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ABSTRACT

The use of branch-and-bound methods to reduce the storage require-

ments in discrete dynamic programs is discussed. Relaxations and fathoming criteria

are used to eliminate states whose corresponding subpolicies could not lead

to optimal policies. The resulting combined dynamic programming /branch- and -

bound algorithms are applied to several typical discrete decision problems.

Including the traveling -salesman problem and the nonlinear knapsack problem •

Computational experience, demonstrating the dramatic savings in both computer

storage and computational requirements which were effected utilizing this

combined approach, is also reported.





1. Introduction

Consider the following functional equations of a dynamic pro-

gramming algorithm:

f(y) = min ih(f(y'), y' . d)| T(y',d) = y] , y t(ii - y^) (1)

with the boundary condition

f(yo) =
?o

(2)

in which, il is the finite nonempty state space; y. € Q is the initial state;

d € D is a decision, where D is the finite nonempty set of decisions;

T: Q X D -• Q is the transition mapping, where T(y ,d) is the state that is

reached if decision d is applied at state y ;h:IRxnxD-']Ris the (monotone)

cost function, where h(5,y ,d) is the cost of reaching state T(y ,d) € Q by

an initial sequence of decisions that reaches state y 6 Q at cost § € ]R and

is then extended by decision d; § € IR represents the initial cost incurred

in the initial state y_ t Q; and In (2) we make the convenient, but unnecessary,

assumption that return to the initial state is not possible. The functional equa-

tions (1) and (2) are simply mathematical transliterations of Bellman's principle

of optimality [l]-

The recursive solution of these functional equations to determine

the cost of an optimal solution and the subsequent (policy) reconstruction pro-

cess to determine the set of optimal sequences of decisions is straight-

forward. However, the evaluation of f(y) by (1) necessitates access to

f(y') in high-speed (magnetic core, thin film) computer storage for all

states [y' I T(y',d) = y} and the policy reconstruction process necessitates

access to the decisions at state y' which result in f(y) for all states

in the state space Q in low-speed (tape, disk) computer storage. It is common

knowledge that in real problems excessive high-speed storage requirements





can present a serious implementation problem, so much so that many problems

cannot be solved even on the largest present day computers.

This paper presents a general approach to reducing both the high-

speed and the low-speed computer storage requirements of dynamic programming

algorithms. In order to accomplish this we invoke some of the elementary,

but powerful , techniques of branch-and-bound. In particular we demonstrate

that in the evaluation of f{y) the costly procedure of storing f(y ) in high-

speed memory for all states [y |T(y ,d) = y] may not always be necessary.

Ihat is, if it can be demonstrated that there does not exist a sequence of

decisions which when applied to state y will lead to an optimal solution,

then it is not necessary to store f(y ) in high-speed memory (nor is it

necessary to store the corresponding decision which led to state y in low-speed

memory). Such states y' can be identified by the use of relaxations and fathoming

criteria which are commonly employed in branch-and-bound and other enumera-

tive algorithms -- see [11,12,21,23,34] for example. Our approach has been

inspired by the ingenious bounding schemes employed within dynamic programming

algorithms in [29] and [35], by observations made by the authors in [26], and

by the computational success of the resulting hybrid algorithm [22] -- see also [7,28]

The outline of the paper is as follows. Preliminaries and definitions

are presented in S 2. The use of fathoming criteria and relaxations within

dynamic programming algorithms is then developed in a general setting in S 3. The

versatility of the results is manifested via application to a number of classes

of probleiife in S 4. A numerical example of the classical traveling-salesman

problem is presented and solved using the results of § 3 and computational

experience is presented which demonstrates the dramatic savings in both com-

puter storage requirements and computation time which were effected by applying

the results of § 3 to nonlinear knapsack problems. The paper concludes with

a discussion of other possible applications and extensions S 5.
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2. Preliminaries and Definitions

Let & = (D,S,rt) denote a discrete optimization problem, where D

is Che set of all decisions, S c A is the set of feasible policies, where A is the

set of all policies (strings or sequences of decisions) which can be formed by concate

nating decisions in D and rr: S —IR is the cost function. If %, 6 IR is the cost of

an initial sequence of decisions 6 € S and 5~ ^ JR is the cost of a subsequent

sequence of decisions 6. 6 S then we will find it convenient to denote the

cost of S 6 (not necessarily in S) by 1^(5 ,§„) = tt(6 6 ). (Alternatively,

we could employ a composition operator "o" and write n(6 5 ) = tt (6 )

° TT (6 ) = § ° §« = n(§ ,§ ) -- We shall interpret our results in terms of

such returns in § 4.1). Let tt* be the value of an optimal solution to &,

i.e., tt* = min [rr(6)|6 € s} and let S* c S be the set of optimal solutions to ^,

i.e. , S* = [6l6 € S A tt(6) = n*} .

