs to get a very detailed understanding of

the task to be supported and of the people

who carry out the task. The natural sequence

and order of priority in DSS development is

:

(1) design the dialog;

(2) design the commands in terms of the

users ' processes and concepts;

(3) define what the user does and sees

when this command is invoked; and

(4) work backwards to program logic and

data management.

(2) The architecture of a DSS is critical . It must be built

on the assumption that there will be substantial evolution

and that flexibility is essential.

(3) The development process must be based on techniques and

design structures that reduce the fixed costs of pro-

gramming and the time to respond to users . The trade-

offs are complex, and we suffered badly from the high

machine costs we incurred in gaining low programmer

costs.

-80-

(4) Data management Involves high software overhead and

is the major source of complex program errors.

(5) A good user is essential . As one ISSPA user stated:

"After working with a DSS, at a certain point, it

takes on a life of its own.". The DSS is man-with-

machine; the machine alone is not enough.

The final point to be made is a rueful one. There is indeed

no free lunch. The demands in time and effort for delivering a DSS

product are as high as for any computer system. The process is more

flexible and early progress often dramatically excitingly faster

than for traditional data-processing applications, but the 9x still

holds.

-81-

APPENDIX 1: EXAMPLES OF ISSPA ROUTINES

(Based on problem set in user manual;
CHOOSE commands omitted)

1. Prepare a table showing the surplus (deficit) of 1978 special
education revenues over expenditures.

COMMAND: DF.FTNF. SPRCRDATniS - SPECEDEXP12.

ENTER VARIABLE NAME: SPECIAL EDUCATION SURPLUS 7 8

ENTER SYNONYM (ONE WORD--NO BLANKS): SPEC EDSURPLUSIS

ENTER PRINT LABEL: SPEC. ED ./ SURPLUS / 191

8

ENTER FORMAT CODE: JlO

NEW VARIABLE DEFINED. ACTIVE VARIABLE NO.: Al

COMMAND: LIST SPECEDAIDIB . SPEC EDEXPl 8 ,SPEC EDSURPLUS7

^

COLUMN FOOTINGS:? YES
COLUMNS:? ALL
COMPUTATION TECHNIQUE:? TOTALS
FOOTING TITLE: (.<CR> = NO TITLE.):
oppo

-82-

-83-

2. Prepare a table showing 1978 total enrollment and expenditures

per pupil for all districts with 5,000 or more pupils.

COMMAND: DEFINE TOTOPEXPl 8* TOTENRLl

S

ENTER VARIABLE NAME: OPERATING EXPENDITURES PER PUPIL 7 8

ENTER SYNONYM {ONE WORD-- NO BLANKS): EXPPUPIL18

ENTER PRINT LABEL: EXPENDITURES / PER PUPIL/ 191

S

ENTER FORMAT CODE: 115

NEw VARIABLE DEFINED. ACTIVE VARIABLE NO.: -418

COMMAND: SELECTIF TOTENRLl S>bOOO
ENTER DESCRIPTION OF SELECTION: LARGE SCHOOL DISTRICTS
SELECTION IN EFFECT
10 UNITS CURRENTLY SELECTED

DO YOU WISH TO SEE UNITS CURRENTLY SELECTED?

COMMAND: LIST TOTEN RL7 8 ^EXPPUPI L7

B

COLUMN FOOTINGS:? N
"Ppo

NO

-84-

3. Prepare a table showing the absolute and percent Increase In
average teacher salaries between 1978 and 1979 for the following
districts:

Bradley - Needham - Huron - Franklin - Roosevelt - Lawrence -

Yardley - Parkington

COM>!AliD: DEFINE lOQx {AVGSA L19- AVGSA L7 S) t AVOSALl S

ENTER VARIABLE NAME: PCT CHANGE AVERAGE SALARY 78

ENTER SYNONYM {ONE W0RD--NO BLANKS): CHGAV GSALl SIS

ENTER PRINT LABEL: PCT. CHANGE/ AVG. SALARY/iSlS-iSlS

ENTER FORMAT CODE: fli.i

NEW VARIABLE DEFINED. ACTIVE VARIABLE NO.: A2i

COMMAND: SELECT UNITS
UNIT ('STOP')
UNIT (.'STOP')
UNIT ('STOP')
UNIT ('STOP')
UNIT ('STOP')
UNIT ('STOP')
UNIT ('STOP')
UNIT ('STOP')
UNIT ('STOP')
ENTER DESCRIPTION OF SELECTION:
SELECTION IN EFFECT
8 UNITS CURRENTLY SELECTED

BRADLEY

-85-

4. How many districts had 1978 total revenue per pupil greater than
$1,500? How many districts had 1978 revenue greater than $1,500,
but received no state basic aid in 1978? Which districts were
they?

