

Dewey

Computational Experience with a Group Theoretic

Integer Programming Algorithm*

by

G. Anthony _Gorry and Jeremy F. Shapiro

May, 1972

WP 603-72

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

MBRIDGE, MASSACHUSETTS 02"

MASS. IIIST. TECH.

JUL 22 1972

Computational Experience with a Group Theoretic

Integer Programming Algorithm*

by
,

G. Anthony _Gorry and Jeremy F. Shapiro

May, 1972

WP 603-72

This research was supported in part by the U. S. Army Research Office

(Durham) under contract no. DAHC04-70-C-0058.

no. 4o5 7o?

Abstract

This paper gives specific computational details and experience with

a group theoretic integer programming algorithm. Included among the

subroutines are a matrix reduction scheme for obtaining group represen-

tations, network algorithms for solving group optimization problems, and

a branch and bound search for finding optimal integer programming solu-

tions. The innovative subroutines are shown to be efficient to compute

and effective in finding good integer programming solutions and providing

strong lower bounds for the branch and bound search.

6355r>4

Introduction

In this paper we report on computational experience with a new integer

programming algorithm (IPA). Details of how group theory can be used to

solve IP problems are discussed in Gorry and Shapiro [12]. Reference 12

also contains a brief discussion of some preliminary computational experience,

but little detail was given there about computation and moreover, some of

the subroutines in the preliminary version of the code were quite primitive.

The current version of IPA contains subroutines which are fairly tight for

code written in basic FORTRAN. Our primary purpose here is to try to esta-

blish that group theoretic IP methods as embodied by these subroutines are

easy to construct and effective to use in solving IP problems. An important

secondary purpose of this paper is to report on computational experience

with the group theoretic constructs discussed abstractly in a number of paoers

(e.g.. Glover [6, 7], Gomory [8, 9, 10], Hu [15, 16]).

We chose to implement IPA in FORTRAN because we desired to have the

ability to transfer the system from one computer to another. We have found

this ability particularly useful, and to date the system has been implemented

on various versions of the IBM 360 System (Models 65, 67, 75 and 85) and on

the Univac 1108. We have made the more obvious attempts to make efficient

the encoding of this system in that we have been concerned with data struc-

tures and sequencing of operations within the system. On the other hand,

we have not implemented any of this system in assembly language for a given

machine. We do feel that such an implementation would significantly improve

the computational efficiency of our system but the transferability of the

FORTRAN had definite appeal for our purposes in the past.

Overview of IPA

We begin with a statement of the IP problem in its initial form. This

problem is

n+m
mm z = I c .w.

n+m

s.t. I a. .w. = b.

j=l
TJ J T

i = l ,... ,m (1)

w. = 0,1,2,...

w. = or 1

J

J e U

J c 1

where the coefficients c, a.., b. are integers, U and Z are disjoint subsf^ts

of {1,2,... ,n+m} , and U U Z = {1 ,2,. . .
,n+m}. Let a . denote a generic m

vector with components a.., and let b be the m vector with components b .

.

Problem (1) is solved first as a linear programming (LP) problem by a simplex

algorithm. Without loss of generality, assume the optimal LP basic variables

are y. = w ^., i=l,...,m, and the non-basic variables are x. = w., j=l,...,n.

Let U„ and Zg be the partition of the index set {l,...,m} into the index sets

of unconstrained and zero-one basic variables; let Uj^ and Zj^ be similarly

defined for the non-basic index set fl,...,n}.

The optimal LP basis B

1 ,n+l

m,n+l

i ,n+m

m,n+m

:2)

is used to transform (1) to the equivalent form

min z = Zp, + z c.x. (3a)

s.t. y. = b. - Z a..x. i=l,...,m (3b)

y^-
- 0,1,2,... i t Ug (3c)

y^.
= or 1 i e Zg (3d)

Xj = 0,1,2,... j c U^ (3e)

Xj = or 1 J ^ ^N
^^^^

where c. > 0, j = l,...,n, b. > 0, i=l,...,m, b. < 1, i e Z„.
J — 1 — 1 — D

The optimal LP solution is x^ = 0, j=l,...,n, y^ = b., i=l,...,m.

