

M.I.T. LIBRARIES - DEWEY

HD28
.M414

Dewey

Bottleneck Resource Allocation in Manufacturing

Anantaram Balakrishnan
Richard L. Francis

Stephen J. Grotzinger

#3729-94-MSA October 1994

uiASSACHUSETTS UMSTiiure

OF TECHNOLOGY

DEC 01 1994

LIBRARIES

Abstract

Many resource-allocation problems in manufacturing and service operations require

selecting integer-valued levels for various activities that consume "nondecreasing amounts" of

limited resources. System productivity, to be maximized, is limited by the least productive

(bottleneck) activity. We first review a basic bisection method that can solve this discrete,

monotonic resource-allocation problem even with nonlinear objective and constraints. We then

generalize the basic algorithm to solve an enhanced version of the problem containing

additional coupling constraints on the allocation decisions. This generalization applies to

assembly-release planning (ARP) in a multiproduct assemble-to-foreccist environment with part

commonality. The ARP problem requires finding feasible amounts of each product to release

for assembly in each period using the available parts. The objective is to maximize the

minimum difference between the actual and desired service levels over all products and time

periods. We also consider extensions of the ARP model incorporating precedence constraints

and part substitutability, and show how to modify the bisection method to solve these problems.

1 . Introduction

Many resource-allocation problems in manufacturing and service operations require

choosing integer-valued levels for various activities that compete for limited, common

resources in order to maximize the minimum return or productivity over ail the activities.

Applications of bottleneck (max-min or min-max) resource-allocation models include line

balancing, raw material allocation, maintenance planning, and storage allocation.

These problems have the following general formulation. Let X be an n-vector of integer

activity levels X:. Each activity consumes varying amounts of m resources. For i = 1, ..., m, let

Sj and gj(X) denote, respectively, the total availability of resource i and the amount of this

resource consumed by the activity levels in X. If fi(Xj) denotes the "productivity" of activity j,

the system's productivity f(X) is limited by the least productive or "bottleneck" activity, i.e.,

f(X) = min {fj(Xj): j = 1, ..., n}. We must select activity levels that maximize system

productivity while satisfying resource constraints, and lower and upper bounds, B = (Bj) and C

= (Cj). This discrete, bottleneck resource-allocation problem has the following nonlinear,

integer programming formulation:

[P] maximize f(X) = f"'"
f-(x:) (1)

j=l, ..., n J J

subject to

gi(X) < Sj foralli= 1,..., m. (2)

B < X < C.and (3a)

Xj integer for all j = 1, ..., n. (3b)

We assume that as the activity levels increase the amount of each resource consumed does

not decrease, i.e., for i = 1, ..., m, the resource-usage function gj(X) satisfies the following

monotonicity (nondecreasing) property: given any two integral vectors X' and X" satisfying the

upper and lower bounds (3a), gi(X') < gi(X") if X' < X". Most practical resource-allocation

applications satisfy this assumption. Nondecreasing functions are quite general; they can

model economies of scale in the resource constraints, including fixed charges (e.g., fixed cost,

setup time, and so on). The productivity functions f:(Xj) need not be monotonic. We only

require fj(Xj) to be real-valued and defined for all integer activity levels in the closed interval

[Bj, Cj]. We assume that the problem is feasible, i.e., X = B satisfies constraints (2).

- 1

Past research on bottleneck resource allocation (see, for instance, Luss [1992] and Ibaraki

and Katoh (1988) for reviews of this literature) has addressed continuous-variable versions of

the problem and/or models with special structure (e.g., a single resource or linear functions).

For the discrete allocation problem with one linear resource constraint (i.e., a knapsack

constraint), Jacobsen (1971) proposed a marginal allocation approach. Porteus and Yormark

[1972] developed an improved bisection search algorithm to solve this special case, and Brown

[1979] described efficient solution procedures for knapsack-sharing problems with piecewise

linear and nonlinear productivity functions.

For problems with multiple resources. Tang [1988] developed an 0(m n^) algorithm for a

linear model in which the resource-usage functions gj(X) are all linear (with nonnegative

variable coefficients), and the productivity fj(x:) of each activity is a strictly increasing linear

function. The method finds an optimal integer solution by solving a sequence of relaxed

problems without integer restrictions. Tang described various manufacturing applications of

this model, including a storage space-allocation problem (also called the reel-allocation model,

see Ahmadi, Grotzinger and Johnson [1988]). All of these applications satisfy the

monotonicity (nondecreasing) assumption. Recently, Francis and Horak [1993] described a

bisection search method to solve the storage space-allocation problem. The method is robust

and easy to implement, and although its computational complexity is data-dependent, the

method was quicker than Tang's algorithm in computational tests.

This paper, motivated by some resource-allocation decisions in electronics manufacturing

and assembly, explores extensions of the bisection approach to address these decision

problems. One of these applications is a cleanroom sampling problem described and

formulated by Grotzinger and Cooper [1992] as a bottleneck resource-allocation model with a

nonlinear objective function and a monotonic resource constraint. In this application, the

activity levels are the sample sizes for n samples at n specified locations of a cleanroom. These

samples are required for an inspection plan to certify the cleanroom. The cost of sampling

varies by location, and increases with the number of samples. The cleanroom has a fixed

budget for sampling. To meet the federal standard for certification as a particular class

cleanroom, the sample average contaminant concentration at each location must be less than a

prespecified class limit. Since the variance of the sample average at any location varies

inversely with the size of the sample at that location, a larger sample size will increase the

probability that the sample average at that location will be less than the class limit. However,

the limited sampling budget introduces tradeoffs in allocating samples to various locations as

we attempt to increase the overall likelihood that the cleanroom will be certified, i.e., the

2-

likelihood that the sample average will be below the class limit at aU locations. To develop an

effective inspection plan, Grotzinger and Cooper proposed a bottleneck model to select sample

sizes that minimize the maximum variance of the sample averages over all the locations subject

to a linear financial resource (budget) constraint. They developed a method to optimally solve

the continuous relaxation of this problem (i.e., permitting fractional sample sizes), and

proposed heuristic adjustments to the fractional solution to obtain an integer solution.

In Section 2 we review the basic bisection algorithm to solve discrete, monotonic

(nonlinear) resource-allocation problems such as the cleanroom sampling model even with

nonlinear (but nondecreasing) sampling cost functions that reflect economies of scale. In

Section 3, we describe a multiperiod assembly-release planning (ARP) problem with

serviceability constraints introduced by Grotzinger and O'Connor [1993] for an assemble-to-

forecast environment with part commonality. This problem can be formulated as a monotonic

resource-allocation model with additional coupling constraints on the allocation decisions. We

discuss how to adapt the bisection approach to solve this model. In Sections 4 and 5 we

consider more general ARP models with precedence constraints and parts substitutability. In

Section 4, we first motivate ARP models with general precedence constraints governing the

allocation of resources; these precedence constraints might stem from the interaction of

production planning decisions across products and time periods. We then describe how to

modify the bisection approach to solve this new class of problems. In Section 5, we consider

assembly-release decisions when part substitutions are permitted, i.e., if we run out of a

particular part, we can still produce products that normally use this part by using an alternate

part from a specified set of substitutes. We further extend the bisection algorithm to

incorporate substitutability of parts. To our knowledge, multiperiod ARP problems with

precedence constraints and substitutable parts are unstudied. Our concluding discussion in

Section 6 includes a broad interpretation of the various extensions to the monotonic resource-

allocation problem [P] that this paper has addressed.

2. Bisection Method for Discrete, Bottlenecit Resource Allocation

The bisection method for discrete, bottleneck resource allocation, although originally

proposed for problems with linear productivity functions and resource constraints, also applies

to the nonlinear, monotonic version [P] of the problem. However, before applying the method,

we must replace any productivity functions that are not nondecreasing with equivalent

nondecreasing functions. In this section, we first describe the transformation, and then present

the bisection algorithm.

