


>>
^KCBff.

'*A
V

3j MBnAstms. ^
^ V / ^ i







no. 3157

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

BUILDING FLEXIBLE, EXTENSIBLE TOOLS FOR
METADATABASE INTEGRATION

Michael Siegel

Arnon Rosenthal

November 1991 WP # 3357-91-MSA
WP#CIS-91-11

MASSACHUSETTS
INSTITUTE OF TECHNOLOGY

50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139





BUILDING FLEXIBLE, EXTENSIBLE TOOLS FOR
METADATABASE INTEGRATION

Michael Siegel

Arnon Rosenthal

November 1991 WP# 3357-91-MSA
WP#C1S-91-11



M.I.T. UERARIES I

FEB 2 1 1S92 '



Building Flexible, Extensible Tools for Metadatabase

Integration

Arnon Rosenthal Michael Siegel

MITRE Corporation Sloan School of Management

arnie@niitre.org Massachusetts Institute of Technology

msiegel@sloan.mit.edu

1 Introduction

Applications that span multiple existing files and databases need an integrated description

of the information that they access (i.e., an integrated metadatabase). As the number

of cooperating systems increases, the development and maintenance of this integrated de-

scription becomes extremely burdensome for administrators. Large amounts of descriptive

information must be integrated and much data modeling skill are required.

Generating and maintaining the relationships among the component schemas can be-

come an administrative nightmare, especially in federations of autonomous data sources

each of which is free to make changes to its metadatabase. As described in the component

metadatabases, data from these sources may differ in representation (e.g., data models),

structure (e.g., data formats, database schema designs) or in semantics (e.g., differing def-

initions of GNP). Therefore, developing and maintaining an integrated view of even a few

autonomously operated sources would be a difficult task, and thus requires an automated

metadatabase integration tool. Such a tool must assist in developing an understanding of

the semantic connections between metadatabases and from this understanding, produce

a combined metadatabase, including mappings between the combined database and the

components databases^.

The literature on metadatabase integration consists mostly of techniques identifying

related information in the metadatabases being integrated and techniques for resolving dif-

ferences between the two metadatabases' treatments. Most of the published work deals with

schema information only, in the relational model or for various extended entity-relationship

(EER) models. Even papers that contain system overviews (e.g., [BLN86]), give little

attention to pragmatic issues that we consider crucial - flexible usage, and integrator cus-

tomization and extension.

Our goal is to justify and call attention to the requirements, and to provide a framework

for research on metadatabase integration tools. We envision a tool that supports: scheduling

'The term metadatabase integration tool is used to emphasize that the users' problem (and hence the

tool's task) is broader than just integrating schemas - the tool should also handle other types of descriptive

information. For example, attributes may be annotated with security level, audit priority, and several

categories of textual comments[McC84].



flexibility, to aJlow integration to be done in different stages and along different levels

of expertise; metadatabase evolution, to allow incremental development and evolution of

the component metadatabases and the organization's metadatabase; model extensibility, to

capture descriptive information that is not standardized across the industry; and method

extensibility, to add new or site-specific integration methods. Finally, despite all the flexible

orderings and extensions, the integrator should make minimize the requirements for user

interaction.

Section 2 describes unmet pragmatic requirements on integrator tools, and in Section 2.1

we illustrate them with a sample session. An architecture that can meet these requirements

is described in Section 3. Our work is intended to be model independent, e.g., to apply to

integrating pairs of relational databases, pairs of EER schemas, or pairs of object-oriented

schemas. Finally, Section 4 presents our conclusions.

2 Pragmatic Requirements on Metadatabase Integration

In this section we present a sample metadatabase integration session to demonstrate the

requirements for a metadatabase integration tool. Then, we describe the importance of flex-

ibility and extensibility in metadabase integration. In Section 3 we propose an architecture

to address these requirements.

2.1 A Sample Session

This sample integration session illustrates scheduling flexibility and the extensibility that

users need and our architecture supports. It also illustrates the use of small, concrete

questions for eliciting interschema relationships from users. It is not intended to illustrate a

sophisticated collection of rules - our interest is in the framework and the style of interaction.

For simplicity, the sample session integrates relations rather than entities and relationships.

Consider the problem when two organization with overlapping activities decide to merge

their information systems. The first stage of this effort is to provide a unified view of the two

companies' data while continuing autonomous operation of the component databases. The

information system integration project begins with a pilot project to integrate personnel

data. Ms. Smith of Human Resources is the expert assigned to work with the Information

Technology (IT) group. The project will use a vendor-supplied integrator that deals with

structural integration issues in relational databases.

The IT group helps her develop a user profile for their effort. The default profile for a

nontechnical user is breadth first (i.e., completing a higher level before considering details)

and excludes rules that deal with mathematical dependencies and with versioning. The

group decides to make one change to the default - as soon as a combinable pair of relations

is identified, details of its integration will be worked out before proceeding to other relations.