Clearly, the original IP problem (1) is solved if y^ is integer for all i.

If one or more basic variables is not integer in the optimal LP solution,

then some of the independent non-basic variables x. must be set at positive

integer values in order to make the dependent basic variables integer and

non-negative. We call a non-negative integer vector x = (xi,...,x) satis-

fying (3e) and (3f) a correction to the optimal LP solution. If the re-

sulting y. given by (3b) satisfy (3c) and (3d), then x is a feasible correction,

The least cost feasible correction is an optimal or minimal correction.

Problem (3) is transformed to another equivalent problem as follows.

Let Z denote the cyclic group of order q.. Each non-basic activity a. is

mapped into an r-tuple of integers a. = (a, . ,ap^. ,. . . ,a .) where a., c 1

r
and the integer q. satisfy q. ^2, q. |q.^, , n q. = D = |det B | . Similarly,

the right hand side vector b is mapped into the r-tuple of integers

e =
(3i,...,6) where g. e Z . The collection of D r-tuples of the form

(a, , .. . ,A), A. e Z , under addition modulo (q-,,...,q) form an abelian group

and hence these methods are called group theoretic. The equivalent formula-

tion to (1) and (3) is

min z = z^ + z c.x. (4a)

n _

s.t. y. = b. - z a..x. i=l,...,m (4b)
•'t 1

j^l
ij J ^ '

n

Za..x. .: 6.(mod q.) i = l,...,r (4c)

y^ > 0, i e Ug (4d)

y. 1 1 i E Zg (4e)

Xj = 0,1,2,... j e U^ (4f)

Xj = or 1 J ^ ^N
^^3^

Problem (4) is the starting point for the group theoretic approach. It is

difficult to explicitly consider all the constraints in (4), and IPA pro-

gresses by ignoring certain constraints and solving the related problems

which result. The optimal solutions to these problems are then used in a

manner to be described later to find an optimal solution to (4). We simply

mention here that this method of ignoring some constraints thereby creating

easier optimization problems is called relaxation (see [5], [i2]> Cls])-

Specifically, if X is the set of feasible corrections in (4), then the al-

gorithm will usually deal with sets X' satisfying XCX'. Then, if a

n

correction x* which is optimal in E c.x. subject to x e X' is feasible in

i=l ^ -^

n _ n
_

(4), (i.e., X* e X), then x* is optimal in (4). Moreover, e c-x^ <_ E c.x.

j=l J J j=l ^ ^

for all feasible corrections x e X. These properties of relaxation are

the basis for the branch and bound search of IPA, and also for the data

manipulation schemes.

Table 1 gives timings of IPA of some real life IP problems. We will

refer to these problems at various points during the paper. The 313 row

airline crew scheduling problem was solved to approximately the same degree of

optimal ity by the Ophelie Mixte code in 64.15 seconds on the CDC 6600.

The IBM test problem was solved by Geoffrion's improved implicit enumera-

tion code in 114 seconds on the IBM 7044.

A simplified flow chart of the IPA algorithm is presented in Figure 1.

The major components of the system are indicated by boxes labelled with the

names of the principal system subroutines (e.g. LP for linear programming,

etc.). In what follows, we will discuss each component briefly and present

some computational experience with that portion of the system.

Table 1

EXAMPLES OF RESULTS WITH IPA

OBLEM TYPE

(begin)

READ DATA

SOLVE LP PROBLEM
AS LP PROBLEM

LP

CONVERT TO GROUP
OPTIMIZATION PROBLEM

SOLVE GROUP
OPTIMIZATION PROBLEM

GETREP

UGP

or ZOG

BRANCH AND
BOUND SEARCH

SEARCH

-^

(done)

Figure 1

IPA Linear Programming

IPA contains its own LP routine which can solve most LP problems with

200 rows or less, and a reasonable number of variables. We put less time

and effort into this LP routine relative to that devoted to the more novel

routines discussed below. The LP routine is an upper bounding variant of

the simplex method written in FORTRAN IV. It uses single precision floating

point arithmetic and therefore round-off problems can develop, especially

if the determinant of the LP basis becomes large. Since large basis deter-

minants make the group theoretic methods difficult to use, and moreover,

since measures are used to try to prevent large determinants from occurring,

the round-off problem is avoided and controlled to a certain extent. The

procedures for controlling the determinants are discussed briefly below and

in more detail in [13].