-3-

Suppose a given productivity function fX^\) is nonmonotonic or decreasing. We transform

it into an "equivalent" nondecreasing function fj(Xj) by setting

fj(Xj) = max (fj(y): y = Bj, Bj+1 x} for all x = Bj. Bj+I Cj. (4)

This transformation, proposed by Brown [1991] for bottleneck problems with linear knapsack

constraints, is also valid for problems with nonlinear, nondecreasing resource-usage functions.

To confirm its validity, first note that fj() and f-() have the same maximum values, and the

smallest value of Xj that maximizes fj(x:) is also the smallest value maximizing fjCx:), and vice

versa. Using this property, we can show that, if the resource-usage functions gj(X) are

nondecreasing, then the optimal objective function value of the transformed problem [P], with

fj() instead of fj(), equals the optimal value of the original problem. Moreover, the smallest

optimal solution X* to the transformed problem is also optimal for the original problem.

(Since the objective has the max-min form and the resource-usage functions are

nondecreasing, problem [P] has an optimal solution X* that is component-wise less than or

equal to all other alternate optimal solutions.) Our bisection method finds this smallest optimal

solution. For convenience, we will assume in all of our subsequent discussions that the

productivity functions are nondecreasing (i.e., the transformation (4) has been applied, if

necessary).

We refer to any vector X satisfying constraints (2) and (3) as a feasible solution. We seek

an optimal feasible solution (OFS) X*, i.e., a feasible solution that maximizes f(X). Let z* =

f(X*). Since the productivity functions are nondecreasing, f(B) < f(X) < z* < f(C) for any

feasible solution X. Given any value z e [f(B), f(C)], define yj(z) by

yj(z) = rain {xj: z < fj(Xj). Xj = Bj, Bj+1 Cj} for all j = I. n. (5)

Thus, yj(z) is the smallest value of the j'" activity level X: needed to ensure that the productivity

of this activity equals or exceeds z. When the inverse of the function fj() exists (for instance, if

fj() is linear), then

yj(z) = rfj"'(z)1 for all fj(Bj) < z < fj(Cj),

where ful is the smallest integer no less than u. Otherwise, we can compute yj(z) using

bisection search over the domain of fj().

Given any positive number e, we call a feasible solution X an e-OFS if its objective value is

within e of the maximum value, i.e., if z* - e < f(X) < z*. For the linear model, Francis and

Horak [1993] showed that, given a value z e [f(B), f(C)], the following three conditions are

-4-

equivalent: (i) Y(z) = (y:(z)) is a feasible solution; (ii) Y(z) satisfies constraints (2); and (iii) z <

z*. This result is the basis for their bisection algorithm. Both the result and the algorithm

extend directly to discrete resource-allocation problems with nonlinear, nondecreasing

resource-usage and productivity functions.

The underlying idea of the algorithm is to iteratively select a trial objective function value z

at the midpoint of the current search interval, and check if the problem has a feasible solution

X with f(X) > z. We check feasibility by first determining the smallest possible value yj(z) of Xj

needed to ensure that the overall objective function value f(X) equals or exceeds z. We then

verify if the solution Y(z) = (yj(z)) satisfies the resource constraints (2). If it does, then Y(z) is

a feasible solution to the problem, and so the trial value z is a lower bound on the optimal value

z* (actually, f(Y(z)) > z is a better valid lower bound); otherwise, z overestimates z*. We

initialize the algorithm with lower and upper bounds, LB = f(B) and UB = f(C), on z*. We

iteratively select z = (LB + UB)/2, determine Y(z), and update LB to f(Y(z)) or UB to z

depending on whether or not Y(z) satisfies (2). Iterations repeat until UB - LB < e. At

termination, the vector Y(LB) is an e-OFS.

One potential disadvantage of this approach is that its effort is data-dependent. The

algorithm requires up to log2((f(C) - f(B))/e) iterations, each requiring n evaluations of the

yj(z) values. We view this disadvantage as principally theoretical in nature; typically, the data is

not so big as to make bisection impractical. The polynomial-order algorithms proposed in the

literature assume special structure (e.g., linear resource constraints), whereas the bisection

approach is quite general.

3. The Assembly-Release Planning Problem

In this section, we review a production planning problem in an assemble-to-forecast

environment with part commonality. Grotzinger and O'Connor [1993] described and modeled

this problem as a continuous, bottleneck resource-allocation problem. In this paper, we first

consider the integer version of this model. The problem is formulated using variables for

cumulative production quantities instead of monthly (or weekly) production quantities. The

resource constraints, when expressed in terms of these cumulative production variables, satisfy

the nondecreasing property. The model contains additional coupling constraints to ensure that

the solution corresponds to a feasible production plan. We extend the basic bisection

algorithm to incorporate these constraints. In Sections 4 and 5 we consider enhancements of

the assembly-release planning model to account for precedence constraints and parts

substitutability.

Assemble-to-forecast (ATF) or make-to-stock refers to systems that produce goods based

on demand forecasts rather than actual orders (see, for instance. Baker [1993]) because the

procurement and production (fabrication or assembly) Lad times are longer than the customer

lead time (i.e., the time between placing an order and shipping the product to the customer).

Electronics assembly facilities producing personal computers provide one example of an ATF

environment. In this context, the procurement and assembly lead times could range from

several months (to procure certain specialized integrated circuits) to a few weeks whereas

customer lead times might be only a few days. The personal computer assembly example also

illustrates another feature, part commonality, found in many ATF environments. Commonality

refers to using the same part (or component) for several different products. For instance,

several personal computer models might require the same microprocessor. Increasing part

commonality provides many benefits including decreasing ordering and inventory

administration expenses, and reducing safety stocks of parts due to risk pooling (see, for

instance, Bagchi and Gutierrez [1992], Baker, Magazine and Nuttle [1986], Collier [1982],

Gerchak and Henig [1989], Gerchak, Magazine, and Gamble [1988], and Grotzinger et al.

[1993]).

In ATF facilities that produce multiple products with part commonality, decisions

regarding how many parts to procure in each period, how to allocate these parts to different

products, and how many "kits" (component sets for each product) to release for assembly in

each period must be based on estimates of probable future demands for each product, service

level requirements, and inventory considerations. To address these decisions, Grotzinger and

O'Connor [1993] developed a general nonlinear optimization model, and formulated a linear

program for a "feasibility subproblem" incorporating the parts allocation and assembly-

release decisions. We focus on the integer version of this feasibility problem, which we refer to

as the assembly-release planning (ARP) problem. We next describe this problem.

Consider a facility that assembles to forecast n (finished) products using m part types (or

parts). Suppose the procurement lead time is (p-t-l) time periods for all parts, and the assembly

lead time is L periods for all products. For simplicity, the same procurement lead time for all

parts, and the same assembly lead time for all products, is assumed. Item-dependent lead times

are easy to incorporate. The parts ordered during the past p+1 periods will arrive at the

beginning of the current period (t = 0) and subsequently for periods, t = 1, ..., p. We are

-6-

concerned with how to allocate these parts (including those currently on-hand) to various

products, and how many kits to release for assembly during each of the next p periods. Figure

1 shows a timeline depicting various events: procurement decisions, part arrivals, release of

parts for assembly, and assembly completion.

We assume that the probability distribution of demand for every product during each of

the next (L+p) periods is given. These distributions are revised each period based upon current

market conditions and trends, and so the assembly-release plans must be updated each period.

Since the assembly lead time is L time units, the number of kits for each product released for

assembly at time t, for t = p, must be chosen to service the probable demand for that

product in period (L+t). The planner's objective is to satisfy the demand for each product in

every period L, ..., L+p with a given probability or target service level. If the available

inventory of a finished product in any period is less than the demand during that period, we

assume that the unsatisfied demand is backlogged.