Assume that the discrete optimization problem ff is represented

[17-19] by the finite dynamic program 3 (alternatively, a terminating or

finite sequential decision process [6,19]). ^ is specified by the triple( ^^ ,h,S )

where a = (n,D,yQ,T,Qp) is a finite automaton [4,30]. Recall that Q is the

finite non-empty set of states, D is the finite non-empty set of decisions,

y^ € Q is the initial state, T: Q x D -• Q is the transition mapping,

h:]RxnxD-*IRis the cost function and §^ 6 B. is the cost incurred in the

initial state y^. Qp c Q is the set of final states.

A is the set of all subpolicies and policies obtained by concatenating

decisions in D, Let 6 C A denote a subpolicy or policy and let e denote

the null decision, i.e. (Vg 6 A), 6e= &t = b • The transition mapping T can

be extended to Q x A — D inductively by

(Vy' € n), T(y',e) = y', and

(Vy' € n)(y6 € A)(Vd € D) , T(y',6d) = T(T(y' ,6 ) ,d)

.





Slmilarily, the cost function h can be extended tolRxQxA-*^

inductively by

(VE e ]R)(Vy' € n), h(5,y',e) - F, and

dl € ]R)(Vy' € n)(V6 € A) (Vd € D) , h(|,y',5d) = h(h(^,y' ,§ ) ,T(y ',5 ) ,d)

.

For y' € n let A(y ) denote the set of feasible subpolicies (or policies if

y € r2p)which when applied to y^ result in state y, i.e., A(y') = [6 JTCy ,6 ) = v')

let A*(y ) C A(y') denote the set of optimal subpolicies (or policies, if

y'€ Qp) for state y' i.e., A*(y') = [slfCy') = hC^^^y^.e)}, and let ACOp) =

U /^ „ A(y ) be the set of feasible policies for 3. Finally, we define a

completion set of feasible subpolicies for each state y' 6 as x(y') =

[6|T(y',6) f Qp]. Notice that Xiy^) = ACQp) = the set of strings accepted

by the automaton (^.

The optimal value for _B is f^"" = min [f(y)|y € Q„] and the set of

optimal policies for ^ is A* = [sjf"'^ = h(^Q'yrv.6 )} • A sufficient condition

on h to insure that the dynamic programming algorithm (1) and (2) finds the

set of optimal policies for the finite dynamic program 3 is that h is monotone

[6,19,23,27] in the sense that

(ia^,l^) € E xB)(V6 e A)(Vy' € n), ^^ ^ ^2 ^ ^(l^,y',6)^ h(52'y''6)-

Finally, since j9 is a representation of ff we have f* = n'''' and a^^ = ^*'





3. Fathoming Criteria and Relaxations

Let li be an upper bound on the value tt* of any optimal solution to the

discrete optimization problem ^. Then, since the finite dynamic program J^

is a representation of P, it follows that %{ s f^''. For each state y' € Q

define a (lower bound) mapping i: Q -*TR with the property that

~(f(y'),Jl(y')) < h(f(y'), y',6) V^^xCy') (3)

Our main result is stated in the form of the following theorem.

Theorem 1 . For any y' € Q and all 6 '5 6 ACClp) such that 6'€ A*(y ') and

6 € x(y ') , we have

n(f(y'),A(y')) > r< ^ 6'6 « S^' = A* (A)

Proof . (3) A (4) ^ h(f(y'), y'. 5) > f' V5 6 xiv) - D

Any state y' f CI which satisfies the Theorem is said to be fathomed

[12], If y' € Q is fathomed then f(y') does not have to be placed in high-

speed memory and the corresponding last decision in 5 ' does not have to be

placed in low-speed memory since no feasible completion of 6' can be an

optimal policy. That is, in the evaluation of f(y) with the functional

equations , information on previously fathomed states is irrelevant. Notice

also that no feasible completion of any subpolicy 6 '6 " € A (y"), where

T(y',6") = y'' i n„, can be in A*. Therefore, as a consequence of Theorem
r

1, we have the following additional fathoming criterion:

Corollary 1 . Let y' 6 n, 6 ' € A'ty') and 5 € x(y') satisfy (4). Then all

successive states y" € Q such that A(y") = [S's'M T(y',6") = y"} can

also be fathomed .