Nevertheless, round-off has sometimes been a problem for the LP routine

and in these cases it was necessary to read in an optimal LP basis obtained

from another system, e.g. the IBM 360 MPS linear programming code. We remark

that it is not possible to use the final (optimal) LP tableau found by MPS

because MPS does not give the determinant of the optimal LP basis from which

the tableau is derived. Without knowledge of the determinant, the transfor-

mation to group optimization problems cannot be made.

The Group Representational Algorithm

The group representational algorithm (GETREP) is based on a method due

to J. H. S. Smith for characterizing integer solutions to a system of linear

equations by diagonalizing integer basis matrices. The original references

are [20] and [21]. Wolsey [24] shows how Smith's method is used in IP;

other discussions can be found in the paper by D. A. Smith [19] and the book

by T. C. Hu [16j. We remark that Cabay in reference [1] uses similar con-

gruential methods to find exact continuous solutions to systems of linear

equations.

Conceptually, the procedure beings with the system of congruences

n

I a^.x. ;; b.(mod 1) i = l,...,m, (5)

j = l
TJ J 1

which is equivalent to the requirement that the independent non-basic vari-

ables X. be chosen in such a way that the dependent basic variables y. are

integer. The subroutine GETREP transforms (5) to the system of congruences

(4c) which we rewrite here

Y. a..x. E 6-(mod q.) i = l,...,r.
j=l ^J J ^

^

The reduction is necessary for efficient computation as r is usually on

the order of 1 to 5 regardless of the value of m.

The reduction of the system of congruences is achieved by reduction

of the m X m matrix F = fj^^. = D{a|^ ^^^
- [l^

n+i-'^'
1^"^ >• • • 'i^' '"''^ '• • • '"•

Through a series of passes through F, the matrix is diagonalized. Each of

10

these passes consists of finding the minimum non-zero element in F and

using the row and column in which that element exists for elementary row

and column operations on F. These row (column) operations are like the

typical Gauss- Jordan reduction steps except that the constant multiple of

a row (column) which is to be subtracted from another row (column) is deter-

mined in integer arithmetic and the reductions are made modulo D. In the

event that a pass through the matrix leaves a given row and column with the only

non-zero element at their intersection, the row and column are in general

removed from any further consideration in the di agonal izati on procedure.

The only exception to this is when the non-zero intersection element does

not divide the determinant or does not divide the similar preceding element.

In such a case the representational algorithm "backs up" and continues the

process. We will omit here details of this last maneuver. Basically, the

purpose for it is to insure that the minimal group representation is obtained

by the algorithm. The diagonalization procedure is complete when the product

of the non-zero intersection element equals the determinant of the basis

matrix.

If the diagonalization procedure has revealed r subgroups (that is,

if r elements were required to form a product equal to the determinant),

then the a's are determined by the first r inner products of the rows of a

matrix C generated from the elementary column operations of diagonalization

procedure and the non-basic columns taken modulo the corresponding subgroup

orders.

11

Table 2a. Group Representational Algorithm: Computational Experience

(denotes IBM 360/67; all others Univac 1108)

12

Table 2b. Group Representational Algorithm:

Computational Experience

(IBM 360/85)

13

In Tables 2a and 2b we have presented some representative times for

the algorithm on a variety of integer programming problems. As can be seen

from this figure, in spite of the fact that the algorithm is written in

FORTRAN, the computational requirements to obtain group representations are

relatively small. We have not performed any detailed study on the relation-

ship between the computational time required for the representational al-

gorithm and such variables as the number of rows in the problem or the num-

ber of non-basic columns. There are, however, certain general observations

we can make based on the data presented. In general the computational re-

quirement increased with the number of rows in the integer programming prob-

lem because the number of elements in the matrix F which must be considered

is equal to the square of the number of rows. Thus, increasing the number

of rows increases the amount of computation required to diagonal ize

the fractional matrix.