We define the cumulative availability of a product at time t > as its initial inventory at

time t = plus the total output (i.e., completed assemblies) from period to period t. The

actual service level for a product at time t is the probability that the cumulative availability of

that product at time t equals or exceeds its cumulative demand up to and including time t. The

target service level is the desired minimum value for this probability; this target might vary with

product and time period. We refer to the difference between the actual and target service levels

as the service-level difference. Grotzinger and O'Connor [1993] developed a linear program to

determine if the target service level can be achieved for all products and time periods using the

available parts, and if not to determine the minimum possible deviation from target. The

model maximizes the minimum service-level difference over all products and periods. The

integer version of this model, the Assembly-Release Planning (ARP) problem, has the following

formal definition.

Given the current parts inventory, the quantities on order and to be received during the

next p periods, the bill of materials for each product, and the demand distributions for the

next (L+p) periods, the ARP probl-^m seeks integer assembly-release quantities to maximize

the minimum service-level difference over all products and time periods subject to parts

availability.

If the optimal objective function value is nonnegative, then the currently available parts

plus the anticipated receipts (based on prior procurement decisions) are adequate to provide

the desired service levels for all products in periods L through (L+p); the ARP solution

specifies a set of assembly-release quantities that meets the targets. Otherwise (if the optimal

value is negative), the target service level cannot be attained for one or more products. In this

case, the assembly-release quantities specified by the ARP solution ensure that the actual service

level is as close to target as possible. Grotzinger and O'Connor [1993] discuss how to decide

future parts procurement quantities based on the ARP solution.

Problem formulation:

For j = 1 n, and t = 0, p, we define nonnegative, integer variables q:. representing the

number of units of product j to be released for assembly in period t. For every part i = 1, ...,

m, let Hjj denote the number of units of part i used per unit of product j. For t = p, let S^^

denote the (known) cumulative supply of part i at time t, i.e.. Sj^ is the sum of the initial on-

hand inventory of part i at time plus the total anticipated receipts of this part during periods

through t.

Let Aj
j_^_|

denote the (known) cumulative availability of (finished) product j in period (L-

I), which is equal to product j's current inventory (at time t = 0, including assemblies just

completed) plus the total quantity released for assembly during the past (L-1) periods (i.e.,

from period (-L+1) to period -I inclusive). For t = 0, ..., p, the total amount of product j that

we decide to release in periods through t (and will complete in periods L through (L+t)) is

qjQ+ ... + q:j. Adding A: j^j to this amount gives the cumulative availability of product j in

period (L+t). Let D: j^^j be the cumulative demand (a random variable) for product j from

period to period (L+t). We define fjtCqio"'" • •''^it) ^ *^^ service level difference for product j

at time (L+t), i.e., for all j = 1 n, and t = 0, ..., p,

fjj(qjO+ ... -Kljt) = Prob{ Aj l_, + qjQ + ... + qjj
> Dj l^,}

— Target service level for product j

in period (L+t).

The minimum service-level difference f(Q) is:

f(Q) = min{fj,(qjQ+
...+qjt): j = 1 n, and t = p}. (6)

Note that each f:,(), and hence f(Q), is a nondecreasing function of the release quantities, i.e.,

Q < Q' implies f(Q) < f(Q'). Also, for a given vector Q, every service-level difference function

fjj(q:Q+ ... +qj() is nonnegative if and only if f(Q) > 0.

The ARP problem, is formulated as follows:

8 -

[ARP] maximize f(Q)

subject to:

n

Z ajj (q:Q + ... + q-,) < Sj, for all i = 1, ..., m, and t = p, (7)
j=l •*

^

q^ > and integer for all j = 1 n, and t = 0, p. (8)

Constraints (7) ensure that the total amount of each part i used in all products during periods

through t does not exceed its cumulative supply Sjj. We wish to find nonnegative, integer

release quantities qj^ to maximize the minimum service-level difference over all products and

all periods.

Although formulation [ARP] has linear parts-availability constraints (7), our bisection

solution method (described in the next section) also applies to problems with nonlinear

resource constraints of the form G(Q) < S, assuming that the vector function G(-) is tier-

nondecreasing (TND), i.e., if Q' = (qL) and Q" = (qj'j) are any two feasible solutions that satisfy

^]0 + 1j 1 + •••
^jt - IjO "^

^Ij i
+ ••• + 'Ijt

fo"" all j = I n, and t = p.

then G(Q') must be less than or equal to G(Q"). Note that the objective function f() defined by

(6) is also TND, but this property is not necessary. We can replace any given non-TND

productivity function with an equivalent TND function, obtained by applying a transformation

analogous to equation (4).

Formulation [ARP] uses the service level differences as the productivity functions.

However, the enhanced bisection method that we describe in the next section applies to the

broader class of problems in which each productivity function f:j() is any real-valued and well-

defined function (not necessarily TND) of the cumulative availability of product j at time t. As

a special case, consider the ARP problem with known, deterministic demands. Suppose, for

each product j, we assign a penalty n- per unit shortfall of cumulative availability relative to

cumulative demand; minimizing the maximum penalty over all products and time periods is

the objective function. The bisection method can solve this problem, and can also

accommodate additional TND resource constraints, such as labor and budget constraints with

economies of scale and/or fixed charges. In Section 4, we consider further model extensions.

Solving the ARP problem:

Let Q denote the set of all feasible solutions Q satisfying constraints (7) and (8), and let z*

= max[f(Q): Q g Q}. Set Q is non-empty (since Q = is a feasible ARP solution) and finite.

-9

and so z* exists. The bisection method requires an initial search interval for the optimal value;

therefore, we first develop upper and lower bounds on z*. Since the function f() is monotonic,

LB = f(0) is a valid lower bound on z*. To obtain an upper bound, note that for every Q e Q,

ajj
(qjo

+ ... + qj,)
< S^ for all i, j, and t.

Thus, if we define

Ujj = min{LSjj/ajJ: i such that aj: > 0}, (9)

where LhJ is the largest integer less than or equal to h, then, qjQ + ... + q-^ < \i^ for all products
j

and time periods t. Let U = (Uj,). Since each function (J) is nondecreasing, UB = f(U) = min

{fjj(Ujj): j = 1, ..., n and t = 0, ..., p} is a valid upper bound on z*. Furthermore, q^ < yx-^ for all

J and t.

To better understand how to adapt the original bisection approach to the ARP model, we

reformulate the problem by transforming the variables. Let

Xjt =
qjo + - + qjt

forallj = 1, n, andt = 0, 1, ..., p, (10)

denote the cumulative release quantity of product j in periods through t. Replacing the q-

variables in formulation [ARP] with the x-variables, and defining

r(X) = min{fjj(Xj,): j = 1 n, and t = 0, ..., p}

we get the following equivalent model:

[ARP'] maximize f'(X)

subject to:

n

Z ajj Xjj < Sjj for all i = 1 m, and t = p, (11)
j=l

'^jt
-

''j,t-l
for all j = 1

Xjj < Ujj for all j = 1

x-j > and integer for all j = I

...,n, and t = 1, ...,p, (12)

...,n, and t = 0,1, ...,p, and (13)

..., n, andt = 0,1,... ,p. (14)

The coupling constraints (12), specifying that the cumulative quantity of product j released for

assembly at time t must equal or exceed its cumulative release quantity at time (t-1), reflect the

nonnegativity constraints on the variables q^ in formulation [ARP]. Our solution method does

not require the resource constraints (11) to be linear; it can also handle nonlinear resource

constraints G"(X) < S as long as the function G"(X) is nondecreasing for all vectors X that

satisfy constraints (12), (13) and (14) (requiring G"() to be nondecreasing is equivalent to our

- 10-

previous TND condition on the resource-usage function G(Q)). Luss and Smith [1988] have

considered a multiperiod model similar to [ARP'] but with continuous variables, linear resource

constraints, and hnear productivity functions fjt(Xj,) that represent the relative deviation of

cumulative production from cumulative demand.