Ms. Smith identifies the relations in each database that deal with personnel, and the in-

tegrator is instructed to restrict its attention to these relations. She then tells the integrator

to begin execution.

A heuristic rule suggests that the relations. Database!.EMP and Database2.EMPL,

shown in Figure 1 seem likely to be mergeable. Ms. Smith agrees with the suggestion, she



Company 1 - Databasel Company 2 - Database2
Relation EMP Relation EMPL
Emp# - {il:i^#-i^i^-ii:#i^ii:) E# - (###-##-####)
Name - Char(40) EName - Char(36)

Annual_Salary - Integer Weekly.Pay - Integer

Age - Integer Date-of-Birth - Date
... etc. ... ... etc. ...

Figure 1: Two Relations from the Sample Databases

is asked what the concept should be called in the combined schema. Instead of choosing

one of the suggestions EMP and EMPL, Ms. Smith types EMPLOYEE.
Ms. Smith tells the system that the two E# attributes (i.e., Emp# and E#) are

mergeable, and that Name and EName are mergeable. She accepts the default names for

the merged attributes, E# and EName. According to her schedule, it is not yet time for her

to deal with datatypes. However, the system knows that its rule for combining datatypes

requires no human intervention when there is no conflict (i.e., E#, Emp#). In order to

maximize progress toward a combined schema, the system executes this noninteractive rule.

Next, using a local thesaurus of Personnel jargon, the integrator guesses that An-

nual_Salary and Weekly.Pay may be mergeable. When Ms. Smith replies yes, the inte-

grator asks for a name for the combined attribute, and a way to compute the proper value.

She tells the integrator to defer this issue until later. Part way through the attribute list,

Ms. Smith decides that her assistant is better able to handle definitions of EMPLOYEE
attributes. When the system next requests information from her, she calls up a control

screen and tells the system to proceed to the next type of descriptive information.

The integrator now gathers information necessary to determine the constraints on the

combined relation and the mappings from the component relations to the combined relation.

The number of possibilities can be substantial, and the user is nontechnical, so rather than

present possible combined schemas and mappings, the integrator asks some simple questions

(Ms. Smith's answers are bold and underlined):

• If records from EMP and EMPL have the same key value E#, must they refer to the

same EMPLOYEE? (Yes. No. Defer)

• Can records from EMP and EMPL with different E# values refer to the same EM-
PLOYEE? {Yes, No, Defer)

• Can the same EMPLOYEE be in both relations EMP and EMPL? (Yes, No, Defer)

A set of rules in the integrator now infers that records with the same E# should be combined,

that EMPLOYEE is the outerjom of EMP and EMPL, and that E# is a key of EMPLOYEE.
The results of attribute integration are used to specify the target list of the outerjoin.

Answers to all the questions used to resolved this schema are retained.



The team continues filling in details of EMPLOYEE, and then of other relations. Sud-

denly, the auditors insist that the combined metadatabase be extended to include access

controls. The component metadatabases include access lists on each attribute, but the

vendor-supplied integrator does not handle this information. A member of the team writes

a new rule that helps a user to merge access lists interactively; these rules are to be applied

whenever a pair of attributes are merged. The programmer registers the new rule with the

integrator, and it is immediately applicable.

After lunch, one member decides to generate a prototype combined metadatabase. Many
of the rules (e.g., for datatype integration) can determine a confidence level for their de-

fault action; when the integrator runs with low required confidence, these rules will make

most decisions without user interaction. The prototype is generated rapidly. Meanwhile,

work proceeds on the accurate schema, and discussions begin about an enterprise concep-

tual model. The integrated metadatabase, though not complete, may be used to develop

applications that require data from portions of both databases.

From this scenario, we conclude that several specific capabilities ought to be included

in the integrator's skeleton: redefinition of the scope for the immediate integration effort;

priority to fully-automated rules whenever all necessary inputs are available; deferral of

inconvenient questions; redefining the set of active rules; simple, user-friendly questions

whose answers eventually permit inference of more complicated relationships; reactivation

of deferred questions; avoidance of redundant questions; adding new rules to cope with new

kinds of metadata; and fast prototyping.

2.2 The Need for Flexibility and Evolution

The scenario identified two basic properties that an integrator ought to have, and that the

current research literature ignores - flexibility and and extensibility. We now summarize

the desired capabilities:

1. Scheduling Flexibility - The integrator must allow its user to control the order of task

execution, in order to adapt to project goals or availability of resources. For example,

the user must be allowed to choose the initial goals - a broad enterprise model that

presents major entities, relationships, and attributes for the whole organization, or

alternatively a narrow but complete pilot project (e.g., integrating inventory infor-

mation from two corporations that are being merged). Hybrid goals also make sense,

such as detailed integration of inventory information, plus a top-level integration for

related areas such as order entry.