-6-

An obvious upper bound %{ on the cost n* of an optimal solution to

the original optimization problem^ is the cost, tt(6), of any feasible solution

6 6 S to P. The lower bounds i(y ) can be obtained by solving a relaxed [12]

version of the residual problem whose initial state is y' . If the cost

functions h and rr are nonnegative then an immediate lower bound for any state

y € n is in the additive case and 1 (if all coats are > 1) in the multiplicative

case corresponding to a total relaxation. However, much better lower bounds can usually

be obtained by judicious choice of the relaxation as will be demonstrated in

the following section.

Notice that our approach includes conventional dynamic programming

as a special case in which ^ is some sufficiently large real number and a

total relaxation is employed.
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4. Examples

In this section the results of §3are explicated and illustrated

vls-a-vis a number of examples. The first example of § 4.1 includes the second two

examples: the traveling-salesman problem of § 4.2 and the nonlinear knap-

sack problem of S 4.3, as special cases.

4.1 Example 1 : Separable Cost Functions [6,23,27].

Before addressing specific examples, we shall interpret the results of

S 3 for a general class of problems which can be approached with dynamic

programming. Consider any discrete optimization problem Q whose cost

function n belongs to the class of monotone cost functions H =

{ttJ (V6,,62 € S), tt(6,62^ =
'^;i(6

•, )on„ (62)! where 'b " represents a composition

operator [6,23,27]. Specifically, let '^ " denote any associative, commutative,

isotonic binary operator; common examples of which are "+" , addition, "x "

,

multiplication, and the infix operators [2] 'V", disjunction, and 'X",

conjunction. For any tt € 11 and y € Q we can write (3) as

f(y'>i(y') ^ h(f(y'), y',6) Vs € ^(y')

Further, for any n ^ 11 we can write h as

h(f(y'), y', 6) = f(y') o i(y',6)

where I(y',6) denotes the incremental cost of applying policy 6 at state y'.

Hence, for rr € 11 and any y' € Q, (3) reduces to

A(y') ^ I(y',6) V6 € x(y')

and Theorem 1 can be stated as follows :

Proposition 1 . I_f rr € n then for any y' ^ 0. and all 6 '6 € A(Qp) such

that 6 ' € A*(y') and ft € xiy') we have

f(y') ol(y') > "U ^ 6'6 ^ S* = A*.





-8-

Wheie wo assume that f{y ), £(y ) and !( are nonnegative in the

mull Ipl icativc case ("o" = "x").

The remaining examples of this section have cost functions belonging

to the additive subclass 11 Cll, where n = {tt|(V6 ,6„ € S), tt(6 6 ) =

For rr 6 H we can write the functional equation (1) as

f(y) " min [l(y',d) + f(y')l T(y',d) = y] y €(n - y^ )

.

4.2 Example 2: The Traveling-Salesman Problem [3]

Let ^^ m (v,E) be the directed graph whose vertex set is

V - [1,2,..,N}. Each edge (i,j) f E. is assigned a nonnegative weight c A

tour t f J" is a cycle which passes through each vertex exactly

once. Tour t = (i, ,i„,..., 1 ,1,) can be given the ordered pair representation12 n 1

t' = [(1^,12). (12,13)...-, ^^n-l'^n^' *^^n' H"*^ ^ ^' '^^ traveling- salesman

problem is to find a tour of minimum weight, i.e., find t t J" so as to

mm S c, (5)

t'€j' (i,j)€t' ^J

If we think of the vertices as cities and the edge weights as the distances between

cities, the problem (5) is to start at some home city, visit all the N-1 other

cities and return home in the minimum total distance.

Consider the following dynamic programming algorithm [14] for (5).