COMMAND: DEFINE TOTREV78 * T0TENRL7Q

ENTER VARIABLE NAME: TOTAL REVENUE PER PUPIL 1978

ENTER SYNONYM {ONE WORD--NO BLANKS): T0TREVPUP13

ENTER PRINT LABEL: TOTAL REV /PER PUPIL/ iSlS

ENTER FORMAT CODE: 110

NEW VARIABLE DEFINED. ACTIVE VARIABLE NO.: A9

COMMAND: COUNTIF TOTREVPUPIS >1500

8 UNITS SATISFY CONDITION (S) .

DO YOU WISH TO SEE THE UNITS? NO

COMMAND: COUNTIF {T0TREVPUP78 > 1500) a {STATEAID18 = 0)

5 UNITS SATISFY CONDITION {S) .

DO YOU WISH TO SEE THE UNITS? YES

i 0102 ADAMS
2 0503 BRADLEY
3 0202 GARFIELD
4 2 09 SUPERIOR
5 0105 WALNUT GROVE

-86-

NOTES

1. ISSPA is suited to any application where the data consist of a set of

planning units (e.g., school districts, employees, buildings or states)

and where the analysis involves aggregating, selecting and reporting some

or all of the units. For example, ISSPA is likely to be used in the

near future as a DSS for planning and analysis of personnel data and

for tracking and evaluation of federal research grants.

2. F. P. Brooks, The Mythical Man Month , Addison-Wesley, 1977. Brooks' book

is surely the best single discussion of software engineering. There is

not room in this paper to do justice to its scope and insight. It

covers, among other topics: (1) the distinction between programs and

programming systems products (the main topic of this chapter),

(2) the non-linear relationship between program size and development

effort, (3) the problems of coordination in large-scale software

development efforts, (4) the importance of program architecture,

(5) the need for independent certification and testing of software,

(6) the need for sharp tools (including APL) , (7) disciplines for

debugging and documentation.

Brooks was the project manager for OS/360, the operating system for IBM's

third generation. Between 1963-1966, about 500 man-years of effort went

into OS/360, and at one point over 1000 people were working on it.

Brooks' book is both an analysis of what happened and a recommendation

of how to avoid similar programming "tar pits".

3. See Garms, Guthrie and Pierce (1978).

-87-

4. We have added a third dimentlon, years, so that future versions of ISSPA

will include capability for time series analysis.

5. Most ISSPA users work with either a subset of about eight variables or

begin by pulling in a larger number that they then aggregate or combine,

using the DEFINE command. A dilemma for DSS designers is how to

efficiently and quickly extract the small number of variables a user

wants to work with from what is often a very large data base.

6. P. G. W. Keen, "Decision Support Systems: Translating Useful Models

into Usable Techniques", Sloan Management Review , Summer 1980.

7. The Gini coefficient and Lorenz curves are standard measures of

disparity of income or wealth. See Garms, et al.

8. Our colleague David G. Clark joined us in developing ISSPA around

this point. He has played a major role in translating ISSPA from a

program to a product, especially in the areas of training,

documentation and marketing.

9. David A. Ness, who has probably been the most important single contributor

to DSS design techniques, developed the term "middle-out" to describe

this approach. Middle-out development (in contrast to top-down and

botton-up) relies on prototyping, "breadboarding" and designing-by-using.

Ness's ideas and experience have been a major influence on our work.

10. Courbon and his colleagues have carefully tracked the costs of DSS

development and provide tetailed data on the manager's and designer's

time involved.

11. James Phelps, Associate Superintendent in the Department of Education in

Michigan and William Harrison, Legislative Assistant to the Education Review

Committee in Ohio, were invaluable to us. The literature on the need for user

-88-

involvement in systems development seems to have a very passive concept.

In adaptive design, the user is active and indispensable. Dr. Phelps and

Dr. Harrison became designers of ISSPA by being responsive, creative users.

12. There should have been a manual; its absence caused occasional irritating and

unnecessary problems (e.g., "is it CROSSTABS. . .WITH or BY?"). One

problem adaptive design causes is that since the DSS is constantly evolving

and version "0" is designed with change in mind, there is no stable system

to document. It is thus essential to build as much of the user documentation

into the DSS as is possible. One approach we are considering is to store

the text of the user manual on disk so that it can be accessed directly

from ISSPA.

13. P. G. W. Keen, "Decision Support Systems: A Research Perspective",

CISR Papers, Sloan School of Management, MIT, 1980.