A large integration task requires many kinds of expertise (e.g., about CAD tech-

niques, design management, manufacturing, and security). Questions may need to be

deferred until the expert is available. When experts are interviewed, the integrator

should concentrate on questions relevant to their expertise. Also, spontaneously-

offered information should be captured, even if the integration methodology relegates

it to another stage.

2. Extensibility by User Sites - New integration techniques appear frequently in the re-

search literature and may be implemented by integrator vendors, but these are not the



I User Control
J

"\^ Controller



combined metadatabase. In general, we prefer that the rules obtain and the ISDb store

information in small, concrete increments, as illustrated by the scenario's questions about

matching keys (E#). Such small questions tend to be more understandable by users, and

require less rollback if a decision is to be changed.

The IDb includes information on object mergeability, intercomponent semantic relation-

ships, and the combined schema.

3.2 Rules

Rules are the unified mechanism for expressing all the integrator's work, used for both high-

level decisions (e.g., which relations shall be merged), and low-level decisions (e.g., how to

resolve conflicts between specifications of String(9) or Integer for Partes). The unified

treatment facilitates tracking and explaining the impact of evolution in the component

databases or the interschema semantics.

In many rule languages, one assumes that each predicate in a rule is inexpensive to

evaluate. A schema integrator, though, includes many rules that require user input. Such

input is normally more costly than any fully-automated rule, so the format from rules is

chosen to minimize the number of interactions and other expensive operations.

A rule has three parts: a precondition, a body, and an action. The description below

is an attempt to allow for performance optimizations (e.g., possible early evaluation of

some predicates), while minimizing the interactions requested from the user. Note also that

execution of the entire set of rules can take days, and it is possible to introduce information

that conflicts with previous decisions, and for the user to edit the ISDb directly, possibly

invalidating the results of early evaluation of predicate conjuncts.

The precondition is a conjunct of Boolean terms (with the structure visible to aid in

performance optimization). Furthermore, the precondition should normally include only

terms whose evaluation is fully automatic. The system is permitted to evaluate predicates

in the precondition repeatedly, as conditions change. The body is evaluated only after

the entire precondition becomes true for some binding^. Normally (i.e., if not deferred or

restarted) the body will be evaluated just once for each rule binding. Costly operations

should appear in the body rather than the precondition. The action is arbitrary; only it

can modify the ISDb.

Rule format is illustrated below, for two simple rules. The bodies have been simplified

to remove user-interactions that might otherwise be present. The outcomes insert an asser-

tion about mergeability of the two attributes, or about the security level of the combined

attribute.

Mergeable_attribs(Al, A2) /* tells whether Al and A2 should be combined

Precondition: (The relation containing Al is mergeable with the relation containing

A2)

Body: {If Name(Al) = Name(A2) then IDbJnsert(Mergeable(Al,A2))}

^A rule binding is a set of variable values that make the precondition True



CombineJSecurity_LeveIs(Sl,S2) /* determines how the security levels should be

integrated for two attributes that are being combined

Precondition: Si is the security property of attribute Ai from component database i,

and A1,A2 are to be merged. A12 denotes the resulting attribute.

Body: {IDbJnsert(Security(A12)= maximum(Sl,S2) )}

3.3 User Control of the Integration Process

ConventionaJ rule-based applications often run autonomously, or else interactively over sec-

onds or minutes. Schema integration lasts for days (i.e., or may continuously evolve), during

which the metadatabases may be changed due to external events or to edits by the user

rather than by the action of a particular rule. As illustrated in the scenario, the user

therefore needs to control the order of tasks. Control can be direct or indirect.

Users can obtain direct control in three ways: i) the controller can be asked to return

control periodically or upon reaching certain points (analogous to a debugger stepping

through or reaching a breakpoint); ii) an interrupt can abort the currently-executing rule;

iii) whenever a user supplies input requested by a rule, the interface allows the user to take

control actions.

The user has two basic choices after obtaining control. First, he or she can select a set

of candidate rule bindings, and cause them to be invoked immediately. Second, the user

can browse and edit all information in the IDb (i.e., subject to authorization).

A controller can consider several kinds of control information in order to choose the next

rule binding to be executed. Here we present three examples of the types of control that

are important in the integration process - scoping, deferral, and directionality. All were

illustrated in the scenario. Scopes are views over the rule base and database. Rather than

directly execute all stored rules over all information in the IDb, a scope provides a subset

of each. Users can request execution within a scope (e.g., Ms. Smith's scope was personnel)

that is more targeted to their interests and a smaller set of rules (e.g., excluding rules that

deal with technical details of datatypes and security).