Observation 1:

Every feasible solution X to [ARP'] has a corresponding feasible solution Q to [ARP] (with

the same objective value) and vice versa.

Proof:

Given a feasible solution Q to [ARP], the solution X obtained using equation (10) is

feasible in [ARP'] and has the same objective value. Conversely, if X satisfies the constraints of

[ARP'], then we obtain a feasible solution Q = (q-j) to [ARP] with the same objective function

value by setting q^ = \^ - x- j_j for all t = 1 p, and q:Q = Xjq for all j = 1, n.

The coupling constraints (12) differentiate model [ARP'] from the basic monotonic

resource-allocation model [P]. Note that the function hjj(X) = X: j_|
- Xj^ is not monotonic in

X, i.e., X' < X does not necessarily imply that hjj(X') < hjj(X). Therefore, we cannot include

constraints (12) in the set of general resource constraints G"(X) < S, but need to treat them

separately. Let us now explain intuitively how to modify the bisection method described in

Section 2 to handle these additional constraints. Recall that, for a given trial value z of the

objective function value, the value yj(z) defined using equation (5) is the smallest value of the

resource-allocation variable x- which ensures that the objective value equals or exceeds z.

However, these values might not satisfy the coupling constraints (12) in formulation [ARP].

Therefore, we modify the definition of the y-values as follows. For all j = 1,2, n, and t = 0,

1 p, let

Wjj(z) = min {xjj: z < fjt(Xjj), Xjj = 0. I, ^i^^}. (15)

We then successively compute yu(z), for t = 1, ..., p, as:

yjo(z) = Wjq(z), and (16a)

yjj(z) = max{yjj_,(z). Wjj(z)} ift>l. (16b)

Note that each yi((z) is a nondecreasing function of z.

Let il' denote the set of all vectors X satisfying (12), (13), and (14).

- 11

Observation 2:

For a given value z e [LB, UB], the vector Y(z) obtained using equations (16a) and (16b) is

the smallest element of Q' with an objective value of at least z, i.e., Y(z) e ii', f'(Y(z)) > z,

and Y(z) < Y' for any other vector Y' e Q' with f"(Y) > z.

This observation stems from the monotonicity property of each function fjj(), and can be

proven using a contradiction argument. Note that, instead of using equation (16b), we can

equivalently define yjt(z) for t = 1 p, as

yj,(z) = min (Xj,: z < fj,(Xj,), Xjj =
yj

,_,(z),
yj

j_,(z)+l, Ujj}. (16c)

Observation 2 and the monotonicity of the resource-usage functions G"(X) defined by (11)

enable us to perform binary search to find an e-optimal solution to problem [ARP']. We first

state this algorithm before justifying its validity. The algorithm contains an embedded search

procedure to evaluate Wjj(z) (defined in equation (15)). We refer to this procedure as the W-

evaluation subroutine.

Bisection algorithm for ARP problem :

Step 0: Initialization

P <— 0; {initial vector of lower bounds on Y(z*)}

Y<— U; (initial vector of upper bounds on Y(z*)}

LB <r- f'(0); (initial lower bound on z*}

UB <r- r(U); (initial upper bound on z*}

Step 1: Search process

REPEAT
z <- (LB + UB)/2;

Compute W(z) in [P,Y]; (call W-evaluation subroutine}

FORj = l, ...,n.

Set yjQ(z) <- Wjq(z);

FORt=l,.... p.

Set yj((z) <- max
|yj ,_i(z), wjj(z)};

IF Y(z) satisfies constraints (11)

THEN set LB <- r(Y(z)) and p <- Y(z); (z < z* and Y(z) < Y(z*))

ELSE set UB <- z and Y <- Y(z); (z > z* and Y(z*) < Y(z)}

UNTIL (UB - LB) < e;

- 12-

Step 2: e-optimal solution

FORj=l n.

Set
qjo

= yjo(LB);

FORt= 1,..., p,

Setqj, = yj,(LB)-yj,_,(LB);

Q = (qj() is e-optimal.

W-evaluation subroutine : To compute wjj(z) in [^^, y^] for all j and t.

FORj = 1 n,

FOR t = 0, ..., p.

Initialize X <r-
pj^ and \) <r- Yjp {pj,

< Wjj(z) <
Yjt}

IF z < fj,(X)

THEN setv<r-X;

ELSE

REPEAT
Set u <- L(A. + a))/2j;

IF z < fjt(u)

THEN set\><-u; {Wj,(z)<u}

ELSE set A. <— u+1; (u < Wj,(z) implies u+1 < Wjj(z)}

UNTIL X>\);

Set Wjj(z) <— X);

Starting with LB = r(0) and UB = f'CU), the algorithm computes yjjCz), with z =

(LB+UB)/2, for all j and t; let Y(z) = (yj((z)). If these values satisfy the resource capacity

constraints (1 1), we update LB <— r'(Y(z)); otherwise, we set UB <— z. We also update the upper

and lower bounds on the optimal values of \^ (thus narrowing the search interval for Wjj(z)).

We repeat this procedure until (UB - LB) < e. At termination, the solution Y(LB) is e-optimal

for problem [ARP']. We recover the e-optimal solution to the original problem [ARP] by

setting the release quantity in each period t equal to the difference between the cumulative

release quantities (given by the solution Y(LB)) in periods t and (t-1).

To compute yj,(z), we first determine the smallest value Wjj(z) of the cumulative release

quantity for product j at time t to achieve the objective function value z, and then apply

equations (16a) and (16b). The W-evaluation subroutine employs binary search in the interval

[PjpYjJ to determine Wjj(z). This subroutine is not necessary if we can directly evaluate the

inverse of the functions fJ). The parameters Pj^ and y-^ respectively denote the current lower

and upper bounds on the optimal value of the cumulative release quantity Xjj. Initially, Pj, =

and Yj, = U:,. If the solution Y(z) at a particular iteration satisfies the resource constraints (11),

13

then Y(z) is a feasible solution to [ARP'j. Therefore, z* > z, and since the productivity

functions fjj() are nondecreasing, the problem must have an optimal solution X* satisfying X*

> Y(z). Hence, we increase the lower bound (3 to Y(z). Otherwise (if Y(z) does not satisfy

(1 D), X* < Y(z) and we reduce the upper bound y to Y(z). Notice that, with this initialization

and updating scheme, the lower and upper bounds satisfy the following condition at every

iteration:

Pj,t-1 - Pjt ^"'^ Yj, ^ Yj.,-1 for all j = 1., n, and t = 1, ..., p.

We emphasize that, since the release quantities must be integral, the W-evaluation subroutine

finds the exact value of Wjj(z).

The validity of the bisection method rests upon the following result:

Proposition 3:

For the ARP problem with nondecreasing resource-usage functions, a trial objective

function value z is a lower bound on the optimal value z* if and only if Y(z), defined by

equations (16a) and (16b), satisfies the resource constraints, i.e., iff G"(Y(z)) < S.

Proof:

Let X* be any optimal solution to [ARP'] with optimal value z* = f'(X*). The solution

X* is nonnegative, integral, and satisfies the resource capacity constraints (I I) as well as the

coupling constraints (12) and upper bounds (13). Suppose the trial value z is less than or

equal to z*. By observation 2, Y(z) is the smallest nonnegative, integral vector X satisfying

constraints (12), (13), and f'(X) > z; therefore, Y(z) < X*. Since the resource-usage function

G"() is nondecreasing and X* satisfies the resource constraints, Y(z) < X* implies that

G"(Y(z)) < G"(X*) < S, i.e., the solution Y(z) satisfies the resource constraints. Conversely,

suppose for a given value of z, Y(z) satisfies the resource constraints (11). By definition, Y(z)

also satisfies constraints (12), (13), and (14). Since z < r(Y(z)) and Y(z) is a feasible solution

to [ARF], z* > f'(Y(z)) > z.