Let f(S,j) denote the weight of a minimum weight path (subgraph) which starts





at (contains) vertex 1, visits (contains) allvertices in S E [1,2,3,..., N}
,

and terminates at vertex j € S. Then, for all S ^ 0,we have the following

functional equations of a dynamic programming algorithm for the traveling-salesman

problem
f(S,j) = min [c. + f(S-j,i)l i ^ S-j] (6)

with the boundary condition

f(0,-) = (7)

Notice that (6) and (7) are equivalent to (1) and (2) with

Yq = (0,-), y = (s,j) € n = {[(s,j)|j€ s c [2,3,..., n]] u ({1,2,..., n1,i)},

y' = (S'-j, i) , d = j, T(y',d) = T((S-j,i),j) = (S,j), [(y ' , d) |T(y' ,d)= y]

= {((S-j,l),J)l i ^ S-j], h(f(y'), y',d) = f(S-j,i) + c .
.

, and %^ = 0.

The major roadblock to solving even moderate size (N s 20) traveling

salesman problems by the dynamic programming algorithm, (6) and (7), is the

excessive high-speed computer storage requirement. The storage

bottleneck occurs approximately halfway through the recursion when n+1 = |s| =

[n/21, since the evaluation of f(S,j) by (6) requires high speed access to

n( ) values of f (S-j, i). For N = 20, this amounts to a high-speed storage

requirement of 92,378 locations. However, we can reduce these requirements by fathoming

certain states, thereby expanding the range of traveling-salesman problems

which can be solved by dynamic programming.

An upper bound on (5) is easily obtained as the weight of any tour

t € J"'. For example, we could take the minimum of the weights of i) the tour

(1,2,..., N-1, N,l) and ii) the (nearest-neighbor) tour constructed by

connecting vertex 1 to vertex k where c, ^ c Vj ^ 1, then connecting vertex
Ik IJ

k to vertex m where c ^ c, . V j?ti, j ^ k, and so on until all vertices in [1,2,..,N}

are connected, and finally connecting the last vertex to vertex 1. Alternatively, we

could take the weight of a tour generated by some efficient heuristic as our

upper bound 1(.
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The lower bound j2,(S,j) on the weight of a path j
~* 1 which includes

all vertices k ^ S is also easily obtained. Since the classical assignment

problem is a relaxation of (5) we can set i.(S,i) equal to the value of the

minimum weight assignment to an assignment problem whose weight (cost) matrix

C is obtained from C by deleting all rows it {l U (S - j)} and columns j € S.

A relaxation of the traveling-salesman problem which can be solved by a "greedy"

algorithm is the minimum weight 1 - tree problem which is a minimum (weight)

spanning tree on the vertex set [2,..., Nj with the two edges of lowest weight

adjoined at vertex 1 [ 15,16], Other relaxations have been discussed in [ 3,5,34],

Suppose that we have calculated the bounds ^ and i(S,^). Then

Theorem 1 can be stated for the traveling-salesman problem as follows:

Proposition 2. T-S Fathoming Criterion : If

f(S,j) + £(S,j) > U (8)

then any tour t t ^ which contains a path between vertex I and vertex j_ that

connects all vertices in S - j cannot be a minimum weight tour , i.e . , Jt ^ J^*.

The use of Proposition 2 is demonstrated on the following simple

numerical example.

4.2.1 Example : Wagner [34, p. 472]

Consider the directed graph .J' on the vertex set {l,2,..., 5}

whose weight matrix C is

C =

L
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TABLE I, Summary of Calculations for

the Conventional DP Solution

of the Traveling-Salesman Example Problem

S = IS = 1 S = 2

(s.i) f(s,.i) i±

(0 ,
- )

Isl = 3

(

(

(

(

f(S,i) V

[2
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We next solve this example problem with (6) and (7), incorporating

the fathoming criterion (8). The upper bound V. is 62: the minimum of the

weight (65) of tlie tour (1,2,3,4,5,1) and the weight (62) of a nearest-

neighbor tour (1,5,2,3,4,1). The lower bounds £(S,j) will be calculated by

solving the assignment problem relaxation.

For |s| = 1, we have the following calculations:

(s,.i) f(s,.i) i* ^(s,i)

([2], 2) 10 1 55

({3}, 3) 25 1 42

({4}, 4) 25 1 40

({5}, 5) 10 1 50

Notice that we can fathom states { ({ 2} , 2) , ({ 3} ,3) , ([ 4} ,4)}

immediately by (8), since we have

f(s,j) + ji(s,j) > U

Therefore, the maximum high speed storage for | S | = 2 is 1

location as opposed to 4 locations in the conventional DP approach -- only in-

formation on state ({5j,5) is relevant to the calculation of f(S,j) for |s| = 2.