The integrator must be able to defer a rule bindings for which the user is not prepared

to furnish the answer (e.g., Ms. Smith chose to defer interactions involving datatypes).

The IDb includes a history of executed rule bindings, some of which are marked executed -

deferred. Bindings to be reactivated may be selected by special commands or by an ordinary

database query.

Finally, the user should be able to influence the direction of integration. For example,

for hierarchical metaschemas the user may choose to go "down". This would mean to

next apply candidate bindings associated with the components of a metatype, e.g., after

determining that two relations can be merged, obtain information about the first child

in the metaschema (e.g., Relation_name, Attribute-List, Constraint_List). Another choice

would be "same_rule" where the user chooses to apply the same rule again but with different

bindings.



3.4 Controller and Control Strategies

The controller determines the next rule binding to execute (one at a time). It is a key

variable in the integrator's usability, but to date the control process has received little

research attention in the database community.

Any rule binding whose precondition is True and which is not recorded as "executed" is

called a candidate for execution. A controller must invoke only candidate rules, and not ter-

minate until or candidates are exhausted, or the user issues an exit command. The controller

stores the history of executed rule bindings, with return codes and other status informa-

tion. The history is part of the IDb, and may be referenced by rules, and edited by built-in

commands. Ideally, the controller will be built as an enhancement of a general-purpose

rule engine, but it is not clear whether off-the-shelf rule systems allow their controllers to

be modified in this way. An additional responsibility of the controller is to use indexing,

eager evaluation, and similar techniques to minimize the user's time waiting for the next

interaction.

4 Summary

We have identified unmet pragmatic requirements of long, interactive design processes such

as metadatabase integration. We described some ways to adapt a generic rule-based ar-

chitecture to meet those needs. Our design was quite preliminary, but points the way for

future research.

The proposed architecture helps an integrator satisfy the goals of flexibility by allowing

integration tasks (i.e., rule bindings) to be invoked in arbitrary order as long as each pre-

condition is satisfied. Several mechanisms were proposed for influencing the choice of next

rule to be invoked. Users can invoke sets of candidates, explicitly. The scope and direction

of integration is adjustable at any time. Users can freely defer tasks (i.e., rule bindings),

and have great flexibility in determining which deferred bindings should be reactivated.

The proposed integrator provides for extensibility by using a rule-based approach to define

all integration techniques. New techniques can be freely added to the rule base, to allow

users to include techniques tailored to local conditions. The integrator will invoke these

new rules when their preconditions are satisfied. This mechanism handles both the results

of new research, and locally-developed rules to handle local kinds of metadata.

In a future database system, the metadatabase integrator will be just one of many

tools. It will depend on other tools that help with evolution of multilevel schema struc-

tures, and will share knowledge with other tools that deal with data semantics. There is

a substantial functional overlap between schema integrators, intelligent query-formulation

assistants [KBH89,KN89], and intelligent assistants that reconcile database contents to a

user view [SM91]: Much of the knowledge that they use is similar (e.g., about identifying

similar concepts between two views, or about necessary conversions). Also, all three tools

generate mappings from some final view (the integrated schema or the user's desired query)

to the lower level structures used in implementing that final view. However, the facilities

for controlling and influencing rule execution are likely to be quite different for schema in-

tegration, a days-long process with an expert user. Obtaining a global architecture appears



to be formidable challenge that will require broad knowledge of many tools.

Acknowledgements: This work has been funded in part by the International Financial

Research Services Center at MIT, National Science Foundation Grant #IRI902189, Xerox

Advanced Information Technology, and ETH-Zurich.

References

[BLN86] C. Batini, M. Lenzerini, and S. Navathe. A comparative analysis of methodologies

for database schema integration. ACM Computing Surveys, 18(4):323-364, 1986.

[KBH89] L. Kerschberg, R. Baum, and J. Hung. Kortex: an expert database system shell

for a knowledge-based entity-relationship model. In The Conference on the Entity-

Relationship Approach, Toronto, 1989.

[KN89] M. Kracker and E. Neuhold. Schema independent query formulation. In The

Conference on the Entity-Relationship Approach, Toronto, 1989.

[McC84] J. McCarthy. Scientific information = data + meta-data. In Database Man-
agement: Proceedings of the Workshop November 1-2, U.S. Navy Postgraduate

School, Monterey, California, Department of Statistics Technical Report, Stan-

ford University, 1984.

[SM91] M. Siegel and S. Madnick. A metadata approach to resolving semantic conflicts.

In Proceeding of the 1 7th International Conference on Very Large Data Bases,

September 1991.



,A., c;

I ^



MIT LIBRARIES DUPL

3 TDfiO 00747282 T



Date Due^ 'i'^'Z-

Lib-26-67



MIT LIBRARIES

3 <=loaO 007M7EaE =!