On the other hand, our experience to date has not

shown the number of subgroups to be an important factor in determining the

computational time. The reason for this is that a single pass through the

fractional matrix will produce many zero elements in that matrix. Subse-

quent passes through the matrix will then generally find a number of constant

multiples for rows and columns which are zero and hence effectively can be

ignored. The number of non-basic columns in the problem is also an important

determinant of the computational time. Once C has been obtained, the cal-

culation of the group identities for the non-basics requires the multiplica-

tion of some number of rows of C be each of the non-basic columns in turn.

As a result, if the number of non-basics is quite large, then the computa-

tional time for the representational algorithm wil 1 also be relatively large.

Notice, however, that these times will show only a relatively large increase.

14

In other words, the absolute time required to obtain the representation is

in general quite small and for the problems which we have dealt with where

the number of rows and columns is less than say 300, this time is on the

order of one to three seconds.

In spite of the promising computational experience with GETREP, further

research is required into group representational theory and IP. If many

group problems are formulated and used during the branch and bound search,

then faster group representation. times are desirable. Johnson [14] has had

success with a fast method of approximating the groups as cyclic groups.

Research is also required to gain a better understanding of the re-

lationship between a group structure and the IP problem from which it is

derived. For example, changing one number in the basis B can radically

change the group structure. Useful structural relationships may also be

identifiable between subgroups in the representation and subsystems of the

IP problems. Tompkins and Unqer [23] have done this for the fixed charge problem.

Finally, it is interesting to note that Gomory originally expected the

groups to be cyclic in most cases ([8; p. 279]), but computation thus far

is counter to that expectation.

When GETREP is finished, it has produced the group representations of

the non-basics (the a.'s) and that for b (denoted by e). IPA can now solve

the implied shortest route problem as discussed in the next section.

15

Group Optimization Problems

After GETREP has obtained the group representation (4c), IPA solves

one of two group optimization problems. These problems are constructed

by ignoring the non-negativity constraints on the basics and possibly

some upper bound constraints. As mentioned in the overview, this approach

will provide either an optimal correction in (4), or the necessary

information about lower bounds and trial corrections from which to do a

search for an optimal correction.

One group optimization problem is the unconstrained group problem (UGP):

For k = 0,1 D-1 , find

n

G(X.) = min E c .x.
K

j=l J J

n

s.t. I a..x. = A|^.{mod q .) , i = 1 ,. . . ,r (6)

X. = 0,1 ,2,,..; j = 1 ,...,n

This problem is also referred to as the asymptotic problem by Gomory [9].

Problem (6) is a shortest route problem (see [12], [17]) in a network

with D nodes, one for each r-triple X, , directed arcs (A. - a-,X|^),

j - 1 ,... ,n, drawn to every node X. except the node Xq = 0. The arc

length or cost associated with an arc type j is c..

The unconstrained group problem solves (6) for all right hand sides

X. rather than the specific right hand side B in problem (4) because the

additional paths are important if a search is required. An optimal solution

x(X.) to (6) with right hand side Xj^ is extracted from the shortest route

16

path by letting x.(a,) equal the number of times an arc j is used in the

optimal path.

The other group optimization problem which IPA sometimes uses is prob-

lem (6) with additional upper bound constraints (often upper bounds of one)

on some of the non-basic variables. This problem is called ZOG. The al-

gorithm for solving this problem is given in reference [12]. Consistent

computational times for it are not available since it has undergone several

changes. Indications are, however, that it is only slightly slower than

UGP for problems with basis determinants of less than 1000 although it does

require more core storage than UGP.

Tables 3a and 3b give times for the solution of (6) using the uncon-

strained group problem algorithm of [12]; this algorithm was originally

proposed in [17]. The algorithm finds in a few seconds the entire short-

est route tree for IP problems with basis determinants of up to 5000. The

determinant is the primary factor in determining the computation time

of UGP but the number of non-basics n and the difficulty of the problem

also are important factors. Notice also that the time appears to increase

linearly in these factors.