Furthermore, by Corollary 1 we can fathom states {({2, 3}, 2), ([2, 3}, 3),

([2, 4], 2), ([2, 4], 4), ({2, 5}, 5), ({3, 4}, 3), ({3, 4], 4), ({3, 5}, 5), ({4, 5}, 5)}

before evaluating either f(S,j) or i(S,j) since they clearly could not lead

to optimal tours. Therefore, for |S| = 2 only 3 of the 12 possible states

remain. The calculations for these states are presented below:

(s,i) f(s,i) i* -e(s,i)

({2, 5}, 2) 18 5 44

([3, 5}, 3) 35 5 31

({4, 5}, 4) 37 5 28
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Therefore, we can fathom states {([3, 5}, 3), ([4, 5], 4)} immediately

by (8), so that the maximum high-speed storage for \s\ = 3 is only 1 location

as opposed to the 12 locations required in the conventional DP approach.

Again, by Corollary 1 we can also fathom all states except for

states i ([2,3,5} ,3) , ([2, 4, 5}, 4)} prior to the evaluation of f(S,j) for

|sl = 3, i.e., we only have to evaluate f(S,j) for 2 of the 12 possible states

for |s| = 3. The calculations for the 2 remaining states are presented below:

(s.i) f(s.1) ii ^(s,i)

([2, 3, 5}, 3) 28 2 34

([2, 4, 5}, 4) 33 2 32

Therefore, we can fathom state ({2, 4, 5}, 4) by (8), so that the

maximum high-speed storage requirement for 1S| = 4 is 1 location as opposed

to the 12 locations required in the conventional DP approach. However,

we don't even have to store f([2,3,5},3) because by Corollary 1 the optimal

solution must be (1,5,2,3,4,1)1

Notice that^ although the computation of the lower bound j^(S,j)

required additional calculations in excess of those required in the convential

DP solution, this was offset by the reduction in the number of calculations

as a result of the states (S,j) which were fathomed by the Corollary 1 prior to

the evaluation of f(S,j).

The drastic reductions in both storage and computational requirements

which were effected by employing the fathoming criteria with the DP algorithm

are summarized in Table II.

Reference to Table II reveals that the high-speed storage requirement

was reduced by 11/12 and the low-speed storage requirement was reduced by 26/33

when the fathoming criterion were used with DP in the solution of this example

problem! However, this was partly attributable to the very good (in fact, optimal)
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TABLI'; Tl. Summary of Reduction In IJoth Storage and

Computational Requirements Effected by Employing

Fathoming Criteria in the DP Solution of the

Traveling-Salesman Example Problem.

Conventional DP Solution

kJ

1

2

3

4

5

No.
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initial upper bound. Only further computational experience with the approach

can indicate if it is competitive with other relatively efficient algorithms,

such as [ 16,171 for the traveling-salesman problem. In anv case, the

approach will significantly enlarge the range of traveling-salesman problems

which can bo solved with dynamic programming.

4 3 Examp 1 e 3 : The Nonlinear Knapsack Problem [26]

The nonlinear k napsack problem (NKP) can be stated as follows:

N
find X € IR so as to

"^

N
maximize Z-i r.(x.)

(9)
j=l J J'

subject to N
E g..(x.)^b, 1=1, 2,... ,M
j=l ^J J ^

X. fc S.
i

= 1 ,2 N

whare (Vj) S = {0,1,,.., K } and r : S - K is nondecreasing with

r(0) = 0. (Vlj) g^.: Sj -m^ with g^j(O) = 0, and b = (b^.b^,..., b^^) > 0.

The (NKP) includes both the classical (one-dimensional) knapsack problem f3l]

and the multidimensional 0/1 knapsack problem [35] as special cases for which

(Vj) r (x ) = ex (Vij) g^.(x.) = a. .X. and K. is taken as the smallest

integer such that g^ . (K . + 1)> b^ or (Vj ) K. = 1, respectively. The

(NKP) also includes a number of other variants [8] of the classical knapsack

problem and the "optimal distribution of effort problem" [20,34], as well

as various discrete nonlinear resource allocation problems [7,9] graph- theoretic

problems [lO,33] and nonlinear integer programming problems [11,13,32], as

special cases.