Computational effort:

To find an e-optimal solution, the bisection algorithm requires at most log2((r(U)-F'(0))/e)

"major" iterations (i.e., number of repeats in Step I). Since each service level difference is the

difference of two probabilities, -2 < fXO) - r(U) < 2. Therefore, if e = 2"^^ = 1/1,048,576, no

more than 21 iterations are required. As problem size increases, the method will likely be

limited by memory rather than speed.

14-

At each iteration, the method calls the W-evaluation subroutine n(p+l) times. Each

evaluation requires at most log2(Yjt~Pit) iterations within the subroutine. We can reduce the

search effort in the W-evaluation subroutine by modifying the overall algorithm as follows. At

each iteration in Step 1, instead of first evaluating aU the w-j(z) values before computing the

yjj(z) values, we first evaluate Wjq(z), and set yjo(z) = Wjq(z). Subsequently, for t = 1 p in

sequence, we specify the lower bound of the search interval for the W-evaluation subroutine as

max{yj t_i(z). Pjt)-
Observe that the values returned by the W-evaluation subroutine now

directly correspond to the yj((z) values (i.e., they are not the Wjj(z) values defmed in equation

(15)). Since the search intervals are shorter, this modified method has lower computational

effort. Notice that, unlike some linear programming-based methods, the bisection method does

not introduce cumulative floating point errors. Finally, if we are not interested in the exact

value of z* but only want to know if z* > (i.e., whether we Ccin achieve the target service

levels for all products in all periods), then we can terminate the procedure as soon as LB

becomes nonnegative.

The next two sections consider two types of generalizations of the ARP model, namely,

precedence constraints and part substitutability, that the bisection method can solve.

4. Model Extensions I: Precedence-constrained resource allocation

The ARP problem is a constrained version of the basic resource-allocation model [P],

containing the additional coupling constraints (12) to ensure that the cumulative release in a

period equals or exceeds the cumulative release in the previous period. Let us now consider a

broader class of "precedence" constraints that generalize the coupling constraints. Our initial

development leads to our next generalization, (20) below, which is applicable to multistage

production settings.

Suppose the production context requires that the cumulative release quantity of a product j

at time t must equal or exceed the cumulative release quantity of product j' at time t', i.e., we

must add constraints of the following type to formulation [ARP'] for a prespecified subset IP of

ordered product-time index pairs <(j',t'),(j,t)>:

xjj > Xj-f for all <a',t'). (j.t)> e IP. (17)

15

If <(j',t'), (j,t)> 6 IP, we say that (j'.t) 's a predecessor of (j,t). We will refer to discrete resource-

allocation problems with precedence constraints (17) instead of the coupling constraints (12) as

precedence-constrained resource-allocation problems.

Let us define a precedence graph PG to encode the required relationships specified in the

set IP. This graph has one node for each product-time index (j,t), and contains a directed edge

from node (j',t') to node (j,t) for every pair <(j'.t'). (j,t)> g IP. Suppose PG contains a directed

circuit DC. To satisfy all the precedence constraints (17) implied by the circuit we must

necessarily set all the variables corresponding to the circuit's nodes to the same value. Thus, if

N(DC) denotes the set of nodes in the circuit DC, we can reduce the size of the problem by

replacing X:j for every (j,t) e N(DC) by a single variable, say, \^q in the resource constraints

(11); in the objective function, we eliminate fjt(Xjj) for all (j,t) e N(DC) and instead introduce

^DC^'^DC^ = min {fjt(X[)c): all (j,t) e N(DC)}. Note that this substitution preserves the

monotonicity of the resource-usage and productivity functions. In the precedence graph, the

substitution corresponds to contracting all the nodes (j,t) in the circuit into a single node DC;

all arcs originally incident from nodes not in N(DC) to any node in N(DC) are incident to node

DC in the transformed graph. By successively eliminating all circuits in this manner, we obtain

a circuit-free precedence graph PG. We do not require this graph to be connected.

Since PG contains no directed circuits, we can sequence its nodes such that for each node

(j.t) all its predecessors occur before it in the sequence. (This node sequencing operation,

analogous to the node indexing scheme for PERT/CPM networks, requires O(IEr)

computations, where lEl is the number of edges in PG; see Lawler [1976].) We will refer to

such a sequence S as a y-evaluation sequence. We can easily modify the bisection method to

accommodate these precedence constraints as follows: in Step 1, after computing W(z) in [p.y]

for all j = 1, ..., n, and t = p, we consider the indices (j,t) in the y-evaluation sequence S,

and set:

yj((z) = max [wjj(z), max {yj.t.(z): all (j'.f) such that <(j',t'),0,t)> e IP)]. (18)

The remaining steps of the algorithm are unaltered. Again, the validity of this method stems

from the nondecreasing property of the resource-usage and productivity functions.

For our original ARP problem (described in Section 3), the set IP consists of index pairs

<(j,t-l), (j,t)> for all j = 1, n, and t = 1, ..., p. Observe that the precedence graph PG for this

special case of precedence-constrained resource allocation consists of n "line" subgraphs, one

corresponding to each product; the adjacent nodes on each line j correspond to release

- 16-

quantities for product j in consecutive time periods. This precedence graph is circuit-free, and

does not require any further reduction. The natural sequence ((j,t) for j = 1, ...,n, t = 0, ..., p)

satisfies the required precedence property; the original and enhanced bisection methods are

identical if we use this sequence as the y-evaluation sequence S.

Let us now consider how to adapt the bisection method for discrete resource-allocation

problems with precedence constraints that are more general than constraints (17). Suppose

product j is an accessory board and product j' is the mother board for a personal computer.

The production policy might specify that the cumulative release of product j at time t must

equal or exceed a certain (nonnegative) proportion bjj :.j. of the cumulative release of product

j' at time t' (t and t' might differ if the two board types have different assembly lead times). The

parameter h-^ •^> might be based upon the relative yields of the two board types, spare parts

requirements, and so on. Modeling this policy requires adding precedence constraints of the

form:

Xjj > bjt j.f
Xj.j. for all <(j,t), (j'.t')> 6 IP. (19)

A more general version of these forcing constraints arises in multi-stage assembly settings

where product j is a subassembly that is used in final assemblies jj, J2,, j^- If the assembly

lead time for subassembly j is k time units, b::. denotes the number of units of product j needed

per unit of final assembly j', and Lq represents the initial inventory of product j, then we

require:

"jt
"^

^jO -
''jji ''ji.t+k + +

''jjr '^jr.t+k-

This constraint specifies that the cumulative release of subassembly j at time t plus the opening

inventory must equal or exceed the cumulative requirements of this subassembly to meet the

final assembly release quantities. In general, the precedence constraints might contain a

(nonnegative) weighted combination of several variables of the form:

where the parameter e-^ is unrestricted in sign, but the coefficients b^ :.j. are all nonnegative.

The variable x-^ might be governed by several such precedence constraints, each with different

right-hand sides. Let n(j,t) denote the subset of precedence constraints (20) that contain the

variable Xj^ in the left-hand side, and let P:, be the set of all indices (j'.f) such that Xj.^. occurs

with positive coefficient b-^ •^• in the right-hand side of at least one constraint of n(j,t). We

refer to (j',t') as a predecessor of (j,t). The precedence graph PG for this enhanced problem has

one node corresponding to each product-time index (j,t); node (j,t) has incident arcs

<(j'.t'),0.t)> for every (j',t') e P^^.