14. The literature on diffusion of innovations indicates that "early adopters"

are generally part of an elite that is self confident and willing to

break norms and traditions. One reason for seeking out such people as

the first users of a DSS is that they are effective contacts and

crusaders for the wider organization. As well as helping design the

DSS, they in effect sell it.

15. See Berne (1979).

16. See Gerrity (1970), Stabell (1974), and Keen and Scott Morton (1978).

All these authors point out that management science tends to focus only

on prescriptive maps, ignoring the need for support. In teaching

graduate students to be DSS users or designers, much of the course

material must concentrate on descriptive conceptions of decision making.

One cannot Improve something one does not understand.

-89-

17. See Keen and Clark (1980).

18. See Keen (1980 b).

19. Tukey (1977) defines a range of innovative, mainly graphical techniques

for analysts to really look at their data before committing themselves to

analytic methods.

20. McNeil (1977) provides APL and FORTRAN source code for many EDA techniques.

His output formats are generally clumsy; here again, we concentrated on

making these useful routines more usable.

21. See also Mehtlie (1979).

22. See Carlson and Sutton (1974).

23. See Keen (1980 a). All references to Keen in Section 5 relate to this paper.

24. See Ness (1975).

25. See Keen (1975) and Bennett (1976).

26. See Brooks (1975), p. 46.

27. See Stabell (1974) and Andreoli and Steadman (1975).

28. See Keen and Clark (1977).

29. See Bennett (1977).

30. See Artman (1980) and Sigle and Rowland (1979).

31. See Blanning, also Contreras (1979).

32. See Berry (1977).

-90-

33. See Keen and Wagner (1979). IFPS (Interactive Financial Planning System)

is a product of Execucom, Inc., Austin, Texas.

34. See Contreras and Skertchly (1978).

35. The use of semi-colons allows users to operate in an "expert" mode where

they do not have to wait for ISSPA to type out the standard instructions

or questions. This enhancement was provided in response to user demand.

36. See McKenney and Keen (1974), Keen (1980 a), and Henderson.

37. See Alter (1980).

38. See EDP Analyzer , January, February, March 1979.

39. See Nanus and Farr (1964) and Weinwurm (1965).

40. See Ness (1976).

41. See Alter (1980), p. 225. This DBS was built by Ness and a colleague and

illustrates middle-out in practice.

-91-

BIBLIOGRAPHY

Alter, Steven L. , Decision Support Systems: Current Practice and
Continuing Challenges , Addison-Wesley , Reading, MA, 1980.

Andreoli, P. and J. Steadman, "Management Decision Support Systems:
Impact on the Decision Process," Master's thesis, M.I.T., 1975.

Artman, Ira B. , "Design and Implementation of a Decision Support
System for Hospital Space Management," MS Thesis, M.I.T., 1980.

Bennett, J., "Integrating Users and Decision Support Systems," In J.D.
White (ed.). Proceedings of the Sixth and Seventh Annual
Conferences of the Society for Management Information Systems

,

pp. 77-86, Ann Arbor: University of Michigan, July 1976.

, "User-Oriented Graphics Systems for Decision Support in

Unstructured Tasks," IBM Research Lab, 1977.

Berne, R.M. , and L. Steifel, "Concepts of Equity and their Relation-
ship to School Finance Plans," Journal of Education Finance ,

Vol. 5, Fall 1979.

Berry, P., "The Democratization of Computing," Paper presented at
Eleventh Symposium Nacional de Systemas Computacionales,
Monterrey, Mexico, March 15-18, 1977.

Blanning, R. , "The Functions of a Decision Support System," The
Wharton School.

Brooks, F.P., The Mythical Man-Month , Addison-Wesley, Reading, MA, 1975.

Carlson, E.D. and J. A. Sutton, A Case Study of Non-Programmer Inter-
active Problem-solving , IBM Research Report RJ, San Jose,
CA, 1382, 1974.

Contreras, L., "Linguistic Design of Decision Support Systems," Un-
published manuscript. Southern Mehtodist University, 1979,
(to be a chapter in Bennett).

, and R. Skertchly, "A Conceptual Model for Interactive
Systems," APL Users Meeting, Toronto, September, 1978.

Courbon, J.C., Grajew, J., et Tolovi, J., Jr. "L'approche evolutive
dans la mise en place des systemes interactifs d'aide a la

decision," Papier de Recherche lAE - Grenoble, no. 78-02,
Institut d' Administration des Entreprises, Universite de
Grenoble II, Jan., 1978.

-92-

Garms, W. , J,W. Guthrie, and L.C. Pierce, School Finance: The Economics
and Politics of Public Education , Prentice-Hall, 1978.

Gerrity, T.P., Jr., "The Design of Man-Machine Decision Systems," Ph.D
dissertation, M.I.T., 1970.