Consider the following (imbedded state space) dynamic programming

algorithm, M6MDP [26], for the solution of (9). Let f(n,P) denote the maximum

objective function value of an undominated feasible solution to (9) in which at most

all of the first n variables (x ,x , ,.., x ) are positive and whose resource

consumption vector does not exceed p = O- p . ..,p ), i.e., (Vi) P. >

1 = 1
S£j<.x.;. For n = 1,2,..., N, the feasible solution x = (x.. , x„ , . . . , x ) i<
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said to be dogilnatgd by the feasible solution x = (x ,x , . . . , x ) if we have both

1^ r.(x.) s; 2]
. , r.(x.) and 2J

i g (x.)^S._^ g..(x.)with strict inequality
1 = 1 J .1 j = l J J J-J- iJ J J-J- ij J

holding in at least one of the (M+1) inequalities. For 1 5 n ^e N , let F be the
n

(domain) set of resource consumption vectors, P, of all undominated feasible

solutions (x, ,x„,..., x ) to the following subproblem
1 z n

n

max Z-j r . ( X .

)

j = l
'

(10)

subiect to
-' n

E g (x ) s b i = 1,2,..., M

j = l -^ -'

x^ € Sj
.1

= 1,2,..., n

Also, for ^ n ^ N, let V be the (domain) set of resource consumption

vectors g (k) = (g, (k) , g„ (k) , . .
. , g., (k)), of all undominated feasible values of

n In zn Nn

X = k fc S . We can demonstrate [26] that for 1 ^ n S N, F C (V © F ,) with
n n n n n-1

F- =
, where (V ® F ,) denotes the set obtained by forming all sums of

n n-1 ' °

one element of V with one element of F
n n-1

Therefore, for 1 ^ n ^ N we can recursively generate all feasible

candidates for F from F , and V with the following functional equation of
n n-1 n

M&MDP

:

f(n,p) = [r (k) + f(n-l, p - g (k))|g (k) € V A (P -g (k)) € F . A p S b] (11)
n n n n n n-

1

with the boundary condition

f(0,0) = (12)

If the f(n,P) corresponding to dominated solutions are eliminated at

the end of (or during) each stage n, then (11) and (12) will yield the set of

objective function values {f(N,P)l P € F } of the complete family of undominated

feasible solutions to the (NKP) . Notice that the functional equations, (11) and (12)

together with the dominance elimination, are equivalent to (1) and (2) with y_ «

(0,0), y = (n,P) (z Q = {(n,P)| P € F^, n = 0,1,..., n}
,

y' = (n-1, P-g^(k)),

d = k, T(y',d) = T((n-1, p-g^(k)), k) = (n,P) 6 Q, {(y',d)l T(y',d) = y} =

{(n-l,P-g^(k))|g^(k)€ V^ A (P-g^(k))6 F^_^ A p S b}, h(f(y'), y',d) -

f(n-l, p-g^(k))+ r^(k), and 5^ = 0.
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M6J^DP is basically a one -dimensional recursive search (with dominance

elimination) over the sequence of sets F F .., F which are all imbedded in

the M-dimensional space B = [p] (Vi) p. fc [0,b 1}. As a result of the "imbedded

state space" approach [25] , M&MDP is not overcome by the "curse of dimensionality"

which inhibits the utility of conventional dynamic programming algorithms on

higher dimensional problems. However, both the high-speed storage requirements

and the computational requirements are directly related to the length F I of
n

the list F of undominated feasible solutions at stage n. Specifically,

the high-speed storage requirement is on the order of (2M + 6)n where n =

max ilF }= maximum list length and, although a very efficient dominance
n n

elimination scheme (which eliminates sorting) is employed in M6i4DP, the com-

putational time tends to increase exponentially with "n -- in fact, problems

in which n s 10,000 might consume hours of computer time. Fortunately, we

can employ the fathoming and relaxation results of S 3 (with minima replaced

by maxima, upper bounds replaced by lower bounds ,and vice versa) to great

advantage in reducing the list lengths.