There are three other algorithms in the literature for solving

group optimization problems. The first was the algorithm proposed by

Goromy in [9] in which the group optimization problem (6) was originally

formulated. Published computational experience with this algorithm

does not appear to exist.

A second algorithm for solving group optimization problems is given

by Glover in [6] which includes some computation times for randomly

17

generated group optimization problems. It is difficult to make

comparisons between Glover's results and our own because the characteristics

he gives for randomly generated group optimization problems are different

from the ones from actual IP problems.

Specifically, for group problems derived from real IP problems the a-

in (6) do not appear to be randomly generated and the range of arc costs

is definitely greater than the range given by Glover. These characterist--cs

of group optimization problems derived from real IP problems should

make them easier to solve than randomly generated ones because a

relatively small number of non-basic activities with low costs dominate

the shortest route solutions.

Finally, there is the algorithm of Hu [15] which is an adaptation

of the shortest route algorithm of Dijkstra [2]. The essential

difference between Hu's algorithm and UGP is the manner of selecting

a path in the network to extend. Hu's algorithm searches through all

the paths for which extension is indicated to find the minimal cost

one, whereas UGP selects the first such path it can find. We have

experimented briefly with the Dijkstra-Hu approach by making the

appropriate change in UGP; it appears that this change causes the time

to increase by as much as a factor of five to ten (Hu does not give any

computational experience in [15]). The explanation of why the Dijkstra

method might be ineffective in this case is because the group shortest route

network has special structure; namely, the same types of arcs with the

same arc costs are drawn to every node. Thus, low cost

dominating arcs are discovered quickly and can be used repeatedly.

18

UDV0C0':l-C0r0O0^00O
1— oOLnnoocotNiOOo>Ln

Lf) CM CM CO 1

—

CO CM 00 CM

rO CM CM CM CO rO 1— CM CO CO CM CM

oooooooocor— •>;a-ouDr-^CMCMCOCOCOLOUOCTiCTlCTl
o

19

Table 3b. Solution of the Unconstrained

Group Optimization Problem:

Computational Experience

(IBM 360/85)

20

Johnson [14] has developed a special algorithm to solve cyclic group

problems quickly where the cyclic groups are approximations to subgroups

of the true group implied by the matrix B.

We now turn to the question of when the group problem or asymptotic

problem (6) does in fact solve the IP problem (4) from which it was derived.

In reference [16] on page 347, T. C. Hu states, "Although we have a suffi-

cient condition that tells when the asymptotic algorithm works, actual

computation will reveal that the algorithm works most of the time even if

the sufficient condition is not satisfied." Computation has in fact re-

vealed that solving the asymptotic problem does not solve the original

problem for most real life IP problems of any size, say problems with more

than 40 rows. The positive search times on all but two of the problems in

Table 1 indicates that the solutions to the asymptotic problems (6) were

infeasible in the original problems. The difficulty is compounded by the

fact that problem (6) almost always has many alternative optimal solutions,

only one of which may be feasible and therefore optimal in (4). This was

the case, for example, for the 57 row clerk scheduling problem. The op-

timal IP correction was optimal in (6) but it had to be found during

search. The asymptotic problem does provide good lower bounds in objective

function costs and good candidate solutions for the search which is discussed

in the next section.

21

Search Procedures in IPA

The branch and bound search performed by IPA implicitly considers all

non-negative integer corrections x in (4). At an intermediate point of

computation, the minimal cost solution found thus far is called the

incumbent and denoted by 9. with incumbent cost z = Zq + ex. The algorithm

generates IP subproblems of the following form from explicitly enumerated

non-negative integer vectors x

j(x)_
z(x) = Zo + ex + min I c.x (7a)

j=l ^ ^

j(x) n

s.t. Z a..x. <b- E a..x. i=l,...,m (7b)

j=1 ^ ^ ~ j=j(x) ^^ ^

j(x) n
, . .

1=1,. ..,r (7c)

(7d)

(7e)

(7f)

(7g)

where j(x) is either the smallest index j such that x.>0 if this index

corresponds to an unbounded variable, or it is the smallest index minus 1

such that x.>0 if this index corresponds to a zero-one variable. The

summations in (7) are restricted to the range 1 to j(x) in order that the

search be non-redundant.