17

To apply the bisection method for resource-allocation problems with the general

precedence constraints (19) or (20), we will assume that the corresponding precedence graph

PG contains no directed cycles. (With constraints (19) or (20), we cannot always make the

precedence graph acyclic using the successive substitution procedure we described for

constraints (17).) The multi-stage assembly example that we described earlier satisfies this

assumption. Since PG is assumed to be acyclic, we can sequence the product-time indices such

that the index (j,t) occurs after the indices of all its predecessors. We then determine the values

y:j(z) in this sequence S using a generalized version of equation (18). This version computes

y:,(z) as the maximum of w-j(z) and the highest right-hand side value over all the precedence

constraints in n(j,t). By considering the variables in the correct sequence, we ensure that the

values of y:','(z) for all (j',t') e P^ are available before we compute the value of yjt(z). We can

extend the same argument to handle even non-linear precedence constraints x^ > hjj(Yjj),

where Y:j = {y:Y(z): all (j',t') e Pj^} as long as the functions hU) are non-decreasing and the

corresponding precedence graph is acyclic.

5. Model Extensions II: Part substltutablllty

In Section 4, we showed how the bisection method extends to problems with general

precedence constraints. We now discuss modifications to incorporate another complicating

feature of some electronics assembly environments, namely, part substitutability. By parts

substitutability we mean using a designated alternative part (or parts) if the preferred part for a

product is not available. Allowing substitution yields risk-pooling benefits, and contributes to

achieving desired service levels; however, it may also increase product costs and reduce product

quality and reliability. Products with substitute parts, although functional, may not be tested as

thoroughly as the nominal design. Thus, it is desirable to allow no more substitution than is

needed to achieve service levels. Our approach incorporates this preference, i.e., it exploits the

risk-pooling benefit of substitutability while maintaining cost, quality and reliability objectives.

For any desired (and achievable) service level, we minimize the total amount (or cost) of

substitution necessary by solving a minimum cost network flow problem.

Suppose we can replace part i with some other part without affecting the functionality of

the products. Let R(i) be the index set of parts that can replace part i, and let RB(i) be the set

of parts that can be replaced by part i, i.e., RB(i) = (i": i € R(i")}. We assume one-for-one

substitution, i.e., one unit of a part i' e R(i) replaces one unit of part i. Part substitutability, like

commonality, provides risk pooling benefits. If part i is not available in stock, we can still

18

assemble products that require this part by using an alternate part from R(i). Klein, Luss, and

Rothblum [1993] developed an efficient specialized aigonthm to solve linear, continuous

resource-allocation problems with substitutions.

Let us first formulate the assembly-release planning problem with part substitutability,

which we abbreviate as the APS problem. As before, let x-^ denote the cumulative release

quantity of product j in periods through t, for j = 1 , ..., n, and t = 0, ..., p. For every part i, let

bjQ be the initial availability of part i (i.e., opening inventory of part i in period plus the

quantity received in period 0), and for t = 1, ..., p, let bjj be the number of units of part i

received in period t. In terms of our previous notation, bjQ = Sjq, and h^^ = Sjj - Sj j_[for t =

t

1, ..., p, where Sj^ is the cumulative availability of part i in period t. Note that Sjj = Z bjj. for
t'=0

all i and t. As before, \x^ = min{LSjj/ajjJ: i such that aj: > 0} is a valid upper bound on x-^.

For simplicity, we will consider the simple precedence constraints (12) specifying that x-j must

equal or exceed x- j_| for every product j and periods t = 1 p. The model and the modified

version of the bisection method that we describe later can also incorporate the more general

precedence constraints (19) or (20).

To model part substitutability, we introduce new "substitution" variables Vjji|, for all i = 1,

..., m, i' e RB(i), and t = 0, ..., p, denoting the number of units of part i used to replace part i'

during period t. The APS problem then has the following nonlinear, integer programming

formulation.

[APS] maximize r(X) = min{fjf(Xjf): j = 1 n, and t = 0, ..., p} (21)

subject to:

n t t t

I a- X-j + I I Vij. , < I bj,, + 1 I Vj,.; ,

j=l
'J J' t=Oi'eRB(i) t'=0 f=Oi"€R(i)

for all i = I, ..., m, and t = 0,1, ...,p. (22)

Xjj > Xj j_j for all j = 1, ...,n, and t = 1 p, (23)

Xjj < Ujj forall j = 1, ...,n, and t = 0,1 p, (24)

Xjj > and integer for all j = 1 n, and t = 0,1, ...,p, and (25)

Vjj.j > and integer foraU i = 1, m, i' g RB(i). t = 0,1, ...,p. (26)

19-

Formulation [APS] is similar to our previous formulation [ARP'I except that constraints (22)

now incorporate parts substitutability. and constraints (26) impose nonnegativity and integrality

on the new substitution variables \-^. Constraints (22) have the following interpretation. For a

particular part i and period t, the left-hand side of this constraint represents the cumulative

"outflow" of part i in period t both to satisfy the cumulative demand of products j that use this

part and the total quantity of part i used to replace other parts i' e RB(i) in periods 0, ..., t. The

right-hand side of the constraint represents the cumulative "inflow," consisting of the opening

inventory and cumulative receipts of part i plus the number of units of part i replaced by parts

i" e R(i) in periods 0, t. Constraints (22) specify that the cumulative outflow must not

exceed the cumulative inflow for each part and every period. Formulation [APS] is clearly

feasible (set all variables to zero).

To solve problem [APS] we will follow the previous strategy of: (a) selecting, via bisection

search, a trial value z of the objective function, (b) determining the minimum required

cumulative release quantities yjt(z) for all products j and periods t satisfying constraints (23),

(24), and (25) such that r(X) with X = Y(z) = (yjt(z)) equals or exceeds z, and (c) verifying if

the desired release quantities yjt(z) are feasible, i.e., if the available parts can meet these release

quantities with substitutions permitted. We refer to Step (c) as verifying the resource-feasibility

of Y(z). This step is more complicated for model [APS] than for the basic model [ARF]. As

we explain next, we must solve a network flow subproblem to verify resource-feasibility of Y(z)

for the APS problem.

Given a vector X = (x-^) (= (yjj(z)) in our bisection method). Step (c) requires verifying if

A

the partial solution X has a "feasible completion" in [APS], i.e., we must determine if there are

nonnegative integer values for the variables Vjj.j that satisfy constraints (22) after we substitute

A '^

Xj, = Xjj in these constraints. To motivate the procedure for checking resource-feasibility of X

and if so determining feasible v-values, let us reformulate constraints (22) by introducing an

additional set of variables kj| for all i = 1 m, and t = p-1. We will define these

variables via the following equations:

•^iO
= bjo + .„

2 Vi,.io
- I Vij-o for all i = 1 m, and (27)

1 gR(i) igRB(i)

kit = ^ + ^,t-l + .„^„,/i"it-., £,/ii't foralli=l m,t=l,...,H- (28)
1 eR(i) lERfi(i)

Notice that using these k-variables, we can simplify constraints (22) to:

n

Z a:: Xj, < k:, for all i = 1, m, t = p-1. (29a)

j=l
'J J'

- 20-

n

^p-^'^i,p-l+.„^,./np ^ .^, ^ij^jp
foralli=l,...,m. (29b)

I eR(i) j=l "
^^

A
Therefore, verifying the resource-feasibility of a given cumulative release vector X entails

/\ A

determining a solution (V(X),K(X)) satisfying constraints (26) through (29) or proving

that no such solution exists.

We now explain how we can interpret constraints (27) and (28) as the familiar flow

conservation equations of a network flow problem, £ind constraints (29) as lower limits on the
A A

flows on certain arcs. For a given vector X, consider a directed network G'(X) containing

nodes (i,t) corresponding to each product i = 1, ..., m, and every period t = , p. The

network contains two types of arcs: (i) "substitution" arcs from node (i,t) to node (i',t) for all i

= 1 m, i' G RB(i), and t = 0, ..., p; and, (ii) "k-arcs" from node (i,t) to node (i, t+1) for all i

= 1, m, and t = 0, p-1. Figure 2 shows a portion of this network. In this figure, part i'

can replace part i, while part i can replace part i". Each k-arc from (i,t) to (i,t+l) has a lower

A " A

limit LLjj(X) = 2- a^: Xj^ on its flow, i.e., the minimum required flow on this arc is LLjj(X).