Let =^ be a lower bound on the value of an optimal solution x^'< € S*

to the (NKP). For any (n,P) 6 Q, f(n,p) is the value of an optimal solution

6' = x' = (x^*^ x'^*, ..., x'*) € A* (n,P) to subproblem (10) for b = p . C

sider the following subproblem for any (n,P) € Q;

Find (x , X ..., x.,) € IR
""

so as to
n+i n+z N +

N
max Zj r

.
(x . )

on-

(13)
j=n+l J J

subject to

N
S g. .(x.) S b.-p. i = 1,2,.. . , M

j=iH-l ^J J ^ ^

X. € S. j = n+1, n+2, . . . , N
J J
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Let X(n,P) denote the set of all feasible solutions to subproblem

(13). Clearly, for 6 = x = (x_^^ , x _^„ , ... , x.,) € X(n,P), 6 '6 = x'x =
n+ i n+z IN

(x'*, x'*,..., x'*, X ,,, X ,„,..., x„) is a feasible solution to the (NKP) and we
1 z n n+1 n+z N

have
n N N N
E r.(x'*) + S r.(x.) = f(n,P) + S r . (x .

)

^ S r.(x*) for any x* t S* (14)
j=l ^ ^ j=n+l ^ ^ j=n+l^ J j=l J J

where S * is the set of optimal solutions to the (NKP).

Let u(n,P) be an upper bound on the value of an optimal solution

to subproblem (13). Then, Theorem 1 can be stated for the (NKP) as follows:

Proposition 2. (NKP) Fathoming Criterion ; If for any (n,P) € Q , we have

f(n,p) + U(n,p) <^ (15)

then 3 X € X(n,P) such that x'x € S*.

Any P t F for which (15) holds (for the corresponding (n,P) € Q)

can be eliminated from F , thereby reducing the lengths of the lists

k
F , F .., F Since p € F may give rise to 11 (K. + 1) members in list
n n+1 N n -^

'^
, i

F (n+l^k^N) the effect of fathoming can be significant.
K

The choice of bounds and relaxations is dependent on the form of

both the return functions and the constraints and is discussed in detail in

[22] . The objective function value of any feasible solution to the (NKP)

provides a lower bounds. One easily computed upper bound U(n,P) for any
N

state (n,P) € fi is S r
.
(K . ) ; another is min fp (b_-g_)] where

j=n+l J ^ ls:iSM in i i

p = max (max {r . (k) /g . . (k)})
n+lSjSN ISikSK. -^ ^J

J
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We note that for linear problems, as a result of our solution tree structure,

linear programming relaxations can be used to particular advantage. That is,

in our procedure there is no backtracking and the same LP relaxation of (13)

applies to all (n,3) € Q; with only the (b-p) vector changing value. Notice

that for fixed n the dual objective function value of any dual feasible solution

of this relaxation is an upper bound for all (n,3) ^ F . Also, the primal LP

relaxation for n+1 is equivalent to that for n with the column corresponding

to n+1 deleted, i.e., the LP relaxations are "nested".

The "hybrid" (M&MDP with fathoming) algorithm was coded in FORTRAN IV

and applied to several of the "hard" linear problems which were solved with

M6J4DP [26]. The computational experience with both the hybrid algorithm and

the straight M&MDP are presented in Table III. The times presented are the

execution (CPU) times in seconds of the codes on M.I.T.'s IBM 370-165.

In all problems of Table III, the decision variables were sequeneed

in nonlncreaslng order of r.(l) for input to both algorithms. The simple

min {p (b.-p )}upper bounds were used in the hybrid algorithm. When Problem 8

l^iSM
^"^11

was solved with the LP relaxations employed at every state in the hybrid algorithm

the max F I
= 3 and the execution time was 4.99 seconds -- Since

n' n'

3
is a member of the F list the savings were on the order of 10 (2052 vs 2) and

the computational savings were on the order of 10 (150.00 seconds vs. 4.99

seconds) with the hybrid algorithm.

Reference to Table III reveals the dramatic reduction in both com-

puter storage requirements (which are a function of max If I) and computation
n' n'

time which were effected by incorporating the fathoming criteria and relaxa-

tions within M&MDP. In fact, on the basis of the additional computational

experience reported in [22], the hybrid algorithm appears to be competitive with

even the best available linear 0/1 integer programming algorithm for this special

case of the (NKP) and the hybrid algorithm has the ability to solve a much broader

class of problems.
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TABLE III. Computational Comparison of the Hybrid

Algorithm vs. M&MDP

Problem Problem Size

No. N M K

4

5

6

7

8

12

13

15
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5. Discussion

It has been demonstrated that both the computer storage require-

ments and also the computational requirements of dynamic programming algorithms

can be significantly reduced through the use of branch-and-bound methods.

We envision that this hybrid approach may open the doorways to the solutions

of many sizes and classes of problems wViich are currently "unsolvable" by

conventional dynamic programming algorithms.
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