If we can find an optimal solution to (7), then we have effectively

tested all non-negative integer corrections x ^x, x. = x., j = j(x) + l,...,n.

Z a..x. = &. - Z a..x. 1

j=l '^ ^ ' j=j(x) '^ ^

22

and they do not have to be explicitly enumerated. The same conclusion is

true if we can ascertain that z(x) >_ z without discovering the precise value

of z(x). If either of these two cases obtain, then we say that x has been

fathomed. If x is not fathomed, then we abandon (7) and create new sub-

problems of the same form as (7) from the solutions x + e., j = l,...,j(x),

where e. is the j unit vector.

We try to fathom (7) in the same manner that we tried to solve (4);

namely, by ignoring some of the constraints. If problem (6) was the

group optimization problem selected before search began, then we use the

group optimization problem

n n

G(3 - E a.T.) = min Z c .x .

j=l J J j-1 J ^

n " ^
s.t. Za. .X. = 3- - Z a. .'x.(mod q.) i = l,...,r (8)

j=1^^ ^ ' j=j(x) 'J J
'

X. = 0.1.2,... j = l,...,n

The use of (8) "in trying to fathom (7) is given in Figure 2. Here we will

comment briefly on the various components of the search.

Our discussion of the search will assume the use of UGP; at the user's

choice, ZOG can be used.

In a problem with zero-one variables, the latter will yield better bounds

for the fathoming test. The basic generation of the search, however, would

be the same as with UGP.

The solution to the group problem chosen is maintained in core in a list-

structured form which permits the rapid retrieval of backtracked solutions to

23

(8). Basically, for each node of the group problem, the system stores

the cost of the shortest-route path to the node, the identity of the arc

into the node, and a pointer which can be used to reconstruct the whole

path back to zero in the group network.

The remaining free core memory is used by the search routine for

the storage of subproblems. The space is used as a buffer area in which

blocks of subproblems for consideration are stored. As the search generates

more subproblems, blocks of them are moved to disk storage, generally to

be returned to core later when the space becomes available. Through the use

of secondary storage, the system is able to maintain a very large number of

active subproblems while it searches for an incumbent.

Step 1 : Here a subproblem is chosen for the fathoming tests. In the curr'ent

system, subproblems are considered in the order of their generation. For

each subproblem, the system stores: 1) the bound obtained when the subproblem
n ^

was generated; 2) the index of the node 3(x) = 3 - T.a.x- for the particular

x"^ in question; 3) x itself (with only the non-zero elements stored as pairs

(J^fX.)); and 4) the shortest route path from B(x) to 0.
'1

n

Step 2 : If the bound zo + G(6 - Z a.x.) is greater than or equal to the

j=l ^ ^

current incumbent cost 2 then the subproblem is deleted, because it is

fathomed by bound. As will be seen below, this is the second time this subproblem

has been tested for bound. The first time was when it was created. Because

the subproblem is still active, we know the first check failed to fathom it.

In general, a very large number of other subproblems have been considered

24

since then, and a new incumbent with lower cost may have been found. Hence

this second test may fathom the correction.

If the subproblem is not fathomed by bound, it is continued. Basically,

for each i
_f j(x), a new correction of the form x + e is generated. This

correction is tested for bound by comparing

Zq+c. +G(3- _Z^ajXj - a^)

with the incumbent cost. If the bound for this new correction is less than

t, the group network is used to backtrack this correction. If x + e. + x

is feasible, then a new incumbent has been found, and it is recorded along

with its costs. (Parenthetically, we note that by maintaining B and a.

cleared by the determinant, the system can use integer arithmetic to test

feasibility in (4b). Integrality in (4b) is guaranteed through the use of the

group problem.

)

If the new continuation is not feasible, then it is saved on the sub-

problem list for later consideration.

In fact the search routine does not generate all continuations x + e.,

j ^ j(x) for a given x. Recall that the backtracked solution from the group

network, x , is stored with the subproblem. It can be shown that any

correction x + u ^x + x will be infeasible if x + x is infeasible, and

moreover the former will be backtracked to x + x . Hence only descendants

X + u ^ X + X are created and tested.