Every node (i,t), for i = 1, m and t = 0, p, has a supply of bjj units. For i = 1 m, node

n

(i, p) has a demand (minimum required extemal outflow) of Z a^jX: . (Since this node also

j=I
n

has a supply of bj units, its net demand is Z ajjX: - b- .)

j=l

A

Consider the following y7ow/(?a.s/Z?j7/ry problem defined over the network G'(X).
A

Find a feasible flow on G'(X) satisfying the demand, supply, and minimum arc flow

constraints, or prove that no feasible flow exists.

The mathematical formulation of this flow feasibility problem contains flow conservation
A

equations at each node, constraints imposing the minimum flow requirements LLjj(X) on the

k-arcs, and nonnegativity constraints on the flow variables. If we interpret the flows on the

substitution arcs as the v-variables, and the flows on the k-arcs as the k-variables, then we see

that:

(i) the flow conservation equations at nodes (i,0) for all i = 1 m are the same as constraints

(27);

(ii) the flow conservation equations at nodes (i,t) for all i = I, ..., m, and t = 1 p-1, are the

same as constraints (28);

(iii) the minimum flow requirements on the k-arcs correspond to constraints (29a); and,

(iv) for i = I, ..., m, the demand constraints at nodes (i,p) are the same as constraints (29b).

- 21

Notice that, if the network G'(X) has a feasible flow, then it must have an integral flow

(assuming all the parameters a- and b|j are integral), i.e., constraints (26) are satisfied. We can

easily incorporate upper bounds on the substitution variables and k-variables; these upper
A

bounds become arc capacities for the substitution arcs and k-arcs, respectively, in G'(X).

These observations establish the following lemma.

Lemma 4:
A

A given cumulative release vector X has a feasible completion if and only if the
A

corresponding network flow problem defined over G'(X) has a feasible solution.

A A

Note that as X changes, only the minimum flow requirements LLjj(X) change; the node
A

supplies and demands do not change, and neither does the topology of network G'(X). Any

algorithm used for checking feasibility of a transshipment problem can be used to determine if

A

G'(X) has a feasible solution. Max-flow algorithms are commonly used for this purpose. The

max-flow problem can be solved very efficiently in 0(INI ViEl) time, where INI and IE! denote

the number of nodes and edges in the network (Ahuja, Magnanti, and Orlin [1993]).

At each iteration, the bisection method applies the max-flow algorithm to verify the

resource-feasibility of the cumulative release vector Y(z) corresponding to the current target

value z. We restate this iterative step (Step 1) of the modified bisection algorithm for solving

the APS problem with general precedence constraints (20) (assuming these constraints satisfy

the acyclic precedence graph property). The remaining steps and the W-evaluation subroutine

are the same as before.

Modified bisection algorithm for the APS problem with general

precedence constraints:

Step 1: Search process

Construct a y-evaluation sequence S.

REPEAT

z f- (LB + UB)/2;

Compute W(z) in [p,Y]; {call W-evaluation subroutine)

FOR successive (j,t) in the sequence S, set

y:j(z) = max [wjj(z), {max RHS value over all precedence constraints (20) in n(j,t)}];

Construct the network G'(Y(z));

-22

IF the network flow problem defined on G'(Y(z)) is feasible,

THEN set LB <r- r(Y(z)) and (3 <- Y(z);

ELSE set UB <- z and y <- Y(z);

UNTIL (UB - LB) < e;

Let z' e (LB, UB] be the final feasible target value when the bisection algorithm terminates,

i.e., z' is the target value corresponding the last iteration in which the network flow problem

defined on G'(Y(z')) was feasible. As we noted earlier, we can determine the appropriate

feasible v-values from the maximum flow solution corresponding to network G'(Y(z')). One

disadvantage of this solution is that it might entail "unnecessary" substitutions, i.e., the

maximum flow algorithm might route flows on certain substitution arcs when in fact the

problem has an alternate maximum flow solution that does not use these arcs. In practice,

production managers might prefer to reduce substitutions, as far as possible, subject to the

requirement that the objective value must be z. We can incorporate this preference by solving

at the end a minimum cost flow problem defined over the network G'(Y(z')). The node

supplies, demands, and arc flow lower bounds are as shown in Figure 2. We assign a penalty

for flow along substitution arcs, i.e., each substitution arc has a cost 5 > per unit of flow on

that arc. We seek the min-cost network flow solution that meets (or exceeds) all the demands

using the available supplies subject to the minimum flow requirements on the k-arcs. This

min-cost flow problem is feasible since Y(z') is resource-feasible. Since all substitutions are

penalized equally, the optimal solution minimizes the total number of parts used as substitutes.

The model can also incorporate part-dependent substitution penalties. Adding flow costs on

the k-arcs allows modeling product-dependent finished goods inventory holding costs.

Note there is a tradeoff between the value of z and the (minimal) total amount of

substitution needed. Let MCF(z) denote the min-cost flow substitution problem on the network

G'(Y(z)), with minimal objective function value v(z). Since Y(z) is monotonic in z, as z

increases the arc lower bounds LLjj(Y(z)) also increase. Thus if Zj < Z2 then MCF(Z2) is a

restriction of MCF(zj), so that v(z,) < v(z2). As we increase z we come closer to achieving our

target service levels, but our substitution cost also increases. Clearly this approach could lead to

a formal tradeoff of serviceability and substitutability.

The following proposition establishes the validity of the modified bisection algorithm for

the APS problem.

- 23

Proposition 5:

The APS problem has a feasible solution with objective value z if and only if the network

flow problem defined over G'(Y(z)) has a feasible solution.

Proof:

As we previously explained, for any value of z, the vector X = Y(z) computed in Step 1 is

the smallest nonnegative integer vector with objective value less than or equal to z and

satisfying the precedence constraints (20) (or (23)), and the upper bounds (24). If the network

flow subproblem defined over G'(Y(z)) is feasible, then by Lemma 4 the solution (Y(z),

V(Y(z))) is feasible in formulation [APS]. Hence, f'(Y(z)) > z is a valid lower bound on the

optimal value of [APS].

To complete the proof we need to show that if, for some value of z, the network flow

subproblem defined over G'(Y(z)) is infeasible, then z is a valid upper bound, i.e., the model

[APS] does not have any feasible solution with objective value greater than or equal to z. We

establish this property via contradiction. Suppose, for a given value z, the network G'(Y(z))

does not have a feasible flow, but the APS problem has a feasible assembly-release solution,

say, X' whose objective function value f'(X') equals or exceeds z. Since the productivity

functions are nondecreasing and since Y(z) is the smallest vector of release quantities that

achieves the objective function value of z while satisfying (20), (24), and (25), X' must be >

Y(z). Therefore, the arc flow lower limits LLjj(X') in G'(X') must equal or exceed the lower

limits LLjj(Y(z)) in G'(Y(z)). Since X' is feasible in [APS], the network G'(X') must have a

feasible flow (by Lemma 4). The same flow must also be feasible in G'(Y(z)) (since LLj,(Y(z))

< LLjj(X')), contradicting the hypothesis. Therefore, if the network flow subproblem defined

on G'-(Y(z)) is infeasible, z is a valid upper bound on the optimal value of [APS].

Finally, we note that the modified bisection method can handle nonlinear, nondecreasing

resource constraints as well.