Grajew, J., and J, Tolovi, Jr., "Conception et mise en oeuvre des
systems interactifs d'aide a la decision: I'approche evolutive,"
Ph.D thesis, 1978, Universite de Grenoble.

Henderson, John, "Experimental Studies of Decision Support Systems,"
work in progress, Florida State University.

Keen, P.G.W., "Computer-Based Decision Aids: The Evaluation Problem,"
Sloan Management Review , vol. 16, no. 3, pp. 17-29, Spring 1975.

, "Computer Systems for Top Managers: A Modest Proposal,"
Sloan Management Review , vol. 18, no. 1, pp. 1-17, Fall 1976.

, "Decision Support Systems: A Research Perspective,"
CISR Paper, Sloan School of Management, 1980a.

, "Decision Support Systems: Translating Useful Models into
Usable Technologies," Sloan Management Review , Summer 1980b.

, and D.G. Clark, "Computer Systems and Models for School
Finance Policy Making: A Conceptual Framework," research
report to the Ford Foundation, August 1978.

, "Simulations for School Finance, Survey and Assessment,"
research report to the Ford Foundation, 1980.

, and J. Wagner, "DSS: An Executive Mind Support System,'
DATAMATION, November, 1979.

McKenney, J.L. and P.G.W. Keen, "How Managers' Minds Work," Harvard
Business Review , Vol. 52, no. 3, pp. 79-90, May-June 1974.

McNeil, D.R., Interactive Data Analysis , Wiley - Interscience, 1977.

Methlie, L. , "Data Management for Decision Support Systems," Unpublished
Paper, Norwegian School of Economics and Business Administration,
1979. (for Bennett book)

Nanus, B. and L. Farr, "Some cost contributors to large-scale programs,"
AFIPS Procedings SJCC , 25 (Spring 1964), pp. 239-248.

Ness, D. , "Interactive Systems: Theories of Design," Joint Wharton/GNR
Conference - Interactive Information and DSS , Dept. of Decision
Sciences, The Wharton School, University of Pennsylvania, Nov. 1975,

-93-

Sigle, J. and J. Rowland, "Structured Development of Menu Driven
Application Systems," APL QUOTE QUAD '79, ACM, June 1979.

Stabell, C. , "On the Development of the Decision Sypport Systems as

a Marketing Problem," Paper presented at the International
Federation for Information Processing Congress, Stockholm,
Sweden, August 1974b.

Tukey, J., Exploratory Data Analysis , Addison-Wesley , 1977.

Weinwurm, G.F., "Research in the management of computer programming,"
Report SP-2059, System Development Corp., Santa Monica, 1965.

Date Due

t-tb ^

SEP 4

OCT 9 1986

SE 1 9 '89

NOV 15

;'? 1

1
1 ICCv-

^UL 2 4 1992

^S?|^

I 8 2002

{^lAR 2 3 ZGO^:

Pti 2S mi
Lib-26-67

ACME
BOniOiigoiNG CO., INC.

DEC 8 1983

100 CAMBRIDGE STREET
CHA,"?LESTOWN, MASS.

{

t 3 TDfiO DDM SEM 22b

f

^
,^n-'ao

HD28.M414 no,1129- 80A
Barley. Stephe/Taking the burdens :

3 TDflO DQl Ti2 bMD

HD28.IVI414 no.ll29- SOB
Roberts. Edwar/Cntical functions

739558 . . .»BKS . . . Q01.32

3 TOflD 001 TTb 203

HD28.IV1414 no.1130- 80
Schmalensee, R/Economies of scale and

739574
_ .D»BKS, BQ 1.5!2fe4

8

3 TOflO 001 TTb Ibl

HD28.IVI414 no.1130- 80A
Sterman, Jofin /The effect of energy de
739856 DxBK 00132 25.

3 T060 001 TTS ?2b

HD28.M414 no.ll31- 80
Latham, Mark. /Doubling strategies, li

739564.. .D»BKS PQ.l 5,101.3

iiljll
OflO 002 2bl bMT

HD28.IV1414 no.ll31- 80 1981
Latham, Mark. /Doubling strategies, li

743102 D*BKS 001526"

3 TOflO 002 257 bl3

MIT LIBRARIES

3 TOflO DDM S2M 2M2
li O o, -

> >^

HD28-M414 no-1132- 80
Keen, Peter G. /Building a decision sup
740317 D'BKS Qgi364'14

3 TOaO 002 Om 735

HD28.M414 no.ll32- 80A
Wong, M, Antho/An empirical study of t

"957- - - -739570 D'RK

llllllilllilililllililillii

152666

3 TOaO 002 257 b3'1