When all these descendants of x have been created, tested, and saved if

necessary, the subproblem x is deleted. This is possible, of course, because

25

fathoming the descendants of x is equivalent to fathoming x.

The particular search routine in our system is of the most straightforward

kind. As can be seen from Table 4, it can generate and test

solutions Mery rapidly. On the other hand, the real issue is how rapidly

a problem can be solved. Finding a good incumbent early can have a dramatic

effect on the efficiency of the search. The current algorithm does not give

sufficient emphasis to this goal. The theory for an improved search is

presented in (4) and we hope to implement it along with some heuristics for

managing the search.

This is the reason we backtrack solutions as they are generated in

the hopes of finding an incumbent early in the search.

26

Delete $<

from list

FIGURE 2

—^i
CSubproblem list L

Select subproblerr

X from 1 ist

C Fathomed by
bound?)

(More continuations
X to be generated?

I
D

Generate next contin-
uation and its bound

(

Exit with
optimal
correction

Continuation fathomed
by bound? >
Backtrack continuation
and test feasibility

r Feasible j
Save new
incumbent

Store subproblem for
this continuation]

27

Table 4. Search Times

28

Concluding Remarks

We have tried to demonstrate in this paper that group theoretic methods

are easy to derive and effective in solving IP problems. It is important

to reemphasize that the algorithm IPA which uses these methods is perhaps

the simplest one possible. After finding an optimal LP basis, IPA derives

one group problem, either UGP or ZOG, solves it, and then if necessary,

implicitly searches the set of all non-negative corrections where trial

corrections and the extent of the search are derived from the previously

solved group problem. In spite of its simplicity, IPA has performed quite

well on a variety of real life IP problems as indicated in the figures in

Table 1. We believe that future algorithms will be even more effective when

we implement the dual methods of [4] for improving the bounds and generati ig

strong cuts, and when we make dynamic use of the group optimization prob-

lems as discussed in [12]. A third important area of improvement and

innovation is the use of data manipulation for controlling basis determinaits

by the methods discussed in [13]. We will conclude this paper with a dis-

cussion of the importance of the basis determinants in IP computation.

Consider the 313 row airline crew scheduling problem in Table 1. When

the optimal LP basis obtained by MPS was pivoted into an identity matrix

in preparation for solving the problem as an IP problem, the determinant

equalled +1 or -1 for 311 pivots and then went to 24 on pivot 312 and 48

on pivot 313. Thus, the LP basis was almost unimodular and this made the

problem easy to solve in spite of its large size. IPA found good solutions

to a more difficult airline crew scheduling problem that had 259 rows and

about 750 variables; it is not listed in Table 1 because we were not able

to time its performance except to estimate the total solution time at about

15 minutes on an IBM 360/65. This problem had a determinant of 176 and

29

this solution was very fractional. It is interesting to note that we found

alternative optimal bases for this problem with determinants of 8 and

103,000, so the selection of an optimal basis is important. Thiriez [22]

also reports on the successful use of group theoretic methods in airline

crew scheduling.

By contrast to the 313 row problem, consider the difficult 26 row

zero-one problem (application unknown). Other codes had been tried on

this problem with little success. The coefficient matrix of this problem

consisted of O's, 1 's and 2' s, and the determinant of the optimal LP basis

was on the order of 5000. Another problem of this class with an additional

less than or equal to constraint consisting of small positive integers

with a right hand side of 235 had an optimal basis determinant of 155,000,

We relaxed the constraint by the methods of [13] and hoped to satisfy it

a fortiori during search. During one run we generated 37 solutions which

were feasible on all of the constraints except the indicated one, but

violated the relaxed one by approximately 10 to 20 units out of 235.

30

References

Cabay, Stanley, "Exact Solution of Linear Equations", Proceedings of
the Second Symposium on Symbolic and Algebraic Manipulation , published
by Association for Computing Machinery, Los Angeles, March 1971, 392-

398.

Dijkstra, E. W. , "A Note on Two Problems in Connexion with Graphs",
Numerische Mathematik , 1 (1959), 269-271.