6. Conclusions

This paper has discussed a set of increasingly complex planning problems in multi-product

assemble-to-forecast environments with part commonality, and showed how to solve these

problems using bisection methods. The bisection approach is a simple and versatile method to

solve a wide class of discrete, monotonic bottleneck resource-allocation problems. Although its

worst-case computational complexity depends on the data (e.g., the values of the upper bounds

- 24

Uj(), it can efficiently solve practical problems. The method offers the considerable advantage

of finding integer solutions to problems with nonlinear productivity functions fj,(). This

advantage stems from the fact that we only need to verify the feasibility of iterative solutions

Y(z) with respect to the nonlinear, nondecreasing resource constraints, rather than

incorporating these constraints directly in the optimization process. The nondecreasing

requirement for the resource-usage functions G() is a relatively weak condition that holds for

many practical applications.

The basic assembly-release planning model added coupling constraints (12) to the original

monotonic bottleneck resource-allocation problem [P]. In Section 4, we generalized these

constraints to include a large class of precedence constraints (e.g., (19) and (20)) that satisfy

the acyclic precedence graph property. In Section 5, we introduced additional susbstitution

variables in the problem formulation.

Let us now provide a broader interpretation of these developments as enhancements to the

generic discrete, monotonic bottleneck resource-allocation model [P]. We will refer to the x-

variables in this model as the primary variables; the bottleneck objective function depends only

on these variables. The ARP problem's coupling and precedence constraints create

dependencies between the primary variables. In general, we might represent these restrictions

as the following set constraint:

X e 0.

The condition that constraints (20) must satisfy the acyclic precedence graph property

essentially translates into the following general requirement for the set 0: for any target value z

of the objective function, it must be "easy" to identify the smallest vector Y(z) in that

achieves the target value. For instance, the acyclic precedence graph property permits us to

compute y:(z) easily after we determine the y-evaluation sequence S.

The introduction of part substitutability generalized the basic model [P] along another

dimension. In addition to the vector X of primary variables, we included a vector V of

auxiliary variables that appear in the resource-usage constraints. Instead of constraints (2), the

resource constraints for the ARP model with part substitutability have the following general

form:

gj(X) -h hi(V) < Sj for all i = 1, ..., m. (30)

Furthermore, the auxililary variables might have additional restrictions:

V € Q. (31)

-25

For the parts substitutability case, the set Q was the set of all nonnegative integer vectors V. We
A

defined the concept of resource-feasibility of any vector X e as the requirement that
A A

constraints (30) must have a feasible completion V(X) e Q when we substitute X = X in these

constraints. With the general resource constraints (30) and auxiliary variables V, the original

nondecreasing property of resource-usage functions for the bottleneck activity variables X is

replaced by the following general monotonic resource-feasibility requirement:

If a vector X e is not resource-feasible then neither is any other vector X' e with

X>X.

Finally, in order to apply the bisection method to this generalized bottleneck resource-

allocation model, we also require a subroutine that can efficiently find a feasible completion
A A

V(X) e i2 for any bottleneck activity vector X g that is resource-feasible. For the APS

problem, the network flow subproblem served as this subroutine.

To summarize, the bisection method is effective for solving bottleneck resource-allocation

problems with discrete variables, nonlinear productivity functions, and nonlinear resource

constraints under the following three conditions: (i) determining the smallest bottleneck activity

vector Y(z) e that achieves the target objective value z is relatively easy; (ii) the resource-

usage functions satisfy the monotonic resource-feasibility requirement; and (iii) finding a
A

feasible completion for any bottleneck activity vector X e that is resource-feasible (or

proving that this vector is not resource-feasible) is relatively easy. The assembly-release

planning model with precedence constraints and part substitutability meets these conditions.

26-

REFERENCES

Ahmadi, J., S. Grotzinger, and D. Johnson, "Component Allocation and Partitioning for a Dual
Delivery Machine," Operations Research, 36 (1988) 176-191.

Ahmadi, R. H., and H. Matsuo, "The Line Segmentation Problem," Operations Research, 39
(1991) 42-55.

Ahuja, R. K., T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and
Applications, Prentice Hall, Englewood Cliffs, New Jersey (1993).

Bagchi, U., and G. Gutierrez, "Effect of Increasing Component Commonality on Service Level

and Holding Cost," Naval Research Logistics, 39 (1992) 815-832.

Baker, K. R., "Requirements Planning" in Handbook of Operations Research and Management
Science, Volume 4 (Logistics of Production and Inventory), S. C. Graves, A. H. G. Rinnoy
Kan, and P. H. Zipkin (eds.), North-Holland, Amsterdam (1993).

Baker, K. R., M. J. Magazine, and H. L. W. Nuttle, "The Effect of Commonality on Safety

Stock in a Simple Inventory Model," Management Science, 32 (1986) 982-988.

Brown, J. R., "The Knapsack Sharing Problem," Operations Research , 27 (1979) 341-355.

Brown, J. R., "Solving Knapsack Sharing Problems with General Tradeoff Functions,"

Mathematical Programming , 51 (1991) 55-73.

Collier, D. A., "Aggregate Safety Stock Levels and Component Part Commonality,"
Management Science, 2S (1982) 1296-1303.

Francis, R. L., and T. Horak, "An Efficient Algorithm for Solving the Reel Allocation Problem,"

to appear in HE Transactions (1 994)

Gerchak, Y., and M. Henig, "Component Commonality in Assemble-to-Order Systems: Models
and Properties," Naval Research Logistics, 36 (1989) 61-68.

Gerchak, Y., M. J. Magazine, and B. Gamble, "Component Commonality with Service Level

Requirements," Management Science, 34 (1988) 753-760.

Grotzinger, S. J., and D. W. Cooper, "Selecting a Cost-Effective Number of Samples to Use at

Preselected Locations," Journal of the lES, (1992) 41-49.

Grotzinger, S. J., R. Srinivasan, R. Akella, and S. Bollapragada, "Component Procurement and

Allocation for Products Assembled to Forecast: Risk Pooling Effects," IBM Journal of
Research and Development, 37 (1993) 523-536.

Grotzinger, S., and M. O'Connor, "Procurement and Release with Uncertain Demands,"

Research Report RC 18890, IBM Thomas J. Watson Research Center, Yorktown Heights, NY,
May 1993.

Ibaraki, T., and N. Katoh, Resource Allocation Problems: Algorithmic Approaches, The MIT
Press, Cambridge, Massachusetts (1988)

Jacobsen, S., "On Marginal Allocation in Single Constraint Min-Max Problems," Management
Science, n (1971)780-783.

Klein, R. S., H. Luss, and U. G. Rothblum, "Minimax Resource Allocation Problems with

Resource Substitutions Represented by Graphs," Operations Research, 41 (1993) 959-971.

27

Lawler, E. L., Combinatorial Optimization: Networks and Matroids, Holt, Reinhart and Winston,
New York (1976).

Luss, H., "Minimax Resource Allocation Problems: Optimization and Parametric Analysis,"

European Journal of Operational Research, 60 (1992) 76-86.

Luss, H.. and D. R. Smith, "Multiperiod Allocation of Limited Resources: A Minimax
Approach," Naval Research Logistics Quarterly, 35 (1988) 493-501.

Porteus, E. L., and J. S. Yormark, "More on the Min-Max Allocation Problem," Management
Science, 18 (1972) 502-507.

Tang, C. S., "A Max-Min Allocation Problem: Its Solutions and Applications," Operations

Research . 36 (1988) 359-367.

-28

c
>
0)

CO

0>
c
o
«
o
o
"O

u
3
o

c
CO

E

o
p

o
0)

0>

E

3

U.

o
o
o

o

E
0)
(/)

<

Figure 2: Network configuration to verify resource-feasibility for APS problem

MIT LIBRARIES

llllllllljll
pi III I II Illllljlll

3 9080 00897 4864

2 176 nk q

Date Due