Dreyfus, S. E., "An Appraisal of Some Shortest-Path Algorithms",
Operations Research , 17 (1969), 395-412.

Fisher, M. L. and J. Shapiro, "Constructive Duality in Integer Pro-
gramming", Operations Research Center Working Paper No. OR 008-72,
M.I.T. , April 1972.

Geoffrion, A. M. and R. E. Marsten, "Integer Programming Algorithms:
A Framework and State-of-the-Art Survey", Management Science , 18

(1972), 465-491.

Glover, F. , "Integer Programming Over a Finite Additive Group", SI AM

J. on Control , 1 (1969), 213-231.

Glover, F., "Faces of the Gomory Polyhedron", Chapter 17 in Integer
and Nonlinear Programming , J. Abadie, editor, North-Holland Publish-
ing Co., Amsterdam, 1970.

Gomory, R. E. , "An Algorithm for Integer Solutions to Linear Programs",
Chapter 34 in Recent Advances in Mathematical Programming , Graves and
Wolfe, editors, McGraw-Hill Book Co., Inc., New York, 1963, 269-302.

Gomory, R. E., "On the Relation between Integer and Non-Integer Solu-
tions to Linear Programs", Proc. Nat. Acad. Sci

.

, 53 (1965), 260-265.

Gomory, R. E., "Some Polyhedra Related to Combinatorial Problems",
Journal of Linear Algebra and Applications , 2 (1969), 451-558.

Gomory, R. E. and E. L. Johnson, "Some Continuous Functions Related to

Corner Polyhedra", RC-3311 (February 1971), IBM, Yorktown Heights, N.Y.

Gorry, G. A. and J. F. Shapiro, "An Adaptive Group Theoretic Algorithm
for Integer Programming Problems", Management Science , 17 (1971), 285-

306.

Gorry, G. A., J. F. Shapiro and L. A. Wolsey, "Relaxation Mpthods for
Pure and Mixed Integer Programming Problems", Management Science, 18

(1972), 229-239.

Johnson, E. L., personal communication.

31

[15] Hu, T. C, "On the Asymptotic Integer Algorithm", Linear Algebra and

Its Applications ", 3 (1970), 279-294.

[16] Hu, T. C, Integer Programming and Network Flows , Addison- Wesley,

Reading, 1969.

[17] Shapiro, J. F. , "Dynamic Programming Algorithms for the Integer Pro-

gramming Problem-- I: The Integer Programming Problem Viewed as a Knap-

sack Type Problem", Operations Research , 16 (1968), 103-121.

[18] Shapiro, J. F., "Generalized Lagrange Multipliers in Integer Program-

ming", Operations Research , 19 (1971), 68-76.

[19] Smith, D. A., "A Basis Algorithm for Finitely Generated Abelian Groups",

Mathematical Algorithms , 1 (1969), 13-26.

[20] Smith, J. H. S., "On Systems of Linear Indeterminate Equations and

Congruences", Philosophical Transactions , 151 (1861), 293-326.

[21] Smith, J. H. S., Collected Mathematical Papers , Vol. I, Clarendon

Press, Oxford, 1894.

[22] Thiriez, H. , "The Set Covering Problem: A Group Theoretic Approach",

Revue Francaise d' Informatique et de Recherche Operationelle , V-3

(1971), 83-103.
"""

[23] Tompkins, C. J. and V. E. Unger, "Group Theoretic Structures in the

Fixed Charge Transportation Problem", paper presented at the Forty-

first National Meeting of ORSA, New Orleans, April, 1972.

[24] Wolsey, L. A., "Mixed Integer Programming: Discretization and the Group

Theoretic Approach", Ph.D. thesis published as Technical Report No. 42

(June 1969), Operations Research Center, M.I.T.

[25] Wolsey, L. A., "Group-Theoretic Results in Mixed Integer Programming",

Operations Research , 19 (1971), 1691-1697.

[26] Wolsey, L. A., "Extensions of the Group Theoretic Approach in Integer

Programming", Management Science , 18 (1971), 74-83.

n-

